97f50c71b7c9060fd5411444753e91c2d194e914
[cascardo/linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {0,}
150 };
151
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159         {0x3241103C, "Smart Array P212", &SA5_access},
160         {0x3243103C, "Smart Array P410", &SA5_access},
161         {0x3245103C, "Smart Array P410i", &SA5_access},
162         {0x3247103C, "Smart Array P411", &SA5_access},
163         {0x3249103C, "Smart Array P812", &SA5_access},
164         {0x324A103C, "Smart Array P712m", &SA5_access},
165         {0x324B103C, "Smart Array P711m", &SA5_access},
166         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167         {0x3350103C, "Smart Array P222", &SA5_access},
168         {0x3351103C, "Smart Array P420", &SA5_access},
169         {0x3352103C, "Smart Array P421", &SA5_access},
170         {0x3353103C, "Smart Array P822", &SA5_access},
171         {0x3354103C, "Smart Array P420i", &SA5_access},
172         {0x3355103C, "Smart Array P220i", &SA5_access},
173         {0x3356103C, "Smart Array P721m", &SA5_access},
174         {0x1921103C, "Smart Array P830i", &SA5_access},
175         {0x1922103C, "Smart Array P430", &SA5_access},
176         {0x1923103C, "Smart Array P431", &SA5_access},
177         {0x1924103C, "Smart Array P830", &SA5_access},
178         {0x1926103C, "Smart Array P731m", &SA5_access},
179         {0x1928103C, "Smart Array P230i", &SA5_access},
180         {0x1929103C, "Smart Array P530", &SA5_access},
181         {0x21BD103C, "Smart Array P244br", &SA5_access},
182         {0x21BE103C, "Smart Array P741m", &SA5_access},
183         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184         {0x21C0103C, "Smart Array P440ar", &SA5_access},
185         {0x21C1103C, "Smart Array P840ar", &SA5_access},
186         {0x21C2103C, "Smart Array P440", &SA5_access},
187         {0x21C3103C, "Smart Array P441", &SA5_access},
188         {0x21C4103C, "Smart Array", &SA5_access},
189         {0x21C5103C, "Smart Array P841", &SA5_access},
190         {0x21C6103C, "Smart HBA H244br", &SA5_access},
191         {0x21C7103C, "Smart HBA H240", &SA5_access},
192         {0x21C8103C, "Smart HBA H241", &SA5_access},
193         {0x21C9103C, "Smart Array", &SA5_access},
194         {0x21CA103C, "Smart Array P246br", &SA5_access},
195         {0x21CB103C, "Smart Array P840", &SA5_access},
196         {0x21CC103C, "Smart Array", &SA5_access},
197         {0x21CD103C, "Smart Array", &SA5_access},
198         {0x21CE103C, "Smart HBA", &SA5_access},
199         {0x05809005, "SmartHBA-SA", &SA5_access},
200         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217                         struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221                 struct sas_rphy *rphy);
222
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235         void __user *arg);
236 #endif
237
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242                                             struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245         int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253         unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264         struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266         struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269         int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275                                u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277                                     unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280                                      int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295         struct ReportExtendedLUNdata *buf, int bufsize);
296 static int hpsa_luns_changed(struct ctlr_info *h);
297 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
298                                struct hpsa_scsi_dev_t *dev,
299                                unsigned char *scsi3addr);
300
301 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
302 {
303         unsigned long *priv = shost_priv(sdev->host);
304         return (struct ctlr_info *) *priv;
305 }
306
307 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
308 {
309         unsigned long *priv = shost_priv(sh);
310         return (struct ctlr_info *) *priv;
311 }
312
313 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
314 {
315         return c->scsi_cmd == SCSI_CMD_IDLE;
316 }
317
318 static inline bool hpsa_is_pending_event(struct CommandList *c)
319 {
320         return c->abort_pending || c->reset_pending;
321 }
322
323 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
324 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
325                         u8 *sense_key, u8 *asc, u8 *ascq)
326 {
327         struct scsi_sense_hdr sshdr;
328         bool rc;
329
330         *sense_key = -1;
331         *asc = -1;
332         *ascq = -1;
333
334         if (sense_data_len < 1)
335                 return;
336
337         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
338         if (rc) {
339                 *sense_key = sshdr.sense_key;
340                 *asc = sshdr.asc;
341                 *ascq = sshdr.ascq;
342         }
343 }
344
345 static int check_for_unit_attention(struct ctlr_info *h,
346         struct CommandList *c)
347 {
348         u8 sense_key, asc, ascq;
349         int sense_len;
350
351         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
352                 sense_len = sizeof(c->err_info->SenseInfo);
353         else
354                 sense_len = c->err_info->SenseLen;
355
356         decode_sense_data(c->err_info->SenseInfo, sense_len,
357                                 &sense_key, &asc, &ascq);
358         if (sense_key != UNIT_ATTENTION || asc == 0xff)
359                 return 0;
360
361         switch (asc) {
362         case STATE_CHANGED:
363                 dev_warn(&h->pdev->dev,
364                         "%s: a state change detected, command retried\n",
365                         h->devname);
366                 break;
367         case LUN_FAILED:
368                 dev_warn(&h->pdev->dev,
369                         "%s: LUN failure detected\n", h->devname);
370                 break;
371         case REPORT_LUNS_CHANGED:
372                 dev_warn(&h->pdev->dev,
373                         "%s: report LUN data changed\n", h->devname);
374         /*
375          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
376          * target (array) devices.
377          */
378                 break;
379         case POWER_OR_RESET:
380                 dev_warn(&h->pdev->dev,
381                         "%s: a power on or device reset detected\n",
382                         h->devname);
383                 break;
384         case UNIT_ATTENTION_CLEARED:
385                 dev_warn(&h->pdev->dev,
386                         "%s: unit attention cleared by another initiator\n",
387                         h->devname);
388                 break;
389         default:
390                 dev_warn(&h->pdev->dev,
391                         "%s: unknown unit attention detected\n",
392                         h->devname);
393                 break;
394         }
395         return 1;
396 }
397
398 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
399 {
400         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
401                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
402                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
403                 return 0;
404         dev_warn(&h->pdev->dev, HPSA "device busy");
405         return 1;
406 }
407
408 static u32 lockup_detected(struct ctlr_info *h);
409 static ssize_t host_show_lockup_detected(struct device *dev,
410                 struct device_attribute *attr, char *buf)
411 {
412         int ld;
413         struct ctlr_info *h;
414         struct Scsi_Host *shost = class_to_shost(dev);
415
416         h = shost_to_hba(shost);
417         ld = lockup_detected(h);
418
419         return sprintf(buf, "ld=%d\n", ld);
420 }
421
422 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
423                                          struct device_attribute *attr,
424                                          const char *buf, size_t count)
425 {
426         int status, len;
427         struct ctlr_info *h;
428         struct Scsi_Host *shost = class_to_shost(dev);
429         char tmpbuf[10];
430
431         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
432                 return -EACCES;
433         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
434         strncpy(tmpbuf, buf, len);
435         tmpbuf[len] = '\0';
436         if (sscanf(tmpbuf, "%d", &status) != 1)
437                 return -EINVAL;
438         h = shost_to_hba(shost);
439         h->acciopath_status = !!status;
440         dev_warn(&h->pdev->dev,
441                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
442                 h->acciopath_status ? "enabled" : "disabled");
443         return count;
444 }
445
446 static ssize_t host_store_raid_offload_debug(struct device *dev,
447                                          struct device_attribute *attr,
448                                          const char *buf, size_t count)
449 {
450         int debug_level, len;
451         struct ctlr_info *h;
452         struct Scsi_Host *shost = class_to_shost(dev);
453         char tmpbuf[10];
454
455         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
456                 return -EACCES;
457         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
458         strncpy(tmpbuf, buf, len);
459         tmpbuf[len] = '\0';
460         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
461                 return -EINVAL;
462         if (debug_level < 0)
463                 debug_level = 0;
464         h = shost_to_hba(shost);
465         h->raid_offload_debug = debug_level;
466         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
467                 h->raid_offload_debug);
468         return count;
469 }
470
471 static ssize_t host_store_rescan(struct device *dev,
472                                  struct device_attribute *attr,
473                                  const char *buf, size_t count)
474 {
475         struct ctlr_info *h;
476         struct Scsi_Host *shost = class_to_shost(dev);
477         h = shost_to_hba(shost);
478         hpsa_scan_start(h->scsi_host);
479         return count;
480 }
481
482 static ssize_t host_show_firmware_revision(struct device *dev,
483              struct device_attribute *attr, char *buf)
484 {
485         struct ctlr_info *h;
486         struct Scsi_Host *shost = class_to_shost(dev);
487         unsigned char *fwrev;
488
489         h = shost_to_hba(shost);
490         if (!h->hba_inquiry_data)
491                 return 0;
492         fwrev = &h->hba_inquiry_data[32];
493         return snprintf(buf, 20, "%c%c%c%c\n",
494                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
495 }
496
497 static ssize_t host_show_commands_outstanding(struct device *dev,
498              struct device_attribute *attr, char *buf)
499 {
500         struct Scsi_Host *shost = class_to_shost(dev);
501         struct ctlr_info *h = shost_to_hba(shost);
502
503         return snprintf(buf, 20, "%d\n",
504                         atomic_read(&h->commands_outstanding));
505 }
506
507 static ssize_t host_show_transport_mode(struct device *dev,
508         struct device_attribute *attr, char *buf)
509 {
510         struct ctlr_info *h;
511         struct Scsi_Host *shost = class_to_shost(dev);
512
513         h = shost_to_hba(shost);
514         return snprintf(buf, 20, "%s\n",
515                 h->transMethod & CFGTBL_Trans_Performant ?
516                         "performant" : "simple");
517 }
518
519 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
520         struct device_attribute *attr, char *buf)
521 {
522         struct ctlr_info *h;
523         struct Scsi_Host *shost = class_to_shost(dev);
524
525         h = shost_to_hba(shost);
526         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
527                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
528 }
529
530 /* List of controllers which cannot be hard reset on kexec with reset_devices */
531 static u32 unresettable_controller[] = {
532         0x324a103C, /* Smart Array P712m */
533         0x324b103C, /* Smart Array P711m */
534         0x3223103C, /* Smart Array P800 */
535         0x3234103C, /* Smart Array P400 */
536         0x3235103C, /* Smart Array P400i */
537         0x3211103C, /* Smart Array E200i */
538         0x3212103C, /* Smart Array E200 */
539         0x3213103C, /* Smart Array E200i */
540         0x3214103C, /* Smart Array E200i */
541         0x3215103C, /* Smart Array E200i */
542         0x3237103C, /* Smart Array E500 */
543         0x323D103C, /* Smart Array P700m */
544         0x40800E11, /* Smart Array 5i */
545         0x409C0E11, /* Smart Array 6400 */
546         0x409D0E11, /* Smart Array 6400 EM */
547         0x40700E11, /* Smart Array 5300 */
548         0x40820E11, /* Smart Array 532 */
549         0x40830E11, /* Smart Array 5312 */
550         0x409A0E11, /* Smart Array 641 */
551         0x409B0E11, /* Smart Array 642 */
552         0x40910E11, /* Smart Array 6i */
553 };
554
555 /* List of controllers which cannot even be soft reset */
556 static u32 soft_unresettable_controller[] = {
557         0x40800E11, /* Smart Array 5i */
558         0x40700E11, /* Smart Array 5300 */
559         0x40820E11, /* Smart Array 532 */
560         0x40830E11, /* Smart Array 5312 */
561         0x409A0E11, /* Smart Array 641 */
562         0x409B0E11, /* Smart Array 642 */
563         0x40910E11, /* Smart Array 6i */
564         /* Exclude 640x boards.  These are two pci devices in one slot
565          * which share a battery backed cache module.  One controls the
566          * cache, the other accesses the cache through the one that controls
567          * it.  If we reset the one controlling the cache, the other will
568          * likely not be happy.  Just forbid resetting this conjoined mess.
569          * The 640x isn't really supported by hpsa anyway.
570          */
571         0x409C0E11, /* Smart Array 6400 */
572         0x409D0E11, /* Smart Array 6400 EM */
573 };
574
575 static u32 needs_abort_tags_swizzled[] = {
576         0x323D103C, /* Smart Array P700m */
577         0x324a103C, /* Smart Array P712m */
578         0x324b103C, /* SmartArray P711m */
579 };
580
581 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
582 {
583         int i;
584
585         for (i = 0; i < nelems; i++)
586                 if (a[i] == board_id)
587                         return 1;
588         return 0;
589 }
590
591 static int ctlr_is_hard_resettable(u32 board_id)
592 {
593         return !board_id_in_array(unresettable_controller,
594                         ARRAY_SIZE(unresettable_controller), board_id);
595 }
596
597 static int ctlr_is_soft_resettable(u32 board_id)
598 {
599         return !board_id_in_array(soft_unresettable_controller,
600                         ARRAY_SIZE(soft_unresettable_controller), board_id);
601 }
602
603 static int ctlr_is_resettable(u32 board_id)
604 {
605         return ctlr_is_hard_resettable(board_id) ||
606                 ctlr_is_soft_resettable(board_id);
607 }
608
609 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
610 {
611         return board_id_in_array(needs_abort_tags_swizzled,
612                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
613 }
614
615 static ssize_t host_show_resettable(struct device *dev,
616         struct device_attribute *attr, char *buf)
617 {
618         struct ctlr_info *h;
619         struct Scsi_Host *shost = class_to_shost(dev);
620
621         h = shost_to_hba(shost);
622         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
623 }
624
625 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
626 {
627         return (scsi3addr[3] & 0xC0) == 0x40;
628 }
629
630 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
631         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
632 };
633 #define HPSA_RAID_0     0
634 #define HPSA_RAID_4     1
635 #define HPSA_RAID_1     2       /* also used for RAID 10 */
636 #define HPSA_RAID_5     3       /* also used for RAID 50 */
637 #define HPSA_RAID_51    4
638 #define HPSA_RAID_6     5       /* also used for RAID 60 */
639 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
640 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
641 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
642
643 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
644 {
645         return !device->physical_device;
646 }
647
648 static ssize_t raid_level_show(struct device *dev,
649              struct device_attribute *attr, char *buf)
650 {
651         ssize_t l = 0;
652         unsigned char rlevel;
653         struct ctlr_info *h;
654         struct scsi_device *sdev;
655         struct hpsa_scsi_dev_t *hdev;
656         unsigned long flags;
657
658         sdev = to_scsi_device(dev);
659         h = sdev_to_hba(sdev);
660         spin_lock_irqsave(&h->lock, flags);
661         hdev = sdev->hostdata;
662         if (!hdev) {
663                 spin_unlock_irqrestore(&h->lock, flags);
664                 return -ENODEV;
665         }
666
667         /* Is this even a logical drive? */
668         if (!is_logical_device(hdev)) {
669                 spin_unlock_irqrestore(&h->lock, flags);
670                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
671                 return l;
672         }
673
674         rlevel = hdev->raid_level;
675         spin_unlock_irqrestore(&h->lock, flags);
676         if (rlevel > RAID_UNKNOWN)
677                 rlevel = RAID_UNKNOWN;
678         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
679         return l;
680 }
681
682 static ssize_t lunid_show(struct device *dev,
683              struct device_attribute *attr, char *buf)
684 {
685         struct ctlr_info *h;
686         struct scsi_device *sdev;
687         struct hpsa_scsi_dev_t *hdev;
688         unsigned long flags;
689         unsigned char lunid[8];
690
691         sdev = to_scsi_device(dev);
692         h = sdev_to_hba(sdev);
693         spin_lock_irqsave(&h->lock, flags);
694         hdev = sdev->hostdata;
695         if (!hdev) {
696                 spin_unlock_irqrestore(&h->lock, flags);
697                 return -ENODEV;
698         }
699         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
700         spin_unlock_irqrestore(&h->lock, flags);
701         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
702                 lunid[0], lunid[1], lunid[2], lunid[3],
703                 lunid[4], lunid[5], lunid[6], lunid[7]);
704 }
705
706 static ssize_t unique_id_show(struct device *dev,
707              struct device_attribute *attr, char *buf)
708 {
709         struct ctlr_info *h;
710         struct scsi_device *sdev;
711         struct hpsa_scsi_dev_t *hdev;
712         unsigned long flags;
713         unsigned char sn[16];
714
715         sdev = to_scsi_device(dev);
716         h = sdev_to_hba(sdev);
717         spin_lock_irqsave(&h->lock, flags);
718         hdev = sdev->hostdata;
719         if (!hdev) {
720                 spin_unlock_irqrestore(&h->lock, flags);
721                 return -ENODEV;
722         }
723         memcpy(sn, hdev->device_id, sizeof(sn));
724         spin_unlock_irqrestore(&h->lock, flags);
725         return snprintf(buf, 16 * 2 + 2,
726                         "%02X%02X%02X%02X%02X%02X%02X%02X"
727                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
728                         sn[0], sn[1], sn[2], sn[3],
729                         sn[4], sn[5], sn[6], sn[7],
730                         sn[8], sn[9], sn[10], sn[11],
731                         sn[12], sn[13], sn[14], sn[15]);
732 }
733
734 static ssize_t sas_address_show(struct device *dev,
735               struct device_attribute *attr, char *buf)
736 {
737         struct ctlr_info *h;
738         struct scsi_device *sdev;
739         struct hpsa_scsi_dev_t *hdev;
740         unsigned long flags;
741         u64 sas_address;
742
743         sdev = to_scsi_device(dev);
744         h = sdev_to_hba(sdev);
745         spin_lock_irqsave(&h->lock, flags);
746         hdev = sdev->hostdata;
747         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
748                 spin_unlock_irqrestore(&h->lock, flags);
749                 return -ENODEV;
750         }
751         sas_address = hdev->sas_address;
752         spin_unlock_irqrestore(&h->lock, flags);
753
754         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
755 }
756
757 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
758              struct device_attribute *attr, char *buf)
759 {
760         struct ctlr_info *h;
761         struct scsi_device *sdev;
762         struct hpsa_scsi_dev_t *hdev;
763         unsigned long flags;
764         int offload_enabled;
765
766         sdev = to_scsi_device(dev);
767         h = sdev_to_hba(sdev);
768         spin_lock_irqsave(&h->lock, flags);
769         hdev = sdev->hostdata;
770         if (!hdev) {
771                 spin_unlock_irqrestore(&h->lock, flags);
772                 return -ENODEV;
773         }
774         offload_enabled = hdev->offload_enabled;
775         spin_unlock_irqrestore(&h->lock, flags);
776         return snprintf(buf, 20, "%d\n", offload_enabled);
777 }
778
779 #define MAX_PATHS 8
780 static ssize_t path_info_show(struct device *dev,
781              struct device_attribute *attr, char *buf)
782 {
783         struct ctlr_info *h;
784         struct scsi_device *sdev;
785         struct hpsa_scsi_dev_t *hdev;
786         unsigned long flags;
787         int i;
788         int output_len = 0;
789         u8 box;
790         u8 bay;
791         u8 path_map_index = 0;
792         char *active;
793         unsigned char phys_connector[2];
794
795         sdev = to_scsi_device(dev);
796         h = sdev_to_hba(sdev);
797         spin_lock_irqsave(&h->devlock, flags);
798         hdev = sdev->hostdata;
799         if (!hdev) {
800                 spin_unlock_irqrestore(&h->devlock, flags);
801                 return -ENODEV;
802         }
803
804         bay = hdev->bay;
805         for (i = 0; i < MAX_PATHS; i++) {
806                 path_map_index = 1<<i;
807                 if (i == hdev->active_path_index)
808                         active = "Active";
809                 else if (hdev->path_map & path_map_index)
810                         active = "Inactive";
811                 else
812                         continue;
813
814                 output_len += scnprintf(buf + output_len,
815                                 PAGE_SIZE - output_len,
816                                 "[%d:%d:%d:%d] %20.20s ",
817                                 h->scsi_host->host_no,
818                                 hdev->bus, hdev->target, hdev->lun,
819                                 scsi_device_type(hdev->devtype));
820
821                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
822                         output_len += scnprintf(buf + output_len,
823                                                 PAGE_SIZE - output_len,
824                                                 "%s\n", active);
825                         continue;
826                 }
827
828                 box = hdev->box[i];
829                 memcpy(&phys_connector, &hdev->phys_connector[i],
830                         sizeof(phys_connector));
831                 if (phys_connector[0] < '0')
832                         phys_connector[0] = '0';
833                 if (phys_connector[1] < '0')
834                         phys_connector[1] = '0';
835                 output_len += scnprintf(buf + output_len,
836                                 PAGE_SIZE - output_len,
837                                 "PORT: %.2s ",
838                                 phys_connector);
839                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
840                         hdev->expose_device) {
841                         if (box == 0 || box == 0xFF) {
842                                 output_len += scnprintf(buf + output_len,
843                                         PAGE_SIZE - output_len,
844                                         "BAY: %hhu %s\n",
845                                         bay, active);
846                         } else {
847                                 output_len += scnprintf(buf + output_len,
848                                         PAGE_SIZE - output_len,
849                                         "BOX: %hhu BAY: %hhu %s\n",
850                                         box, bay, active);
851                         }
852                 } else if (box != 0 && box != 0xFF) {
853                         output_len += scnprintf(buf + output_len,
854                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
855                                 box, active);
856                 } else
857                         output_len += scnprintf(buf + output_len,
858                                 PAGE_SIZE - output_len, "%s\n", active);
859         }
860
861         spin_unlock_irqrestore(&h->devlock, flags);
862         return output_len;
863 }
864
865 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
866 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
867 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
868 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
869 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
870 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
871                         host_show_hp_ssd_smart_path_enabled, NULL);
872 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
873 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
874                 host_show_hp_ssd_smart_path_status,
875                 host_store_hp_ssd_smart_path_status);
876 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
877                         host_store_raid_offload_debug);
878 static DEVICE_ATTR(firmware_revision, S_IRUGO,
879         host_show_firmware_revision, NULL);
880 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
881         host_show_commands_outstanding, NULL);
882 static DEVICE_ATTR(transport_mode, S_IRUGO,
883         host_show_transport_mode, NULL);
884 static DEVICE_ATTR(resettable, S_IRUGO,
885         host_show_resettable, NULL);
886 static DEVICE_ATTR(lockup_detected, S_IRUGO,
887         host_show_lockup_detected, NULL);
888
889 static struct device_attribute *hpsa_sdev_attrs[] = {
890         &dev_attr_raid_level,
891         &dev_attr_lunid,
892         &dev_attr_unique_id,
893         &dev_attr_hp_ssd_smart_path_enabled,
894         &dev_attr_path_info,
895         &dev_attr_sas_address,
896         NULL,
897 };
898
899 static struct device_attribute *hpsa_shost_attrs[] = {
900         &dev_attr_rescan,
901         &dev_attr_firmware_revision,
902         &dev_attr_commands_outstanding,
903         &dev_attr_transport_mode,
904         &dev_attr_resettable,
905         &dev_attr_hp_ssd_smart_path_status,
906         &dev_attr_raid_offload_debug,
907         &dev_attr_lockup_detected,
908         NULL,
909 };
910
911 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
912                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
913
914 static struct scsi_host_template hpsa_driver_template = {
915         .module                 = THIS_MODULE,
916         .name                   = HPSA,
917         .proc_name              = HPSA,
918         .queuecommand           = hpsa_scsi_queue_command,
919         .scan_start             = hpsa_scan_start,
920         .scan_finished          = hpsa_scan_finished,
921         .change_queue_depth     = hpsa_change_queue_depth,
922         .this_id                = -1,
923         .use_clustering         = ENABLE_CLUSTERING,
924         .eh_abort_handler       = hpsa_eh_abort_handler,
925         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
926         .ioctl                  = hpsa_ioctl,
927         .slave_alloc            = hpsa_slave_alloc,
928         .slave_configure        = hpsa_slave_configure,
929         .slave_destroy          = hpsa_slave_destroy,
930 #ifdef CONFIG_COMPAT
931         .compat_ioctl           = hpsa_compat_ioctl,
932 #endif
933         .sdev_attrs = hpsa_sdev_attrs,
934         .shost_attrs = hpsa_shost_attrs,
935         .max_sectors = 8192,
936         .no_write_same = 1,
937 };
938
939 static inline u32 next_command(struct ctlr_info *h, u8 q)
940 {
941         u32 a;
942         struct reply_queue_buffer *rq = &h->reply_queue[q];
943
944         if (h->transMethod & CFGTBL_Trans_io_accel1)
945                 return h->access.command_completed(h, q);
946
947         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
948                 return h->access.command_completed(h, q);
949
950         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
951                 a = rq->head[rq->current_entry];
952                 rq->current_entry++;
953                 atomic_dec(&h->commands_outstanding);
954         } else {
955                 a = FIFO_EMPTY;
956         }
957         /* Check for wraparound */
958         if (rq->current_entry == h->max_commands) {
959                 rq->current_entry = 0;
960                 rq->wraparound ^= 1;
961         }
962         return a;
963 }
964
965 /*
966  * There are some special bits in the bus address of the
967  * command that we have to set for the controller to know
968  * how to process the command:
969  *
970  * Normal performant mode:
971  * bit 0: 1 means performant mode, 0 means simple mode.
972  * bits 1-3 = block fetch table entry
973  * bits 4-6 = command type (== 0)
974  *
975  * ioaccel1 mode:
976  * bit 0 = "performant mode" bit.
977  * bits 1-3 = block fetch table entry
978  * bits 4-6 = command type (== 110)
979  * (command type is needed because ioaccel1 mode
980  * commands are submitted through the same register as normal
981  * mode commands, so this is how the controller knows whether
982  * the command is normal mode or ioaccel1 mode.)
983  *
984  * ioaccel2 mode:
985  * bit 0 = "performant mode" bit.
986  * bits 1-4 = block fetch table entry (note extra bit)
987  * bits 4-6 = not needed, because ioaccel2 mode has
988  * a separate special register for submitting commands.
989  */
990
991 /*
992  * set_performant_mode: Modify the tag for cciss performant
993  * set bit 0 for pull model, bits 3-1 for block fetch
994  * register number
995  */
996 #define DEFAULT_REPLY_QUEUE (-1)
997 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
998                                         int reply_queue)
999 {
1000         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1001                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1002                 if (unlikely(!h->msix_vector))
1003                         return;
1004                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1005                         c->Header.ReplyQueue =
1006                                 raw_smp_processor_id() % h->nreply_queues;
1007                 else
1008                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1009         }
1010 }
1011
1012 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1013                                                 struct CommandList *c,
1014                                                 int reply_queue)
1015 {
1016         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1017
1018         /*
1019          * Tell the controller to post the reply to the queue for this
1020          * processor.  This seems to give the best I/O throughput.
1021          */
1022         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1023                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1024         else
1025                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1026         /*
1027          * Set the bits in the address sent down to include:
1028          *  - performant mode bit (bit 0)
1029          *  - pull count (bits 1-3)
1030          *  - command type (bits 4-6)
1031          */
1032         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1033                                         IOACCEL1_BUSADDR_CMDTYPE;
1034 }
1035
1036 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1037                                                 struct CommandList *c,
1038                                                 int reply_queue)
1039 {
1040         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1041                 &h->ioaccel2_cmd_pool[c->cmdindex];
1042
1043         /* Tell the controller to post the reply to the queue for this
1044          * processor.  This seems to give the best I/O throughput.
1045          */
1046         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1047                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1048         else
1049                 cp->reply_queue = reply_queue % h->nreply_queues;
1050         /* Set the bits in the address sent down to include:
1051          *  - performant mode bit not used in ioaccel mode 2
1052          *  - pull count (bits 0-3)
1053          *  - command type isn't needed for ioaccel2
1054          */
1055         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1056 }
1057
1058 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1059                                                 struct CommandList *c,
1060                                                 int reply_queue)
1061 {
1062         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1063
1064         /*
1065          * Tell the controller to post the reply to the queue for this
1066          * processor.  This seems to give the best I/O throughput.
1067          */
1068         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1069                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1070         else
1071                 cp->reply_queue = reply_queue % h->nreply_queues;
1072         /*
1073          * Set the bits in the address sent down to include:
1074          *  - performant mode bit not used in ioaccel mode 2
1075          *  - pull count (bits 0-3)
1076          *  - command type isn't needed for ioaccel2
1077          */
1078         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1079 }
1080
1081 static int is_firmware_flash_cmd(u8 *cdb)
1082 {
1083         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1084 }
1085
1086 /*
1087  * During firmware flash, the heartbeat register may not update as frequently
1088  * as it should.  So we dial down lockup detection during firmware flash. and
1089  * dial it back up when firmware flash completes.
1090  */
1091 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1092 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1093 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1094                 struct CommandList *c)
1095 {
1096         if (!is_firmware_flash_cmd(c->Request.CDB))
1097                 return;
1098         atomic_inc(&h->firmware_flash_in_progress);
1099         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1100 }
1101
1102 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1103                 struct CommandList *c)
1104 {
1105         if (is_firmware_flash_cmd(c->Request.CDB) &&
1106                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1107                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1108 }
1109
1110 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1111         struct CommandList *c, int reply_queue)
1112 {
1113         dial_down_lockup_detection_during_fw_flash(h, c);
1114         atomic_inc(&h->commands_outstanding);
1115         switch (c->cmd_type) {
1116         case CMD_IOACCEL1:
1117                 set_ioaccel1_performant_mode(h, c, reply_queue);
1118                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1119                 break;
1120         case CMD_IOACCEL2:
1121                 set_ioaccel2_performant_mode(h, c, reply_queue);
1122                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1123                 break;
1124         case IOACCEL2_TMF:
1125                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1126                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1127                 break;
1128         default:
1129                 set_performant_mode(h, c, reply_queue);
1130                 h->access.submit_command(h, c);
1131         }
1132 }
1133
1134 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1135 {
1136         if (unlikely(hpsa_is_pending_event(c)))
1137                 return finish_cmd(c);
1138
1139         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1140 }
1141
1142 static inline int is_hba_lunid(unsigned char scsi3addr[])
1143 {
1144         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1145 }
1146
1147 static inline int is_scsi_rev_5(struct ctlr_info *h)
1148 {
1149         if (!h->hba_inquiry_data)
1150                 return 0;
1151         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1152                 return 1;
1153         return 0;
1154 }
1155
1156 static int hpsa_find_target_lun(struct ctlr_info *h,
1157         unsigned char scsi3addr[], int bus, int *target, int *lun)
1158 {
1159         /* finds an unused bus, target, lun for a new physical device
1160          * assumes h->devlock is held
1161          */
1162         int i, found = 0;
1163         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1164
1165         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1166
1167         for (i = 0; i < h->ndevices; i++) {
1168                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1169                         __set_bit(h->dev[i]->target, lun_taken);
1170         }
1171
1172         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1173         if (i < HPSA_MAX_DEVICES) {
1174                 /* *bus = 1; */
1175                 *target = i;
1176                 *lun = 0;
1177                 found = 1;
1178         }
1179         return !found;
1180 }
1181
1182 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1183         struct hpsa_scsi_dev_t *dev, char *description)
1184 {
1185 #define LABEL_SIZE 25
1186         char label[LABEL_SIZE];
1187
1188         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1189                 return;
1190
1191         switch (dev->devtype) {
1192         case TYPE_RAID:
1193                 snprintf(label, LABEL_SIZE, "controller");
1194                 break;
1195         case TYPE_ENCLOSURE:
1196                 snprintf(label, LABEL_SIZE, "enclosure");
1197                 break;
1198         case TYPE_DISK:
1199         case TYPE_ZBC:
1200                 if (dev->external)
1201                         snprintf(label, LABEL_SIZE, "external");
1202                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1203                         snprintf(label, LABEL_SIZE, "%s",
1204                                 raid_label[PHYSICAL_DRIVE]);
1205                 else
1206                         snprintf(label, LABEL_SIZE, "RAID-%s",
1207                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1208                                 raid_label[dev->raid_level]);
1209                 break;
1210         case TYPE_ROM:
1211                 snprintf(label, LABEL_SIZE, "rom");
1212                 break;
1213         case TYPE_TAPE:
1214                 snprintf(label, LABEL_SIZE, "tape");
1215                 break;
1216         case TYPE_MEDIUM_CHANGER:
1217                 snprintf(label, LABEL_SIZE, "changer");
1218                 break;
1219         default:
1220                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1221                 break;
1222         }
1223
1224         dev_printk(level, &h->pdev->dev,
1225                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1226                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1227                         description,
1228                         scsi_device_type(dev->devtype),
1229                         dev->vendor,
1230                         dev->model,
1231                         label,
1232                         dev->offload_config ? '+' : '-',
1233                         dev->offload_enabled ? '+' : '-',
1234                         dev->expose_device);
1235 }
1236
1237 /* Add an entry into h->dev[] array. */
1238 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1239                 struct hpsa_scsi_dev_t *device,
1240                 struct hpsa_scsi_dev_t *added[], int *nadded)
1241 {
1242         /* assumes h->devlock is held */
1243         int n = h->ndevices;
1244         int i;
1245         unsigned char addr1[8], addr2[8];
1246         struct hpsa_scsi_dev_t *sd;
1247
1248         if (n >= HPSA_MAX_DEVICES) {
1249                 dev_err(&h->pdev->dev, "too many devices, some will be "
1250                         "inaccessible.\n");
1251                 return -1;
1252         }
1253
1254         /* physical devices do not have lun or target assigned until now. */
1255         if (device->lun != -1)
1256                 /* Logical device, lun is already assigned. */
1257                 goto lun_assigned;
1258
1259         /* If this device a non-zero lun of a multi-lun device
1260          * byte 4 of the 8-byte LUN addr will contain the logical
1261          * unit no, zero otherwise.
1262          */
1263         if (device->scsi3addr[4] == 0) {
1264                 /* This is not a non-zero lun of a multi-lun device */
1265                 if (hpsa_find_target_lun(h, device->scsi3addr,
1266                         device->bus, &device->target, &device->lun) != 0)
1267                         return -1;
1268                 goto lun_assigned;
1269         }
1270
1271         /* This is a non-zero lun of a multi-lun device.
1272          * Search through our list and find the device which
1273          * has the same 8 byte LUN address, excepting byte 4 and 5.
1274          * Assign the same bus and target for this new LUN.
1275          * Use the logical unit number from the firmware.
1276          */
1277         memcpy(addr1, device->scsi3addr, 8);
1278         addr1[4] = 0;
1279         addr1[5] = 0;
1280         for (i = 0; i < n; i++) {
1281                 sd = h->dev[i];
1282                 memcpy(addr2, sd->scsi3addr, 8);
1283                 addr2[4] = 0;
1284                 addr2[5] = 0;
1285                 /* differ only in byte 4 and 5? */
1286                 if (memcmp(addr1, addr2, 8) == 0) {
1287                         device->bus = sd->bus;
1288                         device->target = sd->target;
1289                         device->lun = device->scsi3addr[4];
1290                         break;
1291                 }
1292         }
1293         if (device->lun == -1) {
1294                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1295                         " suspect firmware bug or unsupported hardware "
1296                         "configuration.\n");
1297                         return -1;
1298         }
1299
1300 lun_assigned:
1301
1302         h->dev[n] = device;
1303         h->ndevices++;
1304         added[*nadded] = device;
1305         (*nadded)++;
1306         hpsa_show_dev_msg(KERN_INFO, h, device,
1307                 device->expose_device ? "added" : "masked");
1308         device->offload_to_be_enabled = device->offload_enabled;
1309         device->offload_enabled = 0;
1310         return 0;
1311 }
1312
1313 /* Update an entry in h->dev[] array. */
1314 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1315         int entry, struct hpsa_scsi_dev_t *new_entry)
1316 {
1317         int offload_enabled;
1318         /* assumes h->devlock is held */
1319         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1320
1321         /* Raid level changed. */
1322         h->dev[entry]->raid_level = new_entry->raid_level;
1323
1324         /* Raid offload parameters changed.  Careful about the ordering. */
1325         if (new_entry->offload_config && new_entry->offload_enabled) {
1326                 /*
1327                  * if drive is newly offload_enabled, we want to copy the
1328                  * raid map data first.  If previously offload_enabled and
1329                  * offload_config were set, raid map data had better be
1330                  * the same as it was before.  if raid map data is changed
1331                  * then it had better be the case that
1332                  * h->dev[entry]->offload_enabled is currently 0.
1333                  */
1334                 h->dev[entry]->raid_map = new_entry->raid_map;
1335                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1336         }
1337         if (new_entry->hba_ioaccel_enabled) {
1338                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1339                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1340         }
1341         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1342         h->dev[entry]->offload_config = new_entry->offload_config;
1343         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1344         h->dev[entry]->queue_depth = new_entry->queue_depth;
1345
1346         /*
1347          * We can turn off ioaccel offload now, but need to delay turning
1348          * it on until we can update h->dev[entry]->phys_disk[], but we
1349          * can't do that until all the devices are updated.
1350          */
1351         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1352         if (!new_entry->offload_enabled)
1353                 h->dev[entry]->offload_enabled = 0;
1354
1355         offload_enabled = h->dev[entry]->offload_enabled;
1356         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1357         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1358         h->dev[entry]->offload_enabled = offload_enabled;
1359 }
1360
1361 /* Replace an entry from h->dev[] array. */
1362 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1363         int entry, struct hpsa_scsi_dev_t *new_entry,
1364         struct hpsa_scsi_dev_t *added[], int *nadded,
1365         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1366 {
1367         /* assumes h->devlock is held */
1368         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1369         removed[*nremoved] = h->dev[entry];
1370         (*nremoved)++;
1371
1372         /*
1373          * New physical devices won't have target/lun assigned yet
1374          * so we need to preserve the values in the slot we are replacing.
