Merge tag 'hsi-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[cascardo/linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {0,}
150 };
151
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159         {0x3241103C, "Smart Array P212", &SA5_access},
160         {0x3243103C, "Smart Array P410", &SA5_access},
161         {0x3245103C, "Smart Array P410i", &SA5_access},
162         {0x3247103C, "Smart Array P411", &SA5_access},
163         {0x3249103C, "Smart Array P812", &SA5_access},
164         {0x324A103C, "Smart Array P712m", &SA5_access},
165         {0x324B103C, "Smart Array P711m", &SA5_access},
166         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167         {0x3350103C, "Smart Array P222", &SA5_access},
168         {0x3351103C, "Smart Array P420", &SA5_access},
169         {0x3352103C, "Smart Array P421", &SA5_access},
170         {0x3353103C, "Smart Array P822", &SA5_access},
171         {0x3354103C, "Smart Array P420i", &SA5_access},
172         {0x3355103C, "Smart Array P220i", &SA5_access},
173         {0x3356103C, "Smart Array P721m", &SA5_access},
174         {0x1921103C, "Smart Array P830i", &SA5_access},
175         {0x1922103C, "Smart Array P430", &SA5_access},
176         {0x1923103C, "Smart Array P431", &SA5_access},
177         {0x1924103C, "Smart Array P830", &SA5_access},
178         {0x1926103C, "Smart Array P731m", &SA5_access},
179         {0x1928103C, "Smart Array P230i", &SA5_access},
180         {0x1929103C, "Smart Array P530", &SA5_access},
181         {0x21BD103C, "Smart Array P244br", &SA5_access},
182         {0x21BE103C, "Smart Array P741m", &SA5_access},
183         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184         {0x21C0103C, "Smart Array P440ar", &SA5_access},
185         {0x21C1103C, "Smart Array P840ar", &SA5_access},
186         {0x21C2103C, "Smart Array P440", &SA5_access},
187         {0x21C3103C, "Smart Array P441", &SA5_access},
188         {0x21C4103C, "Smart Array", &SA5_access},
189         {0x21C5103C, "Smart Array P841", &SA5_access},
190         {0x21C6103C, "Smart HBA H244br", &SA5_access},
191         {0x21C7103C, "Smart HBA H240", &SA5_access},
192         {0x21C8103C, "Smart HBA H241", &SA5_access},
193         {0x21C9103C, "Smart Array", &SA5_access},
194         {0x21CA103C, "Smart Array P246br", &SA5_access},
195         {0x21CB103C, "Smart Array P840", &SA5_access},
196         {0x21CC103C, "Smart Array", &SA5_access},
197         {0x21CD103C, "Smart Array", &SA5_access},
198         {0x21CE103C, "Smart HBA", &SA5_access},
199         {0x05809005, "SmartHBA-SA", &SA5_access},
200         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217                         struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221                 struct sas_rphy *rphy);
222
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235         void __user *arg);
236 #endif
237
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242                                             struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245         int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253         unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264         struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266         struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269         int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275                                u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277                                     unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280                                      int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295         struct ReportExtendedLUNdata *buf, int bufsize);
296 static int hpsa_luns_changed(struct ctlr_info *h);
297 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
298                                struct hpsa_scsi_dev_t *dev,
299                                unsigned char *scsi3addr);
300
301 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
302 {
303         unsigned long *priv = shost_priv(sdev->host);
304         return (struct ctlr_info *) *priv;
305 }
306
307 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
308 {
309         unsigned long *priv = shost_priv(sh);
310         return (struct ctlr_info *) *priv;
311 }
312
313 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
314 {
315         return c->scsi_cmd == SCSI_CMD_IDLE;
316 }
317
318 static inline bool hpsa_is_pending_event(struct CommandList *c)
319 {
320         return c->abort_pending || c->reset_pending;
321 }
322
323 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
324 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
325                         u8 *sense_key, u8 *asc, u8 *ascq)
326 {
327         struct scsi_sense_hdr sshdr;
328         bool rc;
329
330         *sense_key = -1;
331         *asc = -1;
332         *ascq = -1;
333
334         if (sense_data_len < 1)
335                 return;
336
337         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
338         if (rc) {
339                 *sense_key = sshdr.sense_key;
340                 *asc = sshdr.asc;
341                 *ascq = sshdr.ascq;
342         }
343 }
344
345 static int check_for_unit_attention(struct ctlr_info *h,
346         struct CommandList *c)
347 {
348         u8 sense_key, asc, ascq;
349         int sense_len;
350
351         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
352                 sense_len = sizeof(c->err_info->SenseInfo);
353         else
354                 sense_len = c->err_info->SenseLen;
355
356         decode_sense_data(c->err_info->SenseInfo, sense_len,
357                                 &sense_key, &asc, &ascq);
358         if (sense_key != UNIT_ATTENTION || asc == 0xff)
359                 return 0;
360
361         switch (asc) {
362         case STATE_CHANGED:
363                 dev_warn(&h->pdev->dev,
364                         "%s: a state change detected, command retried\n",
365                         h->devname);
366                 break;
367         case LUN_FAILED:
368                 dev_warn(&h->pdev->dev,
369                         "%s: LUN failure detected\n", h->devname);
370                 break;
371         case REPORT_LUNS_CHANGED:
372                 dev_warn(&h->pdev->dev,
373                         "%s: report LUN data changed\n", h->devname);
374         /*
375          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
376          * target (array) devices.
377          */
378                 break;
379         case POWER_OR_RESET:
380                 dev_warn(&h->pdev->dev,
381                         "%s: a power on or device reset detected\n",
382                         h->devname);
383                 break;
384         case UNIT_ATTENTION_CLEARED:
385                 dev_warn(&h->pdev->dev,
386                         "%s: unit attention cleared by another initiator\n",
387                         h->devname);
388                 break;
389         default:
390                 dev_warn(&h->pdev->dev,
391                         "%s: unknown unit attention detected\n",
392                         h->devname);
393                 break;
394         }
395         return 1;
396 }
397
398 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
399 {
400         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
401                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
402                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
403                 return 0;
404         dev_warn(&h->pdev->dev, HPSA "device busy");
405         return 1;
406 }
407
408 static u32 lockup_detected(struct ctlr_info *h);
409 static ssize_t host_show_lockup_detected(struct device *dev,
410                 struct device_attribute *attr, char *buf)
411 {
412         int ld;
413         struct ctlr_info *h;
414         struct Scsi_Host *shost = class_to_shost(dev);
415
416         h = shost_to_hba(shost);
417         ld = lockup_detected(h);
418
419         return sprintf(buf, "ld=%d\n", ld);
420 }
421
422 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
423                                          struct device_attribute *attr,
424                                          const char *buf, size_t count)
425 {
426         int status, len;
427         struct ctlr_info *h;
428         struct Scsi_Host *shost = class_to_shost(dev);
429         char tmpbuf[10];
430
431         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
432                 return -EACCES;
433         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
434         strncpy(tmpbuf, buf, len);
435         tmpbuf[len] = '\0';
436         if (sscanf(tmpbuf, "%d", &status) != 1)
437                 return -EINVAL;
438         h = shost_to_hba(shost);
439         h->acciopath_status = !!status;
440         dev_warn(&h->pdev->dev,
441                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
442                 h->acciopath_status ? "enabled" : "disabled");
443         return count;
444 }
445
446 static ssize_t host_store_raid_offload_debug(struct device *dev,
447                                          struct device_attribute *attr,
448                                          const char *buf, size_t count)
449 {
450         int debug_level, len;
451         struct ctlr_info *h;
452         struct Scsi_Host *shost = class_to_shost(dev);
453         char tmpbuf[10];
454
455         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
456                 return -EACCES;
457         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
458         strncpy(tmpbuf, buf, len);
459         tmpbuf[len] = '\0';
460         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
461                 return -EINVAL;
462         if (debug_level < 0)
463                 debug_level = 0;
464         h = shost_to_hba(shost);
465         h->raid_offload_debug = debug_level;
466         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
467                 h->raid_offload_debug);
468         return count;
469 }
470
471 static ssize_t host_store_rescan(struct device *dev,
472                                  struct device_attribute *attr,
473                                  const char *buf, size_t count)
474 {
475         struct ctlr_info *h;
476         struct Scsi_Host *shost = class_to_shost(dev);
477         h = shost_to_hba(shost);
478         hpsa_scan_start(h->scsi_host);
479         return count;
480 }
481
482 static ssize_t host_show_firmware_revision(struct device *dev,
483              struct device_attribute *attr, char *buf)
484 {
485         struct ctlr_info *h;
486         struct Scsi_Host *shost = class_to_shost(dev);
487         unsigned char *fwrev;
488
489         h = shost_to_hba(shost);
490         if (!h->hba_inquiry_data)
491                 return 0;
492         fwrev = &h->hba_inquiry_data[32];
493         return snprintf(buf, 20, "%c%c%c%c\n",
494                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
495 }
496
497 static ssize_t host_show_commands_outstanding(struct device *dev,
498              struct device_attribute *attr, char *buf)
499 {
500         struct Scsi_Host *shost = class_to_shost(dev);
501         struct ctlr_info *h = shost_to_hba(shost);
502
503         return snprintf(buf, 20, "%d\n",
504                         atomic_read(&h->commands_outstanding));
505 }
506
507 static ssize_t host_show_transport_mode(struct device *dev,
508         struct device_attribute *attr, char *buf)
509 {
510         struct ctlr_info *h;
511         struct Scsi_Host *shost = class_to_shost(dev);
512
513         h = shost_to_hba(shost);
514         return snprintf(buf, 20, "%s\n",
515                 h->transMethod & CFGTBL_Trans_Performant ?
516                         "performant" : "simple");
517 }
518
519 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
520         struct device_attribute *attr, char *buf)
521 {
522         struct ctlr_info *h;
523         struct Scsi_Host *shost = class_to_shost(dev);
524
525         h = shost_to_hba(shost);
526         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
527                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
528 }
529
530 /* List of controllers which cannot be hard reset on kexec with reset_devices */
531 static u32 unresettable_controller[] = {
532         0x324a103C, /* Smart Array P712m */
533         0x324b103C, /* Smart Array P711m */
534         0x3223103C, /* Smart Array P800 */
535         0x3234103C, /* Smart Array P400 */
536         0x3235103C, /* Smart Array P400i */
537         0x3211103C, /* Smart Array E200i */
538         0x3212103C, /* Smart Array E200 */
539         0x3213103C, /* Smart Array E200i */
540         0x3214103C, /* Smart Array E200i */
541         0x3215103C, /* Smart Array E200i */
542         0x3237103C, /* Smart Array E500 */
543         0x323D103C, /* Smart Array P700m */
544         0x40800E11, /* Smart Array 5i */
545         0x409C0E11, /* Smart Array 6400 */
546         0x409D0E11, /* Smart Array 6400 EM */
547         0x40700E11, /* Smart Array 5300 */
548         0x40820E11, /* Smart Array 532 */
549         0x40830E11, /* Smart Array 5312 */
550         0x409A0E11, /* Smart Array 641 */
551         0x409B0E11, /* Smart Array 642 */
552         0x40910E11, /* Smart Array 6i */
553 };
554
555 /* List of controllers which cannot even be soft reset */
556 static u32 soft_unresettable_controller[] = {
557         0x40800E11, /* Smart Array 5i */
558         0x40700E11, /* Smart Array 5300 */
559         0x40820E11, /* Smart Array 532 */
560         0x40830E11, /* Smart Array 5312 */
561         0x409A0E11, /* Smart Array 641 */
562         0x409B0E11, /* Smart Array 642 */
563         0x40910E11, /* Smart Array 6i */
564         /* Exclude 640x boards.  These are two pci devices in one slot
565          * which share a battery backed cache module.  One controls the
566          * cache, the other accesses the cache through the one that controls
567          * it.  If we reset the one controlling the cache, the other will
568          * likely not be happy.  Just forbid resetting this conjoined mess.
569          * The 640x isn't really supported by hpsa anyway.
570          */
571         0x409C0E11, /* Smart Array 6400 */
572         0x409D0E11, /* Smart Array 6400 EM */
573 };
574
575 static u32 needs_abort_tags_swizzled[] = {
576         0x323D103C, /* Smart Array P700m */
577         0x324a103C, /* Smart Array P712m */
578         0x324b103C, /* SmartArray P711m */
579 };
580
581 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
582 {
583         int i;
584
585         for (i = 0; i < nelems; i++)
586                 if (a[i] == board_id)
587                         return 1;
588         return 0;
589 }
590
591 static int ctlr_is_hard_resettable(u32 board_id)
592 {
593         return !board_id_in_array(unresettable_controller,
594                         ARRAY_SIZE(unresettable_controller), board_id);
595 }
596
597 static int ctlr_is_soft_resettable(u32 board_id)
598 {
599         return !board_id_in_array(soft_unresettable_controller,
600                         ARRAY_SIZE(soft_unresettable_controller), board_id);
601 }
602
603 static int ctlr_is_resettable(u32 board_id)
604 {
605         return ctlr_is_hard_resettable(board_id) ||
606                 ctlr_is_soft_resettable(board_id);
607 }
608
609 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
610 {
611         return board_id_in_array(needs_abort_tags_swizzled,
612                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
613 }
614
615 static ssize_t host_show_resettable(struct device *dev,
616         struct device_attribute *attr, char *buf)
617 {
618         struct ctlr_info *h;
619         struct Scsi_Host *shost = class_to_shost(dev);
620
621         h = shost_to_hba(shost);
622         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
623 }
624
625 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
626 {
627         return (scsi3addr[3] & 0xC0) == 0x40;
628 }
629
630 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
631         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
632 };
633 #define HPSA_RAID_0     0
634 #define HPSA_RAID_4     1
635 #define HPSA_RAID_1     2       /* also used for RAID 10 */
636 #define HPSA_RAID_5     3       /* also used for RAID 50 */
637 #define HPSA_RAID_51    4
638 #define HPSA_RAID_6     5       /* also used for RAID 60 */
639 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
640 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
641 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
642
643 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
644 {
645         return !device->physical_device;
646 }
647
648 static ssize_t raid_level_show(struct device *dev,
649              struct device_attribute *attr, char *buf)
650 {
651         ssize_t l = 0;
652         unsigned char rlevel;
653         struct ctlr_info *h;
654         struct scsi_device *sdev;
655         struct hpsa_scsi_dev_t *hdev;
656         unsigned long flags;
657
658         sdev = to_scsi_device(dev);
659         h = sdev_to_hba(sdev);
660         spin_lock_irqsave(&h->lock, flags);
661         hdev = sdev->hostdata;
662         if (!hdev) {
663                 spin_unlock_irqrestore(&h->lock, flags);
664                 return -ENODEV;
665         }
666
667         /* Is this even a logical drive? */
668         if (!is_logical_device(hdev)) {
669                 spin_unlock_irqrestore(&h->lock, flags);
670                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
671                 return l;
672         }
673
674         rlevel = hdev->raid_level;
675         spin_unlock_irqrestore(&h->lock, flags);
676         if (rlevel > RAID_UNKNOWN)
677                 rlevel = RAID_UNKNOWN;
678         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
679         return l;
680 }
681
682 static ssize_t lunid_show(struct device *dev,
683              struct device_attribute *attr, char *buf)
684 {
685         struct ctlr_info *h;
686         struct scsi_device *sdev;
687         struct hpsa_scsi_dev_t *hdev;
688         unsigned long flags;
689         unsigned char lunid[8];
690
691         sdev = to_scsi_device(dev);
692         h = sdev_to_hba(sdev);
693         spin_lock_irqsave(&h->lock, flags);
694         hdev = sdev->hostdata;
695         if (!hdev) {
696                 spin_unlock_irqrestore(&h->lock, flags);
697                 return -ENODEV;
698         }
699         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
700         spin_unlock_irqrestore(&h->lock, flags);
701         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
702                 lunid[0], lunid[1], lunid[2], lunid[3],
703                 lunid[4], lunid[5], lunid[6], lunid[7]);
704 }
705
706 static ssize_t unique_id_show(struct device *dev,
707              struct device_attribute *attr, char *buf)
708 {
709         struct ctlr_info *h;
710         struct scsi_device *sdev;
711         struct hpsa_scsi_dev_t *hdev;
712         unsigned long flags;
713         unsigned char sn[16];
714
715         sdev = to_scsi_device(dev);
716         h = sdev_to_hba(sdev);
717         spin_lock_irqsave(&h->lock, flags);
718         hdev = sdev->hostdata;
719         if (!hdev) {
720                 spin_unlock_irqrestore(&h->lock, flags);
721                 return -ENODEV;
722         }
723         memcpy(sn, hdev->device_id, sizeof(sn));
724         spin_unlock_irqrestore(&h->lock, flags);
725         return snprintf(buf, 16 * 2 + 2,
726                         "%02X%02X%02X%02X%02X%02X%02X%02X"
727                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
728                         sn[0], sn[1], sn[2], sn[3],
729                         sn[4], sn[5], sn[6], sn[7],
730                         sn[8], sn[9], sn[10], sn[11],
731                         sn[12], sn[13], sn[14], sn[15]);
732 }
733
734 static ssize_t sas_address_show(struct device *dev,
735               struct device_attribute *attr, char *buf)
736 {
737         struct ctlr_info *h;
738         struct scsi_device *sdev;
739         struct hpsa_scsi_dev_t *hdev;
740         unsigned long flags;
741         u64 sas_address;
742
743         sdev = to_scsi_device(dev);
744         h = sdev_to_hba(sdev);
745         spin_lock_irqsave(&h->lock, flags);
746         hdev = sdev->hostdata;
747         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
748                 spin_unlock_irqrestore(&h->lock, flags);
749                 return -ENODEV;
750         }
751         sas_address = hdev->sas_address;
752         spin_unlock_irqrestore(&h->lock, flags);
753
754         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
755 }
756
757 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
758              struct device_attribute *attr, char *buf)
759 {
760         struct ctlr_info *h;
761         struct scsi_device *sdev;
762         struct hpsa_scsi_dev_t *hdev;
763         unsigned long flags;
764         int offload_enabled;
765
766         sdev = to_scsi_device(dev);
767         h = sdev_to_hba(sdev);
768         spin_lock_irqsave(&h->lock, flags);
769         hdev = sdev->hostdata;
770         if (!hdev) {
771                 spin_unlock_irqrestore(&h->lock, flags);
772                 return -ENODEV;
773         }
774         offload_enabled = hdev->offload_enabled;
775         spin_unlock_irqrestore(&h->lock, flags);
776         return snprintf(buf, 20, "%d\n", offload_enabled);
777 }
778
779 #define MAX_PATHS 8
780 static ssize_t path_info_show(struct device *dev,
781              struct device_attribute *attr, char *buf)
782 {
783         struct ctlr_info *h;
784         struct scsi_device *sdev;
785         struct hpsa_scsi_dev_t *hdev;
786         unsigned long flags;
787         int i;
788         int output_len = 0;
789         u8 box;
790         u8 bay;
791         u8 path_map_index = 0;
792         char *active;
793         unsigned char phys_connector[2];
794
795         sdev = to_scsi_device(dev);
796         h = sdev_to_hba(sdev);
797         spin_lock_irqsave(&h->devlock, flags);
798         hdev = sdev->hostdata;
799         if (!hdev) {
800                 spin_unlock_irqrestore(&h->devlock, flags);
801                 return -ENODEV;
802         }
803
804         bay = hdev->bay;
805         for (i = 0; i < MAX_PATHS; i++) {
806                 path_map_index = 1<<i;
807                 if (i == hdev->active_path_index)
808                         active = "Active";
809                 else if (hdev->path_map & path_map_index)
810                         active = "Inactive";
811                 else
812                         continue;
813
814                 output_len += scnprintf(buf + output_len,
815                                 PAGE_SIZE - output_len,
816                                 "[%d:%d:%d:%d] %20.20s ",
817                                 h->scsi_host->host_no,
818                                 hdev->bus, hdev->target, hdev->lun,
819                                 scsi_device_type(hdev->devtype));
820
821                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
822                         output_len += scnprintf(buf + output_len,
823                                                 PAGE_SIZE - output_len,
824                                                 "%s\n", active);
825                         continue;
826                 }
827
828                 box = hdev->box[i];
829                 memcpy(&phys_connector, &hdev->phys_connector[i],
830                         sizeof(phys_connector));
831                 if (phys_connector[0] < '0')
832                         phys_connector[0] = '0';
833                 if (phys_connector[1] < '0')
834                         phys_connector[1] = '0';
835                 output_len += scnprintf(buf + output_len,
836                                 PAGE_SIZE - output_len,
837                                 "PORT: %.2s ",
838                                 phys_connector);
839                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
840                         hdev->expose_device) {
841                         if (box == 0 || box == 0xFF) {
842                                 output_len += scnprintf(buf + output_len,
843                                         PAGE_SIZE - output_len,
844                                         "BAY: %hhu %s\n",
845                                         bay, active);
846                         } else {
847                                 output_len += scnprintf(buf + output_len,
848                                         PAGE_SIZE - output_len,
849                                         "BOX: %hhu BAY: %hhu %s\n",
850                                         box, bay, active);
851                         }
852                 } else if (box != 0 && box != 0xFF) {
853                         output_len += scnprintf(buf + output_len,
854                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
855                                 box, active);
856                 } else
857                         output_len += scnprintf(buf + output_len,
858                                 PAGE_SIZE - output_len, "%s\n", active);
859         }
860
861         spin_unlock_irqrestore(&h->devlock, flags);
862         return output_len;
863 }
864
865 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
866 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
867 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
868 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
869 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
870 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
871                         host_show_hp_ssd_smart_path_enabled, NULL);
872 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
873 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
874                 host_show_hp_ssd_smart_path_status,
875                 host_store_hp_ssd_smart_path_status);
876 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
877                         host_store_raid_offload_debug);
878 static DEVICE_ATTR(firmware_revision, S_IRUGO,
879         host_show_firmware_revision, NULL);
880 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
881         host_show_commands_outstanding, NULL);
882 static DEVICE_ATTR(transport_mode, S_IRUGO,
883         host_show_transport_mode, NULL);
884 static DEVICE_ATTR(resettable, S_IRUGO,
885         host_show_resettable, NULL);
886 static DEVICE_ATTR(lockup_detected, S_IRUGO,
887         host_show_lockup_detected, NULL);
888
889 static struct device_attribute *hpsa_sdev_attrs[] = {
890         &dev_attr_raid_level,
891         &dev_attr_lunid,
892         &dev_attr_unique_id,
893         &dev_attr_hp_ssd_smart_path_enabled,
894         &dev_attr_path_info,
895         &dev_attr_sas_address,
896         NULL,
897 };
898
899 static struct device_attribute *hpsa_shost_attrs[] = {
900         &dev_attr_rescan,
901         &dev_attr_firmware_revision,
902         &dev_attr_commands_outstanding,
903         &dev_attr_transport_mode,
904         &dev_attr_resettable,
905         &dev_attr_hp_ssd_smart_path_status,
906         &dev_attr_raid_offload_debug,
907         &dev_attr_lockup_detected,
908         NULL,
909 };
910
911 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
912                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
913
914 static struct scsi_host_template hpsa_driver_template = {
915         .module                 = THIS_MODULE,
916         .name                   = HPSA,
917         .proc_name              = HPSA,
918         .queuecommand           = hpsa_scsi_queue_command,
919         .scan_start             = hpsa_scan_start,
920         .scan_finished          = hpsa_scan_finished,
921         .change_queue_depth     = hpsa_change_queue_depth,
922         .this_id                = -1,
923         .use_clustering         = ENABLE_CLUSTERING,
924         .eh_abort_handler       = hpsa_eh_abort_handler,
925         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
926         .ioctl                  = hpsa_ioctl,
927         .slave_alloc            = hpsa_slave_alloc,
928         .slave_configure        = hpsa_slave_configure,
929         .slave_destroy          = hpsa_slave_destroy,
930 #ifdef CONFIG_COMPAT
931         .compat_ioctl           = hpsa_compat_ioctl,
932 #endif
933         .sdev_attrs = hpsa_sdev_attrs,
934         .shost_attrs = hpsa_shost_attrs,
935         .max_sectors = 8192,
936         .no_write_same = 1,
937 };
938
939 static inline u32 next_command(struct ctlr_info *h, u8 q)
940 {
941         u32 a;
942         struct reply_queue_buffer *rq = &h->reply_queue[q];
943
944         if (h->transMethod & CFGTBL_Trans_io_accel1)
945                 return h->access.command_completed(h, q);
946
947         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
948                 return h->access.command_completed(h, q);
949
950         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
951                 a = rq->head[rq->current_entry];
952                 rq->current_entry++;
953                 atomic_dec(&h->commands_outstanding);
954         } else {
955                 a = FIFO_EMPTY;
956         }
957         /* Check for wraparound */
958         if (rq->current_entry == h->max_commands) {
959                 rq->current_entry = 0;
960                 rq->wraparound ^= 1;
961         }
962         return a;
963 }
964
965 /*
966  * There are some special bits in the bus address of the
967  * command that we have to set for the controller to know
968  * how to process the command:
969  *
970  * Normal performant mode:
971  * bit 0: 1 means performant mode, 0 means simple mode.
972  * bits 1-3 = block fetch table entry
973  * bits 4-6 = command type (== 0)
974  *
975  * ioaccel1 mode:
976  * bit 0 = "performant mode" bit.
977  * bits 1-3 = block fetch table entry
978  * bits 4-6 = command type (== 110)
979  * (command type is needed because ioaccel1 mode
980  * commands are submitted through the same register as normal
981  * mode commands, so this is how the controller knows whether
982  * the command is normal mode or ioaccel1 mode.)
983  *
984  * ioaccel2 mode:
985  * bit 0 = "performant mode" bit.
986  * bits 1-4 = block fetch table entry (note extra bit)
987  * bits 4-6 = not needed, because ioaccel2 mode has
988  * a separate special register for submitting commands.
989  */
990
991 /*
992  * set_performant_mode: Modify the tag for cciss performant
993  * set bit 0 for pull model, bits 3-1 for block fetch
994  * register number
995  */
996 #define DEFAULT_REPLY_QUEUE (-1)
997 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
998                                         int reply_queue)
999 {
1000         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1001                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1002                 if (unlikely(!h->msix_vector))
1003                         return;
1004                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1005                         c->Header.ReplyQueue =
1006                                 raw_smp_processor_id() % h->nreply_queues;
1007                 else
1008                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1009         }
1010 }
1011
1012 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1013                                                 struct CommandList *c,
1014                                                 int reply_queue)
1015 {
1016         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1017
1018         /*
1019          * Tell the controller to post the reply to the queue for this
1020          * processor.  This seems to give the best I/O throughput.
1021          */
1022         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1023                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1024         else
1025                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1026         /*
1027          * Set the bits in the address sent down to include:
1028          *  - performant mode bit (bit 0)
1029          *  - pull count (bits 1-3)
1030          *  - command type (bits 4-6)
1031          */
1032         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1033                                         IOACCEL1_BUSADDR_CMDTYPE;
1034 }
1035
1036 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1037                                                 struct CommandList *c,
1038                                                 int reply_queue)
1039 {
1040         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1041                 &h->ioaccel2_cmd_pool[c->cmdindex];
1042
1043         /* Tell the controller to post the reply to the queue for this
1044          * processor.  This seems to give the best I/O throughput.
1045          */
1046         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1047                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1048         else
1049                 cp->reply_queue = reply_queue % h->nreply_queues;
1050         /* Set the bits in the address sent down to include:
1051          *  - performant mode bit not used in ioaccel mode 2
1052          *  - pull count (bits 0-3)
1053          *  - command type isn't needed for ioaccel2
1054          */
1055         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1056 }
1057
1058 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1059                                                 struct CommandList *c,
1060                                                 int reply_queue)
1061 {
1062         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1063
1064         /*
1065          * Tell the controller to post the reply to the queue for this
1066          * processor.  This seems to give the best I/O throughput.
1067          */
1068         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1069                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1070         else
1071                 cp->reply_queue = reply_queue % h->nreply_queues;
1072         /*
1073          * Set the bits in the address sent down to include:
1074          *  - performant mode bit not used in ioaccel mode 2
1075          *  - pull count (bits 0-3)
1076          *  - command type isn't needed for ioaccel2
1077          */
1078         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1079 }
1080
1081 static int is_firmware_flash_cmd(u8 *cdb)
1082 {
1083         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1084 }
1085
1086 /*
1087  * During firmware flash, the heartbeat register may not update as frequently
1088  * as it should.  So we dial down lockup detection during firmware flash. and
1089  * dial it back up when firmware flash completes.
1090  */
1091 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1092 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1093 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1094                 struct CommandList *c)
1095 {
1096         if (!is_firmware_flash_cmd(c->Request.CDB))
1097                 return;
1098         atomic_inc(&h->firmware_flash_in_progress);
1099         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1100 }
1101
1102 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1103                 struct CommandList *c)
1104 {
1105         if (is_firmware_flash_cmd(c->Request.CDB) &&
1106                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1107                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1108 }
1109
1110 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1111         struct CommandList *c, int reply_queue)
1112 {
1113         dial_down_lockup_detection_during_fw_flash(h, c);
1114         atomic_inc(&h->commands_outstanding);
1115         switch (c->cmd_type) {
1116         case CMD_IOACCEL1:
1117                 set_ioaccel1_performant_mode(h, c, reply_queue);
1118                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1119                 break;
1120         case CMD_IOACCEL2:
1121                 set_ioaccel2_performant_mode(h, c, reply_queue);
1122                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1123                 break;
1124         case IOACCEL2_TMF:
1125                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1126                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1127                 break;
1128         default:
1129                 set_performant_mode(h, c, reply_queue);
1130                 h->access.submit_command(h, c);
1131         }
1132 }
1133
1134 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1135 {
1136         if (unlikely(hpsa_is_pending_event(c)))
1137                 return finish_cmd(c);
1138
1139         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1140 }
1141
1142 static inline int is_hba_lunid(unsigned char scsi3addr[])
1143 {
1144         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1145 }
1146
1147 static inline int is_scsi_rev_5(struct ctlr_info *h)
1148 {
1149         if (!h->hba_inquiry_data)
1150                 return 0;
1151         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1152                 return 1;
1153         return 0;
1154 }
1155
1156 static int hpsa_find_target_lun(struct ctlr_info *h,
1157         unsigned char scsi3addr[], int bus, int *target, int *lun)
1158 {
1159         /* finds an unused bus, target, lun for a new physical device
1160          * assumes h->devlock is held
1161          */
1162         int i, found = 0;
1163         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1164
1165         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1166
1167         for (i = 0; i < h->ndevices; i++) {
1168                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1169                         __set_bit(h->dev[i]->target, lun_taken);
1170         }
1171
1172         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1173         if (i < HPSA_MAX_DEVICES) {
1174                 /* *bus = 1; */
1175                 *target = i;
1176                 *lun = 0;
1177                 found = 1;
1178         }
1179         return !found;
1180 }
1181
1182 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1183         struct hpsa_scsi_dev_t *dev, char *description)
1184 {
1185 #define LABEL_SIZE 25
1186         char label[LABEL_SIZE];
1187
1188         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1189                 return;
1190
1191         switch (dev->devtype) {
1192         case TYPE_RAID:
1193                 snprintf(label, LABEL_SIZE, "controller");
1194                 break;
1195         case TYPE_ENCLOSURE:
1196                 snprintf(label, LABEL_SIZE, "enclosure");
1197                 break;
1198         case TYPE_DISK:
1199         case TYPE_ZBC:
1200                 if (dev->external)
1201                         snprintf(label, LABEL_SIZE, "external");
1202                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1203                         snprintf(label, LABEL_SIZE, "%s",
1204                                 raid_label[PHYSICAL_DRIVE]);
1205                 else
1206                         snprintf(label, LABEL_SIZE, "RAID-%s",
1207                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1208                                 raid_label[dev->raid_level]);
1209                 break;
1210         case TYPE_ROM:
1211                 snprintf(label, LABEL_SIZE, "rom");
1212                 break;
1213         case TYPE_TAPE:
1214                 snprintf(label, LABEL_SIZE, "tape");
1215                 break;
1216         case TYPE_MEDIUM_CHANGER:
1217                 snprintf(label, LABEL_SIZE, "changer");
1218                 break;
1219         default:
1220                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1221                 break;
1222         }
1223
1224         dev_printk(level, &h->pdev->dev,
1225                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1226                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1227                         description,
1228                         scsi_device_type(dev->devtype),
1229                         dev->vendor,
1230                         dev->model,
1231                         label,
1232                         dev->offload_config ? '+' : '-',
1233                         dev->offload_enabled ? '+' : '-',
1234                         dev->expose_device);
1235 }
1236
1237 /* Add an entry into h->dev[] array. */
1238 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1239                 struct hpsa_scsi_dev_t *device,
1240                 struct hpsa_scsi_dev_t *added[], int *nadded)
1241 {
1242         /* assumes h->devlock is held */
1243         int n = h->ndevices;
1244         int i;
1245         unsigned char addr1[8], addr2[8];
1246         struct hpsa_scsi_dev_t *sd;
1247
1248         if (n >= HPSA_MAX_DEVICES) {
1249                 dev_err(&h->pdev->dev, "too many devices, some will be "
1250                         "inaccessible.\n");
1251                 return -1;
1252         }
1253
1254         /* physical devices do not have lun or target assigned until now. */
1255         if (device->lun != -1)
1256                 /* Logical device, lun is already assigned. */
1257                 goto lun_assigned;
1258
1259         /* If this device a non-zero lun of a multi-lun device
1260          * byte 4 of the 8-byte LUN addr will contain the logical
1261          * unit no, zero otherwise.
1262          */
1263         if (device->scsi3addr[4] == 0) {
1264                 /* This is not a non-zero lun of a multi-lun device */
1265                 if (hpsa_find_target_lun(h, device->scsi3addr,
1266                         device->bus, &device->target, &device->lun) != 0)
1267                         return -1;
1268                 goto lun_assigned;
1269         }
1270
1271         /* This is a non-zero lun of a multi-lun device.
1272          * Search through our list and find the device which
1273          * has the same 8 byte LUN address, excepting byte 4 and 5.
1274          * Assign the same bus and target for this new LUN.
1275          * Use the logical unit number from the firmware.
1276          */
1277         memcpy(addr1, device->scsi3addr, 8);
1278         addr1[4] = 0;
1279         addr1[5] = 0;
1280         for (i = 0; i < n; i++) {
1281                 sd = h->dev[i];
1282                 memcpy(addr2, sd->scsi3addr, 8);
1283                 addr2[4] = 0;
1284                 addr2[5] = 0;
1285                 /* differ only in byte 4 and 5? */
1286                 if (memcmp(addr1, addr2, 8) == 0) {
1287                         device->bus = sd->bus;
1288                         device->target = sd->target;
1289                         device->lun = device->scsi3addr[4];
1290                         break;
1291                 }
1292         }
1293         if (device->lun == -1) {
1294                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1295                         " suspect firmware bug or unsupported hardware "
1296                         "configuration.\n");
1297                         return -1;
1298         }
1299
1300 lun_assigned:
1301
1302         h->dev[n] = device;
1303         h->ndevices++;
1304         added[*nadded] = device;
1305         (*nadded)++;
1306         hpsa_show_dev_msg(KERN_INFO, h, device,
1307                 device->expose_device ? "added" : "masked");
1308         device->offload_to_be_enabled = device->offload_enabled;
1309         device->offload_enabled = 0;
1310         return 0;
1311 }
1312
1313 /* Update an entry in h->dev[] array. */
1314 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1315         int entry, struct hpsa_scsi_dev_t *new_entry)
1316 {
1317         int offload_enabled;
1318         /* assumes h->devlock is held */
1319         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1320
1321         /* Raid level changed. */
1322         h->dev[entry]->raid_level = new_entry->raid_level;
1323
1324         /* Raid offload parameters changed.  Careful about the ordering. */
1325         if (new_entry->offload_config && new_entry->offload_enabled) {
1326                 /*
1327                  * if drive is newly offload_enabled, we want to copy the
1328                  * raid map data first.  If previously offload_enabled and
1329                  * offload_config were set, raid map data had better be
1330                  * the same as it was before.  if raid map data is changed
1331                  * then it had better be the case that
1332                  * h->dev[entry]->offload_enabled is currently 0.
1333                  */
1334                 h->dev[entry]->raid_map = new_entry->raid_map;
1335                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1336         }
1337         if (new_entry->hba_ioaccel_enabled) {
1338                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1339                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1340         }
1341         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1342         h->dev[entry]->offload_config = new_entry->offload_config;
1343         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1344         h->dev[entry]->queue_depth = new_entry->queue_depth;
1345
1346         /*
1347          * We can turn off ioaccel offload now, but need to delay turning
1348          * it on until we can update h->dev[entry]->phys_disk[], but we
1349          * can't do that until all the devices are updated.
1350          */
1351         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1352         if (!new_entry->offload_enabled)
1353                 h->dev[entry]->offload_enabled = 0;
1354
1355         offload_enabled = h->dev[entry]->offload_enabled;
1356         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1357         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1358         h->dev[entry]->offload_enabled = offload_enabled;
1359 }
1360
1361 /* Replace an entry from h->dev[] array. */
1362 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1363         int entry, struct hpsa_scsi_dev_t *new_entry,
1364         struct hpsa_scsi_dev_t *added[], int *nadded,
1365         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1366 {
1367         /* assumes h->devlock is held */
1368         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1369         removed[*nremoved] = h->dev[entry];
1370         (*nremoved)++;
1371
1372         /*
1373          * New physical devices won't have target/lun assigned yet
1374          * so we need to preserve the values in the slot we are replacing.
