hpsa: bump the driver version
[cascardo/linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
79         HPSA_DRIVER_VERSION);
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION);
82 MODULE_LICENSE("GPL");
83
84 static int hpsa_allow_any;
85 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_allow_any,
87                 "Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91         "Use 'simple mode' rather than 'performant mode'");
92
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {0,}
149 };
150
151 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
152
153 /*  board_id = Subsystem Device ID & Vendor ID
154  *  product = Marketing Name for the board
155  *  access = Address of the struct of function pointers
156  */
157 static struct board_type products[] = {
158         {0x3241103C, "Smart Array P212", &SA5_access},
159         {0x3243103C, "Smart Array P410", &SA5_access},
160         {0x3245103C, "Smart Array P410i", &SA5_access},
161         {0x3247103C, "Smart Array P411", &SA5_access},
162         {0x3249103C, "Smart Array P812", &SA5_access},
163         {0x324A103C, "Smart Array P712m", &SA5_access},
164         {0x324B103C, "Smart Array P711m", &SA5_access},
165         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
166         {0x3350103C, "Smart Array P222", &SA5_access},
167         {0x3351103C, "Smart Array P420", &SA5_access},
168         {0x3352103C, "Smart Array P421", &SA5_access},
169         {0x3353103C, "Smart Array P822", &SA5_access},
170         {0x3354103C, "Smart Array P420i", &SA5_access},
171         {0x3355103C, "Smart Array P220i", &SA5_access},
172         {0x3356103C, "Smart Array P721m", &SA5_access},
173         {0x1921103C, "Smart Array P830i", &SA5_access},
174         {0x1922103C, "Smart Array P430", &SA5_access},
175         {0x1923103C, "Smart Array P431", &SA5_access},
176         {0x1924103C, "Smart Array P830", &SA5_access},
177         {0x1926103C, "Smart Array P731m", &SA5_access},
178         {0x1928103C, "Smart Array P230i", &SA5_access},
179         {0x1929103C, "Smart Array P530", &SA5_access},
180         {0x21BD103C, "Smart Array P244br", &SA5_access},
181         {0x21BE103C, "Smart Array P741m", &SA5_access},
182         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
183         {0x21C0103C, "Smart Array P440ar", &SA5_access},
184         {0x21C1103C, "Smart Array P840ar", &SA5_access},
185         {0x21C2103C, "Smart Array P440", &SA5_access},
186         {0x21C3103C, "Smart Array P441", &SA5_access},
187         {0x21C4103C, "Smart Array", &SA5_access},
188         {0x21C5103C, "Smart Array P841", &SA5_access},
189         {0x21C6103C, "Smart HBA H244br", &SA5_access},
190         {0x21C7103C, "Smart HBA H240", &SA5_access},
191         {0x21C8103C, "Smart HBA H241", &SA5_access},
192         {0x21C9103C, "Smart Array", &SA5_access},
193         {0x21CA103C, "Smart Array P246br", &SA5_access},
194         {0x21CB103C, "Smart Array P840", &SA5_access},
195         {0x21CC103C, "Smart Array", &SA5_access},
196         {0x21CD103C, "Smart Array", &SA5_access},
197         {0x21CE103C, "Smart HBA", &SA5_access},
198         {0x05809005, "SmartHBA-SA", &SA5_access},
199         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
200         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
201         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
202         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
203         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
204         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
205         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
206         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
207         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
208         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
209         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
210 };
211
212 static struct scsi_transport_template *hpsa_sas_transport_template;
213 static int hpsa_add_sas_host(struct ctlr_info *h);
214 static void hpsa_delete_sas_host(struct ctlr_info *h);
215 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
216                         struct hpsa_scsi_dev_t *device);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
218 static struct hpsa_scsi_dev_t
219         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
220                 struct sas_rphy *rphy);
221
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle;
226 static int number_of_controllers;
227
228 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
229 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
230 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
231
232 #ifdef CONFIG_COMPAT
233 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
234         void __user *arg);
235 #endif
236
237 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
238 static struct CommandList *cmd_alloc(struct ctlr_info *h);
239 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
240 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
241                                             struct scsi_cmnd *scmd);
242 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
243         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
244         int cmd_type);
245 static void hpsa_free_cmd_pool(struct ctlr_info *h);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
248
249 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
250 static void hpsa_scan_start(struct Scsi_Host *);
251 static int hpsa_scan_finished(struct Scsi_Host *sh,
252         unsigned long elapsed_time);
253 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
254
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_slave_alloc(struct scsi_device *sdev);
258 static int hpsa_slave_configure(struct scsi_device *sdev);
259 static void hpsa_slave_destroy(struct scsi_device *sdev);
260
261 static void hpsa_update_scsi_devices(struct ctlr_info *h);
262 static int check_for_unit_attention(struct ctlr_info *h,
263         struct CommandList *c);
264 static void check_ioctl_unit_attention(struct ctlr_info *h,
265         struct CommandList *c);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket, int num_buckets,
268         int nsgs, int min_blocks, u32 *bucket_map);
269 static void hpsa_free_performant_mode(struct ctlr_info *h);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
271 static inline u32 next_command(struct ctlr_info *h, u8 q);
272 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
273                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
274                                u64 *cfg_offset);
275 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
276                                     unsigned long *memory_bar);
277 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
278 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
279                                      int wait_for_ready);
280 static inline void finish_cmd(struct CommandList *c);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info *h);
285 static void hpsa_flush_cache(struct ctlr_info *h);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
287         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
288         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
289 static void hpsa_command_resubmit_worker(struct work_struct *work);
290 static u32 lockup_detected(struct ctlr_info *h);
291 static int detect_controller_lockup(struct ctlr_info *h);
292 static void hpsa_disable_rld_caching(struct ctlr_info *h);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
294         struct ReportExtendedLUNdata *buf, int bufsize);
295 static int hpsa_luns_changed(struct ctlr_info *h);
296
297 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
298 {
299         unsigned long *priv = shost_priv(sdev->host);
300         return (struct ctlr_info *) *priv;
301 }
302
303 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
304 {
305         unsigned long *priv = shost_priv(sh);
306         return (struct ctlr_info *) *priv;
307 }
308
309 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
310 {
311         return c->scsi_cmd == SCSI_CMD_IDLE;
312 }
313
314 static inline bool hpsa_is_pending_event(struct CommandList *c)
315 {
316         return c->abort_pending || c->reset_pending;
317 }
318
319 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
320 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
321                         u8 *sense_key, u8 *asc, u8 *ascq)
322 {
323         struct scsi_sense_hdr sshdr;
324         bool rc;
325
326         *sense_key = -1;
327         *asc = -1;
328         *ascq = -1;
329
330         if (sense_data_len < 1)
331                 return;
332
333         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
334         if (rc) {
335                 *sense_key = sshdr.sense_key;
336                 *asc = sshdr.asc;
337                 *ascq = sshdr.ascq;
338         }
339 }
340
341 static int check_for_unit_attention(struct ctlr_info *h,
342         struct CommandList *c)
343 {
344         u8 sense_key, asc, ascq;
345         int sense_len;
346
347         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
348                 sense_len = sizeof(c->err_info->SenseInfo);
349         else
350                 sense_len = c->err_info->SenseLen;
351
352         decode_sense_data(c->err_info->SenseInfo, sense_len,
353                                 &sense_key, &asc, &ascq);
354         if (sense_key != UNIT_ATTENTION || asc == 0xff)
355                 return 0;
356
357         switch (asc) {
358         case STATE_CHANGED:
359                 dev_warn(&h->pdev->dev,
360                         "%s: a state change detected, command retried\n",
361                         h->devname);
362                 break;
363         case LUN_FAILED:
364                 dev_warn(&h->pdev->dev,
365                         "%s: LUN failure detected\n", h->devname);
366                 break;
367         case REPORT_LUNS_CHANGED:
368                 dev_warn(&h->pdev->dev,
369                         "%s: report LUN data changed\n", h->devname);
370         /*
371          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372          * target (array) devices.
373          */
374                 break;
375         case POWER_OR_RESET:
376                 dev_warn(&h->pdev->dev,
377                         "%s: a power on or device reset detected\n",
378                         h->devname);
379                 break;
380         case UNIT_ATTENTION_CLEARED:
381                 dev_warn(&h->pdev->dev,
382                         "%s: unit attention cleared by another initiator\n",
383                         h->devname);
384                 break;
385         default:
386                 dev_warn(&h->pdev->dev,
387                         "%s: unknown unit attention detected\n",
388                         h->devname);
389                 break;
390         }
391         return 1;
392 }
393
394 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
395 {
396         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
397                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
398                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
399                 return 0;
400         dev_warn(&h->pdev->dev, HPSA "device busy");
401         return 1;
402 }
403
404 static u32 lockup_detected(struct ctlr_info *h);
405 static ssize_t host_show_lockup_detected(struct device *dev,
406                 struct device_attribute *attr, char *buf)
407 {
408         int ld;
409         struct ctlr_info *h;
410         struct Scsi_Host *shost = class_to_shost(dev);
411
412         h = shost_to_hba(shost);
413         ld = lockup_detected(h);
414
415         return sprintf(buf, "ld=%d\n", ld);
416 }
417
418 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
419                                          struct device_attribute *attr,
420                                          const char *buf, size_t count)
421 {
422         int status, len;
423         struct ctlr_info *h;
424         struct Scsi_Host *shost = class_to_shost(dev);
425         char tmpbuf[10];
426
427         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
428                 return -EACCES;
429         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
430         strncpy(tmpbuf, buf, len);
431         tmpbuf[len] = '\0';
432         if (sscanf(tmpbuf, "%d", &status) != 1)
433                 return -EINVAL;
434         h = shost_to_hba(shost);
435         h->acciopath_status = !!status;
436         dev_warn(&h->pdev->dev,
437                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
438                 h->acciopath_status ? "enabled" : "disabled");
439         return count;
440 }
441
442 static ssize_t host_store_raid_offload_debug(struct device *dev,
443                                          struct device_attribute *attr,
444                                          const char *buf, size_t count)
445 {
446         int debug_level, len;
447         struct ctlr_info *h;
448         struct Scsi_Host *shost = class_to_shost(dev);
449         char tmpbuf[10];
450
451         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
452                 return -EACCES;
453         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
454         strncpy(tmpbuf, buf, len);
455         tmpbuf[len] = '\0';
456         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
457                 return -EINVAL;
458         if (debug_level < 0)
459                 debug_level = 0;
460         h = shost_to_hba(shost);
461         h->raid_offload_debug = debug_level;
462         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
463                 h->raid_offload_debug);
464         return count;
465 }
466
467 static ssize_t host_store_rescan(struct device *dev,
468                                  struct device_attribute *attr,
469                                  const char *buf, size_t count)
470 {
471         struct ctlr_info *h;
472         struct Scsi_Host *shost = class_to_shost(dev);
473         h = shost_to_hba(shost);
474         hpsa_scan_start(h->scsi_host);
475         return count;
476 }
477
478 static ssize_t host_show_firmware_revision(struct device *dev,
479              struct device_attribute *attr, char *buf)
480 {
481         struct ctlr_info *h;
482         struct Scsi_Host *shost = class_to_shost(dev);
483         unsigned char *fwrev;
484
485         h = shost_to_hba(shost);
486         if (!h->hba_inquiry_data)
487                 return 0;
488         fwrev = &h->hba_inquiry_data[32];
489         return snprintf(buf, 20, "%c%c%c%c\n",
490                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
491 }
492
493 static ssize_t host_show_commands_outstanding(struct device *dev,
494              struct device_attribute *attr, char *buf)
495 {
496         struct Scsi_Host *shost = class_to_shost(dev);
497         struct ctlr_info *h = shost_to_hba(shost);
498
499         return snprintf(buf, 20, "%d\n",
500                         atomic_read(&h->commands_outstanding));
501 }
502
503 static ssize_t host_show_transport_mode(struct device *dev,
504         struct device_attribute *attr, char *buf)
505 {
506         struct ctlr_info *h;
507         struct Scsi_Host *shost = class_to_shost(dev);
508
509         h = shost_to_hba(shost);
510         return snprintf(buf, 20, "%s\n",
511                 h->transMethod & CFGTBL_Trans_Performant ?
512                         "performant" : "simple");
513 }
514
515 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
516         struct device_attribute *attr, char *buf)
517 {
518         struct ctlr_info *h;
519         struct Scsi_Host *shost = class_to_shost(dev);
520
521         h = shost_to_hba(shost);
522         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
523                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
524 }
525
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller[] = {
528         0x324a103C, /* Smart Array P712m */
529         0x324b103C, /* Smart Array P711m */
530         0x3223103C, /* Smart Array P800 */
531         0x3234103C, /* Smart Array P400 */
532         0x3235103C, /* Smart Array P400i */
533         0x3211103C, /* Smart Array E200i */
534         0x3212103C, /* Smart Array E200 */
535         0x3213103C, /* Smart Array E200i */
536         0x3214103C, /* Smart Array E200i */
537         0x3215103C, /* Smart Array E200i */
538         0x3237103C, /* Smart Array E500 */
539         0x323D103C, /* Smart Array P700m */
540         0x40800E11, /* Smart Array 5i */
541         0x409C0E11, /* Smart Array 6400 */
542         0x409D0E11, /* Smart Array 6400 EM */
543         0x40700E11, /* Smart Array 5300 */
544         0x40820E11, /* Smart Array 532 */
545         0x40830E11, /* Smart Array 5312 */
546         0x409A0E11, /* Smart Array 641 */
547         0x409B0E11, /* Smart Array 642 */
548         0x40910E11, /* Smart Array 6i */
549 };
550
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller[] = {
553         0x40800E11, /* Smart Array 5i */
554         0x40700E11, /* Smart Array 5300 */
555         0x40820E11, /* Smart Array 532 */
556         0x40830E11, /* Smart Array 5312 */
557         0x409A0E11, /* Smart Array 641 */
558         0x409B0E11, /* Smart Array 642 */
559         0x40910E11, /* Smart Array 6i */
560         /* Exclude 640x boards.  These are two pci devices in one slot
561          * which share a battery backed cache module.  One controls the
562          * cache, the other accesses the cache through the one that controls
563          * it.  If we reset the one controlling the cache, the other will
564          * likely not be happy.  Just forbid resetting this conjoined mess.
565          * The 640x isn't really supported by hpsa anyway.
566          */
567         0x409C0E11, /* Smart Array 6400 */
568         0x409D0E11, /* Smart Array 6400 EM */
569 };
570
571 static u32 needs_abort_tags_swizzled[] = {
572         0x323D103C, /* Smart Array P700m */
573         0x324a103C, /* Smart Array P712m */
574         0x324b103C, /* SmartArray P711m */
575 };
576
577 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
578 {
579         int i;
580
581         for (i = 0; i < nelems; i++)
582                 if (a[i] == board_id)
583                         return 1;
584         return 0;
585 }
586
587 static int ctlr_is_hard_resettable(u32 board_id)
588 {
589         return !board_id_in_array(unresettable_controller,
590                         ARRAY_SIZE(unresettable_controller), board_id);
591 }
592
593 static int ctlr_is_soft_resettable(u32 board_id)
594 {
595         return !board_id_in_array(soft_unresettable_controller,
596                         ARRAY_SIZE(soft_unresettable_controller), board_id);
597 }
598
599 static int ctlr_is_resettable(u32 board_id)
600 {
601         return ctlr_is_hard_resettable(board_id) ||
602                 ctlr_is_soft_resettable(board_id);
603 }
604
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
606 {
607         return board_id_in_array(needs_abort_tags_swizzled,
608                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
609 }
610
611 static ssize_t host_show_resettable(struct device *dev,
612         struct device_attribute *attr, char *buf)
613 {
614         struct ctlr_info *h;
615         struct Scsi_Host *shost = class_to_shost(dev);
616
617         h = shost_to_hba(shost);
618         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
619 }
620
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
622 {
623         return (scsi3addr[3] & 0xC0) == 0x40;
624 }
625
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
628 };
629 #define HPSA_RAID_0     0
630 #define HPSA_RAID_4     1
631 #define HPSA_RAID_1     2       /* also used for RAID 10 */
632 #define HPSA_RAID_5     3       /* also used for RAID 50 */
633 #define HPSA_RAID_51    4
634 #define HPSA_RAID_6     5       /* also used for RAID 60 */
635 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
638
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
640 {
641         return !device->physical_device;
642 }
643
644 static ssize_t raid_level_show(struct device *dev,
645              struct device_attribute *attr, char *buf)
646 {
647         ssize_t l = 0;
648         unsigned char rlevel;
649         struct ctlr_info *h;
650         struct scsi_device *sdev;
651         struct hpsa_scsi_dev_t *hdev;
652         unsigned long flags;
653
654         sdev = to_scsi_device(dev);
655         h = sdev_to_hba(sdev);
656         spin_lock_irqsave(&h->lock, flags);
657         hdev = sdev->hostdata;
658         if (!hdev) {
659                 spin_unlock_irqrestore(&h->lock, flags);
660                 return -ENODEV;
661         }
662
663         /* Is this even a logical drive? */
664         if (!is_logical_device(hdev)) {
665                 spin_unlock_irqrestore(&h->lock, flags);
666                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
667                 return l;
668         }
669
670         rlevel = hdev->raid_level;
671         spin_unlock_irqrestore(&h->lock, flags);
672         if (rlevel > RAID_UNKNOWN)
673                 rlevel = RAID_UNKNOWN;
674         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675         return l;
676 }
677
678 static ssize_t lunid_show(struct device *dev,
679              struct device_attribute *attr, char *buf)
680 {
681         struct ctlr_info *h;
682         struct scsi_device *sdev;
683         struct hpsa_scsi_dev_t *hdev;
684         unsigned long flags;
685         unsigned char lunid[8];
686
687         sdev = to_scsi_device(dev);
688         h = sdev_to_hba(sdev);
689         spin_lock_irqsave(&h->lock, flags);
690         hdev = sdev->hostdata;
691         if (!hdev) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 return -ENODEV;
694         }
695         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696         spin_unlock_irqrestore(&h->lock, flags);
697         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698                 lunid[0], lunid[1], lunid[2], lunid[3],
699                 lunid[4], lunid[5], lunid[6], lunid[7]);
700 }
701
702 static ssize_t unique_id_show(struct device *dev,
703              struct device_attribute *attr, char *buf)
704 {
705         struct ctlr_info *h;
706         struct scsi_device *sdev;
707         struct hpsa_scsi_dev_t *hdev;
708         unsigned long flags;
709         unsigned char sn[16];
710
711         sdev = to_scsi_device(dev);
712         h = sdev_to_hba(sdev);
713         spin_lock_irqsave(&h->lock, flags);
714         hdev = sdev->hostdata;
715         if (!hdev) {
716                 spin_unlock_irqrestore(&h->lock, flags);
717                 return -ENODEV;
718         }
719         memcpy(sn, hdev->device_id, sizeof(sn));
720         spin_unlock_irqrestore(&h->lock, flags);
721         return snprintf(buf, 16 * 2 + 2,
722                         "%02X%02X%02X%02X%02X%02X%02X%02X"
723                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
724                         sn[0], sn[1], sn[2], sn[3],
725                         sn[4], sn[5], sn[6], sn[7],
726                         sn[8], sn[9], sn[10], sn[11],
727                         sn[12], sn[13], sn[14], sn[15]);
728 }
729
730 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
731              struct device_attribute *attr, char *buf)
732 {
733         struct ctlr_info *h;
734         struct scsi_device *sdev;
735         struct hpsa_scsi_dev_t *hdev;
736         unsigned long flags;
737         int offload_enabled;
738
739         sdev = to_scsi_device(dev);
740         h = sdev_to_hba(sdev);
741         spin_lock_irqsave(&h->lock, flags);
742         hdev = sdev->hostdata;
743         if (!hdev) {
744                 spin_unlock_irqrestore(&h->lock, flags);
745                 return -ENODEV;
746         }
747         offload_enabled = hdev->offload_enabled;
748         spin_unlock_irqrestore(&h->lock, flags);
749         return snprintf(buf, 20, "%d\n", offload_enabled);
750 }
751
752 #define MAX_PATHS 8
753
754 static ssize_t path_info_show(struct device *dev,
755              struct device_attribute *attr, char *buf)
756 {
757         struct ctlr_info *h;
758         struct scsi_device *sdev;
759         struct hpsa_scsi_dev_t *hdev;
760         unsigned long flags;
761         int i;
762         int output_len = 0;
763         u8 box;
764         u8 bay;
765         u8 path_map_index = 0;
766         char *active;
767         unsigned char phys_connector[2];
768
769         sdev = to_scsi_device(dev);
770         h = sdev_to_hba(sdev);
771         spin_lock_irqsave(&h->devlock, flags);
772         hdev = sdev->hostdata;
773         if (!hdev) {
774                 spin_unlock_irqrestore(&h->devlock, flags);
775                 return -ENODEV;
776         }
777
778         bay = hdev->bay;
779         for (i = 0; i < MAX_PATHS; i++) {
780                 path_map_index = 1<<i;
781                 if (i == hdev->active_path_index)
782                         active = "Active";
783                 else if (hdev->path_map & path_map_index)
784                         active = "Inactive";
785                 else
786                         continue;
787
788                 output_len += scnprintf(buf + output_len,
789                                 PAGE_SIZE - output_len,
790                                 "[%d:%d:%d:%d] %20.20s ",
791                                 h->scsi_host->host_no,
792                                 hdev->bus, hdev->target, hdev->lun,
793                                 scsi_device_type(hdev->devtype));
794
795                 if (hdev->external ||
796                         hdev->devtype == TYPE_RAID ||
797                         is_logical_device(hdev)) {
798                         output_len += snprintf(buf + output_len,
799                                                 PAGE_SIZE - output_len,
800                                                 "%s\n", active);
801                         continue;
802                 }
803
804                 box = hdev->box[i];
805                 memcpy(&phys_connector, &hdev->phys_connector[i],
806                         sizeof(phys_connector));
807                 if (phys_connector[0] < '0')
808                         phys_connector[0] = '0';
809                 if (phys_connector[1] < '0')
810                         phys_connector[1] = '0';
811                 if (hdev->phys_connector[i] > 0)
812                         output_len += snprintf(buf + output_len,
813                                 PAGE_SIZE - output_len,
814                                 "PORT: %.2s ",
815                                 phys_connector);
816                 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
817                         if (box == 0 || box == 0xFF) {
818                                 output_len += snprintf(buf + output_len,
819                                         PAGE_SIZE - output_len,
820                                         "BAY: %hhu %s\n",
821                                         bay, active);
822                         } else {
823                                 output_len += snprintf(buf + output_len,
824                                         PAGE_SIZE - output_len,
825                                         "BOX: %hhu BAY: %hhu %s\n",
826                                         box, bay, active);
827                         }
828                 } else if (box != 0 && box != 0xFF) {
829                         output_len += snprintf(buf + output_len,
830                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
831                                 box, active);
832                 } else
833                         output_len += snprintf(buf + output_len,
834                                 PAGE_SIZE - output_len, "%s\n", active);
835         }
836
837         spin_unlock_irqrestore(&h->devlock, flags);
838         return output_len;
839 }
840
841 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
842 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
843 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
844 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
845 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
846                         host_show_hp_ssd_smart_path_enabled, NULL);
847 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
848 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
849                 host_show_hp_ssd_smart_path_status,
850                 host_store_hp_ssd_smart_path_status);
851 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
852                         host_store_raid_offload_debug);
853 static DEVICE_ATTR(firmware_revision, S_IRUGO,
854         host_show_firmware_revision, NULL);
855 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
856         host_show_commands_outstanding, NULL);
857 static DEVICE_ATTR(transport_mode, S_IRUGO,
858         host_show_transport_mode, NULL);
859 static DEVICE_ATTR(resettable, S_IRUGO,
860         host_show_resettable, NULL);
861 static DEVICE_ATTR(lockup_detected, S_IRUGO,
862         host_show_lockup_detected, NULL);
863
864 static struct device_attribute *hpsa_sdev_attrs[] = {
865         &dev_attr_raid_level,
866         &dev_attr_lunid,
867         &dev_attr_unique_id,
868         &dev_attr_hp_ssd_smart_path_enabled,
869         &dev_attr_path_info,
870         &dev_attr_lockup_detected,
871         NULL,
872 };
873
874 static struct device_attribute *hpsa_shost_attrs[] = {
875         &dev_attr_rescan,
876         &dev_attr_firmware_revision,
877         &dev_attr_commands_outstanding,
878         &dev_attr_transport_mode,
879         &dev_attr_resettable,
880         &dev_attr_hp_ssd_smart_path_status,
881         &dev_attr_raid_offload_debug,
882         NULL,
883 };
884
885 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
886                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
887
888 static struct scsi_host_template hpsa_driver_template = {
889         .module                 = THIS_MODULE,
890         .name                   = HPSA,
891         .proc_name              = HPSA,
892         .queuecommand           = hpsa_scsi_queue_command,
893         .scan_start             = hpsa_scan_start,
894         .scan_finished          = hpsa_scan_finished,
895         .change_queue_depth     = hpsa_change_queue_depth,
896         .this_id                = -1,
897         .use_clustering         = ENABLE_CLUSTERING,
898         .eh_abort_handler       = hpsa_eh_abort_handler,
899         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
900         .ioctl                  = hpsa_ioctl,
901         .slave_alloc            = hpsa_slave_alloc,
902         .slave_configure        = hpsa_slave_configure,
903         .slave_destroy          = hpsa_slave_destroy,
904 #ifdef CONFIG_COMPAT
905         .compat_ioctl           = hpsa_compat_ioctl,
906 #endif
907         .sdev_attrs = hpsa_sdev_attrs,
908         .shost_attrs = hpsa_shost_attrs,
909         .max_sectors = 8192,
910         .no_write_same = 1,
911 };
912
913 static inline u32 next_command(struct ctlr_info *h, u8 q)
914 {
915         u32 a;
916         struct reply_queue_buffer *rq = &h->reply_queue[q];
917
918         if (h->transMethod & CFGTBL_Trans_io_accel1)
919                 return h->access.command_completed(h, q);
920
921         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
922                 return h->access.command_completed(h, q);
923
924         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
925                 a = rq->head[rq->current_entry];
926                 rq->current_entry++;
927                 atomic_dec(&h->commands_outstanding);
928         } else {
929                 a = FIFO_EMPTY;
930         }
931         /* Check for wraparound */
932         if (rq->current_entry == h->max_commands) {
933                 rq->current_entry = 0;
934                 rq->wraparound ^= 1;
935         }
936         return a;
937 }
938
939 /*
940  * There are some special bits in the bus address of the
941  * command that we have to set for the controller to know
942  * how to process the command:
943  *
944  * Normal performant mode:
945  * bit 0: 1 means performant mode, 0 means simple mode.
946  * bits 1-3 = block fetch table entry
947  * bits 4-6 = command type (== 0)
948  *
949  * ioaccel1 mode:
950  * bit 0 = "performant mode" bit.
951  * bits 1-3 = block fetch table entry
952  * bits 4-6 = command type (== 110)
953  * (command type is needed because ioaccel1 mode
954  * commands are submitted through the same register as normal
955  * mode commands, so this is how the controller knows whether
956  * the command is normal mode or ioaccel1 mode.)
957  *
958  * ioaccel2 mode:
959  * bit 0 = "performant mode" bit.
960  * bits 1-4 = block fetch table entry (note extra bit)
961  * bits 4-6 = not needed, because ioaccel2 mode has
962  * a separate special register for submitting commands.
963  */
964
965 /*
966  * set_performant_mode: Modify the tag for cciss performant
967  * set bit 0 for pull model, bits 3-1 for block fetch
968  * register number
969  */
970 #define DEFAULT_REPLY_QUEUE (-1)
971 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
972                                         int reply_queue)
973 {
974         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
975                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
976                 if (unlikely(!h->msix_vector))
977                         return;
978                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
979                         c->Header.ReplyQueue =
980                                 raw_smp_processor_id() % h->nreply_queues;
981                 else
982                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
983         }
984 }
985
986 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
987                                                 struct CommandList *c,
988                                                 int reply_queue)
989 {
990         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
991
992         /*
993          * Tell the controller to post the reply to the queue for this
994          * processor.  This seems to give the best I/O throughput.
995          */
996         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
997                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
998         else
999                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1000         /*
1001          * Set the bits in the address sent down to include:
1002          *  - performant mode bit (bit 0)
1003          *  - pull count (bits 1-3)
1004          *  - command type (bits 4-6)
1005          */
1006         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1007                                         IOACCEL1_BUSADDR_CMDTYPE;
1008 }
1009
1010 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1011                                                 struct CommandList *c,
1012                                                 int reply_queue)
1013 {
1014         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1015                 &h->ioaccel2_cmd_pool[c->cmdindex];
1016
1017         /* Tell the controller to post the reply to the queue for this
1018          * processor.  This seems to give the best I/O throughput.
1019          */
1020         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1022         else
1023                 cp->reply_queue = reply_queue % h->nreply_queues;
1024         /* Set the bits in the address sent down to include:
1025          *  - performant mode bit not used in ioaccel mode 2
1026          *  - pull count (bits 0-3)
1027          *  - command type isn't needed for ioaccel2
1028          */
1029         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1030 }
1031
1032 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1033                                                 struct CommandList *c,
1034                                                 int reply_queue)
1035 {
1036         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1037
1038         /*
1039          * Tell the controller to post the reply to the queue for this
1040          * processor.  This seems to give the best I/O throughput.
1041          */
1042         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1044         else
1045                 cp->reply_queue = reply_queue % h->nreply_queues;
1046         /*
1047          * Set the bits in the address sent down to include:
1048          *  - performant mode bit not used in ioaccel mode 2
1049          *  - pull count (bits 0-3)
1050          *  - command type isn't needed for ioaccel2
1051          */
1052         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1053 }
1054
1055 static int is_firmware_flash_cmd(u8 *cdb)
1056 {
1057         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1058 }
1059
1060 /*
1061  * During firmware flash, the heartbeat register may not update as frequently
1062  * as it should.  So we dial down lockup detection during firmware flash. and
1063  * dial it back up when firmware flash completes.
1064  */
1065 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1066 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1067 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1068                 struct CommandList *c)
1069 {
1070         if (!is_firmware_flash_cmd(c->Request.CDB))
1071                 return;
1072         atomic_inc(&h->firmware_flash_in_progress);
1073         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1074 }
1075
1076 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1077                 struct CommandList *c)
1078 {
1079         if (is_firmware_flash_cmd(c->Request.CDB) &&
1080                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1081                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1082 }
1083
1084 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1085         struct CommandList *c, int reply_queue)
1086 {
1087         dial_down_lockup_detection_during_fw_flash(h, c);
1088         atomic_inc(&h->commands_outstanding);
1089         switch (c->cmd_type) {
1090         case CMD_IOACCEL1:
1091                 set_ioaccel1_performant_mode(h, c, reply_queue);
1092                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1093                 break;
1094         case CMD_IOACCEL2:
1095                 set_ioaccel2_performant_mode(h, c, reply_queue);
1096                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1097                 break;
1098         case IOACCEL2_TMF:
1099                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1100                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1101                 break;
1102         default:
1103                 set_performant_mode(h, c, reply_queue);
1104                 h->access.submit_command(h, c);
1105         }
1106 }
1107
1108 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1109 {
1110         if (unlikely(hpsa_is_pending_event(c)))
1111                 return finish_cmd(c);
1112
1113         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1114 }
1115
1116 static inline int is_hba_lunid(unsigned char scsi3addr[])
1117 {
1118         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1119 }
1120
1121 static inline int is_scsi_rev_5(struct ctlr_info *h)
1122 {
1123         if (!h->hba_inquiry_data)
1124                 return 0;
1125         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1126                 return 1;
1127         return 0;
1128 }
1129
1130 static int hpsa_find_target_lun(struct ctlr_info *h,
1131         unsigned char scsi3addr[], int bus, int *target, int *lun)
1132 {
1133         /* finds an unused bus, target, lun for a new physical device
1134          * assumes h->devlock is held
1135          */
1136         int i, found = 0;
1137         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1138
1139         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1140
1141         for (i = 0; i < h->ndevices; i++) {
1142                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1143                         __set_bit(h->dev[i]->target, lun_taken);
1144         }
1145
1146         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1147         if (i < HPSA_MAX_DEVICES) {
1148                 /* *bus = 1; */
1149                 *target = i;
1150                 *lun = 0;
1151                 found = 1;
1152         }
1153         return !found;
1154 }
1155
1156 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1157         struct hpsa_scsi_dev_t *dev, char *description)
1158 {
1159 #define LABEL_SIZE 25
1160         char label[LABEL_SIZE];
1161
1162         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1163                 return;
1164
1165         switch (dev->devtype) {
1166         case TYPE_RAID:
1167                 snprintf(label, LABEL_SIZE, "controller");
1168                 break;
1169         case TYPE_ENCLOSURE:
1170                 snprintf(label, LABEL_SIZE, "enclosure");
1171                 break;
1172         case TYPE_DISK:
1173                 if (dev->external)
1174                         snprintf(label, LABEL_SIZE, "external");
1175                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1176                         snprintf(label, LABEL_SIZE, "%s",
1177                                 raid_label[PHYSICAL_DRIVE]);
1178                 else
1179                         snprintf(label, LABEL_SIZE, "RAID-%s",
1180                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1181                                 raid_label[dev->raid_level]);
1182                 break;
1183         case TYPE_ROM:
1184                 snprintf(label, LABEL_SIZE, "rom");
1185                 break;
1186         case TYPE_TAPE:
1187                 snprintf(label, LABEL_SIZE, "tape");
1188                 break;
1189         case TYPE_MEDIUM_CHANGER:
1190                 snprintf(label, LABEL_SIZE, "changer");
1191                 break;
1192         default:
1193                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1194                 break;
1195         }
1196
1197         dev_printk(level, &h->pdev->dev,
1198                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1199                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1200                         description,
1201                         scsi_device_type(dev->devtype),
1202                         dev->vendor,
1203                         dev->model,
1204                         label,
1205                         dev->offload_config ? '+' : '-',
1206                         dev->offload_enabled ? '+' : '-',
1207                         dev->expose_device);
1208 }
1209
1210 /* Add an entry into h->dev[] array. */
1211 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1212                 struct hpsa_scsi_dev_t *device,
1213                 struct hpsa_scsi_dev_t *added[], int *nadded)
1214 {
1215         /* assumes h->devlock is held */
1216         int n = h->ndevices;
1217         int i;
1218         unsigned char addr1[8], addr2[8];
1219         struct hpsa_scsi_dev_t *sd;
1220
1221         if (n >= HPSA_MAX_DEVICES) {
1222                 dev_err(&h->pdev->dev, "too many devices, some will be "
1223                         "inaccessible.\n");
1224                 return -1;
1225         }
1226
1227         /* physical devices do not have lun or target assigned until now. */
1228         if (device->lun != -1)
1229                 /* Logical device, lun is already assigned. */
1230                 goto lun_assigned;
1231
1232         /* If this device a non-zero lun of a multi-lun device
1233          * byte 4 of the 8-byte LUN addr will contain the logical
1234          * unit no, zero otherwise.
1235          */
1236         if (device->scsi3addr[4] == 0) {
1237                 /* This is not a non-zero lun of a multi-lun device */
1238                 if (hpsa_find_target_lun(h, device->scsi3addr,
1239                         device->bus, &device->target, &device->lun) != 0)
1240                         return -1;
1241                 goto lun_assigned;
1242         }
1243
1244         /* This is a non-zero lun of a multi-lun device.
1245          * Search through our list and find the device which
1246          * has the same 8 byte LUN address, excepting byte 4 and 5.
1247          * Assign the same bus and target for this new LUN.
1248          * Use the logical unit number from the firmware.
1249          */
1250         memcpy(addr1, device->scsi3addr, 8);
1251         addr1[4] = 0;
1252         addr1[5] = 0;
1253         for (i = 0; i < n; i++) {
1254                 sd = h->dev[i];
1255                 memcpy(addr2, sd->scsi3addr, 8);
1256                 addr2[4] = 0;
1257                 addr2[5] = 0;
1258                 /* differ only in byte 4 and 5? */
1259                 if (memcmp(addr1, addr2, 8) == 0) {
1260                         device->bus = sd->bus;
1261                         device->target = sd->target;
1262                         device->lun = device->scsi3addr[4];
1263                         break;
1264                 }
1265         }
1266         if (device->lun == -1) {
1267                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1268                         " suspect firmware bug or unsupported hardware "
1269                         "configuration.\n");
1270                         return -1;
1271         }
1272
1273 lun_assigned:
1274
1275         h->dev[n] = device;
1276         h->ndevices++;
1277         added[*nadded] = device;
1278         (*nadded)++;
1279         hpsa_show_dev_msg(KERN_INFO, h, device,
1280                 device->expose_device ? "added" : "masked");
1281         device->offload_to_be_enabled = device->offload_enabled;
1282         device->offload_enabled = 0;
1283         return 0;
1284 }
1285
1286 /* Update an entry in h->dev[] array. */
1287 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1288         int entry, struct hpsa_scsi_dev_t *new_entry)
1289 {
1290         int offload_enabled;
1291         /* assumes h->devlock is held */
1292         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1293
1294         /* Raid level changed. */
1295         h->dev[entry]->raid_level = new_entry->raid_level;
1296
1297         /* Raid offload parameters changed.  Careful about the ordering. */
1298         if (new_entry->offload_config && new_entry->offload_enabled) {
1299                 /*
1300                  * if drive is newly offload_enabled, we want to copy the
1301                  * raid map data first.  If previously offload_enabled and
1302                  * offload_config were set, raid map data had better be
1303                  * the same as it was before.  if raid map data is changed
1304                  * then it had better be the case that
1305                  * h->dev[entry]->offload_enabled is currently 0.
