Merge branches 'upstream-fixes', 'wacom' and 'waltop' into for-linus
[cascardo/linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
103                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104         {0,}
105 };
106
107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
108
109 /*  board_id = Subsystem Device ID & Vendor ID
110  *  product = Marketing Name for the board
111  *  access = Address of the struct of function pointers
112  */
113 static struct board_type products[] = {
114         {0x3241103C, "Smart Array P212", &SA5_access},
115         {0x3243103C, "Smart Array P410", &SA5_access},
116         {0x3245103C, "Smart Array P410i", &SA5_access},
117         {0x3247103C, "Smart Array P411", &SA5_access},
118         {0x3249103C, "Smart Array P812", &SA5_access},
119         {0x324a103C, "Smart Array P712m", &SA5_access},
120         {0x324b103C, "Smart Array P711m", &SA5_access},
121         {0x3350103C, "Smart Array", &SA5_access},
122         {0x3351103C, "Smart Array", &SA5_access},
123         {0x3352103C, "Smart Array", &SA5_access},
124         {0x3353103C, "Smart Array", &SA5_access},
125         {0x3354103C, "Smart Array", &SA5_access},
126         {0x3355103C, "Smart Array", &SA5_access},
127         {0x3356103C, "Smart Array", &SA5_access},
128         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
129 };
130
131 static int number_of_controllers;
132
133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
134 static spinlock_t lockup_detector_lock;
135 static struct task_struct *hpsa_lockup_detector;
136
137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
140 static void start_io(struct ctlr_info *h);
141
142 #ifdef CONFIG_COMPAT
143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
144 #endif
145
146 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
148 static struct CommandList *cmd_alloc(struct ctlr_info *h);
149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
151         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
152         int cmd_type);
153
154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
155 static void hpsa_scan_start(struct Scsi_Host *);
156 static int hpsa_scan_finished(struct Scsi_Host *sh,
157         unsigned long elapsed_time);
158 static int hpsa_change_queue_depth(struct scsi_device *sdev,
159         int qdepth, int reason);
160
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
162 static int hpsa_slave_alloc(struct scsi_device *sdev);
163 static void hpsa_slave_destroy(struct scsi_device *sdev);
164
165 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
166 static int check_for_unit_attention(struct ctlr_info *h,
167         struct CommandList *c);
168 static void check_ioctl_unit_attention(struct ctlr_info *h,
169         struct CommandList *c);
170 /* performant mode helper functions */
171 static void calc_bucket_map(int *bucket, int num_buckets,
172         int nsgs, int *bucket_map);
173 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
174 static inline u32 next_command(struct ctlr_info *h);
175 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
176         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
177         u64 *cfg_offset);
178 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
179         unsigned long *memory_bar);
180 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
181 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
182         void __iomem *vaddr, int wait_for_ready);
183 #define BOARD_NOT_READY 0
184 #define BOARD_READY 1
185
186 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
187 {
188         unsigned long *priv = shost_priv(sdev->host);
189         return (struct ctlr_info *) *priv;
190 }
191
192 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
193 {
194         unsigned long *priv = shost_priv(sh);
195         return (struct ctlr_info *) *priv;
196 }
197
198 static int check_for_unit_attention(struct ctlr_info *h,
199         struct CommandList *c)
200 {
201         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
202                 return 0;
203
204         switch (c->err_info->SenseInfo[12]) {
205         case STATE_CHANGED:
206                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
207                         "detected, command retried\n", h->ctlr);
208                 break;
209         case LUN_FAILED:
210                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
211                         "detected, action required\n", h->ctlr);
212                 break;
213         case REPORT_LUNS_CHANGED:
214                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
215                         "changed, action required\n", h->ctlr);
216         /*
217          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
218          * target (array) devices.
219          */
220                 break;
221         case POWER_OR_RESET:
222                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
223                         "or device reset detected\n", h->ctlr);
224                 break;
225         case UNIT_ATTENTION_CLEARED:
226                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
227                     "cleared by another initiator\n", h->ctlr);
228                 break;
229         default:
230                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
231                         "unit attention detected\n", h->ctlr);
232                 break;
233         }
234         return 1;
235 }
236
237 static ssize_t host_store_rescan(struct device *dev,
238                                  struct device_attribute *attr,
239                                  const char *buf, size_t count)
240 {
241         struct ctlr_info *h;
242         struct Scsi_Host *shost = class_to_shost(dev);
243         h = shost_to_hba(shost);
244         hpsa_scan_start(h->scsi_host);
245         return count;
246 }
247
248 static ssize_t host_show_firmware_revision(struct device *dev,
249              struct device_attribute *attr, char *buf)
250 {
251         struct ctlr_info *h;
252         struct Scsi_Host *shost = class_to_shost(dev);
253         unsigned char *fwrev;
254
255         h = shost_to_hba(shost);
256         if (!h->hba_inquiry_data)
257                 return 0;
258         fwrev = &h->hba_inquiry_data[32];
259         return snprintf(buf, 20, "%c%c%c%c\n",
260                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
261 }
262
263 static ssize_t host_show_commands_outstanding(struct device *dev,
264              struct device_attribute *attr, char *buf)
265 {
266         struct Scsi_Host *shost = class_to_shost(dev);
267         struct ctlr_info *h = shost_to_hba(shost);
268
269         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
270 }
271
272 static ssize_t host_show_transport_mode(struct device *dev,
273         struct device_attribute *attr, char *buf)
274 {
275         struct ctlr_info *h;
276         struct Scsi_Host *shost = class_to_shost(dev);
277
278         h = shost_to_hba(shost);
279         return snprintf(buf, 20, "%s\n",
280                 h->transMethod & CFGTBL_Trans_Performant ?
281                         "performant" : "simple");
282 }
283
284 /* List of controllers which cannot be hard reset on kexec with reset_devices */
285 static u32 unresettable_controller[] = {
286         0x324a103C, /* Smart Array P712m */
287         0x324b103C, /* SmartArray P711m */
288         0x3223103C, /* Smart Array P800 */
289         0x3234103C, /* Smart Array P400 */
290         0x3235103C, /* Smart Array P400i */
291         0x3211103C, /* Smart Array E200i */
292         0x3212103C, /* Smart Array E200 */
293         0x3213103C, /* Smart Array E200i */
294         0x3214103C, /* Smart Array E200i */
295         0x3215103C, /* Smart Array E200i */
296         0x3237103C, /* Smart Array E500 */
297         0x323D103C, /* Smart Array P700m */
298         0x40800E11, /* Smart Array 5i */
299         0x409C0E11, /* Smart Array 6400 */
300         0x409D0E11, /* Smart Array 6400 EM */
301         0x40700E11, /* Smart Array 5300 */
302         0x40820E11, /* Smart Array 532 */
303         0x40830E11, /* Smart Array 5312 */
304         0x409A0E11, /* Smart Array 641 */
305         0x409B0E11, /* Smart Array 642 */
306         0x40910E11, /* Smart Array 6i */
307 };
308
309 /* List of controllers which cannot even be soft reset */
310 static u32 soft_unresettable_controller[] = {
311         0x40800E11, /* Smart Array 5i */
312         0x40700E11, /* Smart Array 5300 */
313         0x40820E11, /* Smart Array 532 */
314         0x40830E11, /* Smart Array 5312 */
315         0x409A0E11, /* Smart Array 641 */
316         0x409B0E11, /* Smart Array 642 */
317         0x40910E11, /* Smart Array 6i */
318         /* Exclude 640x boards.  These are two pci devices in one slot
319          * which share a battery backed cache module.  One controls the
320          * cache, the other accesses the cache through the one that controls
321          * it.  If we reset the one controlling the cache, the other will
322          * likely not be happy.  Just forbid resetting this conjoined mess.
323          * The 640x isn't really supported by hpsa anyway.
324          */
325         0x409C0E11, /* Smart Array 6400 */
326         0x409D0E11, /* Smart Array 6400 EM */
327 };
328
329 static int ctlr_is_hard_resettable(u32 board_id)
330 {
331         int i;
332
333         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
334                 if (unresettable_controller[i] == board_id)
335                         return 0;
336         return 1;
337 }
338
339 static int ctlr_is_soft_resettable(u32 board_id)
340 {
341         int i;
342
343         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
344                 if (soft_unresettable_controller[i] == board_id)
345                         return 0;
346         return 1;
347 }
348
349 static int ctlr_is_resettable(u32 board_id)
350 {
351         return ctlr_is_hard_resettable(board_id) ||
352                 ctlr_is_soft_resettable(board_id);
353 }
354
355 static ssize_t host_show_resettable(struct device *dev,
356         struct device_attribute *attr, char *buf)
357 {
358         struct ctlr_info *h;
359         struct Scsi_Host *shost = class_to_shost(dev);
360
361         h = shost_to_hba(shost);
362         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
363 }
364
365 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
366 {
367         return (scsi3addr[3] & 0xC0) == 0x40;
368 }
369
370 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
371         "UNKNOWN"
372 };
373 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
374
375 static ssize_t raid_level_show(struct device *dev,
376              struct device_attribute *attr, char *buf)
377 {
378         ssize_t l = 0;
379         unsigned char rlevel;
380         struct ctlr_info *h;
381         struct scsi_device *sdev;
382         struct hpsa_scsi_dev_t *hdev;
383         unsigned long flags;
384
385         sdev = to_scsi_device(dev);
386         h = sdev_to_hba(sdev);
387         spin_lock_irqsave(&h->lock, flags);
388         hdev = sdev->hostdata;
389         if (!hdev) {
390                 spin_unlock_irqrestore(&h->lock, flags);
391                 return -ENODEV;
392         }
393
394         /* Is this even a logical drive? */
395         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
396                 spin_unlock_irqrestore(&h->lock, flags);
397                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
398                 return l;
399         }
400
401         rlevel = hdev->raid_level;
402         spin_unlock_irqrestore(&h->lock, flags);
403         if (rlevel > RAID_UNKNOWN)
404                 rlevel = RAID_UNKNOWN;
405         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
406         return l;
407 }
408
409 static ssize_t lunid_show(struct device *dev,
410              struct device_attribute *attr, char *buf)
411 {
412         struct ctlr_info *h;
413         struct scsi_device *sdev;
414         struct hpsa_scsi_dev_t *hdev;
415         unsigned long flags;
416         unsigned char lunid[8];
417
418         sdev = to_scsi_device(dev);
419         h = sdev_to_hba(sdev);
420         spin_lock_irqsave(&h->lock, flags);
421         hdev = sdev->hostdata;
422         if (!hdev) {
423                 spin_unlock_irqrestore(&h->lock, flags);
424                 return -ENODEV;
425         }
426         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
427         spin_unlock_irqrestore(&h->lock, flags);
428         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
429                 lunid[0], lunid[1], lunid[2], lunid[3],
430                 lunid[4], lunid[5], lunid[6], lunid[7]);
431 }
432
433 static ssize_t unique_id_show(struct device *dev,
434              struct device_attribute *attr, char *buf)
435 {
436         struct ctlr_info *h;
437         struct scsi_device *sdev;
438         struct hpsa_scsi_dev_t *hdev;
439         unsigned long flags;
440         unsigned char sn[16];
441
442         sdev = to_scsi_device(dev);
443         h = sdev_to_hba(sdev);
444         spin_lock_irqsave(&h->lock, flags);
445         hdev = sdev->hostdata;
446         if (!hdev) {
447                 spin_unlock_irqrestore(&h->lock, flags);
448                 return -ENODEV;
449         }
450         memcpy(sn, hdev->device_id, sizeof(sn));
451         spin_unlock_irqrestore(&h->lock, flags);
452         return snprintf(buf, 16 * 2 + 2,
453                         "%02X%02X%02X%02X%02X%02X%02X%02X"
454                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
455                         sn[0], sn[1], sn[2], sn[3],
456                         sn[4], sn[5], sn[6], sn[7],
457                         sn[8], sn[9], sn[10], sn[11],
458                         sn[12], sn[13], sn[14], sn[15]);
459 }
460
461 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
462 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
463 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
464 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
465 static DEVICE_ATTR(firmware_revision, S_IRUGO,
466         host_show_firmware_revision, NULL);
467 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
468         host_show_commands_outstanding, NULL);
469 static DEVICE_ATTR(transport_mode, S_IRUGO,
470         host_show_transport_mode, NULL);
471 static DEVICE_ATTR(resettable, S_IRUGO,
472         host_show_resettable, NULL);
473
474 static struct device_attribute *hpsa_sdev_attrs[] = {
475         &dev_attr_raid_level,
476         &dev_attr_lunid,
477         &dev_attr_unique_id,
478         NULL,
479 };
480
481 static struct device_attribute *hpsa_shost_attrs[] = {
482         &dev_attr_rescan,
483         &dev_attr_firmware_revision,
484         &dev_attr_commands_outstanding,
485         &dev_attr_transport_mode,
486         &dev_attr_resettable,
487         NULL,
488 };
489
490 static struct scsi_host_template hpsa_driver_template = {
491         .module                 = THIS_MODULE,
492         .name                   = HPSA,
493         .proc_name              = HPSA,
494         .queuecommand           = hpsa_scsi_queue_command,
495         .scan_start             = hpsa_scan_start,
496         .scan_finished          = hpsa_scan_finished,
497         .change_queue_depth     = hpsa_change_queue_depth,
498         .this_id                = -1,
499         .use_clustering         = ENABLE_CLUSTERING,
500         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
501         .ioctl                  = hpsa_ioctl,
502         .slave_alloc            = hpsa_slave_alloc,
503         .slave_destroy          = hpsa_slave_destroy,
504 #ifdef CONFIG_COMPAT
505         .compat_ioctl           = hpsa_compat_ioctl,
506 #endif
507         .sdev_attrs = hpsa_sdev_attrs,
508         .shost_attrs = hpsa_shost_attrs,
509         .max_sectors = 8192,
510 };
511
512
513 /* Enqueuing and dequeuing functions for cmdlists. */
514 static inline void addQ(struct list_head *list, struct CommandList *c)
515 {
516         list_add_tail(&c->list, list);
517 }
518
519 static inline u32 next_command(struct ctlr_info *h)
520 {
521         u32 a;
522
523         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
524                 return h->access.command_completed(h);
525
526         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
527                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
528                 (h->reply_pool_head)++;
529                 h->commands_outstanding--;
530         } else {
531                 a = FIFO_EMPTY;
532         }
533         /* Check for wraparound */
534         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
535                 h->reply_pool_head = h->reply_pool;
536                 h->reply_pool_wraparound ^= 1;
537         }
538         return a;
539 }
540
541 /* set_performant_mode: Modify the tag for cciss performant
542  * set bit 0 for pull model, bits 3-1 for block fetch
543  * register number
544  */
545 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
546 {
547         if (likely(h->transMethod & CFGTBL_Trans_Performant))
548                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
549 }
550
551 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
552         struct CommandList *c)
553 {
554         unsigned long flags;
555
556         set_performant_mode(h, c);
557         spin_lock_irqsave(&h->lock, flags);
558         addQ(&h->reqQ, c);
559         h->Qdepth++;
560         start_io(h);
561         spin_unlock_irqrestore(&h->lock, flags);
562 }
563
564 static inline void removeQ(struct CommandList *c)
565 {
566         if (WARN_ON(list_empty(&c->list)))
567                 return;
568         list_del_init(&c->list);
569 }
570
571 static inline int is_hba_lunid(unsigned char scsi3addr[])
572 {
573         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
574 }
575
576 static inline int is_scsi_rev_5(struct ctlr_info *h)
577 {
578         if (!h->hba_inquiry_data)
579                 return 0;
580         if ((h->hba_inquiry_data[2] & 0x07) == 5)
581                 return 1;
582         return 0;
583 }
584
585 static int hpsa_find_target_lun(struct ctlr_info *h,
586         unsigned char scsi3addr[], int bus, int *target, int *lun)
587 {
588         /* finds an unused bus, target, lun for a new physical device
589          * assumes h->devlock is held
590          */
591         int i, found = 0;
592         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
593
594         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
595
596         for (i = 0; i < h->ndevices; i++) {
597                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
598                         __set_bit(h->dev[i]->target, lun_taken);
599         }
600
601         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
602         if (i < HPSA_MAX_DEVICES) {
603                 /* *bus = 1; */
604                 *target = i;
605                 *lun = 0;
606                 found = 1;
607         }
608         return !found;
609 }
610
611 /* Add an entry into h->dev[] array. */
612 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
613                 struct hpsa_scsi_dev_t *device,
614                 struct hpsa_scsi_dev_t *added[], int *nadded)
615 {
616         /* assumes h->devlock is held */
617         int n = h->ndevices;
618         int i;
619         unsigned char addr1[8], addr2[8];
620         struct hpsa_scsi_dev_t *sd;
621
622         if (n >= HPSA_MAX_DEVICES) {
623                 dev_err(&h->pdev->dev, "too many devices, some will be "
624                         "inaccessible.\n");
625                 return -1;
626         }
627
628         /* physical devices do not have lun or target assigned until now. */
629         if (device->lun != -1)
630                 /* Logical device, lun is already assigned. */
631                 goto lun_assigned;
632
633         /* If this device a non-zero lun of a multi-lun device
634          * byte 4 of the 8-byte LUN addr will contain the logical
635          * unit no, zero otherise.
636          */
637         if (device->scsi3addr[4] == 0) {
638                 /* This is not a non-zero lun of a multi-lun device */
639                 if (hpsa_find_target_lun(h, device->scsi3addr,
640                         device->bus, &device->target, &device->lun) != 0)
641                         return -1;
642                 goto lun_assigned;
643         }
644
645         /* This is a non-zero lun of a multi-lun device.
646          * Search through our list and find the device which
647          * has the same 8 byte LUN address, excepting byte 4.
648          * Assign the same bus and target for this new LUN.
649          * Use the logical unit number from the firmware.