1375          */
1376         if (new_entry->target == -1) {
1377                 new_entry->target = h->dev[entry]->target;
1378                 new_entry->lun = h->dev[entry]->lun;
1379         }
1380
1381         h->dev[entry] = new_entry;
1382         added[*nadded] = new_entry;
1383         (*nadded)++;
1384         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1385         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1386         new_entry->offload_enabled = 0;
1387 }
1388
1389 /* Remove an entry from h->dev[] array. */
1390 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1391         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1392 {
1393         /* assumes h->devlock is held */
1394         int i;
1395         struct hpsa_scsi_dev_t *sd;
1396
1397         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1398
1399         sd = h->dev[entry];
1400         removed[*nremoved] = h->dev[entry];
1401         (*nremoved)++;
1402
1403         for (i = entry; i < h->ndevices-1; i++)
1404                 h->dev[i] = h->dev[i+1];
1405         h->ndevices--;
1406         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1407 }
1408
1409 #define SCSI3ADDR_EQ(a, b) ( \
1410         (a)[7] == (b)[7] && \
1411         (a)[6] == (b)[6] && \
1412         (a)[5] == (b)[5] && \
1413         (a)[4] == (b)[4] && \
1414         (a)[3] == (b)[3] && \
1415         (a)[2] == (b)[2] && \
1416         (a)[1] == (b)[1] && \
1417         (a)[0] == (b)[0])
1418
1419 static void fixup_botched_add(struct ctlr_info *h,
1420         struct hpsa_scsi_dev_t *added)
1421 {
1422         /* called when scsi_add_device fails in order to re-adjust
1423          * h->dev[] to match the mid layer's view.
1424          */
1425         unsigned long flags;
1426         int i, j;
1427
1428         spin_lock_irqsave(&h->lock, flags);
1429         for (i = 0; i < h->ndevices; i++) {
1430                 if (h->dev[i] == added) {
1431                         for (j = i; j < h->ndevices-1; j++)
1432                                 h->dev[j] = h->dev[j+1];
1433                         h->ndevices--;
1434                         break;
1435                 }
1436         }
1437         spin_unlock_irqrestore(&h->lock, flags);
1438         kfree(added);
1439 }
1440
1441 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1442         struct hpsa_scsi_dev_t *dev2)
1443 {
1444         /* we compare everything except lun and target as these
1445          * are not yet assigned.  Compare parts likely
1446          * to differ first
1447          */
1448         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1449                 sizeof(dev1->scsi3addr)) != 0)
1450                 return 0;
1451         if (memcmp(dev1->device_id, dev2->device_id,
1452                 sizeof(dev1->device_id)) != 0)
1453                 return 0;
1454         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1455                 return 0;
1456         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1457                 return 0;
1458         if (dev1->devtype != dev2->devtype)
1459                 return 0;
1460         if (dev1->bus != dev2->bus)
1461                 return 0;
1462         return 1;
1463 }
1464
1465 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1466         struct hpsa_scsi_dev_t *dev2)
1467 {
1468         /* Device attributes that can change, but don't mean
1469          * that the device is a different device, nor that the OS
1470          * needs to be told anything about the change.
1471          */
1472         if (dev1->raid_level != dev2->raid_level)
1473                 return 1;
1474         if (dev1->offload_config != dev2->offload_config)
1475                 return 1;
1476         if (dev1->offload_enabled != dev2->offload_enabled)
1477                 return 1;
1478         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1479                 if (dev1->queue_depth != dev2->queue_depth)
1480                         return 1;
1481         return 0;
1482 }
1483
1484 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1485  * and return needle location in *index.  If scsi3addr matches, but not
1486  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1487  * location in *index.
1488  * In the case of a minor device attribute change, such as RAID level, just
1489  * return DEVICE_UPDATED, along with the updated device's location in index.
1490  * If needle not found, return DEVICE_NOT_FOUND.
1491  */
1492 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1493         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1494         int *index)
1495 {
1496         int i;
1497 #define DEVICE_NOT_FOUND 0
1498 #define DEVICE_CHANGED 1
1499 #define DEVICE_SAME 2
1500 #define DEVICE_UPDATED 3
1501         if (needle == NULL)
1502                 return DEVICE_NOT_FOUND;
1503
1504         for (i = 0; i < haystack_size; i++) {
1505                 if (haystack[i] == NULL) /* previously removed. */
1506                         continue;
1507                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1508                         *index = i;
1509                         if (device_is_the_same(needle, haystack[i])) {
1510                                 if (device_updated(needle, haystack[i]))
1511                                         return DEVICE_UPDATED;
1512                                 return DEVICE_SAME;
1513                         } else {
1514                                 /* Keep offline devices offline */
1515                                 if (needle->volume_offline)
1516                                         return DEVICE_NOT_FOUND;
1517                                 return DEVICE_CHANGED;
1518                         }
1519                 }
1520         }
1521         *index = -1;
1522         return DEVICE_NOT_FOUND;
1523 }
1524
1525 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1526                                         unsigned char scsi3addr[])
1527 {
1528         struct offline_device_entry *device;
1529         unsigned long flags;
1530
1531         /* Check to see if device is already on the list */
1532         spin_lock_irqsave(&h->offline_device_lock, flags);
1533         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1534                 if (memcmp(device->scsi3addr, scsi3addr,
1535                         sizeof(device->scsi3addr)) == 0) {
1536                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1537                         return;
1538                 }
1539         }
1540         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1541
1542         /* Device is not on the list, add it. */
1543         device = kmalloc(sizeof(*device), GFP_KERNEL);
1544         if (!device) {
1545                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1546                 return;
1547         }
1548         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1549         spin_lock_irqsave(&h->offline_device_lock, flags);
1550         list_add_tail(&device->offline_list, &h->offline_device_list);
1551         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1552 }
1553
1554 /* Print a message explaining various offline volume states */
1555 static void hpsa_show_volume_status(struct ctlr_info *h,
1556         struct hpsa_scsi_dev_t *sd)
1557 {
1558         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1559                 dev_info(&h->pdev->dev,
1560                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1561                         h->scsi_host->host_no,
1562                         sd->bus, sd->target, sd->lun);
1563         switch (sd->volume_offline) {
1564         case HPSA_LV_OK:
1565                 break;
1566         case HPSA_LV_UNDERGOING_ERASE:
1567                 dev_info(&h->pdev->dev,
1568                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1569                         h->scsi_host->host_no,
1570                         sd->bus, sd->target, sd->lun);
1571                 break;
1572         case HPSA_LV_NOT_AVAILABLE:
1573                 dev_info(&h->pdev->dev,
1574                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1575                         h->scsi_host->host_no,
1576                         sd->bus, sd->target, sd->lun);
1577                 break;
1578         case HPSA_LV_UNDERGOING_RPI:
1579                 dev_info(&h->pdev->dev,
1580                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1581                         h->scsi_host->host_no,
1582                         sd->bus, sd->target, sd->lun);
1583                 break;
1584         case HPSA_LV_PENDING_RPI:
1585                 dev_info(&h->pdev->dev,
1586                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1587                         h->scsi_host->host_no,
1588                         sd->bus, sd->target, sd->lun);
1589                 break;
1590         case HPSA_LV_ENCRYPTED_NO_KEY:
1591                 dev_info(&h->pdev->dev,
1592                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1593                         h->scsi_host->host_no,
1594                         sd->bus, sd->target, sd->lun);
1595                 break;
1596         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1597                 dev_info(&h->pdev->dev,
1598                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1599                         h->scsi_host->host_no,
1600                         sd->bus, sd->target, sd->lun);
1601                 break;
1602         case HPSA_LV_UNDERGOING_ENCRYPTION:
1603                 dev_info(&h->pdev->dev,
1604                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1605                         h->scsi_host->host_no,
1606                         sd->bus, sd->target, sd->lun);
1607                 break;
1608         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1609                 dev_info(&h->pdev->dev,
1610                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1611                         h->scsi_host->host_no,
1612                         sd->bus, sd->target, sd->lun);
1613                 break;
1614         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1615                 dev_info(&h->pdev->dev,
1616                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1617                         h->scsi_host->host_no,
1618                         sd->bus, sd->target, sd->lun);
1619                 break;
1620         case HPSA_LV_PENDING_ENCRYPTION:
1621                 dev_info(&h->pdev->dev,
1622                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1623                         h->scsi_host->host_no,
1624                         sd->bus, sd->target, sd->lun);
1625                 break;
1626         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1627                 dev_info(&h->pdev->dev,
1628                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1629                         h->scsi_host->host_no,
1630                         sd->bus, sd->target, sd->lun);
1631                 break;
1632         }
1633 }
1634
1635 /*
1636  * Figure the list of physical drive pointers for a logical drive with
1637  * raid offload configured.
1638  */
1639 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1640                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1641                                 struct hpsa_scsi_dev_t *logical_drive)
1642 {
1643         struct raid_map_data *map = &logical_drive->raid_map;
1644         struct raid_map_disk_data *dd = &map->data[0];
1645         int i, j;
1646         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1647                                 le16_to_cpu(map->metadata_disks_per_row);
1648         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1649                                 le16_to_cpu(map->layout_map_count) *
1650                                 total_disks_per_row;
1651         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1652                                 total_disks_per_row;
1653         int qdepth;
1654
1655         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1656                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1657
1658         logical_drive->nphysical_disks = nraid_map_entries;
1659
1660         qdepth = 0;
1661         for (i = 0; i < nraid_map_entries; i++) {
1662                 logical_drive->phys_disk[i] = NULL;
1663                 if (!logical_drive->offload_config)
1664                         continue;
1665                 for (j = 0; j < ndevices; j++) {
1666                         if (dev[j] == NULL)
1667                                 continue;
1668                         if (dev[j]->devtype != TYPE_DISK &&
1669                             dev[j]->devtype != TYPE_ZBC)
1670                                 continue;
1671                         if (is_logical_device(dev[j]))
1672                                 continue;
1673                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1674                                 continue;
1675
1676                         logical_drive->phys_disk[i] = dev[j];
1677                         if (i < nphys_disk)
1678                                 qdepth = min(h->nr_cmds, qdepth +
1679                                     logical_drive->phys_disk[i]->queue_depth);
1680                         break;
1681                 }
1682
1683                 /*
1684                  * This can happen if a physical drive is removed and
1685                  * the logical drive is degraded.  In that case, the RAID
1686                  * map data will refer to a physical disk which isn't actually
1687                  * present.  And in that case offload_enabled should already
1688                  * be 0, but we'll turn it off here just in case
1689                  */
1690                 if (!logical_drive->phys_disk[i]) {
1691                         logical_drive->offload_enabled = 0;
1692                         logical_drive->offload_to_be_enabled = 0;
1693                         logical_drive->queue_depth = 8;
1694                 }
1695         }
1696         if (nraid_map_entries)
1697                 /*
1698                  * This is correct for reads, too high for full stripe writes,
1699                  * way too high for partial stripe writes
1700                  */
1701                 logical_drive->queue_depth = qdepth;
1702         else
1703                 logical_drive->queue_depth = h->nr_cmds;
1704 }
1705
1706 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1707                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1708 {
1709         int i;
1710
1711         for (i = 0; i < ndevices; i++) {
1712                 if (dev[i] == NULL)
1713                         continue;
1714                 if (dev[i]->devtype != TYPE_DISK &&
1715                     dev[i]->devtype != TYPE_ZBC)
1716                         continue;
1717                 if (!is_logical_device(dev[i]))
1718                         continue;
1719
1720                 /*
1721                  * If offload is currently enabled, the RAID map and
1722                  * phys_disk[] assignment *better* not be changing
1723                  * and since it isn't changing, we do not need to
1724                  * update it.
1725                  */
1726                 if (dev[i]->offload_enabled)
1727                         continue;
1728
1729                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1730         }
1731 }
1732
1733 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1734 {
1735         int rc = 0;
1736
1737         if (!h->scsi_host)
1738                 return 1;
1739
1740         if (is_logical_device(device)) /* RAID */
1741                 rc = scsi_add_device(h->scsi_host, device->bus,
1742                                         device->target, device->lun);
1743         else /* HBA */
1744                 rc = hpsa_add_sas_device(h->sas_host, device);
1745
1746         return rc;
1747 }
1748
1749 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1750                                                 struct hpsa_scsi_dev_t *dev)
1751 {
1752         int i;
1753         int count = 0;
1754
1755         for (i = 0; i < h->nr_cmds; i++) {
1756                 struct CommandList *c = h->cmd_pool + i;
1757                 int refcount = atomic_inc_return(&c->refcount);
1758
1759                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1760                                 dev->scsi3addr)) {
1761                         unsigned long flags;
1762
1763                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1764                         if (!hpsa_is_cmd_idle(c))
1765                                 ++count;
1766                         spin_unlock_irqrestore(&h->lock, flags);
1767                 }
1768
1769                 cmd_free(h, c);
1770         }
1771
1772         return count;
1773 }
1774
1775 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1776                                                 struct hpsa_scsi_dev_t *device)
1777 {
1778         int cmds = 0;
1779         int waits = 0;
1780
1781         while (1) {
1782                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1783                 if (cmds == 0)
1784                         break;
1785                 if (++waits > 20)
1786                         break;
1787                 dev_warn(&h->pdev->dev,
1788                         "%s: removing device with %d outstanding commands!\n",
1789                         __func__, cmds);
1790                 msleep(1000);
1791         }
1792 }
1793
1794 static void hpsa_remove_device(struct ctlr_info *h,
1795                         struct hpsa_scsi_dev_t *device)
1796 {
1797         struct scsi_device *sdev = NULL;
1798
1799         if (!h->scsi_host)
1800                 return;
1801
1802         if (is_logical_device(device)) { /* RAID */
1803                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1804                                                 device->target, device->lun);
1805                 if (sdev) {
1806                         scsi_remove_device(sdev);
1807                         scsi_device_put(sdev);
1808                 } else {
1809                         /*
1810                          * We don't expect to get here.  Future commands
1811                          * to this device will get a selection timeout as
1812                          * if the device were gone.
1813                          */
1814                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1815                                         "didn't find device for removal.");
1816                 }
1817         } else { /* HBA */
1818
1819                 device->removed = 1;
1820                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1821
1822                 hpsa_remove_sas_device(device);
1823         }
1824 }
1825
1826 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1827         struct hpsa_scsi_dev_t *sd[], int nsds)
1828 {
1829         /* sd contains scsi3 addresses and devtypes, and inquiry
1830          * data.  This function takes what's in sd to be the current
1831          * reality and updates h->dev[] to reflect that reality.
1832          */
1833         int i, entry, device_change, changes = 0;
1834         struct hpsa_scsi_dev_t *csd;
1835         unsigned long flags;
1836         struct hpsa_scsi_dev_t **added, **removed;
1837         int nadded, nremoved;
1838
1839         /*
1840          * A reset can cause a device status to change
1841          * re-schedule the scan to see what happened.
1842          */
1843         if (h->reset_in_progress) {
1844                 h->drv_req_rescan = 1;
1845                 return;
1846         }
1847
1848         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1849         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1850
1851         if (!added || !removed) {
1852                 dev_warn(&h->pdev->dev, "out of memory in "
1853                         "adjust_hpsa_scsi_table\n");
1854                 goto free_and_out;
1855         }
1856
1857         spin_lock_irqsave(&h->devlock, flags);
1858
1859         /* find any devices in h->dev[] that are not in
1860          * sd[] and remove them from h->dev[], and for any
1861          * devices which have changed, remove the old device
1862          * info and add the new device info.
1863          * If minor device attributes change, just update
1864          * the existing device structure.
1865          */
1866         i = 0;
1867         nremoved = 0;
1868         nadded = 0;
1869         while (i < h->ndevices) {
1870                 csd = h->dev[i];
1871                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1872                 if (device_change == DEVICE_NOT_FOUND) {
1873                         changes++;
1874                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1875                         continue; /* remove ^^^, hence i not incremented */
1876                 } else if (device_change == DEVICE_CHANGED) {
1877                         changes++;
1878                         hpsa_scsi_replace_entry(h, i, sd[entry],
1879                                 added, &nadded, removed, &nremoved);
1880                         /* Set it to NULL to prevent it from being freed
1881                          * at the bottom of hpsa_update_scsi_devices()
1882                          */
1883                         sd[entry] = NULL;
1884                 } else if (device_change == DEVICE_UPDATED) {
1885                         hpsa_scsi_update_entry(h, i, sd[entry]);
1886                 }
1887                 i++;
1888         }
1889
1890         /* Now, make sure every device listed in sd[] is also
1891          * listed in h->dev[], adding them if they aren't found
1892          */
1893
1894         for (i = 0; i < nsds; i++) {
1895                 if (!sd[i]) /* if already added above. */
1896                         continue;
1897
1898                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1899                  * as the SCSI mid-layer does not handle such devices well.
1900                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1901                  * at 160Hz, and prevents the system from coming up.
1902                  */
1903                 if (sd[i]->volume_offline) {
1904                         hpsa_show_volume_status(h, sd[i]);
1905                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1906                         continue;
1907                 }
1908
1909                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1910                                         h->ndevices, &entry);
1911                 if (device_change == DEVICE_NOT_FOUND) {
1912                         changes++;
1913                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1914                                 break;
1915                         sd[i] = NULL; /* prevent from being freed later. */
1916                 } else if (device_change == DEVICE_CHANGED) {
1917                         /* should never happen... */
1918                         changes++;
1919                         dev_warn(&h->pdev->dev,
1920                                 "device unexpectedly changed.\n");
1921                         /* but if it does happen, we just ignore that device */
1922                 }
1923         }
1924         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1925
1926         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1927          * any logical drives that need it enabled.
1928          */
1929         for (i = 0; i < h->ndevices; i++) {
1930                 if (h->dev[i] == NULL)
1931                         continue;
1932                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1933         }
1934
1935         spin_unlock_irqrestore(&h->devlock, flags);
1936
1937         /* Monitor devices which are in one of several NOT READY states to be
1938          * brought online later. This must be done without holding h->devlock,
1939          * so don't touch h->dev[]
1940          */
1941         for (i = 0; i < nsds; i++) {
1942                 if (!sd[i]) /* if already added above. */
1943                         continue;
1944                 if (sd[i]->volume_offline)
1945                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1946         }
1947
1948         /* Don't notify scsi mid layer of any changes the first time through
1949          * (or if there are no changes) scsi_scan_host will do it later the
1950          * first time through.
1951          */
1952         if (!changes)
1953                 goto free_and_out;
1954
1955         /* Notify scsi mid layer of any removed devices */
1956         for (i = 0; i < nremoved; i++) {
1957                 if (removed[i] == NULL)
1958                         continue;
1959                 if (removed[i]->expose_device)
1960                         hpsa_remove_device(h, removed[i]);
1961                 kfree(removed[i]);
1962                 removed[i] = NULL;
1963         }
1964
1965         /* Notify scsi mid layer of any added devices */
1966         for (i = 0; i < nadded; i++) {
1967                 int rc = 0;
1968
1969                 if (added[i] == NULL)
1970                         continue;
1971                 if (!(added[i]->expose_device))
1972                         continue;
1973                 rc = hpsa_add_device(h, added[i]);
1974                 if (!rc)
1975                         continue;
1976                 dev_warn(&h->pdev->dev,
1977                         "addition failed %d, device not added.", rc);
1978                 /* now we have to remove it from h->dev,
1979                  * since it didn't get added to scsi mid layer
1980                  */
1981                 fixup_botched_add(h, added[i]);
1982                 h->drv_req_rescan = 1;
1983         }
1984
1985 free_and_out:
1986         kfree(added);
1987         kfree(removed);
1988 }
1989
1990 /*
1991  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1992  * Assume's h->devlock is held.
1993  */
1994 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1995         int bus, int target, int lun)
1996 {
1997         int i;
1998         struct hpsa_scsi_dev_t *sd;
1999
2000         for (i = 0; i < h->ndevices; i++) {
2001                 sd = h->dev[i];
2002                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2003                         return sd;
2004         }
2005         return NULL;
2006 }
2007
2008 static int hpsa_slave_alloc(struct scsi_device *sdev)
2009 {
2010         struct hpsa_scsi_dev_t *sd;
2011         unsigned long flags;
2012         struct ctlr_info *h;
2013
2014         h = sdev_to_hba(sdev);
2015         spin_lock_irqsave(&h->devlock, flags);
2016         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2017                 struct scsi_target *starget;
2018                 struct sas_rphy *rphy;
2019
2020                 starget = scsi_target(sdev);
2021                 rphy = target_to_rphy(starget);
2022                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2023                 if (sd) {
2024                         sd->target = sdev_id(sdev);
2025                         sd->lun = sdev->lun;
2026                 }
2027         } else
2028                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2029                                         sdev_id(sdev), sdev->lun);
2030
2031         if (sd && sd->expose_device) {
2032                 atomic_set(&sd->ioaccel_cmds_out, 0);
2033                 sdev->hostdata = sd;
2034         } else
2035                 sdev->hostdata = NULL;
2036         spin_unlock_irqrestore(&h->devlock, flags);
2037         return 0;
2038 }
2039
2040 /* configure scsi device based on internal per-device structure */
2041 static int hpsa_slave_configure(struct scsi_device *sdev)
2042 {
2043         struct hpsa_scsi_dev_t *sd;
2044         int queue_depth;
2045
2046         sd = sdev->hostdata;
2047         sdev->no_uld_attach = !sd || !sd->expose_device;
2048
2049         if (sd)
2050                 queue_depth = sd->queue_depth != 0 ?
2051                         sd->queue_depth : sdev->host->can_queue;
2052         else
2053                 queue_depth = sdev->host->can_queue;
2054
2055         scsi_change_queue_depth(sdev, queue_depth);
2056
2057         return 0;
2058 }
2059
2060 static void hpsa_slave_destroy(struct scsi_device *sdev)
2061 {
2062         /* nothing to do. */
2063 }
2064
2065 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2066 {
2067         int i;
2068
2069         if (!h->ioaccel2_cmd_sg_list)
2070                 return;
2071         for (i = 0; i < h->nr_cmds; i++) {
2072                 kfree(h->ioaccel2_cmd_sg_list[i]);
2073                 h->ioaccel2_cmd_sg_list[i] = NULL;
2074         }
2075         kfree(h->ioaccel2_cmd_sg_list);
2076         h->ioaccel2_cmd_sg_list = NULL;
2077 }
2078
2079 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2080 {
2081         int i;
2082
2083         if (h->chainsize <= 0)
2084                 return 0;
2085
2086         h->ioaccel2_cmd_sg_list =
2087                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2088                                         GFP_KERNEL);
2089         if (!h->ioaccel2_cmd_sg_list)
2090                 return -ENOMEM;
2091         for (i = 0; i < h->nr_cmds; i++) {
2092                 h->ioaccel2_cmd_sg_list[i] =
2093                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2094                                         h->maxsgentries, GFP_KERNEL);
2095                 if (!h->ioaccel2_cmd_sg_list[i])
2096                         goto clean;
2097         }
2098         return 0;
2099
2100 clean:
2101         hpsa_free_ioaccel2_sg_chain_blocks(h);
2102         return -ENOMEM;
2103 }
2104
2105 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2106 {
2107         int i;
2108
2109         if (!h->cmd_sg_list)
2110                 return;
2111         for (i = 0; i < h->nr_cmds; i++) {
2112                 kfree(h->cmd_sg_list[i]);
2113                 h->cmd_sg_list[i] = NULL;
2114         }
2115         kfree(h->cmd_sg_list);
2116         h->cmd_sg_list = NULL;
2117 }
2118
2119 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2120 {
2121         int i;
2122
2123         if (h->chainsize <= 0)
2124                 return 0;
2125
2126         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2127                                 GFP_KERNEL);
2128         if (!h->cmd_sg_list) {
2129                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2130                 return -ENOMEM;
2131         }
2132         for (i = 0; i < h->nr_cmds; i++) {
2133                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2134                                                 h->chainsize, GFP_KERNEL);
2135                 if (!h->cmd_sg_list[i]) {
2136                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2137                         goto clean;
2138                 }
2139         }
2140         return 0;
2141
2142 clean:
2143         hpsa_free_sg_chain_blocks(h);
2144         return -ENOMEM;
2145 }
2146
2147 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2148         struct io_accel2_cmd *cp, struct CommandList *c)
2149 {
2150         struct ioaccel2_sg_element *chain_block;
2151         u64 temp64;
2152         u32 chain_size;
2153
2154         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2155         chain_size = le32_to_cpu(cp->sg[0].length);
2156         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2157                                 PCI_DMA_TODEVICE);
2158         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2159                 /* prevent subsequent unmapping */
2160                 cp->sg->address = 0;
2161                 return -1;
2162         }
2163         cp->sg->address = cpu_to_le64(temp64);
2164         return 0;
2165 }
2166
2167 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2168         struct io_accel2_cmd *cp)
2169 {
2170         struct ioaccel2_sg_element *chain_sg;
2171         u64 temp64;
2172         u32 chain_size;
2173
2174         chain_sg = cp->sg;
2175         temp64 = le64_to_cpu(chain_sg->address);
2176         chain_size = le32_to_cpu(cp->sg[0].length);
2177         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2178 }
2179
2180 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2181         struct CommandList *c)
2182 {
2183         struct SGDescriptor *chain_sg, *chain_block;
2184         u64 temp64;
2185         u32 chain_len;
2186
2187         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2188         chain_block = h->cmd_sg_list[c->cmdindex];
2189         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2190         chain_len = sizeof(*chain_sg) *
2191                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2192         chain_sg->Len = cpu_to_le32(chain_len);
2193         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2194                                 PCI_DMA_TODEVICE);
2195         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2196                 /* prevent subsequent unmapping */
2197                 chain_sg->Addr = cpu_to_le64(0);
2198                 return -1;
2199         }
2200         chain_sg->Addr = cpu_to_le64(temp64);
2201         return 0;
2202 }
2203
2204 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2205         struct CommandList *c)
2206 {
2207         struct SGDescriptor *chain_sg;
2208
2209         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2210                 return;
2211
2212         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2213         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2214                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2215 }
2216
2217
2218 /* Decode the various types of errors on ioaccel2 path.
2219  * Return 1 for any error that should generate a RAID path retry.
2220  * Return 0 for errors that don't require a RAID path retry.
2221  */
2222 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2223                                         struct CommandList *c,
2224                                         struct scsi_cmnd *cmd,
2225                                         struct io_accel2_cmd *c2,
2226                                         struct hpsa_scsi_dev_t *dev)
2227 {
2228         int data_len;
2229         int retry = 0;
2230         u32 ioaccel2_resid = 0;
2231
2232         switch (c2->error_data.serv_response) {
2233         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2234                 switch (c2->error_data.status) {
2235                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2236                         break;
2237                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2238                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2239                         if (c2->error_data.data_present !=
2240                                         IOACCEL2_SENSE_DATA_PRESENT) {
2241                                 memset(cmd->sense_buffer, 0,
2242                                         SCSI_SENSE_BUFFERSIZE);
2243                                 break;
2244                         }
2245                         /* copy the sense data */
2246                         data_len = c2->error_data.sense_data_len;
2247                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2248                                 data_len = SCSI_SENSE_BUFFERSIZE;
2249                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2250                                 data_len =
2251                                         sizeof(c2->error_data.sense_data_buff);
2252                         memcpy(cmd->sense_buffer,
2253                                 c2->error_data.sense_data_buff, data_len);
2254                         retry = 1;
2255                         break;
2256                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2257                         retry = 1;
2258                         break;
2259                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2260                         retry = 1;
2261                         break;
2262                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2263                         retry = 1;
2264                         break;
2265                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2266                         retry = 1;
2267                         break;
2268                 default:
2269                         retry = 1;
2270                         break;
2271                 }
2272                 break;
2273         case IOACCEL2_SERV_RESPONSE_FAILURE:
2274                 switch (c2->error_data.status) {
2275                 case IOACCEL2_STATUS_SR_IO_ERROR:
2276                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2277                 case IOACCEL2_STATUS_SR_OVERRUN:
2278                         retry = 1;
2279                         break;
2280                 case IOACCEL2_STATUS_SR_UNDERRUN:
2281                         cmd->result = (DID_OK << 16);           /* host byte */
2282                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2283                         ioaccel2_resid = get_unaligned_le32(
2284                                                 &c2->error_data.resid_cnt[0]);
2285                         scsi_set_resid(cmd, ioaccel2_resid);
2286                         break;
2287                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2288                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2289                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2290                         /*
2291                          * Did an HBA disk disappear? We will eventually
2292                          * get a state change event from the controller but
2293                          * in the meantime, we need to tell the OS that the
2294                          * HBA disk is no longer there and stop I/O
2295                          * from going down. This allows the potential re-insert
2296                          * of the disk to get the same device node.
2297                          */
2298                         if (dev->physical_device && dev->expose_device) {
2299                                 cmd->result = DID_NO_CONNECT << 16;
2300                                 dev->removed = 1;
2301                                 h->drv_req_rescan = 1;
2302                                 dev_warn(&h->pdev->dev,
2303                                         "%s: device is gone!\n", __func__);
2304                         } else
2305                                 /*
2306                                  * Retry by sending down the RAID path.
2307                                  * We will get an event from ctlr to
2308                                  * trigger rescan regardless.
2309                                  */
2310                                 retry = 1;
2311                         break;
2312                 default:
2313                         retry = 1;
2314                 }
2315                 break;
2316         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2317                 break;
2318         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2319                 break;
2320         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2321                 retry = 1;
2322                 break;
2323         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2324                 break;
2325         default:
2326                 retry = 1;
2327                 break;
2328         }
2329
2330         return retry;   /* retry on raid path? */
2331 }
2332
2333 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2334                 struct CommandList *c)
2335 {
2336         bool do_wake = false;
2337
2338         /*
2339          * Prevent the following race in the abort handler:
2340          *
2341          * 1. LLD is requested to abort a SCSI command
2342          * 2. The SCSI command completes
2343          * 3. The struct CommandList associated with step 2 is made available
2344          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2345          * 5. Abort handler follows scsi_cmnd->host_scribble and
2346          *    finds struct CommandList and tries to aborts it
2347          * Now we have aborted the wrong command.
2348          *
2349          * Reset c->scsi_cmd here so that the abort or reset handler will know
2350          * this command has completed.  Then, check to see if the handler is
2351          * waiting for this command, and, if so, wake it.
2352          */
2353         c->scsi_cmd = SCSI_CMD_IDLE;
2354         mb();   /* Declare command idle before checking for pending events. */
2355         if (c->abort_pending) {
2356                 do_wake = true;
2357                 c->abort_pending = false;
2358         }
2359         if (c->reset_pending) {
2360                 unsigned long flags;
2361                 struct hpsa_scsi_dev_t *dev;
2362
2363                 /*
2364                  * There appears to be a reset pending; lock the lock and
2365                  * reconfirm.  If so, then decrement the count of outstanding
2366                  * commands and wake the reset command if this is the last one.
2367                  */
2368                 spin_lock_irqsave(&h->lock, flags);
2369                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2370                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2371                         do_wake = true;
2372                 c->reset_pending = NULL;
2373                 spin_unlock_irqrestore(&h->lock, flags);
2374         }
2375
2376         if (do_wake)
2377                 wake_up_all(&h->event_sync_wait_queue);
2378 }
2379
2380 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2381                                       struct CommandList *c)
2382 {
2383         hpsa_cmd_resolve_events(h, c);
2384         cmd_tagged_free(h, c);
2385 }
2386
2387 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2388                 struct CommandList *c, struct scsi_cmnd *cmd)
2389 {
2390         hpsa_cmd_resolve_and_free(h, c);
2391         if (cmd && cmd->scsi_done)
2392                 cmd->scsi_done(cmd);
2393 }
2394
2395 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2396 {
2397         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2398         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2399 }
2400
2401 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2402 {
2403         cmd->result = DID_ABORT << 16;
2404 }
2405
2406 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2407                                     struct scsi_cmnd *cmd)
2408 {
2409         hpsa_set_scsi_cmd_aborted(cmd);
2410         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2411                          c->Request.CDB, c->err_info->ScsiStatus);
2412         hpsa_cmd_resolve_and_free(h, c);
2413 }
2414
2415 static void process_ioaccel2_completion(struct ctlr_info *h,
2416                 struct CommandList *c, struct scsi_cmnd *cmd,
2417                 struct hpsa_scsi_dev_t *dev)
2418 {
2419         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2420
2421         /* check for good status */
2422         if (likely(c2->error_data.serv_response == 0 &&
2423                         c2->error_data.status == 0))
2424                 return hpsa_cmd_free_and_done(h, c, cmd);
2425
2426         /*
2427          * Any RAID offload error results in retry which will use
2428          * the normal I/O path so the controller can handle whatever's
2429          * wrong.
2430          */
2431         if (is_logical_device(dev) &&
2432                 c2->error_data.serv_response ==
2433                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2434                 if (c2->error_data.status ==
2435                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2436                         dev->offload_enabled = 0;
2437                         dev->offload_to_be_enabled = 0;
2438                 }
2439
2440                 return hpsa_retry_cmd(h, c);
2441         }
2442
2443         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2444                 return hpsa_retry_cmd(h, c);
2445
2446         return hpsa_cmd_free_and_done(h, c, cmd);
2447 }
2448
2449 /* Returns 0 on success, < 0 otherwise. */
2450 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2451                                         struct CommandList *cp)
2452 {
2453         u8 tmf_status = cp->err_info->ScsiStatus;
2454
2455         switch (tmf_status) {
2456         case CISS_TMF_COMPLETE:
2457                 /*
2458                  * CISS_TMF_COMPLETE never happens, instead,
2459                  * ei->CommandStatus == 0 for this case.
2460                  */
2461         case CISS_TMF_SUCCESS:
2462                 return 0;
2463         case CISS_TMF_INVALID_FRAME:
2464         case CISS_TMF_NOT_SUPPORTED:
2465         case CISS_TMF_FAILED:
2466         case CISS_TMF_WRONG_LUN:
2467         case CISS_TMF_OVERLAPPED_TAG:
2468                 break;
2469         default:
2470                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2471                                 tmf_status);
2472                 break;
2473         }
2474         return -tmf_status;
2475 }
2476
2477 static void complete_scsi_command(struct CommandList *cp)
2478 {
2479         struct scsi_cmnd *cmd;
2480         struct ctlr_info *h;
2481         struct ErrorInfo *ei;
2482         struct hpsa_scsi_dev_t *dev;
2483         struct io_accel2_cmd *c2;
2484
2485         u8 sense_key;
2486         u8 asc;      /* additional sense code */
2487         u8 ascq;     /* additional sense code qualifier */
2488         unsigned long sense_data_size;
2489
2490         ei = cp->err_info;
2491         cmd = cp->scsi_cmd;
2492         h = cp->h;
2493
2494         if (!cmd->device) {
2495                 cmd->result = DID_NO_CONNECT << 16;
2496                 return hpsa_cmd_free_and_done(h, cp, cmd);
2497         }
2498
2499         dev = cmd->device->hostdata;
2500         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2501
2502         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2503         if ((cp->cmd_type == CMD_SCSI) &&
2504                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2505                 hpsa_unmap_sg_chain_block(h, cp);
2506
2507         if ((cp->cmd_type == CMD_IOACCEL2) &&
2508                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2509                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2510
2511         cmd->result = (DID_OK << 16);           /* host byte */
2512         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2513
2514         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2515                 if (dev->physical_device && dev->expose_device &&
2516                         dev->removed) {
2517                         cmd->result = DID_NO_CONNECT << 16;
2518                         return hpsa_cmd_free_and_done(h, cp, cmd);
2519                 }
2520                 if (likely(cp->phys_disk != NULL))
2521                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2522         }
2523
2524         /*
2525          * We check for lockup status here as it may be set for
2526          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2527          * fail_all_oustanding_cmds()
2528          */
2529         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2530                 /* DID_NO_CONNECT will prevent a retry */
2531                 cmd->result = DID_NO_CONNECT << 16;
2532                 return hpsa_cmd_free_and_done(h, cp, cmd);
2533         }
2534
2535         if ((unlikely(hpsa_is_pending_event(cp)))) {
2536                 if (cp->reset_pending)
2537                         return hpsa_cmd_resolve_and_free(h, cp);
2538                 if (cp->abort_pending)
2539                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2540         }
2541
2542         if (cp->cmd_type == CMD_IOACCEL2)
2543                 return process_ioaccel2_completion(h, cp, cmd, dev);
2544
2545         scsi_set_resid(cmd, ei->ResidualCnt);
2546         if (ei->CommandStatus == 0)
2547                 return hpsa_cmd_free_and_done(h, cp, cmd);
2548
2549         /* For I/O accelerator commands, copy over some fields to the normal
2550          * CISS header used below for error handling.
2551          */
2552         if (cp->cmd_type == CMD_IOACCEL1) {
2553                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2554                 cp->Header.SGList = scsi_sg_count(cmd);
2555                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2556                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2557                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2558                 cp->Header.tag = c->tag;
2559                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2560                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2561
2562                 /* Any RAID offload error results in retry which will use
2563                  * the normal I/O path so the controller can handle whatever's
2564                  * wrong.
2565                  */
2566                 if (is_logical_device(dev)) {
2567                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2568                                 dev->offload_enabled = 0;
2569                         return hpsa_retry_cmd(h, cp);
2570                 }
2571         }
2572
2573         /* an error has occurred */
2574         switch (ei->CommandStatus) {
2575
2576         case CMD_TARGET_STATUS:
2577                 cmd->result |= ei->ScsiStatus;
2578                 /* copy the sense data */
2579                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2580                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2581                 else
2582                         sense_data_size = sizeof(ei->SenseInfo);
2583                 if (ei->SenseLen < sense_data_size)
2584                         sense_data_size = ei->SenseLen;
2585                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2586                 if (ei->ScsiStatus)
2587                         decode_sense_data(ei->SenseInfo, sense_data_size,
2588                                 &sense_key, &asc, &ascq);
2589                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2590                         if (sense_key == ABORTED_COMMAND) {
2591                                 cmd->result |= DID_SOFT_ERROR << 16;
2592                                 break;
2593                         }
2594                         break;
2595                 }
2596                 /* Problem was not a check condition
2597                  * Pass it up to the upper layers...
2598                  */
2599                 if (ei->ScsiStatus) {
2600                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2601                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2602                                 "Returning result: 0x%x\n",
2603                                 cp, ei->ScsiStatus,
2604                                 sense_key, asc, ascq,
2605                                 cmd->result);
2606                 } else {  /* scsi status is zero??? How??? */
2607                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2608                                 "Returning no connection.\n", cp),
2609
2610                         /* Ordinarily, this case should never happen,
2611                          * but there is a bug in some released firmware
2612                          * revisions that allows it to happen if, for
2613                          * example, a 4100 backplane loses power and
2614                          * the tape drive is in it.  We assume that
2615                          * it's a fatal error of some kind because we
2616                          * can't show that it wasn't. We will make it
2617                          * look like selection timeout since that is
2618                          * the most common reason for this to occur,
2619                          * and it's severe enough.