1306                  */
1307                 h->dev[entry]->raid_map = new_entry->raid_map;
1308                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1309         }
1310         if (new_entry->hba_ioaccel_enabled) {
1311                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1312                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1313         }
1314         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1315         h->dev[entry]->offload_config = new_entry->offload_config;
1316         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1317         h->dev[entry]->queue_depth = new_entry->queue_depth;
1318
1319         /*
1320          * We can turn off ioaccel offload now, but need to delay turning
1321          * it on until we can update h->dev[entry]->phys_disk[], but we
1322          * can't do that until all the devices are updated.
1323          */
1324         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1325         if (!new_entry->offload_enabled)
1326                 h->dev[entry]->offload_enabled = 0;
1327
1328         offload_enabled = h->dev[entry]->offload_enabled;
1329         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1330         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1331         h->dev[entry]->offload_enabled = offload_enabled;
1332 }
1333
1334 /* Replace an entry from h->dev[] array. */
1335 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1336         int entry, struct hpsa_scsi_dev_t *new_entry,
1337         struct hpsa_scsi_dev_t *added[], int *nadded,
1338         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1339 {
1340         /* assumes h->devlock is held */
1341         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1342         removed[*nremoved] = h->dev[entry];
1343         (*nremoved)++;
1344
1345         /*
1346          * New physical devices won't have target/lun assigned yet
1347          * so we need to preserve the values in the slot we are replacing.
1348          */
1349         if (new_entry->target == -1) {
1350                 new_entry->target = h->dev[entry]->target;
1351                 new_entry->lun = h->dev[entry]->lun;
1352         }
1353
1354         h->dev[entry] = new_entry;
1355         added[*nadded] = new_entry;
1356         (*nadded)++;
1357         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1358         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1359         new_entry->offload_enabled = 0;
1360 }
1361
1362 /* Remove an entry from h->dev[] array. */
1363 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1364         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1365 {
1366         /* assumes h->devlock is held */
1367         int i;
1368         struct hpsa_scsi_dev_t *sd;
1369
1370         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1371
1372         sd = h->dev[entry];
1373         removed[*nremoved] = h->dev[entry];
1374         (*nremoved)++;
1375
1376         for (i = entry; i < h->ndevices-1; i++)
1377                 h->dev[i] = h->dev[i+1];
1378         h->ndevices--;
1379         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1380 }
1381
1382 #define SCSI3ADDR_EQ(a, b) ( \
1383         (a)[7] == (b)[7] && \
1384         (a)[6] == (b)[6] && \
1385         (a)[5] == (b)[5] && \
1386         (a)[4] == (b)[4] && \
1387         (a)[3] == (b)[3] && \
1388         (a)[2] == (b)[2] && \
1389         (a)[1] == (b)[1] && \
1390         (a)[0] == (b)[0])
1391
1392 static void fixup_botched_add(struct ctlr_info *h,
1393         struct hpsa_scsi_dev_t *added)
1394 {
1395         /* called when scsi_add_device fails in order to re-adjust
1396          * h->dev[] to match the mid layer's view.
1397          */
1398         unsigned long flags;
1399         int i, j;
1400
1401         spin_lock_irqsave(&h->lock, flags);
1402         for (i = 0; i < h->ndevices; i++) {
1403                 if (h->dev[i] == added) {
1404                         for (j = i; j < h->ndevices-1; j++)
1405                                 h->dev[j] = h->dev[j+1];
1406                         h->ndevices--;
1407                         break;
1408                 }
1409         }
1410         spin_unlock_irqrestore(&h->lock, flags);
1411         kfree(added);
1412 }
1413
1414 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1415         struct hpsa_scsi_dev_t *dev2)
1416 {
1417         /* we compare everything except lun and target as these
1418          * are not yet assigned.  Compare parts likely
1419          * to differ first
1420          */
1421         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1422                 sizeof(dev1->scsi3addr)) != 0)
1423                 return 0;
1424         if (memcmp(dev1->device_id, dev2->device_id,
1425                 sizeof(dev1->device_id)) != 0)
1426                 return 0;
1427         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1428                 return 0;
1429         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1430                 return 0;
1431         if (dev1->devtype != dev2->devtype)
1432                 return 0;
1433         if (dev1->bus != dev2->bus)
1434                 return 0;
1435         return 1;
1436 }
1437
1438 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1439         struct hpsa_scsi_dev_t *dev2)
1440 {
1441         /* Device attributes that can change, but don't mean
1442          * that the device is a different device, nor that the OS
1443          * needs to be told anything about the change.
1444          */
1445         if (dev1->raid_level != dev2->raid_level)
1446                 return 1;
1447         if (dev1->offload_config != dev2->offload_config)
1448                 return 1;
1449         if (dev1->offload_enabled != dev2->offload_enabled)
1450                 return 1;
1451         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1452                 if (dev1->queue_depth != dev2->queue_depth)
1453                         return 1;
1454         return 0;
1455 }
1456
1457 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1458  * and return needle location in *index.  If scsi3addr matches, but not
1459  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1460  * location in *index.
1461  * In the case of a minor device attribute change, such as RAID level, just
1462  * return DEVICE_UPDATED, along with the updated device's location in index.
1463  * If needle not found, return DEVICE_NOT_FOUND.
1464  */
1465 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1466         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1467         int *index)
1468 {
1469         int i;
1470 #define DEVICE_NOT_FOUND 0
1471 #define DEVICE_CHANGED 1
1472 #define DEVICE_SAME 2
1473 #define DEVICE_UPDATED 3
1474         if (needle == NULL)
1475                 return DEVICE_NOT_FOUND;
1476
1477         for (i = 0; i < haystack_size; i++) {
1478                 if (haystack[i] == NULL) /* previously removed. */
1479                         continue;
1480                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1481                         *index = i;
1482                         if (device_is_the_same(needle, haystack[i])) {
1483                                 if (device_updated(needle, haystack[i]))
1484                                         return DEVICE_UPDATED;
1485                                 return DEVICE_SAME;
1486                         } else {
1487                                 /* Keep offline devices offline */
1488                                 if (needle->volume_offline)
1489                                         return DEVICE_NOT_FOUND;
1490                                 return DEVICE_CHANGED;
1491                         }
1492                 }
1493         }
1494         *index = -1;
1495         return DEVICE_NOT_FOUND;
1496 }
1497
1498 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1499                                         unsigned char scsi3addr[])
1500 {
1501         struct offline_device_entry *device;
1502         unsigned long flags;
1503
1504         /* Check to see if device is already on the list */
1505         spin_lock_irqsave(&h->offline_device_lock, flags);
1506         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1507                 if (memcmp(device->scsi3addr, scsi3addr,
1508                         sizeof(device->scsi3addr)) == 0) {
1509                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1510                         return;
1511                 }
1512         }
1513         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1514
1515         /* Device is not on the list, add it. */
1516         device = kmalloc(sizeof(*device), GFP_KERNEL);
1517         if (!device) {
1518                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1519                 return;
1520         }
1521         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1522         spin_lock_irqsave(&h->offline_device_lock, flags);
1523         list_add_tail(&device->offline_list, &h->offline_device_list);
1524         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1525 }
1526
1527 /* Print a message explaining various offline volume states */
1528 static void hpsa_show_volume_status(struct ctlr_info *h,
1529         struct hpsa_scsi_dev_t *sd)
1530 {
1531         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1532                 dev_info(&h->pdev->dev,
1533                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1534                         h->scsi_host->host_no,
1535                         sd->bus, sd->target, sd->lun);
1536         switch (sd->volume_offline) {
1537         case HPSA_LV_OK:
1538                 break;
1539         case HPSA_LV_UNDERGOING_ERASE:
1540                 dev_info(&h->pdev->dev,
1541                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1542                         h->scsi_host->host_no,
1543                         sd->bus, sd->target, sd->lun);
1544                 break;
1545         case HPSA_LV_NOT_AVAILABLE:
1546                 dev_info(&h->pdev->dev,
1547                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1548                         h->scsi_host->host_no,
1549                         sd->bus, sd->target, sd->lun);
1550                 break;
1551         case HPSA_LV_UNDERGOING_RPI:
1552                 dev_info(&h->pdev->dev,
1553                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1554                         h->scsi_host->host_no,
1555                         sd->bus, sd->target, sd->lun);
1556                 break;
1557         case HPSA_LV_PENDING_RPI:
1558                 dev_info(&h->pdev->dev,
1559                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1560                         h->scsi_host->host_no,
1561                         sd->bus, sd->target, sd->lun);
1562                 break;
1563         case HPSA_LV_ENCRYPTED_NO_KEY:
1564                 dev_info(&h->pdev->dev,
1565                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1566                         h->scsi_host->host_no,
1567                         sd->bus, sd->target, sd->lun);
1568                 break;
1569         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1570                 dev_info(&h->pdev->dev,
1571                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1572                         h->scsi_host->host_no,
1573                         sd->bus, sd->target, sd->lun);
1574                 break;
1575         case HPSA_LV_UNDERGOING_ENCRYPTION:
1576                 dev_info(&h->pdev->dev,
1577                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1578                         h->scsi_host->host_no,
1579                         sd->bus, sd->target, sd->lun);
1580                 break;
1581         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1582                 dev_info(&h->pdev->dev,
1583                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1584                         h->scsi_host->host_no,
1585                         sd->bus, sd->target, sd->lun);
1586                 break;
1587         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1588                 dev_info(&h->pdev->dev,
1589                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1590                         h->scsi_host->host_no,
1591                         sd->bus, sd->target, sd->lun);
1592                 break;
1593         case HPSA_LV_PENDING_ENCRYPTION:
1594                 dev_info(&h->pdev->dev,
1595                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1596                         h->scsi_host->host_no,
1597                         sd->bus, sd->target, sd->lun);
1598                 break;
1599         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1600                 dev_info(&h->pdev->dev,
1601                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1602                         h->scsi_host->host_no,
1603                         sd->bus, sd->target, sd->lun);
1604                 break;
1605         }
1606 }
1607
1608 /*
1609  * Figure the list of physical drive pointers for a logical drive with
1610  * raid offload configured.
1611  */
1612 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1613                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1614                                 struct hpsa_scsi_dev_t *logical_drive)
1615 {
1616         struct raid_map_data *map = &logical_drive->raid_map;
1617         struct raid_map_disk_data *dd = &map->data[0];
1618         int i, j;
1619         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1620                                 le16_to_cpu(map->metadata_disks_per_row);
1621         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1622                                 le16_to_cpu(map->layout_map_count) *
1623                                 total_disks_per_row;
1624         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1625                                 total_disks_per_row;
1626         int qdepth;
1627
1628         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1629                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1630
1631         logical_drive->nphysical_disks = nraid_map_entries;
1632
1633         qdepth = 0;
1634         for (i = 0; i < nraid_map_entries; i++) {
1635                 logical_drive->phys_disk[i] = NULL;
1636                 if (!logical_drive->offload_config)
1637                         continue;
1638                 for (j = 0; j < ndevices; j++) {
1639                         if (dev[j] == NULL)
1640                                 continue;
1641                         if (dev[j]->devtype != TYPE_DISK)
1642                                 continue;
1643                         if (is_logical_device(dev[j]))
1644                                 continue;
1645                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1646                                 continue;
1647
1648                         logical_drive->phys_disk[i] = dev[j];
1649                         if (i < nphys_disk)
1650                                 qdepth = min(h->nr_cmds, qdepth +
1651                                     logical_drive->phys_disk[i]->queue_depth);
1652                         break;
1653                 }
1654
1655                 /*
1656                  * This can happen if a physical drive is removed and
1657                  * the logical drive is degraded.  In that case, the RAID
1658                  * map data will refer to a physical disk which isn't actually
1659                  * present.  And in that case offload_enabled should already
1660                  * be 0, but we'll turn it off here just in case
1661                  */
1662                 if (!logical_drive->phys_disk[i]) {
1663                         logical_drive->offload_enabled = 0;
1664                         logical_drive->offload_to_be_enabled = 0;
1665                         logical_drive->queue_depth = 8;
1666                 }
1667         }
1668         if (nraid_map_entries)
1669                 /*
1670                  * This is correct for reads, too high for full stripe writes,
1671                  * way too high for partial stripe writes
1672                  */
1673                 logical_drive->queue_depth = qdepth;
1674         else
1675                 logical_drive->queue_depth = h->nr_cmds;
1676 }
1677
1678 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1679                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1680 {
1681         int i;
1682
1683         for (i = 0; i < ndevices; i++) {
1684                 if (dev[i] == NULL)
1685                         continue;
1686                 if (dev[i]->devtype != TYPE_DISK)
1687                         continue;
1688                 if (!is_logical_device(dev[i]))
1689                         continue;
1690
1691                 /*
1692                  * If offload is currently enabled, the RAID map and
1693                  * phys_disk[] assignment *better* not be changing
1694                  * and since it isn't changing, we do not need to
1695                  * update it.
1696                  */
1697                 if (dev[i]->offload_enabled)
1698                         continue;
1699
1700                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1701         }
1702 }
1703
1704 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1705 {
1706         int rc = 0;
1707
1708         if (!h->scsi_host)
1709                 return 1;
1710
1711         if (is_logical_device(device)) /* RAID */
1712                 rc = scsi_add_device(h->scsi_host, device->bus,
1713                                         device->target, device->lun);
1714         else /* HBA */
1715                 rc = hpsa_add_sas_device(h->sas_host, device);
1716
1717         return rc;
1718 }
1719
1720 static void hpsa_remove_device(struct ctlr_info *h,
1721                         struct hpsa_scsi_dev_t *device)
1722 {
1723         struct scsi_device *sdev = NULL;
1724
1725         if (!h->scsi_host)
1726                 return;
1727
1728         if (is_logical_device(device)) { /* RAID */
1729                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1730                                                 device->target, device->lun);
1731                 if (sdev) {
1732                         scsi_remove_device(sdev);
1733                         scsi_device_put(sdev);
1734                 } else {
1735                         /*
1736                          * We don't expect to get here.  Future commands
1737                          * to this device will get a selection timeout as
1738                          * if the device were gone.
1739                          */
1740                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1741                                         "didn't find device for removal.");
1742                 }
1743         } else /* HBA */
1744                 hpsa_remove_sas_device(device);
1745 }
1746
1747 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1748         struct hpsa_scsi_dev_t *sd[], int nsds)
1749 {
1750         /* sd contains scsi3 addresses and devtypes, and inquiry
1751          * data.  This function takes what's in sd to be the current
1752          * reality and updates h->dev[] to reflect that reality.
1753          */
1754         int i, entry, device_change, changes = 0;
1755         struct hpsa_scsi_dev_t *csd;
1756         unsigned long flags;
1757         struct hpsa_scsi_dev_t **added, **removed;
1758         int nadded, nremoved;
1759
1760         /*
1761          * A reset can cause a device status to change
1762          * re-schedule the scan to see what happened.
1763          */
1764         if (h->reset_in_progress) {
1765                 h->drv_req_rescan = 1;
1766                 return;
1767         }
1768
1769         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1770         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1771
1772         if (!added || !removed) {
1773                 dev_warn(&h->pdev->dev, "out of memory in "
1774                         "adjust_hpsa_scsi_table\n");
1775                 goto free_and_out;
1776         }
1777
1778         spin_lock_irqsave(&h->devlock, flags);
1779
1780         /* find any devices in h->dev[] that are not in
1781          * sd[] and remove them from h->dev[], and for any
1782          * devices which have changed, remove the old device
1783          * info and add the new device info.
1784          * If minor device attributes change, just update
1785          * the existing device structure.
1786          */
1787         i = 0;
1788         nremoved = 0;
1789         nadded = 0;
1790         while (i < h->ndevices) {
1791                 csd = h->dev[i];
1792                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1793                 if (device_change == DEVICE_NOT_FOUND) {
1794                         changes++;
1795                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1796                         continue; /* remove ^^^, hence i not incremented */
1797                 } else if (device_change == DEVICE_CHANGED) {
1798                         changes++;
1799                         hpsa_scsi_replace_entry(h, i, sd[entry],
1800                                 added, &nadded, removed, &nremoved);
1801                         /* Set it to NULL to prevent it from being freed
1802                          * at the bottom of hpsa_update_scsi_devices()
1803                          */
1804                         sd[entry] = NULL;
1805                 } else if (device_change == DEVICE_UPDATED) {
1806                         hpsa_scsi_update_entry(h, i, sd[entry]);
1807                 }
1808                 i++;
1809         }
1810
1811         /* Now, make sure every device listed in sd[] is also
1812          * listed in h->dev[], adding them if they aren't found
1813          */
1814
1815         for (i = 0; i < nsds; i++) {
1816                 if (!sd[i]) /* if already added above. */
1817                         continue;
1818
1819                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1820                  * as the SCSI mid-layer does not handle such devices well.
1821                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1822                  * at 160Hz, and prevents the system from coming up.
1823                  */
1824                 if (sd[i]->volume_offline) {
1825                         hpsa_show_volume_status(h, sd[i]);
1826                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1827                         continue;
1828                 }
1829
1830                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1831                                         h->ndevices, &entry);
1832                 if (device_change == DEVICE_NOT_FOUND) {
1833                         changes++;
1834                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1835                                 break;
1836                         sd[i] = NULL; /* prevent from being freed later. */
1837                 } else if (device_change == DEVICE_CHANGED) {
1838                         /* should never happen... */
1839                         changes++;
1840                         dev_warn(&h->pdev->dev,
1841                                 "device unexpectedly changed.\n");
1842                         /* but if it does happen, we just ignore that device */
1843                 }
1844         }
1845         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1846
1847         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1848          * any logical drives that need it enabled.
1849          */
1850         for (i = 0; i < h->ndevices; i++) {
1851                 if (h->dev[i] == NULL)
1852                         continue;
1853                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1854         }
1855
1856         spin_unlock_irqrestore(&h->devlock, flags);
1857
1858         /* Monitor devices which are in one of several NOT READY states to be
1859          * brought online later. This must be done without holding h->devlock,
1860          * so don't touch h->dev[]
1861          */
1862         for (i = 0; i < nsds; i++) {
1863                 if (!sd[i]) /* if already added above. */
1864                         continue;
1865                 if (sd[i]->volume_offline)
1866                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1867         }
1868
1869         /* Don't notify scsi mid layer of any changes the first time through
1870          * (or if there are no changes) scsi_scan_host will do it later the
1871          * first time through.
1872          */
1873         if (!changes)
1874                 goto free_and_out;
1875
1876         /* Notify scsi mid layer of any removed devices */
1877         for (i = 0; i < nremoved; i++) {
1878                 if (removed[i] == NULL)
1879                         continue;
1880                 if (removed[i]->expose_device)
1881                         hpsa_remove_device(h, removed[i]);
1882                 kfree(removed[i]);
1883                 removed[i] = NULL;
1884         }
1885
1886         /* Notify scsi mid layer of any added devices */
1887         for (i = 0; i < nadded; i++) {
1888                 int rc = 0;
1889
1890                 if (added[i] == NULL)
1891                         continue;
1892                 if (!(added[i]->expose_device))
1893                         continue;
1894                 rc = hpsa_add_device(h, added[i]);
1895                 if (!rc)
1896                         continue;
1897                 dev_warn(&h->pdev->dev,
1898                         "addition failed %d, device not added.", rc);
1899                 /* now we have to remove it from h->dev,
1900                  * since it didn't get added to scsi mid layer
1901                  */
1902                 fixup_botched_add(h, added[i]);
1903                 h->drv_req_rescan = 1;
1904         }
1905
1906 free_and_out:
1907         kfree(added);
1908         kfree(removed);
1909 }
1910
1911 /*
1912  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1913  * Assume's h->devlock is held.
1914  */
1915 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1916         int bus, int target, int lun)
1917 {
1918         int i;
1919         struct hpsa_scsi_dev_t *sd;
1920
1921         for (i = 0; i < h->ndevices; i++) {
1922                 sd = h->dev[i];
1923                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1924                         return sd;
1925         }
1926         return NULL;
1927 }
1928
1929 static int hpsa_slave_alloc(struct scsi_device *sdev)
1930 {
1931         struct hpsa_scsi_dev_t *sd;
1932         unsigned long flags;
1933         struct ctlr_info *h;
1934
1935         h = sdev_to_hba(sdev);
1936         spin_lock_irqsave(&h->devlock, flags);
1937         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1938                 struct scsi_target *starget;
1939                 struct sas_rphy *rphy;
1940
1941                 starget = scsi_target(sdev);
1942                 rphy = target_to_rphy(starget);
1943                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1944                 if (sd) {
1945                         sd->target = sdev_id(sdev);
1946                         sd->lun = sdev->lun;
1947                 }
1948         } else
1949                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1950                                         sdev_id(sdev), sdev->lun);
1951
1952         if (sd && sd->expose_device) {
1953                 atomic_set(&sd->ioaccel_cmds_out, 0);
1954                 sdev->hostdata = sd;
1955         } else
1956                 sdev->hostdata = NULL;
1957         spin_unlock_irqrestore(&h->devlock, flags);
1958         return 0;
1959 }
1960
1961 /* configure scsi device based on internal per-device structure */
1962 static int hpsa_slave_configure(struct scsi_device *sdev)
1963 {
1964         struct hpsa_scsi_dev_t *sd;
1965         int queue_depth;
1966
1967         sd = sdev->hostdata;
1968         sdev->no_uld_attach = !sd || !sd->expose_device;
1969
1970         if (sd)
1971                 queue_depth = sd->queue_depth != 0 ?
1972                         sd->queue_depth : sdev->host->can_queue;
1973         else
1974                 queue_depth = sdev->host->can_queue;
1975
1976         scsi_change_queue_depth(sdev, queue_depth);
1977
1978         return 0;
1979 }
1980
1981 static void hpsa_slave_destroy(struct scsi_device *sdev)
1982 {
1983         /* nothing to do. */
1984 }
1985
1986 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1987 {
1988         int i;
1989
1990         if (!h->ioaccel2_cmd_sg_list)
1991                 return;
1992         for (i = 0; i < h->nr_cmds; i++) {
1993                 kfree(h->ioaccel2_cmd_sg_list[i]);
1994                 h->ioaccel2_cmd_sg_list[i] = NULL;
1995         }
1996         kfree(h->ioaccel2_cmd_sg_list);
1997         h->ioaccel2_cmd_sg_list = NULL;
1998 }
1999
2000 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2001 {
2002         int i;
2003
2004         if (h->chainsize <= 0)
2005                 return 0;
2006
2007         h->ioaccel2_cmd_sg_list =
2008                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2009                                         GFP_KERNEL);
2010         if (!h->ioaccel2_cmd_sg_list)
2011                 return -ENOMEM;
2012         for (i = 0; i < h->nr_cmds; i++) {
2013                 h->ioaccel2_cmd_sg_list[i] =
2014                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2015                                         h->maxsgentries, GFP_KERNEL);
2016                 if (!h->ioaccel2_cmd_sg_list[i])
2017                         goto clean;
2018         }
2019         return 0;
2020
2021 clean:
2022         hpsa_free_ioaccel2_sg_chain_blocks(h);
2023         return -ENOMEM;
2024 }
2025
2026 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2027 {
2028         int i;
2029
2030         if (!h->cmd_sg_list)
2031                 return;
2032         for (i = 0; i < h->nr_cmds; i++) {
2033                 kfree(h->cmd_sg_list[i]);
2034                 h->cmd_sg_list[i] = NULL;
2035         }
2036         kfree(h->cmd_sg_list);
2037         h->cmd_sg_list = NULL;
2038 }
2039
2040 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2041 {
2042         int i;
2043
2044         if (h->chainsize <= 0)
2045                 return 0;
2046
2047         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2048                                 GFP_KERNEL);
2049         if (!h->cmd_sg_list) {
2050                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2051                 return -ENOMEM;
2052         }
2053         for (i = 0; i < h->nr_cmds; i++) {
2054                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2055                                                 h->chainsize, GFP_KERNEL);
2056                 if (!h->cmd_sg_list[i]) {
2057                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2058                         goto clean;
2059                 }
2060         }
2061         return 0;
2062
2063 clean:
2064         hpsa_free_sg_chain_blocks(h);
2065         return -ENOMEM;
2066 }
2067
2068 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2069         struct io_accel2_cmd *cp, struct CommandList *c)
2070 {
2071         struct ioaccel2_sg_element *chain_block;
2072         u64 temp64;
2073         u32 chain_size;
2074
2075         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2076         chain_size = le32_to_cpu(cp->sg[0].length);
2077         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2078                                 PCI_DMA_TODEVICE);
2079         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2080                 /* prevent subsequent unmapping */
2081                 cp->sg->address = 0;
2082                 return -1;
2083         }
2084         cp->sg->address = cpu_to_le64(temp64);
2085         return 0;
2086 }
2087
2088 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2089         struct io_accel2_cmd *cp)
2090 {
2091         struct ioaccel2_sg_element *chain_sg;
2092         u64 temp64;
2093         u32 chain_size;
2094
2095         chain_sg = cp->sg;
2096         temp64 = le64_to_cpu(chain_sg->address);
2097         chain_size = le32_to_cpu(cp->sg[0].length);
2098         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2099 }
2100
2101 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2102         struct CommandList *c)
2103 {
2104         struct SGDescriptor *chain_sg, *chain_block;
2105         u64 temp64;
2106         u32 chain_len;
2107
2108         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2109         chain_block = h->cmd_sg_list[c->cmdindex];
2110         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2111         chain_len = sizeof(*chain_sg) *
2112                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2113         chain_sg->Len = cpu_to_le32(chain_len);
2114         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2115                                 PCI_DMA_TODEVICE);
2116         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2117                 /* prevent subsequent unmapping */
2118                 chain_sg->Addr = cpu_to_le64(0);
2119                 return -1;
2120         }
2121         chain_sg->Addr = cpu_to_le64(temp64);
2122         return 0;
2123 }
2124
2125 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2126         struct CommandList *c)
2127 {
2128         struct SGDescriptor *chain_sg;
2129
2130         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2131                 return;
2132
2133         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2134         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2135                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2136 }
2137
2138
2139 /* Decode the various types of errors on ioaccel2 path.
2140  * Return 1 for any error that should generate a RAID path retry.
2141  * Return 0 for errors that don't require a RAID path retry.
2142  */
2143 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2144                                         struct CommandList *c,
2145                                         struct scsi_cmnd *cmd,
2146                                         struct io_accel2_cmd *c2)
2147 {
2148         int data_len;
2149         int retry = 0;
2150         u32 ioaccel2_resid = 0;
2151
2152         switch (c2->error_data.serv_response) {
2153         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2154                 switch (c2->error_data.status) {
2155                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2156                         break;
2157                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2158                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2159                         if (c2->error_data.data_present !=
2160                                         IOACCEL2_SENSE_DATA_PRESENT) {
2161                                 memset(cmd->sense_buffer, 0,
2162                                         SCSI_SENSE_BUFFERSIZE);
2163                                 break;
2164                         }
2165                         /* copy the sense data */
2166                         data_len = c2->error_data.sense_data_len;
2167                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2168                                 data_len = SCSI_SENSE_BUFFERSIZE;
2169                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2170                                 data_len =
2171                                         sizeof(c2->error_data.sense_data_buff);
2172                         memcpy(cmd->sense_buffer,
2173                                 c2->error_data.sense_data_buff, data_len);
2174                         retry = 1;
2175                         break;
2176                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2177                         retry = 1;
2178                         break;
2179                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2180                         retry = 1;
2181                         break;
2182                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2183                         retry = 1;
2184                         break;
2185                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2186                         retry = 1;
2187                         break;
2188                 default:
2189                         retry = 1;
2190                         break;
2191                 }
2192                 break;
2193         case IOACCEL2_SERV_RESPONSE_FAILURE:
2194                 switch (c2->error_data.status) {
2195                 case IOACCEL2_STATUS_SR_IO_ERROR:
2196                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2197                 case IOACCEL2_STATUS_SR_OVERRUN:
2198                         retry = 1;
2199                         break;
2200                 case IOACCEL2_STATUS_SR_UNDERRUN:
2201                         cmd->result = (DID_OK << 16);           /* host byte */
2202                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2203                         ioaccel2_resid = get_unaligned_le32(
2204                                                 &c2->error_data.resid_cnt[0]);
2205                         scsi_set_resid(cmd, ioaccel2_resid);
2206                         break;
2207                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2208                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2209                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2210                         /* We will get an event from ctlr to trigger rescan */
2211                         retry = 1;
2212                         break;
2213                 default:
2214                         retry = 1;
2215                 }
2216                 break;
2217         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2218                 break;
2219         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2220                 break;
2221         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2222                 retry = 1;
2223                 break;
2224         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2225                 break;
2226         default:
2227                 retry = 1;
2228                 break;
2229         }
2230
2231         return retry;   /* retry on raid path? */
2232 }
2233
2234 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2235                 struct CommandList *c)
2236 {
2237         bool do_wake = false;
2238
2239         /*
2240          * Prevent the following race in the abort handler:
2241          *
2242          * 1. LLD is requested to abort a SCSI command
2243          * 2. The SCSI command completes
2244          * 3. The struct CommandList associated with step 2 is made available
2245          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2246          * 5. Abort handler follows scsi_cmnd->host_scribble and
2247          *    finds struct CommandList and tries to aborts it
2248          * Now we have aborted the wrong command.
2249          *
2250          * Reset c->scsi_cmd here so that the abort or reset handler will know
2251          * this command has completed.  Then, check to see if the handler is
2252          * waiting for this command, and, if so, wake it.
2253          */
2254         c->scsi_cmd = SCSI_CMD_IDLE;
2255         mb();   /* Declare command idle before checking for pending events. */
2256         if (c->abort_pending) {
2257                 do_wake = true;
2258                 c->abort_pending = false;
2259         }
2260         if (c->reset_pending) {
2261                 unsigned long flags;
2262                 struct hpsa_scsi_dev_t *dev;
2263
2264                 /*
2265                  * There appears to be a reset pending; lock the lock and
2266                  * reconfirm.  If so, then decrement the count of outstanding
2267                  * commands and wake the reset command if this is the last one.
2268                  */
2269                 spin_lock_irqsave(&h->lock, flags);
2270                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2271                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2272                         do_wake = true;
2273                 c->reset_pending = NULL;
2274                 spin_unlock_irqrestore(&h->lock, flags);
2275         }
2276
2277         if (do_wake)
2278                 wake_up_all(&h->event_sync_wait_queue);
2279 }
2280
2281 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2282                                       struct CommandList *c)
2283 {
2284         hpsa_cmd_resolve_events(h, c);
2285         cmd_tagged_free(h, c);
2286 }
2287
2288 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2289                 struct CommandList *c, struct scsi_cmnd *cmd)
2290 {
2291         hpsa_cmd_resolve_and_free(h, c);
2292         cmd->scsi_done(cmd);
2293 }
2294
2295 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2296 {
2297         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2298         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2299 }
2300
2301 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2302 {
2303         cmd->result = DID_ABORT << 16;
2304 }
2305
2306 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2307                                     struct scsi_cmnd *cmd)
2308 {
2309         hpsa_set_scsi_cmd_aborted(cmd);
2310         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2311                          c->Request.CDB, c->err_info->ScsiStatus);
2312         hpsa_cmd_resolve_and_free(h, c);
2313 }
2314
2315 static void process_ioaccel2_completion(struct ctlr_info *h,
2316                 struct CommandList *c, struct scsi_cmnd *cmd,
2317                 struct hpsa_scsi_dev_t *dev)
2318 {
2319         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2320
2321         /* check for good status */
2322         if (likely(c2->error_data.serv_response == 0 &&
2323                         c2->error_data.status == 0))
2324                 return hpsa_cmd_free_and_done(h, c, cmd);
2325
2326         /*
2327          * Any RAID offload error results in retry which will use
2328          * the normal I/O path so the controller can handle whatever's
2329          * wrong.
2330          */
2331         if (is_logical_device(dev) &&
2332                 c2->error_data.serv_response ==
2333                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2334                 if (c2->error_data.status ==
2335                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2336                         dev->offload_enabled = 0;
2337
2338                 return hpsa_retry_cmd(h, c);
2339         }
2340
2341         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2342                 return hpsa_retry_cmd(h, c);
2343
2344         return hpsa_cmd_free_and_done(h, c, cmd);
2345 }
2346
2347 /* Returns 0 on success, < 0 otherwise. */
2348 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2349                                         struct CommandList *cp)
2350 {
2351         u8 tmf_status = cp->err_info->ScsiStatus;
2352
2353         switch (tmf_status) {
2354         case CISS_TMF_COMPLETE:
2355                 /*
2356                  * CISS_TMF_COMPLETE never happens, instead,
2357                  * ei->CommandStatus == 0 for this case.
2358                  */
2359         case CISS_TMF_SUCCESS:
2360                 return 0;
2361         case CISS_TMF_INVALID_FRAME:
2362         case CISS_TMF_NOT_SUPPORTED:
2363         case CISS_TMF_FAILED:
2364         case CISS_TMF_WRONG_LUN:
2365         case CISS_TMF_OVERLAPPED_TAG:
2366                 break;
2367         default:
2368                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2369                                 tmf_status);
2370                 break;
2371         }
2372         return -tmf_status;
2373 }
2374
2375 static void complete_scsi_command(struct CommandList *cp)
2376 {
2377         struct scsi_cmnd *cmd;
2378         struct ctlr_info *h;
2379         struct ErrorInfo *ei;
2380         struct hpsa_scsi_dev_t *dev;
2381         struct io_accel2_cmd *c2;
2382
2383         u8 sense_key;
2384         u8 asc;      /* additional sense code */
2385         u8 ascq;     /* additional sense code qualifier */
2386         unsigned long sense_data_size;
2387
2388         ei = cp->err_info;
2389         cmd = cp->scsi_cmd;
2390         h = cp->h;
2391         dev = cmd->device->hostdata;
2392         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2393
2394         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2395         if ((cp->cmd_type == CMD_SCSI) &&
2396                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2397                 hpsa_unmap_sg_chain_block(h, cp);
2398
2399         if ((cp->cmd_type == CMD_IOACCEL2) &&
2400                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2401                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2402
2403         cmd->result = (DID_OK << 16);           /* host byte */
2404         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2405
2406         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2407                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2408
2409         /*
2410          * We check for lockup status here as it may be set for
2411          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2412          * fail_all_oustanding_cmds()
2413          */
2414         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2415                 /* DID_NO_CONNECT will prevent a retry */
2416                 cmd->result = DID_NO_CONNECT << 16;
2417                 return hpsa_cmd_free_and_done(h, cp, cmd);
2418         }
2419
2420         if ((unlikely(hpsa_is_pending_event(cp)))) {
2421                 if (cp->reset_pending)
2422                         return hpsa_cmd_resolve_and_free(h, cp);
2423                 if (cp->abort_pending)
2424                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2425         }
2426
2427         if (cp->cmd_type == CMD_IOACCEL2)
2428                 return process_ioaccel2_completion(h, cp, cmd, dev);
2429
2430         scsi_set_resid(cmd, ei->ResidualCnt);
2431         if (ei->CommandStatus == 0)
2432                 return hpsa_cmd_free_and_done(h, cp, cmd);
2433
2434         /* For I/O accelerator commands, copy over some fields to the normal
2435          * CISS header used below for error handling.
2436          */
2437         if (cp->cmd_type == CMD_IOACCEL1) {
2438                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2439                 cp->Header.SGList = scsi_sg_count(cmd);
2440                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2441                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2442                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2443                 cp->Header.tag = c->tag;
2444                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2445                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2446
2447                 /* Any RAID offload error results in retry which will use
2448                  * the normal I/O path so the controller can handle whatever's
2449                  * wrong.
2450                  */
2451                 if (is_logical_device(dev)) {
2452                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2453                                 dev->offload_enabled = 0;
2454                         return hpsa_retry_cmd(h, cp);
2455                 }
2456         }
2457
2458         /* an error has occurred */
2459         switch (ei->CommandStatus) {
2460
2461         case CMD_TARGET_STATUS:
2462                 cmd->result |= ei->ScsiStatus;
2463                 /* copy the sense data */
2464                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2465                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2466                 else
2467                         sense_data_size = sizeof(ei->SenseInfo);
2468                 if (ei->SenseLen < sense_data_size)
2469                         sense_data_size = ei->SenseLen;
2470                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2471                 if (ei->ScsiStatus)
2472                         decode_sense_data(ei->SenseInfo, sense_data_size,
2473                                 &sense_key, &asc, &ascq);
2474                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2475                         if (sense_key == ABORTED_COMMAND) {
2476                                 cmd->result |= DID_SOFT_ERROR << 16;
2477                                 break;
2478                         }
2479                         break;
2480                 }
2481                 /* Problem was not a check condition
2482                  * Pass it up to the upper layers...
2483                  */
2484                 if (ei->ScsiStatus) {
2485                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2486                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2487                                 "Returning result: 0x%x\n",
2488                                 cp, ei->ScsiStatus,
2489                                 sense_key, asc, ascq,
2490                                 cmd->result);
2491                 } else {  /* scsi status is zero??? How??? */
2492                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2493                                 "Returning no connection.\n", cp),
2494
2495                         /* Ordinarily, this case should never happen,
2496                          * but there is a bug in some released firmware
2497                          * revisions that allows it to happen if, for
2498                          * example, a 4100 backplane loses power and
2499                          * the tape drive is in it.  We assume that
2500                          * it's a fatal error of some kind because we
2501                          * can't show that it wasn't. We will make it
2502                          * look like selection timeout since that is
2503                          * the most common reason for this to occur,
2504                          * and it's severe enough.