650          */
651         memcpy(addr1, device->scsi3addr, 8);
652         addr1[4] = 0;
653         for (i = 0; i < n; i++) {
654                 sd = h->dev[i];
655                 memcpy(addr2, sd->scsi3addr, 8);
656                 addr2[4] = 0;
657                 /* differ only in byte 4? */
658                 if (memcmp(addr1, addr2, 8) == 0) {
659                         device->bus = sd->bus;
660                         device->target = sd->target;
661                         device->lun = device->scsi3addr[4];
662                         break;
663                 }
664         }
665         if (device->lun == -1) {
666                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
667                         " suspect firmware bug or unsupported hardware "
668                         "configuration.\n");
669                         return -1;
670         }
671
672 lun_assigned:
673
674         h->dev[n] = device;
675         h->ndevices++;
676         added[*nadded] = device;
677         (*nadded)++;
678
679         /* initially, (before registering with scsi layer) we don't
680          * know our hostno and we don't want to print anything first
681          * time anyway (the scsi layer's inquiries will show that info)
682          */
683         /* if (hostno != -1) */
684                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
685                         scsi_device_type(device->devtype), hostno,
686                         device->bus, device->target, device->lun);
687         return 0;
688 }
689
690 /* Update an entry in h->dev[] array. */
691 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
692         int entry, struct hpsa_scsi_dev_t *new_entry)
693 {
694         /* assumes h->devlock is held */
695         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
696
697         /* Raid level changed. */
698         h->dev[entry]->raid_level = new_entry->raid_level;
699         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
700                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
701                 new_entry->target, new_entry->lun);
702 }
703
704 /* Replace an entry from h->dev[] array. */
705 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
706         int entry, struct hpsa_scsi_dev_t *new_entry,
707         struct hpsa_scsi_dev_t *added[], int *nadded,
708         struct hpsa_scsi_dev_t *removed[], int *nremoved)
709 {
710         /* assumes h->devlock is held */
711         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
712         removed[*nremoved] = h->dev[entry];
713         (*nremoved)++;
714
715         /*
716          * New physical devices won't have target/lun assigned yet
717          * so we need to preserve the values in the slot we are replacing.
718          */
719         if (new_entry->target == -1) {
720                 new_entry->target = h->dev[entry]->target;
721                 new_entry->lun = h->dev[entry]->lun;
722         }
723
724         h->dev[entry] = new_entry;
725         added[*nadded] = new_entry;
726         (*nadded)++;
727         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
728                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
729                         new_entry->target, new_entry->lun);
730 }
731
732 /* Remove an entry from h->dev[] array. */
733 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
734         struct hpsa_scsi_dev_t *removed[], int *nremoved)
735 {
736         /* assumes h->devlock is held */
737         int i;
738         struct hpsa_scsi_dev_t *sd;
739
740         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
741
742         sd = h->dev[entry];
743         removed[*nremoved] = h->dev[entry];
744         (*nremoved)++;
745
746         for (i = entry; i < h->ndevices-1; i++)
747                 h->dev[i] = h->dev[i+1];
748         h->ndevices--;
749         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
750                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
751                 sd->lun);
752 }
753
754 #define SCSI3ADDR_EQ(a, b) ( \
755         (a)[7] == (b)[7] && \
756         (a)[6] == (b)[6] && \
757         (a)[5] == (b)[5] && \
758         (a)[4] == (b)[4] && \
759         (a)[3] == (b)[3] && \
760         (a)[2] == (b)[2] && \
761         (a)[1] == (b)[1] && \
762         (a)[0] == (b)[0])
763
764 static void fixup_botched_add(struct ctlr_info *h,
765         struct hpsa_scsi_dev_t *added)
766 {
767         /* called when scsi_add_device fails in order to re-adjust
768          * h->dev[] to match the mid layer's view.
769          */
770         unsigned long flags;
771         int i, j;
772
773         spin_lock_irqsave(&h->lock, flags);
774         for (i = 0; i < h->ndevices; i++) {
775                 if (h->dev[i] == added) {
776                         for (j = i; j < h->ndevices-1; j++)
777                                 h->dev[j] = h->dev[j+1];
778                         h->ndevices--;
779                         break;
780                 }
781         }
782         spin_unlock_irqrestore(&h->lock, flags);
783         kfree(added);
784 }
785
786 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
787         struct hpsa_scsi_dev_t *dev2)
788 {
789         /* we compare everything except lun and target as these
790          * are not yet assigned.  Compare parts likely
791          * to differ first
792          */
793         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
794                 sizeof(dev1->scsi3addr)) != 0)
795                 return 0;
796         if (memcmp(dev1->device_id, dev2->device_id,
797                 sizeof(dev1->device_id)) != 0)
798                 return 0;
799         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
800                 return 0;
801         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
802                 return 0;
803         if (dev1->devtype != dev2->devtype)
804                 return 0;
805         if (dev1->bus != dev2->bus)
806                 return 0;
807         return 1;
808 }
809
810 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
811         struct hpsa_scsi_dev_t *dev2)
812 {
813         /* Device attributes that can change, but don't mean
814          * that the device is a different device, nor that the OS
815          * needs to be told anything about the change.
816          */
817         if (dev1->raid_level != dev2->raid_level)
818                 return 1;
819         return 0;
820 }
821
822 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
823  * and return needle location in *index.  If scsi3addr matches, but not
824  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
825  * location in *index.
826  * In the case of a minor device attribute change, such as RAID level, just
827  * return DEVICE_UPDATED, along with the updated device's location in index.
828  * If needle not found, return DEVICE_NOT_FOUND.
829  */
830 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
831         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
832         int *index)
833 {
834         int i;
835 #define DEVICE_NOT_FOUND 0
836 #define DEVICE_CHANGED 1
837 #define DEVICE_SAME 2
838 #define DEVICE_UPDATED 3
839         for (i = 0; i < haystack_size; i++) {
840                 if (haystack[i] == NULL) /* previously removed. */
841                         continue;
842                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
843                         *index = i;
844                         if (device_is_the_same(needle, haystack[i])) {
845                                 if (device_updated(needle, haystack[i]))
846                                         return DEVICE_UPDATED;
847                                 return DEVICE_SAME;
848                         } else {
849                                 return DEVICE_CHANGED;
850                         }
851                 }
852         }
853         *index = -1;
854         return DEVICE_NOT_FOUND;
855 }
856
857 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
858         struct hpsa_scsi_dev_t *sd[], int nsds)
859 {
860         /* sd contains scsi3 addresses and devtypes, and inquiry
861          * data.  This function takes what's in sd to be the current
862          * reality and updates h->dev[] to reflect that reality.
863          */
864         int i, entry, device_change, changes = 0;
865         struct hpsa_scsi_dev_t *csd;
866         unsigned long flags;
867         struct hpsa_scsi_dev_t **added, **removed;
868         int nadded, nremoved;
869         struct Scsi_Host *sh = NULL;
870
871         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
872         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
873
874         if (!added || !removed) {
875                 dev_warn(&h->pdev->dev, "out of memory in "
876                         "adjust_hpsa_scsi_table\n");
877                 goto free_and_out;
878         }
879
880         spin_lock_irqsave(&h->devlock, flags);
881
882         /* find any devices in h->dev[] that are not in
883          * sd[] and remove them from h->dev[], and for any
884          * devices which have changed, remove the old device
885          * info and add the new device info.
886          * If minor device attributes change, just update
887          * the existing device structure.
888          */
889         i = 0;
890         nremoved = 0;
891         nadded = 0;
892         while (i < h->ndevices) {
893                 csd = h->dev[i];
894                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
895                 if (device_change == DEVICE_NOT_FOUND) {
896                         changes++;
897                         hpsa_scsi_remove_entry(h, hostno, i,
898                                 removed, &nremoved);
899                         continue; /* remove ^^^, hence i not incremented */
900                 } else if (device_change == DEVICE_CHANGED) {
901                         changes++;
902                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
903                                 added, &nadded, removed, &nremoved);
904                         /* Set it to NULL to prevent it from being freed
905                          * at the bottom of hpsa_update_scsi_devices()
906                          */
907                         sd[entry] = NULL;
908                 } else if (device_change == DEVICE_UPDATED) {
909                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
910                 }
911                 i++;
912         }
913
914         /* Now, make sure every device listed in sd[] is also
915          * listed in h->dev[], adding them if they aren't found
916          */
917
918         for (i = 0; i < nsds; i++) {
919                 if (!sd[i]) /* if already added above. */
920                         continue;
921                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
922                                         h->ndevices, &entry);
923                 if (device_change == DEVICE_NOT_FOUND) {
924                         changes++;
925                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
926                                 added, &nadded) != 0)
927                                 break;
928                         sd[i] = NULL; /* prevent from being freed later. */
929                 } else if (device_change == DEVICE_CHANGED) {
930                         /* should never happen... */
931                         changes++;
932                         dev_warn(&h->pdev->dev,
933                                 "device unexpectedly changed.\n");
934                         /* but if it does happen, we just ignore that device */
935                 }
936         }
937         spin_unlock_irqrestore(&h->devlock, flags);
938
939         /* Don't notify scsi mid layer of any changes the first time through
940          * (or if there are no changes) scsi_scan_host will do it later the
941          * first time through.
942          */
943         if (hostno == -1 || !changes)
944                 goto free_and_out;
945
946         sh = h->scsi_host;
947         /* Notify scsi mid layer of any removed devices */
948         for (i = 0; i < nremoved; i++) {
949                 struct scsi_device *sdev =
950                         scsi_device_lookup(sh, removed[i]->bus,
951                                 removed[i]->target, removed[i]->lun);
952                 if (sdev != NULL) {
953                         scsi_remove_device(sdev);
954                         scsi_device_put(sdev);
955                 } else {
956                         /* We don't expect to get here.
957                          * future cmds to this device will get selection
958                          * timeout as if the device was gone.
959                          */
960                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
961                                 " for removal.", hostno, removed[i]->bus,
962                                 removed[i]->target, removed[i]->lun);
963                 }
964                 kfree(removed[i]);
965                 removed[i] = NULL;
966         }
967
968         /* Notify scsi mid layer of any added devices */
969         for (i = 0; i < nadded; i++) {
970                 if (scsi_add_device(sh, added[i]->bus,
971                         added[i]->target, added[i]->lun) == 0)
972                         continue;
973                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
974                         "device not added.\n", hostno, added[i]->bus,
975                         added[i]->target, added[i]->lun);
976                 /* now we have to remove it from h->dev,
977                  * since it didn't get added to scsi mid layer
978                  */
979                 fixup_botched_add(h, added[i]);
980         }
981
982 free_and_out:
983         kfree(added);
984         kfree(removed);
985 }
986
987 /*
988  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
989  * Assume's h->devlock is held.
990  */
991 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
992         int bus, int target, int lun)
993 {
994         int i;
995         struct hpsa_scsi_dev_t *sd;
996
997         for (i = 0; i < h->ndevices; i++) {
998                 sd = h->dev[i];
999                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1000                         return sd;
1001         }
1002         return NULL;
1003 }
1004
1005 /* link sdev->hostdata to our per-device structure. */
1006 static int hpsa_slave_alloc(struct scsi_device *sdev)
1007 {
1008         struct hpsa_scsi_dev_t *sd;
1009         unsigned long flags;
1010         struct ctlr_info *h;
1011
1012         h = sdev_to_hba(sdev);
1013         spin_lock_irqsave(&h->devlock, flags);
1014         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1015                 sdev_id(sdev), sdev->lun);
1016         if (sd != NULL)
1017                 sdev->hostdata = sd;
1018         spin_unlock_irqrestore(&h->devlock, flags);
1019         return 0;
1020 }
1021
1022 static void hpsa_slave_destroy(struct scsi_device *sdev)
1023 {
1024         /* nothing to do. */
1025 }
1026
1027 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1028 {
1029         int i;
1030
1031         if (!h->cmd_sg_list)
1032                 return;
1033         for (i = 0; i < h->nr_cmds; i++) {
1034                 kfree(h->cmd_sg_list[i]);
1035                 h->cmd_sg_list[i] = NULL;
1036         }
1037         kfree(h->cmd_sg_list);
1038         h->cmd_sg_list = NULL;
1039 }
1040
1041 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1042 {
1043         int i;
1044
1045         if (h->chainsize <= 0)
1046                 return 0;
1047
1048         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1049                                 GFP_KERNEL);
1050         if (!h->cmd_sg_list)
1051                 return -ENOMEM;
1052         for (i = 0; i < h->nr_cmds; i++) {
1053                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1054                                                 h->chainsize, GFP_KERNEL);
1055                 if (!h->cmd_sg_list[i])
1056                         goto clean;
1057         }
1058         return 0;
1059
1060 clean:
1061         hpsa_free_sg_chain_blocks(h);
1062         return -ENOMEM;
1063 }
1064
1065 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1066         struct CommandList *c)
1067 {
1068         struct SGDescriptor *chain_sg, *chain_block;
1069         u64 temp64;
1070
1071         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1072         chain_block = h->cmd_sg_list[c->cmdindex];
1073         chain_sg->Ext = HPSA_SG_CHAIN;
1074         chain_sg->Len = sizeof(*chain_sg) *
1075                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1076         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1077                                 PCI_DMA_TODEVICE);
1078         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1079         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1080 }
1081
1082 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1083         struct CommandList *c)
1084 {
1085         struct SGDescriptor *chain_sg;
1086         union u64bit temp64;
1087
1088         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1089                 return;
1090
1091         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1092         temp64.val32.lower = chain_sg->Addr.lower;
1093         temp64.val32.upper = chain_sg->Addr.upper;
1094         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1095 }
1096
1097 static void complete_scsi_command(struct CommandList *cp)
1098 {
1099         struct scsi_cmnd *cmd;
1100         struct ctlr_info *h;
1101         struct ErrorInfo *ei;
1102
1103         unsigned char sense_key;
1104         unsigned char asc;      /* additional sense code */
1105         unsigned char ascq;     /* additional sense code qualifier */
1106         unsigned long sense_data_size;
1107
1108         ei = cp->err_info;
1109         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1110         h = cp->h;
1111
1112         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1113         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1114                 hpsa_unmap_sg_chain_block(h, cp);
1115
1116         cmd->result = (DID_OK << 16);           /* host byte */
1117         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1118         cmd->result |= ei->ScsiStatus;
1119
1120         /* copy the sense data whether we need to or not. */
1121         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1122                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1123         else
1124                 sense_data_size = sizeof(ei->SenseInfo);
1125         if (ei->SenseLen < sense_data_size)
1126                 sense_data_size = ei->SenseLen;
1127
1128         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1129         scsi_set_resid(cmd, ei->ResidualCnt);
1130
1131         if (ei->CommandStatus == 0) {
1132                 cmd->scsi_done(cmd);
1133                 cmd_free(h, cp);
1134                 return;
1135         }
1136
1137         /* an error has occurred */
1138         switch (ei->CommandStatus) {
1139
1140         case CMD_TARGET_STATUS:
1141                 if (ei->ScsiStatus) {
1142                         /* Get sense key */
1143                         sense_key = 0xf & ei->SenseInfo[2];
1144                         /* Get additional sense code */
1145                         asc = ei->SenseInfo[12];
1146                         /* Get addition sense code qualifier */
1147                         ascq = ei->SenseInfo[13];
1148                 }
1149
1150                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1151                         if (check_for_unit_attention(h, cp)) {
1152                                 cmd->result = DID_SOFT_ERROR << 16;
1153                                 break;
1154                         }
1155                         if (sense_key == ILLEGAL_REQUEST) {
1156                                 /*
1157                                  * SCSI REPORT_LUNS is commonly unsupported on
1158                                  * Smart Array.  Suppress noisy complaint.
1159                                  */
1160                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1161                                         break;
1162
1163                                 /* If ASC/ASCQ indicate Logical Unit
1164                                  * Not Supported condition,
1165                                  */
1166                                 if ((asc == 0x25) && (ascq == 0x0)) {
1167                                         dev_warn(&h->pdev->dev, "cp %p "
1168                                                 "has check condition\n", cp);
1169                                         break;
1170                                 }
1171                         }
1172
1173                         if (sense_key == NOT_READY) {
1174                                 /* If Sense is Not Ready, Logical Unit
1175                                  * Not ready, Manual Intervention
1176                                  * required
1177                                  */
1178                                 if ((asc == 0x04) && (ascq == 0x03)) {
1179                                         dev_warn(&h->pdev->dev, "cp %p "
1180                                                 "has check condition: unit "
1181                                                 "not ready, manual "
1182                                                 "intervention required\n", cp);
1183                                         break;
1184                                 }
1185                         }
1186                         if (sense_key == ABORTED_COMMAND) {
1187                                 /* Aborted command is retryable */
1188                                 dev_warn(&h->pdev->dev, "cp %p "
1189                                         "has check condition: aborted command: "
1190                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1191                                         cp, asc, ascq);
1192                                 cmd->result = DID_SOFT_ERROR << 16;
1193                                 break;
1194                         }
1195                         /* Must be some other type of check condition */
1196                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1197                                         "unknown type: "
1198                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1199                                         "Returning result: 0x%x, "
1200                                         "cmd=[%02x %02x %02x %02x %02x "
1201                                         "%02x %02x %02x %02x %02x %02x "
1202                                         "%02x %02x %02x %02x %02x]\n",
1203                                         cp, sense_key, asc, ascq,
1204                                         cmd->result,
1205                                         cmd->cmnd[0], cmd->cmnd[1],
1206                                         cmd->cmnd[2], cmd->cmnd[3],
1207                                         cmd->cmnd[4], cmd->cmnd[5],
1208                                         cmd->cmnd[6], cmd->cmnd[7],
1209                                         cmd->cmnd[8], cmd->cmnd[9],
1210                                         cmd->cmnd[10], cmd->cmnd[11],
1211                                         cmd->cmnd[12], cmd->cmnd[13],
1212                                         cmd->cmnd[14], cmd->cmnd[15]);
1213                         break;
1214                 }
1215
1216
1217                 /* Problem was not a check condition
1218                  * Pass it up to the upper layers...
1219                  */
1220                 if (ei->ScsiStatus) {
1221                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1222                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1223                                 "Returning result: 0x%x\n",
1224                                 cp, ei->ScsiStatus,
1225                                 sense_key, asc, ascq,
1226                                 cmd->result);
1227                 } else {  /* scsi status is zero??? How??? */
1228                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1229                                 "Returning no connection.\n", cp),
1230
1231                         /* Ordinarily, this case should never happen,
1232                          * but there is a bug in some released firmware
1233                          * revisions that allows it to happen if, for
1234                          * example, a 4100 backplane loses power and
1235                          * the tape drive is in it.  We assume that
1236                          * it's a fatal error of some kind because we
1237                          * can't show that it wasn't. We will make it
1238                          * look like selection timeout since that is
1239                          * the most common reason for this to occur,
1240                          * and it's severe enough.