1375          */
1376         if (new_entry->target == -1) {
1377                 new_entry->target = h->dev[entry]->target;
1378                 new_entry->lun = h->dev[entry]->lun;
1379         }
1380
1381         h->dev[entry] = new_entry;
1382         added[*nadded] = new_entry;
1383         (*nadded)++;
1384         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1385         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1386         new_entry->offload_enabled = 0;
1387 }
1388
1389 /* Remove an entry from h->dev[] array. */
1390 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1391         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1392 {
1393         /* assumes h->devlock is held */
1394         int i;
1395         struct hpsa_scsi_dev_t *sd;
1396
1397         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1398
1399         sd = h->dev[entry];
1400         removed[*nremoved] = h->dev[entry];
1401         (*nremoved)++;
1402
1403         for (i = entry; i < h->ndevices-1; i++)
1404                 h->dev[i] = h->dev[i+1];
1405         h->ndevices--;
1406         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1407 }
1408
1409 #define SCSI3ADDR_EQ(a, b) ( \
1410         (a)[7] == (b)[7] && \
1411         (a)[6] == (b)[6] && \
1412         (a)[5] == (b)[5] && \
1413         (a)[4] == (b)[4] && \
1414         (a)[3] == (b)[3] && \
1415         (a)[2] == (b)[2] && \
1416         (a)[1] == (b)[1] && \
1417         (a)[0] == (b)[0])
1418
1419 static void fixup_botched_add(struct ctlr_info *h,
1420         struct hpsa_scsi_dev_t *added)
1421 {
1422         /* called when scsi_add_device fails in order to re-adjust
1423          * h->dev[] to match the mid layer's view.
1424          */
1425         unsigned long flags;
1426         int i, j;
1427
1428         spin_lock_irqsave(&h->lock, flags);
1429         for (i = 0; i < h->ndevices; i++) {
1430                 if (h->dev[i] == added) {
1431                         for (j = i; j < h->ndevices-1; j++)
1432                                 h->dev[j] = h->dev[j+1];
1433                         h->ndevices--;
1434                         break;
1435                 }
1436         }
1437         spin_unlock_irqrestore(&h->lock, flags);
1438         kfree(added);
1439 }
1440
1441 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1442         struct hpsa_scsi_dev_t *dev2)
1443 {
1444         /* we compare everything except lun and target as these
1445          * are not yet assigned.  Compare parts likely
1446          * to differ first
1447          */
1448         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1449                 sizeof(dev1->scsi3addr)) != 0)
1450                 return 0;
1451         if (memcmp(dev1->device_id, dev2->device_id,
1452                 sizeof(dev1->device_id)) != 0)
1453                 return 0;
1454         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1455                 return 0;
1456         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1457                 return 0;
1458         if (dev1->devtype != dev2->devtype)
1459                 return 0;
1460         if (dev1->bus != dev2->bus)
1461                 return 0;
1462         return 1;
1463 }
1464
1465 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1466         struct hpsa_scsi_dev_t *dev2)
1467 {
1468         /* Device attributes that can change, but don't mean
1469          * that the device is a different device, nor that the OS
1470          * needs to be told anything about the change.
1471          */
1472         if (dev1->raid_level != dev2->raid_level)
1473                 return 1;
1474         if (dev1->offload_config != dev2->offload_config)
1475                 return 1;
1476         if (dev1->offload_enabled != dev2->offload_enabled)
1477                 return 1;
1478         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1479                 if (dev1->queue_depth != dev2->queue_depth)
1480                         return 1;
1481         return 0;
1482 }
1483
1484 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1485  * and return needle location in *index.  If scsi3addr matches, but not
1486  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1487  * location in *index.
1488  * In the case of a minor device attribute change, such as RAID level, just
1489  * return DEVICE_UPDATED, along with the updated device's location in index.
1490  * If needle not found, return DEVICE_NOT_FOUND.
1491  */
1492 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1493         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1494         int *index)
1495 {
1496         int i;
1497 #define DEVICE_NOT_FOUND 0
1498 #define DEVICE_CHANGED 1
1499 #define DEVICE_SAME 2
1500 #define DEVICE_UPDATED 3
1501         if (needle == NULL)
1502                 return DEVICE_NOT_FOUND;
1503
1504         for (i = 0; i < haystack_size; i++) {
1505                 if (haystack[i] == NULL) /* previously removed. */
1506                         continue;
1507                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1508                         *index = i;
1509                         if (device_is_the_same(needle, haystack[i])) {
1510                                 if (device_updated(needle, haystack[i]))
1511                                         return DEVICE_UPDATED;
1512                                 return DEVICE_SAME;
1513                         } else {
1514                                 /* Keep offline devices offline */
1515                                 if (needle->volume_offline)
1516                                         return DEVICE_NOT_FOUND;
1517                                 return DEVICE_CHANGED;
1518                         }
1519                 }
1520         }
1521         *index = -1;
1522         return DEVICE_NOT_FOUND;
1523 }
1524
1525 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1526                                         unsigned char scsi3addr[])
1527 {
1528         struct offline_device_entry *device;
1529         unsigned long flags;
1530
1531         /* Check to see if device is already on the list */
1532         spin_lock_irqsave(&h->offline_device_lock, flags);
1533         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1534                 if (memcmp(device->scsi3addr, scsi3addr,
1535                         sizeof(device->scsi3addr)) == 0) {
1536                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1537                         return;
1538                 }
1539         }
1540         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1541
1542         /* Device is not on the list, add it. */
1543         device = kmalloc(sizeof(*device), GFP_KERNEL);
1544         if (!device) {
1545                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1546                 return;
1547         }
1548         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1549         spin_lock_irqsave(&h->offline_device_lock, flags);
1550         list_add_tail(&device->offline_list, &h->offline_device_list);
1551         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1552 }
1553
1554 /* Print a message explaining various offline volume states */
1555 static void hpsa_show_volume_status(struct ctlr_info *h,
1556         struct hpsa_scsi_dev_t *sd)
1557 {
1558         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1559                 dev_info(&h->pdev->dev,
1560                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1561                         h->scsi_host->host_no,
1562                         sd->bus, sd->target, sd->lun);
1563         switch (sd->volume_offline) {
1564         case HPSA_LV_OK:
1565                 break;
1566         case HPSA_LV_UNDERGOING_ERASE:
1567                 dev_info(&h->pdev->dev,
1568                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1569                         h->scsi_host->host_no,
1570                         sd->bus, sd->target, sd->lun);
1571                 break;
1572         case HPSA_LV_NOT_AVAILABLE:
1573                 dev_info(&h->pdev->dev,
1574                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1575                         h->scsi_host->host_no,
1576                         sd->bus, sd->target, sd->lun);
1577                 break;
1578         case HPSA_LV_UNDERGOING_RPI:
1579                 dev_info(&h->pdev->dev,
1580                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1581                         h->scsi_host->host_no,
1582                         sd->bus, sd->target, sd->lun);
1583                 break;
1584         case HPSA_LV_PENDING_RPI:
1585                 dev_info(&h->pdev->dev,
1586                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1587                         h->scsi_host->host_no,
1588                         sd->bus, sd->target, sd->lun);
1589                 break;
1590         case HPSA_LV_ENCRYPTED_NO_KEY:
1591                 dev_info(&h->pdev->dev,
1592                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1593                         h->scsi_host->host_no,
1594                         sd->bus, sd->target, sd->lun);
1595                 break;
1596         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1597                 dev_info(&h->pdev->dev,
1598                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1599                         h->scsi_host->host_no,
1600                         sd->bus, sd->target, sd->lun);
1601                 break;
1602         case HPSA_LV_UNDERGOING_ENCRYPTION:
1603                 dev_info(&h->pdev->dev,
1604                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1605                         h->scsi_host->host_no,
1606                         sd->bus, sd->target, sd->lun);
1607                 break;
1608         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1609                 dev_info(&h->pdev->dev,
1610                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1611                         h->scsi_host->host_no,
1612                         sd->bus, sd->target, sd->lun);
1613                 break;
1614         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1615                 dev_info(&h->pdev->dev,
1616                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1617                         h->scsi_host->host_no,
1618                         sd->bus, sd->target, sd->lun);
1619                 break;
1620         case HPSA_LV_PENDING_ENCRYPTION:
1621                 dev_info(&h->pdev->dev,
1622                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1623                         h->scsi_host->host_no,
1624                         sd->bus, sd->target, sd->lun);
1625                 break;
1626         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1627                 dev_info(&h->pdev->dev,
1628                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1629                         h->scsi_host->host_no,
1630                         sd->bus, sd->target, sd->lun);
1631                 break;
1632         }
1633 }
1634
1635 /*
1636  * Figure the list of physical drive pointers for a logical drive with
1637  * raid offload configured.
1638  */
1639 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1640                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1641                                 struct hpsa_scsi_dev_t *logical_drive)
1642 {
1643         struct raid_map_data *map = &logical_drive->raid_map;
1644         struct raid_map_disk_data *dd = &map->data[0];
1645         int i, j;
1646         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1647                                 le16_to_cpu(map->metadata_disks_per_row);
1648         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1649                                 le16_to_cpu(map->layout_map_count) *
1650                                 total_disks_per_row;
1651         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1652                                 total_disks_per_row;
1653         int qdepth;
1654
1655         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1656                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1657
1658         logical_drive->nphysical_disks = nraid_map_entries;
1659
1660         qdepth = 0;
1661         for (i = 0; i < nraid_map_entries; i++) {
1662                 logical_drive->phys_disk[i] = NULL;
1663                 if (!logical_drive->offload_config)
1664                         continue;
1665                 for (j = 0; j < ndevices; j++) {
1666                         if (dev[j] == NULL)
1667                                 continue;
1668                         if (dev[j]->devtype != TYPE_DISK &&
1669                             dev[j]->devtype != TYPE_ZBC)
1670                                 continue;
1671                         if (is_logical_device(dev[j]))
1672                                 continue;
1673                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1674                                 continue;
1675
1676                         logical_drive->phys_disk[i] = dev[j];
1677                         if (i < nphys_disk)
1678                                 qdepth = min(h->nr_cmds, qdepth +
1679                                     logical_drive->phys_disk[i]->queue_depth);
1680                         break;
1681                 }
1682
1683                 /*
1684                  * This can happen if a physical drive is removed and
1685                  * the logical drive is degraded.  In that case, the RAID
1686                  * map data will refer to a physical disk which isn't actually
1687                  * present.  And in that case offload_enabled should already
1688                  * be 0, but we'll turn it off here just in case
1689                  */
1690                 if (!logical_drive->phys_disk[i]) {
1691                         logical_drive->offload_enabled = 0;
1692                         logical_drive->offload_to_be_enabled = 0;
1693                         logical_drive->queue_depth = 8;
1694                 }
1695         }
1696         if (nraid_map_entries)
1697                 /*
1698                  * This is correct for reads, too high for full stripe writes,
1699                  * way too high for partial stripe writes
1700                  */
1701                 logical_drive->queue_depth = qdepth;
1702         else
1703                 logical_drive->queue_depth = h->nr_cmds;
1704 }
1705
1706 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1707                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1708 {
1709         int i;
1710
1711         for (i = 0; i < ndevices; i++) {
1712                 if (dev[i] == NULL)
1713                         continue;
1714                 if (dev[i]->devtype != TYPE_DISK &&
1715                     dev[i]->devtype != TYPE_ZBC)
1716                         continue;
1717                 if (!is_logical_device(dev[i]))
1718                         continue;
1719
1720                 /*
1721                  * If offload is currently enabled, the RAID map and
1722                  * phys_disk[] assignment *better* not be changing
1723                  * and since it isn't changing, we do not need to
1724                  * update it.
1725                  */
1726                 if (dev[i]->offload_enabled)
1727                         continue;
1728
1729                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1730         }
1731 }
1732
1733 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1734 {
1735         int rc = 0;
1736
1737         if (!h->scsi_host)
1738                 return 1;
1739
1740         if (is_logical_device(device)) /* RAID */
1741                 rc = scsi_add_device(h->scsi_host, device->bus,
1742                                         device->target, device->lun);
1743         else /* HBA */
1744                 rc = hpsa_add_sas_device(h->sas_host, device);
1745
1746         return rc;
1747 }
1748
1749 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1750                                                 struct hpsa_scsi_dev_t *dev)
1751 {
1752         int i;
1753         int count = 0;
1754
1755         for (i = 0; i < h->nr_cmds; i++) {
1756                 struct CommandList *c = h->cmd_pool + i;
1757                 int refcount = atomic_inc_return(&c->refcount);
1758
1759                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1760                                 dev->scsi3addr)) {
1761                         unsigned long flags;
1762
1763                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1764                         if (!hpsa_is_cmd_idle(c))
1765                                 ++count;
1766                         spin_unlock_irqrestore(&h->lock, flags);
1767                 }
1768
1769                 cmd_free(h, c);
1770         }
1771
1772         return count;
1773 }
1774
1775 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1776                                                 struct hpsa_scsi_dev_t *device)
1777 {
1778         int cmds = 0;
1779         int waits = 0;
1780
1781         while (1) {
1782                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1783                 if (cmds == 0)
1784                         break;
1785                 if (++waits > 20)
1786                         break;
1787                 dev_warn(&h->pdev->dev,
1788                         "%s: removing device with %d outstanding commands!\n",
1789                         __func__, cmds);
1790                 msleep(1000);
1791         }
1792 }
1793
1794 static void hpsa_remove_device(struct ctlr_info *h,
1795                         struct hpsa_scsi_dev_t *device)
1796 {
1797         struct scsi_device *sdev = NULL;
1798
1799         if (!h->scsi_host)
1800                 return;
1801
1802         if (is_logical_device(device)) { /* RAID */
1803                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1804                                                 device->target, device->lun);
1805                 if (sdev) {
1806                         scsi_remove_device(sdev);
1807                         scsi_device_put(sdev);
1808                 } else {
1809                         /*
1810                          * We don't expect to get here.  Future commands
1811                          * to this device will get a selection timeout as
1812                          * if the device were gone.
1813                          */
1814                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1815                                         "didn't find device for removal.");
1816                 }
1817         } else { /* HBA */
1818
1819                 device->removed = 1;
1820                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1821
1822                 hpsa_remove_sas_device(device);
1823         }
1824 }
1825
1826 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1827         struct hpsa_scsi_dev_t *sd[], int nsds)
1828 {
1829         /* sd contains scsi3 addresses and devtypes, and inquiry
1830          * data.  This function takes what's in sd to be the current
1831          * reality and updates h->dev[] to reflect that reality.
1832          */
1833         int i, entry, device_change, changes = 0;
1834         struct hpsa_scsi_dev_t *csd;
1835         unsigned long flags;
1836         struct hpsa_scsi_dev_t **added, **removed;
1837         int nadded, nremoved;
1838
1839         /*
1840          * A reset can cause a device status to change
1841          * re-schedule the scan to see what happened.
1842          */
1843         if (h->reset_in_progress) {
1844                 h->drv_req_rescan = 1;
1845                 return;
1846         }
1847
1848         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1849         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1850
1851         if (!added || !removed) {
1852                 dev_warn(&h->pdev->dev, "out of memory in "
1853                         "adjust_hpsa_scsi_table\n");
1854                 goto free_and_out;
1855         }
1856
1857         spin_lock_irqsave(&h->devlock, flags);
1858
1859         /* find any devices in h->dev[] that are not in
1860          * sd[] and remove them from h->dev[], and for any
1861          * devices which have changed, remove the old device
1862          * info and add the new device info.
1863          * If minor device attributes change, just update
1864          * the existing device structure.
1865          */
1866         i = 0;
1867         nremoved = 0;
1868         nadded = 0;
1869         while (i < h->ndevices) {
1870                 csd = h->dev[i];
1871                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1872                 if (device_change == DEVICE_NOT_FOUND) {
1873                         changes++;
1874                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1875                         continue; /* remove ^^^, hence i not incremented */
1876                 } else if (device_change == DEVICE_CHANGED) {
1877                         changes++;
1878                         hpsa_scsi_replace_entry(h, i, sd[entry],
1879                                 added, &nadded, removed, &nremoved);
1880                         /* Set it to NULL to prevent it from being freed
1881                          * at the bottom of hpsa_update_scsi_devices()
1882                          */
1883                         sd[entry] = NULL;
1884                 } else if (device_change == DEVICE_UPDATED) {
1885                         hpsa_scsi_update_entry(h, i, sd[entry]);
1886                 }
1887                 i++;
1888         }
1889
1890         /* Now, make sure every device listed in sd[] is also
1891          * listed in h->dev[], adding them if they aren't found
1892          */
1893
1894         for (i = 0; i < nsds; i++) {
1895                 if (!sd[i]) /* if already added above. */
1896                         continue;
1897
1898                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1899                  * as the SCSI mid-layer does not handle such devices well.
1900                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1901                  * at 160Hz, and prevents the system from coming up.
1902                  */
1903                 if (sd[i]->volume_offline) {
1904                         hpsa_show_volume_status(h, sd[i]);
1905                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1906                         continue;
1907                 }
1908
1909                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1910                                         h->ndevices, &entry);
1911                 if (device_change == DEVICE_NOT_FOUND) {
1912                         changes++;
1913                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1914                                 break;
1915                         sd[i] = NULL; /* prevent from being freed later. */
1916                 } else if (device_change == DEVICE_CHANGED) {
1917                         /* should never happen... */
1918                         changes++;
1919                         dev_warn(&h->pdev->dev,
1920                                 "device unexpectedly changed.\n");
1921                         /* but if it does happen, we just ignore that device */
1922                 }
1923         }
1924         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1925
1926         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1927          * any logical drives that need it enabled.
1928          */
1929         for (i = 0; i < h->ndevices; i++) {
1930                 if (h->dev[i] == NULL)
1931                         continue;
1932                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1933         }
1934
1935         spin_unlock_irqrestore(&h->devlock, flags);
1936
1937         /* Monitor devices which are in one of several NOT READY states to be
1938          * brought online later. This must be done without holding h->devlock,
1939          * so don't touch h->dev[]
1940          */
1941         for (i = 0; i < nsds; i++) {
1942                 if (!sd[i]) /* if already added above. */
1943                         continue;
1944                 if (sd[i]->volume_offline)
1945                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1946         }
1947
1948         /* Don't notify scsi mid layer of any changes the first time through
1949          * (or if there are no changes) scsi_scan_host will do it later the
1950          * first time through.
1951          */
1952         if (!changes)
1953                 goto free_and_out;
1954
1955         /* Notify scsi mid layer of any removed devices */
1956         for (i = 0; i < nremoved; i++) {
1957                 if (removed[i] == NULL)
1958                         continue;
1959                 if (removed[i]->expose_device)
1960                         hpsa_remove_device(h, removed[i]);
1961                 kfree(removed[i]);
1962                 removed[i] = NULL;
1963         }
1964
1965         /* Notify scsi mid layer of any added devices */
1966         for (i = 0; i < nadded; i++) {
1967                 int rc = 0;
1968
1969                 if (added[i] == NULL)
1970                         continue;
1971                 if (!(added[i]->expose_device))
1972                         continue;
1973                 rc = hpsa_add_device(h, added[i]);
1974                 if (!rc)
1975                         continue;
1976                 dev_warn(&h->pdev->dev,
1977                         "addition failed %d, device not added.", rc);
1978                 /* now we have to remove it from h->dev,
1979                  * since it didn't get added to scsi mid layer
1980                  */
1981                 fixup_botched_add(h, added[i]);
1982                 h->drv_req_rescan = 1;
1983         }
1984
1985 free_and_out:
1986         kfree(added);
1987         kfree(removed);
1988 }
1989
1990 /*
1991  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1992  * Assume's h->devlock is held.
1993  */
1994 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1995         int bus, int target, int lun)
1996 {
1997         int i;
1998         struct hpsa_scsi_dev_t *sd;
1999
2000         for (i = 0; i < h->ndevices; i++) {
2001                 sd = h->dev[i];
2002                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2003                         return sd;
2004         }
2005         return NULL;
2006 }
2007
2008 static int hpsa_slave_alloc(struct scsi_device *sdev)
2009 {
2010         struct hpsa_scsi_dev_t *sd;
2011         unsigned long flags;
2012         struct ctlr_info *h;
2013
2014         h = sdev_to_hba(sdev);
2015         spin_lock_irqsave(&h->devlock, flags);
2016         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2017                 struct scsi_target *starget;
2018                 struct sas_rphy *rphy;
2019
2020                 starget = scsi_target(sdev);
2021                 rphy = target_to_rphy(starget);
2022                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2023                 if (sd) {
2024                         sd->target = sdev_id(sdev);
2025                         sd->lun = sdev->lun;
2026                 }
2027         } else
2028                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2029                                         sdev_id(sdev), sdev->lun);
2030
2031         if (sd && sd->expose_device) {
2032                 atomic_set(&sd->ioaccel_cmds_out, 0);
2033                 sdev->hostdata = sd;
2034         } else
2035                 sdev->hostdata = NULL;
2036         spin_unlock_irqrestore(&h->devlock, flags);
2037         return 0;
2038 }
2039
2040 /* configure scsi device based on internal per-device structure */
2041 static int hpsa_slave_configure(struct scsi_device *sdev)
2042 {
2043         struct hpsa_scsi_dev_t *sd;
2044         int queue_depth;
2045
2046         sd = sdev->hostdata;
2047         sdev->no_uld_attach = !sd || !sd->expose_device;
2048
2049         if (sd)
2050                 queue_depth = sd->queue_depth != 0 ?
2051                         sd->queue_depth : sdev->host->can_queue;
2052         else
2053                 queue_depth = sdev->host->can_queue;
2054
2055         scsi_change_queue_depth(sdev, queue_depth);
2056
2057         return 0;
2058 }
2059
2060 static void hpsa_slave_destroy(struct scsi_device *sdev)
2061 {
2062         /* nothing to do. */
2063 }
2064
2065 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2066 {
2067         int i;
2068
2069         if (!h->ioaccel2_cmd_sg_list)
2070                 return;
2071         for (i = 0; i < h->nr_cmds; i++) {
2072                 kfree(h->ioaccel2_cmd_sg_list[i]);
2073                 h->ioaccel2_cmd_sg_list[i] = NULL;
2074         }
2075         kfree(h->ioaccel2_cmd_sg_list);
2076         h->ioaccel2_cmd_sg_list = NULL;
2077 }
2078
2079 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2080 {
2081         int i;
2082
2083         if (h->chainsize <= 0)
2084                 return 0;
2085
2086         h->ioaccel2_cmd_sg_list =
2087                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2088                                         GFP_KERNEL);
2089         if (!h->ioaccel2_cmd_sg_list)
2090                 return -ENOMEM;
2091         for (i = 0; i < h->nr_cmds; i++) {
2092                 h->ioaccel2_cmd_sg_list[i] =
2093                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2094                                         h->maxsgentries, GFP_KERNEL);
2095                 if (!h->ioaccel2_cmd_sg_list[i])
2096                         goto clean;
2097         }
2098         return 0;
2099
2100 clean:
2101         hpsa_free_ioaccel2_sg_chain_blocks(h);
2102         return -ENOMEM;
2103 }
2104
2105 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2106 {
2107         int i;
2108
2109         if (!h->cmd_sg_list)
2110                 return;
2111         for (i = 0; i < h->nr_cmds; i++) {
2112                 kfree(h->cmd_sg_list[i]);
2113                 h->cmd_sg_list[i] = NULL;
2114         }
2115         kfree(h->cmd_sg_list);
2116         h->cmd_sg_list = NULL;
2117 }
2118
2119 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2120 {
2121         int i;
2122
2123         if (h->chainsize <= 0)
2124                 return 0;
2125
2126         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2127                                 GFP_KERNEL);
2128         if (!h->cmd_sg_list) {
2129                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2130                 return -ENOMEM;
2131         }
2132         for (i = 0; i < h->nr_cmds; i++) {
2133                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2134                                                 h->chainsize, GFP_KERNEL);
2135                 if (!h->cmd_sg_list[i]) {
2136                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2137                         goto clean;
2138                 }
2139         }
2140         return 0;
2141
2142 clean:
2143         hpsa_free_sg_chain_blocks(h);
2144         return -ENOMEM;
2145 }
2146
2147 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2148         struct io_accel2_cmd *cp, struct CommandList *c)
2149 {
2150         struct ioaccel2_sg_element *chain_block;
2151         u64 temp64;
2152         u32 chain_size;
2153
2154         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2155         chain_size = le32_to_cpu(cp->sg[0].length);
2156         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2157                                 PCI_DMA_TODEVICE);
2158         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2159                 /* prevent subsequent unmapping */
2160                 cp->sg->address = 0;
2161                 return -1;
2162         }
2163         cp->sg->address = cpu_to_le64(temp64);
2164         return 0;
2165 }
2166
2167 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2168         struct io_accel2_cmd *cp)
2169 {
2170         struct ioaccel2_sg_element *chain_sg;
2171         u64 temp64;
2172         u32 chain_size;
2173
2174         chain_sg = cp->sg;
2175         temp64 = le64_to_cpu(chain_sg->address);
2176         chain_size = le32_to_cpu(cp->sg[0].length);
2177         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2178 }
2179
2180 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2181         struct CommandList *c)
2182 {
2183         struct SGDescriptor *chain_sg, *chain_block;
2184         u64 temp64;
2185         u32 chain_len;
2186
2187         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2188         chain_block = h->cmd_sg_list[c->cmdindex];
2189         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2190         chain_len = sizeof(*chain_sg) *
2191                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2192         chain_sg->Len = cpu_to_le32(chain_len);
2193         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2194                                 PCI_DMA_TODEVICE);
2195         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2196                 /* prevent subsequent unmapping */
2197                 chain_sg->Addr = cpu_to_le64(0);
2198                 return -1;
2199         }
2200         chain_sg->Addr = cpu_to_le64(temp64);
2201         return 0;
2202 }
2203
2204 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2205         struct CommandList *c)
2206 {
2207         struct SGDescriptor *chain_sg;
2208
2209         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2210                 return;
2211
2212         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2213         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2214                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2215 }
2216
2217
2218 /* Decode the various types of errors on ioaccel2 path.
2219  * Return 1 for any error that should generate a RAID path retry.
2220  * Return 0 for errors that don't require a RAID path retry.
2221  */
2222 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2223                                         struct CommandList *c,
2224                                         struct scsi_cmnd *cmd,
2225                                         struct io_accel2_cmd *c2,
2226                                         struct hpsa_scsi_dev_t *dev)
2227 {
2228         int data_len;
2229         int retry = 0;
2230         u32 ioaccel2_resid = 0;
2231
2232         switch (c2->error_data.serv_response) {
2233         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2234                 switch (c2->error_data.status) {
2235                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2236                         break;
2237                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2238                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2239                         if (c2->error_data.data_present !=
2240                                         IOACCEL2_SENSE_DATA_PRESENT) {
2241                                 memset(cmd->sense_buffer, 0,
2242                                         SCSI_SENSE_BUFFERSIZE);
2243                                 break;
2244                         }
2245                         /* copy the sense data */
2246                         data_len = c2->error_data.sense_data_len;
2247                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2248                                 data_len = SCSI_SENSE_BUFFERSIZE;
2249                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2250                                 data_len =
2251                                         sizeof(c2->error_data.sense_data_buff);
2252                         memcpy(cmd->sense_buffer,
2253                                 c2->error_data.sense_data_buff, data_len);
2254                         retry = 1;
2255                         break;
2256                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2257                         retry = 1;
2258                         break;
2259                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2260                         retry = 1;
2261                         break;
2262                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2263                         retry = 1;
2264                         break;
2265                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2266                         retry = 1;
2267                         break;
2268                 default:
2269                         retry = 1;
2270                         break;
2271                 }
2272                 break;
2273         case IOACCEL2_SERV_RESPONSE_FAILURE:
2274                 switch (c2->error_data.status) {
2275                 case IOACCEL2_STATUS_SR_IO_ERROR:
2276                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2277                 case IOACCEL2_STATUS_SR_OVERRUN:
2278                         retry = 1;
2279                         break;
2280                 case IOACCEL2_STATUS_SR_UNDERRUN:
2281                         cmd->result = (DID_OK << 16);           /* host byte */
2282                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2283                         ioaccel2_resid = get_unaligned_le32(
2284                                                 &c2->error_data.resid_cnt[0]);
2285                         scsi_set_resid(cmd, ioaccel2_resid);
2286                         break;
2287                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2288                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2289                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2290                         /*
2291                          * Did an HBA disk disappear? We will eventually
2292                          * get a state change event from the controller but
2293                          * in the meantime, we need to tell the OS that the
2294                          * HBA disk is no longer there and stop I/O
2295                          * from going down. This allows the potential re-insert
2296                          * of the disk to get the same device node.
2297                          */
2298                         if (dev->physical_device && dev->expose_device) {
2299                                 cmd->result = DID_NO_CONNECT << 16;
2300                                 dev->removed = 1;
2301                                 h->drv_req_rescan = 1;
2302                                 dev_warn(&h->pdev->dev,
2303                                         "%s: device is gone!\n", __func__);
2304                         } else
2305                                 /*
2306                                  * Retry by sending down the RAID path.
2307                                  * We will get an event from ctlr to
2308                                  * trigger rescan regardless.
2309                                  */
2310                                 retry = 1;
2311                         break;
2312                 default:
2313                         retry = 1;
2314                 }
2315                 break;
2316         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2317                 break;
2318         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2319                 break;
2320         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2321                 retry = 1;
2322                 break;
2323         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2324                 break;
2325         default:
2326                 retry = 1;
2327                 break;
2328         }
2329
2330         return retry;   /* retry on raid path? */
2331 }
2332
2333 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2334                 struct CommandList *c)
2335 {
2336         bool do_wake = false;
2337
2338         /*
2339          * Prevent the following race in the abort handler:
2340          *
2341          * 1. LLD is requested to abort a SCSI command
2342          * 2. The SCSI command completes
2343          * 3. The struct CommandList associated with step 2 is made available
2344          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2345          * 5. Abort handler follows scsi_cmnd->host_scribble and
2346          *    finds struct CommandList and tries to aborts it
2347          * Now we have aborted the wrong command.
2348          *
2349          * Reset c->scsi_cmd here so that the abort or reset handler will know
2350          * this command has completed.  Then, check to see if the handler is
2351          * waiting for this command, and, if so, wake it.
2352          */
2353         c->scsi_cmd = SCSI_CMD_IDLE;
2354         mb();   /* Declare command idle before checking for pending events. */
2355         if (c->abort_pending) {
2356                 do_wake = true;
2357                 c->abort_pending = false;
2358         }
2359         if (c->reset_pending) {
2360                 unsigned long flags;
2361                 struct hpsa_scsi_dev_t *dev;
2362
2363                 /*
2364                  * There appears to be a reset pending; lock the lock and
2365                  * reconfirm.  If so, then decrement the count of outstanding
2366                  * commands and wake the reset command if this is the last one.
2367                  */
2368                 spin_lock_irqsave(&h->lock, flags);
2369                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2370                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2371                         do_wake = true;
2372                 c->reset_pending = NULL;
2373                 spin_unlock_irqrestore(&h->lock, flags);
2374         }
2375
2376         if (do_wake)
2377                 wake_up_all(&h->event_sync_wait_queue);
2378 }
2379
2380 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2381                                       struct CommandList *c)
2382 {
2383         hpsa_cmd_resolve_events(h, c);
2384         cmd_tagged_free(h, c);
2385 }
2386
2387 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2388                 struct CommandList *c, struct scsi_cmnd *cmd)
2389 {
2390         hpsa_cmd_resolve_and_free(h, c);
2391         cmd->scsi_done(cmd);
2392 }
2393
2394 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2395 {
2396         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2397         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2398 }
2399
2400 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2401 {
2402         cmd->result = DID_ABORT << 16;
2403 }
2404
2405 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2406                                     struct scsi_cmnd *cmd)
2407 {
2408         hpsa_set_scsi_cmd_aborted(cmd);
2409         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2410                          c->Request.CDB, c->err_info->ScsiStatus);
2411         hpsa_cmd_resolve_and_free(h, c);
2412 }
2413
2414 static void process_ioaccel2_completion(struct ctlr_info *h,
2415                 struct CommandList *c, struct scsi_cmnd *cmd,
2416                 struct hpsa_scsi_dev_t *dev)
2417 {
2418         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2419
2420         /* check for good status */
2421         if (likely(c2->error_data.serv_response == 0 &&
2422                         c2->error_data.status == 0))
2423                 return hpsa_cmd_free_and_done(h, c, cmd);
2424
2425         /*
2426          * Any RAID offload error results in retry which will use
2427          * the normal I/O path so the controller can handle whatever's
2428          * wrong.
2429          */
2430         if (is_logical_device(dev) &&
2431                 c2->error_data.serv_response ==
2432                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2433                 if (c2->error_data.status ==
2434                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2435                         dev->offload_enabled = 0;
2436                         dev->offload_to_be_enabled = 0;
2437                 }
2438
2439                 return hpsa_retry_cmd(h, c);
2440         }
2441
2442         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2443                 return hpsa_retry_cmd(h, c);
2444
2445         return hpsa_cmd_free_and_done(h, c, cmd);
2446 }
2447
2448 /* Returns 0 on success, < 0 otherwise. */
2449 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2450                                         struct CommandList *cp)
2451 {
2452         u8 tmf_status = cp->err_info->ScsiStatus;
2453
2454         switch (tmf_status) {
2455         case CISS_TMF_COMPLETE:
2456                 /*
2457                  * CISS_TMF_COMPLETE never happens, instead,
2458                  * ei->CommandStatus == 0 for this case.
2459                  */
2460         case CISS_TMF_SUCCESS:
2461                 return 0;
2462         case CISS_TMF_INVALID_FRAME:
2463         case CISS_TMF_NOT_SUPPORTED:
2464         case CISS_TMF_FAILED:
2465         case CISS_TMF_WRONG_LUN:
2466         case CISS_TMF_OVERLAPPED_TAG:
2467                 break;
2468         default:
2469                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2470                                 tmf_status);
2471                 break;
2472         }
2473         return -tmf_status;
2474 }
2475
2476 static void complete_scsi_command(struct CommandList *cp)
2477 {
2478         struct scsi_cmnd *cmd;
2479         struct ctlr_info *h;
2480         struct ErrorInfo *ei;
2481         struct hpsa_scsi_dev_t *dev;
2482         struct io_accel2_cmd *c2;
2483
2484         u8 sense_key;
2485         u8 asc;      /* additional sense code */
2486         u8 ascq;     /* additional sense code qualifier */
2487         unsigned long sense_data_size;
2488
2489         ei = cp->err_info;
2490         cmd = cp->scsi_cmd;
2491         h = cp->h;
2492         dev = cmd->device->hostdata;
2493         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2494
2495         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2496         if ((cp->cmd_type == CMD_SCSI) &&
2497                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2498                 hpsa_unmap_sg_chain_block(h, cp);
2499
2500         if ((cp->cmd_type == CMD_IOACCEL2) &&
2501                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2502                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2503
2504         cmd->result = (DID_OK << 16);           /* host byte */
2505         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2506
2507         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2508                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2509
2510         /*
2511          * We check for lockup status here as it may be set for
2512          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2513          * fail_all_oustanding_cmds()
2514          */
2515         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2516                 /* DID_NO_CONNECT will prevent a retry */
2517                 cmd->result = DID_NO_CONNECT << 16;
2518                 return hpsa_cmd_free_and_done(h, cp, cmd);
2519         }
2520
2521         if ((unlikely(hpsa_is_pending_event(cp)))) {
2522                 if (cp->reset_pending)
2523                         return hpsa_cmd_resolve_and_free(h, cp);
2524                 if (cp->abort_pending)
2525                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2526         }
2527
2528         if (cp->cmd_type == CMD_IOACCEL2)
2529                 return process_ioaccel2_completion(h, cp, cmd, dev);
2530
2531         scsi_set_resid(cmd, ei->ResidualCnt);
2532         if (ei->CommandStatus == 0)
2533                 return hpsa_cmd_free_and_done(h, cp, cmd);
2534
2535         /* For I/O accelerator commands, copy over some fields to the normal
2536          * CISS header used below for error handling.
2537          */
2538         if (cp->cmd_type == CMD_IOACCEL1) {
2539                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2540                 cp->Header.SGList = scsi_sg_count(cmd);
2541                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2542                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2543                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2544                 cp->Header.tag = c->tag;
2545                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2546                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2547
2548                 /* Any RAID offload error results in retry which will use
2549                  * the normal I/O path so the controller can handle whatever's
2550                  * wrong.
2551                  */
2552                 if (is_logical_device(dev)) {
2553                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2554                                 dev->offload_enabled = 0;
2555                         return hpsa_retry_cmd(h, cp);
2556                 }
2557         }
2558
2559         /* an error has occurred */
2560         switch (ei->CommandStatus) {
2561
2562         case CMD_TARGET_STATUS:
2563                 cmd->result |= ei->ScsiStatus;
2564                 /* copy the sense data */
2565                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2566                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2567                 else
2568                         sense_data_size = sizeof(ei->SenseInfo);
2569                 if (ei->SenseLen < sense_data_size)
2570                         sense_data_size = ei->SenseLen;
2571                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2572                 if (ei->ScsiStatus)
2573                         decode_sense_data(ei->SenseInfo, sense_data_size,
2574                                 &sense_key, &asc, &ascq);
2575                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2576                         if (sense_key == ABORTED_COMMAND) {
2577                                 cmd->result |= DID_SOFT_ERROR << 16;
2578                                 break;
2579                         }
2580                         break;
2581                 }
2582                 /* Problem was not a check condition
2583                  * Pass it up to the upper layers...
2584                  */
2585                 if (ei->ScsiStatus) {
2586                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2587                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2588                                 "Returning result: 0x%x\n",
2589                                 cp, ei->ScsiStatus,
2590                                 sense_key, asc, ascq,
2591                                 cmd->result);
2592                 } else {  /* scsi status is zero??? How??? */
2593                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2594                                 "Returning no connection.\n", cp),
2595
2596                         /* Ordinarily, this case should never happen,
2597                          * but there is a bug in some released firmware
2598                          * revisions that allows it to happen if, for
2599                          * example, a 4100 backplane loses power and
2600                          * the tape drive is in it.  We assume that
2601                          * it's a fatal error of some kind because we
2602                          * can't show that it wasn't. We will make it
2603                          * look like selection timeout since that is
2604                          * the most common reason for this to occur,
2605                          * and it's severe enough.