2505                          */
2506
2507                         cmd->result = DID_NO_CONNECT << 16;
2508                 }
2509                 break;
2510
2511         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2512                 break;
2513         case CMD_DATA_OVERRUN:
2514                 dev_warn(&h->pdev->dev,
2515                         "CDB %16phN data overrun\n", cp->Request.CDB);
2516                 break;
2517         case CMD_INVALID: {
2518                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2519                 print_cmd(cp); */
2520                 /* We get CMD_INVALID if you address a non-existent device
2521                  * instead of a selection timeout (no response).  You will
2522                  * see this if you yank out a drive, then try to access it.
2523                  * This is kind of a shame because it means that any other
2524                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2525                  * missing target. */
2526                 cmd->result = DID_NO_CONNECT << 16;
2527         }
2528                 break;
2529         case CMD_PROTOCOL_ERR:
2530                 cmd->result = DID_ERROR << 16;
2531                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2532                                 cp->Request.CDB);
2533                 break;
2534         case CMD_HARDWARE_ERR:
2535                 cmd->result = DID_ERROR << 16;
2536                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2537                         cp->Request.CDB);
2538                 break;
2539         case CMD_CONNECTION_LOST:
2540                 cmd->result = DID_ERROR << 16;
2541                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2542                         cp->Request.CDB);
2543                 break;
2544         case CMD_ABORTED:
2545                 /* Return now to avoid calling scsi_done(). */
2546                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2547         case CMD_ABORT_FAILED:
2548                 cmd->result = DID_ERROR << 16;
2549                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2550                         cp->Request.CDB);
2551                 break;
2552         case CMD_UNSOLICITED_ABORT:
2553                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2554                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2555                         cp->Request.CDB);
2556                 break;
2557         case CMD_TIMEOUT:
2558                 cmd->result = DID_TIME_OUT << 16;
2559                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2560                         cp->Request.CDB);
2561                 break;
2562         case CMD_UNABORTABLE:
2563                 cmd->result = DID_ERROR << 16;
2564                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2565                 break;
2566         case CMD_TMF_STATUS:
2567                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2568                         cmd->result = DID_ERROR << 16;
2569                 break;
2570         case CMD_IOACCEL_DISABLED:
2571                 /* This only handles the direct pass-through case since RAID
2572                  * offload is handled above.  Just attempt a retry.
2573                  */
2574                 cmd->result = DID_SOFT_ERROR << 16;
2575                 dev_warn(&h->pdev->dev,
2576                                 "cp %p had HP SSD Smart Path error\n", cp);
2577                 break;
2578         default:
2579                 cmd->result = DID_ERROR << 16;
2580                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2581                                 cp, ei->CommandStatus);
2582         }
2583
2584         return hpsa_cmd_free_and_done(h, cp, cmd);
2585 }
2586
2587 static void hpsa_pci_unmap(struct pci_dev *pdev,
2588         struct CommandList *c, int sg_used, int data_direction)
2589 {
2590         int i;
2591
2592         for (i = 0; i < sg_used; i++)
2593                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2594                                 le32_to_cpu(c->SG[i].Len),
2595                                 data_direction);
2596 }
2597
2598 static int hpsa_map_one(struct pci_dev *pdev,
2599                 struct CommandList *cp,
2600                 unsigned char *buf,
2601                 size_t buflen,
2602                 int data_direction)
2603 {
2604         u64 addr64;
2605
2606         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2607                 cp->Header.SGList = 0;
2608                 cp->Header.SGTotal = cpu_to_le16(0);
2609                 return 0;
2610         }
2611
2612         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2613         if (dma_mapping_error(&pdev->dev, addr64)) {
2614                 /* Prevent subsequent unmap of something never mapped */
2615                 cp->Header.SGList = 0;
2616                 cp->Header.SGTotal = cpu_to_le16(0);
2617                 return -1;
2618         }
2619         cp->SG[0].Addr = cpu_to_le64(addr64);
2620         cp->SG[0].Len = cpu_to_le32(buflen);
2621         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2622         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2623         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2624         return 0;
2625 }
2626
2627 #define NO_TIMEOUT ((unsigned long) -1)
2628 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2629 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2630         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2631 {
2632         DECLARE_COMPLETION_ONSTACK(wait);
2633
2634         c->waiting = &wait;
2635         __enqueue_cmd_and_start_io(h, c, reply_queue);
2636         if (timeout_msecs == NO_TIMEOUT) {
2637                 /* TODO: get rid of this no-timeout thing */
2638                 wait_for_completion_io(&wait);
2639                 return IO_OK;
2640         }
2641         if (!wait_for_completion_io_timeout(&wait,
2642                                         msecs_to_jiffies(timeout_msecs))) {
2643                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2644                 return -ETIMEDOUT;
2645         }
2646         return IO_OK;
2647 }
2648
2649 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2650                                    int reply_queue, unsigned long timeout_msecs)
2651 {
2652         if (unlikely(lockup_detected(h))) {
2653                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2654                 return IO_OK;
2655         }
2656         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2657 }
2658
2659 static u32 lockup_detected(struct ctlr_info *h)
2660 {
2661         int cpu;
2662         u32 rc, *lockup_detected;
2663
2664         cpu = get_cpu();
2665         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2666         rc = *lockup_detected;
2667         put_cpu();
2668         return rc;
2669 }
2670
2671 #define MAX_DRIVER_CMD_RETRIES 25
2672 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2673         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2674 {
2675         int backoff_time = 10, retry_count = 0;
2676         int rc;
2677
2678         do {
2679                 memset(c->err_info, 0, sizeof(*c->err_info));
2680                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2681                                                   timeout_msecs);
2682                 if (rc)
2683                         break;
2684                 retry_count++;
2685                 if (retry_count > 3) {
2686                         msleep(backoff_time);
2687                         if (backoff_time < 1000)
2688                                 backoff_time *= 2;
2689                 }
2690         } while ((check_for_unit_attention(h, c) ||
2691                         check_for_busy(h, c)) &&
2692                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2693         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2694         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2695                 rc = -EIO;
2696         return rc;
2697 }
2698
2699 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2700                                 struct CommandList *c)
2701 {
2702         const u8 *cdb = c->Request.CDB;
2703         const u8 *lun = c->Header.LUN.LunAddrBytes;
2704
2705         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2706         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2707                 txt, lun[0], lun[1], lun[2], lun[3],
2708                 lun[4], lun[5], lun[6], lun[7],
2709                 cdb[0], cdb[1], cdb[2], cdb[3],
2710                 cdb[4], cdb[5], cdb[6], cdb[7],
2711                 cdb[8], cdb[9], cdb[10], cdb[11],
2712                 cdb[12], cdb[13], cdb[14], cdb[15]);
2713 }
2714
2715 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2716                         struct CommandList *cp)
2717 {
2718         const struct ErrorInfo *ei = cp->err_info;
2719         struct device *d = &cp->h->pdev->dev;
2720         u8 sense_key, asc, ascq;
2721         int sense_len;
2722
2723         switch (ei->CommandStatus) {
2724         case CMD_TARGET_STATUS:
2725                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2726                         sense_len = sizeof(ei->SenseInfo);
2727                 else
2728                         sense_len = ei->SenseLen;
2729                 decode_sense_data(ei->SenseInfo, sense_len,
2730                                         &sense_key, &asc, &ascq);
2731                 hpsa_print_cmd(h, "SCSI status", cp);
2732                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2733                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2734                                 sense_key, asc, ascq);
2735                 else
2736                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2737                 if (ei->ScsiStatus == 0)
2738                         dev_warn(d, "SCSI status is abnormally zero.  "
2739                         "(probably indicates selection timeout "
2740                         "reported incorrectly due to a known "
2741                         "firmware bug, circa July, 2001.)\n");
2742                 break;
2743         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2744                 break;
2745         case CMD_DATA_OVERRUN:
2746                 hpsa_print_cmd(h, "overrun condition", cp);
2747                 break;
2748         case CMD_INVALID: {
2749                 /* controller unfortunately reports SCSI passthru's
2750                  * to non-existent targets as invalid commands.
2751                  */
2752                 hpsa_print_cmd(h, "invalid command", cp);
2753                 dev_warn(d, "probably means device no longer present\n");
2754                 }
2755                 break;
2756         case CMD_PROTOCOL_ERR:
2757                 hpsa_print_cmd(h, "protocol error", cp);
2758                 break;
2759         case CMD_HARDWARE_ERR:
2760                 hpsa_print_cmd(h, "hardware error", cp);
2761                 break;
2762         case CMD_CONNECTION_LOST:
2763                 hpsa_print_cmd(h, "connection lost", cp);
2764                 break;
2765         case CMD_ABORTED:
2766                 hpsa_print_cmd(h, "aborted", cp);
2767                 break;
2768         case CMD_ABORT_FAILED:
2769                 hpsa_print_cmd(h, "abort failed", cp);
2770                 break;
2771         case CMD_UNSOLICITED_ABORT:
2772                 hpsa_print_cmd(h, "unsolicited abort", cp);
2773                 break;
2774         case CMD_TIMEOUT:
2775                 hpsa_print_cmd(h, "timed out", cp);
2776                 break;
2777         case CMD_UNABORTABLE:
2778                 hpsa_print_cmd(h, "unabortable", cp);
2779                 break;
2780         case CMD_CTLR_LOCKUP:
2781                 hpsa_print_cmd(h, "controller lockup detected", cp);
2782                 break;
2783         default:
2784                 hpsa_print_cmd(h, "unknown status", cp);
2785                 dev_warn(d, "Unknown command status %x\n",
2786                                 ei->CommandStatus);
2787         }
2788 }
2789
2790 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2791                         u16 page, unsigned char *buf,
2792                         unsigned char bufsize)
2793 {
2794         int rc = IO_OK;
2795         struct CommandList *c;
2796         struct ErrorInfo *ei;
2797
2798         c = cmd_alloc(h);
2799
2800         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2801                         page, scsi3addr, TYPE_CMD)) {
2802                 rc = -1;
2803                 goto out;
2804         }
2805         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2806                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2807         if (rc)
2808                 goto out;
2809         ei = c->err_info;
2810         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2811                 hpsa_scsi_interpret_error(h, c);
2812                 rc = -1;
2813         }
2814 out:
2815         cmd_free(h, c);
2816         return rc;
2817 }
2818
2819 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2820         u8 reset_type, int reply_queue)
2821 {
2822         int rc = IO_OK;
2823         struct CommandList *c;
2824         struct ErrorInfo *ei;
2825
2826         c = cmd_alloc(h);
2827
2828
2829         /* fill_cmd can't fail here, no data buffer to map. */
2830         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2831                         scsi3addr, TYPE_MSG);
2832         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2833         if (rc) {
2834                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2835                 goto out;
2836         }
2837         /* no unmap needed here because no data xfer. */
2838
2839         ei = c->err_info;
2840         if (ei->CommandStatus != 0) {
2841                 hpsa_scsi_interpret_error(h, c);
2842                 rc = -1;
2843         }
2844 out:
2845         cmd_free(h, c);
2846         return rc;
2847 }
2848
2849 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2850                                struct hpsa_scsi_dev_t *dev,
2851                                unsigned char *scsi3addr)
2852 {
2853         int i;
2854         bool match = false;
2855         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2856         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2857
2858         if (hpsa_is_cmd_idle(c))
2859                 return false;
2860
2861         switch (c->cmd_type) {
2862         case CMD_SCSI:
2863         case CMD_IOCTL_PEND:
2864                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2865                                 sizeof(c->Header.LUN.LunAddrBytes));
2866                 break;
2867
2868         case CMD_IOACCEL1:
2869         case CMD_IOACCEL2:
2870                 if (c->phys_disk == dev) {
2871                         /* HBA mode match */
2872                         match = true;
2873                 } else {
2874                         /* Possible RAID mode -- check each phys dev. */
2875                         /* FIXME:  Do we need to take out a lock here?  If
2876                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2877                          * instead. */
2878                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2879                                 /* FIXME: an alternate test might be
2880                                  *
2881                                  * match = dev->phys_disk[i]->ioaccel_handle
2882                                  *              == c2->scsi_nexus;      */
2883                                 match = dev->phys_disk[i] == c->phys_disk;
2884                         }
2885                 }
2886                 break;
2887
2888         case IOACCEL2_TMF:
2889                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2890                         match = dev->phys_disk[i]->ioaccel_handle ==
2891                                         le32_to_cpu(ac->it_nexus);
2892                 }
2893                 break;
2894
2895         case 0:         /* The command is in the middle of being initialized. */
2896                 match = false;
2897                 break;
2898
2899         default:
2900                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2901                         c->cmd_type);
2902                 BUG();
2903         }
2904
2905         return match;
2906 }
2907
2908 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2909         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2910 {
2911         int i;
2912         int rc = 0;
2913
2914         /* We can really only handle one reset at a time */
2915         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2916                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2917                 return -EINTR;
2918         }
2919
2920         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2921
2922         for (i = 0; i < h->nr_cmds; i++) {
2923                 struct CommandList *c = h->cmd_pool + i;
2924                 int refcount = atomic_inc_return(&c->refcount);
2925
2926                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2927                         unsigned long flags;
2928
2929                         /*
2930                          * Mark the target command as having a reset pending,
2931                          * then lock a lock so that the command cannot complete
2932                          * while we're considering it.  If the command is not
2933                          * idle then count it; otherwise revoke the event.
2934                          */
2935                         c->reset_pending = dev;
2936                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2937                         if (!hpsa_is_cmd_idle(c))
2938                                 atomic_inc(&dev->reset_cmds_out);
2939                         else
2940                                 c->reset_pending = NULL;
2941                         spin_unlock_irqrestore(&h->lock, flags);
2942                 }
2943
2944                 cmd_free(h, c);
2945         }
2946
2947         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2948         if (!rc)
2949                 wait_event(h->event_sync_wait_queue,
2950                         atomic_read(&dev->reset_cmds_out) == 0 ||
2951                         lockup_detected(h));
2952
2953         if (unlikely(lockup_detected(h))) {
2954                 dev_warn(&h->pdev->dev,
2955                          "Controller lockup detected during reset wait\n");
2956                 rc = -ENODEV;
2957         }
2958
2959         if (unlikely(rc))
2960                 atomic_set(&dev->reset_cmds_out, 0);
2961
2962         mutex_unlock(&h->reset_mutex);
2963         return rc;
2964 }
2965
2966 static void hpsa_get_raid_level(struct ctlr_info *h,
2967         unsigned char *scsi3addr, unsigned char *raid_level)
2968 {
2969         int rc;
2970         unsigned char *buf;
2971
2972         *raid_level = RAID_UNKNOWN;
2973         buf = kzalloc(64, GFP_KERNEL);
2974         if (!buf)
2975                 return;
2976         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2977         if (rc == 0)
2978                 *raid_level = buf[8];
2979         if (*raid_level > RAID_UNKNOWN)
2980                 *raid_level = RAID_UNKNOWN;
2981         kfree(buf);
2982         return;
2983 }
2984
2985 #define HPSA_MAP_DEBUG
2986 #ifdef HPSA_MAP_DEBUG
2987 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2988                                 struct raid_map_data *map_buff)
2989 {
2990         struct raid_map_disk_data *dd = &map_buff->data[0];
2991         int map, row, col;
2992         u16 map_cnt, row_cnt, disks_per_row;
2993
2994         if (rc != 0)
2995                 return;
2996
2997         /* Show details only if debugging has been activated. */
2998         if (h->raid_offload_debug < 2)
2999                 return;
3000
3001         dev_info(&h->pdev->dev, "structure_size = %u\n",
3002                                 le32_to_cpu(map_buff->structure_size));
3003         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3004                         le32_to_cpu(map_buff->volume_blk_size));
3005         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3006                         le64_to_cpu(map_buff->volume_blk_cnt));
3007         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3008                         map_buff->phys_blk_shift);
3009         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3010                         map_buff->parity_rotation_shift);
3011         dev_info(&h->pdev->dev, "strip_size = %u\n",
3012                         le16_to_cpu(map_buff->strip_size));
3013         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3014                         le64_to_cpu(map_buff->disk_starting_blk));
3015         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3016                         le64_to_cpu(map_buff->disk_blk_cnt));
3017         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3018                         le16_to_cpu(map_buff->data_disks_per_row));
3019         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3020                         le16_to_cpu(map_buff->metadata_disks_per_row));
3021         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3022                         le16_to_cpu(map_buff->row_cnt));
3023         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3024                         le16_to_cpu(map_buff->layout_map_count));
3025         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3026                         le16_to_cpu(map_buff->flags));
3027         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3028                         le16_to_cpu(map_buff->flags) &
3029                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3030         dev_info(&h->pdev->dev, "dekindex = %u\n",
3031                         le16_to_cpu(map_buff->dekindex));
3032         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3033         for (map = 0; map < map_cnt; map++) {
3034                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3035                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3036                 for (row = 0; row < row_cnt; row++) {
3037                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3038                         disks_per_row =
3039                                 le16_to_cpu(map_buff->data_disks_per_row);
3040                         for (col = 0; col < disks_per_row; col++, dd++)
3041                                 dev_info(&h->pdev->dev,
3042                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3043                                         col, dd->ioaccel_handle,
3044                                         dd->xor_mult[0], dd->xor_mult[1]);
3045                         disks_per_row =
3046                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3047                         for (col = 0; col < disks_per_row; col++, dd++)
3048                                 dev_info(&h->pdev->dev,
3049                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3050                                         col, dd->ioaccel_handle,
3051                                         dd->xor_mult[0], dd->xor_mult[1]);
3052                 }
3053         }
3054 }
3055 #else
3056 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3057                         __attribute__((unused)) int rc,
3058                         __attribute__((unused)) struct raid_map_data *map_buff)
3059 {
3060 }
3061 #endif
3062
3063 static int hpsa_get_raid_map(struct ctlr_info *h,
3064         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3065 {
3066         int rc = 0;
3067         struct CommandList *c;
3068         struct ErrorInfo *ei;
3069
3070         c = cmd_alloc(h);
3071
3072         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3073                         sizeof(this_device->raid_map), 0,
3074                         scsi3addr, TYPE_CMD)) {
3075                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3076                 cmd_free(h, c);
3077                 return -1;
3078         }
3079         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3080                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3081         if (rc)
3082                 goto out;
3083         ei = c->err_info;
3084         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3085                 hpsa_scsi_interpret_error(h, c);
3086                 rc = -1;
3087                 goto out;
3088         }
3089         cmd_free(h, c);
3090
3091         /* @todo in the future, dynamically allocate RAID map memory */
3092         if (le32_to_cpu(this_device->raid_map.structure_size) >
3093                                 sizeof(this_device->raid_map)) {
3094                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3095                 rc = -1;
3096         }
3097         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3098         return rc;
3099 out:
3100         cmd_free(h, c);
3101         return rc;
3102 }
3103
3104 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3105                 unsigned char scsi3addr[], u16 bmic_device_index,
3106                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3107 {
3108         int rc = IO_OK;
3109         struct CommandList *c;
3110         struct ErrorInfo *ei;
3111
3112         c = cmd_alloc(h);
3113
3114         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3115                 0, RAID_CTLR_LUNID, TYPE_CMD);
3116         if (rc)
3117                 goto out;
3118
3119         c->Request.CDB[2] = bmic_device_index & 0xff;
3120         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3121
3122         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3123                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3124         if (rc)
3125                 goto out;
3126         ei = c->err_info;
3127         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3128                 hpsa_scsi_interpret_error(h, c);
3129                 rc = -1;
3130         }
3131 out:
3132         cmd_free(h, c);
3133         return rc;
3134 }
3135
3136 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3137         struct bmic_identify_controller *buf, size_t bufsize)
3138 {
3139         int rc = IO_OK;
3140         struct CommandList *c;
3141         struct ErrorInfo *ei;
3142
3143         c = cmd_alloc(h);
3144
3145         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3146                 0, RAID_CTLR_LUNID, TYPE_CMD);
3147         if (rc)
3148                 goto out;
3149
3150         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3151                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3152         if (rc)
3153                 goto out;
3154         ei = c->err_info;
3155         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3156                 hpsa_scsi_interpret_error(h, c);
3157                 rc = -1;
3158         }
3159 out:
3160         cmd_free(h, c);
3161         return rc;
3162 }
3163
3164 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3165                 unsigned char scsi3addr[], u16 bmic_device_index,
3166                 struct bmic_identify_physical_device *buf, size_t bufsize)
3167 {
3168         int rc = IO_OK;
3169         struct CommandList *c;
3170         struct ErrorInfo *ei;
3171
3172         c = cmd_alloc(h);
3173         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3174                 0, RAID_CTLR_LUNID, TYPE_CMD);
3175         if (rc)
3176                 goto out;
3177
3178         c->Request.CDB[2] = bmic_device_index & 0xff;
3179         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3180
3181         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3182                                                 NO_TIMEOUT);
3183         ei = c->err_info;
3184         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3185                 hpsa_scsi_interpret_error(h, c);
3186                 rc = -1;
3187         }
3188 out:
3189         cmd_free(h, c);
3190
3191         return rc;
3192 }
3193
3194 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3195                                                 unsigned char *scsi3addr)
3196 {
3197         struct ReportExtendedLUNdata *physdev;
3198         u32 nphysicals;
3199         u64 sa = 0;
3200         int i;
3201
3202         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3203         if (!physdev)
3204                 return 0;
3205
3206         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3207                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3208                 kfree(physdev);
3209                 return 0;
3210         }
3211         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3212
3213         for (i = 0; i < nphysicals; i++)
3214                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3215                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3216                         break;
3217                 }
3218
3219         kfree(physdev);
3220
3221         return sa;
3222 }
3223
3224 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3225                                         struct hpsa_scsi_dev_t *dev)
3226 {
3227         int rc;
3228         u64 sa = 0;
3229
3230         if (is_hba_lunid(scsi3addr)) {
3231                 struct bmic_sense_subsystem_info *ssi;
3232
3233                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3234                 if (ssi == NULL) {
3235                         dev_warn(&h->pdev->dev,
3236                                 "%s: out of memory\n", __func__);
3237                         return;
3238                 }
3239
3240                 rc = hpsa_bmic_sense_subsystem_information(h,
3241                                         scsi3addr, 0, ssi, sizeof(*ssi));
3242                 if (rc == 0) {
3243                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3244                         h->sas_address = sa;
3245                 }
3246
3247                 kfree(ssi);
3248         } else
3249                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3250
3251         dev->sas_address = sa;
3252 }
3253
3254 /* Get a device id from inquiry page 0x83 */
3255 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3256         unsigned char scsi3addr[], u8 page)
3257 {
3258         int rc;
3259         int i;
3260         int pages;
3261         unsigned char *buf, bufsize;
3262
3263         buf = kzalloc(256, GFP_KERNEL);
3264         if (!buf)
3265                 return 0;
3266
3267         /* Get the size of the page list first */
3268         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3269                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3270                                 buf, HPSA_VPD_HEADER_SZ);
3271         if (rc != 0)
3272                 goto exit_unsupported;
3273         pages = buf[3];
3274         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3275                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3276         else
3277                 bufsize = 255;
3278
3279         /* Get the whole VPD page list */
3280         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3281                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3282                                 buf, bufsize);
3283         if (rc != 0)
3284                 goto exit_unsupported;
3285
3286         pages = buf[3];
3287         for (i = 1; i <= pages; i++)
3288                 if (buf[3 + i] == page)
3289                         goto exit_supported;
3290 exit_unsupported:
3291         kfree(buf);
3292         return 0;
3293 exit_supported:
3294         kfree(buf);
3295         return 1;
3296 }
3297
3298 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3299         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3300 {
3301         int rc;
3302         unsigned char *buf;
3303         u8 ioaccel_status;
3304
3305         this_device->offload_config = 0;
3306         this_device->offload_enabled = 0;
3307         this_device->offload_to_be_enabled = 0;
3308
3309         buf = kzalloc(64, GFP_KERNEL);
3310         if (!buf)
3311                 return;
3312         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3313                 goto out;
3314         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3315                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3316         if (rc != 0)
3317                 goto out;
3318
3319 #define IOACCEL_STATUS_BYTE 4
3320 #define OFFLOAD_CONFIGURED_BIT 0x01
3321 #define OFFLOAD_ENABLED_BIT 0x02
3322         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3323         this_device->offload_config =
3324                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3325         if (this_device->offload_config) {
3326                 this_device->offload_enabled =
3327                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3328                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3329                         this_device->offload_enabled = 0;
3330         }
3331         this_device->offload_to_be_enabled = this_device->offload_enabled;
3332 out:
3333         kfree(buf);
3334         return;
3335 }
3336
3337 /* Get the device id from inquiry page 0x83 */
3338 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3339         unsigned char *device_id, int index, int buflen)
3340 {
3341         int rc;
3342         unsigned char *buf;
3343
3344         if (buflen > 16)
3345                 buflen = 16;
3346         buf = kzalloc(64, GFP_KERNEL);
3347         if (!buf)
3348                 return -ENOMEM;
3349         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3350         if (rc == 0)
3351                 memcpy(device_id, &buf[index], buflen);
3352
3353         kfree(buf);
3354
3355         return rc != 0;
3356 }
3357
3358 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3359                 void *buf, int bufsize,
3360                 int extended_response)
3361 {
3362         int rc = IO_OK;
3363         struct CommandList *c;
3364         unsigned char scsi3addr[8];
3365         struct ErrorInfo *ei;
3366
3367         c = cmd_alloc(h);
3368
3369         /* address the controller */
3370         memset(scsi3addr, 0, sizeof(scsi3addr));
3371         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3372                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3373                 rc = -1;
3374                 goto out;
3375         }
3376         if (extended_response)
3377                 c->Request.CDB[1] = extended_response;
3378         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3379                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3380         if (rc)
3381                 goto out;
3382         ei = c->err_info;
3383         if (ei->CommandStatus != 0 &&
3384             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3385                 hpsa_scsi_interpret_error(h, c);
3386                 rc = -1;
3387         } else {
3388                 struct ReportLUNdata *rld = buf;
3389
3390                 if (rld->extended_response_flag != extended_response) {
3391                         dev_err(&h->pdev->dev,
3392                                 "report luns requested format %u, got %u\n",
3393                                 extended_response,
3394                                 rld->extended_response_flag);
3395                         rc = -1;
3396                 }
3397         }
3398 out:
3399         cmd_free(h, c);
3400         return rc;
3401 }
3402
3403 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3404                 struct ReportExtendedLUNdata *buf, int bufsize)
3405 {
3406         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3407                                                 HPSA_REPORT_PHYS_EXTENDED);
3408 }
3409
3410 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3411                 struct ReportLUNdata *buf, int bufsize)
3412 {
3413         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3414 }
3415
3416 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3417         int bus, int target, int lun)
3418 {
3419         device->bus = bus;
3420         device->target = target;
3421         device->lun = lun;
3422 }
3423
3424 /* Use VPD inquiry to get details of volume status */
3425 static int hpsa_get_volume_status(struct ctlr_info *h,
3426                                         unsigned char scsi3addr[])
3427 {
3428         int rc;
3429         int status;
3430         int size;
3431         unsigned char *buf;
3432
3433         buf = kzalloc(64, GFP_KERNEL);
3434         if (!buf)
3435                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3436
3437         /* Does controller have VPD for logical volume status? */
3438         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3439                 goto exit_failed;
3440
3441         /* Get the size of the VPD return buffer */
3442         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3443                                         buf, HPSA_VPD_HEADER_SZ);
3444         if (rc != 0)
3445                 goto exit_failed;
3446         size = buf[3];
3447
3448         /* Now get the whole VPD buffer */
3449         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3450                                         buf, size + HPSA_VPD_HEADER_SZ);
3451         if (rc != 0)
3452                 goto exit_failed;
3453         status = buf[4]; /* status byte */
3454
3455         kfree(buf);
3456         return status;
3457 exit_failed:
3458         kfree(buf);
3459         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3460 }
3461
3462 /* Determine offline status of a volume.
3463  * Return either:
3464  *  0 (not offline)
3465  *  0xff (offline for unknown reasons)
3466  *  # (integer code indicating one of several NOT READY states
3467  *     describing why a volume is to be kept offline)
3468  */
3469 static int hpsa_volume_offline(struct ctlr_info *h,
3470                                         unsigned char scsi3addr[])
3471 {
3472         struct CommandList *c;
3473         unsigned char *sense;
3474         u8 sense_key, asc, ascq;
3475         int sense_len;
3476         int rc, ldstat = 0;
3477         u16 cmd_status;
3478         u8 scsi_status;
3479 #define ASC_LUN_NOT_READY 0x04
3480 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3481 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3482
3483         c = cmd_alloc(h);
3484
3485         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3486         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3487         if (rc) {
3488                 cmd_free(h, c);
3489                 return 0;
3490         }
3491         sense = c->err_info->SenseInfo;
3492         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3493                 sense_len = sizeof(c->err_info->SenseInfo);
3494         else
3495                 sense_len = c->err_info->SenseLen;
3496         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3497         cmd_status = c->err_info->CommandStatus;
3498         scsi_status = c->err_info->ScsiStatus;
3499         cmd_free(h, c);
3500         /* Is the volume 'not ready'? */
3501         if (cmd_status != CMD_TARGET_STATUS ||
3502                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3503                 sense_key != NOT_READY ||
3504                 asc != ASC_LUN_NOT_READY)  {
3505                 return 0;
3506         }
3507
3508         /* Determine the reason for not ready state */
3509         ldstat = hpsa_get_volume_status(h, scsi3addr);
3510
3511         /* Keep volume offline in certain cases: */
3512         switch (ldstat) {
3513         case HPSA_LV_UNDERGOING_ERASE:
3514         case HPSA_LV_NOT_AVAILABLE:
3515         case HPSA_LV_UNDERGOING_RPI:
3516         case HPSA_LV_PENDING_RPI:
3517         case HPSA_LV_ENCRYPTED_NO_KEY:
3518         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3519         case HPSA_LV_UNDERGOING_ENCRYPTION:
3520         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3521         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3522                 return ldstat;
3523         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3524                 /* If VPD status page isn't available,
3525                  * use ASC/ASCQ to determine state
3526                  */
3527                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3528                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3529                         return ldstat;
3530                 break;
3531         default:
3532                 break;
3533         }
3534         return 0;
3535 }
3536
3537 /*
3538  * Find out if a logical device supports aborts by simply trying one.
3539  * Smart Array may claim not to support aborts on logical drives, but
3540  * if a MSA2000 * is connected, the drives on that will be presented
3541  * by the Smart Array as logical drives, and aborts may be sent to
3542  * those devices successfully.  So the simplest way to find out is
3543  * to simply try an abort and see how the device responds.
3544  */
3545 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3546                                         unsigned char *scsi3addr)
3547 {
3548         struct CommandList *c;
3549         struct ErrorInfo *ei;
3550         int rc = 0;
3551
3552         u64 tag = (u64) -1; /* bogus tag */
3553
3554         /* Assume that physical devices support aborts */
3555         if (!is_logical_dev_addr_mode(scsi3addr))
3556                 return 1;
3557
3558         c = cmd_alloc(h);
3559
3560         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3561         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3562         /* no unmap needed here because no data xfer. */
3563         ei = c->err_info;
3564         switch (ei->CommandStatus) {
3565         case CMD_INVALID:
3566                 rc = 0;
3567                 break;
3568         case CMD_UNABORTABLE:
3569         case CMD_ABORT_FAILED:
3570                 rc = 1;
3571                 break;
3572         case CMD_TMF_STATUS:
3573                 rc = hpsa_evaluate_tmf_status(h, c);
3574                 break;
3575         default:
3576                 rc = 0;
3577                 break;
3578         }
3579         cmd_free(h, c);
3580         return rc;
3581 }
3582
3583 static void sanitize_inquiry_string(unsigned char *s, int len)
3584 {
3585         bool terminated = false;
3586
3587         for (; len > 0; (--len, ++s)) {
3588                 if (*s == 0)
3589                         terminated = true;
3590                 if (terminated || *s < 0x20 || *s > 0x7e)
3591                         *s = ' ';
3592         }
3593 }
3594
3595 static int hpsa_update_device_info(struct ctlr_info *h,
3596         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3597         unsigned char *is_OBDR_device)
3598 {
3599
3600 #define OBDR_SIG_OFFSET 43
3601 #define OBDR_TAPE_SIG "$DR-10"
3602 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3603 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3604
3605         unsigned char *inq_buff;
3606         unsigned char *obdr_sig;
3607         int rc = 0;
3608
3609         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3610         if (!inq_buff) {
3611                 rc = -ENOMEM;
3612                 goto bail_out;
3613         }
3614
3615         /* Do an inquiry to the device to see what it is. */
3616         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3617                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3618                 /* Inquiry failed (msg printed already) */
3619                 dev_err(&h->pdev->dev,
3620                         "hpsa_update_device_info: inquiry failed\n");
3621                 rc = -EIO;
3622                 goto bail_out;
3623         }
3624
3625         sanitize_inquiry_string(&inq_buff[8], 8);
3626         sanitize_inquiry_string(&inq_buff[16], 16);
3627
3628         this_device->devtype = (inq_buff[0] & 0x1f);
3629         memcpy(this_device->scsi3addr, scsi3addr, 8);
3630         memcpy(this_device->vendor, &inq_buff[8],
3631                 sizeof(this_device->vendor));
3632         memcpy(this_device->model, &inq_buff[16],
3633                 sizeof(this_device->model));
3634         memset(this_device->device_id, 0,
3635                 sizeof(this_device->device_id));
3636         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3637                 sizeof(this_device->device_id));
3638
3639         if (this_device->devtype == TYPE_DISK &&
3640                 is_logical_dev_addr_mode(scsi3addr)) {
3641                 int volume_offline;
3642
3643                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3644                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3645                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3646                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3647                 if (volume_offline < 0 || volume_offline > 0xff)
3648                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3649                 this_device->volume_offline = volume_offline & 0xff;
3650         } else {
3651                 this_device->raid_level = RAID_UNKNOWN;
3652                 this_device->offload_config = 0;
3653                 this_device->offload_enabled = 0;
3654                 this_device->offload_to_be_enabled = 0;
3655                 this_device->hba_ioaccel_enabled = 0;
3656                 this_device->volume_offline = 0;
3657                 this_device->queue_depth = h->nr_cmds;
3658         }
3659
3660         if (is_OBDR_device) {
3661                 /* See if this is a One-Button-Disaster-Recovery device
3662                  * by looking for "$DR-10" at offset 43 in inquiry data.
3663                  */
3664                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3665                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3666                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3667                                                 OBDR_SIG_LEN) == 0);
3668         }
3669         kfree(inq_buff);
3670         return 0;
3671
3672 bail_out:
3673         kfree(inq_buff);
3674         return rc;
3675 }
3676
3677 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3678                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3679 {
3680         unsigned long flags;
3681         int rc, entry;
3682         /*
3683          * See if this device supports aborts.  If we already know
3684          * the device, we already know if it supports aborts, otherwise
3685          * we have to find out if it supports aborts by trying one.
3686          */
3687         spin_lock_irqsave(&h->devlock, flags);
3688         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3689         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3690                 entry >= 0 && entry < h->ndevices) {
3691                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3692                 spin_unlock_irqrestore(&h->devlock, flags);
3693         } else {
3694                 spin_unlock_irqrestore(&h->devlock, flags);
3695                 dev->supports_aborts =
3696                                 hpsa_device_supports_aborts(h, scsi3addr);
3697                 if (dev->supports_aborts < 0)
3698                         dev->supports_aborts = 0;
3699         }
3700 }
3701
3702 /*
3703  * Helper function to assign bus, target, lun mapping of devices.
3704  * Logical drive target and lun are assigned at this time, but
3705  * physical device lun and target assignment are deferred (assigned
3706  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3707 */
3708 static void figure_bus_target_lun(struct ctlr_info *h,
3709         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3710 {
3711         u32 lunid = get_unaligned_le32(lunaddrbytes);
3712
3713         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3714                 /* physical device, target and lun filled in later */
3715                 if (is_hba_lunid(lunaddrbytes))
3716                         hpsa_set_bus_target_lun(device,
3717                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3718                 else
3719                         /* defer target, lun assignment for physical devices */
3720                         hpsa_set_bus_target_lun(device,
3721                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3722                 return;
3723         }
3724         /* It's a logical device */
3725         if (device->external) {
3726                 hpsa_set_bus_target_lun(device,
3727                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3728                         lunid & 0x00ff);
3729                 return;
3730         }
3731         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3732                                 0, lunid & 0x3fff);
3733 }
3734
3735
3736 /*
3737  * Get address of physical disk used for an ioaccel2 mode command:
3738  *      1. Extract ioaccel2 handle from the command.
3739  *      2. Find a matching ioaccel2 handle from list of physical disks.
3740  *      3. Return:
3741  *              1 and set scsi3addr to address of matching physical
3742  *              0 if no matching physical disk was found.
3743  */
3744 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3745         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3746 {
3747         struct io_accel2_cmd *c2 =
3748                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3749         unsigned long flags;
3750         int i;
3751
3752         spin_lock_irqsave(&h->devlock, flags);
3753         for (i = 0; i < h->ndevices; i++)
3754                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3755                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3756                                 sizeof(h->dev[i]->scsi3addr));
3757                         spin_unlock_irqrestore(&h->devlock, flags);
3758                         return 1;
3759                 }
3760         spin_unlock_irqrestore(&h->devlock, flags);
3761         return 0;
3762 }
3763
3764 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3765         int i, int nphysicals, int nlocal_logicals)
3766 {
3767         /* In report logicals, local logicals are listed first,
3768         * then any externals.