2620                          */
2621
2622                         cmd->result = DID_NO_CONNECT << 16;
2623                 }
2624                 break;
2625
2626         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2627                 break;
2628         case CMD_DATA_OVERRUN:
2629                 dev_warn(&h->pdev->dev,
2630                         "CDB %16phN data overrun\n", cp->Request.CDB);
2631                 break;
2632         case CMD_INVALID: {
2633                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2634                 print_cmd(cp); */
2635                 /* We get CMD_INVALID if you address a non-existent device
2636                  * instead of a selection timeout (no response).  You will
2637                  * see this if you yank out a drive, then try to access it.
2638                  * This is kind of a shame because it means that any other
2639                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2640                  * missing target. */
2641                 cmd->result = DID_NO_CONNECT << 16;
2642         }
2643                 break;
2644         case CMD_PROTOCOL_ERR:
2645                 cmd->result = DID_ERROR << 16;
2646                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2647                                 cp->Request.CDB);
2648                 break;
2649         case CMD_HARDWARE_ERR:
2650                 cmd->result = DID_ERROR << 16;
2651                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2652                         cp->Request.CDB);
2653                 break;
2654         case CMD_CONNECTION_LOST:
2655                 cmd->result = DID_ERROR << 16;
2656                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2657                         cp->Request.CDB);
2658                 break;
2659         case CMD_ABORTED:
2660                 /* Return now to avoid calling scsi_done(). */
2661                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2662         case CMD_ABORT_FAILED:
2663                 cmd->result = DID_ERROR << 16;
2664                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2665                         cp->Request.CDB);
2666                 break;
2667         case CMD_UNSOLICITED_ABORT:
2668                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2669                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2670                         cp->Request.CDB);
2671                 break;
2672         case CMD_TIMEOUT:
2673                 cmd->result = DID_TIME_OUT << 16;
2674                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2675                         cp->Request.CDB);
2676                 break;
2677         case CMD_UNABORTABLE:
2678                 cmd->result = DID_ERROR << 16;
2679                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2680                 break;
2681         case CMD_TMF_STATUS:
2682                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2683                         cmd->result = DID_ERROR << 16;
2684                 break;
2685         case CMD_IOACCEL_DISABLED:
2686                 /* This only handles the direct pass-through case since RAID
2687                  * offload is handled above.  Just attempt a retry.
2688                  */
2689                 cmd->result = DID_SOFT_ERROR << 16;
2690                 dev_warn(&h->pdev->dev,
2691                                 "cp %p had HP SSD Smart Path error\n", cp);
2692                 break;
2693         default:
2694                 cmd->result = DID_ERROR << 16;
2695                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2696                                 cp, ei->CommandStatus);
2697         }
2698
2699         return hpsa_cmd_free_and_done(h, cp, cmd);
2700 }
2701
2702 static void hpsa_pci_unmap(struct pci_dev *pdev,
2703         struct CommandList *c, int sg_used, int data_direction)
2704 {
2705         int i;
2706
2707         for (i = 0; i < sg_used; i++)
2708                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2709                                 le32_to_cpu(c->SG[i].Len),
2710                                 data_direction);
2711 }
2712
2713 static int hpsa_map_one(struct pci_dev *pdev,
2714                 struct CommandList *cp,
2715                 unsigned char *buf,
2716                 size_t buflen,
2717                 int data_direction)
2718 {
2719         u64 addr64;
2720
2721         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2722                 cp->Header.SGList = 0;
2723                 cp->Header.SGTotal = cpu_to_le16(0);
2724                 return 0;
2725         }
2726
2727         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2728         if (dma_mapping_error(&pdev->dev, addr64)) {
2729                 /* Prevent subsequent unmap of something never mapped */
2730                 cp->Header.SGList = 0;
2731                 cp->Header.SGTotal = cpu_to_le16(0);
2732                 return -1;
2733         }
2734         cp->SG[0].Addr = cpu_to_le64(addr64);
2735         cp->SG[0].Len = cpu_to_le32(buflen);
2736         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2737         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2738         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2739         return 0;
2740 }
2741
2742 #define NO_TIMEOUT ((unsigned long) -1)
2743 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2744 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2745         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2746 {
2747         DECLARE_COMPLETION_ONSTACK(wait);
2748
2749         c->waiting = &wait;
2750         __enqueue_cmd_and_start_io(h, c, reply_queue);
2751         if (timeout_msecs == NO_TIMEOUT) {
2752                 /* TODO: get rid of this no-timeout thing */
2753                 wait_for_completion_io(&wait);
2754                 return IO_OK;
2755         }
2756         if (!wait_for_completion_io_timeout(&wait,
2757                                         msecs_to_jiffies(timeout_msecs))) {
2758                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2759                 return -ETIMEDOUT;
2760         }
2761         return IO_OK;
2762 }
2763
2764 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2765                                    int reply_queue, unsigned long timeout_msecs)
2766 {
2767         if (unlikely(lockup_detected(h))) {
2768                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2769                 return IO_OK;
2770         }
2771         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2772 }
2773
2774 static u32 lockup_detected(struct ctlr_info *h)
2775 {
2776         int cpu;
2777         u32 rc, *lockup_detected;
2778
2779         cpu = get_cpu();
2780         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2781         rc = *lockup_detected;
2782         put_cpu();
2783         return rc;
2784 }
2785
2786 #define MAX_DRIVER_CMD_RETRIES 25
2787 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2788         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2789 {
2790         int backoff_time = 10, retry_count = 0;
2791         int rc;
2792
2793         do {
2794                 memset(c->err_info, 0, sizeof(*c->err_info));
2795                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2796                                                   timeout_msecs);
2797                 if (rc)
2798                         break;
2799                 retry_count++;
2800                 if (retry_count > 3) {
2801                         msleep(backoff_time);
2802                         if (backoff_time < 1000)
2803                                 backoff_time *= 2;
2804                 }
2805         } while ((check_for_unit_attention(h, c) ||
2806                         check_for_busy(h, c)) &&
2807                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2808         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2809         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2810                 rc = -EIO;
2811         return rc;
2812 }
2813
2814 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2815                                 struct CommandList *c)
2816 {
2817         const u8 *cdb = c->Request.CDB;
2818         const u8 *lun = c->Header.LUN.LunAddrBytes;
2819
2820         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2821         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2822                 txt, lun[0], lun[1], lun[2], lun[3],
2823                 lun[4], lun[5], lun[6], lun[7],
2824                 cdb[0], cdb[1], cdb[2], cdb[3],
2825                 cdb[4], cdb[5], cdb[6], cdb[7],
2826                 cdb[8], cdb[9], cdb[10], cdb[11],
2827                 cdb[12], cdb[13], cdb[14], cdb[15]);
2828 }
2829
2830 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2831                         struct CommandList *cp)
2832 {
2833         const struct ErrorInfo *ei = cp->err_info;
2834         struct device *d = &cp->h->pdev->dev;
2835         u8 sense_key, asc, ascq;
2836         int sense_len;
2837
2838         switch (ei->CommandStatus) {
2839         case CMD_TARGET_STATUS:
2840                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2841                         sense_len = sizeof(ei->SenseInfo);
2842                 else
2843                         sense_len = ei->SenseLen;
2844                 decode_sense_data(ei->SenseInfo, sense_len,
2845                                         &sense_key, &asc, &ascq);
2846                 hpsa_print_cmd(h, "SCSI status", cp);
2847                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2848                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2849                                 sense_key, asc, ascq);
2850                 else
2851                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2852                 if (ei->ScsiStatus == 0)
2853                         dev_warn(d, "SCSI status is abnormally zero.  "
2854                         "(probably indicates selection timeout "
2855                         "reported incorrectly due to a known "
2856                         "firmware bug, circa July, 2001.)\n");
2857                 break;
2858         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2859                 break;
2860         case CMD_DATA_OVERRUN:
2861                 hpsa_print_cmd(h, "overrun condition", cp);
2862                 break;
2863         case CMD_INVALID: {
2864                 /* controller unfortunately reports SCSI passthru's
2865                  * to non-existent targets as invalid commands.
2866                  */
2867                 hpsa_print_cmd(h, "invalid command", cp);
2868                 dev_warn(d, "probably means device no longer present\n");
2869                 }
2870                 break;
2871         case CMD_PROTOCOL_ERR:
2872                 hpsa_print_cmd(h, "protocol error", cp);
2873                 break;
2874         case CMD_HARDWARE_ERR:
2875                 hpsa_print_cmd(h, "hardware error", cp);
2876                 break;
2877         case CMD_CONNECTION_LOST:
2878                 hpsa_print_cmd(h, "connection lost", cp);
2879                 break;
2880         case CMD_ABORTED:
2881                 hpsa_print_cmd(h, "aborted", cp);
2882                 break;
2883         case CMD_ABORT_FAILED:
2884                 hpsa_print_cmd(h, "abort failed", cp);
2885                 break;
2886         case CMD_UNSOLICITED_ABORT:
2887                 hpsa_print_cmd(h, "unsolicited abort", cp);
2888                 break;
2889         case CMD_TIMEOUT:
2890                 hpsa_print_cmd(h, "timed out", cp);
2891                 break;
2892         case CMD_UNABORTABLE:
2893                 hpsa_print_cmd(h, "unabortable", cp);
2894                 break;
2895         case CMD_CTLR_LOCKUP:
2896                 hpsa_print_cmd(h, "controller lockup detected", cp);
2897                 break;
2898         default:
2899                 hpsa_print_cmd(h, "unknown status", cp);
2900                 dev_warn(d, "Unknown command status %x\n",
2901                                 ei->CommandStatus);
2902         }
2903 }
2904
2905 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2906                         u16 page, unsigned char *buf,
2907                         unsigned char bufsize)
2908 {
2909         int rc = IO_OK;
2910         struct CommandList *c;
2911         struct ErrorInfo *ei;
2912
2913         c = cmd_alloc(h);
2914
2915         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2916                         page, scsi3addr, TYPE_CMD)) {
2917                 rc = -1;
2918                 goto out;
2919         }
2920         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2921                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2922         if (rc)
2923                 goto out;
2924         ei = c->err_info;
2925         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2926                 hpsa_scsi_interpret_error(h, c);
2927                 rc = -1;
2928         }
2929 out:
2930         cmd_free(h, c);
2931         return rc;
2932 }
2933
2934 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2935         u8 reset_type, int reply_queue)
2936 {
2937         int rc = IO_OK;
2938         struct CommandList *c;
2939         struct ErrorInfo *ei;
2940
2941         c = cmd_alloc(h);
2942
2943
2944         /* fill_cmd can't fail here, no data buffer to map. */
2945         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2946                         scsi3addr, TYPE_MSG);
2947         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2948         if (rc) {
2949                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2950                 goto out;
2951         }
2952         /* no unmap needed here because no data xfer. */
2953
2954         ei = c->err_info;
2955         if (ei->CommandStatus != 0) {
2956                 hpsa_scsi_interpret_error(h, c);
2957                 rc = -1;
2958         }
2959 out:
2960         cmd_free(h, c);
2961         return rc;
2962 }
2963
2964 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2965                                struct hpsa_scsi_dev_t *dev,
2966                                unsigned char *scsi3addr)
2967 {
2968         int i;
2969         bool match = false;
2970         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2971         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2972
2973         if (hpsa_is_cmd_idle(c))
2974                 return false;
2975
2976         switch (c->cmd_type) {
2977         case CMD_SCSI:
2978         case CMD_IOCTL_PEND:
2979                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2980                                 sizeof(c->Header.LUN.LunAddrBytes));
2981                 break;
2982
2983         case CMD_IOACCEL1:
2984         case CMD_IOACCEL2:
2985                 if (c->phys_disk == dev) {
2986                         /* HBA mode match */
2987                         match = true;
2988                 } else {
2989                         /* Possible RAID mode -- check each phys dev. */
2990                         /* FIXME:  Do we need to take out a lock here?  If
2991                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2992                          * instead. */
2993                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2994                                 /* FIXME: an alternate test might be
2995                                  *
2996                                  * match = dev->phys_disk[i]->ioaccel_handle
2997                                  *              == c2->scsi_nexus;      */
2998                                 match = dev->phys_disk[i] == c->phys_disk;
2999                         }
3000                 }
3001                 break;
3002
3003         case IOACCEL2_TMF:
3004                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3005                         match = dev->phys_disk[i]->ioaccel_handle ==
3006                                         le32_to_cpu(ac->it_nexus);
3007                 }
3008                 break;
3009
3010         case 0:         /* The command is in the middle of being initialized. */
3011                 match = false;
3012                 break;
3013
3014         default:
3015                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3016                         c->cmd_type);
3017                 BUG();
3018         }
3019
3020         return match;
3021 }
3022
3023 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3024         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3025 {
3026         int i;
3027         int rc = 0;
3028
3029         /* We can really only handle one reset at a time */
3030         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3031                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3032                 return -EINTR;
3033         }
3034
3035         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3036
3037         for (i = 0; i < h->nr_cmds; i++) {
3038                 struct CommandList *c = h->cmd_pool + i;
3039                 int refcount = atomic_inc_return(&c->refcount);
3040
3041                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3042                         unsigned long flags;
3043
3044                         /*
3045                          * Mark the target command as having a reset pending,
3046                          * then lock a lock so that the command cannot complete
3047                          * while we're considering it.  If the command is not
3048                          * idle then count it; otherwise revoke the event.
3049                          */
3050                         c->reset_pending = dev;
3051                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3052                         if (!hpsa_is_cmd_idle(c))
3053                                 atomic_inc(&dev->reset_cmds_out);
3054                         else
3055                                 c->reset_pending = NULL;
3056                         spin_unlock_irqrestore(&h->lock, flags);
3057                 }
3058
3059                 cmd_free(h, c);
3060         }
3061
3062         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3063         if (!rc)
3064                 wait_event(h->event_sync_wait_queue,
3065                         atomic_read(&dev->reset_cmds_out) == 0 ||
3066                         lockup_detected(h));
3067
3068         if (unlikely(lockup_detected(h))) {
3069                 dev_warn(&h->pdev->dev,
3070                          "Controller lockup detected during reset wait\n");
3071                 rc = -ENODEV;
3072         }
3073
3074         if (unlikely(rc))
3075                 atomic_set(&dev->reset_cmds_out, 0);
3076
3077         mutex_unlock(&h->reset_mutex);
3078         return rc;
3079 }
3080
3081 static void hpsa_get_raid_level(struct ctlr_info *h,
3082         unsigned char *scsi3addr, unsigned char *raid_level)
3083 {
3084         int rc;
3085         unsigned char *buf;
3086
3087         *raid_level = RAID_UNKNOWN;
3088         buf = kzalloc(64, GFP_KERNEL);
3089         if (!buf)
3090                 return;
3091         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
3092         if (rc == 0)
3093                 *raid_level = buf[8];
3094         if (*raid_level > RAID_UNKNOWN)
3095                 *raid_level = RAID_UNKNOWN;
3096         kfree(buf);
3097         return;
3098 }
3099
3100 #define HPSA_MAP_DEBUG
3101 #ifdef HPSA_MAP_DEBUG
3102 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3103                                 struct raid_map_data *map_buff)
3104 {
3105         struct raid_map_disk_data *dd = &map_buff->data[0];
3106         int map, row, col;
3107         u16 map_cnt, row_cnt, disks_per_row;
3108
3109         if (rc != 0)
3110                 return;
3111
3112         /* Show details only if debugging has been activated. */
3113         if (h->raid_offload_debug < 2)
3114                 return;
3115
3116         dev_info(&h->pdev->dev, "structure_size = %u\n",
3117                                 le32_to_cpu(map_buff->structure_size));
3118         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3119                         le32_to_cpu(map_buff->volume_blk_size));
3120         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3121                         le64_to_cpu(map_buff->volume_blk_cnt));
3122         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3123                         map_buff->phys_blk_shift);
3124         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3125                         map_buff->parity_rotation_shift);
3126         dev_info(&h->pdev->dev, "strip_size = %u\n",
3127                         le16_to_cpu(map_buff->strip_size));
3128         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3129                         le64_to_cpu(map_buff->disk_starting_blk));
3130         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3131                         le64_to_cpu(map_buff->disk_blk_cnt));
3132         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3133                         le16_to_cpu(map_buff->data_disks_per_row));
3134         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3135                         le16_to_cpu(map_buff->metadata_disks_per_row));
3136         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3137                         le16_to_cpu(map_buff->row_cnt));
3138         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3139                         le16_to_cpu(map_buff->layout_map_count));
3140         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3141                         le16_to_cpu(map_buff->flags));
3142         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3143                         le16_to_cpu(map_buff->flags) &
3144                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3145         dev_info(&h->pdev->dev, "dekindex = %u\n",
3146                         le16_to_cpu(map_buff->dekindex));
3147         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3148         for (map = 0; map < map_cnt; map++) {
3149                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3150                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3151                 for (row = 0; row < row_cnt; row++) {
3152                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3153                         disks_per_row =
3154                                 le16_to_cpu(map_buff->data_disks_per_row);
3155                         for (col = 0; col < disks_per_row; col++, dd++)
3156                                 dev_info(&h->pdev->dev,
3157                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3158                                         col, dd->ioaccel_handle,
3159                                         dd->xor_mult[0], dd->xor_mult[1]);
3160                         disks_per_row =
3161                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3162                         for (col = 0; col < disks_per_row; col++, dd++)
3163                                 dev_info(&h->pdev->dev,
3164                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3165                                         col, dd->ioaccel_handle,
3166                                         dd->xor_mult[0], dd->xor_mult[1]);
3167                 }
3168         }
3169 }
3170 #else
3171 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3172                         __attribute__((unused)) int rc,
3173                         __attribute__((unused)) struct raid_map_data *map_buff)
3174 {
3175 }
3176 #endif
3177
3178 static int hpsa_get_raid_map(struct ctlr_info *h,
3179         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3180 {
3181         int rc = 0;
3182         struct CommandList *c;
3183         struct ErrorInfo *ei;
3184
3185         c = cmd_alloc(h);
3186
3187         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3188                         sizeof(this_device->raid_map), 0,
3189                         scsi3addr, TYPE_CMD)) {
3190                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3191                 cmd_free(h, c);
3192                 return -1;
3193         }
3194         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3195                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3196         if (rc)
3197                 goto out;
3198         ei = c->err_info;
3199         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3200                 hpsa_scsi_interpret_error(h, c);
3201                 rc = -1;
3202                 goto out;
3203         }
3204         cmd_free(h, c);
3205
3206         /* @todo in the future, dynamically allocate RAID map memory */
3207         if (le32_to_cpu(this_device->raid_map.structure_size) >
3208                                 sizeof(this_device->raid_map)) {
3209                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3210                 rc = -1;
3211         }
3212         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3213         return rc;
3214 out:
3215         cmd_free(h, c);
3216         return rc;
3217 }
3218
3219 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3220                 unsigned char scsi3addr[], u16 bmic_device_index,
3221                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3222 {
3223         int rc = IO_OK;
3224         struct CommandList *c;
3225         struct ErrorInfo *ei;
3226
3227         c = cmd_alloc(h);
3228
3229         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3230                 0, RAID_CTLR_LUNID, TYPE_CMD);
3231         if (rc)
3232                 goto out;
3233
3234         c->Request.CDB[2] = bmic_device_index & 0xff;
3235         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3236
3237         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3238                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3239         if (rc)
3240                 goto out;
3241         ei = c->err_info;
3242         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3243                 hpsa_scsi_interpret_error(h, c);
3244                 rc = -1;
3245         }
3246 out:
3247         cmd_free(h, c);
3248         return rc;
3249 }
3250
3251 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3252         struct bmic_identify_controller *buf, size_t bufsize)
3253 {
3254         int rc = IO_OK;
3255         struct CommandList *c;
3256         struct ErrorInfo *ei;
3257
3258         c = cmd_alloc(h);
3259
3260         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3261                 0, RAID_CTLR_LUNID, TYPE_CMD);
3262         if (rc)
3263                 goto out;
3264
3265         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3266                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3267         if (rc)
3268                 goto out;
3269         ei = c->err_info;
3270         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3271                 hpsa_scsi_interpret_error(h, c);
3272                 rc = -1;
3273         }
3274 out:
3275         cmd_free(h, c);
3276         return rc;
3277 }
3278
3279 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3280                 unsigned char scsi3addr[], u16 bmic_device_index,
3281                 struct bmic_identify_physical_device *buf, size_t bufsize)
3282 {
3283         int rc = IO_OK;
3284         struct CommandList *c;
3285         struct ErrorInfo *ei;
3286
3287         c = cmd_alloc(h);
3288         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3289                 0, RAID_CTLR_LUNID, TYPE_CMD);
3290         if (rc)
3291                 goto out;
3292
3293         c->Request.CDB[2] = bmic_device_index & 0xff;
3294         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3295
3296         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3297                                                 DEFAULT_TIMEOUT);
3298         ei = c->err_info;
3299         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3300                 hpsa_scsi_interpret_error(h, c);
3301                 rc = -1;
3302         }
3303 out:
3304         cmd_free(h, c);
3305
3306         return rc;
3307 }
3308
3309 /*
3310  * get enclosure information
3311  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3312  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3313  * Uses id_physical_device to determine the box_index.
3314  */
3315 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3316                         unsigned char *scsi3addr,
3317                         struct ReportExtendedLUNdata *rlep, int rle_index,
3318                         struct hpsa_scsi_dev_t *encl_dev)
3319 {
3320         int rc = -1;
3321         struct CommandList *c = NULL;
3322         struct ErrorInfo *ei = NULL;
3323         struct bmic_sense_storage_box_params *bssbp = NULL;
3324         struct bmic_identify_physical_device *id_phys = NULL;
3325         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3326         u16 bmic_device_index = 0;
3327
3328         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3329
3330         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3331                 rc = IO_OK;
3332                 goto out;
3333         }
3334
3335         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3336         if (!bssbp)
3337                 goto out;
3338
3339         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3340         if (!id_phys)
3341                 goto out;
3342
3343         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3344                                                 id_phys, sizeof(*id_phys));
3345         if (rc) {
3346                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3347                         __func__, encl_dev->external, bmic_device_index);
3348                 goto out;
3349         }
3350
3351         c = cmd_alloc(h);
3352
3353         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3354                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3355
3356         if (rc)
3357                 goto out;
3358
3359         if (id_phys->phys_connector[1] == 'E')
3360                 c->Request.CDB[5] = id_phys->box_index;
3361         else
3362                 c->Request.CDB[5] = 0;
3363
3364         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3365                                                 DEFAULT_TIMEOUT);
3366         if (rc)
3367                 goto out;
3368
3369         ei = c->err_info;
3370         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3371                 rc = -1;
3372                 goto out;
3373         }
3374
3375         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3376         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3377                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3378
3379         rc = IO_OK;
3380 out:
3381         kfree(bssbp);
3382         kfree(id_phys);
3383
3384         if (c)
3385                 cmd_free(h, c);
3386
3387         if (rc != IO_OK)
3388                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3389                         "Error, could not get enclosure information\n");
3390 }
3391
3392 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3393                                                 unsigned char *scsi3addr)
3394 {
3395         struct ReportExtendedLUNdata *physdev;
3396         u32 nphysicals;
3397         u64 sa = 0;
3398         int i;
3399
3400         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3401         if (!physdev)
3402                 return 0;
3403
3404         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3405                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3406                 kfree(physdev);
3407                 return 0;
3408         }
3409         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3410
3411         for (i = 0; i < nphysicals; i++)
3412                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3413                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3414                         break;
3415                 }
3416
3417         kfree(physdev);
3418
3419         return sa;
3420 }
3421
3422 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3423                                         struct hpsa_scsi_dev_t *dev)
3424 {
3425         int rc;
3426         u64 sa = 0;
3427
3428         if (is_hba_lunid(scsi3addr)) {
3429                 struct bmic_sense_subsystem_info *ssi;
3430
3431                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3432                 if (ssi == NULL) {
3433                         dev_warn(&h->pdev->dev,
3434                                 "%s: out of memory\n", __func__);
3435                         return;
3436                 }
3437
3438                 rc = hpsa_bmic_sense_subsystem_information(h,
3439                                         scsi3addr, 0, ssi, sizeof(*ssi));
3440                 if (rc == 0) {
3441                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3442                         h->sas_address = sa;
3443                 }
3444
3445                 kfree(ssi);
3446         } else
3447                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3448
3449         dev->sas_address = sa;
3450 }
3451
3452 /* Get a device id from inquiry page 0x83 */
3453 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3454         unsigned char scsi3addr[], u8 page)
3455 {
3456         int rc;
3457         int i;
3458         int pages;
3459         unsigned char *buf, bufsize;
3460
3461         buf = kzalloc(256, GFP_KERNEL);
3462         if (!buf)
3463                 return 0;
3464
3465         /* Get the size of the page list first */
3466         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3467                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3468                                 buf, HPSA_VPD_HEADER_SZ);
3469         if (rc != 0)
3470                 goto exit_unsupported;
3471         pages = buf[3];
3472         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3473                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3474         else
3475                 bufsize = 255;
3476
3477         /* Get the whole VPD page list */
3478         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3479                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3480                                 buf, bufsize);
3481         if (rc != 0)
3482                 goto exit_unsupported;
3483
3484         pages = buf[3];
3485         for (i = 1; i <= pages; i++)
3486                 if (buf[3 + i] == page)
3487                         goto exit_supported;
3488 exit_unsupported:
3489         kfree(buf);
3490         return 0;
3491 exit_supported:
3492         kfree(buf);
3493         return 1;
3494 }
3495
3496 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3497         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3498 {
3499         int rc;
3500         unsigned char *buf;
3501         u8 ioaccel_status;
3502
3503         this_device->offload_config = 0;
3504         this_device->offload_enabled = 0;
3505         this_device->offload_to_be_enabled = 0;
3506
3507         buf = kzalloc(64, GFP_KERNEL);
3508         if (!buf)
3509                 return;
3510         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3511                 goto out;
3512         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3513                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3514         if (rc != 0)
3515                 goto out;
3516
3517 #define IOACCEL_STATUS_BYTE 4
3518 #define OFFLOAD_CONFIGURED_BIT 0x01
3519 #define OFFLOAD_ENABLED_BIT 0x02
3520         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3521         this_device->offload_config =
3522                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3523         if (this_device->offload_config) {
3524                 this_device->offload_enabled =
3525                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3526                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3527                         this_device->offload_enabled = 0;
3528         }
3529         this_device->offload_to_be_enabled = this_device->offload_enabled;
3530 out:
3531         kfree(buf);
3532         return;
3533 }
3534
3535 /* Get the device id from inquiry page 0x83 */
3536 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3537         unsigned char *device_id, int index, int buflen)
3538 {
3539         int rc;
3540         unsigned char *buf;
3541
3542         if (buflen > 16)
3543                 buflen = 16;
3544         buf = kzalloc(64, GFP_KERNEL);
3545         if (!buf)
3546                 return -ENOMEM;
3547         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3548         if (rc == 0)
3549                 memcpy(device_id, &buf[index], buflen);
3550
3551         kfree(buf);
3552
3553         return rc != 0;
3554 }
3555
3556 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3557                 void *buf, int bufsize,
3558                 int extended_response)
3559 {
3560         int rc = IO_OK;
3561         struct CommandList *c;
3562         unsigned char scsi3addr[8];
3563         struct ErrorInfo *ei;
3564
3565         c = cmd_alloc(h);
3566
3567         /* address the controller */
3568         memset(scsi3addr, 0, sizeof(scsi3addr));
3569         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3570                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3571                 rc = -1;
3572                 goto out;
3573         }
3574         if (extended_response)
3575                 c->Request.CDB[1] = extended_response;
3576         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3577                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3578         if (rc)
3579                 goto out;
3580         ei = c->err_info;
3581         if (ei->CommandStatus != 0 &&
3582             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3583                 hpsa_scsi_interpret_error(h, c);
3584                 rc = -1;
3585         } else {
3586                 struct ReportLUNdata *rld = buf;
3587
3588                 if (rld->extended_response_flag != extended_response) {
3589                         dev_err(&h->pdev->dev,
3590                                 "report luns requested format %u, got %u\n",
3591                                 extended_response,
3592                                 rld->extended_response_flag);
3593                         rc = -1;
3594                 }
3595         }
3596 out:
3597         cmd_free(h, c);
3598         return rc;
3599 }
3600
3601 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3602                 struct ReportExtendedLUNdata *buf, int bufsize)
3603 {
3604         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3605                                                 HPSA_REPORT_PHYS_EXTENDED);
3606 }
3607
3608 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3609                 struct ReportLUNdata *buf, int bufsize)
3610 {
3611         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3612 }
3613
3614 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3615         int bus, int target, int lun)
3616 {
3617         device->bus = bus;
3618         device->target = target;
3619         device->lun = lun;
3620 }
3621
3622 /* Use VPD inquiry to get details of volume status */
3623 static int hpsa_get_volume_status(struct ctlr_info *h,
3624                                         unsigned char scsi3addr[])
3625 {
3626         int rc;
3627         int status;
3628         int size;
3629         unsigned char *buf;
3630
3631         buf = kzalloc(64, GFP_KERNEL);
3632         if (!buf)
3633                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3634
3635         /* Does controller have VPD for logical volume status? */
3636         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3637                 goto exit_failed;
3638
3639         /* Get the size of the VPD return buffer */
3640         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3641                                         buf, HPSA_VPD_HEADER_SZ);
3642         if (rc != 0)
3643                 goto exit_failed;
3644         size = buf[3];
3645
3646         /* Now get the whole VPD buffer */
3647         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3648                                         buf, size + HPSA_VPD_HEADER_SZ);
3649         if (rc != 0)
3650                 goto exit_failed;
3651         status = buf[4]; /* status byte */
3652
3653         kfree(buf);
3654         return status;
3655 exit_failed:
3656         kfree(buf);
3657         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3658 }
3659
3660 /* Determine offline status of a volume.
3661  * Return either:
3662  *  0 (not offline)
3663  *  0xff (offline for unknown reasons)
3664  *  # (integer code indicating one of several NOT READY states
3665  *     describing why a volume is to be kept offline)
3666  */
3667 static int hpsa_volume_offline(struct ctlr_info *h,
3668                                         unsigned char scsi3addr[])
3669 {
3670         struct CommandList *c;
3671         unsigned char *sense;
3672         u8 sense_key, asc, ascq;
3673         int sense_len;
3674         int rc, ldstat = 0;
3675         u16 cmd_status;
3676         u8 scsi_status;
3677 #define ASC_LUN_NOT_READY 0x04
3678 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3679 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3680
3681         c = cmd_alloc(h);
3682
3683         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3684         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3685                                         DEFAULT_TIMEOUT);
3686         if (rc) {
3687                 cmd_free(h, c);
3688                 return 0;
3689         }
3690         sense = c->err_info->SenseInfo;
3691         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3692                 sense_len = sizeof(c->err_info->SenseInfo);
3693         else
3694                 sense_len = c->err_info->SenseLen;
3695         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3696         cmd_status = c->err_info->CommandStatus;
3697         scsi_status = c->err_info->ScsiStatus;
3698         cmd_free(h, c);
3699         /* Is the volume 'not ready'? */
3700         if (cmd_status != CMD_TARGET_STATUS ||
3701                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3702                 sense_key != NOT_READY ||
3703                 asc != ASC_LUN_NOT_READY)  {
3704                 return 0;
3705         }
3706
3707         /* Determine the reason for not ready state */
3708         ldstat = hpsa_get_volume_status(h, scsi3addr);
3709
3710         /* Keep volume offline in certain cases: */
3711         switch (ldstat) {
3712         case HPSA_LV_UNDERGOING_ERASE:
3713         case HPSA_LV_NOT_AVAILABLE:
3714         case HPSA_LV_UNDERGOING_RPI:
3715         case HPSA_LV_PENDING_RPI:
3716         case HPSA_LV_ENCRYPTED_NO_KEY:
3717         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3718         case HPSA_LV_UNDERGOING_ENCRYPTION:
3719         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3720         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3721                 return ldstat;
3722         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3723                 /* If VPD status page isn't available,
3724                  * use ASC/ASCQ to determine state
3725                  */
3726                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3727                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3728                         return ldstat;
3729                 break;
3730         default:
3731                 break;
3732         }
3733         return 0;
3734 }
3735
3736 /*
3737  * Find out if a logical device supports aborts by simply trying one.
3738  * Smart Array may claim not to support aborts on logical drives, but
3739  * if a MSA2000 * is connected, the drives on that will be presented
3740  * by the Smart Array as logical drives, and aborts may be sent to
3741  * those devices successfully.  So the simplest way to find out is
3742  * to simply try an abort and see how the device responds.
3743  */
3744 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3745                                         unsigned char *scsi3addr)
3746 {
3747         struct CommandList *c;
3748         struct ErrorInfo *ei;
3749         int rc = 0;
3750
3751         u64 tag = (u64) -1; /* bogus tag */
3752
3753         /* Assume that physical devices support aborts */
3754         if (!is_logical_dev_addr_mode(scsi3addr))
3755                 return 1;
3756
3757         c = cmd_alloc(h);
3758
3759         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3760         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3761                                         DEFAULT_TIMEOUT);
3762         /* no unmap needed here because no data xfer. */
3763         ei = c->err_info;
3764         switch (ei->CommandStatus) {
3765         case CMD_INVALID:
3766                 rc = 0;
3767                 break;
3768         case CMD_UNABORTABLE:
3769         case CMD_ABORT_FAILED:
3770                 rc = 1;
3771                 break;
3772         case CMD_TMF_STATUS:
3773                 rc = hpsa_evaluate_tmf_status(h, c);
3774                 break;
3775         default:
3776                 rc = 0;
3777                 break;
3778         }
3779         cmd_free(h, c);
3780         return rc;
3781 }
3782
3783 static int hpsa_update_device_info(struct ctlr_info *h,
3784         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3785         unsigned char *is_OBDR_device)
3786 {
3787
3788 #define OBDR_SIG_OFFSET 43
3789 #define OBDR_TAPE_SIG "$DR-10"
3790 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3791 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3792
3793         unsigned char *inq_buff;
3794         unsigned char *obdr_sig;
3795         int rc = 0;
3796
3797         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3798         if (!inq_buff) {
3799                 rc = -ENOMEM;
3800                 goto bail_out;
3801         }
3802
3803         /* Do an inquiry to the device to see what it is. */
3804         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3805                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3806                 /* Inquiry failed (msg printed already) */
3807                 dev_err(&h->pdev->dev,
3808                         "hpsa_update_device_info: inquiry failed\n");
3809                 rc = -EIO;
3810                 goto bail_out;
3811         }
3812
3813         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3814         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3815
3816         this_device->devtype = (inq_buff[0] & 0x1f);
3817         memcpy(this_device->scsi3addr, scsi3addr, 8);
3818         memcpy(this_device->vendor, &inq_buff[8],
3819                 sizeof(this_device->vendor));
3820         memcpy(this_device->model, &inq_buff[16],
3821                 sizeof(this_device->model));
3822         memset(this_device->device_id, 0,
3823                 sizeof(this_device->device_id));
3824         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3825                 sizeof(this_device->device_id));
3826
3827         if ((this_device->devtype == TYPE_DISK ||
3828                 this_device->devtype == TYPE_ZBC) &&
3829                 is_logical_dev_addr_mode(scsi3addr)) {
3830                 int volume_offline;
3831
3832                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3833                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3834                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3835                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3836                 if (volume_offline < 0 || volume_offline > 0xff)
3837                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3838                 this_device->volume_offline = volume_offline & 0xff;
3839         } else {
3840                 this_device->raid_level = RAID_UNKNOWN;
3841                 this_device->offload_config = 0;
3842                 this_device->offload_enabled = 0;
3843                 this_device->offload_to_be_enabled = 0;
3844                 this_device->hba_ioaccel_enabled = 0;
3845                 this_device->volume_offline = 0;
3846                 this_device->queue_depth = h->nr_cmds;
3847         }
3848
3849         if (is_OBDR_device) {
3850                 /* See if this is a One-Button-Disaster-Recovery device
3851                  * by looking for "$DR-10" at offset 43 in inquiry data.
3852                  */
3853                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3854                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3855                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3856                                                 OBDR_SIG_LEN) == 0);
3857         }
3858         kfree(inq_buff);
3859         return 0;
3860
3861 bail_out:
3862         kfree(inq_buff);
3863         return rc;
3864 }
3865
3866 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3867                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3868 {
3869         unsigned long flags;
3870         int rc, entry;
3871         /*
3872          * See if this device supports aborts.  If we already know
3873          * the device, we already know if it supports aborts, otherwise
3874          * we have to find out if it supports aborts by trying one.
3875          */
3876         spin_lock_irqsave(&h->devlock, flags);
3877         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3878         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3879                 entry >= 0 && entry < h->ndevices) {
3880                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3881                 spin_unlock_irqrestore(&h->devlock, flags);
3882         } else {
3883                 spin_unlock_irqrestore(&h->devlock, flags);
3884                 dev->supports_aborts =
3885                                 hpsa_device_supports_aborts(h, scsi3addr);
3886                 if (dev->supports_aborts < 0)
3887                         dev->supports_aborts = 0;
3888         }
3889 }
3890
3891 /*
3892  * Helper function to assign bus, target, lun mapping of devices.
3893  * Logical drive target and lun are assigned at this time, but
3894  * physical device lun and target assignment are deferred (assigned
3895  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3896 */
3897 static void figure_bus_target_lun(struct ctlr_info *h,
3898         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3899 {
3900         u32 lunid = get_unaligned_le32(lunaddrbytes);
3901
3902         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3903                 /* physical device, target and lun filled in later */
3904                 if (is_hba_lunid(lunaddrbytes))
3905                         hpsa_set_bus_target_lun(device,
3906                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3907                 else
3908                         /* defer target, lun assignment for physical devices */
3909                         hpsa_set_bus_target_lun(device,
3910                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3911                 return;
3912         }
3913         /* It's a logical device */
3914         if (device->external) {
3915                 hpsa_set_bus_target_lun(device,
3916                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3917                         lunid & 0x00ff);
3918                 return;
3919         }
3920         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3921                                 0, lunid & 0x3fff);
3922 }
3923
3924
3925 /*
3926  * Get address of physical disk used for an ioaccel2 mode command:
3927  *      1. Extract ioaccel2 handle from the command.