2606                          */
2607
2608                         cmd->result = DID_NO_CONNECT << 16;
2609                 }
2610                 break;
2611
2612         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2613                 break;
2614         case CMD_DATA_OVERRUN:
2615                 dev_warn(&h->pdev->dev,
2616                         "CDB %16phN data overrun\n", cp->Request.CDB);
2617                 break;
2618         case CMD_INVALID: {
2619                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2620                 print_cmd(cp); */
2621                 /* We get CMD_INVALID if you address a non-existent device
2622                  * instead of a selection timeout (no response).  You will
2623                  * see this if you yank out a drive, then try to access it.
2624                  * This is kind of a shame because it means that any other
2625                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2626                  * missing target. */
2627                 cmd->result = DID_NO_CONNECT << 16;
2628         }
2629                 break;
2630         case CMD_PROTOCOL_ERR:
2631                 cmd->result = DID_ERROR << 16;
2632                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2633                                 cp->Request.CDB);
2634                 break;
2635         case CMD_HARDWARE_ERR:
2636                 cmd->result = DID_ERROR << 16;
2637                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2638                         cp->Request.CDB);
2639                 break;
2640         case CMD_CONNECTION_LOST:
2641                 cmd->result = DID_ERROR << 16;
2642                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2643                         cp->Request.CDB);
2644                 break;
2645         case CMD_ABORTED:
2646                 /* Return now to avoid calling scsi_done(). */
2647                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2648         case CMD_ABORT_FAILED:
2649                 cmd->result = DID_ERROR << 16;
2650                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2651                         cp->Request.CDB);
2652                 break;
2653         case CMD_UNSOLICITED_ABORT:
2654                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2655                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2656                         cp->Request.CDB);
2657                 break;
2658         case CMD_TIMEOUT:
2659                 cmd->result = DID_TIME_OUT << 16;
2660                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2661                         cp->Request.CDB);
2662                 break;
2663         case CMD_UNABORTABLE:
2664                 cmd->result = DID_ERROR << 16;
2665                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2666                 break;
2667         case CMD_TMF_STATUS:
2668                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2669                         cmd->result = DID_ERROR << 16;
2670                 break;
2671         case CMD_IOACCEL_DISABLED:
2672                 /* This only handles the direct pass-through case since RAID
2673                  * offload is handled above.  Just attempt a retry.
2674                  */
2675                 cmd->result = DID_SOFT_ERROR << 16;
2676                 dev_warn(&h->pdev->dev,
2677                                 "cp %p had HP SSD Smart Path error\n", cp);
2678                 break;
2679         default:
2680                 cmd->result = DID_ERROR << 16;
2681                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2682                                 cp, ei->CommandStatus);
2683         }
2684
2685         return hpsa_cmd_free_and_done(h, cp, cmd);
2686 }
2687
2688 static void hpsa_pci_unmap(struct pci_dev *pdev,
2689         struct CommandList *c, int sg_used, int data_direction)
2690 {
2691         int i;
2692
2693         for (i = 0; i < sg_used; i++)
2694                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2695                                 le32_to_cpu(c->SG[i].Len),
2696                                 data_direction);
2697 }
2698
2699 static int hpsa_map_one(struct pci_dev *pdev,
2700                 struct CommandList *cp,
2701                 unsigned char *buf,
2702                 size_t buflen,
2703                 int data_direction)
2704 {
2705         u64 addr64;
2706
2707         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2708                 cp->Header.SGList = 0;
2709                 cp->Header.SGTotal = cpu_to_le16(0);
2710                 return 0;
2711         }
2712
2713         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2714         if (dma_mapping_error(&pdev->dev, addr64)) {
2715                 /* Prevent subsequent unmap of something never mapped */
2716                 cp->Header.SGList = 0;
2717                 cp->Header.SGTotal = cpu_to_le16(0);
2718                 return -1;
2719         }
2720         cp->SG[0].Addr = cpu_to_le64(addr64);
2721         cp->SG[0].Len = cpu_to_le32(buflen);
2722         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2723         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2724         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2725         return 0;
2726 }
2727
2728 #define NO_TIMEOUT ((unsigned long) -1)
2729 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2730 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2731         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2732 {
2733         DECLARE_COMPLETION_ONSTACK(wait);
2734
2735         c->waiting = &wait;
2736         __enqueue_cmd_and_start_io(h, c, reply_queue);
2737         if (timeout_msecs == NO_TIMEOUT) {
2738                 /* TODO: get rid of this no-timeout thing */
2739                 wait_for_completion_io(&wait);
2740                 return IO_OK;
2741         }
2742         if (!wait_for_completion_io_timeout(&wait,
2743                                         msecs_to_jiffies(timeout_msecs))) {
2744                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2745                 return -ETIMEDOUT;
2746         }
2747         return IO_OK;
2748 }
2749
2750 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2751                                    int reply_queue, unsigned long timeout_msecs)
2752 {
2753         if (unlikely(lockup_detected(h))) {
2754                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2755                 return IO_OK;
2756         }
2757         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2758 }
2759
2760 static u32 lockup_detected(struct ctlr_info *h)
2761 {
2762         int cpu;
2763         u32 rc, *lockup_detected;
2764
2765         cpu = get_cpu();
2766         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2767         rc = *lockup_detected;
2768         put_cpu();
2769         return rc;
2770 }
2771
2772 #define MAX_DRIVER_CMD_RETRIES 25
2773 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2774         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2775 {
2776         int backoff_time = 10, retry_count = 0;
2777         int rc;
2778
2779         do {
2780                 memset(c->err_info, 0, sizeof(*c->err_info));
2781                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2782                                                   timeout_msecs);
2783                 if (rc)
2784                         break;
2785                 retry_count++;
2786                 if (retry_count > 3) {
2787                         msleep(backoff_time);
2788                         if (backoff_time < 1000)
2789                                 backoff_time *= 2;
2790                 }
2791         } while ((check_for_unit_attention(h, c) ||
2792                         check_for_busy(h, c)) &&
2793                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2794         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2795         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2796                 rc = -EIO;
2797         return rc;
2798 }
2799
2800 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2801                                 struct CommandList *c)
2802 {
2803         const u8 *cdb = c->Request.CDB;
2804         const u8 *lun = c->Header.LUN.LunAddrBytes;
2805
2806         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2807         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2808                 txt, lun[0], lun[1], lun[2], lun[3],
2809                 lun[4], lun[5], lun[6], lun[7],
2810                 cdb[0], cdb[1], cdb[2], cdb[3],
2811                 cdb[4], cdb[5], cdb[6], cdb[7],
2812                 cdb[8], cdb[9], cdb[10], cdb[11],
2813                 cdb[12], cdb[13], cdb[14], cdb[15]);
2814 }
2815
2816 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2817                         struct CommandList *cp)
2818 {
2819         const struct ErrorInfo *ei = cp->err_info;
2820         struct device *d = &cp->h->pdev->dev;
2821         u8 sense_key, asc, ascq;
2822         int sense_len;
2823
2824         switch (ei->CommandStatus) {
2825         case CMD_TARGET_STATUS:
2826                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2827                         sense_len = sizeof(ei->SenseInfo);
2828                 else
2829                         sense_len = ei->SenseLen;
2830                 decode_sense_data(ei->SenseInfo, sense_len,
2831                                         &sense_key, &asc, &ascq);
2832                 hpsa_print_cmd(h, "SCSI status", cp);
2833                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2834                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2835                                 sense_key, asc, ascq);
2836                 else
2837                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2838                 if (ei->ScsiStatus == 0)
2839                         dev_warn(d, "SCSI status is abnormally zero.  "
2840                         "(probably indicates selection timeout "
2841                         "reported incorrectly due to a known "
2842                         "firmware bug, circa July, 2001.)\n");
2843                 break;
2844         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2845                 break;
2846         case CMD_DATA_OVERRUN:
2847                 hpsa_print_cmd(h, "overrun condition", cp);
2848                 break;
2849         case CMD_INVALID: {
2850                 /* controller unfortunately reports SCSI passthru's
2851                  * to non-existent targets as invalid commands.
2852                  */
2853                 hpsa_print_cmd(h, "invalid command", cp);
2854                 dev_warn(d, "probably means device no longer present\n");
2855                 }
2856                 break;
2857         case CMD_PROTOCOL_ERR:
2858                 hpsa_print_cmd(h, "protocol error", cp);
2859                 break;
2860         case CMD_HARDWARE_ERR:
2861                 hpsa_print_cmd(h, "hardware error", cp);
2862                 break;
2863         case CMD_CONNECTION_LOST:
2864                 hpsa_print_cmd(h, "connection lost", cp);
2865                 break;
2866         case CMD_ABORTED:
2867                 hpsa_print_cmd(h, "aborted", cp);
2868                 break;
2869         case CMD_ABORT_FAILED:
2870                 hpsa_print_cmd(h, "abort failed", cp);
2871                 break;
2872         case CMD_UNSOLICITED_ABORT:
2873                 hpsa_print_cmd(h, "unsolicited abort", cp);
2874                 break;
2875         case CMD_TIMEOUT:
2876                 hpsa_print_cmd(h, "timed out", cp);
2877                 break;
2878         case CMD_UNABORTABLE:
2879                 hpsa_print_cmd(h, "unabortable", cp);
2880                 break;
2881         case CMD_CTLR_LOCKUP:
2882                 hpsa_print_cmd(h, "controller lockup detected", cp);
2883                 break;
2884         default:
2885                 hpsa_print_cmd(h, "unknown status", cp);
2886                 dev_warn(d, "Unknown command status %x\n",
2887                                 ei->CommandStatus);
2888         }
2889 }
2890
2891 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2892                         u16 page, unsigned char *buf,
2893                         unsigned char bufsize)
2894 {
2895         int rc = IO_OK;
2896         struct CommandList *c;
2897         struct ErrorInfo *ei;
2898
2899         c = cmd_alloc(h);
2900
2901         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2902                         page, scsi3addr, TYPE_CMD)) {
2903                 rc = -1;
2904                 goto out;
2905         }
2906         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2907                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2908         if (rc)
2909                 goto out;
2910         ei = c->err_info;
2911         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2912                 hpsa_scsi_interpret_error(h, c);
2913                 rc = -1;
2914         }
2915 out:
2916         cmd_free(h, c);
2917         return rc;
2918 }
2919
2920 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2921         u8 reset_type, int reply_queue)
2922 {
2923         int rc = IO_OK;
2924         struct CommandList *c;
2925         struct ErrorInfo *ei;
2926
2927         c = cmd_alloc(h);
2928
2929
2930         /* fill_cmd can't fail here, no data buffer to map. */
2931         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2932                         scsi3addr, TYPE_MSG);
2933         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2934         if (rc) {
2935                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2936                 goto out;
2937         }
2938         /* no unmap needed here because no data xfer. */
2939
2940         ei = c->err_info;
2941         if (ei->CommandStatus != 0) {
2942                 hpsa_scsi_interpret_error(h, c);
2943                 rc = -1;
2944         }
2945 out:
2946         cmd_free(h, c);
2947         return rc;
2948 }
2949
2950 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2951                                struct hpsa_scsi_dev_t *dev,
2952                                unsigned char *scsi3addr)
2953 {
2954         int i;
2955         bool match = false;
2956         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2957         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2958
2959         if (hpsa_is_cmd_idle(c))
2960                 return false;
2961
2962         switch (c->cmd_type) {
2963         case CMD_SCSI:
2964         case CMD_IOCTL_PEND:
2965                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2966                                 sizeof(c->Header.LUN.LunAddrBytes));
2967                 break;
2968
2969         case CMD_IOACCEL1:
2970         case CMD_IOACCEL2:
2971                 if (c->phys_disk == dev) {
2972                         /* HBA mode match */
2973                         match = true;
2974                 } else {
2975                         /* Possible RAID mode -- check each phys dev. */
2976                         /* FIXME:  Do we need to take out a lock here?  If
2977                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2978                          * instead. */
2979                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2980                                 /* FIXME: an alternate test might be
2981                                  *
2982                                  * match = dev->phys_disk[i]->ioaccel_handle
2983                                  *              == c2->scsi_nexus;      */
2984                                 match = dev->phys_disk[i] == c->phys_disk;
2985                         }
2986                 }
2987                 break;
2988
2989         case IOACCEL2_TMF:
2990                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2991                         match = dev->phys_disk[i]->ioaccel_handle ==
2992                                         le32_to_cpu(ac->it_nexus);
2993                 }
2994                 break;
2995
2996         case 0:         /* The command is in the middle of being initialized. */
2997                 match = false;
2998                 break;
2999
3000         default:
3001                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3002                         c->cmd_type);
3003                 BUG();
3004         }
3005
3006         return match;
3007 }
3008
3009 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3010         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3011 {
3012         int i;
3013         int rc = 0;
3014
3015         /* We can really only handle one reset at a time */
3016         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3017                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3018                 return -EINTR;
3019         }
3020
3021         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3022
3023         for (i = 0; i < h->nr_cmds; i++) {
3024                 struct CommandList *c = h->cmd_pool + i;
3025                 int refcount = atomic_inc_return(&c->refcount);
3026
3027                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3028                         unsigned long flags;
3029
3030                         /*
3031                          * Mark the target command as having a reset pending,
3032                          * then lock a lock so that the command cannot complete
3033                          * while we're considering it.  If the command is not
3034                          * idle then count it; otherwise revoke the event.
3035                          */
3036                         c->reset_pending = dev;
3037                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3038                         if (!hpsa_is_cmd_idle(c))
3039                                 atomic_inc(&dev->reset_cmds_out);
3040                         else
3041                                 c->reset_pending = NULL;
3042                         spin_unlock_irqrestore(&h->lock, flags);
3043                 }
3044
3045                 cmd_free(h, c);
3046         }
3047
3048         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3049         if (!rc)
3050                 wait_event(h->event_sync_wait_queue,
3051                         atomic_read(&dev->reset_cmds_out) == 0 ||
3052                         lockup_detected(h));
3053
3054         if (unlikely(lockup_detected(h))) {
3055                 dev_warn(&h->pdev->dev,
3056                          "Controller lockup detected during reset wait\n");
3057                 rc = -ENODEV;
3058         }
3059
3060         if (unlikely(rc))
3061                 atomic_set(&dev->reset_cmds_out, 0);
3062
3063         mutex_unlock(&h->reset_mutex);
3064         return rc;
3065 }
3066
3067 static void hpsa_get_raid_level(struct ctlr_info *h,
3068         unsigned char *scsi3addr, unsigned char *raid_level)
3069 {
3070         int rc;
3071         unsigned char *buf;
3072
3073         *raid_level = RAID_UNKNOWN;
3074         buf = kzalloc(64, GFP_KERNEL);
3075         if (!buf)
3076                 return;
3077         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
3078         if (rc == 0)
3079                 *raid_level = buf[8];
3080         if (*raid_level > RAID_UNKNOWN)
3081                 *raid_level = RAID_UNKNOWN;
3082         kfree(buf);
3083         return;
3084 }
3085
3086 #define HPSA_MAP_DEBUG
3087 #ifdef HPSA_MAP_DEBUG
3088 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3089                                 struct raid_map_data *map_buff)
3090 {
3091         struct raid_map_disk_data *dd = &map_buff->data[0];
3092         int map, row, col;
3093         u16 map_cnt, row_cnt, disks_per_row;
3094
3095         if (rc != 0)
3096                 return;
3097
3098         /* Show details only if debugging has been activated. */
3099         if (h->raid_offload_debug < 2)
3100                 return;
3101
3102         dev_info(&h->pdev->dev, "structure_size = %u\n",
3103                                 le32_to_cpu(map_buff->structure_size));
3104         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3105                         le32_to_cpu(map_buff->volume_blk_size));
3106         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3107                         le64_to_cpu(map_buff->volume_blk_cnt));
3108         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3109                         map_buff->phys_blk_shift);
3110         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3111                         map_buff->parity_rotation_shift);
3112         dev_info(&h->pdev->dev, "strip_size = %u\n",
3113                         le16_to_cpu(map_buff->strip_size));
3114         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3115                         le64_to_cpu(map_buff->disk_starting_blk));
3116         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3117                         le64_to_cpu(map_buff->disk_blk_cnt));
3118         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3119                         le16_to_cpu(map_buff->data_disks_per_row));
3120         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3121                         le16_to_cpu(map_buff->metadata_disks_per_row));
3122         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3123                         le16_to_cpu(map_buff->row_cnt));
3124         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3125                         le16_to_cpu(map_buff->layout_map_count));
3126         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3127                         le16_to_cpu(map_buff->flags));
3128         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3129                         le16_to_cpu(map_buff->flags) &
3130                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3131         dev_info(&h->pdev->dev, "dekindex = %u\n",
3132                         le16_to_cpu(map_buff->dekindex));
3133         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3134         for (map = 0; map < map_cnt; map++) {
3135                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3136                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3137                 for (row = 0; row < row_cnt; row++) {
3138                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3139                         disks_per_row =
3140                                 le16_to_cpu(map_buff->data_disks_per_row);
3141                         for (col = 0; col < disks_per_row; col++, dd++)
3142                                 dev_info(&h->pdev->dev,
3143                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3144                                         col, dd->ioaccel_handle,
3145                                         dd->xor_mult[0], dd->xor_mult[1]);
3146                         disks_per_row =
3147                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3148                         for (col = 0; col < disks_per_row; col++, dd++)
3149                                 dev_info(&h->pdev->dev,
3150                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3151                                         col, dd->ioaccel_handle,
3152                                         dd->xor_mult[0], dd->xor_mult[1]);
3153                 }
3154         }
3155 }
3156 #else
3157 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3158                         __attribute__((unused)) int rc,
3159                         __attribute__((unused)) struct raid_map_data *map_buff)
3160 {
3161 }
3162 #endif
3163
3164 static int hpsa_get_raid_map(struct ctlr_info *h,
3165         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3166 {
3167         int rc = 0;
3168         struct CommandList *c;
3169         struct ErrorInfo *ei;
3170
3171         c = cmd_alloc(h);
3172
3173         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3174                         sizeof(this_device->raid_map), 0,
3175                         scsi3addr, TYPE_CMD)) {
3176                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3177                 cmd_free(h, c);
3178                 return -1;
3179         }
3180         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3181                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3182         if (rc)
3183                 goto out;
3184         ei = c->err_info;
3185         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3186                 hpsa_scsi_interpret_error(h, c);
3187                 rc = -1;
3188                 goto out;
3189         }
3190         cmd_free(h, c);
3191
3192         /* @todo in the future, dynamically allocate RAID map memory */
3193         if (le32_to_cpu(this_device->raid_map.structure_size) >
3194                                 sizeof(this_device->raid_map)) {
3195                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3196                 rc = -1;
3197         }
3198         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3199         return rc;
3200 out:
3201         cmd_free(h, c);
3202         return rc;
3203 }
3204
3205 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3206                 unsigned char scsi3addr[], u16 bmic_device_index,
3207                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3208 {
3209         int rc = IO_OK;
3210         struct CommandList *c;
3211         struct ErrorInfo *ei;
3212
3213         c = cmd_alloc(h);
3214
3215         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3216                 0, RAID_CTLR_LUNID, TYPE_CMD);
3217         if (rc)
3218                 goto out;
3219
3220         c->Request.CDB[2] = bmic_device_index & 0xff;
3221         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3222
3223         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3224                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3225         if (rc)
3226                 goto out;
3227         ei = c->err_info;
3228         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3229                 hpsa_scsi_interpret_error(h, c);
3230                 rc = -1;
3231         }
3232 out:
3233         cmd_free(h, c);
3234         return rc;
3235 }
3236
3237 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3238         struct bmic_identify_controller *buf, size_t bufsize)
3239 {
3240         int rc = IO_OK;
3241         struct CommandList *c;
3242         struct ErrorInfo *ei;
3243
3244         c = cmd_alloc(h);
3245
3246         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3247                 0, RAID_CTLR_LUNID, TYPE_CMD);
3248         if (rc)
3249                 goto out;
3250
3251         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3252                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3253         if (rc)
3254                 goto out;
3255         ei = c->err_info;
3256         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3257                 hpsa_scsi_interpret_error(h, c);
3258                 rc = -1;
3259         }
3260 out:
3261         cmd_free(h, c);
3262         return rc;
3263 }
3264
3265 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3266                 unsigned char scsi3addr[], u16 bmic_device_index,
3267                 struct bmic_identify_physical_device *buf, size_t bufsize)
3268 {
3269         int rc = IO_OK;
3270         struct CommandList *c;
3271         struct ErrorInfo *ei;
3272
3273         c = cmd_alloc(h);
3274         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3275                 0, RAID_CTLR_LUNID, TYPE_CMD);
3276         if (rc)
3277                 goto out;
3278
3279         c->Request.CDB[2] = bmic_device_index & 0xff;
3280         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3281
3282         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3283                                                 DEFAULT_TIMEOUT);
3284         ei = c->err_info;
3285         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3286                 hpsa_scsi_interpret_error(h, c);
3287                 rc = -1;
3288         }
3289 out:
3290         cmd_free(h, c);
3291
3292         return rc;
3293 }
3294
3295 /*
3296  * get enclosure information
3297  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3298  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3299  * Uses id_physical_device to determine the box_index.
3300  */
3301 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3302                         unsigned char *scsi3addr,
3303                         struct ReportExtendedLUNdata *rlep, int rle_index,
3304                         struct hpsa_scsi_dev_t *encl_dev)
3305 {
3306         int rc = -1;
3307         struct CommandList *c = NULL;
3308         struct ErrorInfo *ei = NULL;
3309         struct bmic_sense_storage_box_params *bssbp = NULL;
3310         struct bmic_identify_physical_device *id_phys = NULL;
3311         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3312         u16 bmic_device_index = 0;
3313
3314         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3315
3316         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3317                 rc = IO_OK;
3318                 goto out;
3319         }
3320
3321         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3322         if (!bssbp)
3323                 goto out;
3324
3325         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3326         if (!id_phys)
3327                 goto out;
3328
3329         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3330                                                 id_phys, sizeof(*id_phys));
3331         if (rc) {
3332                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3333                         __func__, encl_dev->external, bmic_device_index);
3334                 goto out;
3335         }
3336
3337         c = cmd_alloc(h);
3338
3339         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3340                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3341
3342         if (rc)
3343                 goto out;
3344
3345         if (id_phys->phys_connector[1] == 'E')
3346                 c->Request.CDB[5] = id_phys->box_index;
3347         else
3348                 c->Request.CDB[5] = 0;
3349
3350         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3351                                                 DEFAULT_TIMEOUT);
3352         if (rc)
3353                 goto out;
3354
3355         ei = c->err_info;
3356         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3357                 rc = -1;
3358                 goto out;
3359         }
3360
3361         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3362         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3363                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3364
3365         rc = IO_OK;
3366 out:
3367         kfree(bssbp);
3368         kfree(id_phys);
3369
3370         if (c)
3371                 cmd_free(h, c);
3372
3373         if (rc != IO_OK)
3374                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3375                         "Error, could not get enclosure information\n");
3376 }
3377
3378 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3379                                                 unsigned char *scsi3addr)
3380 {
3381         struct ReportExtendedLUNdata *physdev;
3382         u32 nphysicals;
3383         u64 sa = 0;
3384         int i;
3385
3386         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3387         if (!physdev)
3388                 return 0;
3389
3390         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3391                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3392                 kfree(physdev);
3393                 return 0;
3394         }
3395         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3396
3397         for (i = 0; i < nphysicals; i++)
3398                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3399                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3400                         break;
3401                 }
3402
3403         kfree(physdev);
3404
3405         return sa;
3406 }
3407
3408 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3409                                         struct hpsa_scsi_dev_t *dev)
3410 {
3411         int rc;
3412         u64 sa = 0;
3413
3414         if (is_hba_lunid(scsi3addr)) {
3415                 struct bmic_sense_subsystem_info *ssi;
3416
3417                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3418                 if (ssi == NULL) {
3419                         dev_warn(&h->pdev->dev,
3420                                 "%s: out of memory\n", __func__);
3421                         return;
3422                 }
3423
3424                 rc = hpsa_bmic_sense_subsystem_information(h,
3425                                         scsi3addr, 0, ssi, sizeof(*ssi));
3426                 if (rc == 0) {
3427                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3428                         h->sas_address = sa;
3429                 }
3430
3431                 kfree(ssi);
3432         } else
3433                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3434
3435         dev->sas_address = sa;
3436 }
3437
3438 /* Get a device id from inquiry page 0x83 */
3439 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3440         unsigned char scsi3addr[], u8 page)
3441 {
3442         int rc;
3443         int i;
3444         int pages;
3445         unsigned char *buf, bufsize;
3446
3447         buf = kzalloc(256, GFP_KERNEL);
3448         if (!buf)
3449                 return 0;
3450
3451         /* Get the size of the page list first */
3452         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3453                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3454                                 buf, HPSA_VPD_HEADER_SZ);
3455         if (rc != 0)
3456                 goto exit_unsupported;
3457         pages = buf[3];
3458         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3459                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3460         else
3461                 bufsize = 255;
3462
3463         /* Get the whole VPD page list */
3464         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3465                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3466                                 buf, bufsize);
3467         if (rc != 0)
3468                 goto exit_unsupported;
3469
3470         pages = buf[3];
3471         for (i = 1; i <= pages; i++)
3472                 if (buf[3 + i] == page)
3473                         goto exit_supported;
3474 exit_unsupported:
3475         kfree(buf);
3476         return 0;
3477 exit_supported:
3478         kfree(buf);
3479         return 1;
3480 }
3481
3482 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3483         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3484 {
3485         int rc;
3486         unsigned char *buf;
3487         u8 ioaccel_status;
3488
3489         this_device->offload_config = 0;
3490         this_device->offload_enabled = 0;
3491         this_device->offload_to_be_enabled = 0;
3492
3493         buf = kzalloc(64, GFP_KERNEL);
3494         if (!buf)
3495                 return;
3496         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3497                 goto out;
3498         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3499                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3500         if (rc != 0)
3501                 goto out;
3502
3503 #define IOACCEL_STATUS_BYTE 4
3504 #define OFFLOAD_CONFIGURED_BIT 0x01
3505 #define OFFLOAD_ENABLED_BIT 0x02
3506         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3507         this_device->offload_config =
3508                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3509         if (this_device->offload_config) {
3510                 this_device->offload_enabled =
3511                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3512                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3513                         this_device->offload_enabled = 0;
3514         }
3515         this_device->offload_to_be_enabled = this_device->offload_enabled;
3516 out:
3517         kfree(buf);
3518         return;
3519 }
3520
3521 /* Get the device id from inquiry page 0x83 */
3522 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3523         unsigned char *device_id, int index, int buflen)
3524 {
3525         int rc;
3526         unsigned char *buf;
3527
3528         if (buflen > 16)
3529                 buflen = 16;
3530         buf = kzalloc(64, GFP_KERNEL);
3531         if (!buf)
3532                 return -ENOMEM;
3533         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3534         if (rc == 0)
3535                 memcpy(device_id, &buf[index], buflen);
3536
3537         kfree(buf);
3538
3539         return rc != 0;
3540 }
3541
3542 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3543                 void *buf, int bufsize,
3544                 int extended_response)
3545 {
3546         int rc = IO_OK;
3547         struct CommandList *c;
3548         unsigned char scsi3addr[8];
3549         struct ErrorInfo *ei;
3550
3551         c = cmd_alloc(h);
3552
3553         /* address the controller */
3554         memset(scsi3addr, 0, sizeof(scsi3addr));
3555         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3556                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3557                 rc = -1;
3558                 goto out;
3559         }
3560         if (extended_response)
3561                 c->Request.CDB[1] = extended_response;
3562         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3563                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3564         if (rc)
3565                 goto out;
3566         ei = c->err_info;
3567         if (ei->CommandStatus != 0 &&
3568             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3569                 hpsa_scsi_interpret_error(h, c);
3570                 rc = -1;
3571         } else {
3572                 struct ReportLUNdata *rld = buf;
3573
3574                 if (rld->extended_response_flag != extended_response) {
3575                         dev_err(&h->pdev->dev,
3576                                 "report luns requested format %u, got %u\n",
3577                                 extended_response,
3578                                 rld->extended_response_flag);
3579                         rc = -1;
3580                 }
3581         }
3582 out:
3583         cmd_free(h, c);
3584         return rc;
3585 }
3586
3587 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3588                 struct ReportExtendedLUNdata *buf, int bufsize)
3589 {
3590         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3591                                                 HPSA_REPORT_PHYS_EXTENDED);
3592 }
3593
3594 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3595                 struct ReportLUNdata *buf, int bufsize)
3596 {
3597         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3598 }
3599
3600 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3601         int bus, int target, int lun)
3602 {
3603         device->bus = bus;
3604         device->target = target;
3605         device->lun = lun;
3606 }
3607
3608 /* Use VPD inquiry to get details of volume status */
3609 static int hpsa_get_volume_status(struct ctlr_info *h,
3610                                         unsigned char scsi3addr[])
3611 {
3612         int rc;
3613         int status;
3614         int size;
3615         unsigned char *buf;
3616
3617         buf = kzalloc(64, GFP_KERNEL);
3618         if (!buf)
3619                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3620
3621         /* Does controller have VPD for logical volume status? */
3622         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3623                 goto exit_failed;
3624
3625         /* Get the size of the VPD return buffer */
3626         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3627                                         buf, HPSA_VPD_HEADER_SZ);
3628         if (rc != 0)
3629                 goto exit_failed;
3630         size = buf[3];
3631
3632         /* Now get the whole VPD buffer */
3633         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3634                                         buf, size + HPSA_VPD_HEADER_SZ);
3635         if (rc != 0)
3636                 goto exit_failed;
3637         status = buf[4]; /* status byte */
3638
3639         kfree(buf);
3640         return status;
3641 exit_failed:
3642         kfree(buf);
3643         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3644 }
3645
3646 /* Determine offline status of a volume.
3647  * Return either:
3648  *  0 (not offline)
3649  *  0xff (offline for unknown reasons)
3650  *  # (integer code indicating one of several NOT READY states
3651  *     describing why a volume is to be kept offline)
3652  */
3653 static int hpsa_volume_offline(struct ctlr_info *h,
3654                                         unsigned char scsi3addr[])
3655 {
3656         struct CommandList *c;
3657         unsigned char *sense;
3658         u8 sense_key, asc, ascq;
3659         int sense_len;
3660         int rc, ldstat = 0;
3661         u16 cmd_status;
3662         u8 scsi_status;
3663 #define ASC_LUN_NOT_READY 0x04
3664 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3665 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3666
3667         c = cmd_alloc(h);
3668
3669         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3670         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3671                                         DEFAULT_TIMEOUT);
3672         if (rc) {
3673                 cmd_free(h, c);
3674                 return 0;
3675         }
3676         sense = c->err_info->SenseInfo;
3677         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3678                 sense_len = sizeof(c->err_info->SenseInfo);
3679         else
3680                 sense_len = c->err_info->SenseLen;
3681         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3682         cmd_status = c->err_info->CommandStatus;
3683         scsi_status = c->err_info->ScsiStatus;
3684         cmd_free(h, c);
3685         /* Is the volume 'not ready'? */
3686         if (cmd_status != CMD_TARGET_STATUS ||
3687                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3688                 sense_key != NOT_READY ||
3689                 asc != ASC_LUN_NOT_READY)  {
3690                 return 0;
3691         }
3692
3693         /* Determine the reason for not ready state */
3694         ldstat = hpsa_get_volume_status(h, scsi3addr);
3695
3696         /* Keep volume offline in certain cases: */
3697         switch (ldstat) {
3698         case HPSA_LV_UNDERGOING_ERASE:
3699         case HPSA_LV_NOT_AVAILABLE:
3700         case HPSA_LV_UNDERGOING_RPI:
3701         case HPSA_LV_PENDING_RPI:
3702         case HPSA_LV_ENCRYPTED_NO_KEY:
3703         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3704         case HPSA_LV_UNDERGOING_ENCRYPTION:
3705         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3706         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3707                 return ldstat;
3708         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3709                 /* If VPD status page isn't available,
3710                  * use ASC/ASCQ to determine state
3711                  */
3712                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3713                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3714                         return ldstat;
3715                 break;
3716         default:
3717                 break;
3718         }
3719         return 0;
3720 }
3721
3722 /*
3723  * Find out if a logical device supports aborts by simply trying one.
3724  * Smart Array may claim not to support aborts on logical drives, but
3725  * if a MSA2000 * is connected, the drives on that will be presented
3726  * by the Smart Array as logical drives, and aborts may be sent to
3727  * those devices successfully.  So the simplest way to find out is
3728  * to simply try an abort and see how the device responds.
3729  */
3730 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3731                                         unsigned char *scsi3addr)
3732 {
3733         struct CommandList *c;
3734         struct ErrorInfo *ei;
3735         int rc = 0;
3736
3737         u64 tag = (u64) -1; /* bogus tag */
3738
3739         /* Assume that physical devices support aborts */
3740         if (!is_logical_dev_addr_mode(scsi3addr))
3741                 return 1;
3742
3743         c = cmd_alloc(h);
3744
3745         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3746         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3747                                         DEFAULT_TIMEOUT);
3748         /* no unmap needed here because no data xfer. */
3749         ei = c->err_info;
3750         switch (ei->CommandStatus) {
3751         case CMD_INVALID:
3752                 rc = 0;
3753                 break;
3754         case CMD_UNABORTABLE:
3755         case CMD_ABORT_FAILED:
3756                 rc = 1;
3757                 break;
3758         case CMD_TMF_STATUS:
3759                 rc = hpsa_evaluate_tmf_status(h, c);
3760                 break;
3761         default:
3762                 rc = 0;
3763                 break;
3764         }
3765         cmd_free(h, c);
3766         return rc;
3767 }
3768
3769 static int hpsa_update_device_info(struct ctlr_info *h,
3770         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3771         unsigned char *is_OBDR_device)
3772 {
3773
3774 #define OBDR_SIG_OFFSET 43
3775 #define OBDR_TAPE_SIG "$DR-10"
3776 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3777 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3778
3779         unsigned char *inq_buff;
3780         unsigned char *obdr_sig;
3781         int rc = 0;
3782
3783         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3784         if (!inq_buff) {
3785                 rc = -ENOMEM;
3786                 goto bail_out;
3787         }
3788
3789         /* Do an inquiry to the device to see what it is. */
3790         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3791                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3792                 /* Inquiry failed (msg printed already) */
3793                 dev_err(&h->pdev->dev,
3794                         "hpsa_update_device_info: inquiry failed\n");
3795                 rc = -EIO;
3796                 goto bail_out;
3797         }
3798
3799         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3800         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3801
3802         this_device->devtype = (inq_buff[0] & 0x1f);
3803         memcpy(this_device->scsi3addr, scsi3addr, 8);
3804         memcpy(this_device->vendor, &inq_buff[8],
3805                 sizeof(this_device->vendor));
3806         memcpy(this_device->model, &inq_buff[16],
3807                 sizeof(this_device->model));
3808         memset(this_device->device_id, 0,
3809                 sizeof(this_device->device_id));
3810         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3811                 sizeof(this_device->device_id));
3812
3813         if ((this_device->devtype == TYPE_DISK ||
3814                 this_device->devtype == TYPE_ZBC) &&
3815                 is_logical_dev_addr_mode(scsi3addr)) {
3816                 int volume_offline;
3817
3818                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3819                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3820                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3821                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3822                 if (volume_offline < 0 || volume_offline > 0xff)
3823                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3824                 this_device->volume_offline = volume_offline & 0xff;
3825         } else {
3826                 this_device->raid_level = RAID_UNKNOWN;
3827                 this_device->offload_config = 0;
3828                 this_device->offload_enabled = 0;
3829                 this_device->offload_to_be_enabled = 0;
3830                 this_device->hba_ioaccel_enabled = 0;
3831                 this_device->volume_offline = 0;
3832                 this_device->queue_depth = h->nr_cmds;
3833         }
3834
3835         if (is_OBDR_device) {
3836                 /* See if this is a One-Button-Disaster-Recovery device
3837                  * by looking for "$DR-10" at offset 43 in inquiry data.
3838                  */
3839                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3840                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3841                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3842                                                 OBDR_SIG_LEN) == 0);
3843         }
3844         kfree(inq_buff);
3845         return 0;
3846
3847 bail_out:
3848         kfree(inq_buff);
3849         return rc;
3850 }
3851
3852 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3853                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3854 {
3855         unsigned long flags;
3856         int rc, entry;
3857         /*
3858          * See if this device supports aborts.  If we already know
3859          * the device, we already know if it supports aborts, otherwise
3860          * we have to find out if it supports aborts by trying one.
3861          */
3862         spin_lock_irqsave(&h->devlock, flags);
3863         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3864         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3865                 entry >= 0 && entry < h->ndevices) {
3866                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3867                 spin_unlock_irqrestore(&h->devlock, flags);
3868         } else {
3869                 spin_unlock_irqrestore(&h->devlock, flags);
3870                 dev->supports_aborts =
3871                                 hpsa_device_supports_aborts(h, scsi3addr);
3872                 if (dev->supports_aborts < 0)
3873                         dev->supports_aborts = 0;
3874         }
3875 }
3876
3877 /*
3878  * Helper function to assign bus, target, lun mapping of devices.
3879  * Logical drive target and lun are assigned at this time, but
3880  * physical device lun and target assignment are deferred (assigned
3881  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3882 */
3883 static void figure_bus_target_lun(struct ctlr_info *h,
3884         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3885 {
3886         u32 lunid = get_unaligned_le32(lunaddrbytes);
3887
3888         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3889                 /* physical device, target and lun filled in later */
3890                 if (is_hba_lunid(lunaddrbytes))
3891                         hpsa_set_bus_target_lun(device,
3892                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3893                 else
3894                         /* defer target, lun assignment for physical devices */
3895                         hpsa_set_bus_target_lun(device,
3896                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3897                 return;
3898         }
3899         /* It's a logical device */
3900         if (device->external) {
3901                 hpsa_set_bus_target_lun(device,
3902                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3903                         lunid & 0x00ff);
3904                 return;
3905         }
3906         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3907                                 0, lunid & 0x3fff);
3908 }
3909
3910
3911 /*
3912  * Get address of physical disk used for an ioaccel2 mode command:
3913  *      1. Extract ioaccel2 handle from the command.