1241                          */
1242
1243                         cmd->result = DID_NO_CONNECT << 16;
1244                 }
1245                 break;
1246
1247         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1248                 break;
1249         case CMD_DATA_OVERRUN:
1250                 dev_warn(&h->pdev->dev, "cp %p has"
1251                         " completed with data overrun "
1252                         "reported\n", cp);
1253                 break;
1254         case CMD_INVALID: {
1255                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1256                 print_cmd(cp); */
1257                 /* We get CMD_INVALID if you address a non-existent device
1258                  * instead of a selection timeout (no response).  You will
1259                  * see this if you yank out a drive, then try to access it.
1260                  * This is kind of a shame because it means that any other
1261                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1262                  * missing target. */
1263                 cmd->result = DID_NO_CONNECT << 16;
1264         }
1265                 break;
1266         case CMD_PROTOCOL_ERR:
1267                 dev_warn(&h->pdev->dev, "cp %p has "
1268                         "protocol error \n", cp);
1269                 break;
1270         case CMD_HARDWARE_ERR:
1271                 cmd->result = DID_ERROR << 16;
1272                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1273                 break;
1274         case CMD_CONNECTION_LOST:
1275                 cmd->result = DID_ERROR << 16;
1276                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1277                 break;
1278         case CMD_ABORTED:
1279                 cmd->result = DID_ABORT << 16;
1280                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1281                                 cp, ei->ScsiStatus);
1282                 break;
1283         case CMD_ABORT_FAILED:
1284                 cmd->result = DID_ERROR << 16;
1285                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1286                 break;
1287         case CMD_UNSOLICITED_ABORT:
1288                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1289                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1290                         "abort\n", cp);
1291                 break;
1292         case CMD_TIMEOUT:
1293                 cmd->result = DID_TIME_OUT << 16;
1294                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1295                 break;
1296         case CMD_UNABORTABLE:
1297                 cmd->result = DID_ERROR << 16;
1298                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1299                 break;
1300         default:
1301                 cmd->result = DID_ERROR << 16;
1302                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1303                                 cp, ei->CommandStatus);
1304         }
1305         cmd->scsi_done(cmd);
1306         cmd_free(h, cp);
1307 }
1308
1309 static void hpsa_pci_unmap(struct pci_dev *pdev,
1310         struct CommandList *c, int sg_used, int data_direction)
1311 {
1312         int i;
1313         union u64bit addr64;
1314
1315         for (i = 0; i < sg_used; i++) {
1316                 addr64.val32.lower = c->SG[i].Addr.lower;
1317                 addr64.val32.upper = c->SG[i].Addr.upper;
1318                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1319                         data_direction);
1320         }
1321 }
1322
1323 static void hpsa_map_one(struct pci_dev *pdev,
1324                 struct CommandList *cp,
1325                 unsigned char *buf,
1326                 size_t buflen,
1327                 int data_direction)
1328 {
1329         u64 addr64;
1330
1331         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1332                 cp->Header.SGList = 0;
1333                 cp->Header.SGTotal = 0;
1334                 return;
1335         }
1336
1337         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1338         cp->SG[0].Addr.lower =
1339           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1340         cp->SG[0].Addr.upper =
1341           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1342         cp->SG[0].Len = buflen;
1343         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1344         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1345 }
1346
1347 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1348         struct CommandList *c)
1349 {
1350         DECLARE_COMPLETION_ONSTACK(wait);
1351
1352         c->waiting = &wait;
1353         enqueue_cmd_and_start_io(h, c);
1354         wait_for_completion(&wait);
1355 }
1356
1357 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1358         struct CommandList *c)
1359 {
1360         unsigned long flags;
1361
1362         /* If controller lockup detected, fake a hardware error. */
1363         spin_lock_irqsave(&h->lock, flags);
1364         if (unlikely(h->lockup_detected)) {
1365                 spin_unlock_irqrestore(&h->lock, flags);
1366                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1367         } else {
1368                 spin_unlock_irqrestore(&h->lock, flags);
1369                 hpsa_scsi_do_simple_cmd_core(h, c);
1370         }
1371 }
1372
1373 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1374         struct CommandList *c, int data_direction)
1375 {
1376         int retry_count = 0;
1377
1378         do {
1379                 memset(c->err_info, 0, sizeof(*c->err_info));
1380                 hpsa_scsi_do_simple_cmd_core(h, c);
1381                 retry_count++;
1382         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1383         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1384 }
1385
1386 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1387 {
1388         struct ErrorInfo *ei;
1389         struct device *d = &cp->h->pdev->dev;
1390
1391         ei = cp->err_info;
1392         switch (ei->CommandStatus) {
1393         case CMD_TARGET_STATUS:
1394                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1395                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1396                                 ei->ScsiStatus);
1397                 if (ei->ScsiStatus == 0)
1398                         dev_warn(d, "SCSI status is abnormally zero.  "
1399                         "(probably indicates selection timeout "
1400                         "reported incorrectly due to a known "
1401                         "firmware bug, circa July, 2001.)\n");
1402                 break;
1403         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1404                         dev_info(d, "UNDERRUN\n");
1405                 break;
1406         case CMD_DATA_OVERRUN:
1407                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1408                 break;
1409         case CMD_INVALID: {
1410                 /* controller unfortunately reports SCSI passthru's
1411                  * to non-existent targets as invalid commands.
1412                  */
1413                 dev_warn(d, "cp %p is reported invalid (probably means "
1414                         "target device no longer present)\n", cp);
1415                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1416                 print_cmd(cp);  */
1417                 }
1418                 break;
1419         case CMD_PROTOCOL_ERR:
1420                 dev_warn(d, "cp %p has protocol error \n", cp);
1421                 break;
1422         case CMD_HARDWARE_ERR:
1423                 /* cmd->result = DID_ERROR << 16; */
1424                 dev_warn(d, "cp %p had hardware error\n", cp);
1425                 break;
1426         case CMD_CONNECTION_LOST:
1427                 dev_warn(d, "cp %p had connection lost\n", cp);
1428                 break;
1429         case CMD_ABORTED:
1430                 dev_warn(d, "cp %p was aborted\n", cp);
1431                 break;
1432         case CMD_ABORT_FAILED:
1433                 dev_warn(d, "cp %p reports abort failed\n", cp);
1434                 break;
1435         case CMD_UNSOLICITED_ABORT:
1436                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1437                 break;
1438         case CMD_TIMEOUT:
1439                 dev_warn(d, "cp %p timed out\n", cp);
1440                 break;
1441         case CMD_UNABORTABLE:
1442                 dev_warn(d, "Command unabortable\n");
1443                 break;
1444         default:
1445                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1446                                 ei->CommandStatus);
1447         }
1448 }
1449
1450 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1451                         unsigned char page, unsigned char *buf,
1452                         unsigned char bufsize)
1453 {
1454         int rc = IO_OK;
1455         struct CommandList *c;
1456         struct ErrorInfo *ei;
1457
1458         c = cmd_special_alloc(h);
1459
1460         if (c == NULL) {                        /* trouble... */
1461                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1462                 return -ENOMEM;
1463         }
1464
1465         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1466         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1467         ei = c->err_info;
1468         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1469                 hpsa_scsi_interpret_error(c);
1470                 rc = -1;
1471         }
1472         cmd_special_free(h, c);
1473         return rc;
1474 }
1475
1476 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1477 {
1478         int rc = IO_OK;
1479         struct CommandList *c;
1480         struct ErrorInfo *ei;
1481
1482         c = cmd_special_alloc(h);
1483
1484         if (c == NULL) {                        /* trouble... */
1485                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1486                 return -ENOMEM;
1487         }
1488
1489         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1490         hpsa_scsi_do_simple_cmd_core(h, c);
1491         /* no unmap needed here because no data xfer. */
1492
1493         ei = c->err_info;
1494         if (ei->CommandStatus != 0) {
1495                 hpsa_scsi_interpret_error(c);
1496                 rc = -1;
1497         }
1498         cmd_special_free(h, c);
1499         return rc;
1500 }
1501
1502 static void hpsa_get_raid_level(struct ctlr_info *h,
1503         unsigned char *scsi3addr, unsigned char *raid_level)
1504 {
1505         int rc;
1506         unsigned char *buf;
1507
1508         *raid_level = RAID_UNKNOWN;
1509         buf = kzalloc(64, GFP_KERNEL);
1510         if (!buf)
1511                 return;
1512         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1513         if (rc == 0)
1514                 *raid_level = buf[8];
1515         if (*raid_level > RAID_UNKNOWN)
1516                 *raid_level = RAID_UNKNOWN;
1517         kfree(buf);
1518         return;
1519 }
1520
1521 /* Get the device id from inquiry page 0x83 */
1522 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1523         unsigned char *device_id, int buflen)
1524 {
1525         int rc;
1526         unsigned char *buf;
1527
1528         if (buflen > 16)
1529                 buflen = 16;
1530         buf = kzalloc(64, GFP_KERNEL);
1531         if (!buf)
1532                 return -1;
1533         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1534         if (rc == 0)
1535                 memcpy(device_id, &buf[8], buflen);
1536         kfree(buf);
1537         return rc != 0;
1538 }
1539
1540 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1541                 struct ReportLUNdata *buf, int bufsize,
1542                 int extended_response)
1543 {
1544         int rc = IO_OK;
1545         struct CommandList *c;
1546         unsigned char scsi3addr[8];
1547         struct ErrorInfo *ei;
1548
1549         c = cmd_special_alloc(h);
1550         if (c == NULL) {                        /* trouble... */
1551                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1552                 return -1;
1553         }
1554         /* address the controller */
1555         memset(scsi3addr, 0, sizeof(scsi3addr));
1556         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1557                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1558         if (extended_response)
1559                 c->Request.CDB[1] = extended_response;
1560         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1561         ei = c->err_info;
1562         if (ei->CommandStatus != 0 &&
1563             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1564                 hpsa_scsi_interpret_error(c);
1565                 rc = -1;
1566         }
1567         cmd_special_free(h, c);
1568         return rc;
1569 }
1570
1571 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1572                 struct ReportLUNdata *buf,
1573                 int bufsize, int extended_response)
1574 {
1575         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1576 }
1577
1578 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1579                 struct ReportLUNdata *buf, int bufsize)
1580 {
1581         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1582 }
1583
1584 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1585         int bus, int target, int lun)
1586 {
1587         device->bus = bus;
1588         device->target = target;
1589         device->lun = lun;
1590 }
1591
1592 static int hpsa_update_device_info(struct ctlr_info *h,
1593         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1594         unsigned char *is_OBDR_device)
1595 {
1596
1597 #define OBDR_SIG_OFFSET 43
1598 #define OBDR_TAPE_SIG "$DR-10"
1599 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1600 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1601
1602         unsigned char *inq_buff;
1603         unsigned char *obdr_sig;
1604
1605         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1606         if (!inq_buff)
1607                 goto bail_out;
1608
1609         /* Do an inquiry to the device to see what it is. */
1610         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1611                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1612                 /* Inquiry failed (msg printed already) */
1613                 dev_err(&h->pdev->dev,
1614                         "hpsa_update_device_info: inquiry failed\n");
1615                 goto bail_out;
1616         }
1617
1618         this_device->devtype = (inq_buff[0] & 0x1f);
1619         memcpy(this_device->scsi3addr, scsi3addr, 8);
1620         memcpy(this_device->vendor, &inq_buff[8],
1621                 sizeof(this_device->vendor));
1622         memcpy(this_device->model, &inq_buff[16],
1623                 sizeof(this_device->model));
1624         memset(this_device->device_id, 0,
1625                 sizeof(this_device->device_id));
1626         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1627                 sizeof(this_device->device_id));
1628
1629         if (this_device->devtype == TYPE_DISK &&
1630                 is_logical_dev_addr_mode(scsi3addr))
1631                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1632         else
1633                 this_device->raid_level = RAID_UNKNOWN;
1634
1635         if (is_OBDR_device) {
1636                 /* See if this is a One-Button-Disaster-Recovery device
1637                  * by looking for "$DR-10" at offset 43 in inquiry data.
1638                  */
1639                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1640                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1641                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1642                                                 OBDR_SIG_LEN) == 0);
1643         }
1644
1645         kfree(inq_buff);
1646         return 0;
1647
1648 bail_out:
1649         kfree(inq_buff);
1650         return 1;
1651 }
1652
1653 static unsigned char *ext_target_model[] = {
1654         "MSA2012",
1655         "MSA2024",
1656         "MSA2312",
1657         "MSA2324",
1658         "P2000 G3 SAS",
1659         NULL,
1660 };
1661
1662 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1663 {
1664         int i;
1665
1666         for (i = 0; ext_target_model[i]; i++)
1667                 if (strncmp(device->model, ext_target_model[i],
1668                         strlen(ext_target_model[i])) == 0)
1669                         return 1;
1670         return 0;
1671 }
1672
1673 /* Helper function to assign bus, target, lun mapping of devices.
1674  * Puts non-external target logical volumes on bus 0, external target logical
1675  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1676  * Logical drive target and lun are assigned at this time, but
1677  * physical device lun and target assignment are deferred (assigned
1678  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1679  */
1680 static void figure_bus_target_lun(struct ctlr_info *h,
1681         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1682 {
1683         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1684
1685         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1686                 /* physical device, target and lun filled in later */
1687                 if (is_hba_lunid(lunaddrbytes))
1688                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1689                 else
1690                         /* defer target, lun assignment for physical devices */
1691                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1692                 return;
1693         }
1694         /* It's a logical device */
1695         if (is_ext_target(h, device)) {
1696                 /* external target way, put logicals on bus 1
1697                  * and match target/lun numbers box
1698                  * reports, other smart array, bus 0, target 0, match lunid
1699                  */
1700                 hpsa_set_bus_target_lun(device,
1701                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1702                 return;
1703         }
1704         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1705 }
1706
1707 /*
1708  * If there is no lun 0 on a target, linux won't find any devices.
1709  * For the external targets (arrays), we have to manually detect the enclosure
1710  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1711  * it for some reason.  *tmpdevice is the target we're adding,
1712  * this_device is a pointer into the current element of currentsd[]
1713  * that we're building up in update_scsi_devices(), below.
1714  * lunzerobits is a bitmap that tracks which targets already have a
1715  * lun 0 assigned.
1716  * Returns 1 if an enclosure was added, 0 if not.
1717  */
1718 static int add_ext_target_dev(struct ctlr_info *h,
1719         struct hpsa_scsi_dev_t *tmpdevice,
1720         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1721         unsigned long lunzerobits[], int *n_ext_target_devs)
1722 {
1723         unsigned char scsi3addr[8];
1724
1725         if (test_bit(tmpdevice->target, lunzerobits))
1726                 return 0; /* There is already a lun 0 on this target. */
1727
1728         if (!is_logical_dev_addr_mode(lunaddrbytes))
1729                 return 0; /* It's the logical targets that may lack lun 0. */
1730
1731         if (!is_ext_target(h, tmpdevice))
1732                 return 0; /* Only external target devices have this problem. */
1733
1734         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1735                 return 0;
1736
1737         memset(scsi3addr, 0, 8);
1738         scsi3addr[3] = tmpdevice->target;
1739         if (is_hba_lunid(scsi3addr))
1740                 return 0; /* Don't add the RAID controller here. */
1741
1742         if (is_scsi_rev_5(h))
1743                 return 0; /* p1210m doesn't need to do this. */
1744
1745         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1746                 dev_warn(&h->pdev->dev, "Maximum number of external "
1747                         "target devices exceeded.  Check your hardware "
1748                         "configuration.");
1749                 return 0;
1750         }
1751
1752         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1753                 return 0;
1754         (*n_ext_target_devs)++;
1755         hpsa_set_bus_target_lun(this_device,
1756                                 tmpdevice->bus, tmpdevice->target, 0);
1757         set_bit(tmpdevice->target, lunzerobits);
1758         return 1;
1759 }
1760
1761 /*
1762  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1763  * logdev.  The number of luns in physdev and logdev are returned in
1764  * *nphysicals and *nlogicals, respectively.
1765  * Returns 0 on success, -1 otherwise.
1766  */
1767 static int hpsa_gather_lun_info(struct ctlr_info *h,
1768         int reportlunsize,
1769         struct ReportLUNdata *physdev, u32 *nphysicals,
1770         struct ReportLUNdata *logdev, u32 *nlogicals)
1771 {
1772         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1773                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1774                 return -1;
1775         }
1776         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1777         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1778                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1779                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1780                         *nphysicals - HPSA_MAX_PHYS_LUN);
1781                 *nphysicals = HPSA_MAX_PHYS_LUN;
1782         }
1783         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1784                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1785                 return -1;
1786         }
1787         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1788         /* Reject Logicals in excess of our max capability. */
1789         if (*nlogicals > HPSA_MAX_LUN) {
1790                 dev_warn(&h->pdev->dev,
1791                         "maximum logical LUNs (%d) exceeded.  "
1792                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1793                         *nlogicals - HPSA_MAX_LUN);
1794                         *nlogicals = HPSA_MAX_LUN;
1795         }
1796         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1797                 dev_warn(&h->pdev->dev,
1798                         "maximum logical + physical LUNs (%d) exceeded. "
1799                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1800                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1801                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1802         }
1803         return 0;
1804 }
1805
1806 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1807         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1808         struct ReportLUNdata *logdev_list)
1809 {
1810         /* Helper function, figure out where the LUN ID info is coming from
1811          * given index i, lists of physical and logical devices, where in
1812          * the list the raid controller is supposed to appear (first or last)
1813          */
1814
1815         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1816         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1817
1818         if (i == raid_ctlr_position)
1819                 return RAID_CTLR_LUNID;
1820
1821         if (i < logicals_start)
1822                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1823
1824         if (i < last_device)
1825                 return &logdev_list->LUN[i - nphysicals -
1826                         (raid_ctlr_position == 0)][0];
1827         BUG();
1828         return NULL;
1829 }
1830
1831 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1832 {
1833         /* the idea here is we could get notified
1834          * that some devices have changed, so we do a report
1835          * physical luns and report logical luns cmd, and adjust
1836          * our list of devices accordingly.
1837          *
1838          * The scsi3addr's of devices won't change so long as the
1839          * adapter is not reset.  That means we can rescan and
1840          * tell which devices we already know about, vs. new
1841          * devices, vs.  disappearing devices.