3928  *      2. Find a matching ioaccel2 handle from list of physical disks.
3929  *      3. Return:
3930  *              1 and set scsi3addr to address of matching physical
3931  *              0 if no matching physical disk was found.
3932  */
3933 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3934         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3935 {
3936         struct io_accel2_cmd *c2 =
3937                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3938         unsigned long flags;
3939         int i;
3940
3941         spin_lock_irqsave(&h->devlock, flags);
3942         for (i = 0; i < h->ndevices; i++)
3943                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3944                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3945                                 sizeof(h->dev[i]->scsi3addr));
3946                         spin_unlock_irqrestore(&h->devlock, flags);
3947                         return 1;
3948                 }
3949         spin_unlock_irqrestore(&h->devlock, flags);
3950         return 0;
3951 }
3952
3953 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3954         int i, int nphysicals, int nlocal_logicals)
3955 {
3956         /* In report logicals, local logicals are listed first,
3957         * then any externals.
3958         */
3959         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3960
3961         if (i == raid_ctlr_position)
3962                 return 0;
3963
3964         if (i < logicals_start)
3965                 return 0;
3966
3967         /* i is in logicals range, but still within local logicals */
3968         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3969                 return 0;
3970
3971         return 1; /* it's an external lun */
3972 }
3973
3974 /*
3975  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3976  * logdev.  The number of luns in physdev and logdev are returned in
3977  * *nphysicals and *nlogicals, respectively.
3978  * Returns 0 on success, -1 otherwise.
3979  */
3980 static int hpsa_gather_lun_info(struct ctlr_info *h,
3981         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3982         struct ReportLUNdata *logdev, u32 *nlogicals)
3983 {
3984         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3985                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3986                 return -1;
3987         }
3988         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3989         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3990                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3991                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3992                 *nphysicals = HPSA_MAX_PHYS_LUN;
3993         }
3994         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3995                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3996                 return -1;
3997         }
3998         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3999         /* Reject Logicals in excess of our max capability. */
4000         if (*nlogicals > HPSA_MAX_LUN) {
4001                 dev_warn(&h->pdev->dev,
4002                         "maximum logical LUNs (%d) exceeded.  "
4003                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4004                         *nlogicals - HPSA_MAX_LUN);
4005                         *nlogicals = HPSA_MAX_LUN;
4006         }
4007         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4008                 dev_warn(&h->pdev->dev,
4009                         "maximum logical + physical LUNs (%d) exceeded. "
4010                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4011                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4012                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4013         }
4014         return 0;
4015 }
4016
4017 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4018         int i, int nphysicals, int nlogicals,
4019         struct ReportExtendedLUNdata *physdev_list,
4020         struct ReportLUNdata *logdev_list)
4021 {
4022         /* Helper function, figure out where the LUN ID info is coming from
4023          * given index i, lists of physical and logical devices, where in
4024          * the list the raid controller is supposed to appear (first or last)
4025          */
4026
4027         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4028         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4029
4030         if (i == raid_ctlr_position)
4031                 return RAID_CTLR_LUNID;
4032
4033         if (i < logicals_start)
4034                 return &physdev_list->LUN[i -
4035                                 (raid_ctlr_position == 0)].lunid[0];
4036
4037         if (i < last_device)
4038                 return &logdev_list->LUN[i - nphysicals -
4039                         (raid_ctlr_position == 0)][0];
4040         BUG();
4041         return NULL;
4042 }
4043
4044 /* get physical drive ioaccel handle and queue depth */
4045 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4046                 struct hpsa_scsi_dev_t *dev,
4047                 struct ReportExtendedLUNdata *rlep, int rle_index,
4048                 struct bmic_identify_physical_device *id_phys)
4049 {
4050         int rc;
4051         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4052
4053         dev->ioaccel_handle = rle->ioaccel_handle;
4054         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4055                 dev->hba_ioaccel_enabled = 1;
4056         memset(id_phys, 0, sizeof(*id_phys));
4057         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4058                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4059                         sizeof(*id_phys));
4060         if (!rc)
4061                 /* Reserve space for FW operations */
4062 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4063 #define DRIVE_QUEUE_DEPTH 7
4064                 dev->queue_depth =
4065                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4066                                 DRIVE_CMDS_RESERVED_FOR_FW;
4067         else
4068                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4069 }
4070
4071 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4072         struct ReportExtendedLUNdata *rlep, int rle_index,
4073         struct bmic_identify_physical_device *id_phys)
4074 {
4075         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4076
4077         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4078                 this_device->hba_ioaccel_enabled = 1;
4079
4080         memcpy(&this_device->active_path_index,
4081                 &id_phys->active_path_number,
4082                 sizeof(this_device->active_path_index));
4083         memcpy(&this_device->path_map,
4084                 &id_phys->redundant_path_present_map,
4085                 sizeof(this_device->path_map));
4086         memcpy(&this_device->box,
4087                 &id_phys->alternate_paths_phys_box_on_port,
4088                 sizeof(this_device->box));
4089         memcpy(&this_device->phys_connector,
4090                 &id_phys->alternate_paths_phys_connector,
4091                 sizeof(this_device->phys_connector));
4092         memcpy(&this_device->bay,
4093                 &id_phys->phys_bay_in_box,
4094                 sizeof(this_device->bay));
4095 }
4096
4097 /* get number of local logical disks. */
4098 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4099         struct bmic_identify_controller *id_ctlr,
4100         u32 *nlocals)
4101 {
4102         int rc;
4103
4104         if (!id_ctlr) {
4105                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4106                         __func__);
4107                 return -ENOMEM;
4108         }
4109         memset(id_ctlr, 0, sizeof(*id_ctlr));
4110         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4111         if (!rc)
4112                 if (id_ctlr->configured_logical_drive_count < 256)
4113                         *nlocals = id_ctlr->configured_logical_drive_count;
4114                 else
4115                         *nlocals = le16_to_cpu(
4116                                         id_ctlr->extended_logical_unit_count);
4117         else
4118                 *nlocals = -1;
4119         return rc;
4120 }
4121
4122 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4123 {
4124         struct bmic_identify_physical_device *id_phys;
4125         bool is_spare = false;
4126         int rc;
4127
4128         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4129         if (!id_phys)
4130                 return false;
4131
4132         rc = hpsa_bmic_id_physical_device(h,
4133                                         lunaddrbytes,
4134                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4135                                         id_phys, sizeof(*id_phys));
4136         if (rc == 0)
4137                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4138
4139         kfree(id_phys);
4140         return is_spare;
4141 }
4142
4143 #define RPL_DEV_FLAG_NON_DISK                           0x1
4144 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4145 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4146
4147 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4148
4149 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4150                                 struct ext_report_lun_entry *rle)
4151 {
4152         u8 device_flags;
4153         u8 device_type;
4154
4155         if (!MASKED_DEVICE(lunaddrbytes))
4156                 return false;
4157
4158         device_flags = rle->device_flags;
4159         device_type = rle->device_type;
4160
4161         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4162                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4163                         return false;
4164                 return true;
4165         }
4166
4167         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4168                 return false;
4169
4170         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4171                 return false;
4172
4173         /*
4174          * Spares may be spun down, we do not want to
4175          * do an Inquiry to a RAID set spare drive as
4176          * that would have them spun up, that is a
4177          * performance hit because I/O to the RAID device
4178          * stops while the spin up occurs which can take
4179          * over 50 seconds.
4180          */
4181         if (hpsa_is_disk_spare(h, lunaddrbytes))
4182                 return true;
4183
4184         return false;
4185 }
4186
4187 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4188 {
4189         /* the idea here is we could get notified
4190          * that some devices have changed, so we do a report
4191          * physical luns and report logical luns cmd, and adjust
4192          * our list of devices accordingly.
4193          *
4194          * The scsi3addr's of devices won't change so long as the
4195          * adapter is not reset.  That means we can rescan and
4196          * tell which devices we already know about, vs. new
4197          * devices, vs.  disappearing devices.
4198          */
4199         struct ReportExtendedLUNdata *physdev_list = NULL;
4200         struct ReportLUNdata *logdev_list = NULL;
4201         struct bmic_identify_physical_device *id_phys = NULL;
4202         struct bmic_identify_controller *id_ctlr = NULL;
4203         u32 nphysicals = 0;
4204         u32 nlogicals = 0;
4205         u32 nlocal_logicals = 0;
4206         u32 ndev_allocated = 0;
4207         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4208         int ncurrent = 0;
4209         int i, n_ext_target_devs, ndevs_to_allocate;
4210         int raid_ctlr_position;
4211         bool physical_device;
4212         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4213
4214         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4215         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4216         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4217         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4218         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4219         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4220
4221         if (!currentsd || !physdev_list || !logdev_list ||
4222                 !tmpdevice || !id_phys || !id_ctlr) {
4223                 dev_err(&h->pdev->dev, "out of memory\n");
4224                 goto out;
4225         }
4226         memset(lunzerobits, 0, sizeof(lunzerobits));
4227
4228         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4229
4230         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4231                         logdev_list, &nlogicals)) {
4232                 h->drv_req_rescan = 1;
4233                 goto out;
4234         }
4235
4236         /* Set number of local logicals (non PTRAID) */
4237         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4238                 dev_warn(&h->pdev->dev,
4239                         "%s: Can't determine number of local logical devices.\n",
4240                         __func__);
4241         }
4242
4243         /* We might see up to the maximum number of logical and physical disks
4244          * plus external target devices, and a device for the local RAID
4245          * controller.
4246          */
4247         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4248
4249         /* Allocate the per device structures */
4250         for (i = 0; i < ndevs_to_allocate; i++) {
4251                 if (i >= HPSA_MAX_DEVICES) {
4252                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4253                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4254                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4255                         break;
4256                 }
4257
4258                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4259                 if (!currentsd[i]) {
4260                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4261                                 __FILE__, __LINE__);
4262                         h->drv_req_rescan = 1;
4263                         goto out;
4264                 }
4265                 ndev_allocated++;
4266         }
4267
4268         if (is_scsi_rev_5(h))
4269                 raid_ctlr_position = 0;
4270         else
4271                 raid_ctlr_position = nphysicals + nlogicals;
4272
4273         /* adjust our table of devices */
4274         n_ext_target_devs = 0;
4275         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4276                 u8 *lunaddrbytes, is_OBDR = 0;
4277                 int rc = 0;
4278                 int phys_dev_index = i - (raid_ctlr_position == 0);
4279                 bool skip_device = false;
4280
4281                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4282
4283                 /* Figure out where the LUN ID info is coming from */
4284                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4285                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4286
4287                 /* Determine if this is a lun from an external target array */
4288                 tmpdevice->external =
4289                         figure_external_status(h, raid_ctlr_position, i,
4290                                                 nphysicals, nlocal_logicals);
4291
4292                 /*
4293                  * Skip over some devices such as a spare.
4294                  */
4295                 if (!tmpdevice->external && physical_device) {
4296                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4297                                         &physdev_list->LUN[phys_dev_index]);
4298                         if (skip_device)
4299                                 continue;
4300                 }
4301
4302                 /* Get device type, vendor, model, device id */
4303                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4304                                                         &is_OBDR);
4305                 if (rc == -ENOMEM) {
4306                         dev_warn(&h->pdev->dev,
4307                                 "Out of memory, rescan deferred.\n");
4308                         h->drv_req_rescan = 1;
4309                         goto out;
4310                 }
4311                 if (rc) {
4312                         dev_warn(&h->pdev->dev,
4313                                 "Inquiry failed, skipping device.\n");
4314                         continue;
4315                 }
4316
4317                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4318                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4319                 this_device = currentsd[ncurrent];
4320
4321                 /* Turn on discovery_polling if there are ext target devices.
4322                  * Event-based change notification is unreliable for those.
4323                  */
4324                 if (!h->discovery_polling) {
4325                         if (tmpdevice->external) {
4326                                 h->discovery_polling = 1;
4327                                 dev_info(&h->pdev->dev,
4328                                         "External target, activate discovery polling.\n");
4329                         }
4330                 }
4331
4332
4333                 *this_device = *tmpdevice;
4334                 this_device->physical_device = physical_device;
4335
4336                 /*
4337                  * Expose all devices except for physical devices that
4338                  * are masked.
4339                  */
4340                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4341                         this_device->expose_device = 0;
4342                 else
4343                         this_device->expose_device = 1;
4344
4345
4346                 /*
4347                  * Get the SAS address for physical devices that are exposed.
4348                  */
4349                 if (this_device->physical_device && this_device->expose_device)
4350                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4351
4352                 switch (this_device->devtype) {
4353                 case TYPE_ROM:
4354                         /* We don't *really* support actual CD-ROM devices,
4355                          * just "One Button Disaster Recovery" tape drive
4356                          * which temporarily pretends to be a CD-ROM drive.
4357                          * So we check that the device is really an OBDR tape
4358                          * device by checking for "$DR-10" in bytes 43-48 of
4359                          * the inquiry data.
4360                          */
4361                         if (is_OBDR)
4362                                 ncurrent++;
4363                         break;
4364                 case TYPE_DISK:
4365                 case TYPE_ZBC:
4366                         if (this_device->physical_device) {
4367                                 /* The disk is in HBA mode. */
4368                                 /* Never use RAID mapper in HBA mode. */
4369                                 this_device->offload_enabled = 0;
4370                                 hpsa_get_ioaccel_drive_info(h, this_device,
4371                                         physdev_list, phys_dev_index, id_phys);
4372                                 hpsa_get_path_info(this_device,
4373                                         physdev_list, phys_dev_index, id_phys);
4374                         }
4375                         ncurrent++;
4376                         break;
4377                 case TYPE_TAPE:
4378                 case TYPE_MEDIUM_CHANGER:
4379                         ncurrent++;
4380                         break;
4381                 case TYPE_ENCLOSURE:
4382                         if (!this_device->external)
4383                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4384                                                 physdev_list, phys_dev_index,
4385                                                 this_device);
4386                         ncurrent++;
4387                         break;
4388                 case TYPE_RAID:
4389                         /* Only present the Smartarray HBA as a RAID controller.
4390                          * If it's a RAID controller other than the HBA itself
4391                          * (an external RAID controller, MSA500 or similar)
4392                          * don't present it.
4393                          */
4394                         if (!is_hba_lunid(lunaddrbytes))
4395                                 break;
4396                         ncurrent++;
4397                         break;
4398                 default:
4399                         break;
4400                 }
4401                 if (ncurrent >= HPSA_MAX_DEVICES)
4402                         break;
4403         }
4404
4405         if (h->sas_host == NULL) {
4406                 int rc = 0;
4407
4408                 rc = hpsa_add_sas_host(h);
4409                 if (rc) {
4410                         dev_warn(&h->pdev->dev,
4411                                 "Could not add sas host %d\n", rc);
4412                         goto out;
4413                 }
4414         }
4415
4416         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4417 out:
4418         kfree(tmpdevice);
4419         for (i = 0; i < ndev_allocated; i++)
4420                 kfree(currentsd[i]);
4421         kfree(currentsd);
4422         kfree(physdev_list);
4423         kfree(logdev_list);
4424         kfree(id_ctlr);
4425         kfree(id_phys);
4426 }
4427
4428 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4429                                    struct scatterlist *sg)
4430 {
4431         u64 addr64 = (u64) sg_dma_address(sg);
4432         unsigned int len = sg_dma_len(sg);
4433
4434         desc->Addr = cpu_to_le64(addr64);
4435         desc->Len = cpu_to_le32(len);
4436         desc->Ext = 0;
4437 }
4438
4439 /*
4440  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4441  * dma mapping  and fills in the scatter gather entries of the
4442  * hpsa command, cp.
4443  */
4444 static int hpsa_scatter_gather(struct ctlr_info *h,
4445                 struct CommandList *cp,
4446                 struct scsi_cmnd *cmd)
4447 {
4448         struct scatterlist *sg;
4449         int use_sg, i, sg_limit, chained, last_sg;
4450         struct SGDescriptor *curr_sg;
4451
4452         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4453
4454         use_sg = scsi_dma_map(cmd);
4455         if (use_sg < 0)
4456                 return use_sg;
4457
4458         if (!use_sg)
4459                 goto sglist_finished;
4460
4461         /*
4462          * If the number of entries is greater than the max for a single list,
4463          * then we have a chained list; we will set up all but one entry in the
4464          * first list (the last entry is saved for link information);
4465          * otherwise, we don't have a chained list and we'll set up at each of
4466          * the entries in the one list.
4467          */
4468         curr_sg = cp->SG;
4469         chained = use_sg > h->max_cmd_sg_entries;
4470         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4471         last_sg = scsi_sg_count(cmd) - 1;
4472         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4473                 hpsa_set_sg_descriptor(curr_sg, sg);
4474                 curr_sg++;
4475         }
4476
4477         if (chained) {
4478                 /*
4479                  * Continue with the chained list.  Set curr_sg to the chained
4480                  * list.  Modify the limit to the total count less the entries
4481                  * we've already set up.  Resume the scan at the list entry
4482                  * where the previous loop left off.
4483                  */
4484                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4485                 sg_limit = use_sg - sg_limit;
4486                 for_each_sg(sg, sg, sg_limit, i) {
4487                         hpsa_set_sg_descriptor(curr_sg, sg);
4488                         curr_sg++;
4489                 }
4490         }
4491
4492         /* Back the pointer up to the last entry and mark it as "last". */
4493         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4494
4495         if (use_sg + chained > h->maxSG)
4496                 h->maxSG = use_sg + chained;
4497
4498         if (chained) {
4499                 cp->Header.SGList = h->max_cmd_sg_entries;
4500                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4501                 if (hpsa_map_sg_chain_block(h, cp)) {
4502                         scsi_dma_unmap(cmd);
4503                         return -1;
4504                 }
4505                 return 0;
4506         }
4507
4508 sglist_finished:
4509
4510         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4511         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4512         return 0;
4513 }
4514
4515 #define IO_ACCEL_INELIGIBLE (1)
4516 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4517 {
4518         int is_write = 0;
4519         u32 block;
4520         u32 block_cnt;
4521
4522         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4523         switch (cdb[0]) {
4524         case WRITE_6:
4525         case WRITE_12:
4526                 is_write = 1;
4527         case READ_6:
4528         case READ_12:
4529                 if (*cdb_len == 6) {
4530                         block = get_unaligned_be16(&cdb[2]);
4531                         block_cnt = cdb[4];
4532                         if (block_cnt == 0)
4533                                 block_cnt = 256;
4534                 } else {
4535                         BUG_ON(*cdb_len != 12);
4536                         block = get_unaligned_be32(&cdb[2]);
4537                         block_cnt = get_unaligned_be32(&cdb[6]);
4538                 }
4539                 if (block_cnt > 0xffff)
4540                         return IO_ACCEL_INELIGIBLE;
4541
4542                 cdb[0] = is_write ? WRITE_10 : READ_10;
4543                 cdb[1] = 0;
4544                 cdb[2] = (u8) (block >> 24);
4545                 cdb[3] = (u8) (block >> 16);
4546                 cdb[4] = (u8) (block >> 8);
4547                 cdb[5] = (u8) (block);
4548                 cdb[6] = 0;
4549                 cdb[7] = (u8) (block_cnt >> 8);
4550                 cdb[8] = (u8) (block_cnt);
4551                 cdb[9] = 0;
4552                 *cdb_len = 10;
4553                 break;
4554         }
4555         return 0;
4556 }
4557
4558 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4559         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4560         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4561 {
4562         struct scsi_cmnd *cmd = c->scsi_cmd;
4563         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4564         unsigned int len;
4565         unsigned int total_len = 0;
4566         struct scatterlist *sg;
4567         u64 addr64;
4568         int use_sg, i;
4569         struct SGDescriptor *curr_sg;
4570         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4571
4572         /* TODO: implement chaining support */
4573         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4574                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4575                 return IO_ACCEL_INELIGIBLE;
4576         }
4577
4578         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4579
4580         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4581                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4582                 return IO_ACCEL_INELIGIBLE;
4583         }
4584
4585         c->cmd_type = CMD_IOACCEL1;
4586
4587         /* Adjust the DMA address to point to the accelerated command buffer */
4588         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4589                                 (c->cmdindex * sizeof(*cp));
4590         BUG_ON(c->busaddr & 0x0000007F);
4591
4592         use_sg = scsi_dma_map(cmd);
4593         if (use_sg < 0) {
4594                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4595                 return use_sg;
4596         }
4597
4598         if (use_sg) {
4599                 curr_sg = cp->SG;
4600                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4601                         addr64 = (u64) sg_dma_address(sg);
4602                         len  = sg_dma_len(sg);
4603                         total_len += len;
4604                         curr_sg->Addr = cpu_to_le64(addr64);
4605                         curr_sg->Len = cpu_to_le32(len);
4606                         curr_sg->Ext = cpu_to_le32(0);
4607                         curr_sg++;
4608                 }
4609                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4610
4611                 switch (cmd->sc_data_direction) {
4612                 case DMA_TO_DEVICE:
4613                         control |= IOACCEL1_CONTROL_DATA_OUT;
4614                         break;
4615                 case DMA_FROM_DEVICE:
4616                         control |= IOACCEL1_CONTROL_DATA_IN;
4617                         break;
4618                 case DMA_NONE:
4619                         control |= IOACCEL1_CONTROL_NODATAXFER;
4620                         break;
4621                 default:
4622                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4623                         cmd->sc_data_direction);
4624                         BUG();
4625                         break;
4626                 }
4627         } else {
4628                 control |= IOACCEL1_CONTROL_NODATAXFER;
4629         }
4630
4631         c->Header.SGList = use_sg;
4632         /* Fill out the command structure to submit */
4633         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4634         cp->transfer_len = cpu_to_le32(total_len);
4635         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4636                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4637         cp->control = cpu_to_le32(control);
4638         memcpy(cp->CDB, cdb, cdb_len);
4639         memcpy(cp->CISS_LUN, scsi3addr, 8);
4640         /* Tag was already set at init time. */
4641         enqueue_cmd_and_start_io(h, c);
4642         return 0;
4643 }
4644
4645 /*
4646  * Queue a command directly to a device behind the controller using the
4647  * I/O accelerator path.
4648  */
4649 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4650         struct CommandList *c)
4651 {
4652         struct scsi_cmnd *cmd = c->scsi_cmd;
4653         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4654
4655         c->phys_disk = dev;
4656
4657         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4658                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4659 }
4660
4661 /*
4662  * Set encryption parameters for the ioaccel2 request
4663  */
4664 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4665         struct CommandList *c, struct io_accel2_cmd *cp)
4666 {
4667         struct scsi_cmnd *cmd = c->scsi_cmd;
4668         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4669         struct raid_map_data *map = &dev->raid_map;
4670         u64 first_block;
4671
4672         /* Are we doing encryption on this device */
4673         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4674                 return;
4675         /* Set the data encryption key index. */
4676         cp->dekindex = map->dekindex;
4677
4678         /* Set the encryption enable flag, encoded into direction field. */
4679         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4680
4681         /* Set encryption tweak values based on logical block address
4682          * If block size is 512, tweak value is LBA.
4683          * For other block sizes, tweak is (LBA * block size)/ 512)
4684          */
4685         switch (cmd->cmnd[0]) {
4686         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4687         case WRITE_6:
4688         case READ_6:
4689                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4690                 break;
4691         case WRITE_10:
4692         case READ_10:
4693         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4694         case WRITE_12:
4695         case READ_12:
4696                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4697                 break;
4698         case WRITE_16:
4699         case READ_16:
4700                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4701                 break;
4702         default:
4703                 dev_err(&h->pdev->dev,
4704                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4705                         __func__, cmd->cmnd[0]);
4706                 BUG();
4707                 break;
4708         }
4709
4710         if (le32_to_cpu(map->volume_blk_size) != 512)
4711                 first_block = first_block *
4712                                 le32_to_cpu(map->volume_blk_size)/512;
4713
4714         cp->tweak_lower = cpu_to_le32(first_block);
4715         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4716 }
4717
4718 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4719         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4720         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4721 {
4722         struct scsi_cmnd *cmd = c->scsi_cmd;
4723         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4724         struct ioaccel2_sg_element *curr_sg;
4725         int use_sg, i;
4726         struct scatterlist *sg;
4727         u64 addr64;
4728         u32 len;
4729         u32 total_len = 0;
4730
4731         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4732
4733         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4734                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4735                 return IO_ACCEL_INELIGIBLE;
4736         }
4737
4738         c->cmd_type = CMD_IOACCEL2;
4739         /* Adjust the DMA address to point to the accelerated command buffer */
4740         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4741                                 (c->cmdindex * sizeof(*cp));
4742         BUG_ON(c->busaddr & 0x0000007F);
4743
4744         memset(cp, 0, sizeof(*cp));
4745         cp->IU_type = IOACCEL2_IU_TYPE;
4746
4747         use_sg = scsi_dma_map(cmd);
4748         if (use_sg < 0) {
4749                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4750                 return use_sg;
4751         }
4752
4753         if (use_sg) {
4754                 curr_sg = cp->sg;
4755                 if (use_sg > h->ioaccel_maxsg) {
4756                         addr64 = le64_to_cpu(
4757                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4758                         curr_sg->address = cpu_to_le64(addr64);
4759                         curr_sg->length = 0;
4760                         curr_sg->reserved[0] = 0;
4761                         curr_sg->reserved[1] = 0;
4762                         curr_sg->reserved[2] = 0;
4763                         curr_sg->chain_indicator = 0x80;
4764
4765                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4766                 }
4767                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4768                         addr64 = (u64) sg_dma_address(sg);
4769                         len  = sg_dma_len(sg);
4770                         total_len += len;
4771                         curr_sg->address = cpu_to_le64(addr64);
4772                         curr_sg->length = cpu_to_le32(len);
4773                         curr_sg->reserved[0] = 0;
4774                         curr_sg->reserved[1] = 0;
4775                         curr_sg->reserved[2] = 0;
4776                         curr_sg->chain_indicator = 0;
4777                         curr_sg++;
4778                 }
4779
4780                 switch (cmd->sc_data_direction) {
4781                 case DMA_TO_DEVICE:
4782                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4783                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4784                         break;
4785                 case DMA_FROM_DEVICE:
4786                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4787                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4788                         break;
4789                 case DMA_NONE:
4790                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4791                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4792                         break;
4793                 default:
4794                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4795                                 cmd->sc_data_direction);
4796                         BUG();
4797                         break;
4798                 }
4799         } else {
4800                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4801                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4802         }
4803
4804         /* Set encryption parameters, if necessary */
4805         set_encrypt_ioaccel2(h, c, cp);
4806
4807         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4808         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4809         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4810
4811         cp->data_len = cpu_to_le32(total_len);
4812         cp->err_ptr = cpu_to_le64(c->busaddr +
4813                         offsetof(struct io_accel2_cmd, error_data));
4814         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4815
4816         /* fill in sg elements */
4817         if (use_sg > h->ioaccel_maxsg) {
4818                 cp->sg_count = 1;
4819                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4820                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4821                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4822                         scsi_dma_unmap(cmd);
4823                         return -1;
4824                 }
4825         } else
4826                 cp->sg_count = (u8) use_sg;
4827
4828         enqueue_cmd_and_start_io(h, c);
4829         return 0;
4830 }
4831
4832 /*
4833  * Queue a command to the correct I/O accelerator path.
4834  */
4835 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4836         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4837         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4838 {
4839         /* Try to honor the device's queue depth */
4840         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4841                                         phys_disk->queue_depth) {
4842                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4843                 return IO_ACCEL_INELIGIBLE;
4844         }
4845         if (h->transMethod & CFGTBL_Trans_io_accel1)
4846                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4847                                                 cdb, cdb_len, scsi3addr,
4848                                                 phys_disk);
4849         else
4850                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4851                                                 cdb, cdb_len, scsi3addr,
4852                                                 phys_disk);
4853 }
4854
4855 static void raid_map_helper(struct raid_map_data *map,
4856                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4857 {
4858         if (offload_to_mirror == 0)  {
4859                 /* use physical disk in the first mirrored group. */
4860                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4861                 return;
4862         }
4863         do {
4864                 /* determine mirror group that *map_index indicates */
4865                 *current_group = *map_index /
4866                         le16_to_cpu(map->data_disks_per_row);
4867                 if (offload_to_mirror == *current_group)
4868                         continue;
4869                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4870                         /* select map index from next group */
4871                         *map_index += le16_to_cpu(map->data_disks_per_row);
4872                         (*current_group)++;
4873                 } else {
4874                         /* select map index from first group */
4875                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4876                         *current_group = 0;
4877                 }
4878         } while (offload_to_mirror != *current_group);
4879 }
4880
4881 /*
4882  * Attempt to perform offload RAID mapping for a logical volume I/O.
4883  */
4884 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4885         struct CommandList *c)
4886 {
4887         struct scsi_cmnd *cmd = c->scsi_cmd;
4888         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4889         struct raid_map_data *map = &dev->raid_map;
4890         struct raid_map_disk_data *dd = &map->data[0];
4891         int is_write = 0;
4892         u32 map_index;
4893         u64 first_block, last_block;
4894         u32 block_cnt;
4895         u32 blocks_per_row;
4896         u64 first_row, last_row;
4897         u32 first_row_offset, last_row_offset;
4898         u32 first_column, last_column;
4899         u64 r0_first_row, r0_last_row;
4900         u32 r5or6_blocks_per_row;
4901         u64 r5or6_first_row, r5or6_last_row;
4902         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4903         u32 r5or6_first_column, r5or6_last_column;
4904         u32 total_disks_per_row;
4905         u32 stripesize;
4906         u32 first_group, last_group, current_group;
4907         u32 map_row;
4908         u32 disk_handle;
4909         u64 disk_block;
4910         u32 disk_block_cnt;
4911         u8 cdb[16];
4912         u8 cdb_len;
4913         u16 strip_size;
4914 #if BITS_PER_LONG == 32
4915         u64 tmpdiv;
4916 #endif
4917         int offload_to_mirror;
4918
4919         /* check for valid opcode, get LBA and block count */
4920         switch (cmd->cmnd[0]) {
4921         case WRITE_6:
4922                 is_write = 1;
4923         case READ_6:
4924                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4925                 block_cnt = cmd->cmnd[4];
4926                 if (block_cnt == 0)
4927                         block_cnt = 256;
4928                 break;
4929         case WRITE_10:
4930                 is_write = 1;
4931         case READ_10:
4932                 first_block =
4933                         (((u64) cmd->cmnd[2]) << 24) |
4934                         (((u64) cmd->cmnd[3]) << 16) |
4935                         (((u64) cmd->cmnd[4]) << 8) |
4936                         cmd->cmnd[5];
4937                 block_cnt =
4938                         (((u32) cmd->cmnd[7]) << 8) |
4939                         cmd->cmnd[8];
4940                 break;
4941         case WRITE_12:
4942                 is_write = 1;
4943         case READ_12:
4944                 first_block =
4945                         (((u64) cmd->cmnd[2]) << 24) |
4946                         (((u64) cmd->cmnd[3]) << 16) |
4947                         (((u64) cmd->cmnd[4]) << 8) |
4948                         cmd->cmnd[5];
4949                 block_cnt =
4950                         (((u32) cmd->cmnd[6]) << 24) |
4951                         (((u32) cmd->cmnd[7]) << 16) |
4952                         (((u32) cmd->cmnd[8]) << 8) |
4953                 cmd->cmnd[9];
4954                 break;
4955         case WRITE_16:
4956                 is_write = 1;
4957         case READ_16:
4958                 first_block =
4959                         (((u64) cmd->cmnd[2]) << 56) |
4960                         (((u64) cmd->cmnd[3]) << 48) |
4961                         (((u64) cmd->cmnd[4]) << 40) |
4962                         (((u64) cmd->cmnd[5]) << 32) |
4963                         (((u64) cmd->cmnd[6]) << 24) |
4964                         (((u64) cmd->cmnd[7]) << 16) |
4965                         (((u64) cmd->cmnd[8]) << 8) |
4966                         cmd->cmnd[9];
4967                 block_cnt =
4968                         (((u32) cmd->cmnd[10]) << 24) |
4969                         (((u32) cmd->cmnd[11]) << 16) |
4970                         (((u32) cmd->cmnd[12]) << 8) |
4971                         cmd->cmnd[13];
4972                 break;
4973         default:
4974                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4975         }
4976         last_block = first_block + block_cnt - 1;
4977
4978         /* check for write to non-RAID-0 */
4979         if (is_write && dev->raid_level != 0)
4980                 return IO_ACCEL_INELIGIBLE;
4981
4982         /* check for invalid block or wraparound */
4983         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4984                 last_block < first_block)
4985                 return IO_ACCEL_INELIGIBLE;
4986
4987         /* calculate stripe information for the request */
4988         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4989                                 le16_to_cpu(map->strip_size);
4990         strip_size = le16_to_cpu(map->strip_size);
4991 #if BITS_PER_LONG == 32
4992         tmpdiv = first_block;
4993         (void) do_div(tmpdiv, blocks_per_row);
4994         first_row = tmpdiv;
4995         tmpdiv = last_block;
4996         (void) do_div(tmpdiv, blocks_per_row);
4997         last_row = tmpdiv;
4998         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4999         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5000         tmpdiv = first_row_offset;
5001         (void) do_div(tmpdiv, strip_size);
5002         first_column = tmpdiv;
5003         tmpdiv = last_row_offset;
5004         (void) do_div(tmpdiv, strip_size);
5005         last_column = tmpdiv;
5006 #else
5007         first_row = first_block / blocks_per_row;
5008         last_row = last_block / blocks_per_row;
5009         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5010         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5011         first_column = first_row_offset / strip_size;
5012         last_column = last_row_offset / strip_size;
5013 #endif
5014
5015         /* if this isn't a single row/column then give to the controller */
5016         if ((first_row != last_row) || (first_column != last_column))
5017                 return IO_ACCEL_INELIGIBLE;
5018
5019         /* proceeding with driver mapping */
5020         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5021                                 le16_to_cpu(map->metadata_disks_per_row);
5022         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5023                                 le16_to_cpu(map->row_cnt);
5024         map_index = (map_row * total_disks_per_row) + first_column;
5025
5026         switch (dev->raid_level) {
5027         case HPSA_RAID_0:
5028                 break; /* nothing special to do */
5029         case HPSA_RAID_1:
5030                 /* Handles load balance across RAID 1 members.
5031                  * (2-drive R1 and R10 with even # of drives.)
5032                  * Appropriate for SSDs, not optimal for HDDs
5033                  */
5034                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5035                 if (dev->offload_to_mirror)
5036                         map_index += le16_to_cpu(map->data_disks_per_row);
5037                 dev->offload_to_mirror = !dev->offload_to_mirror;
5038                 break;
5039         case HPSA_RAID_ADM:
5040                 /* Handles N-way mirrors  (R1-ADM)
5041                  * and R10 with # of drives divisible by 3.)
5042                  */
5043                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5044
5045                 offload_to_mirror = dev->offload_to_mirror;
5046                 raid_map_helper(map, offload_to_mirror,
5047                                 &map_index, &current_group);
5048                 /* set mirror group to use next time */
5049                 offload_to_mirror =
5050                         (offload_to_mirror >=
5051                         le16_to_cpu(map->layout_map_count) - 1)
5052                         ? 0 : offload_to_mirror + 1;
5053                 dev->offload_to_mirror = offload_to_mirror;
5054                 /* Avoid direct use of dev->offload_to_mirror within this
5055                  * function since multiple threads might simultaneously
5056                  * increment it beyond the range of dev->layout_map_count -1.