3914  *      2. Find a matching ioaccel2 handle from list of physical disks.
3915  *      3. Return:
3916  *              1 and set scsi3addr to address of matching physical
3917  *              0 if no matching physical disk was found.
3918  */
3919 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3920         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3921 {
3922         struct io_accel2_cmd *c2 =
3923                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3924         unsigned long flags;
3925         int i;
3926
3927         spin_lock_irqsave(&h->devlock, flags);
3928         for (i = 0; i < h->ndevices; i++)
3929                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3930                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3931                                 sizeof(h->dev[i]->scsi3addr));
3932                         spin_unlock_irqrestore(&h->devlock, flags);
3933                         return 1;
3934                 }
3935         spin_unlock_irqrestore(&h->devlock, flags);
3936         return 0;
3937 }
3938
3939 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3940         int i, int nphysicals, int nlocal_logicals)
3941 {
3942         /* In report logicals, local logicals are listed first,
3943         * then any externals.
3944         */
3945         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3946
3947         if (i == raid_ctlr_position)
3948                 return 0;
3949
3950         if (i < logicals_start)
3951                 return 0;
3952
3953         /* i is in logicals range, but still within local logicals */
3954         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3955                 return 0;
3956
3957         return 1; /* it's an external lun */
3958 }
3959
3960 /*
3961  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3962  * logdev.  The number of luns in physdev and logdev are returned in
3963  * *nphysicals and *nlogicals, respectively.
3964  * Returns 0 on success, -1 otherwise.
3965  */
3966 static int hpsa_gather_lun_info(struct ctlr_info *h,
3967         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3968         struct ReportLUNdata *logdev, u32 *nlogicals)
3969 {
3970         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3971                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3972                 return -1;
3973         }
3974         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3975         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3976                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3977                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3978                 *nphysicals = HPSA_MAX_PHYS_LUN;
3979         }
3980         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3981                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3982                 return -1;
3983         }
3984         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3985         /* Reject Logicals in excess of our max capability. */
3986         if (*nlogicals > HPSA_MAX_LUN) {
3987                 dev_warn(&h->pdev->dev,
3988                         "maximum logical LUNs (%d) exceeded.  "
3989                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3990                         *nlogicals - HPSA_MAX_LUN);
3991                         *nlogicals = HPSA_MAX_LUN;
3992         }
3993         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3994                 dev_warn(&h->pdev->dev,
3995                         "maximum logical + physical LUNs (%d) exceeded. "
3996                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3997                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3998                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3999         }
4000         return 0;
4001 }
4002
4003 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4004         int i, int nphysicals, int nlogicals,
4005         struct ReportExtendedLUNdata *physdev_list,
4006         struct ReportLUNdata *logdev_list)
4007 {
4008         /* Helper function, figure out where the LUN ID info is coming from
4009          * given index i, lists of physical and logical devices, where in
4010          * the list the raid controller is supposed to appear (first or last)
4011          */
4012
4013         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4014         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4015
4016         if (i == raid_ctlr_position)
4017                 return RAID_CTLR_LUNID;
4018
4019         if (i < logicals_start)
4020                 return &physdev_list->LUN[i -
4021                                 (raid_ctlr_position == 0)].lunid[0];
4022
4023         if (i < last_device)
4024                 return &logdev_list->LUN[i - nphysicals -
4025                         (raid_ctlr_position == 0)][0];
4026         BUG();
4027         return NULL;
4028 }
4029
4030 /* get physical drive ioaccel handle and queue depth */
4031 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4032                 struct hpsa_scsi_dev_t *dev,
4033                 struct ReportExtendedLUNdata *rlep, int rle_index,
4034                 struct bmic_identify_physical_device *id_phys)
4035 {
4036         int rc;
4037         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4038
4039         dev->ioaccel_handle = rle->ioaccel_handle;
4040         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4041                 dev->hba_ioaccel_enabled = 1;
4042         memset(id_phys, 0, sizeof(*id_phys));
4043         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4044                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4045                         sizeof(*id_phys));
4046         if (!rc)
4047                 /* Reserve space for FW operations */
4048 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4049 #define DRIVE_QUEUE_DEPTH 7
4050                 dev->queue_depth =
4051                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4052                                 DRIVE_CMDS_RESERVED_FOR_FW;
4053         else
4054                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4055 }
4056
4057 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4058         struct ReportExtendedLUNdata *rlep, int rle_index,
4059         struct bmic_identify_physical_device *id_phys)
4060 {
4061         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4062
4063         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4064                 this_device->hba_ioaccel_enabled = 1;
4065
4066         memcpy(&this_device->active_path_index,
4067                 &id_phys->active_path_number,
4068                 sizeof(this_device->active_path_index));
4069         memcpy(&this_device->path_map,
4070                 &id_phys->redundant_path_present_map,
4071                 sizeof(this_device->path_map));
4072         memcpy(&this_device->box,
4073                 &id_phys->alternate_paths_phys_box_on_port,
4074                 sizeof(this_device->box));
4075         memcpy(&this_device->phys_connector,
4076                 &id_phys->alternate_paths_phys_connector,
4077                 sizeof(this_device->phys_connector));
4078         memcpy(&this_device->bay,
4079                 &id_phys->phys_bay_in_box,
4080                 sizeof(this_device->bay));
4081 }
4082
4083 /* get number of local logical disks. */
4084 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4085         struct bmic_identify_controller *id_ctlr,
4086         u32 *nlocals)
4087 {
4088         int rc;
4089
4090         if (!id_ctlr) {
4091                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4092                         __func__);
4093                 return -ENOMEM;
4094         }
4095         memset(id_ctlr, 0, sizeof(*id_ctlr));
4096         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4097         if (!rc)
4098                 if (id_ctlr->configured_logical_drive_count < 256)
4099                         *nlocals = id_ctlr->configured_logical_drive_count;
4100                 else
4101                         *nlocals = le16_to_cpu(
4102                                         id_ctlr->extended_logical_unit_count);
4103         else
4104                 *nlocals = -1;
4105         return rc;
4106 }
4107
4108
4109 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4110 {
4111         /* the idea here is we could get notified
4112          * that some devices have changed, so we do a report
4113          * physical luns and report logical luns cmd, and adjust
4114          * our list of devices accordingly.
4115          *
4116          * The scsi3addr's of devices won't change so long as the
4117          * adapter is not reset.  That means we can rescan and
4118          * tell which devices we already know about, vs. new
4119          * devices, vs.  disappearing devices.
4120          */
4121         struct ReportExtendedLUNdata *physdev_list = NULL;
4122         struct ReportLUNdata *logdev_list = NULL;
4123         struct bmic_identify_physical_device *id_phys = NULL;
4124         struct bmic_identify_controller *id_ctlr = NULL;
4125         u32 nphysicals = 0;
4126         u32 nlogicals = 0;
4127         u32 nlocal_logicals = 0;
4128         u32 ndev_allocated = 0;
4129         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4130         int ncurrent = 0;
4131         int i, n_ext_target_devs, ndevs_to_allocate;
4132         int raid_ctlr_position;
4133         bool physical_device;
4134         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4135
4136         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4137         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4138         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4139         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4140         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4141         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4142
4143         if (!currentsd || !physdev_list || !logdev_list ||
4144                 !tmpdevice || !id_phys || !id_ctlr) {
4145                 dev_err(&h->pdev->dev, "out of memory\n");
4146                 goto out;
4147         }
4148         memset(lunzerobits, 0, sizeof(lunzerobits));
4149
4150         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4151
4152         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4153                         logdev_list, &nlogicals)) {
4154                 h->drv_req_rescan = 1;
4155                 goto out;
4156         }
4157
4158         /* Set number of local logicals (non PTRAID) */
4159         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4160                 dev_warn(&h->pdev->dev,
4161                         "%s: Can't determine number of local logical devices.\n",
4162                         __func__);
4163         }
4164
4165         /* We might see up to the maximum number of logical and physical disks
4166          * plus external target devices, and a device for the local RAID
4167          * controller.
4168          */
4169         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4170
4171         /* Allocate the per device structures */
4172         for (i = 0; i < ndevs_to_allocate; i++) {
4173                 if (i >= HPSA_MAX_DEVICES) {
4174                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4175                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4176                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4177                         break;
4178                 }
4179
4180                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4181                 if (!currentsd[i]) {
4182                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4183                                 __FILE__, __LINE__);
4184                         h->drv_req_rescan = 1;
4185                         goto out;
4186                 }
4187                 ndev_allocated++;
4188         }
4189
4190         if (is_scsi_rev_5(h))
4191                 raid_ctlr_position = 0;
4192         else
4193                 raid_ctlr_position = nphysicals + nlogicals;
4194
4195         /* adjust our table of devices */
4196         n_ext_target_devs = 0;
4197         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4198                 u8 *lunaddrbytes, is_OBDR = 0;
4199                 int rc = 0;
4200                 int phys_dev_index = i - (raid_ctlr_position == 0);
4201
4202                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4203
4204                 /* Figure out where the LUN ID info is coming from */
4205                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4206                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4207
4208                 /* skip masked non-disk devices */
4209                 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4210                    (physdev_list->LUN[phys_dev_index].device_type != 0x06) &&
4211                    (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4212                         continue;
4213
4214                 /* Get device type, vendor, model, device id */
4215                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4216                                                         &is_OBDR);
4217                 if (rc == -ENOMEM) {
4218                         dev_warn(&h->pdev->dev,
4219                                 "Out of memory, rescan deferred.\n");
4220                         h->drv_req_rescan = 1;
4221                         goto out;
4222                 }
4223                 if (rc) {
4224                         dev_warn(&h->pdev->dev,
4225                                 "Inquiry failed, skipping device.\n");
4226                         continue;
4227                 }
4228
4229                 /* Determine if this is a lun from an external target array */
4230                 tmpdevice->external =
4231                         figure_external_status(h, raid_ctlr_position, i,
4232                                                 nphysicals, nlocal_logicals);
4233
4234                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4235                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4236                 this_device = currentsd[ncurrent];
4237
4238                 /* Turn on discovery_polling if there are ext target devices.
4239                  * Event-based change notification is unreliable for those.
4240                  */
4241                 if (!h->discovery_polling) {
4242                         if (tmpdevice->external) {
4243                                 h->discovery_polling = 1;
4244                                 dev_info(&h->pdev->dev,
4245                                         "External target, activate discovery polling.\n");
4246                         }
4247                 }
4248
4249
4250                 *this_device = *tmpdevice;
4251                 this_device->physical_device = physical_device;
4252
4253                 /*
4254                  * Expose all devices except for physical devices that
4255                  * are masked.
4256                  */
4257                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4258                         this_device->expose_device = 0;
4259                 else
4260                         this_device->expose_device = 1;
4261
4262
4263                 /*
4264                  * Get the SAS address for physical devices that are exposed.
4265                  */
4266                 if (this_device->physical_device && this_device->expose_device)
4267                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4268
4269                 switch (this_device->devtype) {
4270                 case TYPE_ROM:
4271                         /* We don't *really* support actual CD-ROM devices,
4272                          * just "One Button Disaster Recovery" tape drive
4273                          * which temporarily pretends to be a CD-ROM drive.
4274                          * So we check that the device is really an OBDR tape
4275                          * device by checking for "$DR-10" in bytes 43-48 of
4276                          * the inquiry data.
4277                          */
4278                         if (is_OBDR)
4279                                 ncurrent++;
4280                         break;
4281                 case TYPE_DISK:
4282                 case TYPE_ZBC:
4283                         if (this_device->physical_device) {
4284                                 /* The disk is in HBA mode. */
4285                                 /* Never use RAID mapper in HBA mode. */
4286                                 this_device->offload_enabled = 0;
4287                                 hpsa_get_ioaccel_drive_info(h, this_device,
4288                                         physdev_list, phys_dev_index, id_phys);
4289                                 hpsa_get_path_info(this_device,
4290                                         physdev_list, phys_dev_index, id_phys);
4291                         }
4292                         ncurrent++;
4293                         break;
4294                 case TYPE_TAPE:
4295                 case TYPE_MEDIUM_CHANGER:
4296                         ncurrent++;
4297                         break;
4298                 case TYPE_ENCLOSURE:
4299                         if (!this_device->external)
4300                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4301                                                 physdev_list, phys_dev_index,
4302                                                 this_device);
4303                         ncurrent++;
4304                         break;
4305                 case TYPE_RAID:
4306                         /* Only present the Smartarray HBA as a RAID controller.
4307                          * If it's a RAID controller other than the HBA itself
4308                          * (an external RAID controller, MSA500 or similar)
4309                          * don't present it.
4310                          */
4311                         if (!is_hba_lunid(lunaddrbytes))
4312                                 break;
4313                         ncurrent++;
4314                         break;
4315                 default:
4316                         break;
4317                 }
4318                 if (ncurrent >= HPSA_MAX_DEVICES)
4319                         break;
4320         }
4321
4322         if (h->sas_host == NULL) {
4323                 int rc = 0;
4324
4325                 rc = hpsa_add_sas_host(h);
4326                 if (rc) {
4327                         dev_warn(&h->pdev->dev,
4328                                 "Could not add sas host %d\n", rc);
4329                         goto out;
4330                 }
4331         }
4332
4333         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4334 out:
4335         kfree(tmpdevice);
4336         for (i = 0; i < ndev_allocated; i++)
4337                 kfree(currentsd[i]);
4338         kfree(currentsd);
4339         kfree(physdev_list);
4340         kfree(logdev_list);
4341         kfree(id_ctlr);
4342         kfree(id_phys);
4343 }
4344
4345 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4346                                    struct scatterlist *sg)
4347 {
4348         u64 addr64 = (u64) sg_dma_address(sg);
4349         unsigned int len = sg_dma_len(sg);
4350
4351         desc->Addr = cpu_to_le64(addr64);
4352         desc->Len = cpu_to_le32(len);
4353         desc->Ext = 0;
4354 }
4355
4356 /*
4357  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4358  * dma mapping  and fills in the scatter gather entries of the
4359  * hpsa command, cp.
4360  */
4361 static int hpsa_scatter_gather(struct ctlr_info *h,
4362                 struct CommandList *cp,
4363                 struct scsi_cmnd *cmd)
4364 {
4365         struct scatterlist *sg;
4366         int use_sg, i, sg_limit, chained, last_sg;
4367         struct SGDescriptor *curr_sg;
4368
4369         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4370
4371         use_sg = scsi_dma_map(cmd);
4372         if (use_sg < 0)
4373                 return use_sg;
4374
4375         if (!use_sg)
4376                 goto sglist_finished;
4377
4378         /*
4379          * If the number of entries is greater than the max for a single list,
4380          * then we have a chained list; we will set up all but one entry in the
4381          * first list (the last entry is saved for link information);
4382          * otherwise, we don't have a chained list and we'll set up at each of
4383          * the entries in the one list.
4384          */
4385         curr_sg = cp->SG;
4386         chained = use_sg > h->max_cmd_sg_entries;
4387         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4388         last_sg = scsi_sg_count(cmd) - 1;
4389         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4390                 hpsa_set_sg_descriptor(curr_sg, sg);
4391                 curr_sg++;
4392         }
4393
4394         if (chained) {
4395                 /*
4396                  * Continue with the chained list.  Set curr_sg to the chained
4397                  * list.  Modify the limit to the total count less the entries
4398                  * we've already set up.  Resume the scan at the list entry
4399                  * where the previous loop left off.
4400                  */
4401                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4402                 sg_limit = use_sg - sg_limit;
4403                 for_each_sg(sg, sg, sg_limit, i) {
4404                         hpsa_set_sg_descriptor(curr_sg, sg);
4405                         curr_sg++;
4406                 }
4407         }
4408
4409         /* Back the pointer up to the last entry and mark it as "last". */
4410         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4411
4412         if (use_sg + chained > h->maxSG)
4413                 h->maxSG = use_sg + chained;
4414
4415         if (chained) {
4416                 cp->Header.SGList = h->max_cmd_sg_entries;
4417                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4418                 if (hpsa_map_sg_chain_block(h, cp)) {
4419                         scsi_dma_unmap(cmd);
4420                         return -1;
4421                 }
4422                 return 0;
4423         }
4424
4425 sglist_finished:
4426
4427         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4428         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4429         return 0;
4430 }
4431
4432 #define IO_ACCEL_INELIGIBLE (1)
4433 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4434 {
4435         int is_write = 0;
4436         u32 block;
4437         u32 block_cnt;
4438
4439         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4440         switch (cdb[0]) {
4441         case WRITE_6:
4442         case WRITE_12:
4443                 is_write = 1;
4444         case READ_6:
4445         case READ_12:
4446                 if (*cdb_len == 6) {
4447                         block = get_unaligned_be16(&cdb[2]);
4448                         block_cnt = cdb[4];
4449                         if (block_cnt == 0)
4450                                 block_cnt = 256;
4451                 } else {
4452                         BUG_ON(*cdb_len != 12);
4453                         block = get_unaligned_be32(&cdb[2]);
4454                         block_cnt = get_unaligned_be32(&cdb[6]);
4455                 }
4456                 if (block_cnt > 0xffff)
4457                         return IO_ACCEL_INELIGIBLE;
4458
4459                 cdb[0] = is_write ? WRITE_10 : READ_10;
4460                 cdb[1] = 0;
4461                 cdb[2] = (u8) (block >> 24);
4462                 cdb[3] = (u8) (block >> 16);
4463                 cdb[4] = (u8) (block >> 8);
4464                 cdb[5] = (u8) (block);
4465                 cdb[6] = 0;
4466                 cdb[7] = (u8) (block_cnt >> 8);
4467                 cdb[8] = (u8) (block_cnt);
4468                 cdb[9] = 0;
4469                 *cdb_len = 10;
4470                 break;
4471         }
4472         return 0;
4473 }
4474
4475 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4476         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4477         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4478 {
4479         struct scsi_cmnd *cmd = c->scsi_cmd;
4480         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4481         unsigned int len;
4482         unsigned int total_len = 0;
4483         struct scatterlist *sg;
4484         u64 addr64;
4485         int use_sg, i;
4486         struct SGDescriptor *curr_sg;
4487         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4488
4489         /* TODO: implement chaining support */
4490         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4491                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4492                 return IO_ACCEL_INELIGIBLE;
4493         }
4494
4495         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4496
4497         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4498                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4499                 return IO_ACCEL_INELIGIBLE;
4500         }
4501
4502         c->cmd_type = CMD_IOACCEL1;
4503
4504         /* Adjust the DMA address to point to the accelerated command buffer */
4505         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4506                                 (c->cmdindex * sizeof(*cp));
4507         BUG_ON(c->busaddr & 0x0000007F);
4508
4509         use_sg = scsi_dma_map(cmd);
4510         if (use_sg < 0) {
4511                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4512                 return use_sg;
4513         }
4514
4515         if (use_sg) {
4516                 curr_sg = cp->SG;
4517                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4518                         addr64 = (u64) sg_dma_address(sg);
4519                         len  = sg_dma_len(sg);
4520                         total_len += len;
4521                         curr_sg->Addr = cpu_to_le64(addr64);
4522                         curr_sg->Len = cpu_to_le32(len);
4523                         curr_sg->Ext = cpu_to_le32(0);
4524                         curr_sg++;
4525                 }
4526                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4527
4528                 switch (cmd->sc_data_direction) {
4529                 case DMA_TO_DEVICE:
4530                         control |= IOACCEL1_CONTROL_DATA_OUT;
4531                         break;
4532                 case DMA_FROM_DEVICE:
4533                         control |= IOACCEL1_CONTROL_DATA_IN;
4534                         break;
4535                 case DMA_NONE:
4536                         control |= IOACCEL1_CONTROL_NODATAXFER;
4537                         break;
4538                 default:
4539                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4540                         cmd->sc_data_direction);
4541                         BUG();
4542                         break;
4543                 }
4544         } else {
4545                 control |= IOACCEL1_CONTROL_NODATAXFER;
4546         }
4547
4548         c->Header.SGList = use_sg;
4549         /* Fill out the command structure to submit */
4550         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4551         cp->transfer_len = cpu_to_le32(total_len);
4552         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4553                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4554         cp->control = cpu_to_le32(control);
4555         memcpy(cp->CDB, cdb, cdb_len);
4556         memcpy(cp->CISS_LUN, scsi3addr, 8);
4557         /* Tag was already set at init time. */
4558         enqueue_cmd_and_start_io(h, c);
4559         return 0;
4560 }
4561
4562 /*
4563  * Queue a command directly to a device behind the controller using the
4564  * I/O accelerator path.
4565  */
4566 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4567         struct CommandList *c)
4568 {
4569         struct scsi_cmnd *cmd = c->scsi_cmd;
4570         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4571
4572         c->phys_disk = dev;
4573
4574         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4575                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4576 }
4577
4578 /*
4579  * Set encryption parameters for the ioaccel2 request
4580  */
4581 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4582         struct CommandList *c, struct io_accel2_cmd *cp)
4583 {
4584         struct scsi_cmnd *cmd = c->scsi_cmd;
4585         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4586         struct raid_map_data *map = &dev->raid_map;
4587         u64 first_block;
4588
4589         /* Are we doing encryption on this device */
4590         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4591                 return;
4592         /* Set the data encryption key index. */
4593         cp->dekindex = map->dekindex;
4594
4595         /* Set the encryption enable flag, encoded into direction field. */
4596         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4597
4598         /* Set encryption tweak values based on logical block address
4599          * If block size is 512, tweak value is LBA.
4600          * For other block sizes, tweak is (LBA * block size)/ 512)
4601          */
4602         switch (cmd->cmnd[0]) {
4603         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4604         case WRITE_6:
4605         case READ_6:
4606                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4607                 break;
4608         case WRITE_10:
4609         case READ_10:
4610         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4611         case WRITE_12:
4612         case READ_12:
4613                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4614                 break;
4615         case WRITE_16:
4616         case READ_16:
4617                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4618                 break;
4619         default:
4620                 dev_err(&h->pdev->dev,
4621                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4622                         __func__, cmd->cmnd[0]);
4623                 BUG();
4624                 break;
4625         }
4626
4627         if (le32_to_cpu(map->volume_blk_size) != 512)
4628                 first_block = first_block *
4629                                 le32_to_cpu(map->volume_blk_size)/512;
4630
4631         cp->tweak_lower = cpu_to_le32(first_block);
4632         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4633 }
4634
4635 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4636         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4637         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4638 {
4639         struct scsi_cmnd *cmd = c->scsi_cmd;
4640         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4641         struct ioaccel2_sg_element *curr_sg;
4642         int use_sg, i;
4643         struct scatterlist *sg;
4644         u64 addr64;
4645         u32 len;
4646         u32 total_len = 0;
4647
4648         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4649
4650         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4651                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4652                 return IO_ACCEL_INELIGIBLE;
4653         }
4654
4655         c->cmd_type = CMD_IOACCEL2;
4656         /* Adjust the DMA address to point to the accelerated command buffer */
4657         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4658                                 (c->cmdindex * sizeof(*cp));
4659         BUG_ON(c->busaddr & 0x0000007F);
4660
4661         memset(cp, 0, sizeof(*cp));
4662         cp->IU_type = IOACCEL2_IU_TYPE;
4663
4664         use_sg = scsi_dma_map(cmd);
4665         if (use_sg < 0) {
4666                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4667                 return use_sg;
4668         }
4669
4670         if (use_sg) {
4671                 curr_sg = cp->sg;
4672                 if (use_sg > h->ioaccel_maxsg) {
4673                         addr64 = le64_to_cpu(
4674                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4675                         curr_sg->address = cpu_to_le64(addr64);
4676                         curr_sg->length = 0;
4677                         curr_sg->reserved[0] = 0;
4678                         curr_sg->reserved[1] = 0;
4679                         curr_sg->reserved[2] = 0;
4680                         curr_sg->chain_indicator = 0x80;
4681
4682                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4683                 }
4684                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4685                         addr64 = (u64) sg_dma_address(sg);
4686                         len  = sg_dma_len(sg);
4687                         total_len += len;
4688                         curr_sg->address = cpu_to_le64(addr64);
4689                         curr_sg->length = cpu_to_le32(len);
4690                         curr_sg->reserved[0] = 0;
4691                         curr_sg->reserved[1] = 0;
4692                         curr_sg->reserved[2] = 0;
4693                         curr_sg->chain_indicator = 0;
4694                         curr_sg++;
4695                 }
4696
4697                 switch (cmd->sc_data_direction) {
4698                 case DMA_TO_DEVICE:
4699                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4700                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4701                         break;
4702                 case DMA_FROM_DEVICE:
4703                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4704                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4705                         break;
4706                 case DMA_NONE:
4707                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4708                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4709                         break;
4710                 default:
4711                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4712                                 cmd->sc_data_direction);
4713                         BUG();
4714                         break;
4715                 }
4716         } else {
4717                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4718                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4719         }
4720
4721         /* Set encryption parameters, if necessary */
4722         set_encrypt_ioaccel2(h, c, cp);
4723
4724         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4725         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4726         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4727
4728         cp->data_len = cpu_to_le32(total_len);
4729         cp->err_ptr = cpu_to_le64(c->busaddr +
4730                         offsetof(struct io_accel2_cmd, error_data));
4731         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4732
4733         /* fill in sg elements */
4734         if (use_sg > h->ioaccel_maxsg) {
4735                 cp->sg_count = 1;
4736                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4737                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4738                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4739                         scsi_dma_unmap(cmd);
4740                         return -1;
4741                 }
4742         } else
4743                 cp->sg_count = (u8) use_sg;
4744
4745         enqueue_cmd_and_start_io(h, c);
4746         return 0;
4747 }
4748
4749 /*
4750  * Queue a command to the correct I/O accelerator path.
4751  */
4752 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4753         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4754         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4755 {
4756         /* Try to honor the device's queue depth */
4757         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4758                                         phys_disk->queue_depth) {
4759                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4760                 return IO_ACCEL_INELIGIBLE;
4761         }
4762         if (h->transMethod & CFGTBL_Trans_io_accel1)
4763                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4764                                                 cdb, cdb_len, scsi3addr,
4765                                                 phys_disk);
4766         else
4767                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4768                                                 cdb, cdb_len, scsi3addr,
4769                                                 phys_disk);
4770 }
4771
4772 static void raid_map_helper(struct raid_map_data *map,
4773                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4774 {
4775         if (offload_to_mirror == 0)  {
4776                 /* use physical disk in the first mirrored group. */
4777                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4778                 return;
4779         }
4780         do {
4781                 /* determine mirror group that *map_index indicates */
4782                 *current_group = *map_index /
4783                         le16_to_cpu(map->data_disks_per_row);
4784                 if (offload_to_mirror == *current_group)
4785                         continue;
4786                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4787                         /* select map index from next group */
4788                         *map_index += le16_to_cpu(map->data_disks_per_row);
4789                         (*current_group)++;
4790                 } else {
4791                         /* select map index from first group */
4792                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4793                         *current_group = 0;
4794                 }
4795         } while (offload_to_mirror != *current_group);
4796 }
4797
4798 /*
4799  * Attempt to perform offload RAID mapping for a logical volume I/O.
4800  */
4801 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4802         struct CommandList *c)
4803 {
4804         struct scsi_cmnd *cmd = c->scsi_cmd;
4805         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4806         struct raid_map_data *map = &dev->raid_map;
4807         struct raid_map_disk_data *dd = &map->data[0];
4808         int is_write = 0;
4809         u32 map_index;
4810         u64 first_block, last_block;
4811         u32 block_cnt;
4812         u32 blocks_per_row;
4813         u64 first_row, last_row;
4814         u32 first_row_offset, last_row_offset;
4815         u32 first_column, last_column;
4816         u64 r0_first_row, r0_last_row;
4817         u32 r5or6_blocks_per_row;
4818         u64 r5or6_first_row, r5or6_last_row;
4819         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4820         u32 r5or6_first_column, r5or6_last_column;
4821         u32 total_disks_per_row;
4822         u32 stripesize;
4823         u32 first_group, last_group, current_group;
4824         u32 map_row;
4825         u32 disk_handle;
4826         u64 disk_block;
4827         u32 disk_block_cnt;
4828         u8 cdb[16];
4829         u8 cdb_len;
4830         u16 strip_size;
4831 #if BITS_PER_LONG == 32
4832         u64 tmpdiv;
4833 #endif
4834         int offload_to_mirror;
4835
4836         /* check for valid opcode, get LBA and block count */
4837         switch (cmd->cmnd[0]) {
4838         case WRITE_6:
4839                 is_write = 1;
4840         case READ_6:
4841                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4842                 block_cnt = cmd->cmnd[4];
4843                 if (block_cnt == 0)
4844                         block_cnt = 256;
4845                 break;
4846         case WRITE_10:
4847                 is_write = 1;
4848         case READ_10:
4849                 first_block =
4850                         (((u64) cmd->cmnd[2]) << 24) |
4851                         (((u64) cmd->cmnd[3]) << 16) |
4852                         (((u64) cmd->cmnd[4]) << 8) |
4853                         cmd->cmnd[5];
4854                 block_cnt =
4855                         (((u32) cmd->cmnd[7]) << 8) |
4856                         cmd->cmnd[8];
4857                 break;
4858         case WRITE_12:
4859                 is_write = 1;
4860         case READ_12:
4861                 first_block =
4862                         (((u64) cmd->cmnd[2]) << 24) |
4863                         (((u64) cmd->cmnd[3]) << 16) |
4864                         (((u64) cmd->cmnd[4]) << 8) |
4865                         cmd->cmnd[5];
4866                 block_cnt =
4867                         (((u32) cmd->cmnd[6]) << 24) |
4868                         (((u32) cmd->cmnd[7]) << 16) |
4869                         (((u32) cmd->cmnd[8]) << 8) |
4870                 cmd->cmnd[9];
4871                 break;
4872         case WRITE_16:
4873                 is_write = 1;
4874         case READ_16:
4875                 first_block =
4876                         (((u64) cmd->cmnd[2]) << 56) |
4877                         (((u64) cmd->cmnd[3]) << 48) |
4878                         (((u64) cmd->cmnd[4]) << 40) |
4879                         (((u64) cmd->cmnd[5]) << 32) |
4880                         (((u64) cmd->cmnd[6]) << 24) |
4881                         (((u64) cmd->cmnd[7]) << 16) |
4882                         (((u64) cmd->cmnd[8]) << 8) |
4883                         cmd->cmnd[9];
4884                 block_cnt =
4885                         (((u32) cmd->cmnd[10]) << 24) |
4886                         (((u32) cmd->cmnd[11]) << 16) |
4887                         (((u32) cmd->cmnd[12]) << 8) |
4888                         cmd->cmnd[13];
4889                 break;
4890         default:
4891                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4892         }
4893         last_block = first_block + block_cnt - 1;
4894
4895         /* check for write to non-RAID-0 */
4896         if (is_write && dev->raid_level != 0)
4897                 return IO_ACCEL_INELIGIBLE;
4898
4899         /* check for invalid block or wraparound */
4900         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4901                 last_block < first_block)
4902                 return IO_ACCEL_INELIGIBLE;
4903
4904         /* calculate stripe information for the request */
4905         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4906                                 le16_to_cpu(map->strip_size);
4907         strip_size = le16_to_cpu(map->strip_size);
4908 #if BITS_PER_LONG == 32
4909         tmpdiv = first_block;
4910         (void) do_div(tmpdiv, blocks_per_row);
4911         first_row = tmpdiv;
4912         tmpdiv = last_block;
4913         (void) do_div(tmpdiv, blocks_per_row);
4914         last_row = tmpdiv;
4915         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4916         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4917         tmpdiv = first_row_offset;
4918         (void) do_div(tmpdiv, strip_size);
4919         first_column = tmpdiv;
4920         tmpdiv = last_row_offset;
4921         (void) do_div(tmpdiv, strip_size);
4922         last_column = tmpdiv;
4923 #else
4924         first_row = first_block / blocks_per_row;
4925         last_row = last_block / blocks_per_row;
4926         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4927         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4928         first_column = first_row_offset / strip_size;
4929         last_column = last_row_offset / strip_size;
4930 #endif
4931
4932         /* if this isn't a single row/column then give to the controller */
4933         if ((first_row != last_row) || (first_column != last_column))
4934                 return IO_ACCEL_INELIGIBLE;
4935
4936         /* proceeding with driver mapping */
4937         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4938                                 le16_to_cpu(map->metadata_disks_per_row);
4939         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4940                                 le16_to_cpu(map->row_cnt);
4941         map_index = (map_row * total_disks_per_row) + first_column;
4942
4943         switch (dev->raid_level) {
4944         case HPSA_RAID_0:
4945                 break; /* nothing special to do */
4946         case HPSA_RAID_1:
4947                 /* Handles load balance across RAID 1 members.
4948                  * (2-drive R1 and R10 with even # of drives.)
4949                  * Appropriate for SSDs, not optimal for HDDs
4950                  */
4951                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4952                 if (dev->offload_to_mirror)
4953                         map_index += le16_to_cpu(map->data_disks_per_row);
4954                 dev->offload_to_mirror = !dev->offload_to_mirror;
4955                 break;
4956         case HPSA_RAID_ADM:
4957                 /* Handles N-way mirrors  (R1-ADM)
4958                  * and R10 with # of drives divisible by 3.)
4959                  */
4960                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4961
4962                 offload_to_mirror = dev->offload_to_mirror;
4963                 raid_map_helper(map, offload_to_mirror,
4964                                 &map_index, &current_group);
4965                 /* set mirror group to use next time */
4966                 offload_to_mirror =
4967                         (offload_to_mirror >=
4968                         le16_to_cpu(map->layout_map_count) - 1)
4969                         ? 0 : offload_to_mirror + 1;
4970                 dev->offload_to_mirror = offload_to_mirror;
4971                 /* Avoid direct use of dev->offload_to_mirror within this
4972                  * function since multiple threads might simultaneously
4973                  * increment it beyond the range of dev->layout_map_count -1.