3769         */
3770         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3771
3772         if (i == raid_ctlr_position)
3773                 return 0;
3774
3775         if (i < logicals_start)
3776                 return 0;
3777
3778         /* i is in logicals range, but still within local logicals */
3779         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3780                 return 0;
3781
3782         return 1; /* it's an external lun */
3783 }
3784
3785 /*
3786  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3787  * logdev.  The number of luns in physdev and logdev are returned in
3788  * *nphysicals and *nlogicals, respectively.
3789  * Returns 0 on success, -1 otherwise.
3790  */
3791 static int hpsa_gather_lun_info(struct ctlr_info *h,
3792         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3793         struct ReportLUNdata *logdev, u32 *nlogicals)
3794 {
3795         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3796                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3797                 return -1;
3798         }
3799         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3800         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3801                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3802                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3803                 *nphysicals = HPSA_MAX_PHYS_LUN;
3804         }
3805         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3806                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3807                 return -1;
3808         }
3809         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3810         /* Reject Logicals in excess of our max capability. */
3811         if (*nlogicals > HPSA_MAX_LUN) {
3812                 dev_warn(&h->pdev->dev,
3813                         "maximum logical LUNs (%d) exceeded.  "
3814                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3815                         *nlogicals - HPSA_MAX_LUN);
3816                         *nlogicals = HPSA_MAX_LUN;
3817         }
3818         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3819                 dev_warn(&h->pdev->dev,
3820                         "maximum logical + physical LUNs (%d) exceeded. "
3821                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3822                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3823                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3824         }
3825         return 0;
3826 }
3827
3828 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3829         int i, int nphysicals, int nlogicals,
3830         struct ReportExtendedLUNdata *physdev_list,
3831         struct ReportLUNdata *logdev_list)
3832 {
3833         /* Helper function, figure out where the LUN ID info is coming from
3834          * given index i, lists of physical and logical devices, where in
3835          * the list the raid controller is supposed to appear (first or last)
3836          */
3837
3838         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3839         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3840
3841         if (i == raid_ctlr_position)
3842                 return RAID_CTLR_LUNID;
3843
3844         if (i < logicals_start)
3845                 return &physdev_list->LUN[i -
3846                                 (raid_ctlr_position == 0)].lunid[0];
3847
3848         if (i < last_device)
3849                 return &logdev_list->LUN[i - nphysicals -
3850                         (raid_ctlr_position == 0)][0];
3851         BUG();
3852         return NULL;
3853 }
3854
3855 /* get physical drive ioaccel handle and queue depth */
3856 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3857                 struct hpsa_scsi_dev_t *dev,
3858                 struct ReportExtendedLUNdata *rlep, int rle_index,
3859                 struct bmic_identify_physical_device *id_phys)
3860 {
3861         int rc;
3862         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3863
3864         dev->ioaccel_handle = rle->ioaccel_handle;
3865         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3866                 dev->hba_ioaccel_enabled = 1;
3867         memset(id_phys, 0, sizeof(*id_phys));
3868         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3869                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3870                         sizeof(*id_phys));
3871         if (!rc)
3872                 /* Reserve space for FW operations */
3873 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3874 #define DRIVE_QUEUE_DEPTH 7
3875                 dev->queue_depth =
3876                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3877                                 DRIVE_CMDS_RESERVED_FOR_FW;
3878         else
3879                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3880 }
3881
3882 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3883         struct ReportExtendedLUNdata *rlep, int rle_index,
3884         struct bmic_identify_physical_device *id_phys)
3885 {
3886         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3887
3888         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3889                 this_device->hba_ioaccel_enabled = 1;
3890
3891         memcpy(&this_device->active_path_index,
3892                 &id_phys->active_path_number,
3893                 sizeof(this_device->active_path_index));
3894         memcpy(&this_device->path_map,
3895                 &id_phys->redundant_path_present_map,
3896                 sizeof(this_device->path_map));
3897         memcpy(&this_device->box,
3898                 &id_phys->alternate_paths_phys_box_on_port,
3899                 sizeof(this_device->box));
3900         memcpy(&this_device->phys_connector,
3901                 &id_phys->alternate_paths_phys_connector,
3902                 sizeof(this_device->phys_connector));
3903         memcpy(&this_device->bay,
3904                 &id_phys->phys_bay_in_box,
3905                 sizeof(this_device->bay));
3906 }
3907
3908 /* get number of local logical disks. */
3909 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3910         struct bmic_identify_controller *id_ctlr,
3911         u32 *nlocals)
3912 {
3913         int rc;
3914
3915         if (!id_ctlr) {
3916                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3917                         __func__);
3918                 return -ENOMEM;
3919         }
3920         memset(id_ctlr, 0, sizeof(*id_ctlr));
3921         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3922         if (!rc)
3923                 if (id_ctlr->configured_logical_drive_count < 256)
3924                         *nlocals = id_ctlr->configured_logical_drive_count;
3925                 else
3926                         *nlocals = le16_to_cpu(
3927                                         id_ctlr->extended_logical_unit_count);
3928         else
3929                 *nlocals = -1;
3930         return rc;
3931 }
3932
3933
3934 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3935 {
3936         /* the idea here is we could get notified
3937          * that some devices have changed, so we do a report
3938          * physical luns and report logical luns cmd, and adjust
3939          * our list of devices accordingly.
3940          *
3941          * The scsi3addr's of devices won't change so long as the
3942          * adapter is not reset.  That means we can rescan and
3943          * tell which devices we already know about, vs. new
3944          * devices, vs.  disappearing devices.
3945          */
3946         struct ReportExtendedLUNdata *physdev_list = NULL;
3947         struct ReportLUNdata *logdev_list = NULL;
3948         struct bmic_identify_physical_device *id_phys = NULL;
3949         struct bmic_identify_controller *id_ctlr = NULL;
3950         u32 nphysicals = 0;
3951         u32 nlogicals = 0;
3952         u32 nlocal_logicals = 0;
3953         u32 ndev_allocated = 0;
3954         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3955         int ncurrent = 0;
3956         int i, n_ext_target_devs, ndevs_to_allocate;
3957         int raid_ctlr_position;
3958         bool physical_device;
3959         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3960
3961         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3962         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3963         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3964         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3965         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3966         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
3967
3968         if (!currentsd || !physdev_list || !logdev_list ||
3969                 !tmpdevice || !id_phys || !id_ctlr) {
3970                 dev_err(&h->pdev->dev, "out of memory\n");
3971                 goto out;
3972         }
3973         memset(lunzerobits, 0, sizeof(lunzerobits));
3974
3975         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3976
3977         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3978                         logdev_list, &nlogicals)) {
3979                 h->drv_req_rescan = 1;
3980                 goto out;
3981         }
3982
3983         /* Set number of local logicals (non PTRAID) */
3984         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
3985                 dev_warn(&h->pdev->dev,
3986                         "%s: Can't determine number of local logical devices.\n",
3987                         __func__);
3988         }
3989
3990         /* We might see up to the maximum number of logical and physical disks
3991          * plus external target devices, and a device for the local RAID
3992          * controller.
3993          */
3994         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3995
3996         /* Allocate the per device structures */
3997         for (i = 0; i < ndevs_to_allocate; i++) {
3998                 if (i >= HPSA_MAX_DEVICES) {
3999                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4000                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4001                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4002                         break;
4003                 }
4004
4005                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4006                 if (!currentsd[i]) {
4007                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4008                                 __FILE__, __LINE__);
4009                         h->drv_req_rescan = 1;
4010                         goto out;
4011                 }
4012                 ndev_allocated++;
4013         }
4014
4015         if (is_scsi_rev_5(h))
4016                 raid_ctlr_position = 0;
4017         else
4018                 raid_ctlr_position = nphysicals + nlogicals;
4019
4020         /* adjust our table of devices */
4021         n_ext_target_devs = 0;
4022         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4023                 u8 *lunaddrbytes, is_OBDR = 0;
4024                 int rc = 0;
4025                 int phys_dev_index = i - (raid_ctlr_position == 0);
4026
4027                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4028
4029                 /* Figure out where the LUN ID info is coming from */
4030                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4031                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4032
4033                 /* skip masked non-disk devices */
4034                 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4035                         (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4036                         continue;
4037
4038                 /* Get device type, vendor, model, device id */
4039                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4040                                                         &is_OBDR);
4041                 if (rc == -ENOMEM) {
4042                         dev_warn(&h->pdev->dev,
4043                                 "Out of memory, rescan deferred.\n");
4044                         h->drv_req_rescan = 1;
4045                         goto out;
4046                 }
4047                 if (rc) {
4048                         dev_warn(&h->pdev->dev,
4049                                 "Inquiry failed, skipping device.\n");
4050                         continue;
4051                 }
4052
4053                 /* Determine if this is a lun from an external target array */
4054                 tmpdevice->external =
4055                         figure_external_status(h, raid_ctlr_position, i,
4056                                                 nphysicals, nlocal_logicals);
4057
4058                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4059                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4060                 this_device = currentsd[ncurrent];
4061
4062                 /* Turn on discovery_polling if there are ext target devices.
4063                  * Event-based change notification is unreliable for those.
4064                  */
4065                 if (!h->discovery_polling) {
4066                         if (tmpdevice->external) {
4067                                 h->discovery_polling = 1;
4068                                 dev_info(&h->pdev->dev,
4069                                         "External target, activate discovery polling.\n");
4070                         }
4071                 }
4072
4073
4074                 *this_device = *tmpdevice;
4075                 this_device->physical_device = physical_device;
4076
4077                 /*
4078                  * Expose all devices except for physical devices that
4079                  * are masked.
4080                  */
4081                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4082                         this_device->expose_device = 0;
4083                 else
4084                         this_device->expose_device = 1;
4085
4086
4087                 /*
4088                  * Get the SAS address for physical devices that are exposed.
4089                  */
4090                 if (this_device->physical_device && this_device->expose_device)
4091                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4092
4093                 switch (this_device->devtype) {
4094                 case TYPE_ROM:
4095                         /* We don't *really* support actual CD-ROM devices,
4096                          * just "One Button Disaster Recovery" tape drive
4097                          * which temporarily pretends to be a CD-ROM drive.
4098                          * So we check that the device is really an OBDR tape
4099                          * device by checking for "$DR-10" in bytes 43-48 of
4100                          * the inquiry data.
4101                          */
4102                         if (is_OBDR)
4103                                 ncurrent++;
4104                         break;
4105                 case TYPE_DISK:
4106                         if (this_device->physical_device) {
4107                                 /* The disk is in HBA mode. */
4108                                 /* Never use RAID mapper in HBA mode. */
4109                                 this_device->offload_enabled = 0;
4110                                 hpsa_get_ioaccel_drive_info(h, this_device,
4111                                         physdev_list, phys_dev_index, id_phys);
4112                                 hpsa_get_path_info(this_device,
4113                                         physdev_list, phys_dev_index, id_phys);
4114                         }
4115                         ncurrent++;
4116                         break;
4117                 case TYPE_TAPE:
4118                 case TYPE_MEDIUM_CHANGER:
4119                 case TYPE_ENCLOSURE:
4120                         ncurrent++;
4121                         break;
4122                 case TYPE_RAID:
4123                         /* Only present the Smartarray HBA as a RAID controller.
4124                          * If it's a RAID controller other than the HBA itself
4125                          * (an external RAID controller, MSA500 or similar)
4126                          * don't present it.
4127                          */
4128                         if (!is_hba_lunid(lunaddrbytes))
4129                                 break;
4130                         ncurrent++;
4131                         break;
4132                 default:
4133                         break;
4134                 }
4135                 if (ncurrent >= HPSA_MAX_DEVICES)
4136                         break;
4137         }
4138
4139         if (h->sas_host == NULL) {
4140                 int rc = 0;
4141
4142                 rc = hpsa_add_sas_host(h);
4143                 if (rc) {
4144                         dev_warn(&h->pdev->dev,
4145                                 "Could not add sas host %d\n", rc);
4146                         goto out;
4147                 }
4148         }
4149
4150         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4151 out:
4152         kfree(tmpdevice);
4153         for (i = 0; i < ndev_allocated; i++)
4154                 kfree(currentsd[i]);
4155         kfree(currentsd);
4156         kfree(physdev_list);
4157         kfree(logdev_list);
4158         kfree(id_ctlr);
4159         kfree(id_phys);
4160 }
4161
4162 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4163                                    struct scatterlist *sg)
4164 {
4165         u64 addr64 = (u64) sg_dma_address(sg);
4166         unsigned int len = sg_dma_len(sg);
4167
4168         desc->Addr = cpu_to_le64(addr64);
4169         desc->Len = cpu_to_le32(len);
4170         desc->Ext = 0;
4171 }
4172
4173 /*
4174  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4175  * dma mapping  and fills in the scatter gather entries of the
4176  * hpsa command, cp.
4177  */
4178 static int hpsa_scatter_gather(struct ctlr_info *h,
4179                 struct CommandList *cp,
4180                 struct scsi_cmnd *cmd)
4181 {
4182         struct scatterlist *sg;
4183         int use_sg, i, sg_limit, chained, last_sg;
4184         struct SGDescriptor *curr_sg;
4185
4186         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4187
4188         use_sg = scsi_dma_map(cmd);
4189         if (use_sg < 0)
4190                 return use_sg;
4191
4192         if (!use_sg)
4193                 goto sglist_finished;
4194
4195         /*
4196          * If the number of entries is greater than the max for a single list,
4197          * then we have a chained list; we will set up all but one entry in the
4198          * first list (the last entry is saved for link information);
4199          * otherwise, we don't have a chained list and we'll set up at each of
4200          * the entries in the one list.
4201          */
4202         curr_sg = cp->SG;
4203         chained = use_sg > h->max_cmd_sg_entries;
4204         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4205         last_sg = scsi_sg_count(cmd) - 1;
4206         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4207                 hpsa_set_sg_descriptor(curr_sg, sg);
4208                 curr_sg++;
4209         }
4210
4211         if (chained) {
4212                 /*
4213                  * Continue with the chained list.  Set curr_sg to the chained
4214                  * list.  Modify the limit to the total count less the entries
4215                  * we've already set up.  Resume the scan at the list entry
4216                  * where the previous loop left off.
4217                  */
4218                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4219                 sg_limit = use_sg - sg_limit;
4220                 for_each_sg(sg, sg, sg_limit, i) {
4221                         hpsa_set_sg_descriptor(curr_sg, sg);
4222                         curr_sg++;
4223                 }
4224         }
4225
4226         /* Back the pointer up to the last entry and mark it as "last". */
4227         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4228
4229         if (use_sg + chained > h->maxSG)
4230                 h->maxSG = use_sg + chained;
4231
4232         if (chained) {
4233                 cp->Header.SGList = h->max_cmd_sg_entries;
4234                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4235                 if (hpsa_map_sg_chain_block(h, cp)) {
4236                         scsi_dma_unmap(cmd);
4237                         return -1;
4238                 }
4239                 return 0;
4240         }
4241
4242 sglist_finished:
4243
4244         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4245         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4246         return 0;
4247 }
4248
4249 #define IO_ACCEL_INELIGIBLE (1)
4250 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4251 {
4252         int is_write = 0;
4253         u32 block;
4254         u32 block_cnt;
4255
4256         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4257         switch (cdb[0]) {
4258         case WRITE_6:
4259         case WRITE_12:
4260                 is_write = 1;
4261         case READ_6:
4262         case READ_12:
4263                 if (*cdb_len == 6) {
4264                         block = get_unaligned_be16(&cdb[2]);
4265                         block_cnt = cdb[4];
4266                         if (block_cnt == 0)
4267                                 block_cnt = 256;
4268                 } else {
4269                         BUG_ON(*cdb_len != 12);
4270                         block = get_unaligned_be32(&cdb[2]);
4271                         block_cnt = get_unaligned_be32(&cdb[6]);
4272                 }
4273                 if (block_cnt > 0xffff)
4274                         return IO_ACCEL_INELIGIBLE;
4275
4276                 cdb[0] = is_write ? WRITE_10 : READ_10;
4277                 cdb[1] = 0;
4278                 cdb[2] = (u8) (block >> 24);
4279                 cdb[3] = (u8) (block >> 16);
4280                 cdb[4] = (u8) (block >> 8);
4281                 cdb[5] = (u8) (block);
4282                 cdb[6] = 0;
4283                 cdb[7] = (u8) (block_cnt >> 8);
4284                 cdb[8] = (u8) (block_cnt);
4285                 cdb[9] = 0;
4286                 *cdb_len = 10;
4287                 break;
4288         }
4289         return 0;
4290 }
4291
4292 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4293         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4294         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4295 {
4296         struct scsi_cmnd *cmd = c->scsi_cmd;
4297         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4298         unsigned int len;
4299         unsigned int total_len = 0;
4300         struct scatterlist *sg;
4301         u64 addr64;
4302         int use_sg, i;
4303         struct SGDescriptor *curr_sg;
4304         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4305
4306         /* TODO: implement chaining support */
4307         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4308                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4309                 return IO_ACCEL_INELIGIBLE;
4310         }
4311
4312         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4313
4314         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4315                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4316                 return IO_ACCEL_INELIGIBLE;
4317         }
4318
4319         c->cmd_type = CMD_IOACCEL1;
4320
4321         /* Adjust the DMA address to point to the accelerated command buffer */
4322         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4323                                 (c->cmdindex * sizeof(*cp));
4324         BUG_ON(c->busaddr & 0x0000007F);
4325
4326         use_sg = scsi_dma_map(cmd);
4327         if (use_sg < 0) {
4328                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4329                 return use_sg;
4330         }
4331
4332         if (use_sg) {
4333                 curr_sg = cp->SG;
4334                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4335                         addr64 = (u64) sg_dma_address(sg);
4336                         len  = sg_dma_len(sg);
4337                         total_len += len;
4338                         curr_sg->Addr = cpu_to_le64(addr64);
4339                         curr_sg->Len = cpu_to_le32(len);
4340                         curr_sg->Ext = cpu_to_le32(0);
4341                         curr_sg++;
4342                 }
4343                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4344
4345                 switch (cmd->sc_data_direction) {
4346                 case DMA_TO_DEVICE:
4347                         control |= IOACCEL1_CONTROL_DATA_OUT;
4348                         break;
4349                 case DMA_FROM_DEVICE:
4350                         control |= IOACCEL1_CONTROL_DATA_IN;
4351                         break;
4352                 case DMA_NONE:
4353                         control |= IOACCEL1_CONTROL_NODATAXFER;
4354                         break;
4355                 default:
4356                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4357                         cmd->sc_data_direction);
4358                         BUG();
4359                         break;
4360                 }
4361         } else {
4362                 control |= IOACCEL1_CONTROL_NODATAXFER;
4363         }
4364
4365         c->Header.SGList = use_sg;
4366         /* Fill out the command structure to submit */
4367         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4368         cp->transfer_len = cpu_to_le32(total_len);
4369         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4370                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4371         cp->control = cpu_to_le32(control);
4372         memcpy(cp->CDB, cdb, cdb_len);
4373         memcpy(cp->CISS_LUN, scsi3addr, 8);
4374         /* Tag was already set at init time. */
4375         enqueue_cmd_and_start_io(h, c);
4376         return 0;
4377 }
4378
4379 /*
4380  * Queue a command directly to a device behind the controller using the
4381  * I/O accelerator path.
4382  */
4383 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4384         struct CommandList *c)
4385 {
4386         struct scsi_cmnd *cmd = c->scsi_cmd;
4387         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4388
4389         c->phys_disk = dev;
4390
4391         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4392                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4393 }
4394
4395 /*
4396  * Set encryption parameters for the ioaccel2 request
4397  */
4398 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4399         struct CommandList *c, struct io_accel2_cmd *cp)
4400 {
4401         struct scsi_cmnd *cmd = c->scsi_cmd;
4402         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4403         struct raid_map_data *map = &dev->raid_map;
4404         u64 first_block;
4405
4406         /* Are we doing encryption on this device */
4407         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4408                 return;
4409         /* Set the data encryption key index. */
4410         cp->dekindex = map->dekindex;
4411
4412         /* Set the encryption enable flag, encoded into direction field. */
4413         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4414
4415         /* Set encryption tweak values based on logical block address
4416          * If block size is 512, tweak value is LBA.
4417          * For other block sizes, tweak is (LBA * block size)/ 512)
4418          */
4419         switch (cmd->cmnd[0]) {
4420         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4421         case WRITE_6:
4422         case READ_6:
4423                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4424                 break;
4425         case WRITE_10:
4426         case READ_10:
4427         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4428         case WRITE_12:
4429         case READ_12:
4430                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4431                 break;
4432         case WRITE_16:
4433         case READ_16:
4434                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4435                 break;
4436         default:
4437                 dev_err(&h->pdev->dev,
4438                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4439                         __func__, cmd->cmnd[0]);
4440                 BUG();
4441                 break;
4442         }
4443
4444         if (le32_to_cpu(map->volume_blk_size) != 512)
4445                 first_block = first_block *
4446                                 le32_to_cpu(map->volume_blk_size)/512;
4447
4448         cp->tweak_lower = cpu_to_le32(first_block);
4449         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4450 }
4451
4452 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4453         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4454         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4455 {
4456         struct scsi_cmnd *cmd = c->scsi_cmd;
4457         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4458         struct ioaccel2_sg_element *curr_sg;
4459         int use_sg, i;
4460         struct scatterlist *sg;
4461         u64 addr64;
4462         u32 len;
4463         u32 total_len = 0;
4464
4465         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4466
4467         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4468                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4469                 return IO_ACCEL_INELIGIBLE;
4470         }
4471
4472         c->cmd_type = CMD_IOACCEL2;
4473         /* Adjust the DMA address to point to the accelerated command buffer */
4474         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4475                                 (c->cmdindex * sizeof(*cp));
4476         BUG_ON(c->busaddr & 0x0000007F);
4477
4478         memset(cp, 0, sizeof(*cp));
4479         cp->IU_type = IOACCEL2_IU_TYPE;
4480
4481         use_sg = scsi_dma_map(cmd);
4482         if (use_sg < 0) {
4483                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4484                 return use_sg;
4485         }
4486
4487         if (use_sg) {
4488                 curr_sg = cp->sg;
4489                 if (use_sg > h->ioaccel_maxsg) {
4490                         addr64 = le64_to_cpu(
4491                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4492                         curr_sg->address = cpu_to_le64(addr64);
4493                         curr_sg->length = 0;
4494                         curr_sg->reserved[0] = 0;
4495                         curr_sg->reserved[1] = 0;
4496                         curr_sg->reserved[2] = 0;
4497                         curr_sg->chain_indicator = 0x80;
4498
4499                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4500                 }
4501                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4502                         addr64 = (u64) sg_dma_address(sg);
4503                         len  = sg_dma_len(sg);
4504                         total_len += len;
4505                         curr_sg->address = cpu_to_le64(addr64);
4506                         curr_sg->length = cpu_to_le32(len);
4507                         curr_sg->reserved[0] = 0;
4508                         curr_sg->reserved[1] = 0;
4509                         curr_sg->reserved[2] = 0;
4510                         curr_sg->chain_indicator = 0;
4511                         curr_sg++;
4512                 }
4513
4514                 switch (cmd->sc_data_direction) {
4515                 case DMA_TO_DEVICE:
4516                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4517                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4518                         break;
4519                 case DMA_FROM_DEVICE:
4520                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4521                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4522                         break;
4523                 case DMA_NONE:
4524                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4525                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4526                         break;
4527                 default:
4528                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4529                                 cmd->sc_data_direction);
4530                         BUG();
4531                         break;
4532                 }
4533         } else {
4534                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4535                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4536         }
4537
4538         /* Set encryption parameters, if necessary */
4539         set_encrypt_ioaccel2(h, c, cp);
4540
4541         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4542         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4543         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4544
4545         cp->data_len = cpu_to_le32(total_len);
4546         cp->err_ptr = cpu_to_le64(c->busaddr +
4547                         offsetof(struct io_accel2_cmd, error_data));
4548         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4549
4550         /* fill in sg elements */
4551         if (use_sg > h->ioaccel_maxsg) {
4552                 cp->sg_count = 1;
4553                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4554                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4555                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4556                         scsi_dma_unmap(cmd);
4557                         return -1;
4558                 }
4559         } else
4560                 cp->sg_count = (u8) use_sg;
4561
4562         enqueue_cmd_and_start_io(h, c);
4563         return 0;
4564 }
4565
4566 /*
4567  * Queue a command to the correct I/O accelerator path.
4568  */
4569 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4570         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4571         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4572 {
4573         /* Try to honor the device's queue depth */
4574         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4575                                         phys_disk->queue_depth) {
4576                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4577                 return IO_ACCEL_INELIGIBLE;
4578         }
4579         if (h->transMethod & CFGTBL_Trans_io_accel1)
4580                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4581                                                 cdb, cdb_len, scsi3addr,
4582                                                 phys_disk);
4583         else
4584                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4585                                                 cdb, cdb_len, scsi3addr,
4586                                                 phys_disk);
4587 }
4588
4589 static void raid_map_helper(struct raid_map_data *map,
4590                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4591 {
4592         if (offload_to_mirror == 0)  {
4593                 /* use physical disk in the first mirrored group. */
4594                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4595                 return;
4596         }
4597         do {
4598                 /* determine mirror group that *map_index indicates */
4599                 *current_group = *map_index /
4600                         le16_to_cpu(map->data_disks_per_row);
4601                 if (offload_to_mirror == *current_group)
4602                         continue;
4603                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4604                         /* select map index from next group */
4605                         *map_index += le16_to_cpu(map->data_disks_per_row);
4606                         (*current_group)++;
4607                 } else {
4608                         /* select map index from first group */
4609                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4610                         *current_group = 0;
4611                 }
4612         } while (offload_to_mirror != *current_group);
4613 }
4614
4615 /*
4616  * Attempt to perform offload RAID mapping for a logical volume I/O.
4617  */
4618 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4619         struct CommandList *c)
4620 {
4621         struct scsi_cmnd *cmd = c->scsi_cmd;
4622         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4623         struct raid_map_data *map = &dev->raid_map;
4624         struct raid_map_disk_data *dd = &map->data[0];
4625         int is_write = 0;
4626         u32 map_index;
4627         u64 first_block, last_block;
4628         u32 block_cnt;
4629         u32 blocks_per_row;
4630         u64 first_row, last_row;
4631         u32 first_row_offset, last_row_offset;
4632         u32 first_column, last_column;
4633         u64 r0_first_row, r0_last_row;
4634         u32 r5or6_blocks_per_row;
4635         u64 r5or6_first_row, r5or6_last_row;
4636         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4637         u32 r5or6_first_column, r5or6_last_column;
4638         u32 total_disks_per_row;
4639         u32 stripesize;
4640         u32 first_group, last_group, current_group;
4641         u32 map_row;
4642         u32 disk_handle;
4643         u64 disk_block;
4644         u32 disk_block_cnt;
4645         u8 cdb[16];
4646         u8 cdb_len;
4647         u16 strip_size;
4648 #if BITS_PER_LONG == 32
4649         u64 tmpdiv;
4650 #endif
4651         int offload_to_mirror;
4652
4653         /* check for valid opcode, get LBA and block count */
4654         switch (cmd->cmnd[0]) {
4655         case WRITE_6:
4656                 is_write = 1;
4657         case READ_6:
4658                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4659                 block_cnt = cmd->cmnd[4];
4660                 if (block_cnt == 0)
4661                         block_cnt = 256;
4662                 break;
4663         case WRITE_10:
4664                 is_write = 1;
4665         case READ_10:
4666                 first_block =
4667                         (((u64) cmd->cmnd[2]) << 24) |
4668                         (((u64) cmd->cmnd[3]) << 16) |
4669                         (((u64) cmd->cmnd[4]) << 8) |
4670                         cmd->cmnd[5];
4671                 block_cnt =
4672                         (((u32) cmd->cmnd[7]) << 8) |
4673                         cmd->cmnd[8];
4674                 break;
4675         case WRITE_12:
4676                 is_write = 1;
4677         case READ_12:
4678                 first_block =
4679                         (((u64) cmd->cmnd[2]) << 24) |
4680                         (((u64) cmd->cmnd[3]) << 16) |
4681                         (((u64) cmd->cmnd[4]) << 8) |
4682                         cmd->cmnd[5];
4683                 block_cnt =
4684                         (((u32) cmd->cmnd[6]) << 24) |
4685                         (((u32) cmd->cmnd[7]) << 16) |
4686                         (((u32) cmd->cmnd[8]) << 8) |
4687                 cmd->cmnd[9];
4688                 break;
4689         case WRITE_16:
4690                 is_write = 1;
4691         case READ_16:
4692                 first_block =
4693                         (((u64) cmd->cmnd[2]) << 56) |
4694                         (((u64) cmd->cmnd[3]) << 48) |
4695                         (((u64) cmd->cmnd[4]) << 40) |
4696                         (((u64) cmd->cmnd[5]) << 32) |
4697                         (((u64) cmd->cmnd[6]) << 24) |
4698                         (((u64) cmd->cmnd[7]) << 16) |
4699                         (((u64) cmd->cmnd[8]) << 8) |
4700                         cmd->cmnd[9];
4701                 block_cnt =
4702                         (((u32) cmd->cmnd[10]) << 24) |
4703                         (((u32) cmd->cmnd[11]) << 16) |
4704                         (((u32) cmd->cmnd[12]) << 8) |
4705                         cmd->cmnd[13];
4706                 break;
4707         default:
4708                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4709         }
4710         last_block = first_block + block_cnt - 1;
4711
4712         /* check for write to non-RAID-0 */
4713         if (is_write && dev->raid_level != 0)
4714                 return IO_ACCEL_INELIGIBLE;
4715
4716         /* check for invalid block or wraparound */
4717         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4718                 last_block < first_block)
4719                 return IO_ACCEL_INELIGIBLE;
4720
4721         /* calculate stripe information for the request */
4722         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4723                                 le16_to_cpu(map->strip_size);
4724         strip_size = le16_to_cpu(map->strip_size);
4725 #if BITS_PER_LONG == 32
4726         tmpdiv = first_block;
4727         (void) do_div(tmpdiv, blocks_per_row);
4728         first_row = tmpdiv;
4729         tmpdiv = last_block;
4730         (void) do_div(tmpdiv, blocks_per_row);
4731         last_row = tmpdiv;
4732         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4733         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4734         tmpdiv = first_row_offset;
4735         (void) do_div(tmpdiv, strip_size);
4736         first_column = tmpdiv;
4737         tmpdiv = last_row_offset;
4738         (void) do_div(tmpdiv, strip_size);
4739         last_column = tmpdiv;
4740 #else
4741         first_row = first_block / blocks_per_row;
4742         last_row = last_block / blocks_per_row;
4743         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4744         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4745         first_column = first_row_offset / strip_size;
4746         last_column = last_row_offset / strip_size;
4747 #endif
4748
4749         /* if this isn't a single row/column then give to the controller */
4750         if ((first_row != last_row) || (first_column != last_column))
4751                 return IO_ACCEL_INELIGIBLE;
4752
4753         /* proceeding with driver mapping */
4754         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4755                                 le16_to_cpu(map->metadata_disks_per_row);
4756         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4757                                 le16_to_cpu(map->row_cnt);
4758         map_index = (map_row * total_disks_per_row) + first_column;
4759
4760         switch (dev->raid_level) {
4761         case HPSA_RAID_0:
4762                 break; /* nothing special to do */
4763         case HPSA_RAID_1:
4764                 /* Handles load balance across RAID 1 members.
4765                  * (2-drive R1 and R10 with even # of drives.)
4766                  * Appropriate for SSDs, not optimal for HDDs
4767                  */
4768                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4769                 if (dev->offload_to_mirror)
4770                         map_index += le16_to_cpu(map->data_disks_per_row);
4771                 dev->offload_to_mirror = !dev->offload_to_mirror;
4772                 break;
4773         case HPSA_RAID_ADM:
4774                 /* Handles N-way mirrors  (R1-ADM)
4775                  * and R10 with # of drives divisible by 3.)
4776                  */
4777                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4778
4779                 offload_to_mirror = dev->offload_to_mirror;
4780                 raid_map_helper(map, offload_to_mirror,
4781                                 &map_index, &current_group);
4782                 /* set mirror group to use next time */
4783                 offload_to_mirror =
4784                         (offload_to_mirror >=
4785                         le16_to_cpu(map->layout_map_count) - 1)
4786                         ? 0 : offload_to_mirror + 1;
4787                 dev->offload_to_mirror = offload_to_mirror;
4788                 /* Avoid direct use of dev->offload_to_mirror within this
4789                  * function since multiple threads might simultaneously
4790                  * increment it beyond the range of dev->layout_map_count -1.
4791                  */
4792                 break;
4793         case HPSA_RAID_5:
4794         case HPSA_RAID_6:
4795                 if (le16_to_cpu(map->layout_map_count) <= 1)
4796                         break;
4797
4798                 /* Verify first and last block are in same RAID group */
4799                 r5or6_blocks_per_row =
4800                         le16_to_cpu(map->strip_size) *
4801                         le16_to_cpu(map->data_disks_per_row);
4802                 BUG_ON(r5or6_blocks_per_row == 0);
4803                 stripesize = r5or6_blocks_per_row *
4804                         le16_to_cpu(map->layout_map_count);
4805 #if BITS_PER_LONG == 32
4806                 tmpdiv = first_block;
4807                 first_group = do_div(tmpdiv, stripesize);
4808                 tmpdiv = first_group;
4809                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4810                 first_group = tmpdiv;
4811                 tmpdiv = last_block;
4812                 last_group = do_div(tmpdiv, stripesize);
4813                 tmpdiv = last_group;
4814                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4815                 last_group = tmpdiv;
4816 #else
4817                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4818                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4819 #endif
4820                 if (first_group != last_group)
4821                         return IO_ACCEL_INELIGIBLE;
4822
4823                 /* Verify request is in a single row of RAID 5/6 */
4824 #if BITS_PER_LONG == 32
4825                 tmpdiv = first_block;
4826                 (void) do_div(tmpdiv, stripesize);
4827                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4828                 tmpdiv = last_block;
4829                 (void) do_div(tmpdiv, stripesize);
4830                 r5or6_last_row = r0_last_row = tmpdiv;
4831 #else
4832                 first_row = r5or6_first_row = r0_first_row =
4833                                                 first_block / stripesize;
4834                 r5or6_last_row = r0_last_row = last_block / stripesize;
4835 #endif
4836                 if (r5or6_first_row != r5or6_last_row)
4837                         return IO_ACCEL_INELIGIBLE;
4838
4839
4840                 /* Verify request is in a single column */
4841 #if BITS_PER_LONG == 32
4842                 tmpdiv = first_block;
4843                 first_row_offset = do_div(tmpdiv, stripesize);
4844                 tmpdiv = first_row_offset;
4845                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4846                 r5or6_first_row_offset = first_row_offset;
4847                 tmpdiv = last_block;
4848                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4849                 tmpdiv = r5or6_last_row_offset;
4850                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4851                 tmpdiv = r5or6_first_row_offset;
4852                 (void) do_div(tmpdiv, map->strip_size);
4853                 first_column = r5or6_first_column = tmpdiv;
4854                 tmpdiv = r5or6_last_row_offset;
4855                 (void) do_div(tmpdiv, map->strip_size);
4856                 r5or6_last_column = tmpdiv;
4857 #else
4858                 first_row_offset = r5or6_first_row_offset =
4859                         (u32)((first_block % stripesize) %
4860                                                 r5or6_blocks_per_row);
4861
4862                 r5or6_last_row_offset =
4863                         (u32)((last_block % stripesize) %
4864                                                 r5or6_blocks_per_row);
4865
4866                 first_column = r5or6_first_column =
4867                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4868                 r5or6_last_column =
4869                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4870 #endif
4871                 if (r5or6_first_column != r5or6_last_column)
4872                         return IO_ACCEL_INELIGIBLE;
4873
4874                 /* Request is eligible */
4875                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4876                         le16_to_cpu(map->row_cnt);
4877
4878                 map_index = (first_group *
4879                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4880                         (map_row * total_disks_per_row) + first_column;
4881                 break;
4882         default:
4883                 return IO_ACCEL_INELIGIBLE;
4884         }
4885
4886         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4887                 return IO_ACCEL_INELIGIBLE;
4888
4889         c->phys_disk = dev->phys_disk[map_index];
4890
4891         disk_handle = dd[map_index].ioaccel_handle;
4892         disk_block = le64_to_cpu(map->disk_starting_blk) +
4893                         first_row * le16_to_cpu(map->strip_size) +
4894                         (first_row_offset - first_column *
4895                         le16_to_cpu(map->strip_size));
4896         disk_block_cnt = block_cnt;
4897
4898         /* handle differing logical/physical block sizes */
4899         if (map->phys_blk_shift) {
4900                 disk_block <<= map->phys_blk_shift;
4901                 disk_block_cnt <<= map->phys_blk_shift;
4902         }
4903         BUG_ON(disk_block_cnt > 0xffff);
4904
4905         /* build the new CDB for the physical disk I/O */
4906         if (disk_block > 0xffffffff) {
4907                 cdb[0] = is_write ? WRITE_16 : READ_16;
4908                 cdb[1] = 0;
4909                 cdb[2] = (u8) (disk_block >> 56);
4910                 cdb[3] = (u8) (disk_block >> 48);
4911                 cdb[4] = (u8) (disk_block >> 40);
4912                 cdb[5] = (u8) (disk_block >> 32);
4913                 cdb[6] = (u8) (disk_block >> 24);
4914                 cdb[7] = (u8) (disk_block >> 16);
4915                 cdb[8] = (u8) (disk_block >> 8);
4916                 cdb[9] = (u8) (disk_block);
4917                 cdb[10] = (u8) (disk_block_cnt >> 24);
4918                 cdb[11] = (u8) (disk_block_cnt >> 16);
4919                 cdb[12] = (u8) (disk_block_cnt >> 8);
4920                 cdb[13] = (u8) (disk_block_cnt);
4921                 cdb[14] = 0;
4922                 cdb[15] = 0;
4923                 cdb_len = 16;
4924         } else {
4925                 cdb[0] = is_write ? WRITE_10 : READ_10;
4926                 cdb[1] = 0;
4927                 cdb[2] = (u8) (disk_block >> 24);
4928                 cdb[3] = (u8) (disk_block >> 16);
4929                 cdb[4] = (u8) (disk_block >> 8);
4930                 cdb[5] = (u8) (disk_block);
4931                 cdb[6] = 0;
4932                 cdb[7] = (u8) (disk_block_cnt >> 8);
4933                 cdb[8] = (u8) (disk_block_cnt);
4934                 cdb[9] = 0;
4935                 cdb_len = 10;
4936         }
4937         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4938                                                 dev->scsi3addr,
4939                                                 dev->phys_disk[map_index]);
4940 }
4941
4942 /*
4943  * Submit commands down the "normal" RAID stack path
4944  * All callers to hpsa_ciss_submit must check lockup_detected
4945  * beforehand, before (opt.) and after calling cmd_alloc
4946  */
4947 static int hpsa_ciss_submit(struct ctlr_info *h,
4948         struct CommandList *c, struct scsi_cmnd *cmd,
4949         unsigned char scsi3addr[])
4950 {
4951         cmd->host_scribble = (unsigned char *) c;
4952         c->cmd_type = CMD_SCSI;
4953         c->scsi_cmd = cmd;
4954         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4955         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4956         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4957
4958         /* Fill in the request block... */
4959
4960         c->Request.Timeout = 0;
4961         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4962         c->Request.CDBLen = cmd->cmd_len;
4963         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4964         switch (cmd->sc_data_direction) {
4965         case DMA_TO_DEVICE:
4966                 c->Request.type_attr_dir =
4967                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4968                 break;
4969         case DMA_FROM_DEVICE:
4970                 c->Request.type_attr_dir =
4971                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4972                 break;
4973         case DMA_NONE:
4974                 c->Request.type_attr_dir =
4975                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4976                 break;
4977         case DMA_BIDIRECTIONAL:
4978                 /* This can happen if a buggy application does a scsi passthru
4979                  * and sets both inlen and outlen to non-zero. ( see
4980                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4981                  */
4982
4983                 c->Request.type_attr_dir =
4984                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4985                 /* This is technically wrong, and hpsa controllers should
4986                  * reject it with CMD_INVALID, which is the most correct
4987                  * response, but non-fibre backends appear to let it
4988                  * slide by, and give the same results as if this field
4989                  * were set correctly.  Either way is acceptable for
4990                  * our purposes here.