5057                  */
5058                 break;
5059         case HPSA_RAID_5:
5060         case HPSA_RAID_6:
5061                 if (le16_to_cpu(map->layout_map_count) <= 1)
5062                         break;
5063
5064                 /* Verify first and last block are in same RAID group */
5065                 r5or6_blocks_per_row =
5066                         le16_to_cpu(map->strip_size) *
5067                         le16_to_cpu(map->data_disks_per_row);
5068                 BUG_ON(r5or6_blocks_per_row == 0);
5069                 stripesize = r5or6_blocks_per_row *
5070                         le16_to_cpu(map->layout_map_count);
5071 #if BITS_PER_LONG == 32
5072                 tmpdiv = first_block;
5073                 first_group = do_div(tmpdiv, stripesize);
5074                 tmpdiv = first_group;
5075                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5076                 first_group = tmpdiv;
5077                 tmpdiv = last_block;
5078                 last_group = do_div(tmpdiv, stripesize);
5079                 tmpdiv = last_group;
5080                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5081                 last_group = tmpdiv;
5082 #else
5083                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5084                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5085 #endif
5086                 if (first_group != last_group)
5087                         return IO_ACCEL_INELIGIBLE;
5088
5089                 /* Verify request is in a single row of RAID 5/6 */
5090 #if BITS_PER_LONG == 32
5091                 tmpdiv = first_block;
5092                 (void) do_div(tmpdiv, stripesize);
5093                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5094                 tmpdiv = last_block;
5095                 (void) do_div(tmpdiv, stripesize);
5096                 r5or6_last_row = r0_last_row = tmpdiv;
5097 #else
5098                 first_row = r5or6_first_row = r0_first_row =
5099                                                 first_block / stripesize;
5100                 r5or6_last_row = r0_last_row = last_block / stripesize;
5101 #endif
5102                 if (r5or6_first_row != r5or6_last_row)
5103                         return IO_ACCEL_INELIGIBLE;
5104
5105
5106                 /* Verify request is in a single column */
5107 #if BITS_PER_LONG == 32
5108                 tmpdiv = first_block;
5109                 first_row_offset = do_div(tmpdiv, stripesize);
5110                 tmpdiv = first_row_offset;
5111                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5112                 r5or6_first_row_offset = first_row_offset;
5113                 tmpdiv = last_block;
5114                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5115                 tmpdiv = r5or6_last_row_offset;
5116                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5117                 tmpdiv = r5or6_first_row_offset;
5118                 (void) do_div(tmpdiv, map->strip_size);
5119                 first_column = r5or6_first_column = tmpdiv;
5120                 tmpdiv = r5or6_last_row_offset;
5121                 (void) do_div(tmpdiv, map->strip_size);
5122                 r5or6_last_column = tmpdiv;
5123 #else
5124                 first_row_offset = r5or6_first_row_offset =
5125                         (u32)((first_block % stripesize) %
5126                                                 r5or6_blocks_per_row);
5127
5128                 r5or6_last_row_offset =
5129                         (u32)((last_block % stripesize) %
5130                                                 r5or6_blocks_per_row);
5131
5132                 first_column = r5or6_first_column =
5133                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5134                 r5or6_last_column =
5135                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5136 #endif
5137                 if (r5or6_first_column != r5or6_last_column)
5138                         return IO_ACCEL_INELIGIBLE;
5139
5140                 /* Request is eligible */
5141                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5142                         le16_to_cpu(map->row_cnt);
5143
5144                 map_index = (first_group *
5145                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5146                         (map_row * total_disks_per_row) + first_column;
5147                 break;
5148         default:
5149                 return IO_ACCEL_INELIGIBLE;
5150         }
5151
5152         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5153                 return IO_ACCEL_INELIGIBLE;
5154
5155         c->phys_disk = dev->phys_disk[map_index];
5156         if (!c->phys_disk)
5157                 return IO_ACCEL_INELIGIBLE;
5158
5159         disk_handle = dd[map_index].ioaccel_handle;
5160         disk_block = le64_to_cpu(map->disk_starting_blk) +
5161                         first_row * le16_to_cpu(map->strip_size) +
5162                         (first_row_offset - first_column *
5163                         le16_to_cpu(map->strip_size));
5164         disk_block_cnt = block_cnt;
5165
5166         /* handle differing logical/physical block sizes */
5167         if (map->phys_blk_shift) {
5168                 disk_block <<= map->phys_blk_shift;
5169                 disk_block_cnt <<= map->phys_blk_shift;
5170         }
5171         BUG_ON(disk_block_cnt > 0xffff);
5172
5173         /* build the new CDB for the physical disk I/O */
5174         if (disk_block > 0xffffffff) {
5175                 cdb[0] = is_write ? WRITE_16 : READ_16;
5176                 cdb[1] = 0;
5177                 cdb[2] = (u8) (disk_block >> 56);
5178                 cdb[3] = (u8) (disk_block >> 48);
5179                 cdb[4] = (u8) (disk_block >> 40);
5180                 cdb[5] = (u8) (disk_block >> 32);
5181                 cdb[6] = (u8) (disk_block >> 24);
5182                 cdb[7] = (u8) (disk_block >> 16);
5183                 cdb[8] = (u8) (disk_block >> 8);
5184                 cdb[9] = (u8) (disk_block);
5185                 cdb[10] = (u8) (disk_block_cnt >> 24);
5186                 cdb[11] = (u8) (disk_block_cnt >> 16);
5187                 cdb[12] = (u8) (disk_block_cnt >> 8);
5188                 cdb[13] = (u8) (disk_block_cnt);
5189                 cdb[14] = 0;
5190                 cdb[15] = 0;
5191                 cdb_len = 16;
5192         } else {
5193                 cdb[0] = is_write ? WRITE_10 : READ_10;
5194                 cdb[1] = 0;
5195                 cdb[2] = (u8) (disk_block >> 24);
5196                 cdb[3] = (u8) (disk_block >> 16);
5197                 cdb[4] = (u8) (disk_block >> 8);
5198                 cdb[5] = (u8) (disk_block);
5199                 cdb[6] = 0;
5200                 cdb[7] = (u8) (disk_block_cnt >> 8);
5201                 cdb[8] = (u8) (disk_block_cnt);
5202                 cdb[9] = 0;
5203                 cdb_len = 10;
5204         }
5205         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5206                                                 dev->scsi3addr,
5207                                                 dev->phys_disk[map_index]);
5208 }
5209
5210 /*
5211  * Submit commands down the "normal" RAID stack path
5212  * All callers to hpsa_ciss_submit must check lockup_detected
5213  * beforehand, before (opt.) and after calling cmd_alloc
5214  */
5215 static int hpsa_ciss_submit(struct ctlr_info *h,
5216         struct CommandList *c, struct scsi_cmnd *cmd,
5217         unsigned char scsi3addr[])
5218 {
5219         cmd->host_scribble = (unsigned char *) c;
5220         c->cmd_type = CMD_SCSI;
5221         c->scsi_cmd = cmd;
5222         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5223         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5224         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5225
5226         /* Fill in the request block... */
5227
5228         c->Request.Timeout = 0;
5229         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5230         c->Request.CDBLen = cmd->cmd_len;
5231         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5232         switch (cmd->sc_data_direction) {
5233         case DMA_TO_DEVICE:
5234                 c->Request.type_attr_dir =
5235                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5236                 break;
5237         case DMA_FROM_DEVICE:
5238                 c->Request.type_attr_dir =
5239                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5240                 break;
5241         case DMA_NONE:
5242                 c->Request.type_attr_dir =
5243                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5244                 break;
5245         case DMA_BIDIRECTIONAL:
5246                 /* This can happen if a buggy application does a scsi passthru
5247                  * and sets both inlen and outlen to non-zero. ( see
5248                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5249                  */
5250
5251                 c->Request.type_attr_dir =
5252                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5253                 /* This is technically wrong, and hpsa controllers should
5254                  * reject it with CMD_INVALID, which is the most correct
5255                  * response, but non-fibre backends appear to let it
5256                  * slide by, and give the same results as if this field
5257                  * were set correctly.  Either way is acceptable for
5258                  * our purposes here.
5259                  */
5260
5261                 break;
5262
5263         default:
5264                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5265                         cmd->sc_data_direction);
5266                 BUG();
5267                 break;
5268         }
5269
5270         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5271                 hpsa_cmd_resolve_and_free(h, c);
5272                 return SCSI_MLQUEUE_HOST_BUSY;
5273         }
5274         enqueue_cmd_and_start_io(h, c);
5275         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5276         return 0;
5277 }
5278
5279 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5280                                 struct CommandList *c)
5281 {
5282         dma_addr_t cmd_dma_handle, err_dma_handle;
5283
5284         /* Zero out all of commandlist except the last field, refcount */
5285         memset(c, 0, offsetof(struct CommandList, refcount));
5286         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5287         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5288         c->err_info = h->errinfo_pool + index;
5289         memset(c->err_info, 0, sizeof(*c->err_info));
5290         err_dma_handle = h->errinfo_pool_dhandle
5291             + index * sizeof(*c->err_info);
5292         c->cmdindex = index;
5293         c->busaddr = (u32) cmd_dma_handle;
5294         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5295         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5296         c->h = h;
5297         c->scsi_cmd = SCSI_CMD_IDLE;
5298 }
5299
5300 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5301 {
5302         int i;
5303
5304         for (i = 0; i < h->nr_cmds; i++) {
5305                 struct CommandList *c = h->cmd_pool + i;
5306
5307                 hpsa_cmd_init(h, i, c);
5308                 atomic_set(&c->refcount, 0);
5309         }
5310 }
5311
5312 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5313                                 struct CommandList *c)
5314 {
5315         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5316
5317         BUG_ON(c->cmdindex != index);
5318
5319         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5320         memset(c->err_info, 0, sizeof(*c->err_info));
5321         c->busaddr = (u32) cmd_dma_handle;
5322 }
5323
5324 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5325                 struct CommandList *c, struct scsi_cmnd *cmd,
5326                 unsigned char *scsi3addr)
5327 {
5328         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5329         int rc = IO_ACCEL_INELIGIBLE;
5330
5331         cmd->host_scribble = (unsigned char *) c;
5332
5333         if (dev->offload_enabled) {
5334                 hpsa_cmd_init(h, c->cmdindex, c);
5335                 c->cmd_type = CMD_SCSI;
5336                 c->scsi_cmd = cmd;
5337                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5338                 if (rc < 0)     /* scsi_dma_map failed. */
5339                         rc = SCSI_MLQUEUE_HOST_BUSY;
5340         } else if (dev->hba_ioaccel_enabled) {
5341                 hpsa_cmd_init(h, c->cmdindex, c);
5342                 c->cmd_type = CMD_SCSI;
5343                 c->scsi_cmd = cmd;
5344                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5345                 if (rc < 0)     /* scsi_dma_map failed. */
5346                         rc = SCSI_MLQUEUE_HOST_BUSY;
5347         }
5348         return rc;
5349 }
5350
5351 static void hpsa_command_resubmit_worker(struct work_struct *work)
5352 {
5353         struct scsi_cmnd *cmd;
5354         struct hpsa_scsi_dev_t *dev;
5355         struct CommandList *c = container_of(work, struct CommandList, work);
5356
5357         cmd = c->scsi_cmd;
5358         dev = cmd->device->hostdata;
5359         if (!dev) {
5360                 cmd->result = DID_NO_CONNECT << 16;
5361                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5362         }
5363         if (c->reset_pending)
5364                 return hpsa_cmd_resolve_and_free(c->h, c);
5365         if (c->abort_pending)
5366                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5367         if (c->cmd_type == CMD_IOACCEL2) {
5368                 struct ctlr_info *h = c->h;
5369                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5370                 int rc;
5371
5372                 if (c2->error_data.serv_response ==
5373                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5374                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5375                         if (rc == 0)
5376                                 return;
5377                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5378                                 /*
5379                                  * If we get here, it means dma mapping failed.
5380                                  * Try again via scsi mid layer, which will
5381                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5382                                  */
5383                                 cmd->result = DID_IMM_RETRY << 16;
5384                                 return hpsa_cmd_free_and_done(h, c, cmd);
5385                         }
5386                         /* else, fall thru and resubmit down CISS path */
5387                 }
5388         }
5389         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5390         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5391                 /*
5392                  * If we get here, it means dma mapping failed. Try
5393                  * again via scsi mid layer, which will then get
5394                  * SCSI_MLQUEUE_HOST_BUSY.
5395                  *
5396                  * hpsa_ciss_submit will have already freed c
5397                  * if it encountered a dma mapping failure.
5398                  */
5399                 cmd->result = DID_IMM_RETRY << 16;
5400                 cmd->scsi_done(cmd);
5401         }
5402 }
5403
5404 /* Running in struct Scsi_Host->host_lock less mode */
5405 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5406 {
5407         struct ctlr_info *h;
5408         struct hpsa_scsi_dev_t *dev;
5409         unsigned char scsi3addr[8];
5410         struct CommandList *c;
5411         int rc = 0;
5412
5413         /* Get the ptr to our adapter structure out of cmd->host. */
5414         h = sdev_to_hba(cmd->device);
5415
5416         BUG_ON(cmd->request->tag < 0);
5417
5418         dev = cmd->device->hostdata;
5419         if (!dev) {
5420                 cmd->result = NOT_READY << 16; /* host byte */
5421                 cmd->scsi_done(cmd);
5422                 return 0;
5423         }
5424
5425         if (dev->removed) {
5426                 cmd->result = DID_NO_CONNECT << 16;
5427                 cmd->scsi_done(cmd);
5428                 return 0;
5429         }
5430
5431         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5432
5433         if (unlikely(lockup_detected(h))) {
5434                 cmd->result = DID_NO_CONNECT << 16;
5435                 cmd->scsi_done(cmd);
5436                 return 0;
5437         }
5438         c = cmd_tagged_alloc(h, cmd);
5439
5440         /*
5441          * Call alternate submit routine for I/O accelerated commands.
5442          * Retries always go down the normal I/O path.
5443          */
5444         if (likely(cmd->retries == 0 &&
5445                 cmd->request->cmd_type == REQ_TYPE_FS &&
5446                 h->acciopath_status)) {
5447                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5448                 if (rc == 0)
5449                         return 0;
5450                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5451                         hpsa_cmd_resolve_and_free(h, c);
5452                         return SCSI_MLQUEUE_HOST_BUSY;
5453                 }
5454         }
5455         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5456 }
5457
5458 static void hpsa_scan_complete(struct ctlr_info *h)
5459 {
5460         unsigned long flags;
5461
5462         spin_lock_irqsave(&h->scan_lock, flags);
5463         h->scan_finished = 1;
5464         wake_up_all(&h->scan_wait_queue);
5465         spin_unlock_irqrestore(&h->scan_lock, flags);
5466 }
5467
5468 static void hpsa_scan_start(struct Scsi_Host *sh)
5469 {
5470         struct ctlr_info *h = shost_to_hba(sh);
5471         unsigned long flags;
5472
5473         /*
5474          * Don't let rescans be initiated on a controller known to be locked
5475          * up.  If the controller locks up *during* a rescan, that thread is
5476          * probably hosed, but at least we can prevent new rescan threads from
5477          * piling up on a locked up controller.
5478          */
5479         if (unlikely(lockup_detected(h)))
5480                 return hpsa_scan_complete(h);
5481
5482         /* wait until any scan already in progress is finished. */
5483         while (1) {
5484                 spin_lock_irqsave(&h->scan_lock, flags);
5485                 if (h->scan_finished)
5486                         break;
5487                 spin_unlock_irqrestore(&h->scan_lock, flags);
5488                 wait_event(h->scan_wait_queue, h->scan_finished);
5489                 /* Note: We don't need to worry about a race between this
5490                  * thread and driver unload because the midlayer will
5491                  * have incremented the reference count, so unload won't
5492                  * happen if we're in here.
5493                  */
5494         }
5495         h->scan_finished = 0; /* mark scan as in progress */
5496         spin_unlock_irqrestore(&h->scan_lock, flags);
5497
5498         if (unlikely(lockup_detected(h)))
5499                 return hpsa_scan_complete(h);
5500
5501         hpsa_update_scsi_devices(h);
5502
5503         hpsa_scan_complete(h);
5504 }
5505
5506 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5507 {
5508         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5509
5510         if (!logical_drive)
5511                 return -ENODEV;
5512
5513         if (qdepth < 1)
5514                 qdepth = 1;
5515         else if (qdepth > logical_drive->queue_depth)
5516                 qdepth = logical_drive->queue_depth;
5517
5518         return scsi_change_queue_depth(sdev, qdepth);
5519 }
5520
5521 static int hpsa_scan_finished(struct Scsi_Host *sh,
5522         unsigned long elapsed_time)
5523 {
5524         struct ctlr_info *h = shost_to_hba(sh);
5525         unsigned long flags;
5526         int finished;
5527
5528         spin_lock_irqsave(&h->scan_lock, flags);
5529         finished = h->scan_finished;
5530         spin_unlock_irqrestore(&h->scan_lock, flags);
5531         return finished;
5532 }
5533
5534 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5535 {
5536         struct Scsi_Host *sh;
5537
5538         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5539         if (sh == NULL) {
5540                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5541                 return -ENOMEM;
5542         }
5543
5544         sh->io_port = 0;
5545         sh->n_io_port = 0;
5546         sh->this_id = -1;
5547         sh->max_channel = 3;
5548         sh->max_cmd_len = MAX_COMMAND_SIZE;
5549         sh->max_lun = HPSA_MAX_LUN;
5550         sh->max_id = HPSA_MAX_LUN;
5551         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5552         sh->cmd_per_lun = sh->can_queue;
5553         sh->sg_tablesize = h->maxsgentries;
5554         sh->transportt = hpsa_sas_transport_template;
5555         sh->hostdata[0] = (unsigned long) h;
5556         sh->irq = h->intr[h->intr_mode];
5557         sh->unique_id = sh->irq;
5558
5559         h->scsi_host = sh;
5560         return 0;
5561 }
5562
5563 static int hpsa_scsi_add_host(struct ctlr_info *h)
5564 {
5565         int rv;
5566
5567         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5568         if (rv) {
5569                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5570                 return rv;
5571         }
5572         scsi_scan_host(h->scsi_host);
5573         return 0;
5574 }
5575
5576 /*
5577  * The block layer has already gone to the trouble of picking out a unique,
5578  * small-integer tag for this request.  We use an offset from that value as
5579  * an index to select our command block.  (The offset allows us to reserve the
5580  * low-numbered entries for our own uses.)
5581  */
5582 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5583 {
5584         int idx = scmd->request->tag;
5585
5586         if (idx < 0)
5587                 return idx;
5588
5589         /* Offset to leave space for internal cmds. */
5590         return idx += HPSA_NRESERVED_CMDS;
5591 }
5592
5593 /*
5594  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5595  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5596  */
5597 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5598                                 struct CommandList *c, unsigned char lunaddr[],
5599                                 int reply_queue)
5600 {
5601         int rc;
5602
5603         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5604         (void) fill_cmd(c, TEST_UNIT_READY, h,
5605                         NULL, 0, 0, lunaddr, TYPE_CMD);
5606         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5607         if (rc)
5608                 return rc;
5609         /* no unmap needed here because no data xfer. */
5610
5611         /* Check if the unit is already ready. */
5612         if (c->err_info->CommandStatus == CMD_SUCCESS)
5613                 return 0;
5614
5615         /*
5616          * The first command sent after reset will receive "unit attention" to
5617          * indicate that the LUN has been reset...this is actually what we're
5618          * looking for (but, success is good too).
5619          */
5620         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5621                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5622                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5623                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5624                 return 0;
5625
5626         return 1;
5627 }
5628
5629 /*
5630  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5631  * returns zero when the unit is ready, and non-zero when giving up.
5632  */
5633 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5634                                 struct CommandList *c,
5635                                 unsigned char lunaddr[], int reply_queue)
5636 {
5637         int rc;
5638         int count = 0;
5639         int waittime = 1; /* seconds */
5640
5641         /* Send test unit ready until device ready, or give up. */
5642         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5643
5644                 /*
5645                  * Wait for a bit.  do this first, because if we send
5646                  * the TUR right away, the reset will just abort it.
5647                  */
5648                 msleep(1000 * waittime);
5649
5650                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5651                 if (!rc)
5652                         break;
5653
5654                 /* Increase wait time with each try, up to a point. */
5655                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5656                         waittime *= 2;
5657
5658                 dev_warn(&h->pdev->dev,
5659                          "waiting %d secs for device to become ready.\n",
5660                          waittime);
5661         }
5662
5663         return rc;
5664 }
5665
5666 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5667                                            unsigned char lunaddr[],
5668                                            int reply_queue)
5669 {
5670         int first_queue;
5671         int last_queue;
5672         int rq;
5673         int rc = 0;
5674         struct CommandList *c;
5675
5676         c = cmd_alloc(h);
5677
5678         /*
5679          * If no specific reply queue was requested, then send the TUR
5680          * repeatedly, requesting a reply on each reply queue; otherwise execute
5681          * the loop exactly once using only the specified queue.
5682          */
5683         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5684                 first_queue = 0;
5685                 last_queue = h->nreply_queues - 1;
5686         } else {
5687                 first_queue = reply_queue;
5688                 last_queue = reply_queue;
5689         }
5690
5691         for (rq = first_queue; rq <= last_queue; rq++) {
5692                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5693                 if (rc)
5694                         break;
5695         }
5696
5697         if (rc)
5698                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5699         else
5700                 dev_warn(&h->pdev->dev, "device is ready.\n");
5701
5702         cmd_free(h, c);
5703         return rc;
5704 }
5705
5706 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5707  * complaining.  Doing a host- or bus-reset can't do anything good here.
5708  */
5709 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5710 {
5711         int rc;
5712         struct ctlr_info *h;
5713         struct hpsa_scsi_dev_t *dev;
5714         u8 reset_type;
5715         char msg[48];
5716
5717         /* find the controller to which the command to be aborted was sent */
5718         h = sdev_to_hba(scsicmd->device);
5719         if (h == NULL) /* paranoia */
5720                 return FAILED;
5721
5722         if (lockup_detected(h))
5723                 return FAILED;
5724
5725         dev = scsicmd->device->hostdata;
5726         if (!dev) {
5727                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5728                 return FAILED;
5729         }
5730
5731         /* if controller locked up, we can guarantee command won't complete */
5732         if (lockup_detected(h)) {
5733                 snprintf(msg, sizeof(msg),
5734                          "cmd %d RESET FAILED, lockup detected",
5735                          hpsa_get_cmd_index(scsicmd));
5736                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5737                 return FAILED;
5738         }
5739
5740         /* this reset request might be the result of a lockup; check */
5741         if (detect_controller_lockup(h)) {
5742                 snprintf(msg, sizeof(msg),
5743                          "cmd %d RESET FAILED, new lockup detected",
5744                          hpsa_get_cmd_index(scsicmd));
5745                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5746                 return FAILED;
5747         }
5748
5749         /* Do not attempt on controller */
5750         if (is_hba_lunid(dev->scsi3addr))
5751                 return SUCCESS;
5752
5753         if (is_logical_dev_addr_mode(dev->scsi3addr))
5754                 reset_type = HPSA_DEVICE_RESET_MSG;
5755         else
5756                 reset_type = HPSA_PHYS_TARGET_RESET;
5757
5758         sprintf(msg, "resetting %s",
5759                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5760         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5761
5762         h->reset_in_progress = 1;
5763
5764         /* send a reset to the SCSI LUN which the command was sent to */
5765         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5766                            DEFAULT_REPLY_QUEUE);
5767         sprintf(msg, "reset %s %s",
5768                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5769                 rc == 0 ? "completed successfully" : "failed");
5770         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5771         h->reset_in_progress = 0;
5772         return rc == 0 ? SUCCESS : FAILED;
5773 }
5774
5775 static void swizzle_abort_tag(u8 *tag)
5776 {
5777         u8 original_tag[8];
5778
5779         memcpy(original_tag, tag, 8);
5780         tag[0] = original_tag[3];
5781         tag[1] = original_tag[2];
5782         tag[2] = original_tag[1];
5783         tag[3] = original_tag[0];
5784         tag[4] = original_tag[7];
5785         tag[5] = original_tag[6];
5786         tag[6] = original_tag[5];
5787         tag[7] = original_tag[4];
5788 }
5789
5790 static void hpsa_get_tag(struct ctlr_info *h,
5791         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5792 {
5793         u64 tag;
5794         if (c->cmd_type == CMD_IOACCEL1) {
5795                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5796                         &h->ioaccel_cmd_pool[c->cmdindex];
5797                 tag = le64_to_cpu(cm1->tag);
5798                 *tagupper = cpu_to_le32(tag >> 32);
5799                 *taglower = cpu_to_le32(tag);
5800                 return;
5801         }
5802         if (c->cmd_type == CMD_IOACCEL2) {
5803                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5804                         &h->ioaccel2_cmd_pool[c->cmdindex];
5805                 /* upper tag not used in ioaccel2 mode */
5806                 memset(tagupper, 0, sizeof(*tagupper));
5807                 *taglower = cm2->Tag;
5808                 return;
5809         }
5810         tag = le64_to_cpu(c->Header.tag);
5811         *tagupper = cpu_to_le32(tag >> 32);
5812         *taglower = cpu_to_le32(tag);
5813 }
5814
5815 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5816         struct CommandList *abort, int reply_queue)
5817 {
5818         int rc = IO_OK;
5819         struct CommandList *c;
5820         struct ErrorInfo *ei;
5821         __le32 tagupper, taglower;
5822
5823         c = cmd_alloc(h);
5824
5825         /* fill_cmd can't fail here, no buffer to map */
5826         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5827                 0, 0, scsi3addr, TYPE_MSG);
5828         if (h->needs_abort_tags_swizzled)
5829                 swizzle_abort_tag(&c->Request.CDB[4]);
5830         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5831         hpsa_get_tag(h, abort, &taglower, &tagupper);
5832         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5833                 __func__, tagupper, taglower);
5834         /* no unmap needed here because no data xfer. */
5835
5836         ei = c->err_info;
5837         switch (ei->CommandStatus) {
5838         case CMD_SUCCESS:
5839                 break;
5840         case CMD_TMF_STATUS:
5841                 rc = hpsa_evaluate_tmf_status(h, c);
5842                 break;
5843         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5844                 rc = -1;
5845                 break;
5846         default:
5847                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5848                         __func__, tagupper, taglower);
5849                 hpsa_scsi_interpret_error(h, c);
5850                 rc = -1;
5851                 break;
5852         }
5853         cmd_free(h, c);
5854         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5855                 __func__, tagupper, taglower);
5856         return rc;
5857 }
5858
5859 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5860         struct CommandList *command_to_abort, int reply_queue)
5861 {
5862         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5863         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5864         struct io_accel2_cmd *c2a =
5865                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5866         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5867         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5868
5869         /*
5870          * We're overlaying struct hpsa_tmf_struct on top of something which
5871          * was allocated as a struct io_accel2_cmd, so we better be sure it
5872          * actually fits, and doesn't overrun the error info space.
5873          */
5874         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5875                         sizeof(struct io_accel2_cmd));
5876         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5877                         offsetof(struct hpsa_tmf_struct, error_len) +
5878                                 sizeof(ac->error_len));
5879
5880         c->cmd_type = IOACCEL2_TMF;
5881         c->scsi_cmd = SCSI_CMD_BUSY;
5882
5883         /* Adjust the DMA address to point to the accelerated command buffer */
5884         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5885                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5886         BUG_ON(c->busaddr & 0x0000007F);
5887
5888         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5889         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5890         ac->reply_queue = reply_queue;
5891         ac->tmf = IOACCEL2_TMF_ABORT;
5892         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5893         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5894         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5895         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5896         ac->error_ptr = cpu_to_le64(c->busaddr +
5897                         offsetof(struct io_accel2_cmd, error_data));
5898         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5899 }
5900
5901 /* ioaccel2 path firmware cannot handle abort task requests.
5902  * Change abort requests to physical target reset, and send to the
5903  * address of the physical disk used for the ioaccel 2 command.
5904  * Return 0 on success (IO_OK)
5905  *       -1 on failure
5906  */
5907
5908 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5909         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5910 {
5911         int rc = IO_OK;
5912         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5913         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5914         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5915         unsigned char *psa = &phys_scsi3addr[0];
5916
5917         /* Get a pointer to the hpsa logical device. */
5918         scmd = abort->scsi_cmd;
5919         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5920         if (dev == NULL) {
5921                 dev_warn(&h->pdev->dev,
5922                         "Cannot abort: no device pointer for command.\n");
5923                         return -1; /* not abortable */
5924         }
5925
5926         if (h->raid_offload_debug > 0)
5927                 dev_info(&h->pdev->dev,
5928                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5929                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5930                         "Reset as abort",
5931                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5932                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5933
5934         if (!dev->offload_enabled) {
5935                 dev_warn(&h->pdev->dev,
5936                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5937                 return -1; /* not abortable */
5938         }
5939
5940         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5941         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5942                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5943                 return -1; /* not abortable */
5944         }
5945
5946         /* send the reset */
5947         if (h->raid_offload_debug > 0)
5948                 dev_info(&h->pdev->dev,
5949                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5950                         psa[0], psa[1], psa[2], psa[3],
5951                         psa[4], psa[5], psa[6], psa[7]);
5952         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5953         if (rc != 0) {
5954                 dev_warn(&h->pdev->dev,
5955                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5956                         psa[0], psa[1], psa[2], psa[3],
5957                         psa[4], psa[5], psa[6], psa[7]);
5958                 return rc; /* failed to reset */
5959         }
5960
5961         /* wait for device to recover */
5962         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5963                 dev_warn(&h->pdev->dev,
5964                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5965                         psa[0], psa[1], psa[2], psa[3],
5966                         psa[4], psa[5], psa[6], psa[7]);
5967                 return -1;  /* failed to recover */
5968         }
5969
5970         /* device recovered */
5971         dev_info(&h->pdev->dev,
5972                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5973                 psa[0], psa[1], psa[2], psa[3],
5974                 psa[4], psa[5], psa[6], psa[7]);
5975
5976         return rc; /* success */
5977 }
5978
5979 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5980         struct CommandList *abort, int reply_queue)
5981 {
5982         int rc = IO_OK;
5983         struct CommandList *c;
5984         __le32 taglower, tagupper;
5985         struct hpsa_scsi_dev_t *dev;
5986         struct io_accel2_cmd *c2;
5987
5988         dev = abort->scsi_cmd->device->hostdata;
5989         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5990                 return -1;
5991
5992         c = cmd_alloc(h);
5993         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5994         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5995         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5996         hpsa_get_tag(h, abort, &taglower, &tagupper);
5997         dev_dbg(&h->pdev->dev,
5998                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5999                 __func__, tagupper, taglower);
6000         /* no unmap needed here because no data xfer. */
6001
6002         dev_dbg(&h->pdev->dev,
6003                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6004                 __func__, tagupper, taglower, c2->error_data.serv_response);
6005         switch (c2->error_data.serv_response) {
6006         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6007         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6008                 rc = 0;
6009                 break;
6010         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6011         case IOACCEL2_SERV_RESPONSE_FAILURE:
6012         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6013                 rc = -1;
6014                 break;
6015         default:
6016                 dev_warn(&h->pdev->dev,
6017                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6018                         __func__, tagupper, taglower,
6019                         c2->error_data.serv_response);
6020                 rc = -1;
6021         }
6022         cmd_free(h, c);
6023         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6024                 tagupper, taglower);
6025         return rc;
6026 }
6027
6028 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6029         struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6030 {
6031         /*
6032          * ioccelerator mode 2 commands should be aborted via the
6033          * accelerated path, since RAID path is unaware of these commands,
6034          * but not all underlying firmware can handle abort TMF.
6035          * Change abort to physical device reset when abort TMF is unsupported.
6036          */
6037         if (abort->cmd_type == CMD_IOACCEL2) {
6038                 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6039                         dev->physical_device)
6040                         return hpsa_send_abort_ioaccel2(h, abort,
6041                                                 reply_queue);
6042                 else
6043                         return hpsa_send_reset_as_abort_ioaccel2(h,
6044                                                         dev->scsi3addr,
6045                                                         abort, reply_queue);
6046         }
6047         return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6048 }
6049
6050 /* Find out which reply queue a command was meant to return on */
6051 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6052                                         struct CommandList *c)
6053 {
6054         if (c->cmd_type == CMD_IOACCEL2)
6055                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6056         return c->Header.ReplyQueue;
6057 }
6058
6059 /*
6060  * Limit concurrency of abort commands to prevent
6061  * over-subscription of commands
6062  */
6063 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6064 {
6065 #define ABORT_CMD_WAIT_MSECS 5000
6066         return !wait_event_timeout(h->abort_cmd_wait_queue,
6067                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6068                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6069 }
6070
6071 /* Send an abort for the specified command.
6072  *      If the device and controller support it,
6073  *              send a task abort request.
6074  */
6075 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6076 {
6077
6078         int rc;
6079         struct ctlr_info *h;
6080         struct hpsa_scsi_dev_t *dev;
6081         struct CommandList *abort; /* pointer to command to be aborted */
6082         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
6083         char msg[256];          /* For debug messaging. */
6084         int ml = 0;
6085         __le32 tagupper, taglower;
6086         int refcount, reply_queue;
6087
6088         if (sc == NULL)
6089                 return FAILED;
6090
6091         if (sc->device == NULL)
6092                 return FAILED;
6093
6094         /* Find the controller of the command to be aborted */
6095         h = sdev_to_hba(sc->device);
6096         if (h == NULL)
6097                 return FAILED;
6098
6099         /* Find the device of the command to be aborted */
6100         dev = sc->device->hostdata;
6101         if (!dev) {
6102                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6103                                 msg);
6104                 return FAILED;
6105         }
6106
6107         /* If controller locked up, we can guarantee command won't complete */
6108         if (lockup_detected(h)) {
6109                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6110                                         "ABORT FAILED, lockup detected");
6111                 return FAILED;
6112         }
6113
6114         /* This is a good time to check if controller lockup has occurred */
6115         if (detect_controller_lockup(h)) {
6116                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6117                                         "ABORT FAILED, new lockup detected");
6118                 return FAILED;
6119         }
6120
6121         /* Check that controller supports some kind of task abort */
6122         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6123                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6124                 return FAILED;
6125
6126         memset(msg, 0, sizeof(msg));
6127         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6128                 h->scsi_host->host_no, sc->device->channel,
6129                 sc->device->id, sc->device->lun,
6130                 "Aborting command", sc);
6131
6132         /* Get SCSI command to be aborted */
6133         abort = (struct CommandList *) sc->host_scribble;
6134         if (abort == NULL) {
6135                 /* This can happen if the command already completed. */
6136                 return SUCCESS;
6137         }
6138         refcount = atomic_inc_return(&abort->refcount);
6139         if (refcount == 1) { /* Command is done already. */
6140                 cmd_free(h, abort);
6141                 return SUCCESS;
6142         }
6143
6144         /* Don't bother trying the abort if we know it won't work. */
6145         if (abort->cmd_type != CMD_IOACCEL2 &&
6146                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6147                 cmd_free(h, abort);
6148                 return FAILED;
6149         }
6150
6151         /*
6152          * Check that we're aborting the right command.
6153          * It's possible the CommandList already completed and got re-used.
6154          */
6155         if (abort->scsi_cmd != sc) {
6156                 cmd_free(h, abort);
6157                 return SUCCESS;
6158         }
6159
6160         abort->abort_pending = true;
6161         hpsa_get_tag(h, abort, &taglower, &tagupper);
6162         reply_queue = hpsa_extract_reply_queue(h, abort);
6163         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6164         as  = abort->scsi_cmd;
6165         if (as != NULL)
6166                 ml += sprintf(msg+ml,
6167                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6168                         as->cmd_len, as->cmnd[0], as->cmnd[1],
6169                         as->serial_number);
6170         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6171         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6172
6173         /*
6174          * Command is in flight, or possibly already completed
6175          * by the firmware (but not to the scsi mid layer) but we can't
6176          * distinguish which.  Send the abort down.
6177          */
6178         if (wait_for_available_abort_cmd(h)) {
6179                 dev_warn(&h->pdev->dev,
6180                         "%s FAILED, timeout waiting for an abort command to become available.\n",
6181                         msg);
6182                 cmd_free(h, abort);
6183                 return FAILED;
6184         }
6185         rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6186         atomic_inc(&h->abort_cmds_available);
6187         wake_up_all(&h->abort_cmd_wait_queue);
6188         if (rc != 0) {
6189                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6190                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6191                                 "FAILED to abort command");
6192                 cmd_free(h, abort);
6193                 return FAILED;
6194         }
6195         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6196         wait_event(h->event_sync_wait_queue,
6197                    abort->scsi_cmd != sc || lockup_detected(h));
6198         cmd_free(h, abort);
6199         return !lockup_detected(h) ? SUCCESS : FAILED;
6200 }
6201
6202 /*
6203  * For operations with an associated SCSI command, a command block is allocated
6204  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6205  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6206  * the complement, although cmd_free() may be called instead.
6207  */
6208 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6209                                             struct scsi_cmnd *scmd)
6210 {
6211         int idx = hpsa_get_cmd_index(scmd);
6212         struct CommandList *c = h->cmd_pool + idx;
6213
6214         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6215                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6216                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6217                 /* The index value comes from the block layer, so if it's out of
6218                  * bounds, it's probably not our bug.
6219                  */
6220                 BUG();
6221         }
6222
6223         atomic_inc(&c->refcount);
6224         if (unlikely(!hpsa_is_cmd_idle(c))) {
6225                 /*
6226                  * We expect that the SCSI layer will hand us a unique tag
6227                  * value.  Thus, there should never be a collision here between
6228                  * two requests...because if the selected command isn't idle
6229                  * then someone is going to be very disappointed.
6230                  */
6231                 dev_err(&h->pdev->dev,
6232                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6233                         idx);
6234                 if (c->scsi_cmd != NULL)
6235                         scsi_print_command(c->scsi_cmd);
6236                 scsi_print_command(scmd);
6237         }
6238
6239         hpsa_cmd_partial_init(h, idx, c);
6240         return c;
6241 }
6242
6243 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6244 {
6245         /*
6246          * Release our reference to the block.  We don't need to do anything
6247          * else to free it, because it is accessed by index.  (There's no point
6248          * in checking the result of the decrement, since we cannot guarantee
6249          * that there isn't a concurrent abort which is also accessing it.)
6250          */
6251         (void)atomic_dec(&c->refcount);
6252 }
6253
6254 /*
6255  * For operations that cannot sleep, a command block is allocated at init,
6256  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6257  * which ones are free or in use.  Lock must be held when calling this.
6258  * cmd_free() is the complement.
6259  * This function never gives up and returns NULL.  If it hangs,
6260  * another thread must call cmd_free() to free some tags.
6261  */
6262
6263 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6264 {
6265         struct CommandList *c;
6266         int refcount, i;
6267         int offset = 0;
6268
6269         /*
6270          * There is some *extremely* small but non-zero chance that that
6271          * multiple threads could get in here, and one thread could
6272          * be scanning through the list of bits looking for a free
6273          * one, but the free ones are always behind him, and other
6274          * threads sneak in behind him and eat them before he can
6275          * get to them, so that while there is always a free one, a
6276          * very unlucky thread might be starved anyway, never able to
6277          * beat the other threads.  In reality, this happens so
6278          * infrequently as to be indistinguishable from never.
6279          *
6280          * Note that we start allocating commands before the SCSI host structure
6281          * is initialized.  Since the search starts at bit zero, this
6282          * all works, since we have at least one command structure available;
6283          * however, it means that the structures with the low indexes have to be
6284          * reserved for driver-initiated requests, while requests from the block
6285          * layer will use the higher indexes.
6286          */
6287
6288         for (;;) {
6289                 i = find_next_zero_bit(h->cmd_pool_bits,
6290                                         HPSA_NRESERVED_CMDS,
6291                                         offset);
6292                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6293                         offset = 0;
6294                         continue;
6295                 }
6296                 c = h->cmd_pool + i;
6297                 refcount = atomic_inc_return(&c->refcount);
6298                 if (unlikely(refcount > 1)) {
6299                         cmd_free(h, c); /* already in use */
6300                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6301                         continue;
6302                 }
6303                 set_bit(i & (BITS_PER_LONG - 1),
6304                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6305                 break; /* it's ours now. */
6306         }
6307         hpsa_cmd_partial_init(h, i, c);
6308         return c;
6309 }
6310
6311 /*
6312  * This is the complementary operation to cmd_alloc().  Note, however, in some
6313  * corner cases it may also be used to free blocks allocated by
6314  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6315  * the clear-bit is harmless.