1842          */
1843         struct ReportLUNdata *physdev_list = NULL;
1844         struct ReportLUNdata *logdev_list = NULL;
1845         u32 nphysicals = 0;
1846         u32 nlogicals = 0;
1847         u32 ndev_allocated = 0;
1848         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1849         int ncurrent = 0;
1850         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1851         int i, n_ext_target_devs, ndevs_to_allocate;
1852         int raid_ctlr_position;
1853         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1854
1855         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1856         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1857         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1858         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1859
1860         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1861                 dev_err(&h->pdev->dev, "out of memory\n");
1862                 goto out;
1863         }
1864         memset(lunzerobits, 0, sizeof(lunzerobits));
1865
1866         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1867                         logdev_list, &nlogicals))
1868                 goto out;
1869
1870         /* We might see up to the maximum number of logical and physical disks
1871          * plus external target devices, and a device for the local RAID
1872          * controller.
1873          */
1874         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1875
1876         /* Allocate the per device structures */
1877         for (i = 0; i < ndevs_to_allocate; i++) {
1878                 if (i >= HPSA_MAX_DEVICES) {
1879                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1880                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1881                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1882                         break;
1883                 }
1884
1885                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1886                 if (!currentsd[i]) {
1887                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1888                                 __FILE__, __LINE__);
1889                         goto out;
1890                 }
1891                 ndev_allocated++;
1892         }
1893
1894         if (unlikely(is_scsi_rev_5(h)))
1895                 raid_ctlr_position = 0;
1896         else
1897                 raid_ctlr_position = nphysicals + nlogicals;
1898
1899         /* adjust our table of devices */
1900         n_ext_target_devs = 0;
1901         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1902                 u8 *lunaddrbytes, is_OBDR = 0;
1903
1904                 /* Figure out where the LUN ID info is coming from */
1905                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1906                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1907                 /* skip masked physical devices. */
1908                 if (lunaddrbytes[3] & 0xC0 &&
1909                         i < nphysicals + (raid_ctlr_position == 0))
1910                         continue;
1911
1912                 /* Get device type, vendor, model, device id */
1913                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1914                                                         &is_OBDR))
1915                         continue; /* skip it if we can't talk to it. */
1916                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1917                 this_device = currentsd[ncurrent];
1918
1919                 /*
1920                  * For external target devices, we have to insert a LUN 0 which
1921                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1922                  * is nonetheless an enclosure device there.  We have to
1923                  * present that otherwise linux won't find anything if
1924                  * there is no lun 0.
1925                  */
1926                 if (add_ext_target_dev(h, tmpdevice, this_device,
1927                                 lunaddrbytes, lunzerobits,
1928                                 &n_ext_target_devs)) {
1929                         ncurrent++;
1930                         this_device = currentsd[ncurrent];
1931                 }
1932
1933                 *this_device = *tmpdevice;
1934
1935                 switch (this_device->devtype) {
1936                 case TYPE_ROM:
1937                         /* We don't *really* support actual CD-ROM devices,
1938                          * just "One Button Disaster Recovery" tape drive
1939                          * which temporarily pretends to be a CD-ROM drive.
1940                          * So we check that the device is really an OBDR tape
1941                          * device by checking for "$DR-10" in bytes 43-48 of
1942                          * the inquiry data.
1943                          */
1944                         if (is_OBDR)
1945                                 ncurrent++;
1946                         break;
1947                 case TYPE_DISK:
1948                         if (i < nphysicals)
1949                                 break;
1950                         ncurrent++;
1951                         break;
1952                 case TYPE_TAPE:
1953                 case TYPE_MEDIUM_CHANGER:
1954                         ncurrent++;
1955                         break;
1956                 case TYPE_RAID:
1957                         /* Only present the Smartarray HBA as a RAID controller.
1958                          * If it's a RAID controller other than the HBA itself
1959                          * (an external RAID controller, MSA500 or similar)
1960                          * don't present it.
1961                          */
1962                         if (!is_hba_lunid(lunaddrbytes))
1963                                 break;
1964                         ncurrent++;
1965                         break;
1966                 default:
1967                         break;
1968                 }
1969                 if (ncurrent >= HPSA_MAX_DEVICES)
1970                         break;
1971         }
1972         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1973 out:
1974         kfree(tmpdevice);
1975         for (i = 0; i < ndev_allocated; i++)
1976                 kfree(currentsd[i]);
1977         kfree(currentsd);
1978         kfree(physdev_list);
1979         kfree(logdev_list);
1980 }
1981
1982 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1983  * dma mapping  and fills in the scatter gather entries of the
1984  * hpsa command, cp.
1985  */
1986 static int hpsa_scatter_gather(struct ctlr_info *h,
1987                 struct CommandList *cp,
1988                 struct scsi_cmnd *cmd)
1989 {
1990         unsigned int len;
1991         struct scatterlist *sg;
1992         u64 addr64;
1993         int use_sg, i, sg_index, chained;
1994         struct SGDescriptor *curr_sg;
1995
1996         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1997
1998         use_sg = scsi_dma_map(cmd);
1999         if (use_sg < 0)
2000                 return use_sg;
2001
2002         if (!use_sg)
2003                 goto sglist_finished;
2004
2005         curr_sg = cp->SG;
2006         chained = 0;
2007         sg_index = 0;
2008         scsi_for_each_sg(cmd, sg, use_sg, i) {
2009                 if (i == h->max_cmd_sg_entries - 1 &&
2010                         use_sg > h->max_cmd_sg_entries) {
2011                         chained = 1;
2012                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2013                         sg_index = 0;
2014                 }
2015                 addr64 = (u64) sg_dma_address(sg);
2016                 len  = sg_dma_len(sg);
2017                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2018                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2019                 curr_sg->Len = len;
2020                 curr_sg->Ext = 0;  /* we are not chaining */
2021                 curr_sg++;
2022         }
2023
2024         if (use_sg + chained > h->maxSG)
2025                 h->maxSG = use_sg + chained;
2026
2027         if (chained) {
2028                 cp->Header.SGList = h->max_cmd_sg_entries;
2029                 cp->Header.SGTotal = (u16) (use_sg + 1);
2030                 hpsa_map_sg_chain_block(h, cp);
2031                 return 0;
2032         }
2033
2034 sglist_finished:
2035
2036         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2037         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2038         return 0;
2039 }
2040
2041
2042 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2043         void (*done)(struct scsi_cmnd *))
2044 {
2045         struct ctlr_info *h;
2046         struct hpsa_scsi_dev_t *dev;
2047         unsigned char scsi3addr[8];
2048         struct CommandList *c;
2049         unsigned long flags;
2050
2051         /* Get the ptr to our adapter structure out of cmd->host. */
2052         h = sdev_to_hba(cmd->device);
2053         dev = cmd->device->hostdata;
2054         if (!dev) {
2055                 cmd->result = DID_NO_CONNECT << 16;
2056                 done(cmd);
2057                 return 0;
2058         }
2059         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2060
2061         spin_lock_irqsave(&h->lock, flags);
2062         if (unlikely(h->lockup_detected)) {
2063                 spin_unlock_irqrestore(&h->lock, flags);
2064                 cmd->result = DID_ERROR << 16;
2065                 done(cmd);
2066                 return 0;
2067         }
2068         /* Need a lock as this is being allocated from the pool */
2069         c = cmd_alloc(h);
2070         spin_unlock_irqrestore(&h->lock, flags);
2071         if (c == NULL) {                        /* trouble... */
2072                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2073                 return SCSI_MLQUEUE_HOST_BUSY;
2074         }
2075
2076         /* Fill in the command list header */
2077
2078         cmd->scsi_done = done;    /* save this for use by completion code */
2079
2080         /* save c in case we have to abort it  */
2081         cmd->host_scribble = (unsigned char *) c;
2082
2083         c->cmd_type = CMD_SCSI;
2084         c->scsi_cmd = cmd;
2085         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2086         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2087         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2088         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2089
2090         /* Fill in the request block... */
2091
2092         c->Request.Timeout = 0;
2093         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2094         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2095         c->Request.CDBLen = cmd->cmd_len;
2096         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2097         c->Request.Type.Type = TYPE_CMD;
2098         c->Request.Type.Attribute = ATTR_SIMPLE;
2099         switch (cmd->sc_data_direction) {
2100         case DMA_TO_DEVICE:
2101                 c->Request.Type.Direction = XFER_WRITE;
2102                 break;
2103         case DMA_FROM_DEVICE:
2104                 c->Request.Type.Direction = XFER_READ;
2105                 break;
2106         case DMA_NONE:
2107                 c->Request.Type.Direction = XFER_NONE;
2108                 break;
2109         case DMA_BIDIRECTIONAL:
2110                 /* This can happen if a buggy application does a scsi passthru
2111                  * and sets both inlen and outlen to non-zero. ( see
2112                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2113                  */
2114
2115                 c->Request.Type.Direction = XFER_RSVD;
2116                 /* This is technically wrong, and hpsa controllers should
2117                  * reject it with CMD_INVALID, which is the most correct
2118                  * response, but non-fibre backends appear to let it
2119                  * slide by, and give the same results as if this field
2120                  * were set correctly.  Either way is acceptable for
2121                  * our purposes here.
2122                  */
2123
2124                 break;
2125
2126         default:
2127                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2128                         cmd->sc_data_direction);
2129                 BUG();
2130                 break;
2131         }
2132
2133         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2134                 cmd_free(h, c);
2135                 return SCSI_MLQUEUE_HOST_BUSY;
2136         }
2137         enqueue_cmd_and_start_io(h, c);
2138         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2139         return 0;
2140 }
2141
2142 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2143
2144 static void hpsa_scan_start(struct Scsi_Host *sh)
2145 {
2146         struct ctlr_info *h = shost_to_hba(sh);
2147         unsigned long flags;
2148
2149         /* wait until any scan already in progress is finished. */
2150         while (1) {
2151                 spin_lock_irqsave(&h->scan_lock, flags);
2152                 if (h->scan_finished)
2153                         break;
2154                 spin_unlock_irqrestore(&h->scan_lock, flags);
2155                 wait_event(h->scan_wait_queue, h->scan_finished);
2156                 /* Note: We don't need to worry about a race between this
2157                  * thread and driver unload because the midlayer will
2158                  * have incremented the reference count, so unload won't
2159                  * happen if we're in here.
2160                  */
2161         }
2162         h->scan_finished = 0; /* mark scan as in progress */
2163         spin_unlock_irqrestore(&h->scan_lock, flags);
2164
2165         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2166
2167         spin_lock_irqsave(&h->scan_lock, flags);
2168         h->scan_finished = 1; /* mark scan as finished. */
2169         wake_up_all(&h->scan_wait_queue);
2170         spin_unlock_irqrestore(&h->scan_lock, flags);
2171 }
2172
2173 static int hpsa_scan_finished(struct Scsi_Host *sh,
2174         unsigned long elapsed_time)
2175 {
2176         struct ctlr_info *h = shost_to_hba(sh);
2177         unsigned long flags;
2178         int finished;
2179
2180         spin_lock_irqsave(&h->scan_lock, flags);
2181         finished = h->scan_finished;
2182         spin_unlock_irqrestore(&h->scan_lock, flags);
2183         return finished;
2184 }
2185
2186 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2187         int qdepth, int reason)
2188 {
2189         struct ctlr_info *h = sdev_to_hba(sdev);
2190
2191         if (reason != SCSI_QDEPTH_DEFAULT)
2192                 return -ENOTSUPP;
2193
2194         if (qdepth < 1)
2195                 qdepth = 1;
2196         else
2197                 if (qdepth > h->nr_cmds)
2198                         qdepth = h->nr_cmds;
2199         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2200         return sdev->queue_depth;
2201 }
2202
2203 static void hpsa_unregister_scsi(struct ctlr_info *h)
2204 {
2205         /* we are being forcibly unloaded, and may not refuse. */
2206         scsi_remove_host(h->scsi_host);
2207         scsi_host_put(h->scsi_host);
2208         h->scsi_host = NULL;
2209 }
2210
2211 static int hpsa_register_scsi(struct ctlr_info *h)
2212 {
2213         struct Scsi_Host *sh;
2214         int error;
2215
2216         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2217         if (sh == NULL)
2218                 goto fail;
2219
2220         sh->io_port = 0;
2221         sh->n_io_port = 0;
2222         sh->this_id = -1;
2223         sh->max_channel = 3;
2224         sh->max_cmd_len = MAX_COMMAND_SIZE;
2225         sh->max_lun = HPSA_MAX_LUN;
2226         sh->max_id = HPSA_MAX_LUN;
2227         sh->can_queue = h->nr_cmds;
2228         sh->cmd_per_lun = h->nr_cmds;
2229         sh->sg_tablesize = h->maxsgentries;
2230         h->scsi_host = sh;
2231         sh->hostdata[0] = (unsigned long) h;
2232         sh->irq = h->intr[h->intr_mode];
2233         sh->unique_id = sh->irq;
2234         error = scsi_add_host(sh, &h->pdev->dev);
2235         if (error)
2236                 goto fail_host_put;
2237         scsi_scan_host(sh);
2238         return 0;
2239
2240  fail_host_put:
2241         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2242                 " failed for controller %d\n", __func__, h->ctlr);
2243         scsi_host_put(sh);
2244         return error;
2245  fail:
2246         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2247                 " failed for controller %d\n", __func__, h->ctlr);
2248         return -ENOMEM;
2249 }
2250
2251 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2252         unsigned char lunaddr[])
2253 {
2254         int rc = 0;
2255         int count = 0;
2256         int waittime = 1; /* seconds */
2257         struct CommandList *c;
2258
2259         c = cmd_special_alloc(h);
2260         if (!c) {
2261                 dev_warn(&h->pdev->dev, "out of memory in "
2262                         "wait_for_device_to_become_ready.\n");
2263                 return IO_ERROR;
2264         }
2265
2266         /* Send test unit ready until device ready, or give up. */
2267         while (count < HPSA_TUR_RETRY_LIMIT) {
2268
2269                 /* Wait for a bit.  do this first, because if we send
2270                  * the TUR right away, the reset will just abort it.
2271                  */
2272                 msleep(1000 * waittime);
2273                 count++;
2274
2275                 /* Increase wait time with each try, up to a point. */
2276                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2277                         waittime = waittime * 2;
2278
2279                 /* Send the Test Unit Ready */
2280                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2281                 hpsa_scsi_do_simple_cmd_core(h, c);
2282                 /* no unmap needed here because no data xfer. */
2283
2284                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2285                         break;
2286
2287                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2288                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2289                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2290                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2291                         break;
2292
2293                 dev_warn(&h->pdev->dev, "waiting %d secs "
2294                         "for device to become ready.\n", waittime);
2295                 rc = 1; /* device not ready. */
2296         }
2297
2298         if (rc)
2299                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2300         else
2301                 dev_warn(&h->pdev->dev, "device is ready.\n");
2302
2303         cmd_special_free(h, c);
2304         return rc;
2305 }
2306
2307 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2308  * complaining.  Doing a host- or bus-reset can't do anything good here.
2309  */
2310 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2311 {
2312         int rc;
2313         struct ctlr_info *h;
2314         struct hpsa_scsi_dev_t *dev;
2315
2316         /* find the controller to which the command to be aborted was sent */
2317         h = sdev_to_hba(scsicmd->device);
2318         if (h == NULL) /* paranoia */
2319                 return FAILED;
2320         dev = scsicmd->device->hostdata;
2321         if (!dev) {
2322                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2323                         "device lookup failed.\n");
2324                 return FAILED;
2325         }
2326         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2327                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2328         /* send a reset to the SCSI LUN which the command was sent to */
2329         rc = hpsa_send_reset(h, dev->scsi3addr);
2330         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2331                 return SUCCESS;
2332
2333         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2334         return FAILED;
2335 }
2336
2337 /*
2338  * For operations that cannot sleep, a command block is allocated at init,
2339  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2340  * which ones are free or in use.  Lock must be held when calling this.
2341  * cmd_free() is the complement.
2342  */
2343 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2344 {
2345         struct CommandList *c;
2346         int i;
2347         union u64bit temp64;
2348         dma_addr_t cmd_dma_handle, err_dma_handle;
2349
2350         do {
2351                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2352                 if (i == h->nr_cmds)
2353                         return NULL;
2354         } while (test_and_set_bit
2355                  (i & (BITS_PER_LONG - 1),
2356                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2357         c = h->cmd_pool + i;
2358         memset(c, 0, sizeof(*c));
2359         cmd_dma_handle = h->cmd_pool_dhandle
2360             + i * sizeof(*c);
2361         c->err_info = h->errinfo_pool + i;
2362         memset(c->err_info, 0, sizeof(*c->err_info));
2363         err_dma_handle = h->errinfo_pool_dhandle
2364             + i * sizeof(*c->err_info);
2365         h->nr_allocs++;
2366
2367         c->cmdindex = i;
2368
2369         INIT_LIST_HEAD(&c->list);
2370         c->busaddr = (u32) cmd_dma_handle;
2371         temp64.val = (u64) err_dma_handle;
2372         c->ErrDesc.Addr.lower = temp64.val32.lower;
2373         c->ErrDesc.Addr.upper = temp64.val32.upper;
2374         c->ErrDesc.Len = sizeof(*c->err_info);
2375
2376         c->h = h;
2377         return c;
2378 }
2379
2380 /* For operations that can wait for kmalloc to possibly sleep,
2381  * this routine can be called. Lock need not be held to call
2382  * cmd_special_alloc. cmd_special_free() is the complement.