4974                  */
4975                 break;
4976         case HPSA_RAID_5:
4977         case HPSA_RAID_6:
4978                 if (le16_to_cpu(map->layout_map_count) <= 1)
4979                         break;
4980
4981                 /* Verify first and last block are in same RAID group */
4982                 r5or6_blocks_per_row =
4983                         le16_to_cpu(map->strip_size) *
4984                         le16_to_cpu(map->data_disks_per_row);
4985                 BUG_ON(r5or6_blocks_per_row == 0);
4986                 stripesize = r5or6_blocks_per_row *
4987                         le16_to_cpu(map->layout_map_count);
4988 #if BITS_PER_LONG == 32
4989                 tmpdiv = first_block;
4990                 first_group = do_div(tmpdiv, stripesize);
4991                 tmpdiv = first_group;
4992                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4993                 first_group = tmpdiv;
4994                 tmpdiv = last_block;
4995                 last_group = do_div(tmpdiv, stripesize);
4996                 tmpdiv = last_group;
4997                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4998                 last_group = tmpdiv;
4999 #else
5000                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5001                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5002 #endif
5003                 if (first_group != last_group)
5004                         return IO_ACCEL_INELIGIBLE;
5005
5006                 /* Verify request is in a single row of RAID 5/6 */
5007 #if BITS_PER_LONG == 32
5008                 tmpdiv = first_block;
5009                 (void) do_div(tmpdiv, stripesize);
5010                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5011                 tmpdiv = last_block;
5012                 (void) do_div(tmpdiv, stripesize);
5013                 r5or6_last_row = r0_last_row = tmpdiv;
5014 #else
5015                 first_row = r5or6_first_row = r0_first_row =
5016                                                 first_block / stripesize;
5017                 r5or6_last_row = r0_last_row = last_block / stripesize;
5018 #endif
5019                 if (r5or6_first_row != r5or6_last_row)
5020                         return IO_ACCEL_INELIGIBLE;
5021
5022
5023                 /* Verify request is in a single column */
5024 #if BITS_PER_LONG == 32
5025                 tmpdiv = first_block;
5026                 first_row_offset = do_div(tmpdiv, stripesize);
5027                 tmpdiv = first_row_offset;
5028                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5029                 r5or6_first_row_offset = first_row_offset;
5030                 tmpdiv = last_block;
5031                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5032                 tmpdiv = r5or6_last_row_offset;
5033                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5034                 tmpdiv = r5or6_first_row_offset;
5035                 (void) do_div(tmpdiv, map->strip_size);
5036                 first_column = r5or6_first_column = tmpdiv;
5037                 tmpdiv = r5or6_last_row_offset;
5038                 (void) do_div(tmpdiv, map->strip_size);
5039                 r5or6_last_column = tmpdiv;
5040 #else
5041                 first_row_offset = r5or6_first_row_offset =
5042                         (u32)((first_block % stripesize) %
5043                                                 r5or6_blocks_per_row);
5044
5045                 r5or6_last_row_offset =
5046                         (u32)((last_block % stripesize) %
5047                                                 r5or6_blocks_per_row);
5048
5049                 first_column = r5or6_first_column =
5050                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5051                 r5or6_last_column =
5052                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5053 #endif
5054                 if (r5or6_first_column != r5or6_last_column)
5055                         return IO_ACCEL_INELIGIBLE;
5056
5057                 /* Request is eligible */
5058                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5059                         le16_to_cpu(map->row_cnt);
5060
5061                 map_index = (first_group *
5062                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5063                         (map_row * total_disks_per_row) + first_column;
5064                 break;
5065         default:
5066                 return IO_ACCEL_INELIGIBLE;
5067         }
5068
5069         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5070                 return IO_ACCEL_INELIGIBLE;
5071
5072         c->phys_disk = dev->phys_disk[map_index];
5073         if (!c->phys_disk)
5074                 return IO_ACCEL_INELIGIBLE;
5075
5076         disk_handle = dd[map_index].ioaccel_handle;
5077         disk_block = le64_to_cpu(map->disk_starting_blk) +
5078                         first_row * le16_to_cpu(map->strip_size) +
5079                         (first_row_offset - first_column *
5080                         le16_to_cpu(map->strip_size));
5081         disk_block_cnt = block_cnt;
5082
5083         /* handle differing logical/physical block sizes */
5084         if (map->phys_blk_shift) {
5085                 disk_block <<= map->phys_blk_shift;
5086                 disk_block_cnt <<= map->phys_blk_shift;
5087         }
5088         BUG_ON(disk_block_cnt > 0xffff);
5089
5090         /* build the new CDB for the physical disk I/O */
5091         if (disk_block > 0xffffffff) {
5092                 cdb[0] = is_write ? WRITE_16 : READ_16;
5093                 cdb[1] = 0;
5094                 cdb[2] = (u8) (disk_block >> 56);
5095                 cdb[3] = (u8) (disk_block >> 48);
5096                 cdb[4] = (u8) (disk_block >> 40);
5097                 cdb[5] = (u8) (disk_block >> 32);
5098                 cdb[6] = (u8) (disk_block >> 24);
5099                 cdb[7] = (u8) (disk_block >> 16);
5100                 cdb[8] = (u8) (disk_block >> 8);
5101                 cdb[9] = (u8) (disk_block);
5102                 cdb[10] = (u8) (disk_block_cnt >> 24);
5103                 cdb[11] = (u8) (disk_block_cnt >> 16);
5104                 cdb[12] = (u8) (disk_block_cnt >> 8);
5105                 cdb[13] = (u8) (disk_block_cnt);
5106                 cdb[14] = 0;
5107                 cdb[15] = 0;
5108                 cdb_len = 16;
5109         } else {
5110                 cdb[0] = is_write ? WRITE_10 : READ_10;
5111                 cdb[1] = 0;
5112                 cdb[2] = (u8) (disk_block >> 24);
5113                 cdb[3] = (u8) (disk_block >> 16);
5114                 cdb[4] = (u8) (disk_block >> 8);
5115                 cdb[5] = (u8) (disk_block);
5116                 cdb[6] = 0;
5117                 cdb[7] = (u8) (disk_block_cnt >> 8);
5118                 cdb[8] = (u8) (disk_block_cnt);
5119                 cdb[9] = 0;
5120                 cdb_len = 10;
5121         }
5122         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5123                                                 dev->scsi3addr,
5124                                                 dev->phys_disk[map_index]);
5125 }
5126
5127 /*
5128  * Submit commands down the "normal" RAID stack path
5129  * All callers to hpsa_ciss_submit must check lockup_detected
5130  * beforehand, before (opt.) and after calling cmd_alloc
5131  */
5132 static int hpsa_ciss_submit(struct ctlr_info *h,
5133         struct CommandList *c, struct scsi_cmnd *cmd,
5134         unsigned char scsi3addr[])
5135 {
5136         cmd->host_scribble = (unsigned char *) c;
5137         c->cmd_type = CMD_SCSI;
5138         c->scsi_cmd = cmd;
5139         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5140         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5141         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5142
5143         /* Fill in the request block... */
5144
5145         c->Request.Timeout = 0;
5146         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5147         c->Request.CDBLen = cmd->cmd_len;
5148         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5149         switch (cmd->sc_data_direction) {
5150         case DMA_TO_DEVICE:
5151                 c->Request.type_attr_dir =
5152                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5153                 break;
5154         case DMA_FROM_DEVICE:
5155                 c->Request.type_attr_dir =
5156                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5157                 break;
5158         case DMA_NONE:
5159                 c->Request.type_attr_dir =
5160                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5161                 break;
5162         case DMA_BIDIRECTIONAL:
5163                 /* This can happen if a buggy application does a scsi passthru
5164                  * and sets both inlen and outlen to non-zero. ( see
5165                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5166                  */
5167
5168                 c->Request.type_attr_dir =
5169                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5170                 /* This is technically wrong, and hpsa controllers should
5171                  * reject it with CMD_INVALID, which is the most correct
5172                  * response, but non-fibre backends appear to let it
5173                  * slide by, and give the same results as if this field
5174                  * were set correctly.  Either way is acceptable for
5175                  * our purposes here.
5176                  */
5177
5178                 break;
5179
5180         default:
5181                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5182                         cmd->sc_data_direction);
5183                 BUG();
5184                 break;
5185         }
5186
5187         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5188                 hpsa_cmd_resolve_and_free(h, c);
5189                 return SCSI_MLQUEUE_HOST_BUSY;
5190         }
5191         enqueue_cmd_and_start_io(h, c);
5192         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5193         return 0;
5194 }
5195
5196 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5197                                 struct CommandList *c)
5198 {
5199         dma_addr_t cmd_dma_handle, err_dma_handle;
5200
5201         /* Zero out all of commandlist except the last field, refcount */
5202         memset(c, 0, offsetof(struct CommandList, refcount));
5203         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5204         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5205         c->err_info = h->errinfo_pool + index;
5206         memset(c->err_info, 0, sizeof(*c->err_info));
5207         err_dma_handle = h->errinfo_pool_dhandle
5208             + index * sizeof(*c->err_info);
5209         c->cmdindex = index;
5210         c->busaddr = (u32) cmd_dma_handle;
5211         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5212         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5213         c->h = h;
5214         c->scsi_cmd = SCSI_CMD_IDLE;
5215 }
5216
5217 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5218 {
5219         int i;
5220
5221         for (i = 0; i < h->nr_cmds; i++) {
5222                 struct CommandList *c = h->cmd_pool + i;
5223
5224                 hpsa_cmd_init(h, i, c);
5225                 atomic_set(&c->refcount, 0);
5226         }
5227 }
5228
5229 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5230                                 struct CommandList *c)
5231 {
5232         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5233
5234         BUG_ON(c->cmdindex != index);
5235
5236         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5237         memset(c->err_info, 0, sizeof(*c->err_info));
5238         c->busaddr = (u32) cmd_dma_handle;
5239 }
5240
5241 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5242                 struct CommandList *c, struct scsi_cmnd *cmd,
5243                 unsigned char *scsi3addr)
5244 {
5245         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5246         int rc = IO_ACCEL_INELIGIBLE;
5247
5248         cmd->host_scribble = (unsigned char *) c;
5249
5250         if (dev->offload_enabled) {
5251                 hpsa_cmd_init(h, c->cmdindex, c);
5252                 c->cmd_type = CMD_SCSI;
5253                 c->scsi_cmd = cmd;
5254                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5255                 if (rc < 0)     /* scsi_dma_map failed. */
5256                         rc = SCSI_MLQUEUE_HOST_BUSY;
5257         } else if (dev->hba_ioaccel_enabled) {
5258                 hpsa_cmd_init(h, c->cmdindex, c);
5259                 c->cmd_type = CMD_SCSI;
5260                 c->scsi_cmd = cmd;
5261                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5262                 if (rc < 0)     /* scsi_dma_map failed. */
5263                         rc = SCSI_MLQUEUE_HOST_BUSY;
5264         }
5265         return rc;
5266 }
5267
5268 static void hpsa_command_resubmit_worker(struct work_struct *work)
5269 {
5270         struct scsi_cmnd *cmd;
5271         struct hpsa_scsi_dev_t *dev;
5272         struct CommandList *c = container_of(work, struct CommandList, work);
5273
5274         cmd = c->scsi_cmd;
5275         dev = cmd->device->hostdata;
5276         if (!dev) {
5277                 cmd->result = DID_NO_CONNECT << 16;
5278                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5279         }
5280         if (c->reset_pending)
5281                 return hpsa_cmd_resolve_and_free(c->h, c);
5282         if (c->abort_pending)
5283                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5284         if (c->cmd_type == CMD_IOACCEL2) {
5285                 struct ctlr_info *h = c->h;
5286                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5287                 int rc;
5288
5289                 if (c2->error_data.serv_response ==
5290                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5291                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5292                         if (rc == 0)
5293                                 return;
5294                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5295                                 /*
5296                                  * If we get here, it means dma mapping failed.
5297                                  * Try again via scsi mid layer, which will
5298                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5299                                  */
5300                                 cmd->result = DID_IMM_RETRY << 16;
5301                                 return hpsa_cmd_free_and_done(h, c, cmd);
5302                         }
5303                         /* else, fall thru and resubmit down CISS path */
5304                 }
5305         }
5306         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5307         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5308                 /*
5309                  * If we get here, it means dma mapping failed. Try
5310                  * again via scsi mid layer, which will then get
5311                  * SCSI_MLQUEUE_HOST_BUSY.
5312                  *
5313                  * hpsa_ciss_submit will have already freed c
5314                  * if it encountered a dma mapping failure.
5315                  */
5316                 cmd->result = DID_IMM_RETRY << 16;
5317                 cmd->scsi_done(cmd);
5318         }
5319 }
5320
5321 /* Running in struct Scsi_Host->host_lock less mode */
5322 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5323 {
5324         struct ctlr_info *h;
5325         struct hpsa_scsi_dev_t *dev;
5326         unsigned char scsi3addr[8];
5327         struct CommandList *c;
5328         int rc = 0;
5329
5330         /* Get the ptr to our adapter structure out of cmd->host. */
5331         h = sdev_to_hba(cmd->device);
5332
5333         BUG_ON(cmd->request->tag < 0);
5334
5335         dev = cmd->device->hostdata;
5336         if (!dev) {
5337                 cmd->result = NOT_READY << 16; /* host byte */
5338                 cmd->scsi_done(cmd);
5339                 return 0;
5340         }
5341
5342         if (dev->removed) {
5343                 cmd->result = DID_NO_CONNECT << 16;
5344                 cmd->scsi_done(cmd);
5345                 return 0;
5346         }
5347
5348         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5349
5350         if (unlikely(lockup_detected(h))) {
5351                 cmd->result = DID_NO_CONNECT << 16;
5352                 cmd->scsi_done(cmd);
5353                 return 0;
5354         }
5355         c = cmd_tagged_alloc(h, cmd);
5356
5357         /*
5358          * Call alternate submit routine for I/O accelerated commands.
5359          * Retries always go down the normal I/O path.
5360          */
5361         if (likely(cmd->retries == 0 &&
5362                 cmd->request->cmd_type == REQ_TYPE_FS &&
5363                 h->acciopath_status)) {
5364                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5365                 if (rc == 0)
5366                         return 0;
5367                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5368                         hpsa_cmd_resolve_and_free(h, c);
5369                         return SCSI_MLQUEUE_HOST_BUSY;
5370                 }
5371         }
5372         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5373 }
5374
5375 static void hpsa_scan_complete(struct ctlr_info *h)
5376 {
5377         unsigned long flags;
5378
5379         spin_lock_irqsave(&h->scan_lock, flags);
5380         h->scan_finished = 1;
5381         wake_up_all(&h->scan_wait_queue);
5382         spin_unlock_irqrestore(&h->scan_lock, flags);
5383 }
5384
5385 static void hpsa_scan_start(struct Scsi_Host *sh)
5386 {
5387         struct ctlr_info *h = shost_to_hba(sh);
5388         unsigned long flags;
5389
5390         /*
5391          * Don't let rescans be initiated on a controller known to be locked
5392          * up.  If the controller locks up *during* a rescan, that thread is
5393          * probably hosed, but at least we can prevent new rescan threads from
5394          * piling up on a locked up controller.
5395          */
5396         if (unlikely(lockup_detected(h)))
5397                 return hpsa_scan_complete(h);
5398
5399         /* wait until any scan already in progress is finished. */
5400         while (1) {
5401                 spin_lock_irqsave(&h->scan_lock, flags);
5402                 if (h->scan_finished)
5403                         break;
5404                 spin_unlock_irqrestore(&h->scan_lock, flags);
5405                 wait_event(h->scan_wait_queue, h->scan_finished);
5406                 /* Note: We don't need to worry about a race between this
5407                  * thread and driver unload because the midlayer will
5408                  * have incremented the reference count, so unload won't
5409                  * happen if we're in here.
5410                  */
5411         }
5412         h->scan_finished = 0; /* mark scan as in progress */
5413         spin_unlock_irqrestore(&h->scan_lock, flags);
5414
5415         if (unlikely(lockup_detected(h)))
5416                 return hpsa_scan_complete(h);
5417
5418         hpsa_update_scsi_devices(h);
5419
5420         hpsa_scan_complete(h);
5421 }
5422
5423 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5424 {
5425         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5426
5427         if (!logical_drive)
5428                 return -ENODEV;
5429
5430         if (qdepth < 1)
5431                 qdepth = 1;
5432         else if (qdepth > logical_drive->queue_depth)
5433                 qdepth = logical_drive->queue_depth;
5434
5435         return scsi_change_queue_depth(sdev, qdepth);
5436 }
5437
5438 static int hpsa_scan_finished(struct Scsi_Host *sh,
5439         unsigned long elapsed_time)
5440 {
5441         struct ctlr_info *h = shost_to_hba(sh);
5442         unsigned long flags;
5443         int finished;
5444
5445         spin_lock_irqsave(&h->scan_lock, flags);
5446         finished = h->scan_finished;
5447         spin_unlock_irqrestore(&h->scan_lock, flags);
5448         return finished;
5449 }
5450
5451 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5452 {
5453         struct Scsi_Host *sh;
5454
5455         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5456         if (sh == NULL) {
5457                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5458                 return -ENOMEM;
5459         }
5460
5461         sh->io_port = 0;
5462         sh->n_io_port = 0;
5463         sh->this_id = -1;
5464         sh->max_channel = 3;
5465         sh->max_cmd_len = MAX_COMMAND_SIZE;
5466         sh->max_lun = HPSA_MAX_LUN;
5467         sh->max_id = HPSA_MAX_LUN;
5468         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5469         sh->cmd_per_lun = sh->can_queue;
5470         sh->sg_tablesize = h->maxsgentries;
5471         sh->transportt = hpsa_sas_transport_template;
5472         sh->hostdata[0] = (unsigned long) h;
5473         sh->irq = h->intr[h->intr_mode];
5474         sh->unique_id = sh->irq;
5475
5476         h->scsi_host = sh;
5477         return 0;
5478 }
5479
5480 static int hpsa_scsi_add_host(struct ctlr_info *h)
5481 {
5482         int rv;
5483
5484         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5485         if (rv) {
5486                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5487                 return rv;
5488         }
5489         scsi_scan_host(h->scsi_host);
5490         return 0;
5491 }
5492
5493 /*
5494  * The block layer has already gone to the trouble of picking out a unique,
5495  * small-integer tag for this request.  We use an offset from that value as
5496  * an index to select our command block.  (The offset allows us to reserve the
5497  * low-numbered entries for our own uses.)
5498  */
5499 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5500 {
5501         int idx = scmd->request->tag;
5502
5503         if (idx < 0)
5504                 return idx;
5505
5506         /* Offset to leave space for internal cmds. */
5507         return idx += HPSA_NRESERVED_CMDS;
5508 }
5509
5510 /*
5511  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5512  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5513  */
5514 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5515                                 struct CommandList *c, unsigned char lunaddr[],
5516                                 int reply_queue)
5517 {
5518         int rc;
5519
5520         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5521         (void) fill_cmd(c, TEST_UNIT_READY, h,
5522                         NULL, 0, 0, lunaddr, TYPE_CMD);
5523         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5524         if (rc)
5525                 return rc;
5526         /* no unmap needed here because no data xfer. */
5527
5528         /* Check if the unit is already ready. */
5529         if (c->err_info->CommandStatus == CMD_SUCCESS)
5530                 return 0;
5531
5532         /*
5533          * The first command sent after reset will receive "unit attention" to
5534          * indicate that the LUN has been reset...this is actually what we're
5535          * looking for (but, success is good too).
5536          */
5537         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5538                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5539                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5540                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5541                 return 0;
5542
5543         return 1;
5544 }
5545
5546 /*
5547  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5548  * returns zero when the unit is ready, and non-zero when giving up.
5549  */
5550 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5551                                 struct CommandList *c,
5552                                 unsigned char lunaddr[], int reply_queue)
5553 {
5554         int rc;
5555         int count = 0;
5556         int waittime = 1; /* seconds */
5557
5558         /* Send test unit ready until device ready, or give up. */
5559         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5560
5561                 /*
5562                  * Wait for a bit.  do this first, because if we send
5563                  * the TUR right away, the reset will just abort it.
5564                  */
5565                 msleep(1000 * waittime);
5566
5567                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5568                 if (!rc)
5569                         break;
5570
5571                 /* Increase wait time with each try, up to a point. */
5572                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5573                         waittime *= 2;
5574
5575                 dev_warn(&h->pdev->dev,
5576                          "waiting %d secs for device to become ready.\n",
5577                          waittime);
5578         }
5579
5580         return rc;
5581 }
5582
5583 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5584                                            unsigned char lunaddr[],
5585                                            int reply_queue)
5586 {
5587         int first_queue;
5588         int last_queue;
5589         int rq;
5590         int rc = 0;
5591         struct CommandList *c;
5592
5593         c = cmd_alloc(h);
5594
5595         /*
5596          * If no specific reply queue was requested, then send the TUR
5597          * repeatedly, requesting a reply on each reply queue; otherwise execute
5598          * the loop exactly once using only the specified queue.
5599          */
5600         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5601                 first_queue = 0;
5602                 last_queue = h->nreply_queues - 1;
5603         } else {
5604                 first_queue = reply_queue;
5605                 last_queue = reply_queue;
5606         }
5607
5608         for (rq = first_queue; rq <= last_queue; rq++) {
5609                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5610                 if (rc)
5611                         break;
5612         }
5613
5614         if (rc)
5615                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5616         else
5617                 dev_warn(&h->pdev->dev, "device is ready.\n");
5618
5619         cmd_free(h, c);
5620         return rc;
5621 }
5622
5623 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5624  * complaining.  Doing a host- or bus-reset can't do anything good here.
5625  */
5626 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5627 {
5628         int rc;
5629         struct ctlr_info *h;
5630         struct hpsa_scsi_dev_t *dev;
5631         u8 reset_type;
5632         char msg[48];
5633
5634         /* find the controller to which the command to be aborted was sent */
5635         h = sdev_to_hba(scsicmd->device);
5636         if (h == NULL) /* paranoia */
5637                 return FAILED;
5638
5639         if (lockup_detected(h))
5640                 return FAILED;
5641
5642         dev = scsicmd->device->hostdata;
5643         if (!dev) {
5644                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5645                 return FAILED;
5646         }
5647
5648         /* if controller locked up, we can guarantee command won't complete */
5649         if (lockup_detected(h)) {
5650                 snprintf(msg, sizeof(msg),
5651                          "cmd %d RESET FAILED, lockup detected",
5652                          hpsa_get_cmd_index(scsicmd));
5653                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5654                 return FAILED;
5655         }
5656
5657         /* this reset request might be the result of a lockup; check */
5658         if (detect_controller_lockup(h)) {
5659                 snprintf(msg, sizeof(msg),
5660                          "cmd %d RESET FAILED, new lockup detected",
5661                          hpsa_get_cmd_index(scsicmd));
5662                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5663                 return FAILED;
5664         }
5665
5666         /* Do not attempt on controller */
5667         if (is_hba_lunid(dev->scsi3addr))
5668                 return SUCCESS;
5669
5670         if (is_logical_dev_addr_mode(dev->scsi3addr))
5671                 reset_type = HPSA_DEVICE_RESET_MSG;
5672         else
5673                 reset_type = HPSA_PHYS_TARGET_RESET;
5674
5675         sprintf(msg, "resetting %s",
5676                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5677         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5678
5679         h->reset_in_progress = 1;
5680
5681         /* send a reset to the SCSI LUN which the command was sent to */
5682         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5683                            DEFAULT_REPLY_QUEUE);
5684         sprintf(msg, "reset %s %s",
5685                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5686                 rc == 0 ? "completed successfully" : "failed");
5687         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5688         h->reset_in_progress = 0;
5689         return rc == 0 ? SUCCESS : FAILED;
5690 }
5691
5692 static void swizzle_abort_tag(u8 *tag)
5693 {
5694         u8 original_tag[8];
5695
5696         memcpy(original_tag, tag, 8);
5697         tag[0] = original_tag[3];
5698         tag[1] = original_tag[2];
5699         tag[2] = original_tag[1];
5700         tag[3] = original_tag[0];
5701         tag[4] = original_tag[7];
5702         tag[5] = original_tag[6];
5703         tag[6] = original_tag[5];
5704         tag[7] = original_tag[4];
5705 }
5706
5707 static void hpsa_get_tag(struct ctlr_info *h,
5708         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5709 {
5710         u64 tag;
5711         if (c->cmd_type == CMD_IOACCEL1) {
5712                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5713                         &h->ioaccel_cmd_pool[c->cmdindex];
5714                 tag = le64_to_cpu(cm1->tag);
5715                 *tagupper = cpu_to_le32(tag >> 32);
5716                 *taglower = cpu_to_le32(tag);
5717                 return;
5718         }
5719         if (c->cmd_type == CMD_IOACCEL2) {
5720                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5721                         &h->ioaccel2_cmd_pool[c->cmdindex];
5722                 /* upper tag not used in ioaccel2 mode */
5723                 memset(tagupper, 0, sizeof(*tagupper));
5724                 *taglower = cm2->Tag;
5725                 return;
5726         }
5727         tag = le64_to_cpu(c->Header.tag);
5728         *tagupper = cpu_to_le32(tag >> 32);
5729         *taglower = cpu_to_le32(tag);
5730 }
5731
5732 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5733         struct CommandList *abort, int reply_queue)
5734 {
5735         int rc = IO_OK;
5736         struct CommandList *c;
5737         struct ErrorInfo *ei;
5738         __le32 tagupper, taglower;
5739
5740         c = cmd_alloc(h);
5741
5742         /* fill_cmd can't fail here, no buffer to map */
5743         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5744                 0, 0, scsi3addr, TYPE_MSG);
5745         if (h->needs_abort_tags_swizzled)
5746                 swizzle_abort_tag(&c->Request.CDB[4]);
5747         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5748         hpsa_get_tag(h, abort, &taglower, &tagupper);
5749         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5750                 __func__, tagupper, taglower);
5751         /* no unmap needed here because no data xfer. */
5752
5753         ei = c->err_info;
5754         switch (ei->CommandStatus) {
5755         case CMD_SUCCESS:
5756                 break;
5757         case CMD_TMF_STATUS:
5758                 rc = hpsa_evaluate_tmf_status(h, c);
5759                 break;
5760         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5761                 rc = -1;
5762                 break;
5763         default:
5764                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5765                         __func__, tagupper, taglower);
5766                 hpsa_scsi_interpret_error(h, c);
5767                 rc = -1;
5768                 break;
5769         }
5770         cmd_free(h, c);
5771         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5772                 __func__, tagupper, taglower);
5773         return rc;
5774 }
5775
5776 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5777         struct CommandList *command_to_abort, int reply_queue)
5778 {
5779         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5780         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5781         struct io_accel2_cmd *c2a =
5782                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5783         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5784         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5785
5786         /*
5787          * We're overlaying struct hpsa_tmf_struct on top of something which
5788          * was allocated as a struct io_accel2_cmd, so we better be sure it
5789          * actually fits, and doesn't overrun the error info space.
5790          */
5791         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5792                         sizeof(struct io_accel2_cmd));
5793         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5794                         offsetof(struct hpsa_tmf_struct, error_len) +
5795                                 sizeof(ac->error_len));
5796
5797         c->cmd_type = IOACCEL2_TMF;
5798         c->scsi_cmd = SCSI_CMD_BUSY;
5799
5800         /* Adjust the DMA address to point to the accelerated command buffer */
5801         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5802                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5803         BUG_ON(c->busaddr & 0x0000007F);
5804
5805         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5806         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5807         ac->reply_queue = reply_queue;
5808         ac->tmf = IOACCEL2_TMF_ABORT;
5809         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5810         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5811         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5812         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5813         ac->error_ptr = cpu_to_le64(c->busaddr +
5814                         offsetof(struct io_accel2_cmd, error_data));
5815         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5816 }
5817
5818 /* ioaccel2 path firmware cannot handle abort task requests.
5819  * Change abort requests to physical target reset, and send to the
5820  * address of the physical disk used for the ioaccel 2 command.
5821  * Return 0 on success (IO_OK)
5822  *       -1 on failure
5823  */
5824
5825 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5826         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5827 {
5828         int rc = IO_OK;
5829         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5830         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5831         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5832         unsigned char *psa = &phys_scsi3addr[0];
5833
5834         /* Get a pointer to the hpsa logical device. */
5835         scmd = abort->scsi_cmd;
5836         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5837         if (dev == NULL) {
5838                 dev_warn(&h->pdev->dev,
5839                         "Cannot abort: no device pointer for command.\n");
5840                         return -1; /* not abortable */
5841         }
5842
5843         if (h->raid_offload_debug > 0)
5844                 dev_info(&h->pdev->dev,
5845                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5846                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5847                         "Reset as abort",
5848                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5849                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5850
5851         if (!dev->offload_enabled) {
5852                 dev_warn(&h->pdev->dev,
5853                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5854                 return -1; /* not abortable */
5855         }
5856
5857         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5858         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5859                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5860                 return -1; /* not abortable */
5861         }
5862
5863         /* send the reset */
5864         if (h->raid_offload_debug > 0)
5865                 dev_info(&h->pdev->dev,
5866                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5867                         psa[0], psa[1], psa[2], psa[3],
5868                         psa[4], psa[5], psa[6], psa[7]);
5869         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5870         if (rc != 0) {
5871                 dev_warn(&h->pdev->dev,
5872                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5873                         psa[0], psa[1], psa[2], psa[3],
5874                         psa[4], psa[5], psa[6], psa[7]);
5875                 return rc; /* failed to reset */
5876         }
5877
5878         /* wait for device to recover */
5879         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5880                 dev_warn(&h->pdev->dev,
5881                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5882                         psa[0], psa[1], psa[2], psa[3],
5883                         psa[4], psa[5], psa[6], psa[7]);
5884                 return -1;  /* failed to recover */
5885         }
5886
5887         /* device recovered */
5888         dev_info(&h->pdev->dev,
5889                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5890                 psa[0], psa[1], psa[2], psa[3],
5891                 psa[4], psa[5], psa[6], psa[7]);
5892
5893         return rc; /* success */
5894 }
5895
5896 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5897         struct CommandList *abort, int reply_queue)
5898 {
5899         int rc = IO_OK;
5900         struct CommandList *c;
5901         __le32 taglower, tagupper;
5902         struct hpsa_scsi_dev_t *dev;
5903         struct io_accel2_cmd *c2;
5904
5905         dev = abort->scsi_cmd->device->hostdata;
5906         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5907                 return -1;
5908
5909         c = cmd_alloc(h);
5910         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5911         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5912         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5913         hpsa_get_tag(h, abort, &taglower, &tagupper);
5914         dev_dbg(&h->pdev->dev,
5915                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5916                 __func__, tagupper, taglower);
5917         /* no unmap needed here because no data xfer. */
5918
5919         dev_dbg(&h->pdev->dev,
5920                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5921                 __func__, tagupper, taglower, c2->error_data.serv_response);
5922         switch (c2->error_data.serv_response) {
5923         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5924         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5925                 rc = 0;
5926                 break;
5927         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5928         case IOACCEL2_SERV_RESPONSE_FAILURE:
5929         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5930                 rc = -1;
5931                 break;
5932         default:
5933                 dev_warn(&h->pdev->dev,
5934                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5935                         __func__, tagupper, taglower,
5936                         c2->error_data.serv_response);
5937                 rc = -1;
5938         }
5939         cmd_free(h, c);
5940         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5941                 tagupper, taglower);
5942         return rc;
5943 }
5944
5945 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5946         struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
5947 {
5948         /*
5949          * ioccelerator mode 2 commands should be aborted via the
5950          * accelerated path, since RAID path is unaware of these commands,
5951          * but not all underlying firmware can handle abort TMF.
5952          * Change abort to physical device reset when abort TMF is unsupported.
5953          */
5954         if (abort->cmd_type == CMD_IOACCEL2) {
5955                 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
5956                         dev->physical_device)
5957                         return hpsa_send_abort_ioaccel2(h, abort,
5958                                                 reply_queue);
5959                 else
5960                         return hpsa_send_reset_as_abort_ioaccel2(h,
5961                                                         dev->scsi3addr,
5962                                                         abort, reply_queue);
5963         }
5964         return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
5965 }
5966
5967 /* Find out which reply queue a command was meant to return on */
5968 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5969                                         struct CommandList *c)
5970 {
5971         if (c->cmd_type == CMD_IOACCEL2)
5972                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5973         return c->Header.ReplyQueue;
5974 }
5975
5976 /*
5977  * Limit concurrency of abort commands to prevent
5978  * over-subscription of commands
5979  */
5980 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5981 {
5982 #define ABORT_CMD_WAIT_MSECS 5000
5983         return !wait_event_timeout(h->abort_cmd_wait_queue,
5984                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5985                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5986 }
5987
5988 /* Send an abort for the specified command.
5989  *      If the device and controller support it,
5990  *              send a task abort request.
5991  */
5992 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5993 {
5994
5995         int rc;
5996         struct ctlr_info *h;
5997         struct hpsa_scsi_dev_t *dev;
5998         struct CommandList *abort; /* pointer to command to be aborted */
5999         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
6000         char msg[256];          /* For debug messaging. */
6001         int ml = 0;
6002         __le32 tagupper, taglower;
6003         int refcount, reply_queue;
6004
6005         if (sc == NULL)
6006                 return FAILED;
6007
6008         if (sc->device == NULL)
6009                 return FAILED;
6010
6011         /* Find the controller of the command to be aborted */
6012         h = sdev_to_hba(sc->device);
6013         if (h == NULL)
6014                 return FAILED;
6015
6016         /* Find the device of the command to be aborted */
6017         dev = sc->device->hostdata;
6018         if (!dev) {
6019                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6020                                 msg);
6021                 return FAILED;
6022         }
6023
6024         /* If controller locked up, we can guarantee command won't complete */
6025         if (lockup_detected(h)) {
6026                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6027                                         "ABORT FAILED, lockup detected");
6028                 return FAILED;
6029         }
6030
6031         /* This is a good time to check if controller lockup has occurred */
6032         if (detect_controller_lockup(h)) {
6033                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6034                                         "ABORT FAILED, new lockup detected");
6035                 return FAILED;
6036         }
6037
6038         /* Check that controller supports some kind of task abort */
6039         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6040                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6041                 return FAILED;
6042
6043         memset(msg, 0, sizeof(msg));
6044         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6045                 h->scsi_host->host_no, sc->device->channel,
6046                 sc->device->id, sc->device->lun,
6047                 "Aborting command", sc);
6048
6049         /* Get SCSI command to be aborted */
6050         abort = (struct CommandList *) sc->host_scribble;
6051         if (abort == NULL) {
6052                 /* This can happen if the command already completed. */
6053                 return SUCCESS;
6054         }
6055         refcount = atomic_inc_return(&abort->refcount);
6056         if (refcount == 1) { /* Command is done already. */
6057                 cmd_free(h, abort);
6058                 return SUCCESS;
6059         }
6060
6061         /* Don't bother trying the abort if we know it won't work. */
6062         if (abort->cmd_type != CMD_IOACCEL2 &&
6063                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6064                 cmd_free(h, abort);
6065                 return FAILED;
6066         }
6067
6068         /*
6069          * Check that we're aborting the right command.
6070          * It's possible the CommandList already completed and got re-used.
6071          */
6072         if (abort->scsi_cmd != sc) {
6073                 cmd_free(h, abort);
6074                 return SUCCESS;
6075         }
6076
6077         abort->abort_pending = true;
6078         hpsa_get_tag(h, abort, &taglower, &tagupper);
6079         reply_queue = hpsa_extract_reply_queue(h, abort);
6080         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6081         as  = abort->scsi_cmd;
6082         if (as != NULL)
6083                 ml += sprintf(msg+ml,
6084                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6085                         as->cmd_len, as->cmnd[0], as->cmnd[1],
6086                         as->serial_number);
6087         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6088         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6089
6090         /*
6091          * Command is in flight, or possibly already completed
6092          * by the firmware (but not to the scsi mid layer) but we can't
6093          * distinguish which.  Send the abort down.
6094          */
6095         if (wait_for_available_abort_cmd(h)) {
6096                 dev_warn(&h->pdev->dev,
6097                         "%s FAILED, timeout waiting for an abort command to become available.\n",
6098                         msg);
6099                 cmd_free(h, abort);
6100                 return FAILED;
6101         }
6102         rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6103         atomic_inc(&h->abort_cmds_available);
6104         wake_up_all(&h->abort_cmd_wait_queue);
6105         if (rc != 0) {
6106                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6107                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6108                                 "FAILED to abort command");
6109                 cmd_free(h, abort);
6110                 return FAILED;
6111         }
6112         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6113         wait_event(h->event_sync_wait_queue,
6114                    abort->scsi_cmd != sc || lockup_detected(h));
6115         cmd_free(h, abort);
6116         return !lockup_detected(h) ? SUCCESS : FAILED;
6117 }
6118
6119 /*
6120  * For operations with an associated SCSI command, a command block is allocated
6121  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6122  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6123  * the complement, although cmd_free() may be called instead.
6124  */
6125 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6126                                             struct scsi_cmnd *scmd)
6127 {
6128         int idx = hpsa_get_cmd_index(scmd);
6129         struct CommandList *c = h->cmd_pool + idx;
6130
6131         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6132                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6133                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6134                 /* The index value comes from the block layer, so if it's out of
6135                  * bounds, it's probably not our bug.
6136                  */
6137                 BUG();
6138         }
6139
6140         atomic_inc(&c->refcount);
6141         if (unlikely(!hpsa_is_cmd_idle(c))) {
6142                 /*
6143                  * We expect that the SCSI layer will hand us a unique tag
6144                  * value.  Thus, there should never be a collision here between
6145                  * two requests...because if the selected command isn't idle
6146                  * then someone is going to be very disappointed.
6147                  */
6148                 dev_err(&h->pdev->dev,
6149                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6150                         idx);
6151                 if (c->scsi_cmd != NULL)
6152                         scsi_print_command(c->scsi_cmd);
6153                 scsi_print_command(scmd);
6154         }
6155
6156         hpsa_cmd_partial_init(h, idx, c);
6157         return c;
6158 }
6159
6160 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6161 {
6162         /*
6163          * Release our reference to the block.  We don't need to do anything
6164          * else to free it, because it is accessed by index.  (There's no point
6165          * in checking the result of the decrement, since we cannot guarantee
6166          * that there isn't a concurrent abort which is also accessing it.)
6167          */
6168         (void)atomic_dec(&c->refcount);
6169 }
6170
6171 /*
6172  * For operations that cannot sleep, a command block is allocated at init,
6173  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6174  * which ones are free or in use.  Lock must be held when calling this.
6175  * cmd_free() is the complement.
6176  * This function never gives up and returns NULL.  If it hangs,
6177  * another thread must call cmd_free() to free some tags.
6178  */
6179
6180 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6181 {
6182         struct CommandList *c;
6183         int refcount, i;
6184         int offset = 0;
6185
6186         /*
6187          * There is some *extremely* small but non-zero chance that that
6188          * multiple threads could get in here, and one thread could
6189          * be scanning through the list of bits looking for a free
6190          * one, but the free ones are always behind him, and other
6191          * threads sneak in behind him and eat them before he can
6192          * get to them, so that while there is always a free one, a
6193          * very unlucky thread might be starved anyway, never able to
6194          * beat the other threads.  In reality, this happens so
6195          * infrequently as to be indistinguishable from never.
6196          *
6197          * Note that we start allocating commands before the SCSI host structure
6198          * is initialized.  Since the search starts at bit zero, this
6199          * all works, since we have at least one command structure available;
6200          * however, it means that the structures with the low indexes have to be
6201          * reserved for driver-initiated requests, while requests from the block
6202          * layer will use the higher indexes.
6203          */
6204
6205         for (;;) {
6206                 i = find_next_zero_bit(h->cmd_pool_bits,
6207                                         HPSA_NRESERVED_CMDS,
6208                                         offset);
6209                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6210                         offset = 0;
6211                         continue;
6212                 }
6213                 c = h->cmd_pool + i;
6214                 refcount = atomic_inc_return(&c->refcount);
6215                 if (unlikely(refcount > 1)) {
6216                         cmd_free(h, c); /* already in use */
6217                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6218                         continue;
6219                 }
6220                 set_bit(i & (BITS_PER_LONG - 1),
6221                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6222                 break; /* it's ours now. */
6223         }
6224         hpsa_cmd_partial_init(h, i, c);
6225         return c;
6226 }
6227
6228 /*
6229  * This is the complementary operation to cmd_alloc().  Note, however, in some
6230  * corner cases it may also be used to free blocks allocated by
6231  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6232  * the clear-bit is harmless.