4991                  */
4992
4993                 break;
4994
4995         default:
4996                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4997                         cmd->sc_data_direction);
4998                 BUG();
4999                 break;
5000         }
5001
5002         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5003                 hpsa_cmd_resolve_and_free(h, c);
5004                 return SCSI_MLQUEUE_HOST_BUSY;
5005         }
5006         enqueue_cmd_and_start_io(h, c);
5007         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5008         return 0;
5009 }
5010
5011 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5012                                 struct CommandList *c)
5013 {
5014         dma_addr_t cmd_dma_handle, err_dma_handle;
5015
5016         /* Zero out all of commandlist except the last field, refcount */
5017         memset(c, 0, offsetof(struct CommandList, refcount));
5018         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5019         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5020         c->err_info = h->errinfo_pool + index;
5021         memset(c->err_info, 0, sizeof(*c->err_info));
5022         err_dma_handle = h->errinfo_pool_dhandle
5023             + index * sizeof(*c->err_info);
5024         c->cmdindex = index;
5025         c->busaddr = (u32) cmd_dma_handle;
5026         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5027         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5028         c->h = h;
5029         c->scsi_cmd = SCSI_CMD_IDLE;
5030 }
5031
5032 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5033 {
5034         int i;
5035
5036         for (i = 0; i < h->nr_cmds; i++) {
5037                 struct CommandList *c = h->cmd_pool + i;
5038
5039                 hpsa_cmd_init(h, i, c);
5040                 atomic_set(&c->refcount, 0);
5041         }
5042 }
5043
5044 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5045                                 struct CommandList *c)
5046 {
5047         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5048
5049         BUG_ON(c->cmdindex != index);
5050
5051         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5052         memset(c->err_info, 0, sizeof(*c->err_info));
5053         c->busaddr = (u32) cmd_dma_handle;
5054 }
5055
5056 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5057                 struct CommandList *c, struct scsi_cmnd *cmd,
5058                 unsigned char *scsi3addr)
5059 {
5060         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5061         int rc = IO_ACCEL_INELIGIBLE;
5062
5063         cmd->host_scribble = (unsigned char *) c;
5064
5065         if (dev->offload_enabled) {
5066                 hpsa_cmd_init(h, c->cmdindex, c);
5067                 c->cmd_type = CMD_SCSI;
5068                 c->scsi_cmd = cmd;
5069                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5070                 if (rc < 0)     /* scsi_dma_map failed. */
5071                         rc = SCSI_MLQUEUE_HOST_BUSY;
5072         } else if (dev->hba_ioaccel_enabled) {
5073                 hpsa_cmd_init(h, c->cmdindex, c);
5074                 c->cmd_type = CMD_SCSI;
5075                 c->scsi_cmd = cmd;
5076                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5077                 if (rc < 0)     /* scsi_dma_map failed. */
5078                         rc = SCSI_MLQUEUE_HOST_BUSY;
5079         }
5080         return rc;
5081 }
5082
5083 static void hpsa_command_resubmit_worker(struct work_struct *work)
5084 {
5085         struct scsi_cmnd *cmd;
5086         struct hpsa_scsi_dev_t *dev;
5087         struct CommandList *c = container_of(work, struct CommandList, work);
5088
5089         cmd = c->scsi_cmd;
5090         dev = cmd->device->hostdata;
5091         if (!dev) {
5092                 cmd->result = DID_NO_CONNECT << 16;
5093                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5094         }
5095         if (c->reset_pending)
5096                 return hpsa_cmd_resolve_and_free(c->h, c);
5097         if (c->abort_pending)
5098                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5099         if (c->cmd_type == CMD_IOACCEL2) {
5100                 struct ctlr_info *h = c->h;
5101                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5102                 int rc;
5103
5104                 if (c2->error_data.serv_response ==
5105                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5106                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5107                         if (rc == 0)
5108                                 return;
5109                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5110                                 /*
5111                                  * If we get here, it means dma mapping failed.
5112                                  * Try again via scsi mid layer, which will
5113                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5114                                  */
5115                                 cmd->result = DID_IMM_RETRY << 16;
5116                                 return hpsa_cmd_free_and_done(h, c, cmd);
5117                         }
5118                         /* else, fall thru and resubmit down CISS path */
5119                 }
5120         }
5121         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5122         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5123                 /*
5124                  * If we get here, it means dma mapping failed. Try
5125                  * again via scsi mid layer, which will then get
5126                  * SCSI_MLQUEUE_HOST_BUSY.
5127                  *
5128                  * hpsa_ciss_submit will have already freed c
5129                  * if it encountered a dma mapping failure.
5130                  */
5131                 cmd->result = DID_IMM_RETRY << 16;
5132                 cmd->scsi_done(cmd);
5133         }
5134 }
5135
5136 /* Running in struct Scsi_Host->host_lock less mode */
5137 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5138 {
5139         struct ctlr_info *h;
5140         struct hpsa_scsi_dev_t *dev;
5141         unsigned char scsi3addr[8];
5142         struct CommandList *c;
5143         int rc = 0;
5144
5145         /* Get the ptr to our adapter structure out of cmd->host. */
5146         h = sdev_to_hba(cmd->device);
5147
5148         BUG_ON(cmd->request->tag < 0);
5149
5150         dev = cmd->device->hostdata;
5151         if (!dev) {
5152                 cmd->result = DID_NO_CONNECT << 16;
5153                 cmd->scsi_done(cmd);
5154                 return 0;
5155         }
5156
5157         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5158
5159         if (unlikely(lockup_detected(h))) {
5160                 cmd->result = DID_NO_CONNECT << 16;
5161                 cmd->scsi_done(cmd);
5162                 return 0;
5163         }
5164         c = cmd_tagged_alloc(h, cmd);
5165
5166         /*
5167          * Call alternate submit routine for I/O accelerated commands.
5168          * Retries always go down the normal I/O path.
5169          */
5170         if (likely(cmd->retries == 0 &&
5171                 cmd->request->cmd_type == REQ_TYPE_FS &&
5172                 h->acciopath_status)) {
5173                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5174                 if (rc == 0)
5175                         return 0;
5176                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5177                         hpsa_cmd_resolve_and_free(h, c);
5178                         return SCSI_MLQUEUE_HOST_BUSY;
5179                 }
5180         }
5181         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5182 }
5183
5184 static void hpsa_scan_complete(struct ctlr_info *h)
5185 {
5186         unsigned long flags;
5187
5188         spin_lock_irqsave(&h->scan_lock, flags);
5189         h->scan_finished = 1;
5190         wake_up_all(&h->scan_wait_queue);
5191         spin_unlock_irqrestore(&h->scan_lock, flags);
5192 }
5193
5194 static void hpsa_scan_start(struct Scsi_Host *sh)
5195 {
5196         struct ctlr_info *h = shost_to_hba(sh);
5197         unsigned long flags;
5198
5199         /*
5200          * Don't let rescans be initiated on a controller known to be locked
5201          * up.  If the controller locks up *during* a rescan, that thread is
5202          * probably hosed, but at least we can prevent new rescan threads from
5203          * piling up on a locked up controller.
5204          */
5205         if (unlikely(lockup_detected(h)))
5206                 return hpsa_scan_complete(h);
5207
5208         /* wait until any scan already in progress is finished. */
5209         while (1) {
5210                 spin_lock_irqsave(&h->scan_lock, flags);
5211                 if (h->scan_finished)
5212                         break;
5213                 spin_unlock_irqrestore(&h->scan_lock, flags);
5214                 wait_event(h->scan_wait_queue, h->scan_finished);
5215                 /* Note: We don't need to worry about a race between this
5216                  * thread and driver unload because the midlayer will
5217                  * have incremented the reference count, so unload won't
5218                  * happen if we're in here.
5219                  */
5220         }
5221         h->scan_finished = 0; /* mark scan as in progress */
5222         spin_unlock_irqrestore(&h->scan_lock, flags);
5223
5224         if (unlikely(lockup_detected(h)))
5225                 return hpsa_scan_complete(h);
5226
5227         hpsa_update_scsi_devices(h);
5228
5229         hpsa_scan_complete(h);
5230 }
5231
5232 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5233 {
5234         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5235
5236         if (!logical_drive)
5237                 return -ENODEV;
5238
5239         if (qdepth < 1)
5240                 qdepth = 1;
5241         else if (qdepth > logical_drive->queue_depth)
5242                 qdepth = logical_drive->queue_depth;
5243
5244         return scsi_change_queue_depth(sdev, qdepth);
5245 }
5246
5247 static int hpsa_scan_finished(struct Scsi_Host *sh,
5248         unsigned long elapsed_time)
5249 {
5250         struct ctlr_info *h = shost_to_hba(sh);
5251         unsigned long flags;
5252         int finished;
5253
5254         spin_lock_irqsave(&h->scan_lock, flags);
5255         finished = h->scan_finished;
5256         spin_unlock_irqrestore(&h->scan_lock, flags);
5257         return finished;
5258 }
5259
5260 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5261 {
5262         struct Scsi_Host *sh;
5263         int error;
5264
5265         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5266         if (sh == NULL) {
5267                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5268                 return -ENOMEM;
5269         }
5270
5271         sh->io_port = 0;
5272         sh->n_io_port = 0;
5273         sh->this_id = -1;
5274         sh->max_channel = 3;
5275         sh->max_cmd_len = MAX_COMMAND_SIZE;
5276         sh->max_lun = HPSA_MAX_LUN;
5277         sh->max_id = HPSA_MAX_LUN;
5278         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5279         sh->cmd_per_lun = sh->can_queue;
5280         sh->sg_tablesize = h->maxsgentries;
5281         sh->transportt = hpsa_sas_transport_template;
5282         sh->hostdata[0] = (unsigned long) h;
5283         sh->irq = h->intr[h->intr_mode];
5284         sh->unique_id = sh->irq;
5285         error = scsi_init_shared_tag_map(sh, sh->can_queue);
5286         if (error) {
5287                 dev_err(&h->pdev->dev,
5288                         "%s: scsi_init_shared_tag_map failed for controller %d\n",
5289                         __func__, h->ctlr);
5290                         scsi_host_put(sh);
5291                         return error;
5292         }
5293         h->scsi_host = sh;
5294         return 0;
5295 }
5296
5297 static int hpsa_scsi_add_host(struct ctlr_info *h)
5298 {
5299         int rv;
5300
5301         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5302         if (rv) {
5303                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5304                 return rv;
5305         }
5306         scsi_scan_host(h->scsi_host);
5307         return 0;
5308 }
5309
5310 /*
5311  * The block layer has already gone to the trouble of picking out a unique,
5312  * small-integer tag for this request.  We use an offset from that value as
5313  * an index to select our command block.  (The offset allows us to reserve the
5314  * low-numbered entries for our own uses.)
5315  */
5316 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5317 {
5318         int idx = scmd->request->tag;
5319
5320         if (idx < 0)
5321                 return idx;
5322
5323         /* Offset to leave space for internal cmds. */
5324         return idx += HPSA_NRESERVED_CMDS;
5325 }
5326
5327 /*
5328  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5329  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5330  */
5331 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5332                                 struct CommandList *c, unsigned char lunaddr[],
5333                                 int reply_queue)
5334 {
5335         int rc;
5336
5337         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5338         (void) fill_cmd(c, TEST_UNIT_READY, h,
5339                         NULL, 0, 0, lunaddr, TYPE_CMD);
5340         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5341         if (rc)
5342                 return rc;
5343         /* no unmap needed here because no data xfer. */
5344
5345         /* Check if the unit is already ready. */
5346         if (c->err_info->CommandStatus == CMD_SUCCESS)
5347                 return 0;
5348
5349         /*
5350          * The first command sent after reset will receive "unit attention" to
5351          * indicate that the LUN has been reset...this is actually what we're
5352          * looking for (but, success is good too).
5353          */
5354         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5355                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5356                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5357                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5358                 return 0;
5359
5360         return 1;
5361 }
5362
5363 /*
5364  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5365  * returns zero when the unit is ready, and non-zero when giving up.
5366  */
5367 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5368                                 struct CommandList *c,
5369                                 unsigned char lunaddr[], int reply_queue)
5370 {
5371         int rc;
5372         int count = 0;
5373         int waittime = 1; /* seconds */
5374
5375         /* Send test unit ready until device ready, or give up. */
5376         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5377
5378                 /*
5379                  * Wait for a bit.  do this first, because if we send
5380                  * the TUR right away, the reset will just abort it.
5381                  */
5382                 msleep(1000 * waittime);
5383
5384                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5385                 if (!rc)
5386                         break;
5387
5388                 /* Increase wait time with each try, up to a point. */
5389                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5390                         waittime *= 2;
5391
5392                 dev_warn(&h->pdev->dev,
5393                          "waiting %d secs for device to become ready.\n",
5394                          waittime);
5395         }
5396
5397         return rc;
5398 }
5399
5400 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5401                                            unsigned char lunaddr[],
5402                                            int reply_queue)
5403 {
5404         int first_queue;
5405         int last_queue;
5406         int rq;
5407         int rc = 0;
5408         struct CommandList *c;
5409
5410         c = cmd_alloc(h);
5411
5412         /*
5413          * If no specific reply queue was requested, then send the TUR
5414          * repeatedly, requesting a reply on each reply queue; otherwise execute
5415          * the loop exactly once using only the specified queue.
5416          */
5417         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5418                 first_queue = 0;
5419                 last_queue = h->nreply_queues - 1;
5420         } else {
5421                 first_queue = reply_queue;
5422                 last_queue = reply_queue;
5423         }
5424
5425         for (rq = first_queue; rq <= last_queue; rq++) {
5426                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5427                 if (rc)
5428                         break;
5429         }
5430
5431         if (rc)
5432                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5433         else
5434                 dev_warn(&h->pdev->dev, "device is ready.\n");
5435
5436         cmd_free(h, c);
5437         return rc;
5438 }
5439
5440 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5441  * complaining.  Doing a host- or bus-reset can't do anything good here.
5442  */
5443 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5444 {
5445         int rc;
5446         struct ctlr_info *h;
5447         struct hpsa_scsi_dev_t *dev;
5448         u8 reset_type;
5449         char msg[48];
5450
5451         /* find the controller to which the command to be aborted was sent */
5452         h = sdev_to_hba(scsicmd->device);
5453         if (h == NULL) /* paranoia */
5454                 return FAILED;
5455
5456         if (lockup_detected(h))
5457                 return FAILED;
5458
5459         dev = scsicmd->device->hostdata;
5460         if (!dev) {
5461                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5462                 return FAILED;
5463         }
5464
5465         /* if controller locked up, we can guarantee command won't complete */
5466         if (lockup_detected(h)) {
5467                 snprintf(msg, sizeof(msg),
5468                          "cmd %d RESET FAILED, lockup detected",
5469                          hpsa_get_cmd_index(scsicmd));
5470                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5471                 return FAILED;
5472         }
5473
5474         /* this reset request might be the result of a lockup; check */
5475         if (detect_controller_lockup(h)) {
5476                 snprintf(msg, sizeof(msg),
5477                          "cmd %d RESET FAILED, new lockup detected",
5478                          hpsa_get_cmd_index(scsicmd));
5479                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5480                 return FAILED;
5481         }
5482
5483         /* Do not attempt on controller */
5484         if (is_hba_lunid(dev->scsi3addr))
5485                 return SUCCESS;
5486
5487         if (is_logical_dev_addr_mode(dev->scsi3addr))
5488                 reset_type = HPSA_DEVICE_RESET_MSG;
5489         else
5490                 reset_type = HPSA_PHYS_TARGET_RESET;
5491
5492         sprintf(msg, "resetting %s",
5493                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5494         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5495
5496         h->reset_in_progress = 1;
5497
5498         /* send a reset to the SCSI LUN which the command was sent to */
5499         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5500                            DEFAULT_REPLY_QUEUE);
5501         sprintf(msg, "reset %s %s",
5502                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5503                 rc == 0 ? "completed successfully" : "failed");
5504         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5505         h->reset_in_progress = 0;
5506         return rc == 0 ? SUCCESS : FAILED;
5507 }
5508
5509 static void swizzle_abort_tag(u8 *tag)
5510 {
5511         u8 original_tag[8];
5512
5513         memcpy(original_tag, tag, 8);
5514         tag[0] = original_tag[3];
5515         tag[1] = original_tag[2];
5516         tag[2] = original_tag[1];
5517         tag[3] = original_tag[0];
5518         tag[4] = original_tag[7];
5519         tag[5] = original_tag[6];
5520         tag[6] = original_tag[5];
5521         tag[7] = original_tag[4];
5522 }
5523
5524 static void hpsa_get_tag(struct ctlr_info *h,
5525         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5526 {
5527         u64 tag;
5528         if (c->cmd_type == CMD_IOACCEL1) {
5529                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5530                         &h->ioaccel_cmd_pool[c->cmdindex];
5531                 tag = le64_to_cpu(cm1->tag);
5532                 *tagupper = cpu_to_le32(tag >> 32);
5533                 *taglower = cpu_to_le32(tag);
5534                 return;
5535         }
5536         if (c->cmd_type == CMD_IOACCEL2) {
5537                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5538                         &h->ioaccel2_cmd_pool[c->cmdindex];
5539                 /* upper tag not used in ioaccel2 mode */
5540                 memset(tagupper, 0, sizeof(*tagupper));
5541                 *taglower = cm2->Tag;
5542                 return;
5543         }
5544         tag = le64_to_cpu(c->Header.tag);
5545         *tagupper = cpu_to_le32(tag >> 32);
5546         *taglower = cpu_to_le32(tag);
5547 }
5548
5549 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5550         struct CommandList *abort, int reply_queue)
5551 {
5552         int rc = IO_OK;
5553         struct CommandList *c;
5554         struct ErrorInfo *ei;
5555         __le32 tagupper, taglower;
5556
5557         c = cmd_alloc(h);
5558
5559         /* fill_cmd can't fail here, no buffer to map */
5560         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5561                 0, 0, scsi3addr, TYPE_MSG);
5562         if (h->needs_abort_tags_swizzled)
5563                 swizzle_abort_tag(&c->Request.CDB[4]);
5564         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5565         hpsa_get_tag(h, abort, &taglower, &tagupper);
5566         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5567                 __func__, tagupper, taglower);
5568         /* no unmap needed here because no data xfer. */
5569
5570         ei = c->err_info;
5571         switch (ei->CommandStatus) {
5572         case CMD_SUCCESS:
5573                 break;
5574         case CMD_TMF_STATUS:
5575                 rc = hpsa_evaluate_tmf_status(h, c);
5576                 break;
5577         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5578                 rc = -1;
5579                 break;
5580         default:
5581                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5582                         __func__, tagupper, taglower);
5583                 hpsa_scsi_interpret_error(h, c);
5584                 rc = -1;
5585                 break;
5586         }
5587         cmd_free(h, c);
5588         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5589                 __func__, tagupper, taglower);
5590         return rc;
5591 }
5592
5593 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5594         struct CommandList *command_to_abort, int reply_queue)
5595 {
5596         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5597         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5598         struct io_accel2_cmd *c2a =
5599                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5600         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5601         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5602
5603         /*
5604          * We're overlaying struct hpsa_tmf_struct on top of something which
5605          * was allocated as a struct io_accel2_cmd, so we better be sure it
5606          * actually fits, and doesn't overrun the error info space.
5607          */
5608         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5609                         sizeof(struct io_accel2_cmd));
5610         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5611                         offsetof(struct hpsa_tmf_struct, error_len) +
5612                                 sizeof(ac->error_len));
5613
5614         c->cmd_type = IOACCEL2_TMF;
5615         c->scsi_cmd = SCSI_CMD_BUSY;
5616
5617         /* Adjust the DMA address to point to the accelerated command buffer */
5618         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5619                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5620         BUG_ON(c->busaddr & 0x0000007F);
5621
5622         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5623         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5624         ac->reply_queue = reply_queue;
5625         ac->tmf = IOACCEL2_TMF_ABORT;
5626         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5627         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5628         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5629         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5630         ac->error_ptr = cpu_to_le64(c->busaddr +
5631                         offsetof(struct io_accel2_cmd, error_data));
5632         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5633 }
5634
5635 /* ioaccel2 path firmware cannot handle abort task requests.
5636  * Change abort requests to physical target reset, and send to the
5637  * address of the physical disk used for the ioaccel 2 command.
5638  * Return 0 on success (IO_OK)
5639  *       -1 on failure
5640  */
5641
5642 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5643         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5644 {
5645         int rc = IO_OK;
5646         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5647         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5648         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5649         unsigned char *psa = &phys_scsi3addr[0];
5650
5651         /* Get a pointer to the hpsa logical device. */
5652         scmd = abort->scsi_cmd;
5653         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5654         if (dev == NULL) {
5655                 dev_warn(&h->pdev->dev,
5656                         "Cannot abort: no device pointer for command.\n");
5657                         return -1; /* not abortable */
5658         }
5659
5660         if (h->raid_offload_debug > 0)
5661                 dev_info(&h->pdev->dev,
5662                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5663                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5664                         "Reset as abort",
5665                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5666                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5667
5668         if (!dev->offload_enabled) {
5669                 dev_warn(&h->pdev->dev,
5670                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5671                 return -1; /* not abortable */
5672         }
5673
5674         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5675         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5676                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5677                 return -1; /* not abortable */
5678         }
5679
5680         /* send the reset */
5681         if (h->raid_offload_debug > 0)
5682                 dev_info(&h->pdev->dev,
5683                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5684                         psa[0], psa[1], psa[2], psa[3],
5685                         psa[4], psa[5], psa[6], psa[7]);
5686         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5687         if (rc != 0) {
5688                 dev_warn(&h->pdev->dev,
5689                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5690                         psa[0], psa[1], psa[2], psa[3],
5691                         psa[4], psa[5], psa[6], psa[7]);
5692                 return rc; /* failed to reset */
5693         }
5694
5695         /* wait for device to recover */
5696         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5697                 dev_warn(&h->pdev->dev,
5698                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5699                         psa[0], psa[1], psa[2], psa[3],
5700                         psa[4], psa[5], psa[6], psa[7]);
5701                 return -1;  /* failed to recover */
5702         }
5703
5704         /* device recovered */
5705         dev_info(&h->pdev->dev,
5706                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5707                 psa[0], psa[1], psa[2], psa[3],
5708                 psa[4], psa[5], psa[6], psa[7]);
5709
5710         return rc; /* success */
5711 }
5712
5713 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5714         struct CommandList *abort, int reply_queue)
5715 {
5716         int rc = IO_OK;
5717         struct CommandList *c;
5718         __le32 taglower, tagupper;
5719         struct hpsa_scsi_dev_t *dev;
5720         struct io_accel2_cmd *c2;
5721
5722         dev = abort->scsi_cmd->device->hostdata;
5723         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5724                 return -1;
5725
5726         c = cmd_alloc(h);
5727         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5728         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5729         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5730         hpsa_get_tag(h, abort, &taglower, &tagupper);
5731         dev_dbg(&h->pdev->dev,
5732                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5733                 __func__, tagupper, taglower);
5734         /* no unmap needed here because no data xfer. */
5735
5736         dev_dbg(&h->pdev->dev,
5737                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5738                 __func__, tagupper, taglower, c2->error_data.serv_response);
5739         switch (c2->error_data.serv_response) {
5740         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5741         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5742                 rc = 0;
5743                 break;
5744         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5745         case IOACCEL2_SERV_RESPONSE_FAILURE:
5746         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5747                 rc = -1;
5748                 break;
5749         default:
5750                 dev_warn(&h->pdev->dev,
5751                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5752                         __func__, tagupper, taglower,
5753                         c2->error_data.serv_response);
5754                 rc = -1;
5755         }
5756         cmd_free(h, c);
5757         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5758                 tagupper, taglower);
5759         return rc;
5760 }
5761
5762 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5763         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5764 {
5765         /*
5766          * ioccelerator mode 2 commands should be aborted via the
5767          * accelerated path, since RAID path is unaware of these commands,
5768          * but not all underlying firmware can handle abort TMF.
5769          * Change abort to physical device reset when abort TMF is unsupported.
5770          */
5771         if (abort->cmd_type == CMD_IOACCEL2) {
5772                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5773                         return hpsa_send_abort_ioaccel2(h, abort,
5774                                                 reply_queue);
5775                 else
5776                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5777                                                         abort, reply_queue);
5778         }
5779         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5780 }
5781
5782 /* Find out which reply queue a command was meant to return on */
5783 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5784                                         struct CommandList *c)
5785 {
5786         if (c->cmd_type == CMD_IOACCEL2)
5787                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5788         return c->Header.ReplyQueue;
5789 }
5790
5791 /*
5792  * Limit concurrency of abort commands to prevent
5793  * over-subscription of commands
5794  */
5795 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5796 {
5797 #define ABORT_CMD_WAIT_MSECS 5000
5798         return !wait_event_timeout(h->abort_cmd_wait_queue,
5799                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5800                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5801 }
5802
5803 /* Send an abort for the specified command.
5804  *      If the device and controller support it,
5805  *              send a task abort request.
5806  */
5807 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5808 {
5809
5810         int rc;
5811         struct ctlr_info *h;
5812         struct hpsa_scsi_dev_t *dev;
5813         struct CommandList *abort; /* pointer to command to be aborted */
5814         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5815         char msg[256];          /* For debug messaging. */
5816         int ml = 0;
5817         __le32 tagupper, taglower;
5818         int refcount, reply_queue;
5819
5820         if (sc == NULL)
5821                 return FAILED;
5822
5823         if (sc->device == NULL)
5824                 return FAILED;
5825
5826         /* Find the controller of the command to be aborted */
5827         h = sdev_to_hba(sc->device);
5828         if (h == NULL)
5829                 return FAILED;
5830
5831         /* Find the device of the command to be aborted */
5832         dev = sc->device->hostdata;
5833         if (!dev) {
5834                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5835                                 msg);
5836                 return FAILED;
5837         }
5838
5839         /* If controller locked up, we can guarantee command won't complete */
5840         if (lockup_detected(h)) {
5841                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5842                                         "ABORT FAILED, lockup detected");
5843                 return FAILED;
5844         }
5845
5846         /* This is a good time to check if controller lockup has occurred */
5847         if (detect_controller_lockup(h)) {
5848                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5849                                         "ABORT FAILED, new lockup detected");
5850                 return FAILED;
5851         }
5852
5853         /* Check that controller supports some kind of task abort */
5854         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5855                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5856                 return FAILED;
5857
5858         memset(msg, 0, sizeof(msg));
5859         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5860                 h->scsi_host->host_no, sc->device->channel,
5861                 sc->device->id, sc->device->lun,
5862                 "Aborting command", sc);
5863
5864         /* Get SCSI command to be aborted */
5865         abort = (struct CommandList *) sc->host_scribble;
5866         if (abort == NULL) {
5867                 /* This can happen if the command already completed. */
5868                 return SUCCESS;
5869         }
5870         refcount = atomic_inc_return(&abort->refcount);
5871         if (refcount == 1) { /* Command is done already. */
5872                 cmd_free(h, abort);
5873                 return SUCCESS;
5874         }
5875
5876         /* Don't bother trying the abort if we know it won't work. */
5877         if (abort->cmd_type != CMD_IOACCEL2 &&
5878                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5879                 cmd_free(h, abort);
5880                 return FAILED;
5881         }
5882
5883         /*
5884          * Check that we're aborting the right command.
5885          * It's possible the CommandList already completed and got re-used.
5886          */
5887         if (abort->scsi_cmd != sc) {
5888                 cmd_free(h, abort);
5889                 return SUCCESS;
5890         }
5891
5892         abort->abort_pending = true;
5893         hpsa_get_tag(h, abort, &taglower, &tagupper);
5894         reply_queue = hpsa_extract_reply_queue(h, abort);
5895         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5896         as  = abort->scsi_cmd;
5897         if (as != NULL)
5898                 ml += sprintf(msg+ml,
5899                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5900                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5901                         as->serial_number);
5902         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5903         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5904
5905         /*
5906          * Command is in flight, or possibly already completed
5907          * by the firmware (but not to the scsi mid layer) but we can't
5908          * distinguish which.  Send the abort down.
5909          */
5910         if (wait_for_available_abort_cmd(h)) {
5911                 dev_warn(&h->pdev->dev,
5912                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5913                         msg);
5914                 cmd_free(h, abort);
5915                 return FAILED;
5916         }
5917         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5918         atomic_inc(&h->abort_cmds_available);
5919         wake_up_all(&h->abort_cmd_wait_queue);
5920         if (rc != 0) {
5921                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5922                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5923                                 "FAILED to abort command");
5924                 cmd_free(h, abort);
5925                 return FAILED;
5926         }
5927         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5928         wait_event(h->event_sync_wait_queue,
5929                    abort->scsi_cmd != sc || lockup_detected(h));
5930         cmd_free(h, abort);
5931         return !lockup_detected(h) ? SUCCESS : FAILED;
5932 }
5933
5934 /*
5935  * For operations with an associated SCSI command, a command block is allocated
5936  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5937  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5938  * the complement, although cmd_free() may be called instead.
5939  */
5940 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5941                                             struct scsi_cmnd *scmd)
5942 {
5943         int idx = hpsa_get_cmd_index(scmd);
5944         struct CommandList *c = h->cmd_pool + idx;
5945
5946         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5947                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5948                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5949                 /* The index value comes from the block layer, so if it's out of
5950                  * bounds, it's probably not our bug.
5951                  */
5952                 BUG();
5953         }
5954
5955         atomic_inc(&c->refcount);
5956         if (unlikely(!hpsa_is_cmd_idle(c))) {
5957                 /*
5958                  * We expect that the SCSI layer will hand us a unique tag
5959                  * value.  Thus, there should never be a collision here between
5960                  * two requests...because if the selected command isn't idle
5961                  * then someone is going to be very disappointed.
5962                  */
5963                 dev_err(&h->pdev->dev,
5964                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5965                         idx);
5966                 if (c->scsi_cmd != NULL)
5967                         scsi_print_command(c->scsi_cmd);
5968                 scsi_print_command(scmd);
5969         }
5970
5971         hpsa_cmd_partial_init(h, idx, c);
5972         return c;
5973 }
5974
5975 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5976 {
5977         /*
5978          * Release our reference to the block.  We don't need to do anything
5979          * else to free it, because it is accessed by index.  (There's no point
5980          * in checking the result of the decrement, since we cannot guarantee
5981          * that there isn't a concurrent abort which is also accessing it.)
5982          */
5983         (void)atomic_dec(&c->refcount);
5984 }
5985
5986 /*
5987  * For operations that cannot sleep, a command block is allocated at init,
5988  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5989  * which ones are free or in use.  Lock must be held when calling this.
5990  * cmd_free() is the complement.
5991  * This function never gives up and returns NULL.  If it hangs,
5992  * another thread must call cmd_free() to free some tags.
5993  */
5994
5995 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5996 {
5997         struct CommandList *c;
5998         int refcount, i;
5999         int offset = 0;
6000
6001         /*
6002          * There is some *extremely* small but non-zero chance that that
6003          * multiple threads could get in here, and one thread could
6004          * be scanning through the list of bits looking for a free
6005          * one, but the free ones are always behind him, and other
6006          * threads sneak in behind him and eat them before he can
6007          * get to them, so that while there is always a free one, a
6008          * very unlucky thread might be starved anyway, never able to
6009          * beat the other threads.  In reality, this happens so
6010          * infrequently as to be indistinguishable from never.
6011          *
6012          * Note that we start allocating commands before the SCSI host structure
6013          * is initialized.  Since the search starts at bit zero, this
6014          * all works, since we have at least one command structure available;
6015          * however, it means that the structures with the low indexes have to be
6016          * reserved for driver-initiated requests, while requests from the block
6017          * layer will use the higher indexes.
6018          */
6019
6020         for (;;) {
6021                 i = find_next_zero_bit(h->cmd_pool_bits,
6022                                         HPSA_NRESERVED_CMDS,
6023                                         offset);
6024                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6025                         offset = 0;
6026                         continue;
6027                 }
6028                 c = h->cmd_pool + i;
6029                 refcount = atomic_inc_return(&c->refcount);
6030                 if (unlikely(refcount > 1)) {
6031                         cmd_free(h, c); /* already in use */
6032                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6033                         continue;
6034                 }
6035                 set_bit(i & (BITS_PER_LONG - 1),
6036                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6037                 break; /* it's ours now. */
6038         }
6039         hpsa_cmd_partial_init(h, i, c);
6040         return c;
6041 }
6042
6043 /*
6044  * This is the complementary operation to cmd_alloc().  Note, however, in some
6045  * corner cases it may also be used to free blocks allocated by
6046  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6047  * the clear-bit is harmless.