2383  */
2384 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2385 {
2386         struct CommandList *c;
2387         union u64bit temp64;
2388         dma_addr_t cmd_dma_handle, err_dma_handle;
2389
2390         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2391         if (c == NULL)
2392                 return NULL;
2393         memset(c, 0, sizeof(*c));
2394
2395         c->cmdindex = -1;
2396
2397         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2398                     &err_dma_handle);
2399
2400         if (c->err_info == NULL) {
2401                 pci_free_consistent(h->pdev,
2402                         sizeof(*c), c, cmd_dma_handle);
2403                 return NULL;
2404         }
2405         memset(c->err_info, 0, sizeof(*c->err_info));
2406
2407         INIT_LIST_HEAD(&c->list);
2408         c->busaddr = (u32) cmd_dma_handle;
2409         temp64.val = (u64) err_dma_handle;
2410         c->ErrDesc.Addr.lower = temp64.val32.lower;
2411         c->ErrDesc.Addr.upper = temp64.val32.upper;
2412         c->ErrDesc.Len = sizeof(*c->err_info);
2413
2414         c->h = h;
2415         return c;
2416 }
2417
2418 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2419 {
2420         int i;
2421
2422         i = c - h->cmd_pool;
2423         clear_bit(i & (BITS_PER_LONG - 1),
2424                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2425         h->nr_frees++;
2426 }
2427
2428 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2429 {
2430         union u64bit temp64;
2431
2432         temp64.val32.lower = c->ErrDesc.Addr.lower;
2433         temp64.val32.upper = c->ErrDesc.Addr.upper;
2434         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2435                             c->err_info, (dma_addr_t) temp64.val);
2436         pci_free_consistent(h->pdev, sizeof(*c),
2437                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2438 }
2439
2440 #ifdef CONFIG_COMPAT
2441
2442 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2443 {
2444         IOCTL32_Command_struct __user *arg32 =
2445             (IOCTL32_Command_struct __user *) arg;
2446         IOCTL_Command_struct arg64;
2447         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2448         int err;
2449         u32 cp;
2450
2451         memset(&arg64, 0, sizeof(arg64));
2452         err = 0;
2453         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2454                            sizeof(arg64.LUN_info));
2455         err |= copy_from_user(&arg64.Request, &arg32->Request,
2456                            sizeof(arg64.Request));
2457         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2458                            sizeof(arg64.error_info));
2459         err |= get_user(arg64.buf_size, &arg32->buf_size);
2460         err |= get_user(cp, &arg32->buf);
2461         arg64.buf = compat_ptr(cp);
2462         err |= copy_to_user(p, &arg64, sizeof(arg64));
2463
2464         if (err)
2465                 return -EFAULT;
2466
2467         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2468         if (err)
2469                 return err;
2470         err |= copy_in_user(&arg32->error_info, &p->error_info,
2471                          sizeof(arg32->error_info));
2472         if (err)
2473                 return -EFAULT;
2474         return err;
2475 }
2476
2477 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2478         int cmd, void *arg)
2479 {
2480         BIG_IOCTL32_Command_struct __user *arg32 =
2481             (BIG_IOCTL32_Command_struct __user *) arg;
2482         BIG_IOCTL_Command_struct arg64;
2483         BIG_IOCTL_Command_struct __user *p =
2484             compat_alloc_user_space(sizeof(arg64));
2485         int err;
2486         u32 cp;
2487
2488         memset(&arg64, 0, sizeof(arg64));
2489         err = 0;
2490         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2491                            sizeof(arg64.LUN_info));
2492         err |= copy_from_user(&arg64.Request, &arg32->Request,
2493                            sizeof(arg64.Request));
2494         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2495                            sizeof(arg64.error_info));
2496         err |= get_user(arg64.buf_size, &arg32->buf_size);
2497         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2498         err |= get_user(cp, &arg32->buf);
2499         arg64.buf = compat_ptr(cp);
2500         err |= copy_to_user(p, &arg64, sizeof(arg64));
2501
2502         if (err)
2503                 return -EFAULT;
2504
2505         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2506         if (err)
2507                 return err;
2508         err |= copy_in_user(&arg32->error_info, &p->error_info,
2509                          sizeof(arg32->error_info));
2510         if (err)
2511                 return -EFAULT;
2512         return err;
2513 }
2514
2515 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2516 {
2517         switch (cmd) {
2518         case CCISS_GETPCIINFO:
2519         case CCISS_GETINTINFO:
2520         case CCISS_SETINTINFO:
2521         case CCISS_GETNODENAME:
2522         case CCISS_SETNODENAME:
2523         case CCISS_GETHEARTBEAT:
2524         case CCISS_GETBUSTYPES:
2525         case CCISS_GETFIRMVER:
2526         case CCISS_GETDRIVVER:
2527         case CCISS_REVALIDVOLS:
2528         case CCISS_DEREGDISK:
2529         case CCISS_REGNEWDISK:
2530         case CCISS_REGNEWD:
2531         case CCISS_RESCANDISK:
2532         case CCISS_GETLUNINFO:
2533                 return hpsa_ioctl(dev, cmd, arg);
2534
2535         case CCISS_PASSTHRU32:
2536                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2537         case CCISS_BIG_PASSTHRU32:
2538                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2539
2540         default:
2541                 return -ENOIOCTLCMD;
2542         }
2543 }
2544 #endif
2545
2546 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2547 {
2548         struct hpsa_pci_info pciinfo;
2549
2550         if (!argp)
2551                 return -EINVAL;
2552         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2553         pciinfo.bus = h->pdev->bus->number;
2554         pciinfo.dev_fn = h->pdev->devfn;
2555         pciinfo.board_id = h->board_id;
2556         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2557                 return -EFAULT;
2558         return 0;
2559 }
2560
2561 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2562 {
2563         DriverVer_type DriverVer;
2564         unsigned char vmaj, vmin, vsubmin;
2565         int rc;
2566
2567         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2568                 &vmaj, &vmin, &vsubmin);
2569         if (rc != 3) {
2570                 dev_info(&h->pdev->dev, "driver version string '%s' "
2571                         "unrecognized.", HPSA_DRIVER_VERSION);
2572                 vmaj = 0;
2573                 vmin = 0;
2574                 vsubmin = 0;
2575         }
2576         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2577         if (!argp)
2578                 return -EINVAL;
2579         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2580                 return -EFAULT;
2581         return 0;
2582 }
2583
2584 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2585 {
2586         IOCTL_Command_struct iocommand;
2587         struct CommandList *c;
2588         char *buff = NULL;
2589         union u64bit temp64;
2590
2591         if (!argp)
2592                 return -EINVAL;
2593         if (!capable(CAP_SYS_RAWIO))
2594                 return -EPERM;
2595         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2596                 return -EFAULT;
2597         if ((iocommand.buf_size < 1) &&
2598             (iocommand.Request.Type.Direction != XFER_NONE)) {
2599                 return -EINVAL;
2600         }
2601         if (iocommand.buf_size > 0) {
2602                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2603                 if (buff == NULL)
2604                         return -EFAULT;
2605                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2606                         /* Copy the data into the buffer we created */
2607                         if (copy_from_user(buff, iocommand.buf,
2608                                 iocommand.buf_size)) {
2609                                 kfree(buff);
2610                                 return -EFAULT;
2611                         }
2612                 } else {
2613                         memset(buff, 0, iocommand.buf_size);
2614                 }
2615         }
2616         c = cmd_special_alloc(h);
2617         if (c == NULL) {
2618                 kfree(buff);
2619                 return -ENOMEM;
2620         }
2621         /* Fill in the command type */
2622         c->cmd_type = CMD_IOCTL_PEND;
2623         /* Fill in Command Header */
2624         c->Header.ReplyQueue = 0; /* unused in simple mode */
2625         if (iocommand.buf_size > 0) {   /* buffer to fill */
2626                 c->Header.SGList = 1;
2627                 c->Header.SGTotal = 1;
2628         } else  { /* no buffers to fill */
2629                 c->Header.SGList = 0;
2630                 c->Header.SGTotal = 0;
2631         }
2632         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2633         /* use the kernel address the cmd block for tag */
2634         c->Header.Tag.lower = c->busaddr;
2635
2636         /* Fill in Request block */
2637         memcpy(&c->Request, &iocommand.Request,
2638                 sizeof(c->Request));
2639
2640         /* Fill in the scatter gather information */
2641         if (iocommand.buf_size > 0) {
2642                 temp64.val = pci_map_single(h->pdev, buff,
2643                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2644                 c->SG[0].Addr.lower = temp64.val32.lower;
2645                 c->SG[0].Addr.upper = temp64.val32.upper;
2646                 c->SG[0].Len = iocommand.buf_size;
2647                 c->SG[0].Ext = 0; /* we are not chaining*/
2648         }
2649         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2650         if (iocommand.buf_size > 0)
2651                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2652         check_ioctl_unit_attention(h, c);
2653
2654         /* Copy the error information out */
2655         memcpy(&iocommand.error_info, c->err_info,
2656                 sizeof(iocommand.error_info));
2657         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2658                 kfree(buff);
2659                 cmd_special_free(h, c);
2660                 return -EFAULT;
2661         }
2662         if (iocommand.Request.Type.Direction == XFER_READ &&
2663                 iocommand.buf_size > 0) {
2664                 /* Copy the data out of the buffer we created */
2665                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2666                         kfree(buff);
2667                         cmd_special_free(h, c);
2668                         return -EFAULT;
2669                 }
2670         }
2671         kfree(buff);
2672         cmd_special_free(h, c);
2673         return 0;
2674 }
2675
2676 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2677 {
2678         BIG_IOCTL_Command_struct *ioc;
2679         struct CommandList *c;
2680         unsigned char **buff = NULL;
2681         int *buff_size = NULL;
2682         union u64bit temp64;
2683         BYTE sg_used = 0;
2684         int status = 0;
2685         int i;
2686         u32 left;
2687         u32 sz;
2688         BYTE __user *data_ptr;
2689
2690         if (!argp)
2691                 return -EINVAL;
2692         if (!capable(CAP_SYS_RAWIO))
2693                 return -EPERM;
2694         ioc = (BIG_IOCTL_Command_struct *)
2695             kmalloc(sizeof(*ioc), GFP_KERNEL);
2696         if (!ioc) {
2697                 status = -ENOMEM;
2698                 goto cleanup1;
2699         }
2700         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2701                 status = -EFAULT;
2702                 goto cleanup1;
2703         }
2704         if ((ioc->buf_size < 1) &&
2705             (ioc->Request.Type.Direction != XFER_NONE)) {
2706                 status = -EINVAL;
2707                 goto cleanup1;
2708         }
2709         /* Check kmalloc limits  using all SGs */
2710         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2711                 status = -EINVAL;
2712                 goto cleanup1;
2713         }
2714         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
2715                 status = -EINVAL;
2716                 goto cleanup1;
2717         }
2718         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
2719         if (!buff) {
2720                 status = -ENOMEM;
2721                 goto cleanup1;
2722         }
2723         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
2724         if (!buff_size) {
2725                 status = -ENOMEM;
2726                 goto cleanup1;
2727         }
2728         left = ioc->buf_size;
2729         data_ptr = ioc->buf;
2730         while (left) {
2731                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2732                 buff_size[sg_used] = sz;
2733                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2734                 if (buff[sg_used] == NULL) {
2735                         status = -ENOMEM;
2736                         goto cleanup1;
2737                 }
2738                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2739                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2740                                 status = -ENOMEM;
2741                                 goto cleanup1;
2742                         }
2743                 } else
2744                         memset(buff[sg_used], 0, sz);
2745                 left -= sz;
2746                 data_ptr += sz;
2747                 sg_used++;
2748         }
2749         c = cmd_special_alloc(h);
2750         if (c == NULL) {
2751                 status = -ENOMEM;
2752                 goto cleanup1;
2753         }
2754         c->cmd_type = CMD_IOCTL_PEND;
2755         c->Header.ReplyQueue = 0;
2756         c->Header.SGList = c->Header.SGTotal = sg_used;
2757         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2758         c->Header.Tag.lower = c->busaddr;
2759         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2760         if (ioc->buf_size > 0) {
2761                 int i;
2762                 for (i = 0; i < sg_used; i++) {
2763                         temp64.val = pci_map_single(h->pdev, buff[i],
2764                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2765                         c->SG[i].Addr.lower = temp64.val32.lower;
2766                         c->SG[i].Addr.upper = temp64.val32.upper;
2767                         c->SG[i].Len = buff_size[i];
2768                         /* we are not chaining */
2769                         c->SG[i].Ext = 0;
2770                 }
2771         }
2772         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2773         if (sg_used)
2774                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2775         check_ioctl_unit_attention(h, c);
2776         /* Copy the error information out */
2777         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2778         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2779                 cmd_special_free(h, c);
2780                 status = -EFAULT;
2781                 goto cleanup1;
2782         }
2783         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2784                 /* Copy the data out of the buffer we created */
2785                 BYTE __user *ptr = ioc->buf;
2786                 for (i = 0; i < sg_used; i++) {
2787                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2788                                 cmd_special_free(h, c);
2789                                 status = -EFAULT;
2790                                 goto cleanup1;
2791                         }
2792                         ptr += buff_size[i];
2793                 }
2794         }
2795         cmd_special_free(h, c);
2796         status = 0;
2797 cleanup1:
2798         if (buff) {
2799                 for (i = 0; i < sg_used; i++)
2800                         kfree(buff[i]);
2801                 kfree(buff);
2802         }
2803         kfree(buff_size);
2804         kfree(ioc);
2805         return status;
2806 }
2807
2808 static void check_ioctl_unit_attention(struct ctlr_info *h,
2809         struct CommandList *c)
2810 {
2811         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2812                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2813                 (void) check_for_unit_attention(h, c);
2814 }
2815 /*
2816  * ioctl
2817  */
2818 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2819 {
2820         struct ctlr_info *h;
2821         void __user *argp = (void __user *)arg;
2822
2823         h = sdev_to_hba(dev);
2824
2825         switch (cmd) {
2826         case CCISS_DEREGDISK:
2827         case CCISS_REGNEWDISK:
2828         case CCISS_REGNEWD:
2829                 hpsa_scan_start(h->scsi_host);
2830                 return 0;
2831         case CCISS_GETPCIINFO:
2832                 return hpsa_getpciinfo_ioctl(h, argp);
2833         case CCISS_GETDRIVVER:
2834                 return hpsa_getdrivver_ioctl(h, argp);
2835         case CCISS_PASSTHRU:
2836                 return hpsa_passthru_ioctl(h, argp);
2837         case CCISS_BIG_PASSTHRU:
2838                 return hpsa_big_passthru_ioctl(h, argp);
2839         default:
2840                 return -ENOTTY;
2841         }
2842 }
2843
2844 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2845         unsigned char *scsi3addr, u8 reset_type)
2846 {
2847         struct CommandList *c;
2848
2849         c = cmd_alloc(h);
2850         if (!c)
2851                 return -ENOMEM;
2852         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2853                 RAID_CTLR_LUNID, TYPE_MSG);
2854         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2855         c->waiting = NULL;
2856         enqueue_cmd_and_start_io(h, c);
2857         /* Don't wait for completion, the reset won't complete.  Don't free
2858          * the command either.  This is the last command we will send before
2859          * re-initializing everything, so it doesn't matter and won't leak.
2860          */
2861         return 0;
2862 }
2863
2864 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2865         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2866         int cmd_type)
2867 {
2868         int pci_dir = XFER_NONE;
2869
2870         c->cmd_type = CMD_IOCTL_PEND;
2871         c->Header.ReplyQueue = 0;
2872         if (buff != NULL && size > 0) {
2873                 c->Header.SGList = 1;
2874                 c->Header.SGTotal = 1;
2875         } else {
2876                 c->Header.SGList = 0;
2877                 c->Header.SGTotal = 0;
2878         }
2879         c->Header.Tag.lower = c->busaddr;
2880         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2881
2882         c->Request.Type.Type = cmd_type;
2883         if (cmd_type == TYPE_CMD) {
2884                 switch (cmd) {
2885                 case HPSA_INQUIRY:
2886                         /* are we trying to read a vital product page */
2887                         if (page_code != 0) {
2888                                 c->Request.CDB[1] = 0x01;
2889                                 c->Request.CDB[2] = page_code;
2890                         }
2891                         c->Request.CDBLen = 6;
2892                         c->Request.Type.Attribute = ATTR_SIMPLE;
2893                         c->Request.Type.Direction = XFER_READ;
2894                         c->Request.Timeout = 0;
2895                         c->Request.CDB[0] = HPSA_INQUIRY;
2896                         c->Request.CDB[4] = size & 0xFF;
2897                         break;
2898                 case HPSA_REPORT_LOG:
2899                 case HPSA_REPORT_PHYS:
2900                         /* Talking to controller so It's a physical command
2901                            mode = 00 target = 0.  Nothing to write.
2902                          */
2903                         c->Request.CDBLen = 12;
2904                         c->Request.Type.Attribute = ATTR_SIMPLE;
2905                         c->Request.Type.Direction = XFER_READ;
2906                         c->Request.Timeout = 0;
2907                         c->Request.CDB[0] = cmd;
2908                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2909                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2910                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2911                         c->Request.CDB[9] = size & 0xFF;
2912                         break;
2913                 case HPSA_CACHE_FLUSH:
2914                         c->Request.CDBLen = 12;
2915                         c->Request.Type.Attribute = ATTR_SIMPLE;
2916                         c->Request.Type.Direction = XFER_WRITE;
2917                         c->Request.Timeout = 0;
2918                         c->Request.CDB[0] = BMIC_WRITE;
2919                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2920                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2921                         c->Request.CDB[8] = size & 0xFF;
2922                         break;
2923                 case TEST_UNIT_READY:
2924                         c->Request.CDBLen = 6;
2925                         c->Request.Type.Attribute = ATTR_SIMPLE;
2926                         c->Request.Type.Direction = XFER_NONE;
2927                         c->Request.Timeout = 0;
2928                         break;
2929                 default:
2930                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2931                         BUG();
2932                         return;
2933                 }
2934         } else if (cmd_type == TYPE_MSG) {
2935                 switch (cmd) {
2936
2937                 case  HPSA_DEVICE_RESET_MSG:
2938                         c->Request.CDBLen = 16;
2939                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2940                         c->Request.Type.Attribute = ATTR_SIMPLE;
2941                         c->Request.Type.Direction = XFER_NONE;
2942                         c->Request.Timeout = 0; /* Don't time out */
2943                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2944                         c->Request.CDB[0] =  cmd;
2945                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2946                         /* If bytes 4-7 are zero, it means reset the */
2947                         /* LunID device */
2948                         c->Request.CDB[4] = 0x00;
2949                         c->Request.CDB[5] = 0x00;
2950                         c->Request.CDB[6] = 0x00;
2951                         c->Request.CDB[7] = 0x00;
2952                 break;
2953
2954                 default:
2955                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2956                                 cmd);
2957                         BUG();
2958                 }
2959         } else {
2960                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2961                 BUG();
2962         }
2963
2964         switch (c->Request.Type.Direction) {
2965         case XFER_READ:
2966                 pci_dir = PCI_DMA_FROMDEVICE;
2967                 break;
2968         case XFER_WRITE:
2969                 pci_dir = PCI_DMA_TODEVICE;
2970                 break;
2971         case XFER_NONE:
2972                 pci_dir = PCI_DMA_NONE;
2973                 break;
2974         default:
2975                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2976         }
2977
2978         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2979
2980         return;
2981 }
2982
2983 /*
2984  * Map (physical) PCI mem into (virtual) kernel space
2985  */
2986 static void __iomem *remap_pci_mem(ulong base, ulong size)
2987 {
2988         ulong page_base = ((ulong) base) & PAGE_MASK;
2989         ulong page_offs = ((ulong) base) - page_base;
2990         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2991
2992         return page_remapped ? (page_remapped + page_offs) : NULL;
2993 }
2994
2995 /* Takes cmds off the submission queue and sends them to the hardware,
2996  * then puts them on the queue of cmds waiting for completion.