6233  */
6234 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6235 {
6236         if (atomic_dec_and_test(&c->refcount)) {
6237                 int i;
6238
6239                 i = c - h->cmd_pool;
6240                 clear_bit(i & (BITS_PER_LONG - 1),
6241                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6242         }
6243 }
6244
6245 #ifdef CONFIG_COMPAT
6246
6247 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6248         void __user *arg)
6249 {
6250         IOCTL32_Command_struct __user *arg32 =
6251             (IOCTL32_Command_struct __user *) arg;
6252         IOCTL_Command_struct arg64;
6253         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6254         int err;
6255         u32 cp;
6256
6257         memset(&arg64, 0, sizeof(arg64));
6258         err = 0;
6259         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6260                            sizeof(arg64.LUN_info));
6261         err |= copy_from_user(&arg64.Request, &arg32->Request,
6262                            sizeof(arg64.Request));
6263         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6264                            sizeof(arg64.error_info));
6265         err |= get_user(arg64.buf_size, &arg32->buf_size);
6266         err |= get_user(cp, &arg32->buf);
6267         arg64.buf = compat_ptr(cp);
6268         err |= copy_to_user(p, &arg64, sizeof(arg64));
6269
6270         if (err)
6271                 return -EFAULT;
6272
6273         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6274         if (err)
6275                 return err;
6276         err |= copy_in_user(&arg32->error_info, &p->error_info,
6277                          sizeof(arg32->error_info));
6278         if (err)
6279                 return -EFAULT;
6280         return err;
6281 }
6282
6283 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6284         int cmd, void __user *arg)
6285 {
6286         BIG_IOCTL32_Command_struct __user *arg32 =
6287             (BIG_IOCTL32_Command_struct __user *) arg;
6288         BIG_IOCTL_Command_struct arg64;
6289         BIG_IOCTL_Command_struct __user *p =
6290             compat_alloc_user_space(sizeof(arg64));
6291         int err;
6292         u32 cp;
6293
6294         memset(&arg64, 0, sizeof(arg64));
6295         err = 0;
6296         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6297                            sizeof(arg64.LUN_info));
6298         err |= copy_from_user(&arg64.Request, &arg32->Request,
6299                            sizeof(arg64.Request));
6300         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6301                            sizeof(arg64.error_info));
6302         err |= get_user(arg64.buf_size, &arg32->buf_size);
6303         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6304         err |= get_user(cp, &arg32->buf);
6305         arg64.buf = compat_ptr(cp);
6306         err |= copy_to_user(p, &arg64, sizeof(arg64));
6307
6308         if (err)
6309                 return -EFAULT;
6310
6311         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6312         if (err)
6313                 return err;
6314         err |= copy_in_user(&arg32->error_info, &p->error_info,
6315                          sizeof(arg32->error_info));
6316         if (err)
6317                 return -EFAULT;
6318         return err;
6319 }
6320
6321 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6322 {
6323         switch (cmd) {
6324         case CCISS_GETPCIINFO:
6325         case CCISS_GETINTINFO:
6326         case CCISS_SETINTINFO:
6327         case CCISS_GETNODENAME:
6328         case CCISS_SETNODENAME:
6329         case CCISS_GETHEARTBEAT:
6330         case CCISS_GETBUSTYPES:
6331         case CCISS_GETFIRMVER:
6332         case CCISS_GETDRIVVER:
6333         case CCISS_REVALIDVOLS:
6334         case CCISS_DEREGDISK:
6335         case CCISS_REGNEWDISK:
6336         case CCISS_REGNEWD:
6337         case CCISS_RESCANDISK:
6338         case CCISS_GETLUNINFO:
6339                 return hpsa_ioctl(dev, cmd, arg);
6340
6341         case CCISS_PASSTHRU32:
6342                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6343         case CCISS_BIG_PASSTHRU32:
6344                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6345
6346         default:
6347                 return -ENOIOCTLCMD;
6348         }
6349 }
6350 #endif
6351
6352 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6353 {
6354         struct hpsa_pci_info pciinfo;
6355
6356         if (!argp)
6357                 return -EINVAL;
6358         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6359         pciinfo.bus = h->pdev->bus->number;
6360         pciinfo.dev_fn = h->pdev->devfn;
6361         pciinfo.board_id = h->board_id;
6362         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6363                 return -EFAULT;
6364         return 0;
6365 }
6366
6367 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6368 {
6369         DriverVer_type DriverVer;
6370         unsigned char vmaj, vmin, vsubmin;
6371         int rc;
6372
6373         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6374                 &vmaj, &vmin, &vsubmin);
6375         if (rc != 3) {
6376                 dev_info(&h->pdev->dev, "driver version string '%s' "
6377                         "unrecognized.", HPSA_DRIVER_VERSION);
6378                 vmaj = 0;
6379                 vmin = 0;
6380                 vsubmin = 0;
6381         }
6382         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6383         if (!argp)
6384                 return -EINVAL;
6385         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6386                 return -EFAULT;
6387         return 0;
6388 }
6389
6390 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6391 {
6392         IOCTL_Command_struct iocommand;
6393         struct CommandList *c;
6394         char *buff = NULL;
6395         u64 temp64;
6396         int rc = 0;
6397
6398         if (!argp)
6399                 return -EINVAL;
6400         if (!capable(CAP_SYS_RAWIO))
6401                 return -EPERM;
6402         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6403                 return -EFAULT;
6404         if ((iocommand.buf_size < 1) &&
6405             (iocommand.Request.Type.Direction != XFER_NONE)) {
6406                 return -EINVAL;
6407         }
6408         if (iocommand.buf_size > 0) {
6409                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6410                 if (buff == NULL)
6411                         return -ENOMEM;
6412                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6413                         /* Copy the data into the buffer we created */
6414                         if (copy_from_user(buff, iocommand.buf,
6415                                 iocommand.buf_size)) {
6416                                 rc = -EFAULT;
6417                                 goto out_kfree;
6418                         }
6419                 } else {
6420                         memset(buff, 0, iocommand.buf_size);
6421                 }
6422         }
6423         c = cmd_alloc(h);
6424
6425         /* Fill in the command type */
6426         c->cmd_type = CMD_IOCTL_PEND;
6427         c->scsi_cmd = SCSI_CMD_BUSY;
6428         /* Fill in Command Header */
6429         c->Header.ReplyQueue = 0; /* unused in simple mode */
6430         if (iocommand.buf_size > 0) {   /* buffer to fill */
6431                 c->Header.SGList = 1;
6432                 c->Header.SGTotal = cpu_to_le16(1);
6433         } else  { /* no buffers to fill */
6434                 c->Header.SGList = 0;
6435                 c->Header.SGTotal = cpu_to_le16(0);
6436         }
6437         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6438
6439         /* Fill in Request block */
6440         memcpy(&c->Request, &iocommand.Request,
6441                 sizeof(c->Request));
6442
6443         /* Fill in the scatter gather information */
6444         if (iocommand.buf_size > 0) {
6445                 temp64 = pci_map_single(h->pdev, buff,
6446                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6447                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6448                         c->SG[0].Addr = cpu_to_le64(0);
6449                         c->SG[0].Len = cpu_to_le32(0);
6450                         rc = -ENOMEM;
6451                         goto out;
6452                 }
6453                 c->SG[0].Addr = cpu_to_le64(temp64);
6454                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6455                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6456         }
6457         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6458                                         DEFAULT_TIMEOUT);
6459         if (iocommand.buf_size > 0)
6460                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6461         check_ioctl_unit_attention(h, c);
6462         if (rc) {
6463                 rc = -EIO;
6464                 goto out;
6465         }
6466
6467         /* Copy the error information out */
6468         memcpy(&iocommand.error_info, c->err_info,
6469                 sizeof(iocommand.error_info));
6470         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6471                 rc = -EFAULT;
6472                 goto out;
6473         }
6474         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6475                 iocommand.buf_size > 0) {
6476                 /* Copy the data out of the buffer we created */
6477                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6478                         rc = -EFAULT;
6479                         goto out;
6480                 }
6481         }
6482 out:
6483         cmd_free(h, c);
6484 out_kfree:
6485         kfree(buff);
6486         return rc;
6487 }
6488
6489 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6490 {
6491         BIG_IOCTL_Command_struct *ioc;
6492         struct CommandList *c;
6493         unsigned char **buff = NULL;
6494         int *buff_size = NULL;
6495         u64 temp64;
6496         BYTE sg_used = 0;
6497         int status = 0;
6498         u32 left;
6499         u32 sz;
6500         BYTE __user *data_ptr;
6501
6502         if (!argp)
6503                 return -EINVAL;
6504         if (!capable(CAP_SYS_RAWIO))
6505                 return -EPERM;
6506         ioc = (BIG_IOCTL_Command_struct *)
6507             kmalloc(sizeof(*ioc), GFP_KERNEL);
6508         if (!ioc) {
6509                 status = -ENOMEM;
6510                 goto cleanup1;
6511         }
6512         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6513                 status = -EFAULT;
6514                 goto cleanup1;
6515         }
6516         if ((ioc->buf_size < 1) &&
6517             (ioc->Request.Type.Direction != XFER_NONE)) {
6518                 status = -EINVAL;
6519                 goto cleanup1;
6520         }
6521         /* Check kmalloc limits  using all SGs */
6522         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6523                 status = -EINVAL;
6524                 goto cleanup1;
6525         }
6526         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6527                 status = -EINVAL;
6528                 goto cleanup1;
6529         }
6530         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6531         if (!buff) {
6532                 status = -ENOMEM;
6533                 goto cleanup1;
6534         }
6535         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6536         if (!buff_size) {
6537                 status = -ENOMEM;
6538                 goto cleanup1;
6539         }
6540         left = ioc->buf_size;
6541         data_ptr = ioc->buf;
6542         while (left) {
6543                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6544                 buff_size[sg_used] = sz;
6545                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6546                 if (buff[sg_used] == NULL) {
6547                         status = -ENOMEM;
6548                         goto cleanup1;
6549                 }
6550                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6551                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6552                                 status = -EFAULT;
6553                                 goto cleanup1;
6554                         }
6555                 } else
6556                         memset(buff[sg_used], 0, sz);
6557                 left -= sz;
6558                 data_ptr += sz;
6559                 sg_used++;
6560         }
6561         c = cmd_alloc(h);
6562
6563         c->cmd_type = CMD_IOCTL_PEND;
6564         c->scsi_cmd = SCSI_CMD_BUSY;
6565         c->Header.ReplyQueue = 0;
6566         c->Header.SGList = (u8) sg_used;
6567         c->Header.SGTotal = cpu_to_le16(sg_used);
6568         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6569         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6570         if (ioc->buf_size > 0) {
6571                 int i;
6572                 for (i = 0; i < sg_used; i++) {
6573                         temp64 = pci_map_single(h->pdev, buff[i],
6574                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6575                         if (dma_mapping_error(&h->pdev->dev,
6576                                                         (dma_addr_t) temp64)) {
6577                                 c->SG[i].Addr = cpu_to_le64(0);
6578                                 c->SG[i].Len = cpu_to_le32(0);
6579                                 hpsa_pci_unmap(h->pdev, c, i,
6580                                         PCI_DMA_BIDIRECTIONAL);
6581                                 status = -ENOMEM;
6582                                 goto cleanup0;
6583                         }
6584                         c->SG[i].Addr = cpu_to_le64(temp64);
6585                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6586                         c->SG[i].Ext = cpu_to_le32(0);
6587                 }
6588                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6589         }
6590         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6591                                                 DEFAULT_TIMEOUT);
6592         if (sg_used)
6593                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6594         check_ioctl_unit_attention(h, c);
6595         if (status) {
6596                 status = -EIO;
6597                 goto cleanup0;
6598         }
6599
6600         /* Copy the error information out */
6601         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6602         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6603                 status = -EFAULT;
6604                 goto cleanup0;
6605         }
6606         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6607                 int i;
6608
6609                 /* Copy the data out of the buffer we created */
6610                 BYTE __user *ptr = ioc->buf;
6611                 for (i = 0; i < sg_used; i++) {
6612                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6613                                 status = -EFAULT;
6614                                 goto cleanup0;
6615                         }
6616                         ptr += buff_size[i];
6617                 }
6618         }
6619         status = 0;
6620 cleanup0:
6621         cmd_free(h, c);
6622 cleanup1:
6623         if (buff) {
6624                 int i;
6625
6626                 for (i = 0; i < sg_used; i++)
6627                         kfree(buff[i]);
6628                 kfree(buff);
6629         }
6630         kfree(buff_size);
6631         kfree(ioc);
6632         return status;
6633 }
6634
6635 static void check_ioctl_unit_attention(struct ctlr_info *h,
6636         struct CommandList *c)
6637 {
6638         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6639                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6640                 (void) check_for_unit_attention(h, c);
6641 }
6642
6643 /*
6644  * ioctl
6645  */
6646 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6647 {
6648         struct ctlr_info *h;
6649         void __user *argp = (void __user *)arg;
6650         int rc;
6651
6652         h = sdev_to_hba(dev);
6653
6654         switch (cmd) {
6655         case CCISS_DEREGDISK:
6656         case CCISS_REGNEWDISK:
6657         case CCISS_REGNEWD:
6658                 hpsa_scan_start(h->scsi_host);
6659                 return 0;
6660         case CCISS_GETPCIINFO:
6661                 return hpsa_getpciinfo_ioctl(h, argp);
6662         case CCISS_GETDRIVVER:
6663                 return hpsa_getdrivver_ioctl(h, argp);
6664         case CCISS_PASSTHRU:
6665                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6666                         return -EAGAIN;
6667                 rc = hpsa_passthru_ioctl(h, argp);
6668                 atomic_inc(&h->passthru_cmds_avail);
6669                 return rc;
6670         case CCISS_BIG_PASSTHRU:
6671                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6672                         return -EAGAIN;
6673                 rc = hpsa_big_passthru_ioctl(h, argp);
6674                 atomic_inc(&h->passthru_cmds_avail);
6675                 return rc;
6676         default:
6677                 return -ENOTTY;
6678         }
6679 }
6680
6681 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6682                                 u8 reset_type)
6683 {
6684         struct CommandList *c;
6685
6686         c = cmd_alloc(h);
6687
6688         /* fill_cmd can't fail here, no data buffer to map */
6689         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6690                 RAID_CTLR_LUNID, TYPE_MSG);
6691         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6692         c->waiting = NULL;
6693         enqueue_cmd_and_start_io(h, c);
6694         /* Don't wait for completion, the reset won't complete.  Don't free
6695          * the command either.  This is the last command we will send before
6696          * re-initializing everything, so it doesn't matter and won't leak.
6697          */
6698         return;
6699 }
6700
6701 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6702         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6703         int cmd_type)
6704 {
6705         int pci_dir = XFER_NONE;
6706         u64 tag; /* for commands to be aborted */
6707
6708         c->cmd_type = CMD_IOCTL_PEND;
6709         c->scsi_cmd = SCSI_CMD_BUSY;
6710         c->Header.ReplyQueue = 0;
6711         if (buff != NULL && size > 0) {
6712                 c->Header.SGList = 1;
6713                 c->Header.SGTotal = cpu_to_le16(1);
6714         } else {
6715                 c->Header.SGList = 0;
6716                 c->Header.SGTotal = cpu_to_le16(0);
6717         }
6718         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6719
6720         if (cmd_type == TYPE_CMD) {
6721                 switch (cmd) {
6722                 case HPSA_INQUIRY:
6723                         /* are we trying to read a vital product page */
6724                         if (page_code & VPD_PAGE) {
6725                                 c->Request.CDB[1] = 0x01;
6726                                 c->Request.CDB[2] = (page_code & 0xff);
6727                         }
6728                         c->Request.CDBLen = 6;
6729                         c->Request.type_attr_dir =
6730                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6731                         c->Request.Timeout = 0;
6732                         c->Request.CDB[0] = HPSA_INQUIRY;
6733                         c->Request.CDB[4] = size & 0xFF;
6734                         break;
6735                 case HPSA_REPORT_LOG:
6736                 case HPSA_REPORT_PHYS:
6737                         /* Talking to controller so It's a physical command
6738                            mode = 00 target = 0.  Nothing to write.
6739                          */
6740                         c->Request.CDBLen = 12;
6741                         c->Request.type_attr_dir =
6742                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6743                         c->Request.Timeout = 0;
6744                         c->Request.CDB[0] = cmd;
6745                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6746                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6747                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6748                         c->Request.CDB[9] = size & 0xFF;
6749                         break;
6750                 case BMIC_SENSE_DIAG_OPTIONS:
6751                         c->Request.CDBLen = 16;
6752                         c->Request.type_attr_dir =
6753                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6754                         c->Request.Timeout = 0;
6755                         /* Spec says this should be BMIC_WRITE */
6756                         c->Request.CDB[0] = BMIC_READ;
6757                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6758                         break;
6759                 case BMIC_SET_DIAG_OPTIONS:
6760                         c->Request.CDBLen = 16;
6761                         c->Request.type_attr_dir =
6762                                         TYPE_ATTR_DIR(cmd_type,
6763                                                 ATTR_SIMPLE, XFER_WRITE);
6764                         c->Request.Timeout = 0;
6765                         c->Request.CDB[0] = BMIC_WRITE;
6766                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6767                         break;
6768                 case HPSA_CACHE_FLUSH:
6769                         c->Request.CDBLen = 12;
6770                         c->Request.type_attr_dir =
6771                                         TYPE_ATTR_DIR(cmd_type,
6772                                                 ATTR_SIMPLE, XFER_WRITE);
6773                         c->Request.Timeout = 0;
6774                         c->Request.CDB[0] = BMIC_WRITE;
6775                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6776                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6777                         c->Request.CDB[8] = size & 0xFF;
6778                         break;
6779                 case TEST_UNIT_READY:
6780                         c->Request.CDBLen = 6;
6781                         c->Request.type_attr_dir =
6782                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6783                         c->Request.Timeout = 0;
6784                         break;
6785                 case HPSA_GET_RAID_MAP:
6786                         c->Request.CDBLen = 12;
6787                         c->Request.type_attr_dir =
6788                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6789                         c->Request.Timeout = 0;
6790                         c->Request.CDB[0] = HPSA_CISS_READ;
6791                         c->Request.CDB[1] = cmd;
6792                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6793                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6794                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6795                         c->Request.CDB[9] = size & 0xFF;
6796                         break;
6797                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6798                         c->Request.CDBLen = 10;
6799                         c->Request.type_attr_dir =
6800                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6801                         c->Request.Timeout = 0;
6802                         c->Request.CDB[0] = BMIC_READ;
6803                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6804                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6805                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6806                         break;
6807                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6808                         c->Request.CDBLen = 10;
6809                         c->Request.type_attr_dir =
6810                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6811                         c->Request.Timeout = 0;
6812                         c->Request.CDB[0] = BMIC_READ;
6813                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6814                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6815                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6816                         break;
6817                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6818                         c->Request.CDBLen = 10;
6819                         c->Request.type_attr_dir =
6820                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6821                         c->Request.Timeout = 0;
6822                         c->Request.CDB[0] = BMIC_READ;
6823                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6824                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6825                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6826                         break;
6827                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6828                         c->Request.CDBLen = 10;
6829                         c->Request.type_attr_dir =
6830                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6831                         c->Request.Timeout = 0;
6832                         c->Request.CDB[0] = BMIC_READ;
6833                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6834                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6835                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6836                         break;
6837                 case BMIC_IDENTIFY_CONTROLLER:
6838                         c->Request.CDBLen = 10;
6839                         c->Request.type_attr_dir =
6840                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6841                         c->Request.Timeout = 0;
6842                         c->Request.CDB[0] = BMIC_READ;
6843                         c->Request.CDB[1] = 0;
6844                         c->Request.CDB[2] = 0;
6845                         c->Request.CDB[3] = 0;
6846                         c->Request.CDB[4] = 0;
6847                         c->Request.CDB[5] = 0;
6848                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6849                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6850                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6851                         c->Request.CDB[9] = 0;
6852                         break;
6853                 default:
6854                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6855                         BUG();
6856                         return -1;
6857                 }
6858         } else if (cmd_type == TYPE_MSG) {
6859                 switch (cmd) {
6860
6861                 case  HPSA_PHYS_TARGET_RESET:
6862                         c->Request.CDBLen = 16;
6863                         c->Request.type_attr_dir =
6864                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6865                         c->Request.Timeout = 0; /* Don't time out */
6866                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6867                         c->Request.CDB[0] = HPSA_RESET;
6868                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6869                         /* Physical target reset needs no control bytes 4-7*/
6870                         c->Request.CDB[4] = 0x00;
6871                         c->Request.CDB[5] = 0x00;
6872                         c->Request.CDB[6] = 0x00;
6873                         c->Request.CDB[7] = 0x00;
6874                         break;
6875                 case  HPSA_DEVICE_RESET_MSG:
6876                         c->Request.CDBLen = 16;
6877                         c->Request.type_attr_dir =
6878                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6879                         c->Request.Timeout = 0; /* Don't time out */
6880                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6881                         c->Request.CDB[0] =  cmd;
6882                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6883                         /* If bytes 4-7 are zero, it means reset the */
6884                         /* LunID device */
6885                         c->Request.CDB[4] = 0x00;
6886                         c->Request.CDB[5] = 0x00;
6887                         c->Request.CDB[6] = 0x00;
6888                         c->Request.CDB[7] = 0x00;
6889                         break;
6890                 case  HPSA_ABORT_MSG:
6891                         memcpy(&tag, buff, sizeof(tag));
6892                         dev_dbg(&h->pdev->dev,
6893                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6894                                 tag, c->Header.tag);
6895                         c->Request.CDBLen = 16;
6896                         c->Request.type_attr_dir =
6897                                         TYPE_ATTR_DIR(cmd_type,
6898                                                 ATTR_SIMPLE, XFER_WRITE);
6899                         c->Request.Timeout = 0; /* Don't time out */
6900                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6901                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6902                         c->Request.CDB[2] = 0x00; /* reserved */
6903                         c->Request.CDB[3] = 0x00; /* reserved */
6904                         /* Tag to abort goes in CDB[4]-CDB[11] */
6905                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6906                         c->Request.CDB[12] = 0x00; /* reserved */
6907                         c->Request.CDB[13] = 0x00; /* reserved */
6908                         c->Request.CDB[14] = 0x00; /* reserved */
6909                         c->Request.CDB[15] = 0x00; /* reserved */
6910                 break;
6911                 default:
6912                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6913                                 cmd);
6914                         BUG();
6915                 }
6916         } else {
6917                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6918                 BUG();
6919         }
6920
6921         switch (GET_DIR(c->Request.type_attr_dir)) {
6922         case XFER_READ:
6923                 pci_dir = PCI_DMA_FROMDEVICE;
6924                 break;
6925         case XFER_WRITE:
6926                 pci_dir = PCI_DMA_TODEVICE;
6927                 break;
6928         case XFER_NONE:
6929                 pci_dir = PCI_DMA_NONE;
6930                 break;
6931         default:
6932                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6933         }
6934         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6935                 return -1;
6936         return 0;
6937 }
6938
6939 /*
6940  * Map (physical) PCI mem into (virtual) kernel space
6941  */
6942 static void __iomem *remap_pci_mem(ulong base, ulong size)
6943 {
6944         ulong page_base = ((ulong) base) & PAGE_MASK;
6945         ulong page_offs = ((ulong) base) - page_base;
6946         void __iomem *page_remapped = ioremap_nocache(page_base,
6947                 page_offs + size);
6948
6949         return page_remapped ? (page_remapped + page_offs) : NULL;
6950 }
6951
6952 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6953 {
6954         return h->access.command_completed(h, q);
6955 }
6956
6957 static inline bool interrupt_pending(struct ctlr_info *h)
6958 {
6959         return h->access.intr_pending(h);
6960 }
6961
6962 static inline long interrupt_not_for_us(struct ctlr_info *h)
6963 {
6964         return (h->access.intr_pending(h) == 0) ||
6965                 (h->interrupts_enabled == 0);
6966 }
6967
6968 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6969         u32 raw_tag)
6970 {
6971         if (unlikely(tag_index >= h->nr_cmds)) {
6972                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6973                 return 1;
6974         }
6975         return 0;
6976 }
6977
6978 static inline void finish_cmd(struct CommandList *c)
6979 {
6980         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6981         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6982                         || c->cmd_type == CMD_IOACCEL2))
6983                 complete_scsi_command(c);
6984         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6985                 complete(c->waiting);
6986 }
6987
6988 /* process completion of an indexed ("direct lookup") command */
6989 static inline void process_indexed_cmd(struct ctlr_info *h,
6990         u32 raw_tag)
6991 {
6992         u32 tag_index;
6993         struct CommandList *c;
6994
6995         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6996         if (!bad_tag(h, tag_index, raw_tag)) {
6997                 c = h->cmd_pool + tag_index;
6998                 finish_cmd(c);
6999         }
7000 }
7001
7002 /* Some controllers, like p400, will give us one interrupt
7003  * after a soft reset, even if we turned interrupts off.
7004  * Only need to check for this in the hpsa_xxx_discard_completions
7005  * functions.
7006  */
7007 static int ignore_bogus_interrupt(struct ctlr_info *h)
7008 {
7009         if (likely(!reset_devices))
7010                 return 0;
7011
7012         if (likely(h->interrupts_enabled))
7013                 return 0;
7014
7015         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7016                 "(known firmware bug.)  Ignoring.\n");
7017
7018         return 1;
7019 }
7020
7021 /*
7022  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7023  * Relies on (h-q[x] == x) being true for x such that
7024  * 0 <= x < MAX_REPLY_QUEUES.
7025  */
7026 static struct ctlr_info *queue_to_hba(u8 *queue)
7027 {
7028         return container_of((queue - *queue), struct ctlr_info, q[0]);
7029 }
7030
7031 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7032 {
7033         struct ctlr_info *h = queue_to_hba(queue);
7034         u8 q = *(u8 *) queue;
7035         u32 raw_tag;
7036
7037         if (ignore_bogus_interrupt(h))
7038                 return IRQ_NONE;
7039
7040         if (interrupt_not_for_us(h))
7041                 return IRQ_NONE;
7042         h->last_intr_timestamp = get_jiffies_64();
7043         while (interrupt_pending(h)) {
7044                 raw_tag = get_next_completion(h, q);
7045                 while (raw_tag != FIFO_EMPTY)
7046                         raw_tag = next_command(h, q);
7047         }
7048         return IRQ_HANDLED;
7049 }
7050
7051 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7052 {
7053         struct ctlr_info *h = queue_to_hba(queue);
7054         u32 raw_tag;
7055         u8 q = *(u8 *) queue;
7056
7057         if (ignore_bogus_interrupt(h))
7058                 return IRQ_NONE;
7059
7060         h->last_intr_timestamp = get_jiffies_64();
7061         raw_tag = get_next_completion(h, q);
7062         while (raw_tag != FIFO_EMPTY)
7063                 raw_tag = next_command(h, q);
7064         return IRQ_HANDLED;
7065 }
7066
7067 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7068 {
7069         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7070         u32 raw_tag;
7071         u8 q = *(u8 *) queue;
7072
7073         if (interrupt_not_for_us(h))
7074                 return IRQ_NONE;
7075         h->last_intr_timestamp = get_jiffies_64();
7076         while (interrupt_pending(h)) {
7077                 raw_tag = get_next_completion(h, q);
7078                 while (raw_tag != FIFO_EMPTY) {
7079                         process_indexed_cmd(h, raw_tag);
7080                         raw_tag = next_command(h, q);
7081                 }
7082         }
7083         return IRQ_HANDLED;
7084 }
7085
7086 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7087 {
7088         struct ctlr_info *h = queue_to_hba(queue);
7089         u32 raw_tag;
7090         u8 q = *(u8 *) queue;
7091
7092         h->last_intr_timestamp = get_jiffies_64();
7093         raw_tag = get_next_completion(h, q);
7094         while (raw_tag != FIFO_EMPTY) {
7095                 process_indexed_cmd(h, raw_tag);
7096                 raw_tag = next_command(h, q);
7097         }
7098         return IRQ_HANDLED;
7099 }
7100
7101 /* Send a message CDB to the firmware. Careful, this only works
7102  * in simple mode, not performant mode due to the tag lookup.
7103  * We only ever use this immediately after a controller reset.
7104  */
7105 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7106                         unsigned char type)
7107 {
7108         struct Command {
7109                 struct CommandListHeader CommandHeader;
7110                 struct RequestBlock Request;
7111                 struct ErrDescriptor ErrorDescriptor;
7112         };
7113         struct Command *cmd;
7114         static const size_t cmd_sz = sizeof(*cmd) +
7115                                         sizeof(cmd->ErrorDescriptor);
7116         dma_addr_t paddr64;
7117         __le32 paddr32;
7118         u32 tag;
7119         void __iomem *vaddr;
7120         int i, err;
7121
7122         vaddr = pci_ioremap_bar(pdev, 0);
7123         if (vaddr == NULL)
7124                 return -ENOMEM;
7125
7126         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7127          * CCISS commands, so they must be allocated from the lower 4GiB of
7128          * memory.
7129          */
7130         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7131         if (err) {
7132                 iounmap(vaddr);
7133                 return err;
7134         }
7135
7136         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7137         if (cmd == NULL) {
7138                 iounmap(vaddr);
7139                 return -ENOMEM;
7140         }
7141
7142         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7143          * although there's no guarantee, we assume that the address is at
7144          * least 4-byte aligned (most likely, it's page-aligned).
7145          */
7146         paddr32 = cpu_to_le32(paddr64);
7147
7148         cmd->CommandHeader.ReplyQueue = 0;
7149         cmd->CommandHeader.SGList = 0;
7150         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7151         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7152         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7153
7154         cmd->Request.CDBLen = 16;
7155         cmd->Request.type_attr_dir =
7156                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7157         cmd->Request.Timeout = 0; /* Don't time out */
7158         cmd->Request.CDB[0] = opcode;
7159         cmd->Request.CDB[1] = type;
7160         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7161         cmd->ErrorDescriptor.Addr =
7162                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7163         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7164
7165         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7166
7167         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7168                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7169                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7170                         break;
7171                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7172         }
7173
7174         iounmap(vaddr);
7175
7176         /* we leak the DMA buffer here ... no choice since the controller could
7177          *  still complete the command.
7178          */
7179         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7180                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7181                         opcode, type);
7182                 return -ETIMEDOUT;
7183         }
7184
7185         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7186
7187         if (tag & HPSA_ERROR_BIT) {
7188                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7189                         opcode, type);
7190                 return -EIO;
7191         }
7192
7193         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7194                 opcode, type);
7195         return 0;
7196 }
7197
7198 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7199
7200 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7201         void __iomem *vaddr, u32 use_doorbell)
7202 {
7203
7204         if (use_doorbell) {
7205                 /* For everything after the P600, the PCI power state method
7206                  * of resetting the controller doesn't work, so we have this
7207                  * other way using the doorbell register.
7208                  */
7209                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7210                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7211
7212                 /* PMC hardware guys tell us we need a 10 second delay after
7213                  * doorbell reset and before any attempt to talk to the board
7214                  * at all to ensure that this actually works and doesn't fall
7215                  * over in some weird corner cases.
7216                  */
7217                 msleep(10000);
7218         } else { /* Try to do it the PCI power state way */
7219
7220                 /* Quoting from the Open CISS Specification: "The Power
7221                  * Management Control/Status Register (CSR) controls the power
7222                  * state of the device.  The normal operating state is D0,
7223                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7224                  * the controller, place the interface device in D3 then to D0,
7225                  * this causes a secondary PCI reset which will reset the
7226                  * controller." */
7227
7228                 int rc = 0;
7229
7230                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7231
7232                 /* enter the D3hot power management state */
7233                 rc = pci_set_power_state(pdev, PCI_D3hot);
7234                 if (rc)
7235                         return rc;
7236
7237                 msleep(500);
7238
7239                 /* enter the D0 power management state */
7240                 rc = pci_set_power_state(pdev, PCI_D0);
7241                 if (rc)
7242                         return rc;
7243
7244                 /*
7245                  * The P600 requires a small delay when changing states.
7246                  * Otherwise we may think the board did not reset and we bail.
7247                  * This for kdump only and is particular to the P600.
7248                  */
7249                 msleep(500);
7250         }
7251         return 0;
7252 }
7253
7254 static void init_driver_version(char *driver_version, int len)
7255 {
7256         memset(driver_version, 0, len);
7257         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7258 }
7259
7260 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7261 {
7262         char *driver_version;
7263         int i, size = sizeof(cfgtable->driver_version);
7264
7265         driver_version = kmalloc(size, GFP_KERNEL);
7266         if (!driver_version)
7267                 return -ENOMEM;
7268
7269         init_driver_version(driver_version, size);
7270         for (i = 0; i < size; i++)
7271                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7272         kfree(driver_version);
7273         return 0;
7274 }
7275
7276 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7277                                           unsigned char *driver_ver)
7278 {
7279         int i;
7280
7281         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7282                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7283 }
7284
7285 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7286 {
7287
7288         char *driver_ver, *old_driver_ver;
7289         int rc, size = sizeof(cfgtable->driver_version);
7290
7291         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7292         if (!old_driver_ver)
7293                 return -ENOMEM;
7294         driver_ver = old_driver_ver + size;
7295
7296         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7297          * should have been changed, otherwise we know the reset failed.
7298          */
7299         init_driver_version(old_driver_ver, size);
7300         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7301         rc = !memcmp(driver_ver, old_driver_ver, size);
7302         kfree(old_driver_ver);
7303         return rc;
7304 }
7305 /* This does a hard reset of the controller using PCI power management
7306  * states or the using the doorbell register.
7307  */
7308 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7309 {
7310         u64 cfg_offset;
7311         u32 cfg_base_addr;
7312         u64 cfg_base_addr_index;
7313         void __iomem *vaddr;
7314         unsigned long paddr;
7315         u32 misc_fw_support;
7316         int rc;
7317         struct CfgTable __iomem *cfgtable;
7318         u32 use_doorbell;
7319         u16 command_register;
7320
7321         /* For controllers as old as the P600, this is very nearly
7322          * the same thing as
7323          *
7324          * pci_save_state(pci_dev);
7325          * pci_set_power_state(pci_dev, PCI_D3hot);
7326          * pci_set_power_state(pci_dev, PCI_D0);
7327          * pci_restore_state(pci_dev);
7328          *
7329          * For controllers newer than the P600, the pci power state
7330          * method of resetting doesn't work so we have another way
7331          * using the doorbell register.
7332          */
7333
7334         if (!ctlr_is_resettable(board_id)) {
7335                 dev_warn(&pdev->dev, "Controller not resettable\n");
7336                 return -ENODEV;
7337         }
7338
7339         /* if controller is soft- but not hard resettable... */
7340         if (!ctlr_is_hard_resettable(board_id))
7341                 return -ENOTSUPP; /* try soft reset later. */
7342
7343         /* Save the PCI command register */
7344         pci_read_config_word(pdev, 4, &command_register);
7345         pci_save_state(pdev);
7346
7347         /* find the first memory BAR, so we can find the cfg table */
7348         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7349         if (rc)
7350                 return rc;
7351         vaddr = remap_pci_mem(paddr, 0x250);
7352         if (!vaddr)
7353                 return -ENOMEM;
7354
7355         /* find cfgtable in order to check if reset via doorbell is supported */
7356         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7357                                         &cfg_base_addr_index, &cfg_offset);
7358         if (rc)
7359                 goto unmap_vaddr;
7360         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7361                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7362         if (!cfgtable) {
7363                 rc = -ENOMEM;
7364                 goto unmap_vaddr;
7365         }
7366         rc = write_driver_ver_to_cfgtable(cfgtable);
7367         if (rc)
7368                 goto unmap_cfgtable;
7369
7370         /* If reset via doorbell register is supported, use that.
7371          * There are two such methods.  Favor the newest method.
7372          */
7373         misc_fw_support = readl(&cfgtable->misc_fw_support);
7374         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7375         if (use_doorbell) {
7376                 use_doorbell = DOORBELL_CTLR_RESET2;
7377         } else {
7378                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7379                 if (use_doorbell) {
7380                         dev_warn(&pdev->dev,
7381                                 "Soft reset not supported. Firmware update is required.\n");
7382                         rc = -ENOTSUPP; /* try soft reset */
7383                         goto unmap_cfgtable;
7384                 }
7385         }
7386
7387         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7388         if (rc)
7389                 goto unmap_cfgtable;
7390
7391         pci_restore_state(pdev);
7392         pci_write_config_word(pdev, 4, command_register);
7393
7394         /* Some devices (notably the HP Smart Array 5i Controller)
7395            need a little pause here */
7396         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7397
7398         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7399         if (rc) {
7400                 dev_warn(&pdev->dev,
7401                         "Failed waiting for board to become ready after hard reset\n");
7402                 goto unmap_cfgtable;
7403         }
7404
7405         rc = controller_reset_failed(vaddr);
7406         if (rc < 0)
7407                 goto unmap_cfgtable;
7408         if (rc) {
7409                 dev_warn(&pdev->dev, "Unable to successfully reset "
7410                         "controller. Will try soft reset.\n");
7411                 rc = -ENOTSUPP;
7412         } else {
7413                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7414         }
7415
7416 unmap_cfgtable:
7417         iounmap(cfgtable);
7418
7419 unmap_vaddr:
7420         iounmap(vaddr);
7421         return rc;
7422 }
7423
7424 /*
7425  *  We cannot read the structure directly, for portability we must use
7426  *   the io functions.
7427  *   This is for debug only.
7428  */
7429 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7430 {
7431 #ifdef HPSA_DEBUG
7432         int i;
7433         char temp_name[17];
7434
7435         dev_info(dev, "Controller Configuration information\n");
7436         dev_info(dev, "------------------------------------\n");
7437         for (i = 0; i < 4; i++)
7438                 temp_name[i] = readb(&(tb->Signature[i]));
7439         temp_name[4] = '\0';
7440         dev_info(dev, "   Signature = %s\n", temp_name);
7441         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7442         dev_info(dev, "   Transport methods supported = 0x%x\n",
7443                readl(&(tb->TransportSupport)));
7444         dev_info(dev, "   Transport methods active = 0x%x\n",
7445                readl(&(tb->TransportActive)));
7446         dev_info(dev, "   Requested transport Method = 0x%x\n",
7447                readl(&(tb->HostWrite.TransportRequest)));
7448         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7449                readl(&(tb->HostWrite.CoalIntDelay)));
7450         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7451                readl(&(tb->HostWrite.CoalIntCount)));
7452         dev_info(dev, "   Max outstanding commands = %d\n",
7453                readl(&(tb->CmdsOutMax)));
7454         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7455         for (i = 0; i < 16; i++)
7456                 temp_name[i] = readb(&(tb->ServerName[i]));
7457         temp_name[16] = '\0';
7458         dev_info(dev, "   Server Name = %s\n", temp_name);
7459         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7460                 readl(&(tb->HeartBeat)));
7461 #endif                          /* HPSA_DEBUG */
7462 }
7463
7464 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7465 {
7466         int i, offset, mem_type, bar_type;
7467
7468         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7469                 return 0;
7470         offset = 0;
7471         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7472                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7473                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7474                         offset += 4;
7475                 else {
7476                         mem_type = pci_resource_flags(pdev, i) &
7477                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7478                         switch (mem_type) {
7479                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7480                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7481                                 offset += 4;    /* 32 bit */
7482                                 break;
7483                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7484                                 offset += 8;
7485                                 break;
7486                         default:        /* reserved in PCI 2.2 */
7487                                 dev_warn(&pdev->dev,
7488                                        "base address is invalid\n");
7489                                 return -1;
7490                                 break;
7491                         }
7492                 }
7493                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7494                         return i + 1;
7495         }
7496         return -1;
7497 }
7498
7499 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7500 {
7501         if (h->msix_vector) {
7502                 if (h->pdev->msix_enabled)
7503                         pci_disable_msix(h->pdev);
7504                 h->msix_vector = 0;
7505         } else if (h->msi_vector) {
7506                 if (h->pdev->msi_enabled)
7507                         pci_disable_msi(h->pdev);
7508                 h->msi_vector = 0;
7509         }
7510 }
7511
7512 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7513  * controllers that are capable. If not, we use legacy INTx mode.