6048  */
6049 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6050 {
6051         if (atomic_dec_and_test(&c->refcount)) {
6052                 int i;
6053
6054                 i = c - h->cmd_pool;
6055                 clear_bit(i & (BITS_PER_LONG - 1),
6056                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6057         }
6058 }
6059
6060 #ifdef CONFIG_COMPAT
6061
6062 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6063         void __user *arg)
6064 {
6065         IOCTL32_Command_struct __user *arg32 =
6066             (IOCTL32_Command_struct __user *) arg;
6067         IOCTL_Command_struct arg64;
6068         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6069         int err;
6070         u32 cp;
6071
6072         memset(&arg64, 0, sizeof(arg64));
6073         err = 0;
6074         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6075                            sizeof(arg64.LUN_info));
6076         err |= copy_from_user(&arg64.Request, &arg32->Request,
6077                            sizeof(arg64.Request));
6078         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6079                            sizeof(arg64.error_info));
6080         err |= get_user(arg64.buf_size, &arg32->buf_size);
6081         err |= get_user(cp, &arg32->buf);
6082         arg64.buf = compat_ptr(cp);
6083         err |= copy_to_user(p, &arg64, sizeof(arg64));
6084
6085         if (err)
6086                 return -EFAULT;
6087
6088         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6089         if (err)
6090                 return err;
6091         err |= copy_in_user(&arg32->error_info, &p->error_info,
6092                          sizeof(arg32->error_info));
6093         if (err)
6094                 return -EFAULT;
6095         return err;
6096 }
6097
6098 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6099         int cmd, void __user *arg)
6100 {
6101         BIG_IOCTL32_Command_struct __user *arg32 =
6102             (BIG_IOCTL32_Command_struct __user *) arg;
6103         BIG_IOCTL_Command_struct arg64;
6104         BIG_IOCTL_Command_struct __user *p =
6105             compat_alloc_user_space(sizeof(arg64));
6106         int err;
6107         u32 cp;
6108
6109         memset(&arg64, 0, sizeof(arg64));
6110         err = 0;
6111         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6112                            sizeof(arg64.LUN_info));
6113         err |= copy_from_user(&arg64.Request, &arg32->Request,
6114                            sizeof(arg64.Request));
6115         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6116                            sizeof(arg64.error_info));
6117         err |= get_user(arg64.buf_size, &arg32->buf_size);
6118         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6119         err |= get_user(cp, &arg32->buf);
6120         arg64.buf = compat_ptr(cp);
6121         err |= copy_to_user(p, &arg64, sizeof(arg64));
6122
6123         if (err)
6124                 return -EFAULT;
6125
6126         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6127         if (err)
6128                 return err;
6129         err |= copy_in_user(&arg32->error_info, &p->error_info,
6130                          sizeof(arg32->error_info));
6131         if (err)
6132                 return -EFAULT;
6133         return err;
6134 }
6135
6136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6137 {
6138         switch (cmd) {
6139         case CCISS_GETPCIINFO:
6140         case CCISS_GETINTINFO:
6141         case CCISS_SETINTINFO:
6142         case CCISS_GETNODENAME:
6143         case CCISS_SETNODENAME:
6144         case CCISS_GETHEARTBEAT:
6145         case CCISS_GETBUSTYPES:
6146         case CCISS_GETFIRMVER:
6147         case CCISS_GETDRIVVER:
6148         case CCISS_REVALIDVOLS:
6149         case CCISS_DEREGDISK:
6150         case CCISS_REGNEWDISK:
6151         case CCISS_REGNEWD:
6152         case CCISS_RESCANDISK:
6153         case CCISS_GETLUNINFO:
6154                 return hpsa_ioctl(dev, cmd, arg);
6155
6156         case CCISS_PASSTHRU32:
6157                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6158         case CCISS_BIG_PASSTHRU32:
6159                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6160
6161         default:
6162                 return -ENOIOCTLCMD;
6163         }
6164 }
6165 #endif
6166
6167 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6168 {
6169         struct hpsa_pci_info pciinfo;
6170
6171         if (!argp)
6172                 return -EINVAL;
6173         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6174         pciinfo.bus = h->pdev->bus->number;
6175         pciinfo.dev_fn = h->pdev->devfn;
6176         pciinfo.board_id = h->board_id;
6177         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6178                 return -EFAULT;
6179         return 0;
6180 }
6181
6182 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6183 {
6184         DriverVer_type DriverVer;
6185         unsigned char vmaj, vmin, vsubmin;
6186         int rc;
6187
6188         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6189                 &vmaj, &vmin, &vsubmin);
6190         if (rc != 3) {
6191                 dev_info(&h->pdev->dev, "driver version string '%s' "
6192                         "unrecognized.", HPSA_DRIVER_VERSION);
6193                 vmaj = 0;
6194                 vmin = 0;
6195                 vsubmin = 0;
6196         }
6197         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6198         if (!argp)
6199                 return -EINVAL;
6200         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6201                 return -EFAULT;
6202         return 0;
6203 }
6204
6205 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6206 {
6207         IOCTL_Command_struct iocommand;
6208         struct CommandList *c;
6209         char *buff = NULL;
6210         u64 temp64;
6211         int rc = 0;
6212
6213         if (!argp)
6214                 return -EINVAL;
6215         if (!capable(CAP_SYS_RAWIO))
6216                 return -EPERM;
6217         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6218                 return -EFAULT;
6219         if ((iocommand.buf_size < 1) &&
6220             (iocommand.Request.Type.Direction != XFER_NONE)) {
6221                 return -EINVAL;
6222         }
6223         if (iocommand.buf_size > 0) {
6224                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6225                 if (buff == NULL)
6226                         return -ENOMEM;
6227                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6228                         /* Copy the data into the buffer we created */
6229                         if (copy_from_user(buff, iocommand.buf,
6230                                 iocommand.buf_size)) {
6231                                 rc = -EFAULT;
6232                                 goto out_kfree;
6233                         }
6234                 } else {
6235                         memset(buff, 0, iocommand.buf_size);
6236                 }
6237         }
6238         c = cmd_alloc(h);
6239
6240         /* Fill in the command type */
6241         c->cmd_type = CMD_IOCTL_PEND;
6242         c->scsi_cmd = SCSI_CMD_BUSY;
6243         /* Fill in Command Header */
6244         c->Header.ReplyQueue = 0; /* unused in simple mode */
6245         if (iocommand.buf_size > 0) {   /* buffer to fill */
6246                 c->Header.SGList = 1;
6247                 c->Header.SGTotal = cpu_to_le16(1);
6248         } else  { /* no buffers to fill */
6249                 c->Header.SGList = 0;
6250                 c->Header.SGTotal = cpu_to_le16(0);
6251         }
6252         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6253
6254         /* Fill in Request block */
6255         memcpy(&c->Request, &iocommand.Request,
6256                 sizeof(c->Request));
6257
6258         /* Fill in the scatter gather information */
6259         if (iocommand.buf_size > 0) {
6260                 temp64 = pci_map_single(h->pdev, buff,
6261                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6262                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6263                         c->SG[0].Addr = cpu_to_le64(0);
6264                         c->SG[0].Len = cpu_to_le32(0);
6265                         rc = -ENOMEM;
6266                         goto out;
6267                 }
6268                 c->SG[0].Addr = cpu_to_le64(temp64);
6269                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6270                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6271         }
6272         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6273         if (iocommand.buf_size > 0)
6274                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6275         check_ioctl_unit_attention(h, c);
6276         if (rc) {
6277                 rc = -EIO;
6278                 goto out;
6279         }
6280
6281         /* Copy the error information out */
6282         memcpy(&iocommand.error_info, c->err_info,
6283                 sizeof(iocommand.error_info));
6284         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6285                 rc = -EFAULT;
6286                 goto out;
6287         }
6288         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6289                 iocommand.buf_size > 0) {
6290                 /* Copy the data out of the buffer we created */
6291                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6292                         rc = -EFAULT;
6293                         goto out;
6294                 }
6295         }
6296 out:
6297         cmd_free(h, c);
6298 out_kfree:
6299         kfree(buff);
6300         return rc;
6301 }
6302
6303 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6304 {
6305         BIG_IOCTL_Command_struct *ioc;
6306         struct CommandList *c;
6307         unsigned char **buff = NULL;
6308         int *buff_size = NULL;
6309         u64 temp64;
6310         BYTE sg_used = 0;
6311         int status = 0;
6312         u32 left;
6313         u32 sz;
6314         BYTE __user *data_ptr;
6315
6316         if (!argp)
6317                 return -EINVAL;
6318         if (!capable(CAP_SYS_RAWIO))
6319                 return -EPERM;
6320         ioc = (BIG_IOCTL_Command_struct *)
6321             kmalloc(sizeof(*ioc), GFP_KERNEL);
6322         if (!ioc) {
6323                 status = -ENOMEM;
6324                 goto cleanup1;
6325         }
6326         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6327                 status = -EFAULT;
6328                 goto cleanup1;
6329         }
6330         if ((ioc->buf_size < 1) &&
6331             (ioc->Request.Type.Direction != XFER_NONE)) {
6332                 status = -EINVAL;
6333                 goto cleanup1;
6334         }
6335         /* Check kmalloc limits  using all SGs */
6336         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6337                 status = -EINVAL;
6338                 goto cleanup1;
6339         }
6340         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6341                 status = -EINVAL;
6342                 goto cleanup1;
6343         }
6344         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6345         if (!buff) {
6346                 status = -ENOMEM;
6347                 goto cleanup1;
6348         }
6349         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6350         if (!buff_size) {
6351                 status = -ENOMEM;
6352                 goto cleanup1;
6353         }
6354         left = ioc->buf_size;
6355         data_ptr = ioc->buf;
6356         while (left) {
6357                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6358                 buff_size[sg_used] = sz;
6359                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6360                 if (buff[sg_used] == NULL) {
6361                         status = -ENOMEM;
6362                         goto cleanup1;
6363                 }
6364                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6365                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6366                                 status = -EFAULT;
6367                                 goto cleanup1;
6368                         }
6369                 } else
6370                         memset(buff[sg_used], 0, sz);
6371                 left -= sz;
6372                 data_ptr += sz;
6373                 sg_used++;
6374         }
6375         c = cmd_alloc(h);
6376
6377         c->cmd_type = CMD_IOCTL_PEND;
6378         c->scsi_cmd = SCSI_CMD_BUSY;
6379         c->Header.ReplyQueue = 0;
6380         c->Header.SGList = (u8) sg_used;
6381         c->Header.SGTotal = cpu_to_le16(sg_used);
6382         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6383         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6384         if (ioc->buf_size > 0) {
6385                 int i;
6386                 for (i = 0; i < sg_used; i++) {
6387                         temp64 = pci_map_single(h->pdev, buff[i],
6388                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6389                         if (dma_mapping_error(&h->pdev->dev,
6390                                                         (dma_addr_t) temp64)) {
6391                                 c->SG[i].Addr = cpu_to_le64(0);
6392                                 c->SG[i].Len = cpu_to_le32(0);
6393                                 hpsa_pci_unmap(h->pdev, c, i,
6394                                         PCI_DMA_BIDIRECTIONAL);
6395                                 status = -ENOMEM;
6396                                 goto cleanup0;
6397                         }
6398                         c->SG[i].Addr = cpu_to_le64(temp64);
6399                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6400                         c->SG[i].Ext = cpu_to_le32(0);
6401                 }
6402                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6403         }
6404         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6405         if (sg_used)
6406                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6407         check_ioctl_unit_attention(h, c);
6408         if (status) {
6409                 status = -EIO;
6410                 goto cleanup0;
6411         }
6412
6413         /* Copy the error information out */
6414         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6415         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6416                 status = -EFAULT;
6417                 goto cleanup0;
6418         }
6419         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6420                 int i;
6421
6422                 /* Copy the data out of the buffer we created */
6423                 BYTE __user *ptr = ioc->buf;
6424                 for (i = 0; i < sg_used; i++) {
6425                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6426                                 status = -EFAULT;
6427                                 goto cleanup0;
6428                         }
6429                         ptr += buff_size[i];
6430                 }
6431         }
6432         status = 0;
6433 cleanup0:
6434         cmd_free(h, c);
6435 cleanup1:
6436         if (buff) {
6437                 int i;
6438
6439                 for (i = 0; i < sg_used; i++)
6440                         kfree(buff[i]);
6441                 kfree(buff);
6442         }
6443         kfree(buff_size);
6444         kfree(ioc);
6445         return status;
6446 }
6447
6448 static void check_ioctl_unit_attention(struct ctlr_info *h,
6449         struct CommandList *c)
6450 {
6451         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6452                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6453                 (void) check_for_unit_attention(h, c);
6454 }
6455
6456 /*
6457  * ioctl
6458  */
6459 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6460 {
6461         struct ctlr_info *h;
6462         void __user *argp = (void __user *)arg;
6463         int rc;
6464
6465         h = sdev_to_hba(dev);
6466
6467         switch (cmd) {
6468         case CCISS_DEREGDISK:
6469         case CCISS_REGNEWDISK:
6470         case CCISS_REGNEWD:
6471                 hpsa_scan_start(h->scsi_host);
6472                 return 0;
6473         case CCISS_GETPCIINFO:
6474                 return hpsa_getpciinfo_ioctl(h, argp);
6475         case CCISS_GETDRIVVER:
6476                 return hpsa_getdrivver_ioctl(h, argp);
6477         case CCISS_PASSTHRU:
6478                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6479                         return -EAGAIN;
6480                 rc = hpsa_passthru_ioctl(h, argp);
6481                 atomic_inc(&h->passthru_cmds_avail);
6482                 return rc;
6483         case CCISS_BIG_PASSTHRU:
6484                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6485                         return -EAGAIN;
6486                 rc = hpsa_big_passthru_ioctl(h, argp);
6487                 atomic_inc(&h->passthru_cmds_avail);
6488                 return rc;
6489         default:
6490                 return -ENOTTY;
6491         }
6492 }
6493
6494 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6495                                 u8 reset_type)
6496 {
6497         struct CommandList *c;
6498
6499         c = cmd_alloc(h);
6500
6501         /* fill_cmd can't fail here, no data buffer to map */
6502         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6503                 RAID_CTLR_LUNID, TYPE_MSG);
6504         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6505         c->waiting = NULL;
6506         enqueue_cmd_and_start_io(h, c);
6507         /* Don't wait for completion, the reset won't complete.  Don't free
6508          * the command either.  This is the last command we will send before
6509          * re-initializing everything, so it doesn't matter and won't leak.
6510          */
6511         return;
6512 }
6513
6514 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6515         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6516         int cmd_type)
6517 {
6518         int pci_dir = XFER_NONE;
6519         u64 tag; /* for commands to be aborted */
6520
6521         c->cmd_type = CMD_IOCTL_PEND;
6522         c->scsi_cmd = SCSI_CMD_BUSY;
6523         c->Header.ReplyQueue = 0;
6524         if (buff != NULL && size > 0) {
6525                 c->Header.SGList = 1;
6526                 c->Header.SGTotal = cpu_to_le16(1);
6527         } else {
6528                 c->Header.SGList = 0;
6529                 c->Header.SGTotal = cpu_to_le16(0);
6530         }
6531         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6532
6533         if (cmd_type == TYPE_CMD) {
6534                 switch (cmd) {
6535                 case HPSA_INQUIRY:
6536                         /* are we trying to read a vital product page */
6537                         if (page_code & VPD_PAGE) {
6538                                 c->Request.CDB[1] = 0x01;
6539                                 c->Request.CDB[2] = (page_code & 0xff);
6540                         }
6541                         c->Request.CDBLen = 6;
6542                         c->Request.type_attr_dir =
6543                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6544                         c->Request.Timeout = 0;
6545                         c->Request.CDB[0] = HPSA_INQUIRY;
6546                         c->Request.CDB[4] = size & 0xFF;
6547                         break;
6548                 case HPSA_REPORT_LOG:
6549                 case HPSA_REPORT_PHYS:
6550                         /* Talking to controller so It's a physical command
6551                            mode = 00 target = 0.  Nothing to write.
6552                          */
6553                         c->Request.CDBLen = 12;
6554                         c->Request.type_attr_dir =
6555                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6556                         c->Request.Timeout = 0;
6557                         c->Request.CDB[0] = cmd;
6558                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6559                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6560                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6561                         c->Request.CDB[9] = size & 0xFF;
6562                         break;
6563                 case BMIC_SENSE_DIAG_OPTIONS:
6564                         c->Request.CDBLen = 16;
6565                         c->Request.type_attr_dir =
6566                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6567                         c->Request.Timeout = 0;
6568                         /* Spec says this should be BMIC_WRITE */
6569                         c->Request.CDB[0] = BMIC_READ;
6570                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6571                         break;
6572                 case BMIC_SET_DIAG_OPTIONS:
6573                         c->Request.CDBLen = 16;
6574                         c->Request.type_attr_dir =
6575                                         TYPE_ATTR_DIR(cmd_type,
6576                                                 ATTR_SIMPLE, XFER_WRITE);
6577                         c->Request.Timeout = 0;
6578                         c->Request.CDB[0] = BMIC_WRITE;
6579                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6580                         break;
6581                 case HPSA_CACHE_FLUSH:
6582                         c->Request.CDBLen = 12;
6583                         c->Request.type_attr_dir =
6584                                         TYPE_ATTR_DIR(cmd_type,
6585                                                 ATTR_SIMPLE, XFER_WRITE);
6586                         c->Request.Timeout = 0;
6587                         c->Request.CDB[0] = BMIC_WRITE;
6588                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6589                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6590                         c->Request.CDB[8] = size & 0xFF;
6591                         break;
6592                 case TEST_UNIT_READY:
6593                         c->Request.CDBLen = 6;
6594                         c->Request.type_attr_dir =
6595                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6596                         c->Request.Timeout = 0;
6597                         break;
6598                 case HPSA_GET_RAID_MAP:
6599                         c->Request.CDBLen = 12;
6600                         c->Request.type_attr_dir =
6601                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6602                         c->Request.Timeout = 0;
6603                         c->Request.CDB[0] = HPSA_CISS_READ;
6604                         c->Request.CDB[1] = cmd;
6605                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6606                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6607                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6608                         c->Request.CDB[9] = size & 0xFF;
6609                         break;
6610                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6611                         c->Request.CDBLen = 10;
6612                         c->Request.type_attr_dir =
6613                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6614                         c->Request.Timeout = 0;
6615                         c->Request.CDB[0] = BMIC_READ;
6616                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6617                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6618                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6619                         break;
6620                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6621                         c->Request.CDBLen = 10;
6622                         c->Request.type_attr_dir =
6623                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6624                         c->Request.Timeout = 0;
6625                         c->Request.CDB[0] = BMIC_READ;
6626                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6627                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6628                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6629                         break;
6630                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6631                         c->Request.CDBLen = 10;
6632                         c->Request.type_attr_dir =
6633                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6634                         c->Request.Timeout = 0;
6635                         c->Request.CDB[0] = BMIC_READ;
6636                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6637                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6638                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6639                         break;
6640                 case BMIC_IDENTIFY_CONTROLLER:
6641                         c->Request.CDBLen = 10;
6642                         c->Request.type_attr_dir =
6643                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6644                         c->Request.Timeout = 0;
6645                         c->Request.CDB[0] = BMIC_READ;
6646                         c->Request.CDB[1] = 0;
6647                         c->Request.CDB[2] = 0;
6648                         c->Request.CDB[3] = 0;
6649                         c->Request.CDB[4] = 0;
6650                         c->Request.CDB[5] = 0;
6651                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6652                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6653                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6654                         c->Request.CDB[9] = 0;
6655                         break;
6656                 default:
6657                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6658                         BUG();
6659                         return -1;
6660                 }
6661         } else if (cmd_type == TYPE_MSG) {
6662                 switch (cmd) {
6663
6664                 case  HPSA_PHYS_TARGET_RESET:
6665                         c->Request.CDBLen = 16;
6666                         c->Request.type_attr_dir =
6667                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6668                         c->Request.Timeout = 0; /* Don't time out */
6669                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6670                         c->Request.CDB[0] = HPSA_RESET;
6671                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6672                         /* Physical target reset needs no control bytes 4-7*/
6673                         c->Request.CDB[4] = 0x00;
6674                         c->Request.CDB[5] = 0x00;
6675                         c->Request.CDB[6] = 0x00;
6676                         c->Request.CDB[7] = 0x00;
6677                         break;
6678                 case  HPSA_DEVICE_RESET_MSG:
6679                         c->Request.CDBLen = 16;
6680                         c->Request.type_attr_dir =
6681                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6682                         c->Request.Timeout = 0; /* Don't time out */
6683                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6684                         c->Request.CDB[0] =  cmd;
6685                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6686                         /* If bytes 4-7 are zero, it means reset the */
6687                         /* LunID device */
6688                         c->Request.CDB[4] = 0x00;
6689                         c->Request.CDB[5] = 0x00;
6690                         c->Request.CDB[6] = 0x00;
6691                         c->Request.CDB[7] = 0x00;
6692                         break;
6693                 case  HPSA_ABORT_MSG:
6694                         memcpy(&tag, buff, sizeof(tag));
6695                         dev_dbg(&h->pdev->dev,
6696                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6697                                 tag, c->Header.tag);
6698                         c->Request.CDBLen = 16;
6699                         c->Request.type_attr_dir =
6700                                         TYPE_ATTR_DIR(cmd_type,
6701                                                 ATTR_SIMPLE, XFER_WRITE);
6702                         c->Request.Timeout = 0; /* Don't time out */
6703                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6704                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6705                         c->Request.CDB[2] = 0x00; /* reserved */
6706                         c->Request.CDB[3] = 0x00; /* reserved */
6707                         /* Tag to abort goes in CDB[4]-CDB[11] */
6708                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6709                         c->Request.CDB[12] = 0x00; /* reserved */
6710                         c->Request.CDB[13] = 0x00; /* reserved */
6711                         c->Request.CDB[14] = 0x00; /* reserved */
6712                         c->Request.CDB[15] = 0x00; /* reserved */
6713                 break;
6714                 default:
6715                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6716                                 cmd);
6717                         BUG();
6718                 }
6719         } else {
6720                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6721                 BUG();
6722         }
6723
6724         switch (GET_DIR(c->Request.type_attr_dir)) {
6725         case XFER_READ:
6726                 pci_dir = PCI_DMA_FROMDEVICE;
6727                 break;
6728         case XFER_WRITE:
6729                 pci_dir = PCI_DMA_TODEVICE;
6730                 break;
6731         case XFER_NONE:
6732                 pci_dir = PCI_DMA_NONE;
6733                 break;
6734         default:
6735                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6736         }
6737         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6738                 return -1;
6739         return 0;
6740 }
6741
6742 /*
6743  * Map (physical) PCI mem into (virtual) kernel space
6744  */
6745 static void __iomem *remap_pci_mem(ulong base, ulong size)
6746 {
6747         ulong page_base = ((ulong) base) & PAGE_MASK;
6748         ulong page_offs = ((ulong) base) - page_base;
6749         void __iomem *page_remapped = ioremap_nocache(page_base,
6750                 page_offs + size);
6751
6752         return page_remapped ? (page_remapped + page_offs) : NULL;
6753 }
6754
6755 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6756 {
6757         return h->access.command_completed(h, q);
6758 }
6759
6760 static inline bool interrupt_pending(struct ctlr_info *h)
6761 {
6762         return h->access.intr_pending(h);
6763 }
6764
6765 static inline long interrupt_not_for_us(struct ctlr_info *h)
6766 {
6767         return (h->access.intr_pending(h) == 0) ||
6768                 (h->interrupts_enabled == 0);
6769 }
6770
6771 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6772         u32 raw_tag)
6773 {
6774         if (unlikely(tag_index >= h->nr_cmds)) {
6775                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6776                 return 1;
6777         }
6778         return 0;
6779 }
6780
6781 static inline void finish_cmd(struct CommandList *c)
6782 {
6783         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6784         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6785                         || c->cmd_type == CMD_IOACCEL2))
6786                 complete_scsi_command(c);
6787         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6788                 complete(c->waiting);
6789 }
6790
6791 /* process completion of an indexed ("direct lookup") command */
6792 static inline void process_indexed_cmd(struct ctlr_info *h,
6793         u32 raw_tag)
6794 {
6795         u32 tag_index;
6796         struct CommandList *c;
6797
6798         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6799         if (!bad_tag(h, tag_index, raw_tag)) {
6800                 c = h->cmd_pool + tag_index;
6801                 finish_cmd(c);
6802         }
6803 }
6804
6805 /* Some controllers, like p400, will give us one interrupt
6806  * after a soft reset, even if we turned interrupts off.
6807  * Only need to check for this in the hpsa_xxx_discard_completions
6808  * functions.
6809  */
6810 static int ignore_bogus_interrupt(struct ctlr_info *h)
6811 {
6812         if (likely(!reset_devices))
6813                 return 0;
6814
6815         if (likely(h->interrupts_enabled))
6816                 return 0;
6817
6818         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6819                 "(known firmware bug.)  Ignoring.\n");
6820
6821         return 1;
6822 }
6823
6824 /*
6825  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6826  * Relies on (h-q[x] == x) being true for x such that
6827  * 0 <= x < MAX_REPLY_QUEUES.
6828  */
6829 static struct ctlr_info *queue_to_hba(u8 *queue)
6830 {
6831         return container_of((queue - *queue), struct ctlr_info, q[0]);
6832 }
6833
6834 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6835 {
6836         struct ctlr_info *h = queue_to_hba(queue);
6837         u8 q = *(u8 *) queue;
6838         u32 raw_tag;
6839
6840         if (ignore_bogus_interrupt(h))
6841                 return IRQ_NONE;
6842
6843         if (interrupt_not_for_us(h))
6844                 return IRQ_NONE;
6845         h->last_intr_timestamp = get_jiffies_64();
6846         while (interrupt_pending(h)) {
6847                 raw_tag = get_next_completion(h, q);
6848                 while (raw_tag != FIFO_EMPTY)
6849                         raw_tag = next_command(h, q);
6850         }
6851         return IRQ_HANDLED;
6852 }
6853
6854 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6855 {
6856         struct ctlr_info *h = queue_to_hba(queue);
6857         u32 raw_tag;
6858         u8 q = *(u8 *) queue;
6859
6860         if (ignore_bogus_interrupt(h))
6861                 return IRQ_NONE;
6862
6863         h->last_intr_timestamp = get_jiffies_64();
6864         raw_tag = get_next_completion(h, q);
6865         while (raw_tag != FIFO_EMPTY)
6866                 raw_tag = next_command(h, q);
6867         return IRQ_HANDLED;
6868 }
6869
6870 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6871 {
6872         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6873         u32 raw_tag;
6874         u8 q = *(u8 *) queue;
6875
6876         if (interrupt_not_for_us(h))
6877                 return IRQ_NONE;
6878         h->last_intr_timestamp = get_jiffies_64();
6879         while (interrupt_pending(h)) {
6880                 raw_tag = get_next_completion(h, q);
6881                 while (raw_tag != FIFO_EMPTY) {
6882                         process_indexed_cmd(h, raw_tag);
6883                         raw_tag = next_command(h, q);
6884                 }
6885         }
6886         return IRQ_HANDLED;
6887 }
6888
6889 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6890 {
6891         struct ctlr_info *h = queue_to_hba(queue);
6892         u32 raw_tag;
6893         u8 q = *(u8 *) queue;
6894
6895         h->last_intr_timestamp = get_jiffies_64();
6896         raw_tag = get_next_completion(h, q);
6897         while (raw_tag != FIFO_EMPTY) {
6898                 process_indexed_cmd(h, raw_tag);
6899                 raw_tag = next_command(h, q);
6900         }
6901         return IRQ_HANDLED;
6902 }
6903
6904 /* Send a message CDB to the firmware. Careful, this only works
6905  * in simple mode, not performant mode due to the tag lookup.
6906  * We only ever use this immediately after a controller reset.
6907  */
6908 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6909                         unsigned char type)
6910 {
6911         struct Command {
6912                 struct CommandListHeader CommandHeader;
6913                 struct RequestBlock Request;
6914                 struct ErrDescriptor ErrorDescriptor;
6915         };
6916         struct Command *cmd;
6917         static const size_t cmd_sz = sizeof(*cmd) +
6918                                         sizeof(cmd->ErrorDescriptor);
6919         dma_addr_t paddr64;
6920         __le32 paddr32;
6921         u32 tag;
6922         void __iomem *vaddr;
6923         int i, err;
6924
6925         vaddr = pci_ioremap_bar(pdev, 0);
6926         if (vaddr == NULL)
6927                 return -ENOMEM;
6928
6929         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6930          * CCISS commands, so they must be allocated from the lower 4GiB of
6931          * memory.
6932          */
6933         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6934         if (err) {
6935                 iounmap(vaddr);
6936                 return err;
6937         }
6938
6939         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6940         if (cmd == NULL) {
6941                 iounmap(vaddr);
6942                 return -ENOMEM;
6943         }
6944
6945         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6946          * although there's no guarantee, we assume that the address is at
6947          * least 4-byte aligned (most likely, it's page-aligned).
6948          */
6949         paddr32 = cpu_to_le32(paddr64);
6950
6951         cmd->CommandHeader.ReplyQueue = 0;
6952         cmd->CommandHeader.SGList = 0;
6953         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6954         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6955         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6956
6957         cmd->Request.CDBLen = 16;
6958         cmd->Request.type_attr_dir =
6959                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6960         cmd->Request.Timeout = 0; /* Don't time out */
6961         cmd->Request.CDB[0] = opcode;
6962         cmd->Request.CDB[1] = type;
6963         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6964         cmd->ErrorDescriptor.Addr =
6965                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6966         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6967
6968         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6969
6970         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6971                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6972                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6973                         break;
6974                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6975         }
6976
6977         iounmap(vaddr);
6978
6979         /* we leak the DMA buffer here ... no choice since the controller could
6980          *  still complete the command.
6981          */
6982         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6983                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6984                         opcode, type);
6985                 return -ETIMEDOUT;
6986         }
6987
6988         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6989
6990         if (tag & HPSA_ERROR_BIT) {
6991                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6992                         opcode, type);
6993                 return -EIO;
6994         }
6995
6996         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6997                 opcode, type);
6998         return 0;
6999 }
7000
7001 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7002
7003 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7004         void __iomem *vaddr, u32 use_doorbell)
7005 {
7006
7007         if (use_doorbell) {
7008                 /* For everything after the P600, the PCI power state method
7009                  * of resetting the controller doesn't work, so we have this
7010                  * other way using the doorbell register.
7011                  */
7012                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7013                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7014
7015                 /* PMC hardware guys tell us we need a 10 second delay after
7016                  * doorbell reset and before any attempt to talk to the board
7017                  * at all to ensure that this actually works and doesn't fall
7018                  * over in some weird corner cases.
7019                  */
7020                 msleep(10000);
7021         } else { /* Try to do it the PCI power state way */
7022
7023                 /* Quoting from the Open CISS Specification: "The Power
7024                  * Management Control/Status Register (CSR) controls the power
7025                  * state of the device.  The normal operating state is D0,
7026                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7027                  * the controller, place the interface device in D3 then to D0,
7028                  * this causes a secondary PCI reset which will reset the
7029                  * controller." */
7030
7031                 int rc = 0;
7032
7033                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7034
7035                 /* enter the D3hot power management state */
7036                 rc = pci_set_power_state(pdev, PCI_D3hot);
7037                 if (rc)
7038                         return rc;
7039
7040                 msleep(500);
7041
7042                 /* enter the D0 power management state */
7043                 rc = pci_set_power_state(pdev, PCI_D0);
7044                 if (rc)
7045                         return rc;
7046
7047                 /*
7048                  * The P600 requires a small delay when changing states.
7049                  * Otherwise we may think the board did not reset and we bail.
7050                  * This for kdump only and is particular to the P600.
7051                  */
7052                 msleep(500);
7053         }
7054         return 0;
7055 }
7056
7057 static void init_driver_version(char *driver_version, int len)
7058 {
7059         memset(driver_version, 0, len);
7060         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7061 }
7062
7063 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7064 {
7065         char *driver_version;
7066         int i, size = sizeof(cfgtable->driver_version);
7067
7068         driver_version = kmalloc(size, GFP_KERNEL);
7069         if (!driver_version)
7070                 return -ENOMEM;
7071
7072         init_driver_version(driver_version, size);
7073         for (i = 0; i < size; i++)
7074                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7075         kfree(driver_version);
7076         return 0;
7077 }
7078
7079 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7080                                           unsigned char *driver_ver)
7081 {
7082         int i;
7083
7084         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7085                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7086 }
7087
7088 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7089 {
7090
7091         char *driver_ver, *old_driver_ver;
7092         int rc, size = sizeof(cfgtable->driver_version);
7093
7094         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7095         if (!old_driver_ver)
7096                 return -ENOMEM;
7097         driver_ver = old_driver_ver + size;
7098
7099         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7100          * should have been changed, otherwise we know the reset failed.
7101          */
7102         init_driver_version(old_driver_ver, size);
7103         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7104         rc = !memcmp(driver_ver, old_driver_ver, size);
7105         kfree(old_driver_ver);
7106         return rc;
7107 }
7108 /* This does a hard reset of the controller using PCI power management
7109  * states or the using the doorbell register.
7110  */
7111 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7112 {
7113         u64 cfg_offset;
7114         u32 cfg_base_addr;
7115         u64 cfg_base_addr_index;
7116         void __iomem *vaddr;
7117         unsigned long paddr;
7118         u32 misc_fw_support;
7119         int rc;
7120         struct CfgTable __iomem *cfgtable;
7121         u32 use_doorbell;
7122         u16 command_register;
7123
7124         /* For controllers as old as the P600, this is very nearly
7125          * the same thing as
7126          *
7127          * pci_save_state(pci_dev);
7128          * pci_set_power_state(pci_dev, PCI_D3hot);
7129          * pci_set_power_state(pci_dev, PCI_D0);
7130          * pci_restore_state(pci_dev);
7131          *
7132          * For controllers newer than the P600, the pci power state
7133          * method of resetting doesn't work so we have another way
7134          * using the doorbell register.
7135          */
7136
7137         if (!ctlr_is_resettable(board_id)) {
7138                 dev_warn(&pdev->dev, "Controller not resettable\n");
7139                 return -ENODEV;
7140         }
7141
7142         /* if controller is soft- but not hard resettable... */
7143         if (!ctlr_is_hard_resettable(board_id))
7144                 return -ENOTSUPP; /* try soft reset later. */
7145
7146         /* Save the PCI command register */
7147         pci_read_config_word(pdev, 4, &command_register);
7148         pci_save_state(pdev);
7149
7150         /* find the first memory BAR, so we can find the cfg table */
7151         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7152         if (rc)
7153                 return rc;
7154         vaddr = remap_pci_mem(paddr, 0x250);
7155         if (!vaddr)
7156                 return -ENOMEM;
7157
7158         /* find cfgtable in order to check if reset via doorbell is supported */
7159         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7160                                         &cfg_base_addr_index, &cfg_offset);
7161         if (rc)
7162                 goto unmap_vaddr;
7163         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7164                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7165         if (!cfgtable) {
7166                 rc = -ENOMEM;
7167                 goto unmap_vaddr;
7168         }
7169         rc = write_driver_ver_to_cfgtable(cfgtable);
7170         if (rc)
7171                 goto unmap_cfgtable;
7172
7173         /* If reset via doorbell register is supported, use that.
7174          * There are two such methods.  Favor the newest method.
7175          */
7176         misc_fw_support = readl(&cfgtable->misc_fw_support);
7177         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7178         if (use_doorbell) {
7179                 use_doorbell = DOORBELL_CTLR_RESET2;
7180         } else {
7181                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7182                 if (use_doorbell) {
7183                         dev_warn(&pdev->dev,
7184                                 "Soft reset not supported. Firmware update is required.\n");
7185                         rc = -ENOTSUPP; /* try soft reset */
7186                         goto unmap_cfgtable;
7187                 }
7188         }
7189
7190         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7191         if (rc)
7192                 goto unmap_cfgtable;
7193
7194         pci_restore_state(pdev);
7195         pci_write_config_word(pdev, 4, command_register);
7196
7197         /* Some devices (notably the HP Smart Array 5i Controller)
7198            need a little pause here */
7199         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7200
7201         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7202         if (rc) {
7203                 dev_warn(&pdev->dev,
7204                         "Failed waiting for board to become ready after hard reset\n");
7205                 goto unmap_cfgtable;
7206         }
7207
7208         rc = controller_reset_failed(vaddr);
7209         if (rc < 0)
7210                 goto unmap_cfgtable;
7211         if (rc) {
7212                 dev_warn(&pdev->dev, "Unable to successfully reset "
7213                         "controller. Will try soft reset.\n");
7214                 rc = -ENOTSUPP;
7215         } else {
7216                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7217         }
7218
7219 unmap_cfgtable:
7220         iounmap(cfgtable);
7221
7222 unmap_vaddr:
7223         iounmap(vaddr);
7224         return rc;
7225 }
7226
7227 /*
7228  *  We cannot read the structure directly, for portability we must use
7229  *   the io functions.
7230  *   This is for debug only.
7231  */
7232 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7233 {
7234 #ifdef HPSA_DEBUG
7235         int i;
7236         char temp_name[17];
7237
7238         dev_info(dev, "Controller Configuration information\n");
7239         dev_info(dev, "------------------------------------\n");
7240         for (i = 0; i < 4; i++)
7241                 temp_name[i] = readb(&(tb->Signature[i]));
7242         temp_name[4] = '\0';
7243         dev_info(dev, "   Signature = %s\n", temp_name);
7244         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7245         dev_info(dev, "   Transport methods supported = 0x%x\n",
7246                readl(&(tb->TransportSupport)));
7247         dev_info(dev, "   Transport methods active = 0x%x\n",
7248                readl(&(tb->TransportActive)));
7249         dev_info(dev, "   Requested transport Method = 0x%x\n",
7250                readl(&(tb->HostWrite.TransportRequest)));
7251         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7252                readl(&(tb->HostWrite.CoalIntDelay)));
7253         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7254                readl(&(tb->HostWrite.CoalIntCount)));
7255         dev_info(dev, "   Max outstanding commands = %d\n",
7256                readl(&(tb->CmdsOutMax)));
7257         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7258         for (i = 0; i < 16; i++)
7259                 temp_name[i] = readb(&(tb->ServerName[i]));
7260         temp_name[16] = '\0';
7261         dev_info(dev, "   Server Name = %s\n", temp_name);
7262         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7263                 readl(&(tb->HeartBeat)));
7264 #endif                          /* HPSA_DEBUG */
7265 }
7266
7267 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7268 {
7269         int i, offset, mem_type, bar_type;
7270
7271         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7272                 return 0;
7273         offset = 0;
7274         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7275                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7276                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7277                         offset += 4;
7278                 else {
7279                         mem_type = pci_resource_flags(pdev, i) &
7280                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7281                         switch (mem_type) {
7282                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7283                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7284                                 offset += 4;    /* 32 bit */
7285                                 break;
7286                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7287                                 offset += 8;
7288                                 break;
7289                         default:        /* reserved in PCI 2.2 */
7290                                 dev_warn(&pdev->dev,
7291                                        "base address is invalid\n");
7292                                 return -1;
7293                                 break;
7294                         }
7295                 }
7296                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7297                         return i + 1;
7298         }
7299         return -1;
7300 }
7301
7302 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7303 {
7304         if (h->msix_vector) {
7305                 if (h->pdev->msix_enabled)
7306                         pci_disable_msix(h->pdev);
7307                 h->msix_vector = 0;
7308         } else if (h->msi_vector) {
7309                 if (h->pdev->msi_enabled)
7310                         pci_disable_msi(h->pdev);
7311                 h->msi_vector = 0;
7312         }
7313 }
7314
7315 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7316  * controllers that are capable. If not, we use legacy INTx mode.