2997  */
2998 static void start_io(struct ctlr_info *h)
2999 {
3000         struct CommandList *c;
3001
3002         while (!list_empty(&h->reqQ)) {
3003                 c = list_entry(h->reqQ.next, struct CommandList, list);
3004                 /* can't do anything if fifo is full */
3005                 if ((h->access.fifo_full(h))) {
3006                         dev_warn(&h->pdev->dev, "fifo full\n");
3007                         break;
3008                 }
3009
3010                 /* Get the first entry from the Request Q */
3011                 removeQ(c);
3012                 h->Qdepth--;
3013
3014                 /* Tell the controller execute command */
3015                 h->access.submit_command(h, c);
3016
3017                 /* Put job onto the completed Q */
3018                 addQ(&h->cmpQ, c);
3019         }
3020 }
3021
3022 static inline unsigned long get_next_completion(struct ctlr_info *h)
3023 {
3024         return h->access.command_completed(h);
3025 }
3026
3027 static inline bool interrupt_pending(struct ctlr_info *h)
3028 {
3029         return h->access.intr_pending(h);
3030 }
3031
3032 static inline long interrupt_not_for_us(struct ctlr_info *h)
3033 {
3034         return (h->access.intr_pending(h) == 0) ||
3035                 (h->interrupts_enabled == 0);
3036 }
3037
3038 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3039         u32 raw_tag)
3040 {
3041         if (unlikely(tag_index >= h->nr_cmds)) {
3042                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3043                 return 1;
3044         }
3045         return 0;
3046 }
3047
3048 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3049 {
3050         removeQ(c);
3051         if (likely(c->cmd_type == CMD_SCSI))
3052                 complete_scsi_command(c);
3053         else if (c->cmd_type == CMD_IOCTL_PEND)
3054                 complete(c->waiting);
3055 }
3056
3057 static inline u32 hpsa_tag_contains_index(u32 tag)
3058 {
3059         return tag & DIRECT_LOOKUP_BIT;
3060 }
3061
3062 static inline u32 hpsa_tag_to_index(u32 tag)
3063 {
3064         return tag >> DIRECT_LOOKUP_SHIFT;
3065 }
3066
3067
3068 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3069 {
3070 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3071 #define HPSA_SIMPLE_ERROR_BITS 0x03
3072         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3073                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3074         return tag & ~HPSA_PERF_ERROR_BITS;
3075 }
3076
3077 /* process completion of an indexed ("direct lookup") command */
3078 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3079         u32 raw_tag)
3080 {
3081         u32 tag_index;
3082         struct CommandList *c;
3083
3084         tag_index = hpsa_tag_to_index(raw_tag);
3085         if (bad_tag(h, tag_index, raw_tag))
3086                 return next_command(h);
3087         c = h->cmd_pool + tag_index;
3088         finish_cmd(c, raw_tag);
3089         return next_command(h);
3090 }
3091
3092 /* process completion of a non-indexed command */
3093 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3094         u32 raw_tag)
3095 {
3096         u32 tag;
3097         struct CommandList *c = NULL;
3098
3099         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3100         list_for_each_entry(c, &h->cmpQ, list) {
3101                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3102                         finish_cmd(c, raw_tag);
3103                         return next_command(h);
3104                 }
3105         }
3106         bad_tag(h, h->nr_cmds + 1, raw_tag);
3107         return next_command(h);
3108 }
3109
3110 /* Some controllers, like p400, will give us one interrupt
3111  * after a soft reset, even if we turned interrupts off.
3112  * Only need to check for this in the hpsa_xxx_discard_completions
3113  * functions.
3114  */
3115 static int ignore_bogus_interrupt(struct ctlr_info *h)
3116 {
3117         if (likely(!reset_devices))
3118                 return 0;
3119
3120         if (likely(h->interrupts_enabled))
3121                 return 0;
3122
3123         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3124                 "(known firmware bug.)  Ignoring.\n");
3125
3126         return 1;
3127 }
3128
3129 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3130 {
3131         struct ctlr_info *h = dev_id;
3132         unsigned long flags;
3133         u32 raw_tag;
3134
3135         if (ignore_bogus_interrupt(h))
3136                 return IRQ_NONE;
3137
3138         if (interrupt_not_for_us(h))
3139                 return IRQ_NONE;
3140         spin_lock_irqsave(&h->lock, flags);
3141         h->last_intr_timestamp = get_jiffies_64();
3142         while (interrupt_pending(h)) {
3143                 raw_tag = get_next_completion(h);
3144                 while (raw_tag != FIFO_EMPTY)
3145                         raw_tag = next_command(h);
3146         }
3147         spin_unlock_irqrestore(&h->lock, flags);
3148         return IRQ_HANDLED;
3149 }
3150
3151 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3152 {
3153         struct ctlr_info *h = dev_id;
3154         unsigned long flags;
3155         u32 raw_tag;
3156
3157         if (ignore_bogus_interrupt(h))
3158                 return IRQ_NONE;
3159
3160         spin_lock_irqsave(&h->lock, flags);
3161         h->last_intr_timestamp = get_jiffies_64();
3162         raw_tag = get_next_completion(h);
3163         while (raw_tag != FIFO_EMPTY)
3164                 raw_tag = next_command(h);
3165         spin_unlock_irqrestore(&h->lock, flags);
3166         return IRQ_HANDLED;
3167 }
3168
3169 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3170 {
3171         struct ctlr_info *h = dev_id;
3172         unsigned long flags;
3173         u32 raw_tag;
3174
3175         if (interrupt_not_for_us(h))
3176                 return IRQ_NONE;
3177         spin_lock_irqsave(&h->lock, flags);
3178         h->last_intr_timestamp = get_jiffies_64();
3179         while (interrupt_pending(h)) {
3180                 raw_tag = get_next_completion(h);
3181                 while (raw_tag != FIFO_EMPTY) {
3182                         if (hpsa_tag_contains_index(raw_tag))
3183                                 raw_tag = process_indexed_cmd(h, raw_tag);
3184                         else
3185                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3186                 }
3187         }
3188         spin_unlock_irqrestore(&h->lock, flags);
3189         return IRQ_HANDLED;
3190 }
3191
3192 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3193 {
3194         struct ctlr_info *h = dev_id;
3195         unsigned long flags;
3196         u32 raw_tag;
3197
3198         spin_lock_irqsave(&h->lock, flags);
3199         h->last_intr_timestamp = get_jiffies_64();
3200         raw_tag = get_next_completion(h);
3201         while (raw_tag != FIFO_EMPTY) {
3202                 if (hpsa_tag_contains_index(raw_tag))
3203                         raw_tag = process_indexed_cmd(h, raw_tag);
3204                 else
3205                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3206         }
3207         spin_unlock_irqrestore(&h->lock, flags);
3208         return IRQ_HANDLED;
3209 }
3210
3211 /* Send a message CDB to the firmware. Careful, this only works
3212  * in simple mode, not performant mode due to the tag lookup.
3213  * We only ever use this immediately after a controller reset.
3214  */
3215 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3216                                                 unsigned char type)
3217 {
3218         struct Command {
3219                 struct CommandListHeader CommandHeader;
3220                 struct RequestBlock Request;
3221                 struct ErrDescriptor ErrorDescriptor;
3222         };
3223         struct Command *cmd;
3224         static const size_t cmd_sz = sizeof(*cmd) +
3225                                         sizeof(cmd->ErrorDescriptor);
3226         dma_addr_t paddr64;
3227         uint32_t paddr32, tag;
3228         void __iomem *vaddr;
3229         int i, err;
3230
3231         vaddr = pci_ioremap_bar(pdev, 0);
3232         if (vaddr == NULL)
3233                 return -ENOMEM;
3234
3235         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3236          * CCISS commands, so they must be allocated from the lower 4GiB of
3237          * memory.
3238          */
3239         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3240         if (err) {
3241                 iounmap(vaddr);
3242                 return -ENOMEM;
3243         }
3244
3245         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3246         if (cmd == NULL) {
3247                 iounmap(vaddr);
3248                 return -ENOMEM;
3249         }
3250
3251         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3252          * although there's no guarantee, we assume that the address is at
3253          * least 4-byte aligned (most likely, it's page-aligned).
3254          */
3255         paddr32 = paddr64;
3256
3257         cmd->CommandHeader.ReplyQueue = 0;
3258         cmd->CommandHeader.SGList = 0;
3259         cmd->CommandHeader.SGTotal = 0;
3260         cmd->CommandHeader.Tag.lower = paddr32;
3261         cmd->CommandHeader.Tag.upper = 0;
3262         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3263
3264         cmd->Request.CDBLen = 16;
3265         cmd->Request.Type.Type = TYPE_MSG;
3266         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3267         cmd->Request.Type.Direction = XFER_NONE;
3268         cmd->Request.Timeout = 0; /* Don't time out */
3269         cmd->Request.CDB[0] = opcode;
3270         cmd->Request.CDB[1] = type;
3271         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3272         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3273         cmd->ErrorDescriptor.Addr.upper = 0;
3274         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3275
3276         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3277
3278         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3279                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3280                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3281                         break;
3282                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3283         }
3284
3285         iounmap(vaddr);
3286
3287         /* we leak the DMA buffer here ... no choice since the controller could
3288          *  still complete the command.
3289          */
3290         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3291                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3292                         opcode, type);
3293                 return -ETIMEDOUT;
3294         }
3295
3296         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3297
3298         if (tag & HPSA_ERROR_BIT) {
3299                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3300                         opcode, type);
3301                 return -EIO;
3302         }
3303
3304         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3305                 opcode, type);
3306         return 0;
3307 }
3308
3309 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3310
3311 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3312         void * __iomem vaddr, u32 use_doorbell)
3313 {
3314         u16 pmcsr;
3315         int pos;
3316
3317         if (use_doorbell) {
3318                 /* For everything after the P600, the PCI power state method
3319                  * of resetting the controller doesn't work, so we have this
3320                  * other way using the doorbell register.
3321                  */
3322                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3323                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3324         } else { /* Try to do it the PCI power state way */
3325
3326                 /* Quoting from the Open CISS Specification: "The Power
3327                  * Management Control/Status Register (CSR) controls the power
3328                  * state of the device.  The normal operating state is D0,
3329                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3330                  * the controller, place the interface device in D3 then to D0,
3331                  * this causes a secondary PCI reset which will reset the
3332                  * controller." */
3333
3334                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3335                 if (pos == 0) {
3336                         dev_err(&pdev->dev,
3337                                 "hpsa_reset_controller: "
3338                                 "PCI PM not supported\n");
3339                         return -ENODEV;
3340                 }
3341                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3342                 /* enter the D3hot power management state */
3343                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3344                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3345                 pmcsr |= PCI_D3hot;
3346                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3347
3348                 msleep(500);
3349
3350                 /* enter the D0 power management state */
3351                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3352                 pmcsr |= PCI_D0;
3353                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3354
3355                 /*
3356                  * The P600 requires a small delay when changing states.
3357                  * Otherwise we may think the board did not reset and we bail.
3358                  * This for kdump only and is particular to the P600.
3359                  */
3360                 msleep(500);
3361         }
3362         return 0;
3363 }
3364
3365 static __devinit void init_driver_version(char *driver_version, int len)
3366 {
3367         memset(driver_version, 0, len);
3368         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3369 }
3370
3371 static __devinit int write_driver_ver_to_cfgtable(
3372         struct CfgTable __iomem *cfgtable)
3373 {
3374         char *driver_version;
3375         int i, size = sizeof(cfgtable->driver_version);
3376
3377         driver_version = kmalloc(size, GFP_KERNEL);
3378         if (!driver_version)
3379                 return -ENOMEM;
3380
3381         init_driver_version(driver_version, size);
3382         for (i = 0; i < size; i++)
3383                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3384         kfree(driver_version);
3385         return 0;
3386 }
3387
3388 static __devinit void read_driver_ver_from_cfgtable(
3389         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3390 {
3391         int i;
3392
3393         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3394                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3395 }
3396
3397 static __devinit int controller_reset_failed(
3398         struct CfgTable __iomem *cfgtable)
3399 {
3400
3401         char *driver_ver, *old_driver_ver;
3402         int rc, size = sizeof(cfgtable->driver_version);
3403
3404         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3405         if (!old_driver_ver)
3406                 return -ENOMEM;
3407         driver_ver = old_driver_ver + size;
3408
3409         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3410          * should have been changed, otherwise we know the reset failed.
3411          */
3412         init_driver_version(old_driver_ver, size);
3413         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3414         rc = !memcmp(driver_ver, old_driver_ver, size);
3415         kfree(old_driver_ver);
3416         return rc;
3417 }
3418 /* This does a hard reset of the controller using PCI power management
3419  * states or the using the doorbell register.
3420  */
3421 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3422 {
3423         u64 cfg_offset;
3424         u32 cfg_base_addr;
3425         u64 cfg_base_addr_index;
3426         void __iomem *vaddr;
3427         unsigned long paddr;
3428         u32 misc_fw_support;
3429         int rc;
3430         struct CfgTable __iomem *cfgtable;
3431         u32 use_doorbell;
3432         u32 board_id;
3433         u16 command_register;
3434
3435         /* For controllers as old as the P600, this is very nearly
3436          * the same thing as
3437          *
3438          * pci_save_state(pci_dev);
3439          * pci_set_power_state(pci_dev, PCI_D3hot);
3440          * pci_set_power_state(pci_dev, PCI_D0);
3441          * pci_restore_state(pci_dev);
3442          *
3443          * For controllers newer than the P600, the pci power state
3444          * method of resetting doesn't work so we have another way
3445          * using the doorbell register.
3446          */
3447
3448         rc = hpsa_lookup_board_id(pdev, &board_id);
3449         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3450                 dev_warn(&pdev->dev, "Not resetting device.\n");
3451                 return -ENODEV;
3452         }
3453
3454         /* if controller is soft- but not hard resettable... */
3455         if (!ctlr_is_hard_resettable(board_id))
3456                 return -ENOTSUPP; /* try soft reset later. */
3457
3458         /* Save the PCI command register */
3459         pci_read_config_word(pdev, 4, &command_register);
3460         /* Turn the board off.  This is so that later pci_restore_state()
3461          * won't turn the board on before the rest of config space is ready.
3462          */
3463         pci_disable_device(pdev);
3464         pci_save_state(pdev);
3465
3466         /* find the first memory BAR, so we can find the cfg table */
3467         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3468         if (rc)
3469                 return rc;
3470         vaddr = remap_pci_mem(paddr, 0x250);
3471         if (!vaddr)
3472                 return -ENOMEM;
3473
3474         /* find cfgtable in order to check if reset via doorbell is supported */
3475         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3476                                         &cfg_base_addr_index, &cfg_offset);
3477         if (rc)
3478                 goto unmap_vaddr;
3479         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3480                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3481         if (!cfgtable) {
3482                 rc = -ENOMEM;
3483                 goto unmap_vaddr;
3484         }
3485         rc = write_driver_ver_to_cfgtable(cfgtable);
3486         if (rc)
3487                 goto unmap_vaddr;
3488
3489         /* If reset via doorbell register is supported, use that.
3490          * There are two such methods.  Favor the newest method.
3491          */
3492         misc_fw_support = readl(&cfgtable->misc_fw_support);
3493         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3494         if (use_doorbell) {
3495                 use_doorbell = DOORBELL_CTLR_RESET2;
3496         } else {
3497                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3498                 if (use_doorbell) {
3499                         dev_warn(&pdev->dev, "Soft reset not supported. "
3500                                 "Firmware update is required.\n");
3501                         rc = -ENOTSUPP; /* try soft reset */
3502                         goto unmap_cfgtable;
3503                 }
3504         }
3505
3506         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3507         if (rc)
3508                 goto unmap_cfgtable;
3509
3510         pci_restore_state(pdev);
3511         rc = pci_enable_device(pdev);
3512         if (rc) {
3513                 dev_warn(&pdev->dev, "failed to enable device.\n");
3514                 goto unmap_cfgtable;
3515         }
3516         pci_write_config_word(pdev, 4, command_register);
3517
3518         /* Some devices (notably the HP Smart Array 5i Controller)
3519            need a little pause here */
3520         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3521
3522         /* Wait for board to become not ready, then ready. */
3523         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3524         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3525         if (rc) {
3526                 dev_warn(&pdev->dev,
3527                         "failed waiting for board to reset."
3528                         " Will try soft reset.\n");
3529                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3530                 goto unmap_cfgtable;
3531         }
3532         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3533         if (rc) {
3534                 dev_warn(&pdev->dev,
3535                         "failed waiting for board to become ready "
3536                         "after hard reset\n");
3537                 goto unmap_cfgtable;
3538         }
3539
3540         rc = controller_reset_failed(vaddr);
3541         if (rc < 0)
3542                 goto unmap_cfgtable;
3543         if (rc) {
3544                 dev_warn(&pdev->dev, "Unable to successfully reset "
3545                         "controller. Will try soft reset.\n");
3546                 rc = -ENOTSUPP;
3547         } else {
3548                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3549         }
3550
3551 unmap_cfgtable:
3552         iounmap(cfgtable);
3553
3554 unmap_vaddr:
3555         iounmap(vaddr);
3556         return rc;
3557 }
3558
3559 /*
3560  *  We cannot read the structure directly, for portability we must use
3561  *   the io functions.