7514  */
7515 static void hpsa_interrupt_mode(struct ctlr_info *h)
7516 {
7517 #ifdef CONFIG_PCI_MSI
7518         int err, i;
7519         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7520
7521         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7522                 hpsa_msix_entries[i].vector = 0;
7523                 hpsa_msix_entries[i].entry = i;
7524         }
7525
7526         /* Some boards advertise MSI but don't really support it */
7527         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7528             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7529                 goto default_int_mode;
7530         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7531                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7532                 h->msix_vector = MAX_REPLY_QUEUES;
7533                 if (h->msix_vector > num_online_cpus())
7534                         h->msix_vector = num_online_cpus();
7535                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7536                                             1, h->msix_vector);
7537                 if (err < 0) {
7538                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7539                         h->msix_vector = 0;
7540                         goto single_msi_mode;
7541                 } else if (err < h->msix_vector) {
7542                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7543                                "available\n", err);
7544                 }
7545                 h->msix_vector = err;
7546                 for (i = 0; i < h->msix_vector; i++)
7547                         h->intr[i] = hpsa_msix_entries[i].vector;
7548                 return;
7549         }
7550 single_msi_mode:
7551         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7552                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7553                 if (!pci_enable_msi(h->pdev))
7554                         h->msi_vector = 1;
7555                 else
7556                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7557         }
7558 default_int_mode:
7559 #endif                          /* CONFIG_PCI_MSI */
7560         /* if we get here we're going to use the default interrupt mode */
7561         h->intr[h->intr_mode] = h->pdev->irq;
7562 }
7563
7564 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7565 {
7566         int i;
7567         u32 subsystem_vendor_id, subsystem_device_id;
7568
7569         subsystem_vendor_id = pdev->subsystem_vendor;
7570         subsystem_device_id = pdev->subsystem_device;
7571         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7572                     subsystem_vendor_id;
7573
7574         for (i = 0; i < ARRAY_SIZE(products); i++)
7575                 if (*board_id == products[i].board_id)
7576                         return i;
7577
7578         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7579                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7580                 !hpsa_allow_any) {
7581                 dev_warn(&pdev->dev, "unrecognized board ID: "
7582                         "0x%08x, ignoring.\n", *board_id);
7583                         return -ENODEV;
7584         }
7585         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7586 }
7587
7588 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7589                                     unsigned long *memory_bar)
7590 {
7591         int i;
7592
7593         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7594                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7595                         /* addressing mode bits already removed */
7596                         *memory_bar = pci_resource_start(pdev, i);
7597                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7598                                 *memory_bar);
7599                         return 0;
7600                 }
7601         dev_warn(&pdev->dev, "no memory BAR found\n");
7602         return -ENODEV;
7603 }
7604
7605 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7606                                      int wait_for_ready)
7607 {
7608         int i, iterations;
7609         u32 scratchpad;
7610         if (wait_for_ready)
7611                 iterations = HPSA_BOARD_READY_ITERATIONS;
7612         else
7613                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7614
7615         for (i = 0; i < iterations; i++) {
7616                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7617                 if (wait_for_ready) {
7618                         if (scratchpad == HPSA_FIRMWARE_READY)
7619                                 return 0;
7620                 } else {
7621                         if (scratchpad != HPSA_FIRMWARE_READY)
7622                                 return 0;
7623                 }
7624                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7625         }
7626         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7627         return -ENODEV;
7628 }
7629
7630 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7631                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7632                                u64 *cfg_offset)
7633 {
7634         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7635         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7636         *cfg_base_addr &= (u32) 0x0000ffff;
7637         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7638         if (*cfg_base_addr_index == -1) {
7639                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7640                 return -ENODEV;
7641         }
7642         return 0;
7643 }
7644
7645 static void hpsa_free_cfgtables(struct ctlr_info *h)
7646 {
7647         if (h->transtable) {
7648                 iounmap(h->transtable);
7649                 h->transtable = NULL;
7650         }
7651         if (h->cfgtable) {
7652                 iounmap(h->cfgtable);
7653                 h->cfgtable = NULL;
7654         }
7655 }
7656
7657 /* Find and map CISS config table and transfer table
7658 + * several items must be unmapped (freed) later
7659 + * */
7660 static int hpsa_find_cfgtables(struct ctlr_info *h)
7661 {
7662         u64 cfg_offset;
7663         u32 cfg_base_addr;
7664         u64 cfg_base_addr_index;
7665         u32 trans_offset;
7666         int rc;
7667
7668         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7669                 &cfg_base_addr_index, &cfg_offset);
7670         if (rc)
7671                 return rc;
7672         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7673                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7674         if (!h->cfgtable) {
7675                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7676                 return -ENOMEM;
7677         }
7678         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7679         if (rc)
7680                 return rc;
7681         /* Find performant mode table. */
7682         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7683         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7684                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7685                                 sizeof(*h->transtable));
7686         if (!h->transtable) {
7687                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7688                 hpsa_free_cfgtables(h);
7689                 return -ENOMEM;
7690         }
7691         return 0;
7692 }
7693
7694 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7695 {
7696 #define MIN_MAX_COMMANDS 16
7697         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7698
7699         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7700
7701         /* Limit commands in memory limited kdump scenario. */
7702         if (reset_devices && h->max_commands > 32)
7703                 h->max_commands = 32;
7704
7705         if (h->max_commands < MIN_MAX_COMMANDS) {
7706                 dev_warn(&h->pdev->dev,
7707                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7708                         h->max_commands,
7709                         MIN_MAX_COMMANDS);
7710                 h->max_commands = MIN_MAX_COMMANDS;
7711         }
7712 }
7713
7714 /* If the controller reports that the total max sg entries is greater than 512,
7715  * then we know that chained SG blocks work.  (Original smart arrays did not
7716  * support chained SG blocks and would return zero for max sg entries.)
7717  */
7718 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7719 {
7720         return h->maxsgentries > 512;
7721 }
7722
7723 /* Interrogate the hardware for some limits:
7724  * max commands, max SG elements without chaining, and with chaining,
7725  * SG chain block size, etc.
7726  */
7727 static void hpsa_find_board_params(struct ctlr_info *h)
7728 {
7729         hpsa_get_max_perf_mode_cmds(h);
7730         h->nr_cmds = h->max_commands;
7731         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7732         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7733         if (hpsa_supports_chained_sg_blocks(h)) {
7734                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7735                 h->max_cmd_sg_entries = 32;
7736                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7737                 h->maxsgentries--; /* save one for chain pointer */
7738         } else {
7739                 /*
7740                  * Original smart arrays supported at most 31 s/g entries
7741                  * embedded inline in the command (trying to use more
7742                  * would lock up the controller)
7743                  */
7744                 h->max_cmd_sg_entries = 31;
7745                 h->maxsgentries = 31; /* default to traditional values */
7746                 h->chainsize = 0;
7747         }
7748
7749         /* Find out what task management functions are supported and cache */
7750         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7751         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7752                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7753         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7754                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7755         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7756                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7757 }
7758
7759 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7760 {
7761         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7762                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7763                 return false;
7764         }
7765         return true;
7766 }
7767
7768 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7769 {
7770         u32 driver_support;
7771
7772         driver_support = readl(&(h->cfgtable->driver_support));
7773         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7774 #ifdef CONFIG_X86
7775         driver_support |= ENABLE_SCSI_PREFETCH;
7776 #endif
7777         driver_support |= ENABLE_UNIT_ATTN;
7778         writel(driver_support, &(h->cfgtable->driver_support));
7779 }
7780
7781 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7782  * in a prefetch beyond physical memory.
7783  */
7784 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7785 {
7786         u32 dma_prefetch;
7787
7788         if (h->board_id != 0x3225103C)
7789                 return;
7790         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7791         dma_prefetch |= 0x8000;
7792         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7793 }
7794
7795 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7796 {
7797         int i;
7798         u32 doorbell_value;
7799         unsigned long flags;
7800         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7801         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7802                 spin_lock_irqsave(&h->lock, flags);
7803                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7804                 spin_unlock_irqrestore(&h->lock, flags);
7805                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7806                         goto done;
7807                 /* delay and try again */
7808                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7809         }
7810         return -ENODEV;
7811 done:
7812         return 0;
7813 }
7814
7815 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7816 {
7817         int i;
7818         u32 doorbell_value;
7819         unsigned long flags;
7820
7821         /* under certain very rare conditions, this can take awhile.
7822          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7823          * as we enter this code.)
7824          */
7825         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7826                 if (h->remove_in_progress)
7827                         goto done;
7828                 spin_lock_irqsave(&h->lock, flags);
7829                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7830                 spin_unlock_irqrestore(&h->lock, flags);
7831                 if (!(doorbell_value & CFGTBL_ChangeReq))
7832                         goto done;
7833                 /* delay and try again */
7834                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7835         }
7836         return -ENODEV;
7837 done:
7838         return 0;
7839 }
7840
7841 /* return -ENODEV or other reason on error, 0 on success */
7842 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7843 {
7844         u32 trans_support;
7845
7846         trans_support = readl(&(h->cfgtable->TransportSupport));
7847         if (!(trans_support & SIMPLE_MODE))
7848                 return -ENOTSUPP;
7849
7850         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7851
7852         /* Update the field, and then ring the doorbell */
7853         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7854         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7855         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7856         if (hpsa_wait_for_mode_change_ack(h))
7857                 goto error;
7858         print_cfg_table(&h->pdev->dev, h->cfgtable);
7859         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7860                 goto error;
7861         h->transMethod = CFGTBL_Trans_Simple;
7862         return 0;
7863 error:
7864         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7865         return -ENODEV;
7866 }
7867
7868 /* free items allocated or mapped by hpsa_pci_init */
7869 static void hpsa_free_pci_init(struct ctlr_info *h)
7870 {
7871         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7872         iounmap(h->vaddr);                      /* pci_init 3 */
7873         h->vaddr = NULL;
7874         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7875         /*
7876          * call pci_disable_device before pci_release_regions per
7877          * Documentation/PCI/pci.txt
7878          */
7879         pci_disable_device(h->pdev);            /* pci_init 1 */
7880         pci_release_regions(h->pdev);           /* pci_init 2 */
7881 }
7882
7883 /* several items must be freed later */
7884 static int hpsa_pci_init(struct ctlr_info *h)
7885 {
7886         int prod_index, err;
7887
7888         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7889         if (prod_index < 0)
7890                 return prod_index;
7891         h->product_name = products[prod_index].product_name;
7892         h->access = *(products[prod_index].access);
7893
7894         h->needs_abort_tags_swizzled =
7895                 ctlr_needs_abort_tags_swizzled(h->board_id);
7896
7897         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7898                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7899
7900         err = pci_enable_device(h->pdev);
7901         if (err) {
7902                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7903                 pci_disable_device(h->pdev);
7904                 return err;
7905         }
7906
7907         err = pci_request_regions(h->pdev, HPSA);
7908         if (err) {
7909                 dev_err(&h->pdev->dev,
7910                         "failed to obtain PCI resources\n");
7911                 pci_disable_device(h->pdev);
7912                 return err;
7913         }
7914
7915         pci_set_master(h->pdev);
7916
7917         hpsa_interrupt_mode(h);
7918         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7919         if (err)
7920                 goto clean2;    /* intmode+region, pci */
7921         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7922         if (!h->vaddr) {
7923                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7924                 err = -ENOMEM;
7925                 goto clean2;    /* intmode+region, pci */
7926         }
7927         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7928         if (err)
7929                 goto clean3;    /* vaddr, intmode+region, pci */
7930         err = hpsa_find_cfgtables(h);
7931         if (err)
7932                 goto clean3;    /* vaddr, intmode+region, pci */
7933         hpsa_find_board_params(h);
7934
7935         if (!hpsa_CISS_signature_present(h)) {
7936                 err = -ENODEV;
7937                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7938         }
7939         hpsa_set_driver_support_bits(h);
7940         hpsa_p600_dma_prefetch_quirk(h);
7941         err = hpsa_enter_simple_mode(h);
7942         if (err)
7943                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7944         return 0;
7945
7946 clean4: /* cfgtables, vaddr, intmode+region, pci */
7947         hpsa_free_cfgtables(h);
7948 clean3: /* vaddr, intmode+region, pci */
7949         iounmap(h->vaddr);
7950         h->vaddr = NULL;
7951 clean2: /* intmode+region, pci */
7952         hpsa_disable_interrupt_mode(h);
7953         /*
7954          * call pci_disable_device before pci_release_regions per
7955          * Documentation/PCI/pci.txt
7956          */
7957         pci_disable_device(h->pdev);
7958         pci_release_regions(h->pdev);
7959         return err;
7960 }
7961
7962 static void hpsa_hba_inquiry(struct ctlr_info *h)
7963 {
7964         int rc;
7965
7966 #define HBA_INQUIRY_BYTE_COUNT 64
7967         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7968         if (!h->hba_inquiry_data)
7969                 return;
7970         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7971                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7972         if (rc != 0) {
7973                 kfree(h->hba_inquiry_data);
7974                 h->hba_inquiry_data = NULL;
7975         }
7976 }
7977
7978 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7979 {
7980         int rc, i;
7981         void __iomem *vaddr;
7982
7983         if (!reset_devices)
7984                 return 0;
7985
7986         /* kdump kernel is loading, we don't know in which state is
7987          * the pci interface. The dev->enable_cnt is equal zero
7988          * so we call enable+disable, wait a while and switch it on.
7989          */
7990         rc = pci_enable_device(pdev);
7991         if (rc) {
7992                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7993                 return -ENODEV;
7994         }
7995         pci_disable_device(pdev);
7996         msleep(260);                    /* a randomly chosen number */
7997         rc = pci_enable_device(pdev);
7998         if (rc) {
7999                 dev_warn(&pdev->dev, "failed to enable device.\n");
8000                 return -ENODEV;
8001         }
8002
8003         pci_set_master(pdev);
8004
8005         vaddr = pci_ioremap_bar(pdev, 0);
8006         if (vaddr == NULL) {
8007                 rc = -ENOMEM;
8008                 goto out_disable;
8009         }
8010         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8011         iounmap(vaddr);
8012
8013         /* Reset the controller with a PCI power-cycle or via doorbell */
8014         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8015
8016         /* -ENOTSUPP here means we cannot reset the controller
8017          * but it's already (and still) up and running in
8018          * "performant mode".  Or, it might be 640x, which can't reset
8019          * due to concerns about shared bbwc between 6402/6404 pair.
8020          */
8021         if (rc)
8022                 goto out_disable;
8023
8024         /* Now try to get the controller to respond to a no-op */
8025         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8026         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8027                 if (hpsa_noop(pdev) == 0)
8028                         break;
8029                 else
8030                         dev_warn(&pdev->dev, "no-op failed%s\n",
8031                                         (i < 11 ? "; re-trying" : ""));
8032         }
8033
8034 out_disable:
8035
8036         pci_disable_device(pdev);
8037         return rc;
8038 }
8039
8040 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8041 {
8042         kfree(h->cmd_pool_bits);
8043         h->cmd_pool_bits = NULL;
8044         if (h->cmd_pool) {
8045                 pci_free_consistent(h->pdev,
8046                                 h->nr_cmds * sizeof(struct CommandList),
8047                                 h->cmd_pool,
8048                                 h->cmd_pool_dhandle);
8049                 h->cmd_pool = NULL;
8050                 h->cmd_pool_dhandle = 0;
8051         }
8052         if (h->errinfo_pool) {
8053                 pci_free_consistent(h->pdev,
8054                                 h->nr_cmds * sizeof(struct ErrorInfo),
8055                                 h->errinfo_pool,
8056                                 h->errinfo_pool_dhandle);
8057                 h->errinfo_pool = NULL;
8058                 h->errinfo_pool_dhandle = 0;
8059         }
8060 }
8061
8062 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8063 {
8064         h->cmd_pool_bits = kzalloc(
8065                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8066                 sizeof(unsigned long), GFP_KERNEL);
8067         h->cmd_pool = pci_alloc_consistent(h->pdev,
8068                     h->nr_cmds * sizeof(*h->cmd_pool),
8069                     &(h->cmd_pool_dhandle));
8070         h->errinfo_pool = pci_alloc_consistent(h->pdev,
8071                     h->nr_cmds * sizeof(*h->errinfo_pool),
8072                     &(h->errinfo_pool_dhandle));
8073         if ((h->cmd_pool_bits == NULL)
8074             || (h->cmd_pool == NULL)
8075             || (h->errinfo_pool == NULL)) {
8076                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8077                 goto clean_up;
8078         }
8079         hpsa_preinitialize_commands(h);
8080         return 0;
8081 clean_up:
8082         hpsa_free_cmd_pool(h);
8083         return -ENOMEM;
8084 }
8085
8086 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
8087 {
8088         int i, cpu;
8089
8090         cpu = cpumask_first(cpu_online_mask);
8091         for (i = 0; i < h->msix_vector; i++) {
8092                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
8093                 cpu = cpumask_next(cpu, cpu_online_mask);
8094         }
8095 }
8096
8097 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8098 static void hpsa_free_irqs(struct ctlr_info *h)
8099 {
8100         int i;
8101
8102         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
8103                 /* Single reply queue, only one irq to free */
8104                 i = h->intr_mode;
8105                 irq_set_affinity_hint(h->intr[i], NULL);
8106                 free_irq(h->intr[i], &h->q[i]);
8107                 h->q[i] = 0;
8108                 return;
8109         }
8110
8111         for (i = 0; i < h->msix_vector; i++) {
8112                 irq_set_affinity_hint(h->intr[i], NULL);
8113                 free_irq(h->intr[i], &h->q[i]);
8114                 h->q[i] = 0;
8115         }
8116         for (; i < MAX_REPLY_QUEUES; i++)
8117                 h->q[i] = 0;
8118 }
8119
8120 /* returns 0 on success; cleans up and returns -Enn on error */
8121 static int hpsa_request_irqs(struct ctlr_info *h,
8122         irqreturn_t (*msixhandler)(int, void *),
8123         irqreturn_t (*intxhandler)(int, void *))
8124 {
8125         int rc, i;
8126
8127         /*
8128          * initialize h->q[x] = x so that interrupt handlers know which
8129          * queue to process.
8130          */
8131         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8132                 h->q[i] = (u8) i;
8133
8134         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8135                 /* If performant mode and MSI-X, use multiple reply queues */
8136                 for (i = 0; i < h->msix_vector; i++) {
8137                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8138                         rc = request_irq(h->intr[i], msixhandler,
8139                                         0, h->intrname[i],
8140                                         &h->q[i]);
8141                         if (rc) {
8142                                 int j;
8143
8144                                 dev_err(&h->pdev->dev,
8145                                         "failed to get irq %d for %s\n",
8146                                        h->intr[i], h->devname);
8147                                 for (j = 0; j < i; j++) {
8148                                         free_irq(h->intr[j], &h->q[j]);
8149                                         h->q[j] = 0;
8150                                 }
8151                                 for (; j < MAX_REPLY_QUEUES; j++)
8152                                         h->q[j] = 0;
8153                                 return rc;
8154                         }
8155                 }
8156                 hpsa_irq_affinity_hints(h);
8157         } else {
8158                 /* Use single reply pool */
8159                 if (h->msix_vector > 0 || h->msi_vector) {
8160                         if (h->msix_vector)
8161                                 sprintf(h->intrname[h->intr_mode],
8162                                         "%s-msix", h->devname);
8163                         else
8164                                 sprintf(h->intrname[h->intr_mode],
8165                                         "%s-msi", h->devname);
8166                         rc = request_irq(h->intr[h->intr_mode],
8167                                 msixhandler, 0,
8168                                 h->intrname[h->intr_mode],
8169                                 &h->q[h->intr_mode]);
8170                 } else {
8171                         sprintf(h->intrname[h->intr_mode],
8172                                 "%s-intx", h->devname);
8173                         rc = request_irq(h->intr[h->intr_mode],
8174                                 intxhandler, IRQF_SHARED,
8175                                 h->intrname[h->intr_mode],
8176                                 &h->q[h->intr_mode]);
8177                 }
8178                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8179         }
8180         if (rc) {
8181                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8182                        h->intr[h->intr_mode], h->devname);
8183                 hpsa_free_irqs(h);
8184                 return -ENODEV;
8185         }
8186         return 0;
8187 }
8188
8189 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8190 {
8191         int rc;
8192         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8193
8194         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8195         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8196         if (rc) {
8197                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8198                 return rc;
8199         }
8200
8201         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8202         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8203         if (rc) {
8204                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8205                         "after soft reset.\n");
8206                 return rc;
8207         }
8208
8209         return 0;
8210 }
8211
8212 static void hpsa_free_reply_queues(struct ctlr_info *h)
8213 {
8214         int i;
8215
8216         for (i = 0; i < h->nreply_queues; i++) {
8217                 if (!h->reply_queue[i].head)
8218                         continue;
8219                 pci_free_consistent(h->pdev,
8220                                         h->reply_queue_size,
8221                                         h->reply_queue[i].head,
8222                                         h->reply_queue[i].busaddr);
8223                 h->reply_queue[i].head = NULL;
8224                 h->reply_queue[i].busaddr = 0;
8225         }
8226         h->reply_queue_size = 0;
8227 }
8228
8229 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8230 {
8231         hpsa_free_performant_mode(h);           /* init_one 7 */
8232         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8233         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8234         hpsa_free_irqs(h);                      /* init_one 4 */
8235         scsi_host_put(h->scsi_host);            /* init_one 3 */
8236         h->scsi_host = NULL;                    /* init_one 3 */
8237         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8238         free_percpu(h->lockup_detected);        /* init_one 2 */
8239         h->lockup_detected = NULL;              /* init_one 2 */
8240         if (h->resubmit_wq) {
8241                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8242                 h->resubmit_wq = NULL;
8243         }
8244         if (h->rescan_ctlr_wq) {
8245                 destroy_workqueue(h->rescan_ctlr_wq);
8246                 h->rescan_ctlr_wq = NULL;
8247         }
8248         kfree(h);                               /* init_one 1 */
8249 }
8250
8251 /* Called when controller lockup detected. */
8252 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8253 {
8254         int i, refcount;
8255         struct CommandList *c;
8256         int failcount = 0;
8257
8258         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8259         for (i = 0; i < h->nr_cmds; i++) {
8260                 c = h->cmd_pool + i;
8261                 refcount = atomic_inc_return(&c->refcount);
8262                 if (refcount > 1) {
8263                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8264                         finish_cmd(c);
8265                         atomic_dec(&h->commands_outstanding);
8266                         failcount++;
8267                 }
8268                 cmd_free(h, c);
8269         }
8270         dev_warn(&h->pdev->dev,
8271                 "failed %d commands in fail_all\n", failcount);
8272 }
8273
8274 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8275 {
8276         int cpu;
8277
8278         for_each_online_cpu(cpu) {
8279                 u32 *lockup_detected;
8280                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8281                 *lockup_detected = value;
8282         }
8283         wmb(); /* be sure the per-cpu variables are out to memory */
8284 }
8285
8286 static void controller_lockup_detected(struct ctlr_info *h)
8287 {
8288         unsigned long flags;
8289         u32 lockup_detected;
8290
8291         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8292         spin_lock_irqsave(&h->lock, flags);
8293         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8294         if (!lockup_detected) {
8295                 /* no heartbeat, but controller gave us a zero. */
8296                 dev_warn(&h->pdev->dev,
8297                         "lockup detected after %d but scratchpad register is zero\n",
8298                         h->heartbeat_sample_interval / HZ);
8299                 lockup_detected = 0xffffffff;
8300         }
8301         set_lockup_detected_for_all_cpus(h, lockup_detected);
8302         spin_unlock_irqrestore(&h->lock, flags);
8303         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8304                         lockup_detected, h->heartbeat_sample_interval / HZ);
8305         pci_disable_device(h->pdev);
8306         fail_all_outstanding_cmds(h);
8307 }
8308
8309 static int detect_controller_lockup(struct ctlr_info *h)
8310 {
8311         u64 now;
8312         u32 heartbeat;
8313         unsigned long flags;
8314
8315         now = get_jiffies_64();
8316         /* If we've received an interrupt recently, we're ok. */
8317         if (time_after64(h->last_intr_timestamp +
8318                                 (h->heartbeat_sample_interval), now))
8319                 return false;
8320
8321         /*
8322          * If we've already checked the heartbeat recently, we're ok.
8323          * This could happen if someone sends us a signal. We
8324          * otherwise don't care about signals in this thread.
8325          */
8326         if (time_after64(h->last_heartbeat_timestamp +
8327                                 (h->heartbeat_sample_interval), now))
8328                 return false;
8329
8330         /* If heartbeat has not changed since we last looked, we're not ok. */
8331         spin_lock_irqsave(&h->lock, flags);
8332         heartbeat = readl(&h->cfgtable->HeartBeat);
8333         spin_unlock_irqrestore(&h->lock, flags);
8334         if (h->last_heartbeat == heartbeat) {
8335                 controller_lockup_detected(h);
8336                 return true;
8337         }
8338
8339         /* We're ok. */
8340         h->last_heartbeat = heartbeat;
8341         h->last_heartbeat_timestamp = now;
8342         return false;
8343 }
8344
8345 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8346 {
8347         int i;
8348         char *event_type;
8349
8350         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8351                 return;
8352
8353         /* Ask the controller to clear the events we're handling. */
8354         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8355                         | CFGTBL_Trans_io_accel2)) &&
8356                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8357                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8358
8359                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8360                         event_type = "state change";
8361                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8362                         event_type = "configuration change";
8363                 /* Stop sending new RAID offload reqs via the IO accelerator */
8364                 scsi_block_requests(h->scsi_host);
8365                 for (i = 0; i < h->ndevices; i++) {
8366                         h->dev[i]->offload_enabled = 0;
8367                         h->dev[i]->offload_to_be_enabled = 0;
8368                 }
8369                 hpsa_drain_accel_commands(h);
8370                 /* Set 'accelerator path config change' bit */
8371                 dev_warn(&h->pdev->dev,
8372                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8373                         h->events, event_type);
8374                 writel(h->events, &(h->cfgtable->clear_event_notify));
8375                 /* Set the "clear event notify field update" bit 6 */
8376                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8377                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8378                 hpsa_wait_for_clear_event_notify_ack(h);
8379                 scsi_unblock_requests(h->scsi_host);
8380         } else {
8381                 /* Acknowledge controller notification events. */
8382                 writel(h->events, &(h->cfgtable->clear_event_notify));
8383                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8384                 hpsa_wait_for_clear_event_notify_ack(h);
8385 #if 0
8386                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8387                 hpsa_wait_for_mode_change_ack(h);
8388 #endif
8389         }
8390         return;
8391 }
8392
8393 /* Check a register on the controller to see if there are configuration
8394  * changes (added/changed/removed logical drives, etc.) which mean that
8395  * we should rescan the controller for devices.
8396  * Also check flag for driver-initiated rescan.
8397  */
8398 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8399 {
8400         if (h->drv_req_rescan) {
8401                 h->drv_req_rescan = 0;
8402                 return 1;
8403         }
8404
8405         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8406                 return 0;
8407
8408         h->events = readl(&(h->cfgtable->event_notify));
8409         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8410 }
8411
8412 /*
8413  * Check if any of the offline devices have become ready
8414  */
8415 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8416 {
8417         unsigned long flags;
8418         struct offline_device_entry *d;
8419         struct list_head *this, *tmp;
8420
8421         spin_lock_irqsave(&h->offline_device_lock, flags);
8422         list_for_each_safe(this, tmp, &h->offline_device_list) {
8423                 d = list_entry(this, struct offline_device_entry,
8424                                 offline_list);
8425                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8426                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8427                         spin_lock_irqsave(&h->offline_device_lock, flags);
8428                         list_del(&d->offline_list);
8429                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8430                         return 1;
8431                 }
8432                 spin_lock_irqsave(&h->offline_device_lock, flags);
8433         }
8434         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8435         return 0;
8436 }
8437
8438 static int hpsa_luns_changed(struct ctlr_info *h)
8439 {
8440         int rc = 1; /* assume there are changes */
8441         struct ReportLUNdata *logdev = NULL;
8442
8443         /* if we can't find out if lun data has changed,
8444          * assume that it has.
8445          */
8446
8447         if (!h->lastlogicals)
8448                 goto out;
8449
8450         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8451         if (!logdev) {
8452                 dev_warn(&h->pdev->dev,
8453                         "Out of memory, can't track lun changes.\n");
8454                 goto out;
8455         }
8456         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8457                 dev_warn(&h->pdev->dev,
8458                         "report luns failed, can't track lun changes.\n");
8459                 goto out;
8460         }
8461         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8462                 dev_info(&h->pdev->dev,
8463                         "Lun changes detected.\n");
8464                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8465                 goto out;
8466         } else
8467                 rc = 0; /* no changes detected. */
8468 out:
8469         kfree(logdev);
8470         return rc;
8471 }
8472
8473 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8474 {
8475         unsigned long flags;
8476         struct ctlr_info *h = container_of(to_delayed_work(work),
8477                                         struct ctlr_info, rescan_ctlr_work);
8478
8479
8480         if (h->remove_in_progress)
8481                 return;
8482
8483         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8484                 scsi_host_get(h->scsi_host);
8485                 hpsa_ack_ctlr_events(h);
8486                 hpsa_scan_start(h->scsi_host);
8487                 scsi_host_put(h->scsi_host);
8488         } else if (h->discovery_polling) {
8489                 hpsa_disable_rld_caching(h);
8490                 if (hpsa_luns_changed(h)) {
8491                         struct Scsi_Host *sh = NULL;
8492
8493                         dev_info(&h->pdev->dev,
8494                                 "driver discovery polling rescan.\n");
8495                         sh = scsi_host_get(h->scsi_host);
8496                         if (sh != NULL) {
8497                                 hpsa_scan_start(sh);
8498                                 scsi_host_put(sh);
8499                         }
8500                 }
8501         }
8502         spin_lock_irqsave(&h->lock, flags);
8503         if (!h->remove_in_progress)
8504                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8505                                 h->heartbeat_sample_interval);
8506         spin_unlock_irqrestore(&h->lock, flags);
8507 }
8508
8509 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8510 {
8511         unsigned long flags;
8512         struct ctlr_info *h = container_of(to_delayed_work(work),
8513                                         struct ctlr_info, monitor_ctlr_work);
8514
8515         detect_controller_lockup(h);
8516         if (lockup_detected(h))
8517                 return;
8518
8519         spin_lock_irqsave(&h->lock, flags);
8520         if (!h->remove_in_progress)
8521                 schedule_delayed_work(&h->monitor_ctlr_work,
8522                                 h->heartbeat_sample_interval);
8523         spin_unlock_irqrestore(&h->lock, flags);
8524 }
8525
8526 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8527                                                 char *name)
8528 {
8529         struct workqueue_struct *wq = NULL;
8530
8531         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8532         if (!wq)
8533                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8534
8535         return wq;
8536 }
8537
8538 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8539 {
8540         int dac, rc;
8541         struct ctlr_info *h;
8542         int try_soft_reset = 0;
8543         unsigned long flags;
8544         u32 board_id;
8545
8546         if (number_of_controllers == 0)
8547                 printk(KERN_INFO DRIVER_NAME "\n");
8548
8549         rc = hpsa_lookup_board_id(pdev, &board_id);
8550         if (rc < 0) {
8551                 dev_warn(&pdev->dev, "Board ID not found\n");
8552                 return rc;
8553         }
8554
8555         rc = hpsa_init_reset_devices(pdev, board_id);
8556         if (rc) {
8557                 if (rc != -ENOTSUPP)
8558                         return rc;
8559                 /* If the reset fails in a particular way (it has no way to do
8560                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8561                  * a soft reset once we get the controller configured up to the
8562                  * point that it can accept a command.
8563                  */
8564                 try_soft_reset = 1;
8565                 rc = 0;
8566         }
8567
8568 reinit_after_soft_reset:
8569
8570         /* Command structures must be aligned on a 32-byte boundary because
8571          * the 5 lower bits of the address are used by the hardware. and by
8572          * the driver.  See comments in hpsa.h for more info.
8573          */
8574         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8575         h = kzalloc(sizeof(*h), GFP_KERNEL);
8576         if (!h) {
8577                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8578                 return -ENOMEM;
8579         }
8580
8581         h->pdev = pdev;
8582
8583         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8584         INIT_LIST_HEAD(&h->offline_device_list);
8585         spin_lock_init(&h->lock);
8586         spin_lock_init(&h->offline_device_lock);
8587         spin_lock_init(&h->scan_lock);
8588         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8589         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8590
8591         /* Allocate and clear per-cpu variable lockup_detected */
8592         h->lockup_detected = alloc_percpu(u32);
8593         if (!h->lockup_detected) {
8594                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8595                 rc = -ENOMEM;
8596                 goto clean1;    /* aer/h */
8597         }
8598         set_lockup_detected_for_all_cpus(h, 0);
8599
8600         rc = hpsa_pci_init(h);
8601         if (rc)
8602                 goto clean2;    /* lu, aer/h */
8603
8604         /* relies on h-> settings made by hpsa_pci_init, including
8605          * interrupt_mode h->intr */
8606         rc = hpsa_scsi_host_alloc(h);
8607         if (rc)
8608                 goto clean2_5;  /* pci, lu, aer/h */
8609
8610         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8611         h->ctlr = number_of_controllers;
8612         number_of_controllers++;
8613
8614         /* configure PCI DMA stuff */
8615         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8616         if (rc == 0) {
8617                 dac = 1;
8618         } else {
8619                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8620                 if (rc == 0) {
8621                         dac = 0;
8622                 } else {
8623                         dev_err(&pdev->dev, "no suitable DMA available\n");
8624                         goto clean3;    /* shost, pci, lu, aer/h */
8625                 }
8626         }
8627
8628         /* make sure the board interrupts are off */
8629         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8630
8631         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8632         if (rc)
8633                 goto clean3;    /* shost, pci, lu, aer/h */
8634         rc = hpsa_alloc_cmd_pool(h);
8635         if (rc)
8636                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8637         rc = hpsa_alloc_sg_chain_blocks(h);
8638         if (rc)
8639                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8640         init_waitqueue_head(&h->scan_wait_queue);
8641         init_waitqueue_head(&h->abort_cmd_wait_queue);
8642         init_waitqueue_head(&h->event_sync_wait_queue);
8643         mutex_init(&h->reset_mutex);
8644         h->scan_finished = 1; /* no scan currently in progress */
8645
8646         pci_set_drvdata(pdev, h);
8647         h->ndevices = 0;
8648
8649         spin_lock_init(&h->devlock);
8650         rc = hpsa_put_ctlr_into_performant_mode(h);
8651         if (rc)
8652                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8653
8654         /* create the resubmit workqueue */
8655         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8656         if (!h->rescan_ctlr_wq) {
8657                 rc = -ENOMEM;
8658                 goto clean7;
8659         }
8660
8661         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8662         if (!h->resubmit_wq) {
8663                 rc = -ENOMEM;
8664                 goto clean7;    /* aer/h */
8665         }
8666
8667         /*
8668          * At this point, the controller is ready to take commands.
8669          * Now, if reset_devices and the hard reset didn't work, try
8670          * the soft reset and see if that works.
8671          */
8672         if (try_soft_reset) {
8673
8674                 /* This is kind of gross.  We may or may not get a completion
8675                  * from the soft reset command, and if we do, then the value
8676                  * from the fifo may or may not be valid.  So, we wait 10 secs
8677                  * after the reset throwing away any completions we get during
8678                  * that time.  Unregister the interrupt handler and register
8679                  * fake ones to scoop up any residual completions.
8680                  */
8681                 spin_lock_irqsave(&h->lock, flags);
8682                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8683                 spin_unlock_irqrestore(&h->lock, flags);
8684                 hpsa_free_irqs(h);
8685                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8686                                         hpsa_intx_discard_completions);
8687                 if (rc) {
8688                         dev_warn(&h->pdev->dev,
8689                                 "Failed to request_irq after soft reset.\n");
8690                         /*
8691                          * cannot goto clean7 or free_irqs will be called
8692                          * again. Instead, do its work
8693                          */
8694                         hpsa_free_performant_mode(h);   /* clean7 */
8695                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8696                         hpsa_free_cmd_pool(h);          /* clean5 */
8697                         /*
8698                          * skip hpsa_free_irqs(h) clean4 since that
8699                          * was just called before request_irqs failed
8700                          */
8701                         goto clean3;
8702                 }
8703
8704                 rc = hpsa_kdump_soft_reset(h);
8705                 if (rc)
8706                         /* Neither hard nor soft reset worked, we're hosed. */
8707                         goto clean7;
8708
8709                 dev_info(&h->pdev->dev, "Board READY.\n");
8710                 dev_info(&h->pdev->dev,
8711                         "Waiting for stale completions to drain.\n");
8712                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8713                 msleep(10000);
8714                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8715
8716                 rc = controller_reset_failed(h->cfgtable);
8717                 if (rc)
8718                         dev_info(&h->pdev->dev,
8719                                 "Soft reset appears to have failed.\n");
8720
8721                 /* since the controller's reset, we have to go back and re-init
8722                  * everything.  Easiest to just forget what we've done and do it
8723                  * all over again.