7317  */
7318 static void hpsa_interrupt_mode(struct ctlr_info *h)
7319 {
7320 #ifdef CONFIG_PCI_MSI
7321         int err, i;
7322         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7323
7324         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7325                 hpsa_msix_entries[i].vector = 0;
7326                 hpsa_msix_entries[i].entry = i;
7327         }
7328
7329         /* Some boards advertise MSI but don't really support it */
7330         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7331             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7332                 goto default_int_mode;
7333         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7334                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7335                 h->msix_vector = MAX_REPLY_QUEUES;
7336                 if (h->msix_vector > num_online_cpus())
7337                         h->msix_vector = num_online_cpus();
7338                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7339                                             1, h->msix_vector);
7340                 if (err < 0) {
7341                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7342                         h->msix_vector = 0;
7343                         goto single_msi_mode;
7344                 } else if (err < h->msix_vector) {
7345                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7346                                "available\n", err);
7347                 }
7348                 h->msix_vector = err;
7349                 for (i = 0; i < h->msix_vector; i++)
7350                         h->intr[i] = hpsa_msix_entries[i].vector;
7351                 return;
7352         }
7353 single_msi_mode:
7354         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7355                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7356                 if (!pci_enable_msi(h->pdev))
7357                         h->msi_vector = 1;
7358                 else
7359                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7360         }
7361 default_int_mode:
7362 #endif                          /* CONFIG_PCI_MSI */
7363         /* if we get here we're going to use the default interrupt mode */
7364         h->intr[h->intr_mode] = h->pdev->irq;
7365 }
7366
7367 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7368 {
7369         int i;
7370         u32 subsystem_vendor_id, subsystem_device_id;
7371
7372         subsystem_vendor_id = pdev->subsystem_vendor;
7373         subsystem_device_id = pdev->subsystem_device;
7374         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7375                     subsystem_vendor_id;
7376
7377         for (i = 0; i < ARRAY_SIZE(products); i++)
7378                 if (*board_id == products[i].board_id)
7379                         return i;
7380
7381         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7382                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7383                 !hpsa_allow_any) {
7384                 dev_warn(&pdev->dev, "unrecognized board ID: "
7385                         "0x%08x, ignoring.\n", *board_id);
7386                         return -ENODEV;
7387         }
7388         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7389 }
7390
7391 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7392                                     unsigned long *memory_bar)
7393 {
7394         int i;
7395
7396         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7397                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7398                         /* addressing mode bits already removed */
7399                         *memory_bar = pci_resource_start(pdev, i);
7400                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7401                                 *memory_bar);
7402                         return 0;
7403                 }
7404         dev_warn(&pdev->dev, "no memory BAR found\n");
7405         return -ENODEV;
7406 }
7407
7408 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7409                                      int wait_for_ready)
7410 {
7411         int i, iterations;
7412         u32 scratchpad;
7413         if (wait_for_ready)
7414                 iterations = HPSA_BOARD_READY_ITERATIONS;
7415         else
7416                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7417
7418         for (i = 0; i < iterations; i++) {
7419                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7420                 if (wait_for_ready) {
7421                         if (scratchpad == HPSA_FIRMWARE_READY)
7422                                 return 0;
7423                 } else {
7424                         if (scratchpad != HPSA_FIRMWARE_READY)
7425                                 return 0;
7426                 }
7427                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7428         }
7429         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7430         return -ENODEV;
7431 }
7432
7433 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7434                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7435                                u64 *cfg_offset)
7436 {
7437         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7438         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7439         *cfg_base_addr &= (u32) 0x0000ffff;
7440         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7441         if (*cfg_base_addr_index == -1) {
7442                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7443                 return -ENODEV;
7444         }
7445         return 0;
7446 }
7447
7448 static void hpsa_free_cfgtables(struct ctlr_info *h)
7449 {
7450         if (h->transtable) {
7451                 iounmap(h->transtable);
7452                 h->transtable = NULL;
7453         }
7454         if (h->cfgtable) {
7455                 iounmap(h->cfgtable);
7456                 h->cfgtable = NULL;
7457         }
7458 }
7459
7460 /* Find and map CISS config table and transfer table
7461 + * several items must be unmapped (freed) later
7462 + * */
7463 static int hpsa_find_cfgtables(struct ctlr_info *h)
7464 {
7465         u64 cfg_offset;
7466         u32 cfg_base_addr;
7467         u64 cfg_base_addr_index;
7468         u32 trans_offset;
7469         int rc;
7470
7471         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7472                 &cfg_base_addr_index, &cfg_offset);
7473         if (rc)
7474                 return rc;
7475         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7476                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7477         if (!h->cfgtable) {
7478                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7479                 return -ENOMEM;
7480         }
7481         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7482         if (rc)
7483                 return rc;
7484         /* Find performant mode table. */
7485         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7486         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7487                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7488                                 sizeof(*h->transtable));
7489         if (!h->transtable) {
7490                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7491                 hpsa_free_cfgtables(h);
7492                 return -ENOMEM;
7493         }
7494         return 0;
7495 }
7496
7497 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7498 {
7499 #define MIN_MAX_COMMANDS 16
7500         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7501
7502         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7503
7504         /* Limit commands in memory limited kdump scenario. */
7505         if (reset_devices && h->max_commands > 32)
7506                 h->max_commands = 32;
7507
7508         if (h->max_commands < MIN_MAX_COMMANDS) {
7509                 dev_warn(&h->pdev->dev,
7510                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7511                         h->max_commands,
7512                         MIN_MAX_COMMANDS);
7513                 h->max_commands = MIN_MAX_COMMANDS;
7514         }
7515 }
7516
7517 /* If the controller reports that the total max sg entries is greater than 512,
7518  * then we know that chained SG blocks work.  (Original smart arrays did not
7519  * support chained SG blocks and would return zero for max sg entries.)
7520  */
7521 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7522 {
7523         return h->maxsgentries > 512;
7524 }
7525
7526 /* Interrogate the hardware for some limits:
7527  * max commands, max SG elements without chaining, and with chaining,
7528  * SG chain block size, etc.
7529  */
7530 static void hpsa_find_board_params(struct ctlr_info *h)
7531 {
7532         hpsa_get_max_perf_mode_cmds(h);
7533         h->nr_cmds = h->max_commands;
7534         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7535         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7536         if (hpsa_supports_chained_sg_blocks(h)) {
7537                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7538                 h->max_cmd_sg_entries = 32;
7539                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7540                 h->maxsgentries--; /* save one for chain pointer */
7541         } else {
7542                 /*
7543                  * Original smart arrays supported at most 31 s/g entries
7544                  * embedded inline in the command (trying to use more
7545                  * would lock up the controller)
7546                  */
7547                 h->max_cmd_sg_entries = 31;
7548                 h->maxsgentries = 31; /* default to traditional values */
7549                 h->chainsize = 0;
7550         }
7551
7552         /* Find out what task management functions are supported and cache */
7553         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7554         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7555                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7556         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7557                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7558         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7559                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7560 }
7561
7562 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7563 {
7564         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7565                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7566                 return false;
7567         }
7568         return true;
7569 }
7570
7571 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7572 {
7573         u32 driver_support;
7574
7575         driver_support = readl(&(h->cfgtable->driver_support));
7576         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7577 #ifdef CONFIG_X86
7578         driver_support |= ENABLE_SCSI_PREFETCH;
7579 #endif
7580         driver_support |= ENABLE_UNIT_ATTN;
7581         writel(driver_support, &(h->cfgtable->driver_support));
7582 }
7583
7584 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7585  * in a prefetch beyond physical memory.
7586  */
7587 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7588 {
7589         u32 dma_prefetch;
7590
7591         if (h->board_id != 0x3225103C)
7592                 return;
7593         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7594         dma_prefetch |= 0x8000;
7595         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7596 }
7597
7598 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7599 {
7600         int i;
7601         u32 doorbell_value;
7602         unsigned long flags;
7603         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7604         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7605                 spin_lock_irqsave(&h->lock, flags);
7606                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7607                 spin_unlock_irqrestore(&h->lock, flags);
7608                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7609                         goto done;
7610                 /* delay and try again */
7611                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7612         }
7613         return -ENODEV;
7614 done:
7615         return 0;
7616 }
7617
7618 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7619 {
7620         int i;
7621         u32 doorbell_value;
7622         unsigned long flags;
7623
7624         /* under certain very rare conditions, this can take awhile.
7625          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7626          * as we enter this code.)
7627          */
7628         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7629                 if (h->remove_in_progress)
7630                         goto done;
7631                 spin_lock_irqsave(&h->lock, flags);
7632                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7633                 spin_unlock_irqrestore(&h->lock, flags);
7634                 if (!(doorbell_value & CFGTBL_ChangeReq))
7635                         goto done;
7636                 /* delay and try again */
7637                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7638         }
7639         return -ENODEV;
7640 done:
7641         return 0;
7642 }
7643
7644 /* return -ENODEV or other reason on error, 0 on success */
7645 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7646 {
7647         u32 trans_support;
7648
7649         trans_support = readl(&(h->cfgtable->TransportSupport));
7650         if (!(trans_support & SIMPLE_MODE))
7651                 return -ENOTSUPP;
7652
7653         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7654
7655         /* Update the field, and then ring the doorbell */
7656         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7657         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7658         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7659         if (hpsa_wait_for_mode_change_ack(h))
7660                 goto error;
7661         print_cfg_table(&h->pdev->dev, h->cfgtable);
7662         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7663                 goto error;
7664         h->transMethod = CFGTBL_Trans_Simple;
7665         return 0;
7666 error:
7667         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7668         return -ENODEV;
7669 }
7670
7671 /* free items allocated or mapped by hpsa_pci_init */
7672 static void hpsa_free_pci_init(struct ctlr_info *h)
7673 {
7674         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7675         iounmap(h->vaddr);                      /* pci_init 3 */
7676         h->vaddr = NULL;
7677         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7678         /*
7679          * call pci_disable_device before pci_release_regions per
7680          * Documentation/PCI/pci.txt
7681          */
7682         pci_disable_device(h->pdev);            /* pci_init 1 */
7683         pci_release_regions(h->pdev);           /* pci_init 2 */
7684 }
7685
7686 /* several items must be freed later */
7687 static int hpsa_pci_init(struct ctlr_info *h)
7688 {
7689         int prod_index, err;
7690
7691         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7692         if (prod_index < 0)
7693                 return prod_index;
7694         h->product_name = products[prod_index].product_name;
7695         h->access = *(products[prod_index].access);
7696
7697         h->needs_abort_tags_swizzled =
7698                 ctlr_needs_abort_tags_swizzled(h->board_id);
7699
7700         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7701                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7702
7703         err = pci_enable_device(h->pdev);
7704         if (err) {
7705                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7706                 pci_disable_device(h->pdev);
7707                 return err;
7708         }
7709
7710         err = pci_request_regions(h->pdev, HPSA);
7711         if (err) {
7712                 dev_err(&h->pdev->dev,
7713                         "failed to obtain PCI resources\n");
7714                 pci_disable_device(h->pdev);
7715                 return err;
7716         }
7717
7718         pci_set_master(h->pdev);
7719
7720         hpsa_interrupt_mode(h);
7721         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7722         if (err)
7723                 goto clean2;    /* intmode+region, pci */
7724         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7725         if (!h->vaddr) {
7726                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7727                 err = -ENOMEM;
7728                 goto clean2;    /* intmode+region, pci */
7729         }
7730         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7731         if (err)
7732                 goto clean3;    /* vaddr, intmode+region, pci */
7733         err = hpsa_find_cfgtables(h);
7734         if (err)
7735                 goto clean3;    /* vaddr, intmode+region, pci */
7736         hpsa_find_board_params(h);
7737
7738         if (!hpsa_CISS_signature_present(h)) {
7739                 err = -ENODEV;
7740                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7741         }
7742         hpsa_set_driver_support_bits(h);
7743         hpsa_p600_dma_prefetch_quirk(h);
7744         err = hpsa_enter_simple_mode(h);
7745         if (err)
7746                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7747         return 0;
7748
7749 clean4: /* cfgtables, vaddr, intmode+region, pci */
7750         hpsa_free_cfgtables(h);
7751 clean3: /* vaddr, intmode+region, pci */
7752         iounmap(h->vaddr);
7753         h->vaddr = NULL;
7754 clean2: /* intmode+region, pci */
7755         hpsa_disable_interrupt_mode(h);
7756         /*
7757          * call pci_disable_device before pci_release_regions per
7758          * Documentation/PCI/pci.txt
7759          */
7760         pci_disable_device(h->pdev);
7761         pci_release_regions(h->pdev);
7762         return err;
7763 }
7764
7765 static void hpsa_hba_inquiry(struct ctlr_info *h)
7766 {
7767         int rc;
7768
7769 #define HBA_INQUIRY_BYTE_COUNT 64
7770         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7771         if (!h->hba_inquiry_data)
7772                 return;
7773         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7774                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7775         if (rc != 0) {
7776                 kfree(h->hba_inquiry_data);
7777                 h->hba_inquiry_data = NULL;
7778         }
7779 }
7780
7781 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7782 {
7783         int rc, i;
7784         void __iomem *vaddr;
7785
7786         if (!reset_devices)
7787                 return 0;
7788
7789         /* kdump kernel is loading, we don't know in which state is
7790          * the pci interface. The dev->enable_cnt is equal zero
7791          * so we call enable+disable, wait a while and switch it on.
7792          */
7793         rc = pci_enable_device(pdev);
7794         if (rc) {
7795                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7796                 return -ENODEV;
7797         }
7798         pci_disable_device(pdev);
7799         msleep(260);                    /* a randomly chosen number */
7800         rc = pci_enable_device(pdev);
7801         if (rc) {
7802                 dev_warn(&pdev->dev, "failed to enable device.\n");
7803                 return -ENODEV;
7804         }
7805
7806         pci_set_master(pdev);
7807
7808         vaddr = pci_ioremap_bar(pdev, 0);
7809         if (vaddr == NULL) {
7810                 rc = -ENOMEM;
7811                 goto out_disable;
7812         }
7813         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7814         iounmap(vaddr);
7815
7816         /* Reset the controller with a PCI power-cycle or via doorbell */
7817         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7818
7819         /* -ENOTSUPP here means we cannot reset the controller
7820          * but it's already (and still) up and running in
7821          * "performant mode".  Or, it might be 640x, which can't reset
7822          * due to concerns about shared bbwc between 6402/6404 pair.
7823          */
7824         if (rc)
7825                 goto out_disable;
7826
7827         /* Now try to get the controller to respond to a no-op */
7828         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7829         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7830                 if (hpsa_noop(pdev) == 0)
7831                         break;
7832                 else
7833                         dev_warn(&pdev->dev, "no-op failed%s\n",
7834                                         (i < 11 ? "; re-trying" : ""));
7835         }
7836
7837 out_disable:
7838
7839         pci_disable_device(pdev);
7840         return rc;
7841 }
7842
7843 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7844 {
7845         kfree(h->cmd_pool_bits);
7846         h->cmd_pool_bits = NULL;
7847         if (h->cmd_pool) {
7848                 pci_free_consistent(h->pdev,
7849                                 h->nr_cmds * sizeof(struct CommandList),
7850                                 h->cmd_pool,
7851                                 h->cmd_pool_dhandle);
7852                 h->cmd_pool = NULL;
7853                 h->cmd_pool_dhandle = 0;
7854         }
7855         if (h->errinfo_pool) {
7856                 pci_free_consistent(h->pdev,
7857                                 h->nr_cmds * sizeof(struct ErrorInfo),
7858                                 h->errinfo_pool,
7859                                 h->errinfo_pool_dhandle);
7860                 h->errinfo_pool = NULL;
7861                 h->errinfo_pool_dhandle = 0;
7862         }
7863 }
7864
7865 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7866 {
7867         h->cmd_pool_bits = kzalloc(
7868                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7869                 sizeof(unsigned long), GFP_KERNEL);
7870         h->cmd_pool = pci_alloc_consistent(h->pdev,
7871                     h->nr_cmds * sizeof(*h->cmd_pool),
7872                     &(h->cmd_pool_dhandle));
7873         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7874                     h->nr_cmds * sizeof(*h->errinfo_pool),
7875                     &(h->errinfo_pool_dhandle));
7876         if ((h->cmd_pool_bits == NULL)
7877             || (h->cmd_pool == NULL)
7878             || (h->errinfo_pool == NULL)) {
7879                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7880                 goto clean_up;
7881         }
7882         hpsa_preinitialize_commands(h);
7883         return 0;
7884 clean_up:
7885         hpsa_free_cmd_pool(h);
7886         return -ENOMEM;
7887 }
7888
7889 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7890 {
7891         int i, cpu;
7892
7893         cpu = cpumask_first(cpu_online_mask);
7894         for (i = 0; i < h->msix_vector; i++) {
7895                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7896                 cpu = cpumask_next(cpu, cpu_online_mask);
7897         }
7898 }
7899
7900 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7901 static void hpsa_free_irqs(struct ctlr_info *h)
7902 {
7903         int i;
7904
7905         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7906                 /* Single reply queue, only one irq to free */
7907                 i = h->intr_mode;
7908                 irq_set_affinity_hint(h->intr[i], NULL);
7909                 free_irq(h->intr[i], &h->q[i]);
7910                 h->q[i] = 0;
7911                 return;
7912         }
7913
7914         for (i = 0; i < h->msix_vector; i++) {
7915                 irq_set_affinity_hint(h->intr[i], NULL);
7916                 free_irq(h->intr[i], &h->q[i]);
7917                 h->q[i] = 0;
7918         }
7919         for (; i < MAX_REPLY_QUEUES; i++)
7920                 h->q[i] = 0;
7921 }
7922
7923 /* returns 0 on success; cleans up and returns -Enn on error */
7924 static int hpsa_request_irqs(struct ctlr_info *h,
7925         irqreturn_t (*msixhandler)(int, void *),
7926         irqreturn_t (*intxhandler)(int, void *))
7927 {
7928         int rc, i;
7929
7930         /*
7931          * initialize h->q[x] = x so that interrupt handlers know which
7932          * queue to process.
7933          */
7934         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7935                 h->q[i] = (u8) i;
7936
7937         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7938                 /* If performant mode and MSI-X, use multiple reply queues */
7939                 for (i = 0; i < h->msix_vector; i++) {
7940                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7941                         rc = request_irq(h->intr[i], msixhandler,
7942                                         0, h->intrname[i],
7943                                         &h->q[i]);
7944                         if (rc) {
7945                                 int j;
7946
7947                                 dev_err(&h->pdev->dev,
7948                                         "failed to get irq %d for %s\n",
7949                                        h->intr[i], h->devname);
7950                                 for (j = 0; j < i; j++) {
7951                                         free_irq(h->intr[j], &h->q[j]);
7952                                         h->q[j] = 0;
7953                                 }
7954                                 for (; j < MAX_REPLY_QUEUES; j++)
7955                                         h->q[j] = 0;
7956                                 return rc;
7957                         }
7958                 }
7959                 hpsa_irq_affinity_hints(h);
7960         } else {
7961                 /* Use single reply pool */
7962                 if (h->msix_vector > 0 || h->msi_vector) {
7963                         if (h->msix_vector)
7964                                 sprintf(h->intrname[h->intr_mode],
7965                                         "%s-msix", h->devname);
7966                         else
7967                                 sprintf(h->intrname[h->intr_mode],
7968                                         "%s-msi", h->devname);
7969                         rc = request_irq(h->intr[h->intr_mode],
7970                                 msixhandler, 0,
7971                                 h->intrname[h->intr_mode],
7972                                 &h->q[h->intr_mode]);
7973                 } else {
7974                         sprintf(h->intrname[h->intr_mode],
7975                                 "%s-intx", h->devname);
7976                         rc = request_irq(h->intr[h->intr_mode],
7977                                 intxhandler, IRQF_SHARED,
7978                                 h->intrname[h->intr_mode],
7979                                 &h->q[h->intr_mode]);
7980                 }
7981                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7982         }
7983         if (rc) {
7984                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7985                        h->intr[h->intr_mode], h->devname);
7986                 hpsa_free_irqs(h);
7987                 return -ENODEV;
7988         }
7989         return 0;
7990 }
7991
7992 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7993 {
7994         int rc;
7995         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7996
7997         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7998         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7999         if (rc) {
8000                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8001                 return rc;
8002         }
8003
8004         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8005         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8006         if (rc) {
8007                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8008                         "after soft reset.\n");
8009                 return rc;
8010         }
8011
8012         return 0;
8013 }
8014
8015 static void hpsa_free_reply_queues(struct ctlr_info *h)
8016 {
8017         int i;
8018
8019         for (i = 0; i < h->nreply_queues; i++) {
8020                 if (!h->reply_queue[i].head)
8021                         continue;
8022                 pci_free_consistent(h->pdev,
8023                                         h->reply_queue_size,
8024                                         h->reply_queue[i].head,
8025                                         h->reply_queue[i].busaddr);
8026                 h->reply_queue[i].head = NULL;
8027                 h->reply_queue[i].busaddr = 0;
8028         }
8029         h->reply_queue_size = 0;
8030 }
8031
8032 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8033 {
8034         hpsa_free_performant_mode(h);           /* init_one 7 */
8035         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8036         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8037         hpsa_free_irqs(h);                      /* init_one 4 */
8038         scsi_host_put(h->scsi_host);            /* init_one 3 */
8039         h->scsi_host = NULL;                    /* init_one 3 */
8040         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8041         free_percpu(h->lockup_detected);        /* init_one 2 */
8042         h->lockup_detected = NULL;              /* init_one 2 */
8043         if (h->resubmit_wq) {
8044                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8045                 h->resubmit_wq = NULL;
8046         }
8047         if (h->rescan_ctlr_wq) {
8048                 destroy_workqueue(h->rescan_ctlr_wq);
8049                 h->rescan_ctlr_wq = NULL;
8050         }
8051         kfree(h);                               /* init_one 1 */
8052 }
8053
8054 /* Called when controller lockup detected. */
8055 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8056 {
8057         int i, refcount;
8058         struct CommandList *c;
8059         int failcount = 0;
8060
8061         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8062         for (i = 0; i < h->nr_cmds; i++) {
8063                 c = h->cmd_pool + i;
8064                 refcount = atomic_inc_return(&c->refcount);
8065                 if (refcount > 1) {
8066                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8067                         finish_cmd(c);
8068                         atomic_dec(&h->commands_outstanding);
8069                         failcount++;
8070                 }
8071                 cmd_free(h, c);
8072         }
8073         dev_warn(&h->pdev->dev,
8074                 "failed %d commands in fail_all\n", failcount);
8075 }
8076
8077 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8078 {
8079         int cpu;
8080
8081         for_each_online_cpu(cpu) {
8082                 u32 *lockup_detected;
8083                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8084                 *lockup_detected = value;
8085         }
8086         wmb(); /* be sure the per-cpu variables are out to memory */
8087 }
8088
8089 static void controller_lockup_detected(struct ctlr_info *h)
8090 {
8091         unsigned long flags;
8092         u32 lockup_detected;
8093
8094         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8095         spin_lock_irqsave(&h->lock, flags);
8096         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8097         if (!lockup_detected) {
8098                 /* no heartbeat, but controller gave us a zero. */
8099                 dev_warn(&h->pdev->dev,
8100                         "lockup detected after %d but scratchpad register is zero\n",
8101                         h->heartbeat_sample_interval / HZ);
8102                 lockup_detected = 0xffffffff;
8103         }
8104         set_lockup_detected_for_all_cpus(h, lockup_detected);
8105         spin_unlock_irqrestore(&h->lock, flags);
8106         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8107                         lockup_detected, h->heartbeat_sample_interval / HZ);
8108         pci_disable_device(h->pdev);
8109         fail_all_outstanding_cmds(h);
8110 }
8111
8112 static int detect_controller_lockup(struct ctlr_info *h)
8113 {
8114         u64 now;
8115         u32 heartbeat;
8116         unsigned long flags;
8117
8118         now = get_jiffies_64();
8119         /* If we've received an interrupt recently, we're ok. */
8120         if (time_after64(h->last_intr_timestamp +
8121                                 (h->heartbeat_sample_interval), now))
8122                 return false;
8123
8124         /*
8125          * If we've already checked the heartbeat recently, we're ok.
8126          * This could happen if someone sends us a signal. We
8127          * otherwise don't care about signals in this thread.
8128          */
8129         if (time_after64(h->last_heartbeat_timestamp +
8130                                 (h->heartbeat_sample_interval), now))
8131                 return false;
8132
8133         /* If heartbeat has not changed since we last looked, we're not ok. */
8134         spin_lock_irqsave(&h->lock, flags);
8135         heartbeat = readl(&h->cfgtable->HeartBeat);
8136         spin_unlock_irqrestore(&h->lock, flags);
8137         if (h->last_heartbeat == heartbeat) {
8138                 controller_lockup_detected(h);
8139                 return true;
8140         }
8141
8142         /* We're ok. */
8143         h->last_heartbeat = heartbeat;
8144         h->last_heartbeat_timestamp = now;
8145         return false;
8146 }
8147
8148 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8149 {
8150         int i;
8151         char *event_type;
8152
8153         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8154                 return;
8155
8156         /* Ask the controller to clear the events we're handling. */
8157         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8158                         | CFGTBL_Trans_io_accel2)) &&
8159                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8160                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8161
8162                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8163                         event_type = "state change";
8164                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8165                         event_type = "configuration change";
8166                 /* Stop sending new RAID offload reqs via the IO accelerator */
8167                 scsi_block_requests(h->scsi_host);
8168                 for (i = 0; i < h->ndevices; i++)
8169                         h->dev[i]->offload_enabled = 0;
8170                 hpsa_drain_accel_commands(h);
8171                 /* Set 'accelerator path config change' bit */
8172                 dev_warn(&h->pdev->dev,
8173                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8174                         h->events, event_type);
8175                 writel(h->events, &(h->cfgtable->clear_event_notify));
8176                 /* Set the "clear event notify field update" bit 6 */
8177                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8178                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8179                 hpsa_wait_for_clear_event_notify_ack(h);
8180                 scsi_unblock_requests(h->scsi_host);
8181         } else {
8182                 /* Acknowledge controller notification events. */
8183                 writel(h->events, &(h->cfgtable->clear_event_notify));
8184                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8185                 hpsa_wait_for_clear_event_notify_ack(h);
8186 #if 0
8187                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8188                 hpsa_wait_for_mode_change_ack(h);
8189 #endif
8190         }
8191         return;
8192 }
8193
8194 /* Check a register on the controller to see if there are configuration
8195  * changes (added/changed/removed logical drives, etc.) which mean that
8196  * we should rescan the controller for devices.
8197  * Also check flag for driver-initiated rescan.
8198  */
8199 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8200 {
8201         if (h->drv_req_rescan) {
8202                 h->drv_req_rescan = 0;
8203                 return 1;
8204         }
8205
8206         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8207                 return 0;
8208
8209         h->events = readl(&(h->cfgtable->event_notify));
8210         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8211 }
8212
8213 /*
8214  * Check if any of the offline devices have become ready
8215  */
8216 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8217 {
8218         unsigned long flags;
8219         struct offline_device_entry *d;
8220         struct list_head *this, *tmp;
8221
8222         spin_lock_irqsave(&h->offline_device_lock, flags);
8223         list_for_each_safe(this, tmp, &h->offline_device_list) {
8224                 d = list_entry(this, struct offline_device_entry,
8225                                 offline_list);
8226                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8227                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8228                         spin_lock_irqsave(&h->offline_device_lock, flags);
8229                         list_del(&d->offline_list);
8230                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8231                         return 1;
8232                 }
8233                 spin_lock_irqsave(&h->offline_device_lock, flags);
8234         }
8235         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8236         return 0;
8237 }
8238
8239 static int hpsa_luns_changed(struct ctlr_info *h)
8240 {
8241         int rc = 1; /* assume there are changes */
8242         struct ReportLUNdata *logdev = NULL;
8243
8244         /* if we can't find out if lun data has changed,
8245          * assume that it has.
8246          */
8247
8248         if (!h->lastlogicals)
8249                 goto out;
8250
8251         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8252         if (!logdev) {
8253                 dev_warn(&h->pdev->dev,
8254                         "Out of memory, can't track lun changes.\n");
8255                 goto out;
8256         }
8257         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8258                 dev_warn(&h->pdev->dev,
8259                         "report luns failed, can't track lun changes.\n");
8260                 goto out;
8261         }
8262         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8263                 dev_info(&h->pdev->dev,
8264                         "Lun changes detected.\n");
8265                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8266                 goto out;
8267         } else
8268                 rc = 0; /* no changes detected. */
8269 out:
8270         kfree(logdev);
8271         return rc;
8272 }
8273
8274 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8275 {
8276         unsigned long flags;
8277         struct ctlr_info *h = container_of(to_delayed_work(work),
8278                                         struct ctlr_info, rescan_ctlr_work);
8279
8280
8281         if (h->remove_in_progress)
8282                 return;
8283
8284         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8285                 scsi_host_get(h->scsi_host);
8286                 hpsa_ack_ctlr_events(h);
8287                 hpsa_scan_start(h->scsi_host);
8288                 scsi_host_put(h->scsi_host);
8289         } else if (h->discovery_polling) {
8290                 hpsa_disable_rld_caching(h);
8291                 if (hpsa_luns_changed(h)) {
8292                         struct Scsi_Host *sh = NULL;
8293
8294                         dev_info(&h->pdev->dev,
8295                                 "driver discovery polling rescan.\n");
8296                         sh = scsi_host_get(h->scsi_host);
8297                         if (sh != NULL) {
8298                                 hpsa_scan_start(sh);
8299                                 scsi_host_put(sh);
8300                         }
8301                 }
8302         }
8303         spin_lock_irqsave(&h->lock, flags);
8304         if (!h->remove_in_progress)
8305                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8306                                 h->heartbeat_sample_interval);
8307         spin_unlock_irqrestore(&h->lock, flags);
8308 }
8309
8310 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8311 {
8312         unsigned long flags;
8313         struct ctlr_info *h = container_of(to_delayed_work(work),
8314                                         struct ctlr_info, monitor_ctlr_work);
8315
8316         detect_controller_lockup(h);
8317         if (lockup_detected(h))
8318                 return;
8319
8320         spin_lock_irqsave(&h->lock, flags);
8321         if (!h->remove_in_progress)
8322                 schedule_delayed_work(&h->monitor_ctlr_work,
8323                                 h->heartbeat_sample_interval);
8324         spin_unlock_irqrestore(&h->lock, flags);
8325 }
8326
8327 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8328                                                 char *name)
8329 {
8330         struct workqueue_struct *wq = NULL;
8331
8332         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8333         if (!wq)
8334                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8335
8336         return wq;
8337 }
8338
8339 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8340 {
8341         int dac, rc;
8342         struct ctlr_info *h;
8343         int try_soft_reset = 0;
8344         unsigned long flags;
8345         u32 board_id;
8346
8347         if (number_of_controllers == 0)
8348                 printk(KERN_INFO DRIVER_NAME "\n");
8349
8350         rc = hpsa_lookup_board_id(pdev, &board_id);
8351         if (rc < 0) {
8352                 dev_warn(&pdev->dev, "Board ID not found\n");
8353                 return rc;
8354         }
8355
8356         rc = hpsa_init_reset_devices(pdev, board_id);
8357         if (rc) {
8358                 if (rc != -ENOTSUPP)
8359                         return rc;
8360                 /* If the reset fails in a particular way (it has no way to do
8361                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8362                  * a soft reset once we get the controller configured up to the
8363                  * point that it can accept a command.
8364                  */
8365                 try_soft_reset = 1;
8366                 rc = 0;
8367         }
8368
8369 reinit_after_soft_reset:
8370
8371         /* Command structures must be aligned on a 32-byte boundary because
8372          * the 5 lower bits of the address are used by the hardware. and by
8373          * the driver.  See comments in hpsa.h for more info.
8374          */
8375         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8376         h = kzalloc(sizeof(*h), GFP_KERNEL);
8377         if (!h) {
8378                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8379                 return -ENOMEM;
8380         }
8381
8382         h->pdev = pdev;
8383
8384         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8385         INIT_LIST_HEAD(&h->offline_device_list);
8386         spin_lock_init(&h->lock);
8387         spin_lock_init(&h->offline_device_lock);
8388         spin_lock_init(&h->scan_lock);
8389         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8390         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8391
8392         /* Allocate and clear per-cpu variable lockup_detected */
8393         h->lockup_detected = alloc_percpu(u32);
8394         if (!h->lockup_detected) {
8395                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8396                 rc = -ENOMEM;
8397                 goto clean1;    /* aer/h */
8398         }
8399         set_lockup_detected_for_all_cpus(h, 0);
8400
8401         rc = hpsa_pci_init(h);
8402         if (rc)
8403                 goto clean2;    /* lu, aer/h */
8404
8405         /* relies on h-> settings made by hpsa_pci_init, including
8406          * interrupt_mode h->intr */
8407         rc = hpsa_scsi_host_alloc(h);
8408         if (rc)
8409                 goto clean2_5;  /* pci, lu, aer/h */
8410
8411         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8412         h->ctlr = number_of_controllers;
8413         number_of_controllers++;
8414
8415         /* configure PCI DMA stuff */
8416         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8417         if (rc == 0) {
8418                 dac = 1;
8419         } else {
8420                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8421                 if (rc == 0) {
8422                         dac = 0;
8423                 } else {
8424                         dev_err(&pdev->dev, "no suitable DMA available\n");
8425                         goto clean3;    /* shost, pci, lu, aer/h */
8426                 }
8427         }
8428
8429         /* make sure the board interrupts are off */
8430         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8431
8432         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8433         if (rc)
8434                 goto clean3;    /* shost, pci, lu, aer/h */
8435         rc = hpsa_alloc_cmd_pool(h);
8436         if (rc)
8437                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8438         rc = hpsa_alloc_sg_chain_blocks(h);
8439         if (rc)
8440                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8441         init_waitqueue_head(&h->scan_wait_queue);
8442         init_waitqueue_head(&h->abort_cmd_wait_queue);
8443         init_waitqueue_head(&h->event_sync_wait_queue);
8444         mutex_init(&h->reset_mutex);
8445         h->scan_finished = 1; /* no scan currently in progress */
8446
8447         pci_set_drvdata(pdev, h);
8448         h->ndevices = 0;
8449
8450         spin_lock_init(&h->devlock);
8451         rc = hpsa_put_ctlr_into_performant_mode(h);
8452         if (rc)
8453                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8454
8455         /* hook into SCSI subsystem */
8456         rc = hpsa_scsi_add_host(h);
8457         if (rc)
8458                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8459
8460         /* create the resubmit workqueue */
8461         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8462         if (!h->rescan_ctlr_wq) {
8463                 rc = -ENOMEM;
8464                 goto clean7;
8465         }
8466
8467         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8468         if (!h->resubmit_wq) {
8469                 rc = -ENOMEM;
8470                 goto clean7;    /* aer/h */
8471         }
8472
8473         /*
8474          * At this point, the controller is ready to take commands.
8475          * Now, if reset_devices and the hard reset didn't work, try
8476          * the soft reset and see if that works.
8477          */
8478         if (try_soft_reset) {
8479
8480                 /* This is kind of gross.  We may or may not get a completion
8481                  * from the soft reset command, and if we do, then the value
8482                  * from the fifo may or may not be valid.  So, we wait 10 secs
8483                  * after the reset throwing away any completions we get during
8484                  * that time.  Unregister the interrupt handler and register
8485                  * fake ones to scoop up any residual completions.
8486                  */
8487                 spin_lock_irqsave(&h->lock, flags);
8488                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8489                 spin_unlock_irqrestore(&h->lock, flags);
8490                 hpsa_free_irqs(h);
8491                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8492                                         hpsa_intx_discard_completions);
8493                 if (rc) {
8494                         dev_warn(&h->pdev->dev,
8495                                 "Failed to request_irq after soft reset.\n");
8496                         /*
8497                          * cannot goto clean7 or free_irqs will be called
8498                          * again. Instead, do its work
8499                          */
8500                         hpsa_free_performant_mode(h);   /* clean7 */
8501                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8502                         hpsa_free_cmd_pool(h);          /* clean5 */
8503                         /*
8504                          * skip hpsa_free_irqs(h) clean4 since that
8505                          * was just called before request_irqs failed
8506                          */
8507                         goto clean3;
8508                 }
8509
8510                 rc = hpsa_kdump_soft_reset(h);
8511                 if (rc)
8512                         /* Neither hard nor soft reset worked, we're hosed. */
8513                         goto clean7;
8514
8515                 dev_info(&h->pdev->dev, "Board READY.\n");
8516                 dev_info(&h->pdev->dev,
8517                         "Waiting for stale completions to drain.\n");
8518                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8519                 msleep(10000);
8520                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8521
8522                 rc = controller_reset_failed(h->cfgtable);
8523                 if (rc)
8524                         dev_info(&h->pdev->dev,
8525                                 "Soft reset appears to have failed.\n");
8526
8527                 /* since the controller's reset, we have to go back and re-init
8528                  * everything.  Easiest to just forget what we've done and do it
8529                  * all over again.