6316  */
6317 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6318 {
6319         if (atomic_dec_and_test(&c->refcount)) {
6320                 int i;
6321
6322                 i = c - h->cmd_pool;
6323                 clear_bit(i & (BITS_PER_LONG - 1),
6324                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6325         }
6326 }
6327
6328 #ifdef CONFIG_COMPAT
6329
6330 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6331         void __user *arg)
6332 {
6333         IOCTL32_Command_struct __user *arg32 =
6334             (IOCTL32_Command_struct __user *) arg;
6335         IOCTL_Command_struct arg64;
6336         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6337         int err;
6338         u32 cp;
6339
6340         memset(&arg64, 0, sizeof(arg64));
6341         err = 0;
6342         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6343                            sizeof(arg64.LUN_info));
6344         err |= copy_from_user(&arg64.Request, &arg32->Request,
6345                            sizeof(arg64.Request));
6346         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6347                            sizeof(arg64.error_info));
6348         err |= get_user(arg64.buf_size, &arg32->buf_size);
6349         err |= get_user(cp, &arg32->buf);
6350         arg64.buf = compat_ptr(cp);
6351         err |= copy_to_user(p, &arg64, sizeof(arg64));
6352
6353         if (err)
6354                 return -EFAULT;
6355
6356         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6357         if (err)
6358                 return err;
6359         err |= copy_in_user(&arg32->error_info, &p->error_info,
6360                          sizeof(arg32->error_info));
6361         if (err)
6362                 return -EFAULT;
6363         return err;
6364 }
6365
6366 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6367         int cmd, void __user *arg)
6368 {
6369         BIG_IOCTL32_Command_struct __user *arg32 =
6370             (BIG_IOCTL32_Command_struct __user *) arg;
6371         BIG_IOCTL_Command_struct arg64;
6372         BIG_IOCTL_Command_struct __user *p =
6373             compat_alloc_user_space(sizeof(arg64));
6374         int err;
6375         u32 cp;
6376
6377         memset(&arg64, 0, sizeof(arg64));
6378         err = 0;
6379         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6380                            sizeof(arg64.LUN_info));
6381         err |= copy_from_user(&arg64.Request, &arg32->Request,
6382                            sizeof(arg64.Request));
6383         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6384                            sizeof(arg64.error_info));
6385         err |= get_user(arg64.buf_size, &arg32->buf_size);
6386         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6387         err |= get_user(cp, &arg32->buf);
6388         arg64.buf = compat_ptr(cp);
6389         err |= copy_to_user(p, &arg64, sizeof(arg64));
6390
6391         if (err)
6392                 return -EFAULT;
6393
6394         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6395         if (err)
6396                 return err;
6397         err |= copy_in_user(&arg32->error_info, &p->error_info,
6398                          sizeof(arg32->error_info));
6399         if (err)
6400                 return -EFAULT;
6401         return err;
6402 }
6403
6404 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6405 {
6406         switch (cmd) {
6407         case CCISS_GETPCIINFO:
6408         case CCISS_GETINTINFO:
6409         case CCISS_SETINTINFO:
6410         case CCISS_GETNODENAME:
6411         case CCISS_SETNODENAME:
6412         case CCISS_GETHEARTBEAT:
6413         case CCISS_GETBUSTYPES:
6414         case CCISS_GETFIRMVER:
6415         case CCISS_GETDRIVVER:
6416         case CCISS_REVALIDVOLS:
6417         case CCISS_DEREGDISK:
6418         case CCISS_REGNEWDISK:
6419         case CCISS_REGNEWD:
6420         case CCISS_RESCANDISK:
6421         case CCISS_GETLUNINFO:
6422                 return hpsa_ioctl(dev, cmd, arg);
6423
6424         case CCISS_PASSTHRU32:
6425                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6426         case CCISS_BIG_PASSTHRU32:
6427                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6428
6429         default:
6430                 return -ENOIOCTLCMD;
6431         }
6432 }
6433 #endif
6434
6435 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6436 {
6437         struct hpsa_pci_info pciinfo;
6438
6439         if (!argp)
6440                 return -EINVAL;
6441         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6442         pciinfo.bus = h->pdev->bus->number;
6443         pciinfo.dev_fn = h->pdev->devfn;
6444         pciinfo.board_id = h->board_id;
6445         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6446                 return -EFAULT;
6447         return 0;
6448 }
6449
6450 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6451 {
6452         DriverVer_type DriverVer;
6453         unsigned char vmaj, vmin, vsubmin;
6454         int rc;
6455
6456         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6457                 &vmaj, &vmin, &vsubmin);
6458         if (rc != 3) {
6459                 dev_info(&h->pdev->dev, "driver version string '%s' "
6460                         "unrecognized.", HPSA_DRIVER_VERSION);
6461                 vmaj = 0;
6462                 vmin = 0;
6463                 vsubmin = 0;
6464         }
6465         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6466         if (!argp)
6467                 return -EINVAL;
6468         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6469                 return -EFAULT;
6470         return 0;
6471 }
6472
6473 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6474 {
6475         IOCTL_Command_struct iocommand;
6476         struct CommandList *c;
6477         char *buff = NULL;
6478         u64 temp64;
6479         int rc = 0;
6480
6481         if (!argp)
6482                 return -EINVAL;
6483         if (!capable(CAP_SYS_RAWIO))
6484                 return -EPERM;
6485         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6486                 return -EFAULT;
6487         if ((iocommand.buf_size < 1) &&
6488             (iocommand.Request.Type.Direction != XFER_NONE)) {
6489                 return -EINVAL;
6490         }
6491         if (iocommand.buf_size > 0) {
6492                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6493                 if (buff == NULL)
6494                         return -ENOMEM;
6495                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6496                         /* Copy the data into the buffer we created */
6497                         if (copy_from_user(buff, iocommand.buf,
6498                                 iocommand.buf_size)) {
6499                                 rc = -EFAULT;
6500                                 goto out_kfree;
6501                         }
6502                 } else {
6503                         memset(buff, 0, iocommand.buf_size);
6504                 }
6505         }
6506         c = cmd_alloc(h);
6507
6508         /* Fill in the command type */
6509         c->cmd_type = CMD_IOCTL_PEND;
6510         c->scsi_cmd = SCSI_CMD_BUSY;
6511         /* Fill in Command Header */
6512         c->Header.ReplyQueue = 0; /* unused in simple mode */
6513         if (iocommand.buf_size > 0) {   /* buffer to fill */
6514                 c->Header.SGList = 1;
6515                 c->Header.SGTotal = cpu_to_le16(1);
6516         } else  { /* no buffers to fill */
6517                 c->Header.SGList = 0;
6518                 c->Header.SGTotal = cpu_to_le16(0);
6519         }
6520         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6521
6522         /* Fill in Request block */
6523         memcpy(&c->Request, &iocommand.Request,
6524                 sizeof(c->Request));
6525
6526         /* Fill in the scatter gather information */
6527         if (iocommand.buf_size > 0) {
6528                 temp64 = pci_map_single(h->pdev, buff,
6529                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6530                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6531                         c->SG[0].Addr = cpu_to_le64(0);
6532                         c->SG[0].Len = cpu_to_le32(0);
6533                         rc = -ENOMEM;
6534                         goto out;
6535                 }
6536                 c->SG[0].Addr = cpu_to_le64(temp64);
6537                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6538                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6539         }
6540         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6541                                         NO_TIMEOUT);
6542         if (iocommand.buf_size > 0)
6543                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6544         check_ioctl_unit_attention(h, c);
6545         if (rc) {
6546                 rc = -EIO;
6547                 goto out;
6548         }
6549
6550         /* Copy the error information out */
6551         memcpy(&iocommand.error_info, c->err_info,
6552                 sizeof(iocommand.error_info));
6553         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6554                 rc = -EFAULT;
6555                 goto out;
6556         }
6557         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6558                 iocommand.buf_size > 0) {
6559                 /* Copy the data out of the buffer we created */
6560                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6561                         rc = -EFAULT;
6562                         goto out;
6563                 }
6564         }
6565 out:
6566         cmd_free(h, c);
6567 out_kfree:
6568         kfree(buff);
6569         return rc;
6570 }
6571
6572 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6573 {
6574         BIG_IOCTL_Command_struct *ioc;
6575         struct CommandList *c;
6576         unsigned char **buff = NULL;
6577         int *buff_size = NULL;
6578         u64 temp64;
6579         BYTE sg_used = 0;
6580         int status = 0;
6581         u32 left;
6582         u32 sz;
6583         BYTE __user *data_ptr;
6584
6585         if (!argp)
6586                 return -EINVAL;
6587         if (!capable(CAP_SYS_RAWIO))
6588                 return -EPERM;
6589         ioc = (BIG_IOCTL_Command_struct *)
6590             kmalloc(sizeof(*ioc), GFP_KERNEL);
6591         if (!ioc) {
6592                 status = -ENOMEM;
6593                 goto cleanup1;
6594         }
6595         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6596                 status = -EFAULT;
6597                 goto cleanup1;
6598         }
6599         if ((ioc->buf_size < 1) &&
6600             (ioc->Request.Type.Direction != XFER_NONE)) {
6601                 status = -EINVAL;
6602                 goto cleanup1;
6603         }
6604         /* Check kmalloc limits  using all SGs */
6605         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6606                 status = -EINVAL;
6607                 goto cleanup1;
6608         }
6609         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6610                 status = -EINVAL;
6611                 goto cleanup1;
6612         }
6613         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6614         if (!buff) {
6615                 status = -ENOMEM;
6616                 goto cleanup1;
6617         }
6618         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6619         if (!buff_size) {
6620                 status = -ENOMEM;
6621                 goto cleanup1;
6622         }
6623         left = ioc->buf_size;
6624         data_ptr = ioc->buf;
6625         while (left) {
6626                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6627                 buff_size[sg_used] = sz;
6628                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6629                 if (buff[sg_used] == NULL) {
6630                         status = -ENOMEM;
6631                         goto cleanup1;
6632                 }
6633                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6634                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6635                                 status = -EFAULT;
6636                                 goto cleanup1;
6637                         }
6638                 } else
6639                         memset(buff[sg_used], 0, sz);
6640                 left -= sz;
6641                 data_ptr += sz;
6642                 sg_used++;
6643         }
6644         c = cmd_alloc(h);
6645
6646         c->cmd_type = CMD_IOCTL_PEND;
6647         c->scsi_cmd = SCSI_CMD_BUSY;
6648         c->Header.ReplyQueue = 0;
6649         c->Header.SGList = (u8) sg_used;
6650         c->Header.SGTotal = cpu_to_le16(sg_used);
6651         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6652         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6653         if (ioc->buf_size > 0) {
6654                 int i;
6655                 for (i = 0; i < sg_used; i++) {
6656                         temp64 = pci_map_single(h->pdev, buff[i],
6657                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6658                         if (dma_mapping_error(&h->pdev->dev,
6659                                                         (dma_addr_t) temp64)) {
6660                                 c->SG[i].Addr = cpu_to_le64(0);
6661                                 c->SG[i].Len = cpu_to_le32(0);
6662                                 hpsa_pci_unmap(h->pdev, c, i,
6663                                         PCI_DMA_BIDIRECTIONAL);
6664                                 status = -ENOMEM;
6665                                 goto cleanup0;
6666                         }
6667                         c->SG[i].Addr = cpu_to_le64(temp64);
6668                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6669                         c->SG[i].Ext = cpu_to_le32(0);
6670                 }
6671                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6672         }
6673         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6674                                                 NO_TIMEOUT);
6675         if (sg_used)
6676                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6677         check_ioctl_unit_attention(h, c);
6678         if (status) {
6679                 status = -EIO;
6680                 goto cleanup0;
6681         }
6682
6683         /* Copy the error information out */
6684         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6685         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6686                 status = -EFAULT;
6687                 goto cleanup0;
6688         }
6689         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6690                 int i;
6691
6692                 /* Copy the data out of the buffer we created */
6693                 BYTE __user *ptr = ioc->buf;
6694                 for (i = 0; i < sg_used; i++) {
6695                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6696                                 status = -EFAULT;
6697                                 goto cleanup0;
6698                         }
6699                         ptr += buff_size[i];
6700                 }
6701         }
6702         status = 0;
6703 cleanup0:
6704         cmd_free(h, c);
6705 cleanup1:
6706         if (buff) {
6707                 int i;
6708
6709                 for (i = 0; i < sg_used; i++)
6710                         kfree(buff[i]);
6711                 kfree(buff);
6712         }
6713         kfree(buff_size);
6714         kfree(ioc);
6715         return status;
6716 }
6717
6718 static void check_ioctl_unit_attention(struct ctlr_info *h,
6719         struct CommandList *c)
6720 {
6721         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6722                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6723                 (void) check_for_unit_attention(h, c);
6724 }
6725
6726 /*
6727  * ioctl
6728  */
6729 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6730 {
6731         struct ctlr_info *h;
6732         void __user *argp = (void __user *)arg;
6733         int rc;
6734
6735         h = sdev_to_hba(dev);
6736
6737         switch (cmd) {
6738         case CCISS_DEREGDISK:
6739         case CCISS_REGNEWDISK:
6740         case CCISS_REGNEWD:
6741                 hpsa_scan_start(h->scsi_host);
6742                 return 0;
6743         case CCISS_GETPCIINFO:
6744                 return hpsa_getpciinfo_ioctl(h, argp);
6745         case CCISS_GETDRIVVER:
6746                 return hpsa_getdrivver_ioctl(h, argp);
6747         case CCISS_PASSTHRU:
6748                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6749                         return -EAGAIN;
6750                 rc = hpsa_passthru_ioctl(h, argp);
6751                 atomic_inc(&h->passthru_cmds_avail);
6752                 return rc;
6753         case CCISS_BIG_PASSTHRU:
6754                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6755                         return -EAGAIN;
6756                 rc = hpsa_big_passthru_ioctl(h, argp);
6757                 atomic_inc(&h->passthru_cmds_avail);
6758                 return rc;
6759         default:
6760                 return -ENOTTY;
6761         }
6762 }
6763
6764 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6765                                 u8 reset_type)
6766 {
6767         struct CommandList *c;
6768
6769         c = cmd_alloc(h);
6770
6771         /* fill_cmd can't fail here, no data buffer to map */
6772         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6773                 RAID_CTLR_LUNID, TYPE_MSG);
6774         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6775         c->waiting = NULL;
6776         enqueue_cmd_and_start_io(h, c);
6777         /* Don't wait for completion, the reset won't complete.  Don't free
6778          * the command either.  This is the last command we will send before
6779          * re-initializing everything, so it doesn't matter and won't leak.
6780          */
6781         return;
6782 }
6783
6784 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6785         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6786         int cmd_type)
6787 {
6788         int pci_dir = XFER_NONE;
6789         u64 tag; /* for commands to be aborted */
6790
6791         c->cmd_type = CMD_IOCTL_PEND;
6792         c->scsi_cmd = SCSI_CMD_BUSY;
6793         c->Header.ReplyQueue = 0;
6794         if (buff != NULL && size > 0) {
6795                 c->Header.SGList = 1;
6796                 c->Header.SGTotal = cpu_to_le16(1);
6797         } else {
6798                 c->Header.SGList = 0;
6799                 c->Header.SGTotal = cpu_to_le16(0);
6800         }
6801         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6802
6803         if (cmd_type == TYPE_CMD) {
6804                 switch (cmd) {
6805                 case HPSA_INQUIRY:
6806                         /* are we trying to read a vital product page */
6807                         if (page_code & VPD_PAGE) {
6808                                 c->Request.CDB[1] = 0x01;
6809                                 c->Request.CDB[2] = (page_code & 0xff);
6810                         }
6811                         c->Request.CDBLen = 6;
6812                         c->Request.type_attr_dir =
6813                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6814                         c->Request.Timeout = 0;
6815                         c->Request.CDB[0] = HPSA_INQUIRY;
6816                         c->Request.CDB[4] = size & 0xFF;
6817                         break;
6818                 case HPSA_REPORT_LOG:
6819                 case HPSA_REPORT_PHYS:
6820                         /* Talking to controller so It's a physical command
6821                            mode = 00 target = 0.  Nothing to write.
6822                          */
6823                         c->Request.CDBLen = 12;
6824                         c->Request.type_attr_dir =
6825                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6826                         c->Request.Timeout = 0;
6827                         c->Request.CDB[0] = cmd;
6828                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6829                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6830                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6831                         c->Request.CDB[9] = size & 0xFF;
6832                         break;
6833                 case BMIC_SENSE_DIAG_OPTIONS:
6834                         c->Request.CDBLen = 16;
6835                         c->Request.type_attr_dir =
6836                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6837                         c->Request.Timeout = 0;
6838                         /* Spec says this should be BMIC_WRITE */
6839                         c->Request.CDB[0] = BMIC_READ;
6840                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6841                         break;
6842                 case BMIC_SET_DIAG_OPTIONS:
6843                         c->Request.CDBLen = 16;
6844                         c->Request.type_attr_dir =
6845                                         TYPE_ATTR_DIR(cmd_type,
6846                                                 ATTR_SIMPLE, XFER_WRITE);
6847                         c->Request.Timeout = 0;
6848                         c->Request.CDB[0] = BMIC_WRITE;
6849                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6850                         break;
6851                 case HPSA_CACHE_FLUSH:
6852                         c->Request.CDBLen = 12;
6853                         c->Request.type_attr_dir =
6854                                         TYPE_ATTR_DIR(cmd_type,
6855                                                 ATTR_SIMPLE, XFER_WRITE);
6856                         c->Request.Timeout = 0;
6857                         c->Request.CDB[0] = BMIC_WRITE;
6858                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6859                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6860                         c->Request.CDB[8] = size & 0xFF;
6861                         break;
6862                 case TEST_UNIT_READY:
6863                         c->Request.CDBLen = 6;
6864                         c->Request.type_attr_dir =
6865                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6866                         c->Request.Timeout = 0;
6867                         break;
6868                 case HPSA_GET_RAID_MAP:
6869                         c->Request.CDBLen = 12;
6870                         c->Request.type_attr_dir =
6871                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6872                         c->Request.Timeout = 0;
6873                         c->Request.CDB[0] = HPSA_CISS_READ;
6874                         c->Request.CDB[1] = cmd;
6875                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6876                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6877                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6878                         c->Request.CDB[9] = size & 0xFF;
6879                         break;
6880                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6881                         c->Request.CDBLen = 10;
6882                         c->Request.type_attr_dir =
6883                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6884                         c->Request.Timeout = 0;
6885                         c->Request.CDB[0] = BMIC_READ;
6886                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6887                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6888                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6889                         break;
6890                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6891                         c->Request.CDBLen = 10;
6892                         c->Request.type_attr_dir =
6893                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6894                         c->Request.Timeout = 0;
6895                         c->Request.CDB[0] = BMIC_READ;
6896                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6897                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6898                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6899                         break;
6900                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6901                         c->Request.CDBLen = 10;
6902                         c->Request.type_attr_dir =
6903                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6904                         c->Request.Timeout = 0;
6905                         c->Request.CDB[0] = BMIC_READ;
6906                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6907                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6908                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6909                         break;
6910                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6911                         c->Request.CDBLen = 10;
6912                         c->Request.type_attr_dir =
6913                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6914                         c->Request.Timeout = 0;
6915                         c->Request.CDB[0] = BMIC_READ;
6916                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6917                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6918                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6919                         break;
6920                 case BMIC_IDENTIFY_CONTROLLER:
6921                         c->Request.CDBLen = 10;
6922                         c->Request.type_attr_dir =
6923                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6924                         c->Request.Timeout = 0;
6925                         c->Request.CDB[0] = BMIC_READ;
6926                         c->Request.CDB[1] = 0;
6927                         c->Request.CDB[2] = 0;
6928                         c->Request.CDB[3] = 0;
6929                         c->Request.CDB[4] = 0;
6930                         c->Request.CDB[5] = 0;
6931                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6932                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6933                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6934                         c->Request.CDB[9] = 0;
6935                         break;
6936                 default:
6937                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6938                         BUG();
6939                         return -1;
6940                 }
6941         } else if (cmd_type == TYPE_MSG) {
6942                 switch (cmd) {
6943
6944                 case  HPSA_PHYS_TARGET_RESET:
6945                         c->Request.CDBLen = 16;
6946                         c->Request.type_attr_dir =
6947                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6948                         c->Request.Timeout = 0; /* Don't time out */
6949                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6950                         c->Request.CDB[0] = HPSA_RESET;
6951                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6952                         /* Physical target reset needs no control bytes 4-7*/
6953                         c->Request.CDB[4] = 0x00;
6954                         c->Request.CDB[5] = 0x00;
6955                         c->Request.CDB[6] = 0x00;
6956                         c->Request.CDB[7] = 0x00;
6957                         break;
6958                 case  HPSA_DEVICE_RESET_MSG:
6959                         c->Request.CDBLen = 16;
6960                         c->Request.type_attr_dir =
6961                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6962                         c->Request.Timeout = 0; /* Don't time out */
6963                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6964                         c->Request.CDB[0] =  cmd;
6965                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6966                         /* If bytes 4-7 are zero, it means reset the */
6967                         /* LunID device */
6968                         c->Request.CDB[4] = 0x00;
6969                         c->Request.CDB[5] = 0x00;
6970                         c->Request.CDB[6] = 0x00;
6971                         c->Request.CDB[7] = 0x00;
6972                         break;
6973                 case  HPSA_ABORT_MSG:
6974                         memcpy(&tag, buff, sizeof(tag));
6975                         dev_dbg(&h->pdev->dev,
6976                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6977                                 tag, c->Header.tag);
6978                         c->Request.CDBLen = 16;
6979                         c->Request.type_attr_dir =
6980                                         TYPE_ATTR_DIR(cmd_type,
6981                                                 ATTR_SIMPLE, XFER_WRITE);
6982                         c->Request.Timeout = 0; /* Don't time out */
6983                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6984                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6985                         c->Request.CDB[2] = 0x00; /* reserved */
6986                         c->Request.CDB[3] = 0x00; /* reserved */
6987                         /* Tag to abort goes in CDB[4]-CDB[11] */
6988                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6989                         c->Request.CDB[12] = 0x00; /* reserved */
6990                         c->Request.CDB[13] = 0x00; /* reserved */
6991                         c->Request.CDB[14] = 0x00; /* reserved */
6992                         c->Request.CDB[15] = 0x00; /* reserved */
6993                 break;
6994                 default:
6995                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6996                                 cmd);
6997                         BUG();
6998                 }
6999         } else {
7000                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7001                 BUG();
7002         }
7003
7004         switch (GET_DIR(c->Request.type_attr_dir)) {
7005         case XFER_READ:
7006                 pci_dir = PCI_DMA_FROMDEVICE;
7007                 break;
7008         case XFER_WRITE:
7009                 pci_dir = PCI_DMA_TODEVICE;
7010                 break;
7011         case XFER_NONE:
7012                 pci_dir = PCI_DMA_NONE;
7013                 break;
7014         default:
7015                 pci_dir = PCI_DMA_BIDIRECTIONAL;
7016         }
7017         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7018                 return -1;
7019         return 0;
7020 }
7021
7022 /*
7023  * Map (physical) PCI mem into (virtual) kernel space
7024  */
7025 static void __iomem *remap_pci_mem(ulong base, ulong size)
7026 {
7027         ulong page_base = ((ulong) base) & PAGE_MASK;
7028         ulong page_offs = ((ulong) base) - page_base;
7029         void __iomem *page_remapped = ioremap_nocache(page_base,
7030                 page_offs + size);
7031
7032         return page_remapped ? (page_remapped + page_offs) : NULL;
7033 }
7034
7035 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7036 {
7037         return h->access.command_completed(h, q);
7038 }
7039
7040 static inline bool interrupt_pending(struct ctlr_info *h)
7041 {
7042         return h->access.intr_pending(h);
7043 }
7044
7045 static inline long interrupt_not_for_us(struct ctlr_info *h)
7046 {
7047         return (h->access.intr_pending(h) == 0) ||
7048                 (h->interrupts_enabled == 0);
7049 }
7050
7051 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7052         u32 raw_tag)
7053 {
7054         if (unlikely(tag_index >= h->nr_cmds)) {
7055                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7056                 return 1;
7057         }
7058         return 0;
7059 }
7060
7061 static inline void finish_cmd(struct CommandList *c)
7062 {
7063         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7064         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7065                         || c->cmd_type == CMD_IOACCEL2))
7066                 complete_scsi_command(c);
7067         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7068                 complete(c->waiting);
7069 }
7070
7071 /* process completion of an indexed ("direct lookup") command */
7072 static inline void process_indexed_cmd(struct ctlr_info *h,
7073         u32 raw_tag)
7074 {
7075         u32 tag_index;
7076         struct CommandList *c;
7077
7078         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7079         if (!bad_tag(h, tag_index, raw_tag)) {
7080                 c = h->cmd_pool + tag_index;
7081                 finish_cmd(c);
7082         }
7083 }
7084
7085 /* Some controllers, like p400, will give us one interrupt
7086  * after a soft reset, even if we turned interrupts off.
7087  * Only need to check for this in the hpsa_xxx_discard_completions
7088  * functions.
7089  */
7090 static int ignore_bogus_interrupt(struct ctlr_info *h)
7091 {
7092         if (likely(!reset_devices))
7093                 return 0;
7094
7095         if (likely(h->interrupts_enabled))
7096                 return 0;
7097
7098         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7099                 "(known firmware bug.)  Ignoring.\n");
7100
7101         return 1;
7102 }
7103
7104 /*
7105  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7106  * Relies on (h-q[x] == x) being true for x such that
7107  * 0 <= x < MAX_REPLY_QUEUES.
7108  */
7109 static struct ctlr_info *queue_to_hba(u8 *queue)
7110 {
7111         return container_of((queue - *queue), struct ctlr_info, q[0]);
7112 }
7113
7114 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7115 {
7116         struct ctlr_info *h = queue_to_hba(queue);
7117         u8 q = *(u8 *) queue;
7118         u32 raw_tag;
7119
7120         if (ignore_bogus_interrupt(h))
7121                 return IRQ_NONE;
7122
7123         if (interrupt_not_for_us(h))
7124                 return IRQ_NONE;
7125         h->last_intr_timestamp = get_jiffies_64();
7126         while (interrupt_pending(h)) {
7127                 raw_tag = get_next_completion(h, q);
7128                 while (raw_tag != FIFO_EMPTY)
7129                         raw_tag = next_command(h, q);
7130         }
7131         return IRQ_HANDLED;
7132 }
7133
7134 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7135 {
7136         struct ctlr_info *h = queue_to_hba(queue);
7137         u32 raw_tag;
7138         u8 q = *(u8 *) queue;
7139
7140         if (ignore_bogus_interrupt(h))
7141                 return IRQ_NONE;
7142
7143         h->last_intr_timestamp = get_jiffies_64();
7144         raw_tag = get_next_completion(h, q);
7145         while (raw_tag != FIFO_EMPTY)
7146                 raw_tag = next_command(h, q);
7147         return IRQ_HANDLED;
7148 }
7149
7150 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7151 {
7152         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7153         u32 raw_tag;
7154         u8 q = *(u8 *) queue;
7155
7156         if (interrupt_not_for_us(h))
7157                 return IRQ_NONE;
7158         h->last_intr_timestamp = get_jiffies_64();
7159         while (interrupt_pending(h)) {
7160                 raw_tag = get_next_completion(h, q);
7161                 while (raw_tag != FIFO_EMPTY) {
7162                         process_indexed_cmd(h, raw_tag);
7163                         raw_tag = next_command(h, q);
7164                 }
7165         }
7166         return IRQ_HANDLED;
7167 }
7168
7169 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7170 {
7171         struct ctlr_info *h = queue_to_hba(queue);
7172         u32 raw_tag;
7173         u8 q = *(u8 *) queue;
7174
7175         h->last_intr_timestamp = get_jiffies_64();
7176         raw_tag = get_next_completion(h, q);
7177         while (raw_tag != FIFO_EMPTY) {
7178                 process_indexed_cmd(h, raw_tag);
7179                 raw_tag = next_command(h, q);
7180         }
7181         return IRQ_HANDLED;
7182 }
7183
7184 /* Send a message CDB to the firmware. Careful, this only works
7185  * in simple mode, not performant mode due to the tag lookup.
7186  * We only ever use this immediately after a controller reset.
7187  */
7188 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7189                         unsigned char type)
7190 {
7191         struct Command {
7192                 struct CommandListHeader CommandHeader;
7193                 struct RequestBlock Request;
7194                 struct ErrDescriptor ErrorDescriptor;
7195         };
7196         struct Command *cmd;
7197         static const size_t cmd_sz = sizeof(*cmd) +
7198                                         sizeof(cmd->ErrorDescriptor);
7199         dma_addr_t paddr64;
7200         __le32 paddr32;
7201         u32 tag;
7202         void __iomem *vaddr;
7203         int i, err;
7204
7205         vaddr = pci_ioremap_bar(pdev, 0);
7206         if (vaddr == NULL)
7207                 return -ENOMEM;
7208
7209         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7210          * CCISS commands, so they must be allocated from the lower 4GiB of
7211          * memory.
7212          */
7213         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7214         if (err) {
7215                 iounmap(vaddr);
7216                 return err;
7217         }
7218
7219         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7220         if (cmd == NULL) {
7221                 iounmap(vaddr);
7222                 return -ENOMEM;
7223         }
7224
7225         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7226          * although there's no guarantee, we assume that the address is at
7227          * least 4-byte aligned (most likely, it's page-aligned).
7228          */
7229         paddr32 = cpu_to_le32(paddr64);
7230
7231         cmd->CommandHeader.ReplyQueue = 0;
7232         cmd->CommandHeader.SGList = 0;
7233         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7234         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7235         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7236
7237         cmd->Request.CDBLen = 16;
7238         cmd->Request.type_attr_dir =
7239                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7240         cmd->Request.Timeout = 0; /* Don't time out */
7241         cmd->Request.CDB[0] = opcode;
7242         cmd->Request.CDB[1] = type;
7243         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7244         cmd->ErrorDescriptor.Addr =
7245                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7246         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7247
7248         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7249
7250         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7251                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7252                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7253                         break;
7254                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7255         }
7256
7257         iounmap(vaddr);
7258
7259         /* we leak the DMA buffer here ... no choice since the controller could
7260          *  still complete the command.
7261          */
7262         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7263                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7264                         opcode, type);
7265                 return -ETIMEDOUT;
7266         }
7267
7268         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7269
7270         if (tag & HPSA_ERROR_BIT) {
7271                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7272                         opcode, type);
7273                 return -EIO;
7274         }
7275
7276         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7277                 opcode, type);
7278         return 0;
7279 }
7280
7281 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7282
7283 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7284         void __iomem *vaddr, u32 use_doorbell)
7285 {
7286
7287         if (use_doorbell) {
7288                 /* For everything after the P600, the PCI power state method
7289                  * of resetting the controller doesn't work, so we have this
7290                  * other way using the doorbell register.
7291                  */
7292                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7293                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7294
7295                 /* PMC hardware guys tell us we need a 10 second delay after
7296                  * doorbell reset and before any attempt to talk to the board
7297                  * at all to ensure that this actually works and doesn't fall
7298                  * over in some weird corner cases.
7299                  */
7300                 msleep(10000);
7301         } else { /* Try to do it the PCI power state way */
7302
7303                 /* Quoting from the Open CISS Specification: "The Power
7304                  * Management Control/Status Register (CSR) controls the power
7305                  * state of the device.  The normal operating state is D0,
7306                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7307                  * the controller, place the interface device in D3 then to D0,
7308                  * this causes a secondary PCI reset which will reset the
7309                  * controller." */
7310
7311                 int rc = 0;
7312
7313                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7314
7315                 /* enter the D3hot power management state */
7316                 rc = pci_set_power_state(pdev, PCI_D3hot);
7317                 if (rc)
7318                         return rc;
7319
7320                 msleep(500);
7321
7322                 /* enter the D0 power management state */
7323                 rc = pci_set_power_state(pdev, PCI_D0);
7324                 if (rc)
7325                         return rc;
7326
7327                 /*
7328                  * The P600 requires a small delay when changing states.
7329                  * Otherwise we may think the board did not reset and we bail.
7330                  * This for kdump only and is particular to the P600.
7331                  */
7332                 msleep(500);
7333         }
7334         return 0;
7335 }
7336
7337 static void init_driver_version(char *driver_version, int len)
7338 {
7339         memset(driver_version, 0, len);
7340         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7341 }
7342
7343 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7344 {
7345         char *driver_version;
7346         int i, size = sizeof(cfgtable->driver_version);
7347
7348         driver_version = kmalloc(size, GFP_KERNEL);
7349         if (!driver_version)
7350                 return -ENOMEM;
7351
7352         init_driver_version(driver_version, size);
7353         for (i = 0; i < size; i++)
7354                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7355         kfree(driver_version);
7356         return 0;
7357 }
7358
7359 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7360                                           unsigned char *driver_ver)
7361 {
7362         int i;
7363
7364         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7365                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7366 }
7367
7368 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7369 {
7370
7371         char *driver_ver, *old_driver_ver;
7372         int rc, size = sizeof(cfgtable->driver_version);
7373
7374         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7375         if (!old_driver_ver)
7376                 return -ENOMEM;
7377         driver_ver = old_driver_ver + size;
7378
7379         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7380          * should have been changed, otherwise we know the reset failed.
7381          */
7382         init_driver_version(old_driver_ver, size);
7383         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7384         rc = !memcmp(driver_ver, old_driver_ver, size);
7385         kfree(old_driver_ver);
7386         return rc;
7387 }
7388 /* This does a hard reset of the controller using PCI power management
7389  * states or the using the doorbell register.
7390  */
7391 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7392 {
7393         u64 cfg_offset;
7394         u32 cfg_base_addr;
7395         u64 cfg_base_addr_index;
7396         void __iomem *vaddr;
7397         unsigned long paddr;
7398         u32 misc_fw_support;
7399         int rc;
7400         struct CfgTable __iomem *cfgtable;
7401         u32 use_doorbell;
7402         u16 command_register;
7403
7404         /* For controllers as old as the P600, this is very nearly
7405          * the same thing as
7406          *
7407          * pci_save_state(pci_dev);
7408          * pci_set_power_state(pci_dev, PCI_D3hot);
7409          * pci_set_power_state(pci_dev, PCI_D0);
7410          * pci_restore_state(pci_dev);
7411          *
7412          * For controllers newer than the P600, the pci power state
7413          * method of resetting doesn't work so we have another way
7414          * using the doorbell register.
7415          */
7416
7417         if (!ctlr_is_resettable(board_id)) {
7418                 dev_warn(&pdev->dev, "Controller not resettable\n");
7419                 return -ENODEV;
7420         }
7421
7422         /* if controller is soft- but not hard resettable... */
7423         if (!ctlr_is_hard_resettable(board_id))
7424                 return -ENOTSUPP; /* try soft reset later. */
7425
7426         /* Save the PCI command register */
7427         pci_read_config_word(pdev, 4, &command_register);
7428         pci_save_state(pdev);
7429
7430         /* find the first memory BAR, so we can find the cfg table */
7431         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7432         if (rc)
7433                 return rc;
7434         vaddr = remap_pci_mem(paddr, 0x250);
7435         if (!vaddr)
7436                 return -ENOMEM;
7437
7438         /* find cfgtable in order to check if reset via doorbell is supported */
7439         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7440                                         &cfg_base_addr_index, &cfg_offset);
7441         if (rc)
7442                 goto unmap_vaddr;
7443         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7444                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7445         if (!cfgtable) {
7446                 rc = -ENOMEM;
7447                 goto unmap_vaddr;
7448         }
7449         rc = write_driver_ver_to_cfgtable(cfgtable);
7450         if (rc)
7451                 goto unmap_cfgtable;
7452
7453         /* If reset via doorbell register is supported, use that.
7454          * There are two such methods.  Favor the newest method.
7455          */
7456         misc_fw_support = readl(&cfgtable->misc_fw_support);
7457         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7458         if (use_doorbell) {
7459                 use_doorbell = DOORBELL_CTLR_RESET2;
7460         } else {
7461                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7462                 if (use_doorbell) {
7463                         dev_warn(&pdev->dev,
7464                                 "Soft reset not supported. Firmware update is required.\n");
7465                         rc = -ENOTSUPP; /* try soft reset */
7466                         goto unmap_cfgtable;
7467                 }
7468         }
7469
7470         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7471         if (rc)
7472                 goto unmap_cfgtable;
7473
7474         pci_restore_state(pdev);
7475         pci_write_config_word(pdev, 4, command_register);
7476
7477         /* Some devices (notably the HP Smart Array 5i Controller)
7478            need a little pause here */
7479         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7480
7481         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7482         if (rc) {
7483                 dev_warn(&pdev->dev,
7484                         "Failed waiting for board to become ready after hard reset\n");
7485                 goto unmap_cfgtable;
7486         }
7487
7488         rc = controller_reset_failed(vaddr);
7489         if (rc < 0)
7490                 goto unmap_cfgtable;
7491         if (rc) {
7492                 dev_warn(&pdev->dev, "Unable to successfully reset "
7493                         "controller. Will try soft reset.\n");
7494                 rc = -ENOTSUPP;
7495         } else {
7496                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7497         }
7498
7499 unmap_cfgtable:
7500         iounmap(cfgtable);
7501
7502 unmap_vaddr:
7503         iounmap(vaddr);
7504         return rc;
7505 }
7506
7507 /*
7508  *  We cannot read the structure directly, for portability we must use
7509  *   the io functions.
7510  *   This is for debug only.