8724                  */
8725                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8726                 try_soft_reset = 0;
8727                 if (rc)
8728                         /* don't goto clean, we already unallocated */
8729                         return -ENODEV;
8730
8731                 goto reinit_after_soft_reset;
8732         }
8733
8734         /* Enable Accelerated IO path at driver layer */
8735         h->acciopath_status = 1;
8736         /* Disable discovery polling.*/
8737         h->discovery_polling = 0;
8738
8739
8740         /* Turn the interrupts on so we can service requests */
8741         h->access.set_intr_mask(h, HPSA_INTR_ON);
8742
8743         hpsa_hba_inquiry(h);
8744
8745         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8746         if (!h->lastlogicals)
8747                 dev_info(&h->pdev->dev,
8748                         "Can't track change to report lun data\n");
8749
8750         /* hook into SCSI subsystem */
8751         rc = hpsa_scsi_add_host(h);
8752         if (rc)
8753                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8754
8755         /* Monitor the controller for firmware lockups */
8756         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8757         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8758         schedule_delayed_work(&h->monitor_ctlr_work,
8759                                 h->heartbeat_sample_interval);
8760         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8761         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8762                                 h->heartbeat_sample_interval);
8763         return 0;
8764
8765 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8766         hpsa_free_performant_mode(h);
8767         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8768 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8769         hpsa_free_sg_chain_blocks(h);
8770 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8771         hpsa_free_cmd_pool(h);
8772 clean4: /* irq, shost, pci, lu, aer/h */
8773         hpsa_free_irqs(h);
8774 clean3: /* shost, pci, lu, aer/h */
8775         scsi_host_put(h->scsi_host);
8776         h->scsi_host = NULL;
8777 clean2_5: /* pci, lu, aer/h */
8778         hpsa_free_pci_init(h);
8779 clean2: /* lu, aer/h */
8780         if (h->lockup_detected) {
8781                 free_percpu(h->lockup_detected);
8782                 h->lockup_detected = NULL;
8783         }
8784 clean1: /* wq/aer/h */
8785         if (h->resubmit_wq) {
8786                 destroy_workqueue(h->resubmit_wq);
8787                 h->resubmit_wq = NULL;
8788         }
8789         if (h->rescan_ctlr_wq) {
8790                 destroy_workqueue(h->rescan_ctlr_wq);
8791                 h->rescan_ctlr_wq = NULL;
8792         }
8793         kfree(h);
8794         return rc;
8795 }
8796
8797 static void hpsa_flush_cache(struct ctlr_info *h)
8798 {
8799         char *flush_buf;
8800         struct CommandList *c;
8801         int rc;
8802
8803         if (unlikely(lockup_detected(h)))
8804                 return;
8805         flush_buf = kzalloc(4, GFP_KERNEL);
8806         if (!flush_buf)
8807                 return;
8808
8809         c = cmd_alloc(h);
8810
8811         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8812                 RAID_CTLR_LUNID, TYPE_CMD)) {
8813                 goto out;
8814         }
8815         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8816                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8817         if (rc)
8818                 goto out;
8819         if (c->err_info->CommandStatus != 0)
8820 out:
8821                 dev_warn(&h->pdev->dev,
8822                         "error flushing cache on controller\n");
8823         cmd_free(h, c);
8824         kfree(flush_buf);
8825 }
8826
8827 /* Make controller gather fresh report lun data each time we
8828  * send down a report luns request
8829  */
8830 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8831 {
8832         u32 *options;
8833         struct CommandList *c;
8834         int rc;
8835
8836         /* Don't bother trying to set diag options if locked up */
8837         if (unlikely(h->lockup_detected))
8838                 return;
8839
8840         options = kzalloc(sizeof(*options), GFP_KERNEL);
8841         if (!options) {
8842                 dev_err(&h->pdev->dev,
8843                         "Error: failed to disable rld caching, during alloc.\n");
8844                 return;
8845         }
8846
8847         c = cmd_alloc(h);
8848
8849         /* first, get the current diag options settings */
8850         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8851                 RAID_CTLR_LUNID, TYPE_CMD))
8852                 goto errout;
8853
8854         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8855                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8856         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8857                 goto errout;
8858
8859         /* Now, set the bit for disabling the RLD caching */
8860         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8861
8862         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8863                 RAID_CTLR_LUNID, TYPE_CMD))
8864                 goto errout;
8865
8866         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8867                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8868         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8869                 goto errout;
8870
8871         /* Now verify that it got set: */
8872         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8873                 RAID_CTLR_LUNID, TYPE_CMD))
8874                 goto errout;
8875
8876         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8877                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8878         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8879                 goto errout;
8880
8881         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8882                 goto out;
8883
8884 errout:
8885         dev_err(&h->pdev->dev,
8886                         "Error: failed to disable report lun data caching.\n");
8887 out:
8888         cmd_free(h, c);
8889         kfree(options);
8890 }
8891
8892 static void hpsa_shutdown(struct pci_dev *pdev)
8893 {
8894         struct ctlr_info *h;
8895
8896         h = pci_get_drvdata(pdev);
8897         /* Turn board interrupts off  and send the flush cache command
8898          * sendcmd will turn off interrupt, and send the flush...
8899          * To write all data in the battery backed cache to disks
8900          */
8901         hpsa_flush_cache(h);
8902         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8903         hpsa_free_irqs(h);                      /* init_one 4 */
8904         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8905 }
8906
8907 static void hpsa_free_device_info(struct ctlr_info *h)
8908 {
8909         int i;
8910
8911         for (i = 0; i < h->ndevices; i++) {
8912                 kfree(h->dev[i]);
8913                 h->dev[i] = NULL;
8914         }
8915 }
8916
8917 static void hpsa_remove_one(struct pci_dev *pdev)
8918 {
8919         struct ctlr_info *h;
8920         unsigned long flags;
8921
8922         if (pci_get_drvdata(pdev) == NULL) {
8923                 dev_err(&pdev->dev, "unable to remove device\n");
8924                 return;
8925         }
8926         h = pci_get_drvdata(pdev);
8927
8928         /* Get rid of any controller monitoring work items */
8929         spin_lock_irqsave(&h->lock, flags);
8930         h->remove_in_progress = 1;
8931         spin_unlock_irqrestore(&h->lock, flags);
8932         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8933         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8934         destroy_workqueue(h->rescan_ctlr_wq);
8935         destroy_workqueue(h->resubmit_wq);
8936
8937         /*
8938          * Call before disabling interrupts.
8939          * scsi_remove_host can trigger I/O operations especially
8940          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8941          * operations which cannot complete and will hang the system.
8942          */
8943         if (h->scsi_host)
8944                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8945         /* includes hpsa_free_irqs - init_one 4 */
8946         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8947         hpsa_shutdown(pdev);
8948
8949         hpsa_free_device_info(h);               /* scan */
8950
8951         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8952         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8953         hpsa_free_ioaccel2_sg_chain_blocks(h);
8954         hpsa_free_performant_mode(h);                   /* init_one 7 */
8955         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8956         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8957         kfree(h->lastlogicals);
8958
8959         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8960
8961         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8962         h->scsi_host = NULL;                            /* init_one 3 */
8963
8964         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8965         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8966
8967         free_percpu(h->lockup_detected);                /* init_one 2 */
8968         h->lockup_detected = NULL;                      /* init_one 2 */
8969         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8970
8971         hpsa_delete_sas_host(h);
8972
8973         kfree(h);                                       /* init_one 1 */
8974 }
8975
8976 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8977         __attribute__((unused)) pm_message_t state)
8978 {
8979         return -ENOSYS;
8980 }
8981
8982 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8983 {
8984         return -ENOSYS;
8985 }
8986
8987 static struct pci_driver hpsa_pci_driver = {
8988         .name = HPSA,
8989         .probe = hpsa_init_one,
8990         .remove = hpsa_remove_one,
8991         .id_table = hpsa_pci_device_id, /* id_table */
8992         .shutdown = hpsa_shutdown,
8993         .suspend = hpsa_suspend,
8994         .resume = hpsa_resume,
8995 };
8996
8997 /* Fill in bucket_map[], given nsgs (the max number of
8998  * scatter gather elements supported) and bucket[],
8999  * which is an array of 8 integers.  The bucket[] array
9000  * contains 8 different DMA transfer sizes (in 16
9001  * byte increments) which the controller uses to fetch
9002  * commands.  This function fills in bucket_map[], which
9003  * maps a given number of scatter gather elements to one of
9004  * the 8 DMA transfer sizes.  The point of it is to allow the
9005  * controller to only do as much DMA as needed to fetch the
9006  * command, with the DMA transfer size encoded in the lower
9007  * bits of the command address.
9008  */
9009 static void  calc_bucket_map(int bucket[], int num_buckets,
9010         int nsgs, int min_blocks, u32 *bucket_map)
9011 {
9012         int i, j, b, size;
9013
9014         /* Note, bucket_map must have nsgs+1 entries. */
9015         for (i = 0; i <= nsgs; i++) {
9016                 /* Compute size of a command with i SG entries */
9017                 size = i + min_blocks;
9018                 b = num_buckets; /* Assume the biggest bucket */
9019                 /* Find the bucket that is just big enough */
9020                 for (j = 0; j < num_buckets; j++) {
9021                         if (bucket[j] >= size) {
9022                                 b = j;
9023                                 break;
9024                         }
9025                 }
9026                 /* for a command with i SG entries, use bucket b. */
9027                 bucket_map[i] = b;
9028         }
9029 }
9030
9031 /*
9032  * return -ENODEV on err, 0 on success (or no action)
9033  * allocates numerous items that must be freed later
9034  */
9035 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9036 {
9037         int i;
9038         unsigned long register_value;
9039         unsigned long transMethod = CFGTBL_Trans_Performant |
9040                         (trans_support & CFGTBL_Trans_use_short_tags) |
9041                                 CFGTBL_Trans_enable_directed_msix |
9042                         (trans_support & (CFGTBL_Trans_io_accel1 |
9043                                 CFGTBL_Trans_io_accel2));
9044         struct access_method access = SA5_performant_access;
9045
9046         /* This is a bit complicated.  There are 8 registers on
9047          * the controller which we write to to tell it 8 different
9048          * sizes of commands which there may be.  It's a way of
9049          * reducing the DMA done to fetch each command.  Encoded into
9050          * each command's tag are 3 bits which communicate to the controller
9051          * which of the eight sizes that command fits within.  The size of
9052          * each command depends on how many scatter gather entries there are.
9053          * Each SG entry requires 16 bytes.  The eight registers are programmed
9054          * with the number of 16-byte blocks a command of that size requires.
9055          * The smallest command possible requires 5 such 16 byte blocks.
9056          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9057          * blocks.  Note, this only extends to the SG entries contained
9058          * within the command block, and does not extend to chained blocks
9059          * of SG elements.   bft[] contains the eight values we write to
9060          * the registers.  They are not evenly distributed, but have more
9061          * sizes for small commands, and fewer sizes for larger commands.
9062          */
9063         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9064 #define MIN_IOACCEL2_BFT_ENTRY 5
9065 #define HPSA_IOACCEL2_HEADER_SZ 4
9066         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9067                         13, 14, 15, 16, 17, 18, 19,
9068                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9069         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9070         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9071         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9072                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9073         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9074         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9075         /*  5 = 1 s/g entry or 4k
9076          *  6 = 2 s/g entry or 8k
9077          *  8 = 4 s/g entry or 16k
9078          * 10 = 6 s/g entry or 24k
9079          */
9080
9081         /* If the controller supports either ioaccel method then
9082          * we can also use the RAID stack submit path that does not
9083          * perform the superfluous readl() after each command submission.
9084          */
9085         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9086                 access = SA5_performant_access_no_read;
9087
9088         /* Controller spec: zero out this buffer. */
9089         for (i = 0; i < h->nreply_queues; i++)
9090                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9091
9092         bft[7] = SG_ENTRIES_IN_CMD + 4;
9093         calc_bucket_map(bft, ARRAY_SIZE(bft),
9094                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9095         for (i = 0; i < 8; i++)
9096                 writel(bft[i], &h->transtable->BlockFetch[i]);
9097
9098         /* size of controller ring buffer */
9099         writel(h->max_commands, &h->transtable->RepQSize);
9100         writel(h->nreply_queues, &h->transtable->RepQCount);
9101         writel(0, &h->transtable->RepQCtrAddrLow32);
9102         writel(0, &h->transtable->RepQCtrAddrHigh32);
9103
9104         for (i = 0; i < h->nreply_queues; i++) {
9105                 writel(0, &h->transtable->RepQAddr[i].upper);
9106                 writel(h->reply_queue[i].busaddr,
9107                         &h->transtable->RepQAddr[i].lower);
9108         }
9109
9110         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9111         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9112         /*
9113          * enable outbound interrupt coalescing in accelerator mode;
9114          */
9115         if (trans_support & CFGTBL_Trans_io_accel1) {
9116                 access = SA5_ioaccel_mode1_access;
9117                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9118                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9119         } else {
9120                 if (trans_support & CFGTBL_Trans_io_accel2) {
9121                         access = SA5_ioaccel_mode2_access;
9122                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9123                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9124                 }
9125         }
9126         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9127         if (hpsa_wait_for_mode_change_ack(h)) {
9128                 dev_err(&h->pdev->dev,
9129                         "performant mode problem - doorbell timeout\n");
9130                 return -ENODEV;
9131         }
9132         register_value = readl(&(h->cfgtable->TransportActive));
9133         if (!(register_value & CFGTBL_Trans_Performant)) {
9134                 dev_err(&h->pdev->dev,
9135                         "performant mode problem - transport not active\n");
9136                 return -ENODEV;
9137         }
9138         /* Change the access methods to the performant access methods */
9139         h->access = access;
9140         h->transMethod = transMethod;
9141
9142         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9143                 (trans_support & CFGTBL_Trans_io_accel2)))
9144                 return 0;
9145
9146         if (trans_support & CFGTBL_Trans_io_accel1) {
9147                 /* Set up I/O accelerator mode */
9148                 for (i = 0; i < h->nreply_queues; i++) {
9149                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9150                         h->reply_queue[i].current_entry =
9151                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9152                 }
9153                 bft[7] = h->ioaccel_maxsg + 8;
9154                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9155                                 h->ioaccel1_blockFetchTable);
9156
9157                 /* initialize all reply queue entries to unused */
9158                 for (i = 0; i < h->nreply_queues; i++)
9159                         memset(h->reply_queue[i].head,
9160                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9161                                 h->reply_queue_size);
9162
9163                 /* set all the constant fields in the accelerator command
9164                  * frames once at init time to save CPU cycles later.
9165                  */
9166                 for (i = 0; i < h->nr_cmds; i++) {
9167                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9168
9169                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9170                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9171                                         (i * sizeof(struct ErrorInfo)));
9172                         cp->err_info_len = sizeof(struct ErrorInfo);
9173                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9174                         cp->host_context_flags =
9175                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9176                         cp->timeout_sec = 0;
9177                         cp->ReplyQueue = 0;
9178                         cp->tag =
9179                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9180                         cp->host_addr =
9181                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9182                                         (i * sizeof(struct io_accel1_cmd)));
9183                 }
9184         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9185                 u64 cfg_offset, cfg_base_addr_index;
9186                 u32 bft2_offset, cfg_base_addr;
9187                 int rc;
9188
9189                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9190                         &cfg_base_addr_index, &cfg_offset);
9191                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9192                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9193                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9194                                 4, h->ioaccel2_blockFetchTable);
9195                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9196                 BUILD_BUG_ON(offsetof(struct CfgTable,
9197                                 io_accel_request_size_offset) != 0xb8);
9198                 h->ioaccel2_bft2_regs =
9199                         remap_pci_mem(pci_resource_start(h->pdev,
9200                                         cfg_base_addr_index) +
9201                                         cfg_offset + bft2_offset,
9202                                         ARRAY_SIZE(bft2) *
9203                                         sizeof(*h->ioaccel2_bft2_regs));
9204                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9205                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9206         }
9207         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9208         if (hpsa_wait_for_mode_change_ack(h)) {
9209                 dev_err(&h->pdev->dev,
9210                         "performant mode problem - enabling ioaccel mode\n");
9211                 return -ENODEV;
9212         }
9213         return 0;
9214 }
9215
9216 /* Free ioaccel1 mode command blocks and block fetch table */
9217 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9218 {
9219         if (h->ioaccel_cmd_pool) {
9220                 pci_free_consistent(h->pdev,
9221                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9222                         h->ioaccel_cmd_pool,
9223                         h->ioaccel_cmd_pool_dhandle);
9224                 h->ioaccel_cmd_pool = NULL;
9225                 h->ioaccel_cmd_pool_dhandle = 0;
9226         }
9227         kfree(h->ioaccel1_blockFetchTable);
9228         h->ioaccel1_blockFetchTable = NULL;
9229 }
9230
9231 /* Allocate ioaccel1 mode command blocks and block fetch table */
9232 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9233 {
9234         h->ioaccel_maxsg =
9235                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9236         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9237                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9238
9239         /* Command structures must be aligned on a 128-byte boundary
9240          * because the 7 lower bits of the address are used by the
9241          * hardware.
9242          */
9243         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9244                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9245         h->ioaccel_cmd_pool =
9246                 pci_alloc_consistent(h->pdev,
9247                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9248                         &(h->ioaccel_cmd_pool_dhandle));
9249
9250         h->ioaccel1_blockFetchTable =
9251                 kmalloc(((h->ioaccel_maxsg + 1) *
9252                                 sizeof(u32)), GFP_KERNEL);
9253
9254         if ((h->ioaccel_cmd_pool == NULL) ||
9255                 (h->ioaccel1_blockFetchTable == NULL))
9256                 goto clean_up;
9257
9258         memset(h->ioaccel_cmd_pool, 0,
9259                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9260         return 0;
9261
9262 clean_up:
9263         hpsa_free_ioaccel1_cmd_and_bft(h);
9264         return -ENOMEM;
9265 }
9266
9267 /* Free ioaccel2 mode command blocks and block fetch table */
9268 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9269 {
9270         hpsa_free_ioaccel2_sg_chain_blocks(h);
9271
9272         if (h->ioaccel2_cmd_pool) {
9273                 pci_free_consistent(h->pdev,
9274                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9275                         h->ioaccel2_cmd_pool,
9276                         h->ioaccel2_cmd_pool_dhandle);
9277                 h->ioaccel2_cmd_pool = NULL;
9278                 h->ioaccel2_cmd_pool_dhandle = 0;
9279         }
9280         kfree(h->ioaccel2_blockFetchTable);
9281         h->ioaccel2_blockFetchTable = NULL;
9282 }
9283
9284 /* Allocate ioaccel2 mode command blocks and block fetch table */
9285 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9286 {
9287         int rc;
9288
9289         /* Allocate ioaccel2 mode command blocks and block fetch table */
9290
9291         h->ioaccel_maxsg =
9292                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9293         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9294                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9295
9296         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9297                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9298         h->ioaccel2_cmd_pool =
9299                 pci_alloc_consistent(h->pdev,
9300                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9301                         &(h->ioaccel2_cmd_pool_dhandle));
9302
9303         h->ioaccel2_blockFetchTable =
9304                 kmalloc(((h->ioaccel_maxsg + 1) *
9305                                 sizeof(u32)), GFP_KERNEL);
9306
9307         if ((h->ioaccel2_cmd_pool == NULL) ||
9308                 (h->ioaccel2_blockFetchTable == NULL)) {
9309                 rc = -ENOMEM;
9310                 goto clean_up;
9311         }
9312
9313         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9314         if (rc)
9315                 goto clean_up;
9316
9317         memset(h->ioaccel2_cmd_pool, 0,
9318                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9319         return 0;
9320
9321 clean_up:
9322         hpsa_free_ioaccel2_cmd_and_bft(h);
9323         return rc;
9324 }
9325
9326 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9327 static void hpsa_free_performant_mode(struct ctlr_info *h)
9328 {
9329         kfree(h->blockFetchTable);
9330         h->blockFetchTable = NULL;
9331         hpsa_free_reply_queues(h);
9332         hpsa_free_ioaccel1_cmd_and_bft(h);
9333         hpsa_free_ioaccel2_cmd_and_bft(h);
9334 }
9335
9336 /* return -ENODEV on error, 0 on success (or no action)
9337  * allocates numerous items that must be freed later
9338  */
9339 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9340 {
9341         u32 trans_support;
9342         unsigned long transMethod = CFGTBL_Trans_Performant |
9343                                         CFGTBL_Trans_use_short_tags;
9344         int i, rc;
9345
9346         if (hpsa_simple_mode)
9347                 return 0;
9348
9349         trans_support = readl(&(h->cfgtable->TransportSupport));
9350         if (!(trans_support & PERFORMANT_MODE))
9351                 return 0;
9352
9353         /* Check for I/O accelerator mode support */
9354         if (trans_support & CFGTBL_Trans_io_accel1) {
9355                 transMethod |= CFGTBL_Trans_io_accel1 |
9356                                 CFGTBL_Trans_enable_directed_msix;
9357                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9358                 if (rc)
9359                         return rc;
9360         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9361                 transMethod |= CFGTBL_Trans_io_accel2 |
9362                                 CFGTBL_Trans_enable_directed_msix;
9363                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9364                 if (rc)
9365                         return rc;
9366         }
9367
9368         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9369         hpsa_get_max_perf_mode_cmds(h);
9370         /* Performant mode ring buffer and supporting data structures */
9371         h->reply_queue_size = h->max_commands * sizeof(u64);
9372
9373         for (i = 0; i < h->nreply_queues; i++) {
9374                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9375                                                 h->reply_queue_size,
9376                                                 &(h->reply_queue[i].busaddr));
9377                 if (!h->reply_queue[i].head) {
9378                         rc = -ENOMEM;
9379                         goto clean1;    /* rq, ioaccel */
9380                 }
9381                 h->reply_queue[i].size = h->max_commands;
9382                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9383                 h->reply_queue[i].current_entry = 0;
9384         }
9385
9386         /* Need a block fetch table for performant mode */
9387         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9388                                 sizeof(u32)), GFP_KERNEL);
9389         if (!h->blockFetchTable) {
9390                 rc = -ENOMEM;
9391                 goto clean1;    /* rq, ioaccel */
9392         }
9393
9394         rc = hpsa_enter_performant_mode(h, trans_support);
9395         if (rc)
9396                 goto clean2;    /* bft, rq, ioaccel */
9397         return 0;
9398
9399 clean2: /* bft, rq, ioaccel */
9400         kfree(h->blockFetchTable);
9401         h->blockFetchTable = NULL;
9402 clean1: /* rq, ioaccel */
9403         hpsa_free_reply_queues(h);
9404         hpsa_free_ioaccel1_cmd_and_bft(h);
9405         hpsa_free_ioaccel2_cmd_and_bft(h);
9406         return rc;
9407 }
9408
9409 static int is_accelerated_cmd(struct CommandList *c)
9410 {
9411         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9412 }
9413
9414 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9415 {
9416         struct CommandList *c = NULL;
9417         int i, accel_cmds_out;
9418         int refcount;
9419
9420         do { /* wait for all outstanding ioaccel commands to drain out */
9421                 accel_cmds_out = 0;
9422                 for (i = 0; i < h->nr_cmds; i++) {
9423                         c = h->cmd_pool + i;
9424                         refcount = atomic_inc_return(&c->refcount);
9425                         if (refcount > 1) /* Command is allocated */
9426                                 accel_cmds_out += is_accelerated_cmd(c);
9427                         cmd_free(h, c);
9428                 }
9429                 if (accel_cmds_out <= 0)
9430                         break;
9431                 msleep(100);
9432         } while (1);
9433 }
9434
9435 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9436                                 struct hpsa_sas_port *hpsa_sas_port)
9437 {
9438         struct hpsa_sas_phy *hpsa_sas_phy;
9439         struct sas_phy *phy;
9440
9441         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9442         if (!hpsa_sas_phy)
9443                 return NULL;
9444
9445         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9446                 hpsa_sas_port->next_phy_index);
9447         if (!phy) {
9448                 kfree(hpsa_sas_phy);
9449                 return NULL;
9450         }
9451
9452         hpsa_sas_port->next_phy_index++;
9453         hpsa_sas_phy->phy = phy;
9454         hpsa_sas_phy->parent_port = hpsa_sas_port;
9455
9456         return hpsa_sas_phy;
9457 }
9458
9459 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9460 {
9461         struct sas_phy *phy = hpsa_sas_phy->phy;
9462
9463         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9464         sas_phy_free(phy);
9465         if (hpsa_sas_phy->added_to_port)
9466                 list_del(&hpsa_sas_phy->phy_list_entry);
9467         kfree(hpsa_sas_phy);
9468 }
9469
9470 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9471 {
9472         int rc;
9473         struct hpsa_sas_port *hpsa_sas_port;
9474         struct sas_phy *phy;
9475         struct sas_identify *identify;
9476
9477         hpsa_sas_port = hpsa_sas_phy->parent_port;
9478         phy = hpsa_sas_phy->phy;
9479
9480         identify = &phy->identify;
9481         memset(identify, 0, sizeof(*identify));
9482         identify->sas_address = hpsa_sas_port->sas_address;
9483         identify->device_type = SAS_END_DEVICE;
9484         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9485         identify->target_port_protocols = SAS_PROTOCOL_STP;
9486         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9487         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9488         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9489         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9490         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9491
9492         rc = sas_phy_add(hpsa_sas_phy->phy);
9493         if (rc)
9494                 return rc;
9495
9496         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9497         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9498                         &hpsa_sas_port->phy_list_head);
9499         hpsa_sas_phy->added_to_port = true;
9500
9501         return 0;
9502 }
9503
9504 static int
9505         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9506                                 struct sas_rphy *rphy)
9507 {
9508         struct sas_identify *identify;
9509
9510         identify = &rphy->identify;
9511         identify->sas_address = hpsa_sas_port->sas_address;
9512         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9513         identify->target_port_protocols = SAS_PROTOCOL_STP;
9514
9515         return sas_rphy_add(rphy);
9516 }
9517
9518 static struct hpsa_sas_port
9519         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9520                                 u64 sas_address)
9521 {
9522         int rc;
9523         struct hpsa_sas_port *hpsa_sas_port;
9524         struct sas_port *port;
9525
9526         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9527         if (!hpsa_sas_port)
9528                 return NULL;
9529
9530         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9531         hpsa_sas_port->parent_node = hpsa_sas_node;
9532
9533         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9534         if (!port)
9535                 goto free_hpsa_port;
9536
9537         rc = sas_port_add(port);
9538         if (rc)
9539                 goto free_sas_port;
9540
9541         hpsa_sas_port->port = port;
9542         hpsa_sas_port->sas_address = sas_address;
9543         list_add_tail(&hpsa_sas_port->port_list_entry,
9544                         &hpsa_sas_node->port_list_head);
9545
9546         return hpsa_sas_port;
9547
9548 free_sas_port:
9549         sas_port_free(port);
9550 free_hpsa_port:
9551         kfree(hpsa_sas_port);
9552
9553         return NULL;
9554 }
9555
9556 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9557 {
9558         struct hpsa_sas_phy *hpsa_sas_phy;
9559         struct hpsa_sas_phy *next;
9560
9561         list_for_each_entry_safe(hpsa_sas_phy, next,
9562                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9563                 hpsa_free_sas_phy(hpsa_sas_phy);
9564
9565         sas_port_delete(hpsa_sas_port->port);
9566         list_del(&hpsa_sas_port->port_list_entry);
9567         kfree(hpsa_sas_port);
9568 }
9569
9570 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9571 {
9572         struct hpsa_sas_node *hpsa_sas_node;
9573
9574         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9575         if (hpsa_sas_node) {
9576                 hpsa_sas_node->parent_dev = parent_dev;
9577                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9578         }
9579
9580         return hpsa_sas_node;
9581 }
9582
9583 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9584 {
9585         struct hpsa_sas_port *hpsa_sas_port;
9586         struct hpsa_sas_port *next;
9587
9588         if (!hpsa_sas_node)
9589                 return;
9590
9591         list_for_each_entry_safe(hpsa_sas_port, next,
9592                         &hpsa_sas_node->port_list_head, port_list_entry)
9593                 hpsa_free_sas_port(hpsa_sas_port);
9594
9595         kfree(hpsa_sas_node);
9596 }
9597
9598 static struct hpsa_scsi_dev_t
9599         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9600                                         struct sas_rphy *rphy)
9601 {
9602         int i;
9603         struct hpsa_scsi_dev_t *device;
9604
9605         for (i = 0; i < h->ndevices; i++) {
9606                 device = h->dev[i];
9607                 if (!device->sas_port)
9608                         continue;
9609                 if (device->sas_port->rphy == rphy)
9610                         return device;
9611         }
9612
9613         return NULL;
9614 }
9615
9616 static int hpsa_add_sas_host(struct ctlr_info *h)
9617 {
9618         int rc;
9619         struct device *parent_dev;
9620         struct hpsa_sas_node *hpsa_sas_node;
9621         struct hpsa_sas_port *hpsa_sas_port;
9622         struct hpsa_sas_phy *hpsa_sas_phy;
9623
9624         parent_dev = &h->scsi_host->shost_gendev;
9625
9626         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9627         if (!hpsa_sas_node)
9628                 return -ENOMEM;
9629
9630         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9631         if (!hpsa_sas_port) {
9632                 rc = -ENODEV;
9633                 goto free_sas_node;
9634         }
9635
9636         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9637         if (!hpsa_sas_phy) {
9638                 rc = -ENODEV;
9639                 goto free_sas_port;
9640         }
9641
9642         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9643         if (rc)
9644                 goto free_sas_phy;
9645
9646         h->sas_host = hpsa_sas_node;
9647
9648         return 0;
9649
9650 free_sas_phy:
9651         hpsa_free_sas_phy(hpsa_sas_phy);
9652 free_sas_port:
9653         hpsa_free_sas_port(hpsa_sas_port);
9654 free_sas_node:
9655         hpsa_free_sas_node(hpsa_sas_node);
9656
9657         return rc;
9658 }
9659
9660 static void hpsa_delete_sas_host(struct ctlr_info *h)
9661 {
9662         hpsa_free_sas_node(h->sas_host);
9663 }
9664
9665 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9666                                 struct hpsa_scsi_dev_t *device)
9667 {
9668         int rc;
9669         struct hpsa_sas_port *hpsa_sas_port;
9670         struct sas_rphy *rphy;
9671
9672         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9673         if (!hpsa_sas_port)
9674                 return -ENOMEM;
9675
9676         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9677         if (!rphy) {
9678                 rc = -ENODEV;
9679                 goto free_sas_port;
9680         }
9681
9682         hpsa_sas_port->rphy = rphy;
9683         device->sas_port = hpsa_sas_port;
9684
9685         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9686         if (rc)
9687                 goto free_sas_port;
9688
9689         return 0;
9690
9691 free_sas_port:
9692         hpsa_free_sas_port(hpsa_sas_port);
9693         device->sas_port = NULL;
9694
9695         return rc;
9696 }
9697
9698 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9699 {
9700         if (device->sas_port) {
9701                 hpsa_free_sas_port(device->sas_port);
9702                 device->sas_port = NULL;
9703         }
9704 }
9705
9706 static int
9707 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9708 {
9709         return 0;
9710 }
9711
9712 static int
9713 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9714 {
9715         *identifier = 0;
9716         return 0;
9717 }
9718
9719 static int
9720 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9721 {
9722         return -ENXIO;
9723 }
9724
9725 static int
9726 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9727 {
9728         return 0;
9729 }
9730
9731 static int
9732 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9733 {
9734         return 0;
9735 }
9736
9737 static int
9738 hpsa_sas_phy_setup(struct sas_phy *phy)
9739 {
9740         return 0;
9741 }
9742
9743 static void
9744 hpsa_sas_phy_release(struct sas_phy *phy)
9745 {
9746 }
9747
9748 static int
9749 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9750 {
9751         return -EINVAL;
9752 }
9753
9754 /* SMP = Serial Management Protocol */
9755 static int
9756 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9757 struct request *req)
9758 {
9759         return -EINVAL;
9760 }
9761
9762 static struct sas_function_template hpsa_sas_transport_functions = {
9763         .get_linkerrors = hpsa_sas_get_linkerrors,
9764         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9765         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9766         .phy_reset = hpsa_sas_phy_reset,
9767         .phy_enable = hpsa_sas_phy_enable,
9768         .phy_setup = hpsa_sas_phy_setup,
9769         .phy_release = hpsa_sas_phy_release,
9770         .set_phy_speed = hpsa_sas_phy_speed,
9771         .smp_handler = hpsa_sas_smp_handler,
9772 };
9773
9774 /*
9775  *  This is it.  Register the PCI driver information for the cards we control
9776  *  the OS will call our registered routines when it finds one of our cards.
9777  */
9778 static int __init hpsa_init(void)
9779 {
9780         int rc;
9781
9782         hpsa_sas_transport_template =
9783                 sas_attach_transport(&hpsa_sas_transport_functions);
9784         if (!hpsa_sas_transport_template)
9785                 return -ENODEV;
9786
9787         rc = pci_register_driver(&hpsa_pci_driver);
9788
9789         if (rc)
9790                 sas_release_transport(hpsa_sas_transport_template);
9791
9792         return rc;
9793 }
9794
9795 static void __exit hpsa_cleanup(void)
9796 {
9797         pci_unregister_driver(&hpsa_pci_driver);
9798         sas_release_transport(hpsa_sas_transport_template);
9799 }
9800
9801 static void __attribute__((unused)) verify_offsets(void)
9802 {
9803 #define VERIFY_OFFSET(member, offset) \
9804         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9805
9806         VERIFY_OFFSET(structure_size, 0);
9807         VERIFY_OFFSET(volume_blk_size, 4);
9808         VERIFY_OFFSET(volume_blk_cnt, 8);
9809         VERIFY_OFFSET(phys_blk_shift, 16);
9810         VERIFY_OFFSET(parity_rotation_shift, 17);
9811         VERIFY_OFFSET(strip_size, 18);
9812         VERIFY_OFFSET(disk_starting_blk, 20);
9813         VERIFY_OFFSET(disk_blk_cnt, 28);
9814         VERIFY_OFFSET(data_disks_per_row, 36);
9815         VERIFY_OFFSET(metadata_disks_per_row, 38);
9816         VERIFY_OFFSET(row_cnt, 40);
9817         VERIFY_OFFSET(layout_map_count, 42);
9818         VERIFY_OFFSET(flags, 44);
9819         VERIFY_OFFSET(dekindex, 46);
9820         /* VERIFY_OFFSET(reserved, 48 */
9821         VERIFY_OFFSET(data, 64);
9822
9823 #undef VERIFY_OFFSET
9824
9825 #define VERIFY_OFFSET(member, offset) \
9826         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9827
9828         VERIFY_OFFSET(IU_type, 0);
9829         VERIFY_OFFSET(direction, 1);
9830         VERIFY_OFFSET(reply_queue, 2);
9831         /* VERIFY_OFFSET(reserved1, 3);  */
9832         VERIFY_OFFSET(scsi_nexus, 4);
9833         VERIFY_OFFSET(Tag, 8);
9834         VERIFY_OFFSET(cdb, 16);
9835         VERIFY_OFFSET(cciss_lun, 32);
9836         VERIFY_OFFSET(data_len, 40);
9837         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9838         VERIFY_OFFSET(sg_count, 45);
9839         /* VERIFY_OFFSET(reserved3 */
9840         VERIFY_OFFSET(err_ptr, 48);
9841         VERIFY_OFFSET(err_len, 56);
9842         /* VERIFY_OFFSET(reserved4  */
9843         VERIFY_OFFSET(sg, 64);
9844
9845 #undef VERIFY_OFFSET
9846
9847 #define VERIFY_OFFSET(member, offset) \
9848         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9849
9850         VERIFY_OFFSET(dev_handle, 0x00);
9851         VERIFY_OFFSET(reserved1, 0x02);
9852         VERIFY_OFFSET(function, 0x03);
9853         VERIFY_OFFSET(reserved2, 0x04);
9854         VERIFY_OFFSET(err_info, 0x0C);
9855         VERIFY_OFFSET(reserved3, 0x10);
9856         VERIFY_OFFSET(err_info_len, 0x12);
9857         VERIFY_OFFSET(reserved4, 0x13);
9858         VERIFY_OFFSET(sgl_offset, 0x14);
9859         VERIFY_OFFSET(reserved5, 0x15);
9860         VERIFY_OFFSET(transfer_len, 0x1C);
9861         VERIFY_OFFSET(reserved6, 0x20);
9862         VERIFY_OFFSET(io_flags, 0x24);
9863         VERIFY_OFFSET(reserved7, 0x26);
9864         VERIFY_OFFSET(LUN, 0x34);
9865         VERIFY_OFFSET(control, 0x3C);
9866         VERIFY_OFFSET(CDB, 0x40);
9867         VERIFY_OFFSET(reserved8, 0x50);
9868         VERIFY_OFFSET(host_context_flags, 0x60);
9869         VERIFY_OFFSET(timeout_sec, 0x62);
9870         VERIFY_OFFSET(ReplyQueue, 0x64);
9871         VERIFY_OFFSET(reserved9, 0x65);
9872         VERIFY_OFFSET(tag, 0x68);
9873         VERIFY_OFFSET(host_addr, 0x70);
9874         VERIFY_OFFSET(CISS_LUN, 0x78);
9875         VERIFY_OFFSET(SG, 0x78 + 8);
9876 #undef VERIFY_OFFSET
9877 }
9878
9879 module_init(hpsa_init);
9880 module_exit(hpsa_cleanup);