3562  *   This is for debug only.
3563  */
3564 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3565 {
3566 #ifdef HPSA_DEBUG
3567         int i;
3568         char temp_name[17];
3569
3570         dev_info(dev, "Controller Configuration information\n");
3571         dev_info(dev, "------------------------------------\n");
3572         for (i = 0; i < 4; i++)
3573                 temp_name[i] = readb(&(tb->Signature[i]));
3574         temp_name[4] = '\0';
3575         dev_info(dev, "   Signature = %s\n", temp_name);
3576         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3577         dev_info(dev, "   Transport methods supported = 0x%x\n",
3578                readl(&(tb->TransportSupport)));
3579         dev_info(dev, "   Transport methods active = 0x%x\n",
3580                readl(&(tb->TransportActive)));
3581         dev_info(dev, "   Requested transport Method = 0x%x\n",
3582                readl(&(tb->HostWrite.TransportRequest)));
3583         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3584                readl(&(tb->HostWrite.CoalIntDelay)));
3585         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3586                readl(&(tb->HostWrite.CoalIntCount)));
3587         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3588                readl(&(tb->CmdsOutMax)));
3589         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3590         for (i = 0; i < 16; i++)
3591                 temp_name[i] = readb(&(tb->ServerName[i]));
3592         temp_name[16] = '\0';
3593         dev_info(dev, "   Server Name = %s\n", temp_name);
3594         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3595                 readl(&(tb->HeartBeat)));
3596 #endif                          /* HPSA_DEBUG */
3597 }
3598
3599 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3600 {
3601         int i, offset, mem_type, bar_type;
3602
3603         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3604                 return 0;
3605         offset = 0;
3606         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3607                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3608                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3609                         offset += 4;
3610                 else {
3611                         mem_type = pci_resource_flags(pdev, i) &
3612                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3613                         switch (mem_type) {
3614                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3615                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3616                                 offset += 4;    /* 32 bit */
3617                                 break;
3618                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3619                                 offset += 8;
3620                                 break;
3621                         default:        /* reserved in PCI 2.2 */
3622                                 dev_warn(&pdev->dev,
3623                                        "base address is invalid\n");
3624                                 return -1;
3625                                 break;
3626                         }
3627                 }
3628                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3629                         return i + 1;
3630         }
3631         return -1;
3632 }
3633
3634 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3635  * controllers that are capable. If not, we use IO-APIC mode.
3636  */
3637
3638 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3639 {
3640 #ifdef CONFIG_PCI_MSI
3641         int err;
3642         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3643         {0, 2}, {0, 3}
3644         };
3645
3646         /* Some boards advertise MSI but don't really support it */
3647         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3648             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3649                 goto default_int_mode;
3650         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3651                 dev_info(&h->pdev->dev, "MSIX\n");
3652                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3653                 if (!err) {
3654                         h->intr[0] = hpsa_msix_entries[0].vector;
3655                         h->intr[1] = hpsa_msix_entries[1].vector;
3656                         h->intr[2] = hpsa_msix_entries[2].vector;
3657                         h->intr[3] = hpsa_msix_entries[3].vector;
3658                         h->msix_vector = 1;
3659                         return;
3660                 }
3661                 if (err > 0) {
3662                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3663                                "available\n", err);
3664                         goto default_int_mode;
3665                 } else {
3666                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3667                                err);
3668                         goto default_int_mode;
3669                 }
3670         }
3671         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3672                 dev_info(&h->pdev->dev, "MSI\n");
3673                 if (!pci_enable_msi(h->pdev))
3674                         h->msi_vector = 1;
3675                 else
3676                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3677         }
3678 default_int_mode:
3679 #endif                          /* CONFIG_PCI_MSI */
3680         /* if we get here we're going to use the default interrupt mode */
3681         h->intr[h->intr_mode] = h->pdev->irq;
3682 }
3683
3684 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3685 {
3686         int i;
3687         u32 subsystem_vendor_id, subsystem_device_id;
3688
3689         subsystem_vendor_id = pdev->subsystem_vendor;
3690         subsystem_device_id = pdev->subsystem_device;
3691         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3692                     subsystem_vendor_id;
3693
3694         for (i = 0; i < ARRAY_SIZE(products); i++)
3695                 if (*board_id == products[i].board_id)
3696                         return i;
3697
3698         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3699                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3700                 !hpsa_allow_any) {
3701                 dev_warn(&pdev->dev, "unrecognized board ID: "
3702                         "0x%08x, ignoring.\n", *board_id);
3703                         return -ENODEV;
3704         }
3705         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3706 }
3707
3708 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3709 {
3710         u16 command;
3711
3712         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3713         return ((command & PCI_COMMAND_MEMORY) == 0);
3714 }
3715
3716 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3717         unsigned long *memory_bar)
3718 {
3719         int i;
3720
3721         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3722                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3723                         /* addressing mode bits already removed */
3724                         *memory_bar = pci_resource_start(pdev, i);
3725                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3726                                 *memory_bar);
3727                         return 0;
3728                 }
3729         dev_warn(&pdev->dev, "no memory BAR found\n");
3730         return -ENODEV;
3731 }
3732
3733 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3734         void __iomem *vaddr, int wait_for_ready)
3735 {
3736         int i, iterations;
3737         u32 scratchpad;
3738         if (wait_for_ready)
3739                 iterations = HPSA_BOARD_READY_ITERATIONS;
3740         else
3741                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3742
3743         for (i = 0; i < iterations; i++) {
3744                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3745                 if (wait_for_ready) {
3746                         if (scratchpad == HPSA_FIRMWARE_READY)
3747                                 return 0;
3748                 } else {
3749                         if (scratchpad != HPSA_FIRMWARE_READY)
3750                                 return 0;
3751                 }
3752                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3753         }
3754         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3755         return -ENODEV;
3756 }
3757
3758 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3759         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3760         u64 *cfg_offset)
3761 {
3762         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3763         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3764         *cfg_base_addr &= (u32) 0x0000ffff;
3765         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3766         if (*cfg_base_addr_index == -1) {
3767                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3768                 return -ENODEV;
3769         }
3770         return 0;
3771 }
3772
3773 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3774 {
3775         u64 cfg_offset;
3776         u32 cfg_base_addr;
3777         u64 cfg_base_addr_index;
3778         u32 trans_offset;
3779         int rc;
3780
3781         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3782                 &cfg_base_addr_index, &cfg_offset);
3783         if (rc)
3784                 return rc;
3785         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3786                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3787         if (!h->cfgtable)
3788                 return -ENOMEM;
3789         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3790         if (rc)
3791                 return rc;
3792         /* Find performant mode table. */
3793         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3794         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3795                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3796                                 sizeof(*h->transtable));
3797         if (!h->transtable)
3798                 return -ENOMEM;
3799         return 0;
3800 }
3801
3802 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3803 {
3804         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3805
3806         /* Limit commands in memory limited kdump scenario. */
3807         if (reset_devices && h->max_commands > 32)
3808                 h->max_commands = 32;
3809
3810         if (h->max_commands < 16) {
3811                 dev_warn(&h->pdev->dev, "Controller reports "
3812                         "max supported commands of %d, an obvious lie. "
3813                         "Using 16.  Ensure that firmware is up to date.\n",
3814                         h->max_commands);
3815                 h->max_commands = 16;
3816         }
3817 }
3818
3819 /* Interrogate the hardware for some limits:
3820  * max commands, max SG elements without chaining, and with chaining,
3821  * SG chain block size, etc.
3822  */
3823 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3824 {
3825         hpsa_get_max_perf_mode_cmds(h);
3826         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3827         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3828         /*
3829          * Limit in-command s/g elements to 32 save dma'able memory.
3830          * Howvever spec says if 0, use 31
3831          */
3832         h->max_cmd_sg_entries = 31;
3833         if (h->maxsgentries > 512) {
3834                 h->max_cmd_sg_entries = 32;
3835                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3836                 h->maxsgentries--; /* save one for chain pointer */
3837         } else {
3838                 h->maxsgentries = 31; /* default to traditional values */
3839                 h->chainsize = 0;
3840         }
3841 }
3842
3843 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3844 {
3845         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3846             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3847             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3848             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3849                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3850                 return false;
3851         }
3852         return true;
3853 }
3854
3855 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3856 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3857 {
3858 #ifdef CONFIG_X86
3859         u32 prefetch;
3860
3861         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3862         prefetch |= 0x100;
3863         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3864 #endif
3865 }
3866
3867 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3868  * in a prefetch beyond physical memory.
3869  */
3870 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3871 {
3872         u32 dma_prefetch;
3873
3874         if (h->board_id != 0x3225103C)
3875                 return;
3876         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3877         dma_prefetch |= 0x8000;
3878         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3879 }
3880
3881 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3882 {
3883         int i;
3884         u32 doorbell_value;
3885         unsigned long flags;
3886
3887         /* under certain very rare conditions, this can take awhile.
3888          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3889          * as we enter this code.)
3890          */
3891         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3892                 spin_lock_irqsave(&h->lock, flags);
3893                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3894                 spin_unlock_irqrestore(&h->lock, flags);
3895                 if (!(doorbell_value & CFGTBL_ChangeReq))
3896                         break;
3897                 /* delay and try again */
3898                 usleep_range(10000, 20000);
3899         }
3900 }
3901
3902 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3903 {
3904         u32 trans_support;
3905
3906         trans_support = readl(&(h->cfgtable->TransportSupport));
3907         if (!(trans_support & SIMPLE_MODE))
3908                 return -ENOTSUPP;
3909
3910         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3911         /* Update the field, and then ring the doorbell */
3912         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3913         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3914         hpsa_wait_for_mode_change_ack(h);
3915         print_cfg_table(&h->pdev->dev, h->cfgtable);
3916         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3917                 dev_warn(&h->pdev->dev,
3918                         "unable to get board into simple mode\n");
3919                 return -ENODEV;
3920         }
3921         h->transMethod = CFGTBL_Trans_Simple;
3922         return 0;
3923 }
3924
3925 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3926 {
3927         int prod_index, err;
3928
3929         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3930         if (prod_index < 0)
3931                 return -ENODEV;
3932         h->product_name = products[prod_index].product_name;
3933         h->access = *(products[prod_index].access);
3934
3935         if (hpsa_board_disabled(h->pdev)) {
3936                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3937                 return -ENODEV;
3938         }
3939
3940         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3941                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3942
3943         err = pci_enable_device(h->pdev);
3944         if (err) {
3945                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3946                 return err;
3947         }
3948
3949         err = pci_request_regions(h->pdev, HPSA);
3950         if (err) {
3951                 dev_err(&h->pdev->dev,
3952                         "cannot obtain PCI resources, aborting\n");
3953                 return err;
3954         }
3955         hpsa_interrupt_mode(h);
3956         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3957         if (err)
3958                 goto err_out_free_res;
3959         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3960         if (!h->vaddr) {
3961                 err = -ENOMEM;
3962                 goto err_out_free_res;
3963         }
3964         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3965         if (err)
3966                 goto err_out_free_res;
3967         err = hpsa_find_cfgtables(h);
3968         if (err)
3969                 goto err_out_free_res;
3970         hpsa_find_board_params(h);
3971
3972         if (!hpsa_CISS_signature_present(h)) {
3973                 err = -ENODEV;
3974                 goto err_out_free_res;
3975         }
3976         hpsa_enable_scsi_prefetch(h);
3977         hpsa_p600_dma_prefetch_quirk(h);
3978         err = hpsa_enter_simple_mode(h);
3979         if (err)
3980                 goto err_out_free_res;
3981         return 0;
3982
3983 err_out_free_res:
3984         if (h->transtable)
3985                 iounmap(h->transtable);
3986         if (h->cfgtable)
3987                 iounmap(h->cfgtable);
3988         if (h->vaddr)
3989                 iounmap(h->vaddr);
3990         /*
3991          * Deliberately omit pci_disable_device(): it does something nasty to
3992          * Smart Array controllers that pci_enable_device does not undo
3993          */
3994         pci_release_regions(h->pdev);
3995         return err;
3996 }
3997
3998 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3999 {
4000         int rc;
4001
4002 #define HBA_INQUIRY_BYTE_COUNT 64
4003         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4004         if (!h->hba_inquiry_data)
4005                 return;
4006         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4007                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4008         if (rc != 0) {
4009                 kfree(h->hba_inquiry_data);
4010                 h->hba_inquiry_data = NULL;
4011         }
4012 }
4013
4014 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4015 {
4016         int rc, i;
4017
4018         if (!reset_devices)
4019                 return 0;
4020
4021         /* Reset the controller with a PCI power-cycle or via doorbell */
4022         rc = hpsa_kdump_hard_reset_controller(pdev);
4023
4024         /* -ENOTSUPP here means we cannot reset the controller
4025          * but it's already (and still) up and running in
4026          * "performant mode".  Or, it might be 640x, which can't reset
4027          * due to concerns about shared bbwc between 6402/6404 pair.
4028          */
4029         if (rc == -ENOTSUPP)
4030                 return rc; /* just try to do the kdump anyhow. */
4031         if (rc)
4032                 return -ENODEV;
4033
4034         /* Now try to get the controller to respond to a no-op */
4035         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4036         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4037                 if (hpsa_noop(pdev) == 0)
4038                         break;
4039                 else
4040                         dev_warn(&pdev->dev, "no-op failed%s\n",
4041                                         (i < 11 ? "; re-trying" : ""));
4042         }
4043         return 0;
4044 }
4045
4046 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4047 {
4048         h->cmd_pool_bits = kzalloc(
4049                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4050                 sizeof(unsigned long), GFP_KERNEL);
4051         h->cmd_pool = pci_alloc_consistent(h->pdev,
4052                     h->nr_cmds * sizeof(*h->cmd_pool),
4053                     &(h->cmd_pool_dhandle));
4054         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4055                     h->nr_cmds * sizeof(*h->errinfo_pool),
4056                     &(h->errinfo_pool_dhandle));
4057         if ((h->cmd_pool_bits == NULL)
4058             || (h->cmd_pool == NULL)
4059             || (h->errinfo_pool == NULL)) {
4060                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4061                 return -ENOMEM;
4062         }
4063         return 0;
4064 }
4065
4066 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4067 {
4068         kfree(h->cmd_pool_bits);
4069         if (h->cmd_pool)
4070                 pci_free_consistent(h->pdev,
4071                             h->nr_cmds * sizeof(struct CommandList),
4072                             h->cmd_pool, h->cmd_pool_dhandle);
4073         if (h->errinfo_pool)
4074                 pci_free_consistent(h->pdev,
4075                             h->nr_cmds * sizeof(struct ErrorInfo),
4076                             h->errinfo_pool,
4077                             h->errinfo_pool_dhandle);
4078 }
4079
4080 static int hpsa_request_irq(struct ctlr_info *h,
4081         irqreturn_t (*msixhandler)(int, void *),
4082         irqreturn_t (*intxhandler)(int, void *))
4083 {
4084         int rc;
4085
4086         if (h->msix_vector || h->msi_vector)
4087                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4088                                 0, h->devname, h);
4089         else
4090                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4091                                 IRQF_SHARED, h->devname, h);
4092         if (rc) {
4093                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4094                        h->intr[h->intr_mode], h->devname);
4095                 return -ENODEV;
4096         }
4097         return 0;
4098 }
4099
4100 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4101 {
4102         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4103                 HPSA_RESET_TYPE_CONTROLLER)) {
4104                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4105                 return -EIO;
4106         }
4107
4108         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4109         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4110                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4111                 return -1;
4112         }
4113
4114         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4115         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4116                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4117                         "after soft reset.\n");
4118                 return -1;
4119         }
4120
4121         return 0;
4122 }
4123
4124 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4125 {
4126         free_irq(h->intr[h->intr_mode], h);
4127 #ifdef CONFIG_PCI_MSI
4128         if (h->msix_vector)
4129                 pci_disable_msix(h->pdev);
4130         else if (h->msi_vector)
4131                 pci_disable_msi(h->pdev);
4132 #endif /* CONFIG_PCI_MSI */
4133         hpsa_free_sg_chain_blocks(h);
4134         hpsa_free_cmd_pool(h);
4135         kfree(h->blockFetchTable);
4136         pci_free_consistent(h->pdev, h->reply_pool_size,
4137                 h->reply_pool, h->reply_pool_dhandle);
4138         if (h->vaddr)
4139                 iounmap(h->vaddr);
4140         if (h->transtable)
4141                 iounmap(h->transtable);
4142         if (h->cfgtable)
4143                 iounmap(h->cfgtable);
4144         pci_release_regions(h->pdev);
4145         kfree(h);
4146 }
4147
4148 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4149 {
4150         assert_spin_locked(&lockup_detector_lock);
4151         if (!hpsa_lockup_detector)
4152                 return;
4153         if (h->lockup_detected)
4154                 return; /* already stopped the lockup detector */
4155         list_del(&h->lockup_list);
4156 }
4157
4158 /* Called when controller lockup detected. */
4159 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4160 {
4161         struct CommandList *c = NULL;
4162
4163         assert_spin_locked(&h->lock);
4164         /* Mark all outstanding commands as failed and complete them. */
4165         while (!list_empty(list)) {
4166                 c = list_entry(list->next, struct CommandList, list);
4167                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4168                 finish_cmd(c, c->Header.Tag.lower);
4169         }
4170 }
4171
4172 static void controller_lockup_detected(struct ctlr_info *h)
4173 {
4174         unsigned long flags;
4175
4176         assert_spin_locked(&lockup_detector_lock);
4177         remove_ctlr_from_lockup_detector_list(h);
4178         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4179         spin_lock_irqsave(&h->lock, flags);
4180         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4181         spin_unlock_irqrestore(&h->lock, flags);
4182         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4183                         h->lockup_detected);
4184         pci_disable_device(h->pdev);
4185         spin_lock_irqsave(&h->lock, flags);
4186         fail_all_cmds_on_list(h, &h->cmpQ);
4187         fail_all_cmds_on_list(h, &h->reqQ);
4188         spin_unlock_irqrestore(&h->lock, flags);
4189 }
4190
4191 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4192 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4193
4194 static void detect_controller_lockup(struct ctlr_info *h)
4195 {
4196         u64 now;
4197         u32 heartbeat;
4198         unsigned long flags;
4199
4200         assert_spin_locked(&lockup_detector_lock);
4201         now = get_jiffies_64();
4202         /* If we've received an interrupt recently, we're ok. */
4203         if (time_after64(h->last_intr_timestamp +
4204                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4205                 return;
4206
4207         /*
4208          * If we've already checked the heartbeat recently, we're ok.