8530                  */
8531                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8532                 try_soft_reset = 0;
8533                 if (rc)
8534                         /* don't goto clean, we already unallocated */
8535                         return -ENODEV;
8536
8537                 goto reinit_after_soft_reset;
8538         }
8539
8540         /* Enable Accelerated IO path at driver layer */
8541         h->acciopath_status = 1;
8542         /* Disable discovery polling.*/
8543         h->discovery_polling = 0;
8544
8545
8546         /* Turn the interrupts on so we can service requests */
8547         h->access.set_intr_mask(h, HPSA_INTR_ON);
8548
8549         hpsa_hba_inquiry(h);
8550
8551         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8552         if (!h->lastlogicals)
8553                 dev_info(&h->pdev->dev,
8554                         "Can't track change to report lun data\n");
8555
8556         /* Monitor the controller for firmware lockups */
8557         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8558         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8559         schedule_delayed_work(&h->monitor_ctlr_work,
8560                                 h->heartbeat_sample_interval);
8561         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8562         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8563                                 h->heartbeat_sample_interval);
8564         return 0;
8565
8566 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8567         hpsa_free_performant_mode(h);
8568         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8569 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8570         hpsa_free_sg_chain_blocks(h);
8571 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8572         hpsa_free_cmd_pool(h);
8573 clean4: /* irq, shost, pci, lu, aer/h */
8574         hpsa_free_irqs(h);
8575 clean3: /* shost, pci, lu, aer/h */
8576         scsi_host_put(h->scsi_host);
8577         h->scsi_host = NULL;
8578 clean2_5: /* pci, lu, aer/h */
8579         hpsa_free_pci_init(h);
8580 clean2: /* lu, aer/h */
8581         if (h->lockup_detected) {
8582                 free_percpu(h->lockup_detected);
8583                 h->lockup_detected = NULL;
8584         }
8585 clean1: /* wq/aer/h */
8586         if (h->resubmit_wq) {
8587                 destroy_workqueue(h->resubmit_wq);
8588                 h->resubmit_wq = NULL;
8589         }
8590         if (h->rescan_ctlr_wq) {
8591                 destroy_workqueue(h->rescan_ctlr_wq);
8592                 h->rescan_ctlr_wq = NULL;
8593         }
8594         kfree(h);
8595         return rc;
8596 }
8597
8598 static void hpsa_flush_cache(struct ctlr_info *h)
8599 {
8600         char *flush_buf;
8601         struct CommandList *c;
8602         int rc;
8603
8604         if (unlikely(lockup_detected(h)))
8605                 return;
8606         flush_buf = kzalloc(4, GFP_KERNEL);
8607         if (!flush_buf)
8608                 return;
8609
8610         c = cmd_alloc(h);
8611
8612         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8613                 RAID_CTLR_LUNID, TYPE_CMD)) {
8614                 goto out;
8615         }
8616         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8617                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8618         if (rc)
8619                 goto out;
8620         if (c->err_info->CommandStatus != 0)
8621 out:
8622                 dev_warn(&h->pdev->dev,
8623                         "error flushing cache on controller\n");
8624         cmd_free(h, c);
8625         kfree(flush_buf);
8626 }
8627
8628 /* Make controller gather fresh report lun data each time we
8629  * send down a report luns request
8630  */
8631 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8632 {
8633         u32 *options;
8634         struct CommandList *c;
8635         int rc;
8636
8637         /* Don't bother trying to set diag options if locked up */
8638         if (unlikely(h->lockup_detected))
8639                 return;
8640
8641         options = kzalloc(sizeof(*options), GFP_KERNEL);
8642         if (!options) {
8643                 dev_err(&h->pdev->dev,
8644                         "Error: failed to disable rld caching, during alloc.\n");
8645                 return;
8646         }
8647
8648         c = cmd_alloc(h);
8649
8650         /* first, get the current diag options settings */
8651         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8652                 RAID_CTLR_LUNID, TYPE_CMD))
8653                 goto errout;
8654
8655         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8656                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8657         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8658                 goto errout;
8659
8660         /* Now, set the bit for disabling the RLD caching */
8661         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8662
8663         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8664                 RAID_CTLR_LUNID, TYPE_CMD))
8665                 goto errout;
8666
8667         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8668                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8669         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8670                 goto errout;
8671
8672         /* Now verify that it got set: */
8673         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8674                 RAID_CTLR_LUNID, TYPE_CMD))
8675                 goto errout;
8676
8677         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8678                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8679         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8680                 goto errout;
8681
8682         if (*options && HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8683                 goto out;
8684
8685 errout:
8686         dev_err(&h->pdev->dev,
8687                         "Error: failed to disable report lun data caching.\n");
8688 out:
8689         cmd_free(h, c);
8690         kfree(options);
8691 }
8692
8693 static void hpsa_shutdown(struct pci_dev *pdev)
8694 {
8695         struct ctlr_info *h;
8696
8697         h = pci_get_drvdata(pdev);
8698         /* Turn board interrupts off  and send the flush cache command
8699          * sendcmd will turn off interrupt, and send the flush...
8700          * To write all data in the battery backed cache to disks
8701          */
8702         hpsa_flush_cache(h);
8703         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8704         hpsa_free_irqs(h);                      /* init_one 4 */
8705         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8706 }
8707
8708 static void hpsa_free_device_info(struct ctlr_info *h)
8709 {
8710         int i;
8711
8712         for (i = 0; i < h->ndevices; i++) {
8713                 kfree(h->dev[i]);
8714                 h->dev[i] = NULL;
8715         }
8716 }
8717
8718 static void hpsa_remove_one(struct pci_dev *pdev)
8719 {
8720         struct ctlr_info *h;
8721         unsigned long flags;
8722
8723         if (pci_get_drvdata(pdev) == NULL) {
8724                 dev_err(&pdev->dev, "unable to remove device\n");
8725                 return;
8726         }
8727         h = pci_get_drvdata(pdev);
8728
8729         /* Get rid of any controller monitoring work items */
8730         spin_lock_irqsave(&h->lock, flags);
8731         h->remove_in_progress = 1;
8732         spin_unlock_irqrestore(&h->lock, flags);
8733         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8734         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8735         destroy_workqueue(h->rescan_ctlr_wq);
8736         destroy_workqueue(h->resubmit_wq);
8737
8738         /*
8739          * Call before disabling interrupts.
8740          * scsi_remove_host can trigger I/O operations especially
8741          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8742          * operations which cannot complete and will hang the system.
8743          */
8744         if (h->scsi_host)
8745                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8746         /* includes hpsa_free_irqs - init_one 4 */
8747         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8748         hpsa_shutdown(pdev);
8749
8750         hpsa_free_device_info(h);               /* scan */
8751
8752         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8753         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8754         hpsa_free_ioaccel2_sg_chain_blocks(h);
8755         hpsa_free_performant_mode(h);                   /* init_one 7 */
8756         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8757         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8758         kfree(h->lastlogicals);
8759
8760         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8761
8762         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8763         h->scsi_host = NULL;                            /* init_one 3 */
8764
8765         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8766         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8767
8768         free_percpu(h->lockup_detected);                /* init_one 2 */
8769         h->lockup_detected = NULL;                      /* init_one 2 */
8770         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8771
8772         hpsa_delete_sas_host(h);
8773
8774         kfree(h);                                       /* init_one 1 */
8775 }
8776
8777 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8778         __attribute__((unused)) pm_message_t state)
8779 {
8780         return -ENOSYS;
8781 }
8782
8783 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8784 {
8785         return -ENOSYS;
8786 }
8787
8788 static struct pci_driver hpsa_pci_driver = {
8789         .name = HPSA,
8790         .probe = hpsa_init_one,
8791         .remove = hpsa_remove_one,
8792         .id_table = hpsa_pci_device_id, /* id_table */
8793         .shutdown = hpsa_shutdown,
8794         .suspend = hpsa_suspend,
8795         .resume = hpsa_resume,
8796 };
8797
8798 /* Fill in bucket_map[], given nsgs (the max number of
8799  * scatter gather elements supported) and bucket[],
8800  * which is an array of 8 integers.  The bucket[] array
8801  * contains 8 different DMA transfer sizes (in 16
8802  * byte increments) which the controller uses to fetch
8803  * commands.  This function fills in bucket_map[], which
8804  * maps a given number of scatter gather elements to one of
8805  * the 8 DMA transfer sizes.  The point of it is to allow the
8806  * controller to only do as much DMA as needed to fetch the
8807  * command, with the DMA transfer size encoded in the lower
8808  * bits of the command address.
8809  */
8810 static void  calc_bucket_map(int bucket[], int num_buckets,
8811         int nsgs, int min_blocks, u32 *bucket_map)
8812 {
8813         int i, j, b, size;
8814
8815         /* Note, bucket_map must have nsgs+1 entries. */
8816         for (i = 0; i <= nsgs; i++) {
8817                 /* Compute size of a command with i SG entries */
8818                 size = i + min_blocks;
8819                 b = num_buckets; /* Assume the biggest bucket */
8820                 /* Find the bucket that is just big enough */
8821                 for (j = 0; j < num_buckets; j++) {
8822                         if (bucket[j] >= size) {
8823                                 b = j;
8824                                 break;
8825                         }
8826                 }
8827                 /* for a command with i SG entries, use bucket b. */
8828                 bucket_map[i] = b;
8829         }
8830 }
8831
8832 /*
8833  * return -ENODEV on err, 0 on success (or no action)
8834  * allocates numerous items that must be freed later
8835  */
8836 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8837 {
8838         int i;
8839         unsigned long register_value;
8840         unsigned long transMethod = CFGTBL_Trans_Performant |
8841                         (trans_support & CFGTBL_Trans_use_short_tags) |
8842                                 CFGTBL_Trans_enable_directed_msix |
8843                         (trans_support & (CFGTBL_Trans_io_accel1 |
8844                                 CFGTBL_Trans_io_accel2));
8845         struct access_method access = SA5_performant_access;
8846
8847         /* This is a bit complicated.  There are 8 registers on
8848          * the controller which we write to to tell it 8 different
8849          * sizes of commands which there may be.  It's a way of
8850          * reducing the DMA done to fetch each command.  Encoded into
8851          * each command's tag are 3 bits which communicate to the controller
8852          * which of the eight sizes that command fits within.  The size of
8853          * each command depends on how many scatter gather entries there are.
8854          * Each SG entry requires 16 bytes.  The eight registers are programmed
8855          * with the number of 16-byte blocks a command of that size requires.
8856          * The smallest command possible requires 5 such 16 byte blocks.
8857          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8858          * blocks.  Note, this only extends to the SG entries contained
8859          * within the command block, and does not extend to chained blocks
8860          * of SG elements.   bft[] contains the eight values we write to
8861          * the registers.  They are not evenly distributed, but have more
8862          * sizes for small commands, and fewer sizes for larger commands.
8863          */
8864         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8865 #define MIN_IOACCEL2_BFT_ENTRY 5
8866 #define HPSA_IOACCEL2_HEADER_SZ 4
8867         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8868                         13, 14, 15, 16, 17, 18, 19,
8869                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8870         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8871         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8872         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8873                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8874         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8875         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8876         /*  5 = 1 s/g entry or 4k
8877          *  6 = 2 s/g entry or 8k
8878          *  8 = 4 s/g entry or 16k
8879          * 10 = 6 s/g entry or 24k
8880          */
8881
8882         /* If the controller supports either ioaccel method then
8883          * we can also use the RAID stack submit path that does not
8884          * perform the superfluous readl() after each command submission.
8885          */
8886         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8887                 access = SA5_performant_access_no_read;
8888
8889         /* Controller spec: zero out this buffer. */
8890         for (i = 0; i < h->nreply_queues; i++)
8891                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8892
8893         bft[7] = SG_ENTRIES_IN_CMD + 4;
8894         calc_bucket_map(bft, ARRAY_SIZE(bft),
8895                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8896         for (i = 0; i < 8; i++)
8897                 writel(bft[i], &h->transtable->BlockFetch[i]);
8898
8899         /* size of controller ring buffer */
8900         writel(h->max_commands, &h->transtable->RepQSize);
8901         writel(h->nreply_queues, &h->transtable->RepQCount);
8902         writel(0, &h->transtable->RepQCtrAddrLow32);
8903         writel(0, &h->transtable->RepQCtrAddrHigh32);
8904
8905         for (i = 0; i < h->nreply_queues; i++) {
8906                 writel(0, &h->transtable->RepQAddr[i].upper);
8907                 writel(h->reply_queue[i].busaddr,
8908                         &h->transtable->RepQAddr[i].lower);
8909         }
8910
8911         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8912         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8913         /*
8914          * enable outbound interrupt coalescing in accelerator mode;
8915          */
8916         if (trans_support & CFGTBL_Trans_io_accel1) {
8917                 access = SA5_ioaccel_mode1_access;
8918                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8919                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8920         } else {
8921                 if (trans_support & CFGTBL_Trans_io_accel2) {
8922                         access = SA5_ioaccel_mode2_access;
8923                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8924                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8925                 }
8926         }
8927         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8928         if (hpsa_wait_for_mode_change_ack(h)) {
8929                 dev_err(&h->pdev->dev,
8930                         "performant mode problem - doorbell timeout\n");
8931                 return -ENODEV;
8932         }
8933         register_value = readl(&(h->cfgtable->TransportActive));
8934         if (!(register_value & CFGTBL_Trans_Performant)) {
8935                 dev_err(&h->pdev->dev,
8936                         "performant mode problem - transport not active\n");
8937                 return -ENODEV;
8938         }
8939         /* Change the access methods to the performant access methods */
8940         h->access = access;
8941         h->transMethod = transMethod;
8942
8943         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8944                 (trans_support & CFGTBL_Trans_io_accel2)))
8945                 return 0;
8946
8947         if (trans_support & CFGTBL_Trans_io_accel1) {
8948                 /* Set up I/O accelerator mode */
8949                 for (i = 0; i < h->nreply_queues; i++) {
8950                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8951                         h->reply_queue[i].current_entry =
8952                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8953                 }
8954                 bft[7] = h->ioaccel_maxsg + 8;
8955                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8956                                 h->ioaccel1_blockFetchTable);
8957
8958                 /* initialize all reply queue entries to unused */
8959                 for (i = 0; i < h->nreply_queues; i++)
8960                         memset(h->reply_queue[i].head,
8961                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8962                                 h->reply_queue_size);
8963
8964                 /* set all the constant fields in the accelerator command
8965                  * frames once at init time to save CPU cycles later.
8966                  */
8967                 for (i = 0; i < h->nr_cmds; i++) {
8968                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8969
8970                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
8971                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
8972                                         (i * sizeof(struct ErrorInfo)));
8973                         cp->err_info_len = sizeof(struct ErrorInfo);
8974                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
8975                         cp->host_context_flags =
8976                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8977                         cp->timeout_sec = 0;
8978                         cp->ReplyQueue = 0;
8979                         cp->tag =
8980                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8981                         cp->host_addr =
8982                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8983                                         (i * sizeof(struct io_accel1_cmd)));
8984                 }
8985         } else if (trans_support & CFGTBL_Trans_io_accel2) {
8986                 u64 cfg_offset, cfg_base_addr_index;
8987                 u32 bft2_offset, cfg_base_addr;
8988                 int rc;
8989
8990                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8991                         &cfg_base_addr_index, &cfg_offset);
8992                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8993                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8994                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8995                                 4, h->ioaccel2_blockFetchTable);
8996                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8997                 BUILD_BUG_ON(offsetof(struct CfgTable,
8998                                 io_accel_request_size_offset) != 0xb8);
8999                 h->ioaccel2_bft2_regs =
9000                         remap_pci_mem(pci_resource_start(h->pdev,
9001                                         cfg_base_addr_index) +
9002                                         cfg_offset + bft2_offset,
9003                                         ARRAY_SIZE(bft2) *
9004                                         sizeof(*h->ioaccel2_bft2_regs));
9005                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9006                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9007         }
9008         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9009         if (hpsa_wait_for_mode_change_ack(h)) {
9010                 dev_err(&h->pdev->dev,
9011                         "performant mode problem - enabling ioaccel mode\n");
9012                 return -ENODEV;
9013         }
9014         return 0;
9015 }
9016
9017 /* Free ioaccel1 mode command blocks and block fetch table */
9018 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9019 {
9020         if (h->ioaccel_cmd_pool) {
9021                 pci_free_consistent(h->pdev,
9022                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9023                         h->ioaccel_cmd_pool,
9024                         h->ioaccel_cmd_pool_dhandle);
9025                 h->ioaccel_cmd_pool = NULL;
9026                 h->ioaccel_cmd_pool_dhandle = 0;
9027         }
9028         kfree(h->ioaccel1_blockFetchTable);
9029         h->ioaccel1_blockFetchTable = NULL;
9030 }
9031
9032 /* Allocate ioaccel1 mode command blocks and block fetch table */
9033 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9034 {
9035         h->ioaccel_maxsg =
9036                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9037         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9038                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9039
9040         /* Command structures must be aligned on a 128-byte boundary
9041          * because the 7 lower bits of the address are used by the
9042          * hardware.
9043          */
9044         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9045                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9046         h->ioaccel_cmd_pool =
9047                 pci_alloc_consistent(h->pdev,
9048                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9049                         &(h->ioaccel_cmd_pool_dhandle));
9050
9051         h->ioaccel1_blockFetchTable =
9052                 kmalloc(((h->ioaccel_maxsg + 1) *
9053                                 sizeof(u32)), GFP_KERNEL);
9054
9055         if ((h->ioaccel_cmd_pool == NULL) ||
9056                 (h->ioaccel1_blockFetchTable == NULL))
9057                 goto clean_up;
9058
9059         memset(h->ioaccel_cmd_pool, 0,
9060                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9061         return 0;
9062
9063 clean_up:
9064         hpsa_free_ioaccel1_cmd_and_bft(h);
9065         return -ENOMEM;
9066 }
9067
9068 /* Free ioaccel2 mode command blocks and block fetch table */
9069 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9070 {
9071         hpsa_free_ioaccel2_sg_chain_blocks(h);
9072
9073         if (h->ioaccel2_cmd_pool) {
9074                 pci_free_consistent(h->pdev,
9075                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9076                         h->ioaccel2_cmd_pool,
9077                         h->ioaccel2_cmd_pool_dhandle);
9078                 h->ioaccel2_cmd_pool = NULL;
9079                 h->ioaccel2_cmd_pool_dhandle = 0;
9080         }
9081         kfree(h->ioaccel2_blockFetchTable);
9082         h->ioaccel2_blockFetchTable = NULL;
9083 }
9084
9085 /* Allocate ioaccel2 mode command blocks and block fetch table */
9086 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9087 {
9088         int rc;
9089
9090         /* Allocate ioaccel2 mode command blocks and block fetch table */
9091
9092         h->ioaccel_maxsg =
9093                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9094         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9095                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9096
9097         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9098                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9099         h->ioaccel2_cmd_pool =
9100                 pci_alloc_consistent(h->pdev,
9101                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9102                         &(h->ioaccel2_cmd_pool_dhandle));
9103
9104         h->ioaccel2_blockFetchTable =
9105                 kmalloc(((h->ioaccel_maxsg + 1) *
9106                                 sizeof(u32)), GFP_KERNEL);
9107
9108         if ((h->ioaccel2_cmd_pool == NULL) ||
9109                 (h->ioaccel2_blockFetchTable == NULL)) {
9110                 rc = -ENOMEM;
9111                 goto clean_up;
9112         }
9113
9114         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9115         if (rc)
9116                 goto clean_up;
9117
9118         memset(h->ioaccel2_cmd_pool, 0,
9119                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9120         return 0;
9121
9122 clean_up:
9123         hpsa_free_ioaccel2_cmd_and_bft(h);
9124         return rc;
9125 }
9126
9127 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9128 static void hpsa_free_performant_mode(struct ctlr_info *h)
9129 {
9130         kfree(h->blockFetchTable);
9131         h->blockFetchTable = NULL;
9132         hpsa_free_reply_queues(h);
9133         hpsa_free_ioaccel1_cmd_and_bft(h);
9134         hpsa_free_ioaccel2_cmd_and_bft(h);
9135 }
9136
9137 /* return -ENODEV on error, 0 on success (or no action)
9138  * allocates numerous items that must be freed later
9139  */
9140 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9141 {
9142         u32 trans_support;
9143         unsigned long transMethod = CFGTBL_Trans_Performant |
9144                                         CFGTBL_Trans_use_short_tags;
9145         int i, rc;
9146
9147         if (hpsa_simple_mode)
9148                 return 0;
9149
9150         trans_support = readl(&(h->cfgtable->TransportSupport));
9151         if (!(trans_support & PERFORMANT_MODE))
9152                 return 0;
9153
9154         /* Check for I/O accelerator mode support */
9155         if (trans_support & CFGTBL_Trans_io_accel1) {
9156                 transMethod |= CFGTBL_Trans_io_accel1 |
9157                                 CFGTBL_Trans_enable_directed_msix;
9158                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9159                 if (rc)
9160                         return rc;
9161         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9162                 transMethod |= CFGTBL_Trans_io_accel2 |
9163                                 CFGTBL_Trans_enable_directed_msix;
9164                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9165                 if (rc)
9166                         return rc;
9167         }
9168
9169         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9170         hpsa_get_max_perf_mode_cmds(h);
9171         /* Performant mode ring buffer and supporting data structures */
9172         h->reply_queue_size = h->max_commands * sizeof(u64);
9173
9174         for (i = 0; i < h->nreply_queues; i++) {
9175                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9176                                                 h->reply_queue_size,
9177                                                 &(h->reply_queue[i].busaddr));
9178                 if (!h->reply_queue[i].head) {
9179                         rc = -ENOMEM;
9180                         goto clean1;    /* rq, ioaccel */
9181                 }
9182                 h->reply_queue[i].size = h->max_commands;
9183                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9184                 h->reply_queue[i].current_entry = 0;
9185         }
9186
9187         /* Need a block fetch table for performant mode */
9188         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9189                                 sizeof(u32)), GFP_KERNEL);
9190         if (!h->blockFetchTable) {
9191                 rc = -ENOMEM;
9192                 goto clean1;    /* rq, ioaccel */
9193         }
9194
9195         rc = hpsa_enter_performant_mode(h, trans_support);
9196         if (rc)
9197                 goto clean2;    /* bft, rq, ioaccel */
9198         return 0;
9199
9200 clean2: /* bft, rq, ioaccel */
9201         kfree(h->blockFetchTable);
9202         h->blockFetchTable = NULL;
9203 clean1: /* rq, ioaccel */
9204         hpsa_free_reply_queues(h);
9205         hpsa_free_ioaccel1_cmd_and_bft(h);
9206         hpsa_free_ioaccel2_cmd_and_bft(h);
9207         return rc;
9208 }
9209
9210 static int is_accelerated_cmd(struct CommandList *c)
9211 {
9212         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9213 }
9214
9215 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9216 {
9217         struct CommandList *c = NULL;
9218         int i, accel_cmds_out;
9219         int refcount;
9220
9221         do { /* wait for all outstanding ioaccel commands to drain out */
9222                 accel_cmds_out = 0;
9223                 for (i = 0; i < h->nr_cmds; i++) {
9224                         c = h->cmd_pool + i;
9225                         refcount = atomic_inc_return(&c->refcount);
9226                         if (refcount > 1) /* Command is allocated */
9227                                 accel_cmds_out += is_accelerated_cmd(c);
9228                         cmd_free(h, c);
9229                 }
9230                 if (accel_cmds_out <= 0)
9231                         break;
9232                 msleep(100);
9233         } while (1);
9234 }
9235
9236 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9237                                 struct hpsa_sas_port *hpsa_sas_port)
9238 {
9239         struct hpsa_sas_phy *hpsa_sas_phy;
9240         struct sas_phy *phy;
9241
9242         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9243         if (!hpsa_sas_phy)
9244                 return NULL;
9245
9246         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9247                 hpsa_sas_port->next_phy_index);
9248         if (!phy) {
9249                 kfree(hpsa_sas_phy);
9250                 return NULL;
9251         }
9252
9253         hpsa_sas_port->next_phy_index++;
9254         hpsa_sas_phy->phy = phy;
9255         hpsa_sas_phy->parent_port = hpsa_sas_port;
9256
9257         return hpsa_sas_phy;
9258 }
9259
9260 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9261 {
9262         struct sas_phy *phy = hpsa_sas_phy->phy;
9263
9264         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9265         sas_phy_free(phy);
9266         if (hpsa_sas_phy->added_to_port)
9267                 list_del(&hpsa_sas_phy->phy_list_entry);
9268         kfree(hpsa_sas_phy);
9269 }
9270
9271 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9272 {
9273         int rc;
9274         struct hpsa_sas_port *hpsa_sas_port;
9275         struct sas_phy *phy;
9276         struct sas_identify *identify;
9277
9278         hpsa_sas_port = hpsa_sas_phy->parent_port;
9279         phy = hpsa_sas_phy->phy;
9280
9281         identify = &phy->identify;
9282         memset(identify, 0, sizeof(*identify));
9283         identify->sas_address = hpsa_sas_port->sas_address;
9284         identify->device_type = SAS_END_DEVICE;
9285         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9286         identify->target_port_protocols = SAS_PROTOCOL_STP;
9287         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9288         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9289         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9290         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9291         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9292
9293         rc = sas_phy_add(hpsa_sas_phy->phy);
9294         if (rc)
9295                 return rc;
9296
9297         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9298         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9299                         &hpsa_sas_port->phy_list_head);
9300         hpsa_sas_phy->added_to_port = true;
9301
9302         return 0;
9303 }
9304
9305 static int
9306         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9307                                 struct sas_rphy *rphy)
9308 {
9309         struct sas_identify *identify;
9310
9311         identify = &rphy->identify;
9312         identify->sas_address = hpsa_sas_port->sas_address;
9313         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9314         identify->target_port_protocols = SAS_PROTOCOL_STP;
9315
9316         return sas_rphy_add(rphy);
9317 }
9318
9319 static struct hpsa_sas_port
9320         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9321                                 u64 sas_address)
9322 {
9323         int rc;
9324         struct hpsa_sas_port *hpsa_sas_port;
9325         struct sas_port *port;
9326
9327         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9328         if (!hpsa_sas_port)
9329                 return NULL;
9330
9331         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9332         hpsa_sas_port->parent_node = hpsa_sas_node;
9333
9334         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9335         if (!port)
9336                 goto free_hpsa_port;
9337
9338         rc = sas_port_add(port);
9339         if (rc)
9340                 goto free_sas_port;
9341
9342         hpsa_sas_port->port = port;
9343         hpsa_sas_port->sas_address = sas_address;
9344         list_add_tail(&hpsa_sas_port->port_list_entry,
9345                         &hpsa_sas_node->port_list_head);
9346
9347         return hpsa_sas_port;
9348
9349 free_sas_port:
9350         sas_port_free(port);
9351 free_hpsa_port:
9352         kfree(hpsa_sas_port);
9353
9354         return NULL;
9355 }
9356
9357 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9358 {
9359         struct hpsa_sas_phy *hpsa_sas_phy;
9360         struct hpsa_sas_phy *next;
9361
9362         list_for_each_entry_safe(hpsa_sas_phy, next,
9363                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9364                 hpsa_free_sas_phy(hpsa_sas_phy);
9365
9366         sas_port_delete(hpsa_sas_port->port);
9367         list_del(&hpsa_sas_port->port_list_entry);
9368         kfree(hpsa_sas_port);
9369 }
9370
9371 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9372 {
9373         struct hpsa_sas_node *hpsa_sas_node;
9374
9375         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9376         if (hpsa_sas_node) {
9377                 hpsa_sas_node->parent_dev = parent_dev;
9378                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9379         }
9380
9381         return hpsa_sas_node;
9382 }
9383
9384 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9385 {
9386         struct hpsa_sas_port *hpsa_sas_port;
9387         struct hpsa_sas_port *next;
9388
9389         if (!hpsa_sas_node)
9390                 return;
9391
9392         list_for_each_entry_safe(hpsa_sas_port, next,
9393                         &hpsa_sas_node->port_list_head, port_list_entry)
9394                 hpsa_free_sas_port(hpsa_sas_port);
9395
9396         kfree(hpsa_sas_node);
9397 }
9398
9399 static struct hpsa_scsi_dev_t
9400         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9401                                         struct sas_rphy *rphy)
9402 {
9403         int i;
9404         struct hpsa_scsi_dev_t *device;
9405
9406         for (i = 0; i < h->ndevices; i++) {
9407                 device = h->dev[i];
9408                 if (!device->sas_port)
9409                         continue;
9410                 if (device->sas_port->rphy == rphy)
9411                         return device;
9412         }
9413
9414         return NULL;
9415 }
9416
9417 static int hpsa_add_sas_host(struct ctlr_info *h)
9418 {
9419         int rc;
9420         struct device *parent_dev;
9421         struct hpsa_sas_node *hpsa_sas_node;
9422         struct hpsa_sas_port *hpsa_sas_port;
9423         struct hpsa_sas_phy *hpsa_sas_phy;
9424
9425         parent_dev = &h->scsi_host->shost_gendev;
9426
9427         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9428         if (!hpsa_sas_node)
9429                 return -ENOMEM;
9430
9431         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9432         if (!hpsa_sas_port) {
9433                 rc = -ENODEV;
9434                 goto free_sas_node;
9435         }
9436
9437         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9438         if (!hpsa_sas_phy) {
9439                 rc = -ENODEV;
9440                 goto free_sas_port;
9441         }
9442
9443         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9444         if (rc)
9445                 goto free_sas_phy;
9446
9447         h->sas_host = hpsa_sas_node;
9448
9449         return 0;
9450
9451 free_sas_phy:
9452         hpsa_free_sas_phy(hpsa_sas_phy);
9453 free_sas_port:
9454         hpsa_free_sas_port(hpsa_sas_port);
9455 free_sas_node:
9456         hpsa_free_sas_node(hpsa_sas_node);
9457
9458         return rc;
9459 }
9460
9461 static void hpsa_delete_sas_host(struct ctlr_info *h)
9462 {
9463         hpsa_free_sas_node(h->sas_host);
9464 }
9465
9466 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9467                                 struct hpsa_scsi_dev_t *device)
9468 {
9469         int rc;
9470         struct hpsa_sas_port *hpsa_sas_port;
9471         struct sas_rphy *rphy;
9472
9473         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9474         if (!hpsa_sas_port)
9475                 return -ENOMEM;
9476
9477         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9478         if (!rphy) {
9479                 rc = -ENODEV;
9480                 goto free_sas_port;
9481         }
9482
9483         hpsa_sas_port->rphy = rphy;
9484         device->sas_port = hpsa_sas_port;
9485
9486         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9487         if (rc)
9488                 goto free_sas_port;
9489
9490         return 0;
9491
9492 free_sas_port:
9493         hpsa_free_sas_port(hpsa_sas_port);
9494         device->sas_port = NULL;
9495
9496         return rc;
9497 }
9498
9499 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9500 {
9501         if (device->sas_port) {
9502                 hpsa_free_sas_port(device->sas_port);
9503                 device->sas_port = NULL;
9504         }
9505 }
9506
9507 static int
9508 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9509 {
9510         return 0;
9511 }
9512
9513 static int
9514 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9515 {
9516         return 0;
9517 }
9518
9519 static int
9520 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9521 {
9522         return -ENXIO;
9523 }
9524
9525 static int
9526 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9527 {
9528         return 0;
9529 }
9530
9531 static int
9532 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9533 {
9534         return 0;
9535 }
9536
9537 static int
9538 hpsa_sas_phy_setup(struct sas_phy *phy)
9539 {
9540         return 0;
9541 }
9542
9543 static void
9544 hpsa_sas_phy_release(struct sas_phy *phy)
9545 {
9546 }
9547
9548 static int
9549 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9550 {
9551         return -EINVAL;
9552 }
9553
9554 /* SMP = Serial Management Protocol */
9555 static int
9556 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9557 struct request *req)
9558 {
9559         return -EINVAL;
9560 }
9561
9562 static struct sas_function_template hpsa_sas_transport_functions = {
9563         .get_linkerrors = hpsa_sas_get_linkerrors,
9564         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9565         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9566         .phy_reset = hpsa_sas_phy_reset,
9567         .phy_enable = hpsa_sas_phy_enable,
9568         .phy_setup = hpsa_sas_phy_setup,
9569         .phy_release = hpsa_sas_phy_release,
9570         .set_phy_speed = hpsa_sas_phy_speed,
9571         .smp_handler = hpsa_sas_smp_handler,
9572 };
9573
9574 /*
9575  *  This is it.  Register the PCI driver information for the cards we control
9576  *  the OS will call our registered routines when it finds one of our cards.
9577  */
9578 static int __init hpsa_init(void)
9579 {
9580         int rc;
9581
9582         hpsa_sas_transport_template =
9583                 sas_attach_transport(&hpsa_sas_transport_functions);
9584         if (!hpsa_sas_transport_template)
9585                 return -ENODEV;
9586
9587         rc = pci_register_driver(&hpsa_pci_driver);
9588
9589         if (rc)
9590                 sas_release_transport(hpsa_sas_transport_template);
9591
9592         return rc;
9593 }
9594
9595 static void __exit hpsa_cleanup(void)
9596 {
9597         pci_unregister_driver(&hpsa_pci_driver);
9598         sas_release_transport(hpsa_sas_transport_template);
9599 }
9600
9601 static void __attribute__((unused)) verify_offsets(void)
9602 {
9603 #define VERIFY_OFFSET(member, offset) \
9604         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9605
9606         VERIFY_OFFSET(structure_size, 0);
9607         VERIFY_OFFSET(volume_blk_size, 4);
9608         VERIFY_OFFSET(volume_blk_cnt, 8);
9609         VERIFY_OFFSET(phys_blk_shift, 16);
9610         VERIFY_OFFSET(parity_rotation_shift, 17);
9611         VERIFY_OFFSET(strip_size, 18);
9612         VERIFY_OFFSET(disk_starting_blk, 20);
9613         VERIFY_OFFSET(disk_blk_cnt, 28);
9614         VERIFY_OFFSET(data_disks_per_row, 36);
9615         VERIFY_OFFSET(metadata_disks_per_row, 38);
9616         VERIFY_OFFSET(row_cnt, 40);
9617         VERIFY_OFFSET(layout_map_count, 42);
9618         VERIFY_OFFSET(flags, 44);
9619         VERIFY_OFFSET(dekindex, 46);
9620         /* VERIFY_OFFSET(reserved, 48 */
9621         VERIFY_OFFSET(data, 64);
9622
9623 #undef VERIFY_OFFSET
9624
9625 #define VERIFY_OFFSET(member, offset) \
9626         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9627
9628         VERIFY_OFFSET(IU_type, 0);
9629         VERIFY_OFFSET(direction, 1);
9630         VERIFY_OFFSET(reply_queue, 2);
9631         /* VERIFY_OFFSET(reserved1, 3);  */
9632         VERIFY_OFFSET(scsi_nexus, 4);
9633         VERIFY_OFFSET(Tag, 8);
9634         VERIFY_OFFSET(cdb, 16);
9635         VERIFY_OFFSET(cciss_lun, 32);
9636         VERIFY_OFFSET(data_len, 40);
9637         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9638         VERIFY_OFFSET(sg_count, 45);
9639         /* VERIFY_OFFSET(reserved3 */
9640         VERIFY_OFFSET(err_ptr, 48);
9641         VERIFY_OFFSET(err_len, 56);
9642         /* VERIFY_OFFSET(reserved4  */
9643         VERIFY_OFFSET(sg, 64);
9644
9645 #undef VERIFY_OFFSET
9646
9647 #define VERIFY_OFFSET(member, offset) \
9648         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9649
9650         VERIFY_OFFSET(dev_handle, 0x00);
9651         VERIFY_OFFSET(reserved1, 0x02);
9652         VERIFY_OFFSET(function, 0x03);
9653         VERIFY_OFFSET(reserved2, 0x04);
9654         VERIFY_OFFSET(err_info, 0x0C);
9655         VERIFY_OFFSET(reserved3, 0x10);
9656         VERIFY_OFFSET(err_info_len, 0x12);
9657         VERIFY_OFFSET(reserved4, 0x13);
9658         VERIFY_OFFSET(sgl_offset, 0x14);
9659         VERIFY_OFFSET(reserved5, 0x15);
9660         VERIFY_OFFSET(transfer_len, 0x1C);
9661         VERIFY_OFFSET(reserved6, 0x20);
9662         VERIFY_OFFSET(io_flags, 0x24);
9663         VERIFY_OFFSET(reserved7, 0x26);
9664         VERIFY_OFFSET(LUN, 0x34);
9665         VERIFY_OFFSET(control, 0x3C);
9666         VERIFY_OFFSET(CDB, 0x40);
9667         VERIFY_OFFSET(reserved8, 0x50);
9668         VERIFY_OFFSET(host_context_flags, 0x60);
9669         VERIFY_OFFSET(timeout_sec, 0x62);
9670         VERIFY_OFFSET(ReplyQueue, 0x64);
9671         VERIFY_OFFSET(reserved9, 0x65);
9672         VERIFY_OFFSET(tag, 0x68);
9673         VERIFY_OFFSET(host_addr, 0x70);
9674         VERIFY_OFFSET(CISS_LUN, 0x78);
9675         VERIFY_OFFSET(SG, 0x78 + 8);
9676 #undef VERIFY_OFFSET
9677 }
9678
9679 module_init(hpsa_init);
9680 module_exit(hpsa_cleanup);