7511  */
7512 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7513 {
7514 #ifdef HPSA_DEBUG
7515         int i;
7516         char temp_name[17];
7517
7518         dev_info(dev, "Controller Configuration information\n");
7519         dev_info(dev, "------------------------------------\n");
7520         for (i = 0; i < 4; i++)
7521                 temp_name[i] = readb(&(tb->Signature[i]));
7522         temp_name[4] = '\0';
7523         dev_info(dev, "   Signature = %s\n", temp_name);
7524         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7525         dev_info(dev, "   Transport methods supported = 0x%x\n",
7526                readl(&(tb->TransportSupport)));
7527         dev_info(dev, "   Transport methods active = 0x%x\n",
7528                readl(&(tb->TransportActive)));
7529         dev_info(dev, "   Requested transport Method = 0x%x\n",
7530                readl(&(tb->HostWrite.TransportRequest)));
7531         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7532                readl(&(tb->HostWrite.CoalIntDelay)));
7533         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7534                readl(&(tb->HostWrite.CoalIntCount)));
7535         dev_info(dev, "   Max outstanding commands = %d\n",
7536                readl(&(tb->CmdsOutMax)));
7537         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7538         for (i = 0; i < 16; i++)
7539                 temp_name[i] = readb(&(tb->ServerName[i]));
7540         temp_name[16] = '\0';
7541         dev_info(dev, "   Server Name = %s\n", temp_name);
7542         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7543                 readl(&(tb->HeartBeat)));
7544 #endif                          /* HPSA_DEBUG */
7545 }
7546
7547 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7548 {
7549         int i, offset, mem_type, bar_type;
7550
7551         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7552                 return 0;
7553         offset = 0;
7554         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7555                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7556                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7557                         offset += 4;
7558                 else {
7559                         mem_type = pci_resource_flags(pdev, i) &
7560                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7561                         switch (mem_type) {
7562                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7563                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7564                                 offset += 4;    /* 32 bit */
7565                                 break;
7566                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7567                                 offset += 8;
7568                                 break;
7569                         default:        /* reserved in PCI 2.2 */
7570                                 dev_warn(&pdev->dev,
7571                                        "base address is invalid\n");
7572                                 return -1;
7573                                 break;
7574                         }
7575                 }
7576                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7577                         return i + 1;
7578         }
7579         return -1;
7580 }
7581
7582 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7583 {
7584         if (h->msix_vector) {
7585                 if (h->pdev->msix_enabled)
7586                         pci_disable_msix(h->pdev);
7587                 h->msix_vector = 0;
7588         } else if (h->msi_vector) {
7589                 if (h->pdev->msi_enabled)
7590                         pci_disable_msi(h->pdev);
7591                 h->msi_vector = 0;
7592         }
7593 }
7594
7595 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7596  * controllers that are capable. If not, we use legacy INTx mode.
7597  */
7598 static void hpsa_interrupt_mode(struct ctlr_info *h)
7599 {
7600 #ifdef CONFIG_PCI_MSI
7601         int err, i;
7602         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7603
7604         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7605                 hpsa_msix_entries[i].vector = 0;
7606                 hpsa_msix_entries[i].entry = i;
7607         }
7608
7609         /* Some boards advertise MSI but don't really support it */
7610         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7611             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7612                 goto default_int_mode;
7613         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7614                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7615                 h->msix_vector = MAX_REPLY_QUEUES;
7616                 if (h->msix_vector > num_online_cpus())
7617                         h->msix_vector = num_online_cpus();
7618                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7619                                             1, h->msix_vector);
7620                 if (err < 0) {
7621                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7622                         h->msix_vector = 0;
7623                         goto single_msi_mode;
7624                 } else if (err < h->msix_vector) {
7625                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7626                                "available\n", err);
7627                 }
7628                 h->msix_vector = err;
7629                 for (i = 0; i < h->msix_vector; i++)
7630                         h->intr[i] = hpsa_msix_entries[i].vector;
7631                 return;
7632         }
7633 single_msi_mode:
7634         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7635                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7636                 if (!pci_enable_msi(h->pdev))
7637                         h->msi_vector = 1;
7638                 else
7639                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7640         }
7641 default_int_mode:
7642 #endif                          /* CONFIG_PCI_MSI */
7643         /* if we get here we're going to use the default interrupt mode */
7644         h->intr[h->intr_mode] = h->pdev->irq;
7645 }
7646
7647 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7648 {
7649         int i;
7650         u32 subsystem_vendor_id, subsystem_device_id;
7651
7652         subsystem_vendor_id = pdev->subsystem_vendor;
7653         subsystem_device_id = pdev->subsystem_device;
7654         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7655                     subsystem_vendor_id;
7656
7657         for (i = 0; i < ARRAY_SIZE(products); i++)
7658                 if (*board_id == products[i].board_id)
7659                         return i;
7660
7661         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7662                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7663                 !hpsa_allow_any) {
7664                 dev_warn(&pdev->dev, "unrecognized board ID: "
7665                         "0x%08x, ignoring.\n", *board_id);
7666                         return -ENODEV;
7667         }
7668         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7669 }
7670
7671 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7672                                     unsigned long *memory_bar)
7673 {
7674         int i;
7675
7676         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7677                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7678                         /* addressing mode bits already removed */
7679                         *memory_bar = pci_resource_start(pdev, i);
7680                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7681                                 *memory_bar);
7682                         return 0;
7683                 }
7684         dev_warn(&pdev->dev, "no memory BAR found\n");
7685         return -ENODEV;
7686 }
7687
7688 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7689                                      int wait_for_ready)
7690 {
7691         int i, iterations;
7692         u32 scratchpad;
7693         if (wait_for_ready)
7694                 iterations = HPSA_BOARD_READY_ITERATIONS;
7695         else
7696                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7697
7698         for (i = 0; i < iterations; i++) {
7699                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7700                 if (wait_for_ready) {
7701                         if (scratchpad == HPSA_FIRMWARE_READY)
7702                                 return 0;
7703                 } else {
7704                         if (scratchpad != HPSA_FIRMWARE_READY)
7705                                 return 0;
7706                 }
7707                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7708         }
7709         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7710         return -ENODEV;
7711 }
7712
7713 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7714                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7715                                u64 *cfg_offset)
7716 {
7717         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7718         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7719         *cfg_base_addr &= (u32) 0x0000ffff;
7720         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7721         if (*cfg_base_addr_index == -1) {
7722                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7723                 return -ENODEV;
7724         }
7725         return 0;
7726 }
7727
7728 static void hpsa_free_cfgtables(struct ctlr_info *h)
7729 {
7730         if (h->transtable) {
7731                 iounmap(h->transtable);
7732                 h->transtable = NULL;
7733         }
7734         if (h->cfgtable) {
7735                 iounmap(h->cfgtable);
7736                 h->cfgtable = NULL;
7737         }
7738 }
7739
7740 /* Find and map CISS config table and transfer table
7741 + * several items must be unmapped (freed) later
7742 + * */
7743 static int hpsa_find_cfgtables(struct ctlr_info *h)
7744 {
7745         u64 cfg_offset;
7746         u32 cfg_base_addr;
7747         u64 cfg_base_addr_index;
7748         u32 trans_offset;
7749         int rc;
7750
7751         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7752                 &cfg_base_addr_index, &cfg_offset);
7753         if (rc)
7754                 return rc;
7755         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7756                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7757         if (!h->cfgtable) {
7758                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7759                 return -ENOMEM;
7760         }
7761         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7762         if (rc)
7763                 return rc;
7764         /* Find performant mode table. */
7765         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7766         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7767                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7768                                 sizeof(*h->transtable));
7769         if (!h->transtable) {
7770                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7771                 hpsa_free_cfgtables(h);
7772                 return -ENOMEM;
7773         }
7774         return 0;
7775 }
7776
7777 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7778 {
7779 #define MIN_MAX_COMMANDS 16
7780         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7781
7782         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7783
7784         /* Limit commands in memory limited kdump scenario. */
7785         if (reset_devices && h->max_commands > 32)
7786                 h->max_commands = 32;
7787
7788         if (h->max_commands < MIN_MAX_COMMANDS) {
7789                 dev_warn(&h->pdev->dev,
7790                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7791                         h->max_commands,
7792                         MIN_MAX_COMMANDS);
7793                 h->max_commands = MIN_MAX_COMMANDS;
7794         }
7795 }
7796
7797 /* If the controller reports that the total max sg entries is greater than 512,
7798  * then we know that chained SG blocks work.  (Original smart arrays did not
7799  * support chained SG blocks and would return zero for max sg entries.)
7800  */
7801 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7802 {
7803         return h->maxsgentries > 512;
7804 }
7805
7806 /* Interrogate the hardware for some limits:
7807  * max commands, max SG elements without chaining, and with chaining,
7808  * SG chain block size, etc.
7809  */
7810 static void hpsa_find_board_params(struct ctlr_info *h)
7811 {
7812         hpsa_get_max_perf_mode_cmds(h);
7813         h->nr_cmds = h->max_commands;
7814         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7815         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7816         if (hpsa_supports_chained_sg_blocks(h)) {
7817                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7818                 h->max_cmd_sg_entries = 32;
7819                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7820                 h->maxsgentries--; /* save one for chain pointer */
7821         } else {
7822                 /*
7823                  * Original smart arrays supported at most 31 s/g entries
7824                  * embedded inline in the command (trying to use more
7825                  * would lock up the controller)
7826                  */
7827                 h->max_cmd_sg_entries = 31;
7828                 h->maxsgentries = 31; /* default to traditional values */
7829                 h->chainsize = 0;
7830         }
7831
7832         /* Find out what task management functions are supported and cache */
7833         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7834         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7835                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7836         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7837                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7838         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7839                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7840 }
7841
7842 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7843 {
7844         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7845                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7846                 return false;
7847         }
7848         return true;
7849 }
7850
7851 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7852 {
7853         u32 driver_support;
7854
7855         driver_support = readl(&(h->cfgtable->driver_support));
7856         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7857 #ifdef CONFIG_X86
7858         driver_support |= ENABLE_SCSI_PREFETCH;
7859 #endif
7860         driver_support |= ENABLE_UNIT_ATTN;
7861         writel(driver_support, &(h->cfgtable->driver_support));
7862 }
7863
7864 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7865  * in a prefetch beyond physical memory.
7866  */
7867 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7868 {
7869         u32 dma_prefetch;
7870
7871         if (h->board_id != 0x3225103C)
7872                 return;
7873         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7874         dma_prefetch |= 0x8000;
7875         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7876 }
7877
7878 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7879 {
7880         int i;
7881         u32 doorbell_value;
7882         unsigned long flags;
7883         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7884         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7885                 spin_lock_irqsave(&h->lock, flags);
7886                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7887                 spin_unlock_irqrestore(&h->lock, flags);
7888                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7889                         goto done;
7890                 /* delay and try again */
7891                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7892         }
7893         return -ENODEV;
7894 done:
7895         return 0;
7896 }
7897
7898 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7899 {
7900         int i;
7901         u32 doorbell_value;
7902         unsigned long flags;
7903
7904         /* under certain very rare conditions, this can take awhile.
7905          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7906          * as we enter this code.)
7907          */
7908         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7909                 if (h->remove_in_progress)
7910                         goto done;
7911                 spin_lock_irqsave(&h->lock, flags);
7912                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7913                 spin_unlock_irqrestore(&h->lock, flags);
7914                 if (!(doorbell_value & CFGTBL_ChangeReq))
7915                         goto done;
7916                 /* delay and try again */
7917                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7918         }
7919         return -ENODEV;
7920 done:
7921         return 0;
7922 }
7923
7924 /* return -ENODEV or other reason on error, 0 on success */
7925 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7926 {
7927         u32 trans_support;
7928
7929         trans_support = readl(&(h->cfgtable->TransportSupport));
7930         if (!(trans_support & SIMPLE_MODE))
7931                 return -ENOTSUPP;
7932
7933         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7934
7935         /* Update the field, and then ring the doorbell */
7936         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7937         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7938         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7939         if (hpsa_wait_for_mode_change_ack(h))
7940                 goto error;
7941         print_cfg_table(&h->pdev->dev, h->cfgtable);
7942         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7943                 goto error;
7944         h->transMethod = CFGTBL_Trans_Simple;
7945         return 0;
7946 error:
7947         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7948         return -ENODEV;
7949 }
7950
7951 /* free items allocated or mapped by hpsa_pci_init */
7952 static void hpsa_free_pci_init(struct ctlr_info *h)
7953 {
7954         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7955         iounmap(h->vaddr);                      /* pci_init 3 */
7956         h->vaddr = NULL;
7957         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7958         /*
7959          * call pci_disable_device before pci_release_regions per
7960          * Documentation/PCI/pci.txt
7961          */
7962         pci_disable_device(h->pdev);            /* pci_init 1 */
7963         pci_release_regions(h->pdev);           /* pci_init 2 */
7964 }
7965
7966 /* several items must be freed later */
7967 static int hpsa_pci_init(struct ctlr_info *h)
7968 {
7969         int prod_index, err;
7970
7971         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7972         if (prod_index < 0)
7973                 return prod_index;
7974         h->product_name = products[prod_index].product_name;
7975         h->access = *(products[prod_index].access);
7976
7977         h->needs_abort_tags_swizzled =
7978                 ctlr_needs_abort_tags_swizzled(h->board_id);
7979
7980         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7981                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7982
7983         err = pci_enable_device(h->pdev);
7984         if (err) {
7985                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7986                 pci_disable_device(h->pdev);
7987                 return err;
7988         }
7989
7990         err = pci_request_regions(h->pdev, HPSA);
7991         if (err) {
7992                 dev_err(&h->pdev->dev,
7993                         "failed to obtain PCI resources\n");
7994                 pci_disable_device(h->pdev);
7995                 return err;
7996         }
7997
7998         pci_set_master(h->pdev);
7999
8000         hpsa_interrupt_mode(h);
8001         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8002         if (err)
8003                 goto clean2;    /* intmode+region, pci */
8004         h->vaddr = remap_pci_mem(h->paddr, 0x250);
8005         if (!h->vaddr) {
8006                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8007                 err = -ENOMEM;
8008                 goto clean2;    /* intmode+region, pci */
8009         }
8010         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8011         if (err)
8012                 goto clean3;    /* vaddr, intmode+region, pci */
8013         err = hpsa_find_cfgtables(h);
8014         if (err)
8015                 goto clean3;    /* vaddr, intmode+region, pci */
8016         hpsa_find_board_params(h);
8017
8018         if (!hpsa_CISS_signature_present(h)) {
8019                 err = -ENODEV;
8020                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8021         }
8022         hpsa_set_driver_support_bits(h);
8023         hpsa_p600_dma_prefetch_quirk(h);
8024         err = hpsa_enter_simple_mode(h);
8025         if (err)
8026                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8027         return 0;
8028
8029 clean4: /* cfgtables, vaddr, intmode+region, pci */
8030         hpsa_free_cfgtables(h);
8031 clean3: /* vaddr, intmode+region, pci */
8032         iounmap(h->vaddr);
8033         h->vaddr = NULL;
8034 clean2: /* intmode+region, pci */
8035         hpsa_disable_interrupt_mode(h);
8036         /*
8037          * call pci_disable_device before pci_release_regions per
8038          * Documentation/PCI/pci.txt
8039          */
8040         pci_disable_device(h->pdev);
8041         pci_release_regions(h->pdev);
8042         return err;
8043 }
8044
8045 static void hpsa_hba_inquiry(struct ctlr_info *h)
8046 {
8047         int rc;
8048
8049 #define HBA_INQUIRY_BYTE_COUNT 64
8050         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8051         if (!h->hba_inquiry_data)
8052                 return;
8053         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8054                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8055         if (rc != 0) {
8056                 kfree(h->hba_inquiry_data);
8057                 h->hba_inquiry_data = NULL;
8058         }
8059 }
8060
8061 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8062 {
8063         int rc, i;
8064         void __iomem *vaddr;
8065
8066         if (!reset_devices)
8067                 return 0;
8068
8069         /* kdump kernel is loading, we don't know in which state is
8070          * the pci interface. The dev->enable_cnt is equal zero
8071          * so we call enable+disable, wait a while and switch it on.
8072          */
8073         rc = pci_enable_device(pdev);
8074         if (rc) {
8075                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8076                 return -ENODEV;
8077         }
8078         pci_disable_device(pdev);
8079         msleep(260);                    /* a randomly chosen number */
8080         rc = pci_enable_device(pdev);
8081         if (rc) {
8082                 dev_warn(&pdev->dev, "failed to enable device.\n");
8083                 return -ENODEV;
8084         }
8085
8086         pci_set_master(pdev);
8087
8088         vaddr = pci_ioremap_bar(pdev, 0);
8089         if (vaddr == NULL) {
8090                 rc = -ENOMEM;
8091                 goto out_disable;
8092         }
8093         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8094         iounmap(vaddr);
8095
8096         /* Reset the controller with a PCI power-cycle or via doorbell */
8097         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8098
8099         /* -ENOTSUPP here means we cannot reset the controller
8100          * but it's already (and still) up and running in
8101          * "performant mode".  Or, it might be 640x, which can't reset
8102          * due to concerns about shared bbwc between 6402/6404 pair.
8103          */
8104         if (rc)
8105                 goto out_disable;
8106
8107         /* Now try to get the controller to respond to a no-op */
8108         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8109         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8110                 if (hpsa_noop(pdev) == 0)
8111                         break;
8112                 else
8113                         dev_warn(&pdev->dev, "no-op failed%s\n",
8114                                         (i < 11 ? "; re-trying" : ""));
8115         }
8116
8117 out_disable:
8118
8119         pci_disable_device(pdev);
8120         return rc;
8121 }
8122
8123 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8124 {
8125         kfree(h->cmd_pool_bits);
8126         h->cmd_pool_bits = NULL;
8127         if (h->cmd_pool) {
8128                 pci_free_consistent(h->pdev,
8129                                 h->nr_cmds * sizeof(struct CommandList),
8130                                 h->cmd_pool,
8131                                 h->cmd_pool_dhandle);
8132                 h->cmd_pool = NULL;
8133                 h->cmd_pool_dhandle = 0;
8134         }
8135         if (h->errinfo_pool) {
8136                 pci_free_consistent(h->pdev,
8137                                 h->nr_cmds * sizeof(struct ErrorInfo),
8138                                 h->errinfo_pool,
8139                                 h->errinfo_pool_dhandle);
8140                 h->errinfo_pool = NULL;
8141                 h->errinfo_pool_dhandle = 0;
8142         }
8143 }
8144
8145 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8146 {
8147         h->cmd_pool_bits = kzalloc(
8148                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8149                 sizeof(unsigned long), GFP_KERNEL);
8150         h->cmd_pool = pci_alloc_consistent(h->pdev,
8151                     h->nr_cmds * sizeof(*h->cmd_pool),
8152                     &(h->cmd_pool_dhandle));
8153         h->errinfo_pool = pci_alloc_consistent(h->pdev,
8154                     h->nr_cmds * sizeof(*h->errinfo_pool),
8155                     &(h->errinfo_pool_dhandle));
8156         if ((h->cmd_pool_bits == NULL)
8157             || (h->cmd_pool == NULL)
8158             || (h->errinfo_pool == NULL)) {
8159                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8160                 goto clean_up;
8161         }
8162         hpsa_preinitialize_commands(h);
8163         return 0;
8164 clean_up:
8165         hpsa_free_cmd_pool(h);
8166         return -ENOMEM;
8167 }
8168
8169 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
8170 {
8171         int i, cpu;
8172
8173         cpu = cpumask_first(cpu_online_mask);
8174         for (i = 0; i < h->msix_vector; i++) {
8175                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
8176                 cpu = cpumask_next(cpu, cpu_online_mask);
8177         }
8178 }
8179
8180 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8181 static void hpsa_free_irqs(struct ctlr_info *h)
8182 {
8183         int i;
8184
8185         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
8186                 /* Single reply queue, only one irq to free */
8187                 i = h->intr_mode;
8188                 irq_set_affinity_hint(h->intr[i], NULL);
8189                 free_irq(h->intr[i], &h->q[i]);
8190                 h->q[i] = 0;
8191                 return;
8192         }
8193
8194         for (i = 0; i < h->msix_vector; i++) {
8195                 irq_set_affinity_hint(h->intr[i], NULL);
8196                 free_irq(h->intr[i], &h->q[i]);
8197                 h->q[i] = 0;
8198         }
8199         for (; i < MAX_REPLY_QUEUES; i++)
8200                 h->q[i] = 0;
8201 }
8202
8203 /* returns 0 on success; cleans up and returns -Enn on error */
8204 static int hpsa_request_irqs(struct ctlr_info *h,
8205         irqreturn_t (*msixhandler)(int, void *),
8206         irqreturn_t (*intxhandler)(int, void *))
8207 {
8208         int rc, i;
8209
8210         /*
8211          * initialize h->q[x] = x so that interrupt handlers know which
8212          * queue to process.
8213          */
8214         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8215                 h->q[i] = (u8) i;
8216
8217         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8218                 /* If performant mode and MSI-X, use multiple reply queues */
8219                 for (i = 0; i < h->msix_vector; i++) {
8220                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8221                         rc = request_irq(h->intr[i], msixhandler,
8222                                         0, h->intrname[i],
8223                                         &h->q[i]);
8224                         if (rc) {
8225                                 int j;
8226
8227                                 dev_err(&h->pdev->dev,
8228                                         "failed to get irq %d for %s\n",
8229                                        h->intr[i], h->devname);
8230                                 for (j = 0; j < i; j++) {
8231                                         free_irq(h->intr[j], &h->q[j]);
8232                                         h->q[j] = 0;
8233                                 }
8234                                 for (; j < MAX_REPLY_QUEUES; j++)
8235                                         h->q[j] = 0;
8236                                 return rc;
8237                         }
8238                 }
8239                 hpsa_irq_affinity_hints(h);
8240         } else {
8241                 /* Use single reply pool */
8242                 if (h->msix_vector > 0 || h->msi_vector) {
8243                         if (h->msix_vector)
8244                                 sprintf(h->intrname[h->intr_mode],
8245                                         "%s-msix", h->devname);
8246                         else
8247                                 sprintf(h->intrname[h->intr_mode],
8248                                         "%s-msi", h->devname);
8249                         rc = request_irq(h->intr[h->intr_mode],
8250                                 msixhandler, 0,
8251                                 h->intrname[h->intr_mode],
8252                                 &h->q[h->intr_mode]);
8253                 } else {
8254                         sprintf(h->intrname[h->intr_mode],
8255                                 "%s-intx", h->devname);
8256                         rc = request_irq(h->intr[h->intr_mode],
8257                                 intxhandler, IRQF_SHARED,
8258                                 h->intrname[h->intr_mode],
8259                                 &h->q[h->intr_mode]);
8260                 }
8261                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8262         }
8263         if (rc) {
8264                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8265                        h->intr[h->intr_mode], h->devname);
8266                 hpsa_free_irqs(h);
8267                 return -ENODEV;
8268         }
8269         return 0;
8270 }
8271
8272 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8273 {
8274         int rc;
8275         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8276
8277         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8278         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8279         if (rc) {
8280                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8281                 return rc;
8282         }
8283
8284         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8285         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8286         if (rc) {
8287                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8288                         "after soft reset.\n");
8289                 return rc;
8290         }
8291
8292         return 0;
8293 }
8294
8295 static void hpsa_free_reply_queues(struct ctlr_info *h)
8296 {
8297         int i;
8298
8299         for (i = 0; i < h->nreply_queues; i++) {
8300                 if (!h->reply_queue[i].head)
8301                         continue;
8302                 pci_free_consistent(h->pdev,
8303                                         h->reply_queue_size,
8304                                         h->reply_queue[i].head,
8305                                         h->reply_queue[i].busaddr);
8306                 h->reply_queue[i].head = NULL;
8307                 h->reply_queue[i].busaddr = 0;
8308         }
8309         h->reply_queue_size = 0;
8310 }
8311
8312 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8313 {
8314         hpsa_free_performant_mode(h);           /* init_one 7 */
8315         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8316         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8317         hpsa_free_irqs(h);                      /* init_one 4 */
8318         scsi_host_put(h->scsi_host);            /* init_one 3 */
8319         h->scsi_host = NULL;                    /* init_one 3 */
8320         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8321         free_percpu(h->lockup_detected);        /* init_one 2 */
8322         h->lockup_detected = NULL;              /* init_one 2 */
8323         if (h->resubmit_wq) {
8324                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8325                 h->resubmit_wq = NULL;
8326         }
8327         if (h->rescan_ctlr_wq) {
8328                 destroy_workqueue(h->rescan_ctlr_wq);
8329                 h->rescan_ctlr_wq = NULL;
8330         }
8331         kfree(h);                               /* init_one 1 */
8332 }
8333
8334 /* Called when controller lockup detected. */
8335 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8336 {
8337         int i, refcount;
8338         struct CommandList *c;
8339         int failcount = 0;
8340
8341         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8342         for (i = 0; i < h->nr_cmds; i++) {
8343                 c = h->cmd_pool + i;
8344                 refcount = atomic_inc_return(&c->refcount);
8345                 if (refcount > 1) {
8346                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8347                         finish_cmd(c);
8348                         atomic_dec(&h->commands_outstanding);
8349                         failcount++;
8350                 }
8351                 cmd_free(h, c);
8352         }
8353         dev_warn(&h->pdev->dev,
8354                 "failed %d commands in fail_all\n", failcount);
8355 }
8356
8357 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8358 {
8359         int cpu;
8360
8361         for_each_online_cpu(cpu) {
8362                 u32 *lockup_detected;
8363                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8364                 *lockup_detected = value;
8365         }
8366         wmb(); /* be sure the per-cpu variables are out to memory */
8367 }
8368
8369 static void controller_lockup_detected(struct ctlr_info *h)
8370 {
8371         unsigned long flags;
8372         u32 lockup_detected;
8373
8374         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8375         spin_lock_irqsave(&h->lock, flags);
8376         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8377         if (!lockup_detected) {
8378                 /* no heartbeat, but controller gave us a zero. */
8379                 dev_warn(&h->pdev->dev,
8380                         "lockup detected after %d but scratchpad register is zero\n",
8381                         h->heartbeat_sample_interval / HZ);
8382                 lockup_detected = 0xffffffff;
8383         }
8384         set_lockup_detected_for_all_cpus(h, lockup_detected);
8385         spin_unlock_irqrestore(&h->lock, flags);
8386         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8387                         lockup_detected, h->heartbeat_sample_interval / HZ);
8388         pci_disable_device(h->pdev);
8389         fail_all_outstanding_cmds(h);
8390 }
8391
8392 static int detect_controller_lockup(struct ctlr_info *h)
8393 {
8394         u64 now;
8395         u32 heartbeat;
8396         unsigned long flags;
8397
8398         now = get_jiffies_64();
8399         /* If we've received an interrupt recently, we're ok. */
8400         if (time_after64(h->last_intr_timestamp +
8401                                 (h->heartbeat_sample_interval), now))
8402                 return false;
8403
8404         /*
8405          * If we've already checked the heartbeat recently, we're ok.
8406          * This could happen if someone sends us a signal. We
8407          * otherwise don't care about signals in this thread.
8408          */
8409         if (time_after64(h->last_heartbeat_timestamp +
8410                                 (h->heartbeat_sample_interval), now))
8411                 return false;
8412
8413         /* If heartbeat has not changed since we last looked, we're not ok. */
8414         spin_lock_irqsave(&h->lock, flags);
8415         heartbeat = readl(&h->cfgtable->HeartBeat);
8416         spin_unlock_irqrestore(&h->lock, flags);
8417         if (h->last_heartbeat == heartbeat) {
8418                 controller_lockup_detected(h);
8419                 return true;
8420         }
8421
8422         /* We're ok. */
8423         h->last_heartbeat = heartbeat;
8424         h->last_heartbeat_timestamp = now;
8425         return false;
8426 }
8427
8428 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8429 {
8430         int i;
8431         char *event_type;
8432
8433         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8434                 return;
8435
8436         /* Ask the controller to clear the events we're handling. */
8437         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8438                         | CFGTBL_Trans_io_accel2)) &&
8439                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8440                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8441
8442                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8443                         event_type = "state change";
8444                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8445                         event_type = "configuration change";
8446                 /* Stop sending new RAID offload reqs via the IO accelerator */
8447                 scsi_block_requests(h->scsi_host);
8448                 for (i = 0; i < h->ndevices; i++) {
8449                         h->dev[i]->offload_enabled = 0;
8450                         h->dev[i]->offload_to_be_enabled = 0;
8451                 }
8452                 hpsa_drain_accel_commands(h);
8453                 /* Set 'accelerator path config change' bit */
8454                 dev_warn(&h->pdev->dev,
8455                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8456                         h->events, event_type);
8457                 writel(h->events, &(h->cfgtable->clear_event_notify));
8458                 /* Set the "clear event notify field update" bit 6 */
8459                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8460                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8461                 hpsa_wait_for_clear_event_notify_ack(h);
8462                 scsi_unblock_requests(h->scsi_host);
8463         } else {
8464                 /* Acknowledge controller notification events. */
8465                 writel(h->events, &(h->cfgtable->clear_event_notify));
8466                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8467                 hpsa_wait_for_clear_event_notify_ack(h);
8468 #if 0
8469                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8470                 hpsa_wait_for_mode_change_ack(h);
8471 #endif
8472         }
8473         return;
8474 }
8475
8476 /* Check a register on the controller to see if there are configuration
8477  * changes (added/changed/removed logical drives, etc.) which mean that
8478  * we should rescan the controller for devices.
8479  * Also check flag for driver-initiated rescan.
8480  */
8481 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8482 {
8483         if (h->drv_req_rescan) {
8484                 h->drv_req_rescan = 0;
8485                 return 1;
8486         }
8487
8488         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8489                 return 0;
8490
8491         h->events = readl(&(h->cfgtable->event_notify));
8492         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8493 }
8494
8495 /*
8496  * Check if any of the offline devices have become ready
8497  */
8498 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8499 {
8500         unsigned long flags;
8501         struct offline_device_entry *d;
8502         struct list_head *this, *tmp;
8503
8504         spin_lock_irqsave(&h->offline_device_lock, flags);
8505         list_for_each_safe(this, tmp, &h->offline_device_list) {
8506                 d = list_entry(this, struct offline_device_entry,
8507                                 offline_list);
8508                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8509                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8510                         spin_lock_irqsave(&h->offline_device_lock, flags);
8511                         list_del(&d->offline_list);
8512                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8513                         return 1;
8514                 }
8515                 spin_lock_irqsave(&h->offline_device_lock, flags);
8516         }
8517         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8518         return 0;
8519 }
8520
8521 static int hpsa_luns_changed(struct ctlr_info *h)
8522 {
8523         int rc = 1; /* assume there are changes */
8524         struct ReportLUNdata *logdev = NULL;
8525
8526         /* if we can't find out if lun data has changed,
8527          * assume that it has.
8528          */
8529
8530         if (!h->lastlogicals)
8531                 goto out;
8532
8533         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8534         if (!logdev) {
8535                 dev_warn(&h->pdev->dev,
8536                         "Out of memory, can't track lun changes.\n");
8537                 goto out;
8538         }
8539         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8540                 dev_warn(&h->pdev->dev,
8541                         "report luns failed, can't track lun changes.\n");
8542                 goto out;
8543         }
8544         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8545                 dev_info(&h->pdev->dev,
8546                         "Lun changes detected.\n");
8547                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8548                 goto out;
8549         } else
8550                 rc = 0; /* no changes detected. */
8551 out:
8552         kfree(logdev);
8553         return rc;
8554 }
8555
8556 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8557 {
8558         unsigned long flags;
8559         struct ctlr_info *h = container_of(to_delayed_work(work),
8560                                         struct ctlr_info, rescan_ctlr_work);
8561
8562
8563         if (h->remove_in_progress)
8564                 return;
8565
8566         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8567                 scsi_host_get(h->scsi_host);
8568                 hpsa_ack_ctlr_events(h);
8569                 hpsa_scan_start(h->scsi_host);
8570                 scsi_host_put(h->scsi_host);
8571         } else if (h->discovery_polling) {
8572                 hpsa_disable_rld_caching(h);
8573                 if (hpsa_luns_changed(h)) {
8574                         struct Scsi_Host *sh = NULL;
8575
8576                         dev_info(&h->pdev->dev,
8577                                 "driver discovery polling rescan.\n");
8578                         sh = scsi_host_get(h->scsi_host);
8579                         if (sh != NULL) {
8580                                 hpsa_scan_start(sh);
8581                                 scsi_host_put(sh);
8582                         }
8583                 }
8584         }
8585         spin_lock_irqsave(&h->lock, flags);
8586         if (!h->remove_in_progress)
8587                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8588                                 h->heartbeat_sample_interval);
8589         spin_unlock_irqrestore(&h->lock, flags);
8590 }
8591
8592 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8593 {
8594         unsigned long flags;
8595         struct ctlr_info *h = container_of(to_delayed_work(work),
8596                                         struct ctlr_info, monitor_ctlr_work);
8597
8598         detect_controller_lockup(h);
8599         if (lockup_detected(h))
8600                 return;
8601
8602         spin_lock_irqsave(&h->lock, flags);
8603         if (!h->remove_in_progress)
8604                 schedule_delayed_work(&h->monitor_ctlr_work,
8605                                 h->heartbeat_sample_interval);
8606         spin_unlock_irqrestore(&h->lock, flags);
8607 }
8608
8609 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8610                                                 char *name)
8611 {
8612         struct workqueue_struct *wq = NULL;
8613
8614         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8615         if (!wq)
8616                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8617
8618         return wq;
8619 }
8620
8621 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8622 {
8623         int dac, rc;
8624         struct ctlr_info *h;
8625         int try_soft_reset = 0;
8626         unsigned long flags;
8627         u32 board_id;
8628
8629         if (number_of_controllers == 0)
8630                 printk(KERN_INFO DRIVER_NAME "\n");
8631
8632         rc = hpsa_lookup_board_id(pdev, &board_id);
8633         if (rc < 0) {
8634                 dev_warn(&pdev->dev, "Board ID not found\n");
8635                 return rc;
8636         }
8637
8638         rc = hpsa_init_reset_devices(pdev, board_id);
8639         if (rc) {
8640                 if (rc != -ENOTSUPP)
8641                         return rc;
8642                 /* If the reset fails in a particular way (it has no way to do
8643                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8644                  * a soft reset once we get the controller configured up to the
8645                  * point that it can accept a command.
8646                  */
8647                 try_soft_reset = 1;
8648                 rc = 0;
8649         }
8650
8651 reinit_after_soft_reset:
8652
8653         /* Command structures must be aligned on a 32-byte boundary because
8654          * the 5 lower bits of the address are used by the hardware. and by
8655          * the driver.  See comments in hpsa.h for more info.
8656          */
8657         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8658         h = kzalloc(sizeof(*h), GFP_KERNEL);
8659         if (!h) {
8660                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8661                 return -ENOMEM;
8662         }
8663
8664         h->pdev = pdev;
8665
8666         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8667         INIT_LIST_HEAD(&h->offline_device_list);
8668         spin_lock_init(&h->lock);
8669         spin_lock_init(&h->offline_device_lock);
8670         spin_lock_init(&h->scan_lock);
8671         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8672         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8673
8674         /* Allocate and clear per-cpu variable lockup_detected */
8675         h->lockup_detected = alloc_percpu(u32);
8676         if (!h->lockup_detected) {
8677                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8678                 rc = -ENOMEM;
8679                 goto clean1;    /* aer/h */
8680         }
8681         set_lockup_detected_for_all_cpus(h, 0);
8682
8683         rc = hpsa_pci_init(h);
8684         if (rc)
8685                 goto clean2;    /* lu, aer/h */
8686
8687         /* relies on h-> settings made by hpsa_pci_init, including
8688          * interrupt_mode h->intr */
8689         rc = hpsa_scsi_host_alloc(h);
8690         if (rc)
8691                 goto clean2_5;  /* pci, lu, aer/h */
8692
8693         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8694         h->ctlr = number_of_controllers;
8695         number_of_controllers++;
8696
8697         /* configure PCI DMA stuff */
8698         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8699         if (rc == 0) {
8700                 dac = 1;
8701         } else {
8702                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8703                 if (rc == 0) {
8704                         dac = 0;
8705                 } else {
8706                         dev_err(&pdev->dev, "no suitable DMA available\n");
8707                         goto clean3;    /* shost, pci, lu, aer/h */
8708                 }
8709         }
8710
8711         /* make sure the board interrupts are off */
8712         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8713
8714         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8715         if (rc)
8716                 goto clean3;    /* shost, pci, lu, aer/h */
8717         rc = hpsa_alloc_cmd_pool(h);
8718         if (rc)
8719                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8720         rc = hpsa_alloc_sg_chain_blocks(h);
8721         if (rc)
8722                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8723         init_waitqueue_head(&h->scan_wait_queue);
8724         init_waitqueue_head(&h->abort_cmd_wait_queue);
8725         init_waitqueue_head(&h->event_sync_wait_queue);
8726         mutex_init(&h->reset_mutex);
8727         h->scan_finished = 1; /* no scan currently in progress */
8728
8729         pci_set_drvdata(pdev, h);
8730         h->ndevices = 0;
8731
8732         spin_lock_init(&h->devlock);
8733         rc = hpsa_put_ctlr_into_performant_mode(h);
8734         if (rc)
8735                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8736
8737         /* create the resubmit workqueue */
8738         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8739         if (!h->rescan_ctlr_wq) {
8740                 rc = -ENOMEM;
8741                 goto clean7;
8742         }
8743
8744         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8745         if (!h->resubmit_wq) {
8746                 rc = -ENOMEM;
8747                 goto clean7;    /* aer/h */
8748         }
8749
8750         /*
8751          * At this point, the controller is ready to take commands.
8752          * Now, if reset_devices and the hard reset didn't work, try
8753          * the soft reset and see if that works.
8754          */
8755         if (try_soft_reset) {
8756
8757                 /* This is kind of gross.  We may or may not get a completion
8758                  * from the soft reset command, and if we do, then the value
8759                  * from the fifo may or may not be valid.  So, we wait 10 secs
8760                  * after the reset throwing away any completions we get during
8761                  * that time.  Unregister the interrupt handler and register
8762                  * fake ones to scoop up any residual completions.
8763                  */
8764                 spin_lock_irqsave(&h->lock, flags);
8765                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8766                 spin_unlock_irqrestore(&h->lock, flags);
8767                 hpsa_free_irqs(h);
8768                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8769                                         hpsa_intx_discard_completions);
8770                 if (rc) {
8771                         dev_warn(&h->pdev->dev,
8772                                 "Failed to request_irq after soft reset.\n");
8773                         /*
8774                          * cannot goto clean7 or free_irqs will be called
8775                          * again. Instead, do its work
8776                          */
8777                         hpsa_free_performant_mode(h);   /* clean7 */
8778                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8779                         hpsa_free_cmd_pool(h);          /* clean5 */
8780                         /*
8781                          * skip hpsa_free_irqs(h) clean4 since that
8782                          * was just called before request_irqs failed
8783                          */
8784                         goto clean3;
8785                 }
8786
8787                 rc = hpsa_kdump_soft_reset(h);
8788                 if (rc)
8789                         /* Neither hard nor soft reset worked, we're hosed. */
8790                         goto clean7;
8791
8792                 dev_info(&h->pdev->dev, "Board READY.\n");
8793                 dev_info(&h->pdev->dev,
8794                         "Waiting for stale completions to drain.\n");
8795                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8796                 msleep(10000);
8797                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8798
8799                 rc = controller_reset_failed(h->cfgtable);
8800                 if (rc)
8801                         dev_info(&h->pdev->dev,
8802                                 "Soft reset appears to have failed.\n");
8803
8804                 /* since the controller's reset, we have to go back and re-init
8805                  * everything.  Easiest to just forget what we've done and do it
8806                  * all over again.