4209          * This could happen if someone sends us a signal. We
4210          * otherwise don't care about signals in this thread.
4211          */
4212         if (time_after64(h->last_heartbeat_timestamp +
4213                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4214                 return;
4215
4216         /* If heartbeat has not changed since we last looked, we're not ok. */
4217         spin_lock_irqsave(&h->lock, flags);
4218         heartbeat = readl(&h->cfgtable->HeartBeat);
4219         spin_unlock_irqrestore(&h->lock, flags);
4220         if (h->last_heartbeat == heartbeat) {
4221                 controller_lockup_detected(h);
4222                 return;
4223         }
4224
4225         /* We're ok. */
4226         h->last_heartbeat = heartbeat;
4227         h->last_heartbeat_timestamp = now;
4228 }
4229
4230 static int detect_controller_lockup_thread(void *notused)
4231 {
4232         struct ctlr_info *h;
4233         unsigned long flags;
4234
4235         while (1) {
4236                 struct list_head *this, *tmp;
4237
4238                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4239                 if (kthread_should_stop())
4240                         break;
4241                 spin_lock_irqsave(&lockup_detector_lock, flags);
4242                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4243                         h = list_entry(this, struct ctlr_info, lockup_list);
4244                         detect_controller_lockup(h);
4245                 }
4246                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4247         }
4248         return 0;
4249 }
4250
4251 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4252 {
4253         unsigned long flags;
4254
4255         spin_lock_irqsave(&lockup_detector_lock, flags);
4256         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4257         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4258 }
4259
4260 static void start_controller_lockup_detector(struct ctlr_info *h)
4261 {
4262         /* Start the lockup detector thread if not already started */
4263         if (!hpsa_lockup_detector) {
4264                 spin_lock_init(&lockup_detector_lock);
4265                 hpsa_lockup_detector =
4266                         kthread_run(detect_controller_lockup_thread,
4267                                                 NULL, HPSA);
4268         }
4269         if (!hpsa_lockup_detector) {
4270                 dev_warn(&h->pdev->dev,
4271                         "Could not start lockup detector thread\n");
4272                 return;
4273         }
4274         add_ctlr_to_lockup_detector_list(h);
4275 }
4276
4277 static void stop_controller_lockup_detector(struct ctlr_info *h)
4278 {
4279         unsigned long flags;
4280
4281         spin_lock_irqsave(&lockup_detector_lock, flags);
4282         remove_ctlr_from_lockup_detector_list(h);
4283         /* If the list of ctlr's to monitor is empty, stop the thread */
4284         if (list_empty(&hpsa_ctlr_list)) {
4285                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4286                 kthread_stop(hpsa_lockup_detector);
4287                 spin_lock_irqsave(&lockup_detector_lock, flags);
4288                 hpsa_lockup_detector = NULL;
4289         }
4290         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4291 }
4292
4293 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4294                                     const struct pci_device_id *ent)
4295 {
4296         int dac, rc;
4297         struct ctlr_info *h;
4298         int try_soft_reset = 0;
4299         unsigned long flags;
4300
4301         if (number_of_controllers == 0)
4302                 printk(KERN_INFO DRIVER_NAME "\n");
4303
4304         rc = hpsa_init_reset_devices(pdev);
4305         if (rc) {
4306                 if (rc != -ENOTSUPP)
4307                         return rc;
4308                 /* If the reset fails in a particular way (it has no way to do
4309                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4310                  * a soft reset once we get the controller configured up to the
4311                  * point that it can accept a command.
4312                  */
4313                 try_soft_reset = 1;
4314                 rc = 0;
4315         }
4316
4317 reinit_after_soft_reset:
4318
4319         /* Command structures must be aligned on a 32-byte boundary because
4320          * the 5 lower bits of the address are used by the hardware. and by
4321          * the driver.  See comments in hpsa.h for more info.
4322          */
4323 #define COMMANDLIST_ALIGNMENT 32
4324         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4325         h = kzalloc(sizeof(*h), GFP_KERNEL);
4326         if (!h)
4327                 return -ENOMEM;
4328
4329         h->pdev = pdev;
4330         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4331         INIT_LIST_HEAD(&h->cmpQ);
4332         INIT_LIST_HEAD(&h->reqQ);
4333         spin_lock_init(&h->lock);
4334         spin_lock_init(&h->scan_lock);
4335         rc = hpsa_pci_init(h);
4336         if (rc != 0)
4337                 goto clean1;
4338
4339         sprintf(h->devname, HPSA "%d", number_of_controllers);
4340         h->ctlr = number_of_controllers;
4341         number_of_controllers++;
4342
4343         /* configure PCI DMA stuff */
4344         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4345         if (rc == 0) {
4346                 dac = 1;
4347         } else {
4348                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4349                 if (rc == 0) {
4350                         dac = 0;
4351                 } else {
4352                         dev_err(&pdev->dev, "no suitable DMA available\n");
4353                         goto clean1;
4354                 }
4355         }
4356
4357         /* make sure the board interrupts are off */
4358         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4359
4360         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4361                 goto clean2;
4362         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4363                h->devname, pdev->device,
4364                h->intr[h->intr_mode], dac ? "" : " not");
4365         if (hpsa_allocate_cmd_pool(h))
4366                 goto clean4;
4367         if (hpsa_allocate_sg_chain_blocks(h))
4368                 goto clean4;
4369         init_waitqueue_head(&h->scan_wait_queue);
4370         h->scan_finished = 1; /* no scan currently in progress */
4371
4372         pci_set_drvdata(pdev, h);
4373         h->ndevices = 0;
4374         h->scsi_host = NULL;
4375         spin_lock_init(&h->devlock);
4376         hpsa_put_ctlr_into_performant_mode(h);
4377
4378         /* At this point, the controller is ready to take commands.
4379          * Now, if reset_devices and the hard reset didn't work, try
4380          * the soft reset and see if that works.
4381          */
4382         if (try_soft_reset) {
4383
4384                 /* This is kind of gross.  We may or may not get a completion
4385                  * from the soft reset command, and if we do, then the value
4386                  * from the fifo may or may not be valid.  So, we wait 10 secs
4387                  * after the reset throwing away any completions we get during
4388                  * that time.  Unregister the interrupt handler and register
4389                  * fake ones to scoop up any residual completions.
4390                  */
4391                 spin_lock_irqsave(&h->lock, flags);
4392                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4393                 spin_unlock_irqrestore(&h->lock, flags);
4394                 free_irq(h->intr[h->intr_mode], h);
4395                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4396                                         hpsa_intx_discard_completions);
4397                 if (rc) {
4398                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4399                                 "soft reset.\n");
4400                         goto clean4;
4401                 }
4402
4403                 rc = hpsa_kdump_soft_reset(h);
4404                 if (rc)
4405                         /* Neither hard nor soft reset worked, we're hosed. */
4406                         goto clean4;
4407
4408                 dev_info(&h->pdev->dev, "Board READY.\n");
4409                 dev_info(&h->pdev->dev,
4410                         "Waiting for stale completions to drain.\n");
4411                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4412                 msleep(10000);
4413                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4414
4415                 rc = controller_reset_failed(h->cfgtable);
4416                 if (rc)
4417                         dev_info(&h->pdev->dev,
4418                                 "Soft reset appears to have failed.\n");
4419
4420                 /* since the controller's reset, we have to go back and re-init
4421                  * everything.  Easiest to just forget what we've done and do it
4422                  * all over again.
4423                  */
4424                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4425                 try_soft_reset = 0;
4426                 if (rc)
4427                         /* don't go to clean4, we already unallocated */
4428                         return -ENODEV;
4429
4430                 goto reinit_after_soft_reset;
4431         }
4432
4433         /* Turn the interrupts on so we can service requests */
4434         h->access.set_intr_mask(h, HPSA_INTR_ON);
4435
4436         hpsa_hba_inquiry(h);
4437         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4438         start_controller_lockup_detector(h);
4439         return 1;
4440
4441 clean4:
4442         hpsa_free_sg_chain_blocks(h);
4443         hpsa_free_cmd_pool(h);
4444         free_irq(h->intr[h->intr_mode], h);
4445 clean2:
4446 clean1:
4447         kfree(h);
4448         return rc;
4449 }
4450
4451 static void hpsa_flush_cache(struct ctlr_info *h)
4452 {
4453         char *flush_buf;
4454         struct CommandList *c;
4455
4456         flush_buf = kzalloc(4, GFP_KERNEL);
4457         if (!flush_buf)
4458                 return;
4459
4460         c = cmd_special_alloc(h);
4461         if (!c) {
4462                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4463                 goto out_of_memory;
4464         }
4465         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4466                 RAID_CTLR_LUNID, TYPE_CMD);
4467         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4468         if (c->err_info->CommandStatus != 0)
4469                 dev_warn(&h->pdev->dev,
4470                         "error flushing cache on controller\n");
4471         cmd_special_free(h, c);
4472 out_of_memory:
4473         kfree(flush_buf);
4474 }
4475
4476 static void hpsa_shutdown(struct pci_dev *pdev)
4477 {
4478         struct ctlr_info *h;
4479
4480         h = pci_get_drvdata(pdev);
4481         /* Turn board interrupts off  and send the flush cache command
4482          * sendcmd will turn off interrupt, and send the flush...
4483          * To write all data in the battery backed cache to disks
4484          */
4485         hpsa_flush_cache(h);
4486         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4487         free_irq(h->intr[h->intr_mode], h);
4488 #ifdef CONFIG_PCI_MSI
4489         if (h->msix_vector)
4490                 pci_disable_msix(h->pdev);
4491         else if (h->msi_vector)
4492                 pci_disable_msi(h->pdev);
4493 #endif                          /* CONFIG_PCI_MSI */
4494 }
4495
4496 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4497 {
4498         int i;
4499
4500         for (i = 0; i < h->ndevices; i++)
4501                 kfree(h->dev[i]);
4502 }
4503
4504 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4505 {
4506         struct ctlr_info *h;
4507
4508         if (pci_get_drvdata(pdev) == NULL) {
4509                 dev_err(&pdev->dev, "unable to remove device\n");
4510                 return;
4511         }
4512         h = pci_get_drvdata(pdev);
4513         stop_controller_lockup_detector(h);
4514         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4515         hpsa_shutdown(pdev);
4516         iounmap(h->vaddr);
4517         iounmap(h->transtable);
4518         iounmap(h->cfgtable);
4519         hpsa_free_device_info(h);
4520         hpsa_free_sg_chain_blocks(h);
4521         pci_free_consistent(h->pdev,
4522                 h->nr_cmds * sizeof(struct CommandList),
4523                 h->cmd_pool, h->cmd_pool_dhandle);
4524         pci_free_consistent(h->pdev,
4525                 h->nr_cmds * sizeof(struct ErrorInfo),
4526                 h->errinfo_pool, h->errinfo_pool_dhandle);
4527         pci_free_consistent(h->pdev, h->reply_pool_size,
4528                 h->reply_pool, h->reply_pool_dhandle);
4529         kfree(h->cmd_pool_bits);
4530         kfree(h->blockFetchTable);
4531         kfree(h->hba_inquiry_data);
4532         /*
4533          * Deliberately omit pci_disable_device(): it does something nasty to
4534          * Smart Array controllers that pci_enable_device does not undo
4535          */
4536         pci_release_regions(pdev);
4537         pci_set_drvdata(pdev, NULL);
4538         kfree(h);
4539 }
4540
4541 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4542         __attribute__((unused)) pm_message_t state)
4543 {
4544         return -ENOSYS;
4545 }
4546
4547 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4548 {
4549         return -ENOSYS;
4550 }
4551
4552 static struct pci_driver hpsa_pci_driver = {
4553         .name = HPSA,
4554         .probe = hpsa_init_one,
4555         .remove = __devexit_p(hpsa_remove_one),
4556         .id_table = hpsa_pci_device_id, /* id_table */
4557         .shutdown = hpsa_shutdown,
4558         .suspend = hpsa_suspend,
4559         .resume = hpsa_resume,
4560 };
4561
4562 /* Fill in bucket_map[], given nsgs (the max number of
4563  * scatter gather elements supported) and bucket[],
4564  * which is an array of 8 integers.  The bucket[] array
4565  * contains 8 different DMA transfer sizes (in 16
4566  * byte increments) which the controller uses to fetch
4567  * commands.  This function fills in bucket_map[], which
4568  * maps a given number of scatter gather elements to one of
4569  * the 8 DMA transfer sizes.  The point of it is to allow the
4570  * controller to only do as much DMA as needed to fetch the
4571  * command, with the DMA transfer size encoded in the lower
4572  * bits of the command address.
4573  */
4574 static void  calc_bucket_map(int bucket[], int num_buckets,
4575         int nsgs, int *bucket_map)
4576 {
4577         int i, j, b, size;
4578
4579         /* even a command with 0 SGs requires 4 blocks */
4580 #define MINIMUM_TRANSFER_BLOCKS 4
4581 #define NUM_BUCKETS 8
4582         /* Note, bucket_map must have nsgs+1 entries. */
4583         for (i = 0; i <= nsgs; i++) {
4584                 /* Compute size of a command with i SG entries */
4585                 size = i + MINIMUM_TRANSFER_BLOCKS;
4586                 b = num_buckets; /* Assume the biggest bucket */
4587                 /* Find the bucket that is just big enough */
4588                 for (j = 0; j < 8; j++) {
4589                         if (bucket[j] >= size) {
4590                                 b = j;
4591                                 break;
4592                         }
4593                 }
4594                 /* for a command with i SG entries, use bucket b. */
4595                 bucket_map[i] = b;
4596         }
4597 }
4598
4599 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4600         u32 use_short_tags)
4601 {
4602         int i;
4603         unsigned long register_value;
4604
4605         /* This is a bit complicated.  There are 8 registers on
4606          * the controller which we write to to tell it 8 different
4607          * sizes of commands which there may be.  It's a way of
4608          * reducing the DMA done to fetch each command.  Encoded into
4609          * each command's tag are 3 bits which communicate to the controller
4610          * which of the eight sizes that command fits within.  The size of
4611          * each command depends on how many scatter gather entries there are.
4612          * Each SG entry requires 16 bytes.  The eight registers are programmed
4613          * with the number of 16-byte blocks a command of that size requires.
4614          * The smallest command possible requires 5 such 16 byte blocks.
4615          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
4616          * blocks.  Note, this only extends to the SG entries contained
4617          * within the command block, and does not extend to chained blocks
4618          * of SG elements.   bft[] contains the eight values we write to
4619          * the registers.  They are not evenly distributed, but have more
4620          * sizes for small commands, and fewer sizes for larger commands.
4621          */
4622         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
4623         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
4624         /*  5 = 1 s/g entry or 4k
4625          *  6 = 2 s/g entry or 8k
4626          *  8 = 4 s/g entry or 16k
4627          * 10 = 6 s/g entry or 24k
4628          */
4629
4630         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4631
4632         /* Controller spec: zero out this buffer. */
4633         memset(h->reply_pool, 0, h->reply_pool_size);
4634         h->reply_pool_head = h->reply_pool;
4635
4636         bft[7] = SG_ENTRIES_IN_CMD + 4;
4637         calc_bucket_map(bft, ARRAY_SIZE(bft),
4638                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
4639         for (i = 0; i < 8; i++)
4640                 writel(bft[i], &h->transtable->BlockFetch[i]);
4641
4642         /* size of controller ring buffer */
4643         writel(h->max_commands, &h->transtable->RepQSize);
4644         writel(1, &h->transtable->RepQCount);
4645         writel(0, &h->transtable->RepQCtrAddrLow32);
4646         writel(0, &h->transtable->RepQCtrAddrHigh32);
4647         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4648         writel(0, &h->transtable->RepQAddr0High32);
4649         writel(CFGTBL_Trans_Performant | use_short_tags,
4650                 &(h->cfgtable->HostWrite.TransportRequest));
4651         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4652         hpsa_wait_for_mode_change_ack(h);
4653         register_value = readl(&(h->cfgtable->TransportActive));
4654         if (!(register_value & CFGTBL_Trans_Performant)) {
4655                 dev_warn(&h->pdev->dev, "unable to get board into"
4656                                         " performant mode\n");
4657                 return;
4658         }
4659         /* Change the access methods to the performant access methods */
4660         h->access = SA5_performant_access;
4661         h->transMethod = CFGTBL_Trans_Performant;
4662 }
4663
4664 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4665 {
4666         u32 trans_support;
4667
4668         if (hpsa_simple_mode)
4669                 return;
4670
4671         trans_support = readl(&(h->cfgtable->TransportSupport));
4672         if (!(trans_support & PERFORMANT_MODE))
4673                 return;
4674
4675         hpsa_get_max_perf_mode_cmds(h);
4676         /* Performant mode ring buffer and supporting data structures */
4677         h->reply_pool_size = h->max_commands * sizeof(u64);
4678         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4679                                 &(h->reply_pool_dhandle));
4680
4681         /* Need a block fetch table for performant mode */
4682         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
4683                                 sizeof(u32)), GFP_KERNEL);
4684
4685         if ((h->reply_pool == NULL)
4686                 || (h->blockFetchTable == NULL))
4687                 goto clean_up;
4688
4689         hpsa_enter_performant_mode(h,
4690                 trans_support & CFGTBL_Trans_use_short_tags);
4691
4692         return;
4693
4694 clean_up:
4695         if (h->reply_pool)
4696                 pci_free_consistent(h->pdev, h->reply_pool_size,
4697                         h->reply_pool, h->reply_pool_dhandle);
4698         kfree(h->blockFetchTable);
4699 }
4700
4701 /*
4702  *  This is it.  Register the PCI driver information for the cards we control
4703  *  the OS will call our registered routines when it finds one of our cards.
4704  */
4705 static int __init hpsa_init(void)
4706 {
4707         return pci_register_driver(&hpsa_pci_driver);
4708 }
4709
4710 static void __exit hpsa_cleanup(void)
4711 {
4712         pci_unregister_driver(&hpsa_pci_driver);
4713 }
4714
4715 module_init(hpsa_init);
4716 module_exit(hpsa_cleanup);