8807                  */
8808                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8809                 try_soft_reset = 0;
8810                 if (rc)
8811                         /* don't goto clean, we already unallocated */
8812                         return -ENODEV;
8813
8814                 goto reinit_after_soft_reset;
8815         }
8816
8817         /* Enable Accelerated IO path at driver layer */
8818         h->acciopath_status = 1;
8819         /* Disable discovery polling.*/
8820         h->discovery_polling = 0;
8821
8822
8823         /* Turn the interrupts on so we can service requests */
8824         h->access.set_intr_mask(h, HPSA_INTR_ON);
8825
8826         hpsa_hba_inquiry(h);
8827
8828         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8829         if (!h->lastlogicals)
8830                 dev_info(&h->pdev->dev,
8831                         "Can't track change to report lun data\n");
8832
8833         /* hook into SCSI subsystem */
8834         rc = hpsa_scsi_add_host(h);
8835         if (rc)
8836                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8837
8838         /* Monitor the controller for firmware lockups */
8839         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8840         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8841         schedule_delayed_work(&h->monitor_ctlr_work,
8842                                 h->heartbeat_sample_interval);
8843         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8844         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8845                                 h->heartbeat_sample_interval);
8846         return 0;
8847
8848 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8849         hpsa_free_performant_mode(h);
8850         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8851 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8852         hpsa_free_sg_chain_blocks(h);
8853 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8854         hpsa_free_cmd_pool(h);
8855 clean4: /* irq, shost, pci, lu, aer/h */
8856         hpsa_free_irqs(h);
8857 clean3: /* shost, pci, lu, aer/h */
8858         scsi_host_put(h->scsi_host);
8859         h->scsi_host = NULL;
8860 clean2_5: /* pci, lu, aer/h */
8861         hpsa_free_pci_init(h);
8862 clean2: /* lu, aer/h */
8863         if (h->lockup_detected) {
8864                 free_percpu(h->lockup_detected);
8865                 h->lockup_detected = NULL;
8866         }
8867 clean1: /* wq/aer/h */
8868         if (h->resubmit_wq) {
8869                 destroy_workqueue(h->resubmit_wq);
8870                 h->resubmit_wq = NULL;
8871         }
8872         if (h->rescan_ctlr_wq) {
8873                 destroy_workqueue(h->rescan_ctlr_wq);
8874                 h->rescan_ctlr_wq = NULL;
8875         }
8876         kfree(h);
8877         return rc;
8878 }
8879
8880 static void hpsa_flush_cache(struct ctlr_info *h)
8881 {
8882         char *flush_buf;
8883         struct CommandList *c;
8884         int rc;
8885
8886         if (unlikely(lockup_detected(h)))
8887                 return;
8888         flush_buf = kzalloc(4, GFP_KERNEL);
8889         if (!flush_buf)
8890                 return;
8891
8892         c = cmd_alloc(h);
8893
8894         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8895                 RAID_CTLR_LUNID, TYPE_CMD)) {
8896                 goto out;
8897         }
8898         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8899                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8900         if (rc)
8901                 goto out;
8902         if (c->err_info->CommandStatus != 0)
8903 out:
8904                 dev_warn(&h->pdev->dev,
8905                         "error flushing cache on controller\n");
8906         cmd_free(h, c);
8907         kfree(flush_buf);
8908 }
8909
8910 /* Make controller gather fresh report lun data each time we
8911  * send down a report luns request
8912  */
8913 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8914 {
8915         u32 *options;
8916         struct CommandList *c;
8917         int rc;
8918
8919         /* Don't bother trying to set diag options if locked up */
8920         if (unlikely(h->lockup_detected))
8921                 return;
8922
8923         options = kzalloc(sizeof(*options), GFP_KERNEL);
8924         if (!options) {
8925                 dev_err(&h->pdev->dev,
8926                         "Error: failed to disable rld caching, during alloc.\n");
8927                 return;
8928         }
8929
8930         c = cmd_alloc(h);
8931
8932         /* first, get the current diag options settings */
8933         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8934                 RAID_CTLR_LUNID, TYPE_CMD))
8935                 goto errout;
8936
8937         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8938                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8939         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8940                 goto errout;
8941
8942         /* Now, set the bit for disabling the RLD caching */
8943         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8944
8945         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8946                 RAID_CTLR_LUNID, TYPE_CMD))
8947                 goto errout;
8948
8949         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8950                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8951         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8952                 goto errout;
8953
8954         /* Now verify that it got set: */
8955         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8956                 RAID_CTLR_LUNID, TYPE_CMD))
8957                 goto errout;
8958
8959         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8960                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8961         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8962                 goto errout;
8963
8964         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8965                 goto out;
8966
8967 errout:
8968         dev_err(&h->pdev->dev,
8969                         "Error: failed to disable report lun data caching.\n");
8970 out:
8971         cmd_free(h, c);
8972         kfree(options);
8973 }
8974
8975 static void hpsa_shutdown(struct pci_dev *pdev)
8976 {
8977         struct ctlr_info *h;
8978
8979         h = pci_get_drvdata(pdev);
8980         /* Turn board interrupts off  and send the flush cache command
8981          * sendcmd will turn off interrupt, and send the flush...
8982          * To write all data in the battery backed cache to disks
8983          */
8984         hpsa_flush_cache(h);
8985         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8986         hpsa_free_irqs(h);                      /* init_one 4 */
8987         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8988 }
8989
8990 static void hpsa_free_device_info(struct ctlr_info *h)
8991 {
8992         int i;
8993
8994         for (i = 0; i < h->ndevices; i++) {
8995                 kfree(h->dev[i]);
8996                 h->dev[i] = NULL;
8997         }
8998 }
8999
9000 static void hpsa_remove_one(struct pci_dev *pdev)
9001 {
9002         struct ctlr_info *h;
9003         unsigned long flags;
9004
9005         if (pci_get_drvdata(pdev) == NULL) {
9006                 dev_err(&pdev->dev, "unable to remove device\n");
9007                 return;
9008         }
9009         h = pci_get_drvdata(pdev);
9010
9011         /* Get rid of any controller monitoring work items */
9012         spin_lock_irqsave(&h->lock, flags);
9013         h->remove_in_progress = 1;
9014         spin_unlock_irqrestore(&h->lock, flags);
9015         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9016         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9017         destroy_workqueue(h->rescan_ctlr_wq);
9018         destroy_workqueue(h->resubmit_wq);
9019
9020         /*
9021          * Call before disabling interrupts.
9022          * scsi_remove_host can trigger I/O operations especially
9023          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9024          * operations which cannot complete and will hang the system.
9025          */
9026         if (h->scsi_host)
9027                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9028         /* includes hpsa_free_irqs - init_one 4 */
9029         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9030         hpsa_shutdown(pdev);
9031
9032         hpsa_free_device_info(h);               /* scan */
9033
9034         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9035         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9036         hpsa_free_ioaccel2_sg_chain_blocks(h);
9037         hpsa_free_performant_mode(h);                   /* init_one 7 */
9038         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9039         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9040         kfree(h->lastlogicals);
9041
9042         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9043
9044         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9045         h->scsi_host = NULL;                            /* init_one 3 */
9046
9047         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9048         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9049
9050         free_percpu(h->lockup_detected);                /* init_one 2 */
9051         h->lockup_detected = NULL;                      /* init_one 2 */
9052         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9053
9054         hpsa_delete_sas_host(h);
9055
9056         kfree(h);                                       /* init_one 1 */
9057 }
9058
9059 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9060         __attribute__((unused)) pm_message_t state)
9061 {
9062         return -ENOSYS;
9063 }
9064
9065 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9066 {
9067         return -ENOSYS;
9068 }
9069
9070 static struct pci_driver hpsa_pci_driver = {
9071         .name = HPSA,
9072         .probe = hpsa_init_one,
9073         .remove = hpsa_remove_one,
9074         .id_table = hpsa_pci_device_id, /* id_table */
9075         .shutdown = hpsa_shutdown,
9076         .suspend = hpsa_suspend,
9077         .resume = hpsa_resume,
9078 };
9079
9080 /* Fill in bucket_map[], given nsgs (the max number of
9081  * scatter gather elements supported) and bucket[],
9082  * which is an array of 8 integers.  The bucket[] array
9083  * contains 8 different DMA transfer sizes (in 16
9084  * byte increments) which the controller uses to fetch
9085  * commands.  This function fills in bucket_map[], which
9086  * maps a given number of scatter gather elements to one of
9087  * the 8 DMA transfer sizes.  The point of it is to allow the
9088  * controller to only do as much DMA as needed to fetch the
9089  * command, with the DMA transfer size encoded in the lower
9090  * bits of the command address.
9091  */
9092 static void  calc_bucket_map(int bucket[], int num_buckets,
9093         int nsgs, int min_blocks, u32 *bucket_map)
9094 {
9095         int i, j, b, size;
9096
9097         /* Note, bucket_map must have nsgs+1 entries. */
9098         for (i = 0; i <= nsgs; i++) {
9099                 /* Compute size of a command with i SG entries */
9100                 size = i + min_blocks;
9101                 b = num_buckets; /* Assume the biggest bucket */
9102                 /* Find the bucket that is just big enough */
9103                 for (j = 0; j < num_buckets; j++) {
9104                         if (bucket[j] >= size) {
9105                                 b = j;
9106                                 break;
9107                         }
9108                 }
9109                 /* for a command with i SG entries, use bucket b. */
9110                 bucket_map[i] = b;
9111         }
9112 }
9113
9114 /*
9115  * return -ENODEV on err, 0 on success (or no action)
9116  * allocates numerous items that must be freed later
9117  */
9118 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9119 {
9120         int i;
9121         unsigned long register_value;
9122         unsigned long transMethod = CFGTBL_Trans_Performant |
9123                         (trans_support & CFGTBL_Trans_use_short_tags) |
9124                                 CFGTBL_Trans_enable_directed_msix |
9125                         (trans_support & (CFGTBL_Trans_io_accel1 |
9126                                 CFGTBL_Trans_io_accel2));
9127         struct access_method access = SA5_performant_access;
9128
9129         /* This is a bit complicated.  There are 8 registers on
9130          * the controller which we write to to tell it 8 different
9131          * sizes of commands which there may be.  It's a way of
9132          * reducing the DMA done to fetch each command.  Encoded into
9133          * each command's tag are 3 bits which communicate to the controller
9134          * which of the eight sizes that command fits within.  The size of
9135          * each command depends on how many scatter gather entries there are.
9136          * Each SG entry requires 16 bytes.  The eight registers are programmed
9137          * with the number of 16-byte blocks a command of that size requires.
9138          * The smallest command possible requires 5 such 16 byte blocks.
9139          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9140          * blocks.  Note, this only extends to the SG entries contained
9141          * within the command block, and does not extend to chained blocks
9142          * of SG elements.   bft[] contains the eight values we write to
9143          * the registers.  They are not evenly distributed, but have more
9144          * sizes for small commands, and fewer sizes for larger commands.
9145          */
9146         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9147 #define MIN_IOACCEL2_BFT_ENTRY 5
9148 #define HPSA_IOACCEL2_HEADER_SZ 4
9149         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9150                         13, 14, 15, 16, 17, 18, 19,
9151                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9152         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9153         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9154         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9155                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9156         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9157         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9158         /*  5 = 1 s/g entry or 4k
9159          *  6 = 2 s/g entry or 8k
9160          *  8 = 4 s/g entry or 16k
9161          * 10 = 6 s/g entry or 24k
9162          */
9163
9164         /* If the controller supports either ioaccel method then
9165          * we can also use the RAID stack submit path that does not
9166          * perform the superfluous readl() after each command submission.
9167          */
9168         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9169                 access = SA5_performant_access_no_read;
9170
9171         /* Controller spec: zero out this buffer. */
9172         for (i = 0; i < h->nreply_queues; i++)
9173                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9174
9175         bft[7] = SG_ENTRIES_IN_CMD + 4;
9176         calc_bucket_map(bft, ARRAY_SIZE(bft),
9177                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9178         for (i = 0; i < 8; i++)
9179                 writel(bft[i], &h->transtable->BlockFetch[i]);
9180
9181         /* size of controller ring buffer */
9182         writel(h->max_commands, &h->transtable->RepQSize);
9183         writel(h->nreply_queues, &h->transtable->RepQCount);
9184         writel(0, &h->transtable->RepQCtrAddrLow32);
9185         writel(0, &h->transtable->RepQCtrAddrHigh32);
9186
9187         for (i = 0; i < h->nreply_queues; i++) {
9188                 writel(0, &h->transtable->RepQAddr[i].upper);
9189                 writel(h->reply_queue[i].busaddr,
9190                         &h->transtable->RepQAddr[i].lower);
9191         }
9192
9193         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9194         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9195         /*
9196          * enable outbound interrupt coalescing in accelerator mode;
9197          */
9198         if (trans_support & CFGTBL_Trans_io_accel1) {
9199                 access = SA5_ioaccel_mode1_access;
9200                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9201                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9202         } else {
9203                 if (trans_support & CFGTBL_Trans_io_accel2) {
9204                         access = SA5_ioaccel_mode2_access;
9205                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9206                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9207                 }
9208         }
9209         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9210         if (hpsa_wait_for_mode_change_ack(h)) {
9211                 dev_err(&h->pdev->dev,
9212                         "performant mode problem - doorbell timeout\n");
9213                 return -ENODEV;
9214         }
9215         register_value = readl(&(h->cfgtable->TransportActive));
9216         if (!(register_value & CFGTBL_Trans_Performant)) {
9217                 dev_err(&h->pdev->dev,
9218                         "performant mode problem - transport not active\n");
9219                 return -ENODEV;
9220         }
9221         /* Change the access methods to the performant access methods */
9222         h->access = access;
9223         h->transMethod = transMethod;
9224
9225         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9226                 (trans_support & CFGTBL_Trans_io_accel2)))
9227                 return 0;
9228
9229         if (trans_support & CFGTBL_Trans_io_accel1) {
9230                 /* Set up I/O accelerator mode */
9231                 for (i = 0; i < h->nreply_queues; i++) {
9232                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9233                         h->reply_queue[i].current_entry =
9234                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9235                 }
9236                 bft[7] = h->ioaccel_maxsg + 8;
9237                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9238                                 h->ioaccel1_blockFetchTable);
9239
9240                 /* initialize all reply queue entries to unused */
9241                 for (i = 0; i < h->nreply_queues; i++)
9242                         memset(h->reply_queue[i].head,
9243                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9244                                 h->reply_queue_size);
9245
9246                 /* set all the constant fields in the accelerator command
9247                  * frames once at init time to save CPU cycles later.
9248                  */
9249                 for (i = 0; i < h->nr_cmds; i++) {
9250                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9251
9252                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9253                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9254                                         (i * sizeof(struct ErrorInfo)));
9255                         cp->err_info_len = sizeof(struct ErrorInfo);
9256                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9257                         cp->host_context_flags =
9258                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9259                         cp->timeout_sec = 0;
9260                         cp->ReplyQueue = 0;
9261                         cp->tag =
9262                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9263                         cp->host_addr =
9264                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9265                                         (i * sizeof(struct io_accel1_cmd)));
9266                 }
9267         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9268                 u64 cfg_offset, cfg_base_addr_index;
9269                 u32 bft2_offset, cfg_base_addr;
9270                 int rc;
9271
9272                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9273                         &cfg_base_addr_index, &cfg_offset);
9274                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9275                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9276                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9277                                 4, h->ioaccel2_blockFetchTable);
9278                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9279                 BUILD_BUG_ON(offsetof(struct CfgTable,
9280                                 io_accel_request_size_offset) != 0xb8);
9281                 h->ioaccel2_bft2_regs =
9282                         remap_pci_mem(pci_resource_start(h->pdev,
9283                                         cfg_base_addr_index) +
9284                                         cfg_offset + bft2_offset,
9285                                         ARRAY_SIZE(bft2) *
9286                                         sizeof(*h->ioaccel2_bft2_regs));
9287                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9288                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9289         }
9290         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9291         if (hpsa_wait_for_mode_change_ack(h)) {
9292                 dev_err(&h->pdev->dev,
9293                         "performant mode problem - enabling ioaccel mode\n");
9294                 return -ENODEV;
9295         }
9296         return 0;
9297 }
9298
9299 /* Free ioaccel1 mode command blocks and block fetch table */
9300 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9301 {
9302         if (h->ioaccel_cmd_pool) {
9303                 pci_free_consistent(h->pdev,
9304                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9305                         h->ioaccel_cmd_pool,
9306                         h->ioaccel_cmd_pool_dhandle);
9307                 h->ioaccel_cmd_pool = NULL;
9308                 h->ioaccel_cmd_pool_dhandle = 0;
9309         }
9310         kfree(h->ioaccel1_blockFetchTable);
9311         h->ioaccel1_blockFetchTable = NULL;
9312 }
9313
9314 /* Allocate ioaccel1 mode command blocks and block fetch table */
9315 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9316 {
9317         h->ioaccel_maxsg =
9318                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9319         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9320                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9321
9322         /* Command structures must be aligned on a 128-byte boundary
9323          * because the 7 lower bits of the address are used by the
9324          * hardware.
9325          */
9326         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9327                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9328         h->ioaccel_cmd_pool =
9329                 pci_alloc_consistent(h->pdev,
9330                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9331                         &(h->ioaccel_cmd_pool_dhandle));
9332
9333         h->ioaccel1_blockFetchTable =
9334                 kmalloc(((h->ioaccel_maxsg + 1) *
9335                                 sizeof(u32)), GFP_KERNEL);
9336
9337         if ((h->ioaccel_cmd_pool == NULL) ||
9338                 (h->ioaccel1_blockFetchTable == NULL))
9339                 goto clean_up;
9340
9341         memset(h->ioaccel_cmd_pool, 0,
9342                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9343         return 0;
9344
9345 clean_up:
9346         hpsa_free_ioaccel1_cmd_and_bft(h);
9347         return -ENOMEM;
9348 }
9349
9350 /* Free ioaccel2 mode command blocks and block fetch table */
9351 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9352 {
9353         hpsa_free_ioaccel2_sg_chain_blocks(h);
9354
9355         if (h->ioaccel2_cmd_pool) {
9356                 pci_free_consistent(h->pdev,
9357                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9358                         h->ioaccel2_cmd_pool,
9359                         h->ioaccel2_cmd_pool_dhandle);
9360                 h->ioaccel2_cmd_pool = NULL;
9361                 h->ioaccel2_cmd_pool_dhandle = 0;
9362         }
9363         kfree(h->ioaccel2_blockFetchTable);
9364         h->ioaccel2_blockFetchTable = NULL;
9365 }
9366
9367 /* Allocate ioaccel2 mode command blocks and block fetch table */
9368 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9369 {
9370         int rc;
9371
9372         /* Allocate ioaccel2 mode command blocks and block fetch table */
9373
9374         h->ioaccel_maxsg =
9375                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9376         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9377                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9378
9379         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9380                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9381         h->ioaccel2_cmd_pool =
9382                 pci_alloc_consistent(h->pdev,
9383                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9384                         &(h->ioaccel2_cmd_pool_dhandle));
9385
9386         h->ioaccel2_blockFetchTable =
9387                 kmalloc(((h->ioaccel_maxsg + 1) *
9388                                 sizeof(u32)), GFP_KERNEL);
9389
9390         if ((h->ioaccel2_cmd_pool == NULL) ||
9391                 (h->ioaccel2_blockFetchTable == NULL)) {
9392                 rc = -ENOMEM;
9393                 goto clean_up;
9394         }
9395
9396         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9397         if (rc)
9398                 goto clean_up;
9399
9400         memset(h->ioaccel2_cmd_pool, 0,
9401                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9402         return 0;
9403
9404 clean_up:
9405         hpsa_free_ioaccel2_cmd_and_bft(h);
9406         return rc;
9407 }
9408
9409 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9410 static void hpsa_free_performant_mode(struct ctlr_info *h)
9411 {
9412         kfree(h->blockFetchTable);
9413         h->blockFetchTable = NULL;
9414         hpsa_free_reply_queues(h);
9415         hpsa_free_ioaccel1_cmd_and_bft(h);
9416         hpsa_free_ioaccel2_cmd_and_bft(h);
9417 }
9418
9419 /* return -ENODEV on error, 0 on success (or no action)
9420  * allocates numerous items that must be freed later
9421  */
9422 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9423 {
9424         u32 trans_support;
9425         unsigned long transMethod = CFGTBL_Trans_Performant |
9426                                         CFGTBL_Trans_use_short_tags;
9427         int i, rc;
9428
9429         if (hpsa_simple_mode)
9430                 return 0;
9431
9432         trans_support = readl(&(h->cfgtable->TransportSupport));
9433         if (!(trans_support & PERFORMANT_MODE))
9434                 return 0;
9435
9436         /* Check for I/O accelerator mode support */
9437         if (trans_support & CFGTBL_Trans_io_accel1) {
9438                 transMethod |= CFGTBL_Trans_io_accel1 |
9439                                 CFGTBL_Trans_enable_directed_msix;
9440                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9441                 if (rc)
9442                         return rc;
9443         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9444                 transMethod |= CFGTBL_Trans_io_accel2 |
9445                                 CFGTBL_Trans_enable_directed_msix;
9446                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9447                 if (rc)
9448                         return rc;
9449         }
9450
9451         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9452         hpsa_get_max_perf_mode_cmds(h);
9453         /* Performant mode ring buffer and supporting data structures */
9454         h->reply_queue_size = h->max_commands * sizeof(u64);
9455
9456         for (i = 0; i < h->nreply_queues; i++) {
9457                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9458                                                 h->reply_queue_size,
9459                                                 &(h->reply_queue[i].busaddr));
9460                 if (!h->reply_queue[i].head) {
9461                         rc = -ENOMEM;
9462                         goto clean1;    /* rq, ioaccel */
9463                 }
9464                 h->reply_queue[i].size = h->max_commands;
9465                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9466                 h->reply_queue[i].current_entry = 0;
9467         }
9468
9469         /* Need a block fetch table for performant mode */
9470         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9471                                 sizeof(u32)), GFP_KERNEL);
9472         if (!h->blockFetchTable) {
9473                 rc = -ENOMEM;
9474                 goto clean1;    /* rq, ioaccel */
9475         }
9476
9477         rc = hpsa_enter_performant_mode(h, trans_support);
9478         if (rc)
9479                 goto clean2;    /* bft, rq, ioaccel */
9480         return 0;
9481
9482 clean2: /* bft, rq, ioaccel */
9483         kfree(h->blockFetchTable);
9484         h->blockFetchTable = NULL;
9485 clean1: /* rq, ioaccel */
9486         hpsa_free_reply_queues(h);
9487         hpsa_free_ioaccel1_cmd_and_bft(h);
9488         hpsa_free_ioaccel2_cmd_and_bft(h);
9489         return rc;
9490 }
9491
9492 static int is_accelerated_cmd(struct CommandList *c)
9493 {
9494         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9495 }
9496
9497 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9498 {
9499         struct CommandList *c = NULL;
9500         int i, accel_cmds_out;
9501         int refcount;
9502
9503         do { /* wait for all outstanding ioaccel commands to drain out */
9504                 accel_cmds_out = 0;
9505                 for (i = 0; i < h->nr_cmds; i++) {
9506                         c = h->cmd_pool + i;
9507                         refcount = atomic_inc_return(&c->refcount);
9508                         if (refcount > 1) /* Command is allocated */
9509                                 accel_cmds_out += is_accelerated_cmd(c);
9510                         cmd_free(h, c);
9511                 }
9512                 if (accel_cmds_out <= 0)
9513                         break;
9514                 msleep(100);
9515         } while (1);
9516 }
9517
9518 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9519                                 struct hpsa_sas_port *hpsa_sas_port)
9520 {
9521         struct hpsa_sas_phy *hpsa_sas_phy;
9522         struct sas_phy *phy;
9523
9524         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9525         if (!hpsa_sas_phy)
9526                 return NULL;
9527
9528         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9529                 hpsa_sas_port->next_phy_index);
9530         if (!phy) {
9531                 kfree(hpsa_sas_phy);
9532                 return NULL;
9533         }
9534
9535         hpsa_sas_port->next_phy_index++;
9536         hpsa_sas_phy->phy = phy;
9537         hpsa_sas_phy->parent_port = hpsa_sas_port;
9538
9539         return hpsa_sas_phy;
9540 }
9541
9542 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9543 {
9544         struct sas_phy *phy = hpsa_sas_phy->phy;
9545
9546         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9547         sas_phy_free(phy);
9548         if (hpsa_sas_phy->added_to_port)
9549                 list_del(&hpsa_sas_phy->phy_list_entry);
9550         kfree(hpsa_sas_phy);
9551 }
9552
9553 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9554 {
9555         int rc;
9556         struct hpsa_sas_port *hpsa_sas_port;
9557         struct sas_phy *phy;
9558         struct sas_identify *identify;
9559
9560         hpsa_sas_port = hpsa_sas_phy->parent_port;
9561         phy = hpsa_sas_phy->phy;
9562
9563         identify = &phy->identify;
9564         memset(identify, 0, sizeof(*identify));
9565         identify->sas_address = hpsa_sas_port->sas_address;
9566         identify->device_type = SAS_END_DEVICE;
9567         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9568         identify->target_port_protocols = SAS_PROTOCOL_STP;
9569         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9570         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9571         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9572         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9573         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9574
9575         rc = sas_phy_add(hpsa_sas_phy->phy);
9576         if (rc)
9577                 return rc;
9578
9579         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9580         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9581                         &hpsa_sas_port->phy_list_head);
9582         hpsa_sas_phy->added_to_port = true;
9583
9584         return 0;
9585 }
9586
9587 static int
9588         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9589                                 struct sas_rphy *rphy)
9590 {
9591         struct sas_identify *identify;
9592
9593         identify = &rphy->identify;
9594         identify->sas_address = hpsa_sas_port->sas_address;
9595         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9596         identify->target_port_protocols = SAS_PROTOCOL_STP;
9597
9598         return sas_rphy_add(rphy);
9599 }
9600
9601 static struct hpsa_sas_port
9602         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9603                                 u64 sas_address)
9604 {
9605         int rc;
9606         struct hpsa_sas_port *hpsa_sas_port;
9607         struct sas_port *port;
9608
9609         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9610         if (!hpsa_sas_port)
9611                 return NULL;
9612
9613         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9614         hpsa_sas_port->parent_node = hpsa_sas_node;
9615
9616         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9617         if (!port)
9618                 goto free_hpsa_port;
9619
9620         rc = sas_port_add(port);
9621         if (rc)
9622                 goto free_sas_port;
9623
9624         hpsa_sas_port->port = port;
9625         hpsa_sas_port->sas_address = sas_address;
9626         list_add_tail(&hpsa_sas_port->port_list_entry,
9627                         &hpsa_sas_node->port_list_head);
9628
9629         return hpsa_sas_port;
9630
9631 free_sas_port:
9632         sas_port_free(port);
9633 free_hpsa_port:
9634         kfree(hpsa_sas_port);
9635
9636         return NULL;
9637 }
9638
9639 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9640 {
9641         struct hpsa_sas_phy *hpsa_sas_phy;
9642         struct hpsa_sas_phy *next;
9643
9644         list_for_each_entry_safe(hpsa_sas_phy, next,
9645                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9646                 hpsa_free_sas_phy(hpsa_sas_phy);
9647
9648         sas_port_delete(hpsa_sas_port->port);
9649         list_del(&hpsa_sas_port->port_list_entry);
9650         kfree(hpsa_sas_port);
9651 }
9652
9653 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9654 {
9655         struct hpsa_sas_node *hpsa_sas_node;
9656
9657         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9658         if (hpsa_sas_node) {
9659                 hpsa_sas_node->parent_dev = parent_dev;
9660                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9661         }
9662
9663         return hpsa_sas_node;
9664 }
9665
9666 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9667 {
9668         struct hpsa_sas_port *hpsa_sas_port;
9669         struct hpsa_sas_port *next;
9670
9671         if (!hpsa_sas_node)
9672                 return;
9673
9674         list_for_each_entry_safe(hpsa_sas_port, next,
9675                         &hpsa_sas_node->port_list_head, port_list_entry)
9676                 hpsa_free_sas_port(hpsa_sas_port);
9677
9678         kfree(hpsa_sas_node);
9679 }
9680
9681 static struct hpsa_scsi_dev_t
9682         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9683                                         struct sas_rphy *rphy)
9684 {
9685         int i;
9686         struct hpsa_scsi_dev_t *device;
9687
9688         for (i = 0; i < h->ndevices; i++) {
9689                 device = h->dev[i];
9690                 if (!device->sas_port)
9691                         continue;
9692                 if (device->sas_port->rphy == rphy)
9693                         return device;
9694         }
9695
9696         return NULL;
9697 }
9698
9699 static int hpsa_add_sas_host(struct ctlr_info *h)
9700 {
9701         int rc;
9702         struct device *parent_dev;
9703         struct hpsa_sas_node *hpsa_sas_node;
9704         struct hpsa_sas_port *hpsa_sas_port;
9705         struct hpsa_sas_phy *hpsa_sas_phy;
9706
9707         parent_dev = &h->scsi_host->shost_gendev;
9708
9709         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9710         if (!hpsa_sas_node)
9711                 return -ENOMEM;
9712
9713         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9714         if (!hpsa_sas_port) {
9715                 rc = -ENODEV;
9716                 goto free_sas_node;
9717         }
9718
9719         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9720         if (!hpsa_sas_phy) {
9721                 rc = -ENODEV;
9722                 goto free_sas_port;
9723         }
9724
9725         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9726         if (rc)
9727                 goto free_sas_phy;
9728
9729         h->sas_host = hpsa_sas_node;
9730
9731         return 0;
9732
9733 free_sas_phy:
9734         hpsa_free_sas_phy(hpsa_sas_phy);
9735 free_sas_port:
9736         hpsa_free_sas_port(hpsa_sas_port);
9737 free_sas_node:
9738         hpsa_free_sas_node(hpsa_sas_node);
9739
9740         return rc;
9741 }
9742
9743 static void hpsa_delete_sas_host(struct ctlr_info *h)
9744 {
9745         hpsa_free_sas_node(h->sas_host);
9746 }
9747
9748 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9749                                 struct hpsa_scsi_dev_t *device)
9750 {
9751         int rc;
9752         struct hpsa_sas_port *hpsa_sas_port;
9753         struct sas_rphy *rphy;
9754
9755         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9756         if (!hpsa_sas_port)
9757                 return -ENOMEM;
9758
9759         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9760         if (!rphy) {
9761                 rc = -ENODEV;
9762                 goto free_sas_port;
9763         }
9764
9765         hpsa_sas_port->rphy = rphy;
9766         device->sas_port = hpsa_sas_port;
9767
9768         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9769         if (rc)
9770                 goto free_sas_port;
9771
9772         return 0;
9773
9774 free_sas_port:
9775         hpsa_free_sas_port(hpsa_sas_port);
9776         device->sas_port = NULL;
9777
9778         return rc;
9779 }
9780
9781 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9782 {
9783         if (device->sas_port) {
9784                 hpsa_free_sas_port(device->sas_port);
9785                 device->sas_port = NULL;
9786         }
9787 }
9788
9789 static int
9790 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9791 {
9792         return 0;
9793 }
9794
9795 static int
9796 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9797 {
9798         *identifier = 0;
9799         return 0;
9800 }
9801
9802 static int
9803 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9804 {
9805         return -ENXIO;
9806 }
9807
9808 static int
9809 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9810 {
9811         return 0;
9812 }
9813
9814 static int
9815 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9816 {
9817         return 0;
9818 }
9819
9820 static int
9821 hpsa_sas_phy_setup(struct sas_phy *phy)
9822 {
9823         return 0;
9824 }
9825
9826 static void
9827 hpsa_sas_phy_release(struct sas_phy *phy)
9828 {
9829 }
9830
9831 static int
9832 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9833 {
9834         return -EINVAL;
9835 }
9836
9837 /* SMP = Serial Management Protocol */
9838 static int
9839 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9840 struct request *req)
9841 {
9842         return -EINVAL;
9843 }
9844
9845 static struct sas_function_template hpsa_sas_transport_functions = {
9846         .get_linkerrors = hpsa_sas_get_linkerrors,
9847         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9848         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9849         .phy_reset = hpsa_sas_phy_reset,
9850         .phy_enable = hpsa_sas_phy_enable,
9851         .phy_setup = hpsa_sas_phy_setup,
9852         .phy_release = hpsa_sas_phy_release,
9853         .set_phy_speed = hpsa_sas_phy_speed,
9854         .smp_handler = hpsa_sas_smp_handler,
9855 };
9856
9857 /*
9858  *  This is it.  Register the PCI driver information for the cards we control
9859  *  the OS will call our registered routines when it finds one of our cards.
9860  */
9861 static int __init hpsa_init(void)
9862 {
9863         int rc;
9864
9865         hpsa_sas_transport_template =
9866                 sas_attach_transport(&hpsa_sas_transport_functions);
9867         if (!hpsa_sas_transport_template)
9868                 return -ENODEV;
9869
9870         rc = pci_register_driver(&hpsa_pci_driver);
9871
9872         if (rc)
9873                 sas_release_transport(hpsa_sas_transport_template);
9874
9875         return rc;
9876 }
9877
9878 static void __exit hpsa_cleanup(void)
9879 {
9880         pci_unregister_driver(&hpsa_pci_driver);
9881         sas_release_transport(hpsa_sas_transport_template);
9882 }
9883
9884 static void __attribute__((unused)) verify_offsets(void)
9885 {
9886 #define VERIFY_OFFSET(member, offset) \
9887         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9888
9889         VERIFY_OFFSET(structure_size, 0);
9890         VERIFY_OFFSET(volume_blk_size, 4);
9891         VERIFY_OFFSET(volume_blk_cnt, 8);
9892         VERIFY_OFFSET(phys_blk_shift, 16);
9893         VERIFY_OFFSET(parity_rotation_shift, 17);
9894         VERIFY_OFFSET(strip_size, 18);
9895         VERIFY_OFFSET(disk_starting_blk, 20);
9896         VERIFY_OFFSET(disk_blk_cnt, 28);
9897         VERIFY_OFFSET(data_disks_per_row, 36);
9898         VERIFY_OFFSET(metadata_disks_per_row, 38);
9899         VERIFY_OFFSET(row_cnt, 40);
9900         VERIFY_OFFSET(layout_map_count, 42);
9901         VERIFY_OFFSET(flags, 44);
9902         VERIFY_OFFSET(dekindex, 46);
9903         /* VERIFY_OFFSET(reserved, 48 */
9904         VERIFY_OFFSET(data, 64);
9905
9906 #undef VERIFY_OFFSET
9907
9908 #define VERIFY_OFFSET(member, offset) \
9909         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9910
9911         VERIFY_OFFSET(IU_type, 0);
9912         VERIFY_OFFSET(direction, 1);
9913         VERIFY_OFFSET(reply_queue, 2);
9914         /* VERIFY_OFFSET(reserved1, 3);  */
9915         VERIFY_OFFSET(scsi_nexus, 4);
9916         VERIFY_OFFSET(Tag, 8);
9917         VERIFY_OFFSET(cdb, 16);
9918         VERIFY_OFFSET(cciss_lun, 32);
9919         VERIFY_OFFSET(data_len, 40);
9920         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9921         VERIFY_OFFSET(sg_count, 45);
9922         /* VERIFY_OFFSET(reserved3 */
9923         VERIFY_OFFSET(err_ptr, 48);
9924         VERIFY_OFFSET(err_len, 56);
9925         /* VERIFY_OFFSET(reserved4  */
9926         VERIFY_OFFSET(sg, 64);
9927
9928 #undef VERIFY_OFFSET
9929
9930 #define VERIFY_OFFSET(member, offset) \
9931         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9932
9933         VERIFY_OFFSET(dev_handle, 0x00);
9934         VERIFY_OFFSET(reserved1, 0x02);
9935         VERIFY_OFFSET(function, 0x03);
9936         VERIFY_OFFSET(reserved2, 0x04);
9937         VERIFY_OFFSET(err_info, 0x0C);
9938         VERIFY_OFFSET(reserved3, 0x10);
9939         VERIFY_OFFSET(err_info_len, 0x12);
9940         VERIFY_OFFSET(reserved4, 0x13);
9941         VERIFY_OFFSET(sgl_offset, 0x14);
9942         VERIFY_OFFSET(reserved5, 0x15);
9943         VERIFY_OFFSET(transfer_len, 0x1C);
9944         VERIFY_OFFSET(reserved6, 0x20);
9945         VERIFY_OFFSET(io_flags, 0x24);
9946         VERIFY_OFFSET(reserved7, 0x26);
9947         VERIFY_OFFSET(LUN, 0x34);
9948         VERIFY_OFFSET(control, 0x3C);
9949         VERIFY_OFFSET(CDB, 0x40);
9950         VERIFY_OFFSET(reserved8, 0x50);
9951         VERIFY_OFFSET(host_context_flags, 0x60);
9952         VERIFY_OFFSET(timeout_sec, 0x62);
9953         VERIFY_OFFSET(ReplyQueue, 0x64);
9954         VERIFY_OFFSET(reserved9, 0x65);
9955         VERIFY_OFFSET(tag, 0x68);
9956         VERIFY_OFFSET(host_addr, 0x70);
9957         VERIFY_OFFSET(CISS_LUN, 0x78);
9958         VERIFY_OFFSET(SG, 0x78 + 8);
9959 #undef VERIFY_OFFSET
9960 }
9961
9962 module_init(hpsa_init);
9963 module_exit(hpsa_cleanup);