Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[cascardo/linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {0,}
150 };
151
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159         {0x3241103C, "Smart Array P212", &SA5_access},
160         {0x3243103C, "Smart Array P410", &SA5_access},
161         {0x3245103C, "Smart Array P410i", &SA5_access},
162         {0x3247103C, "Smart Array P411", &SA5_access},
163         {0x3249103C, "Smart Array P812", &SA5_access},
164         {0x324A103C, "Smart Array P712m", &SA5_access},
165         {0x324B103C, "Smart Array P711m", &SA5_access},
166         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167         {0x3350103C, "Smart Array P222", &SA5_access},
168         {0x3351103C, "Smart Array P420", &SA5_access},
169         {0x3352103C, "Smart Array P421", &SA5_access},
170         {0x3353103C, "Smart Array P822", &SA5_access},
171         {0x3354103C, "Smart Array P420i", &SA5_access},
172         {0x3355103C, "Smart Array P220i", &SA5_access},
173         {0x3356103C, "Smart Array P721m", &SA5_access},
174         {0x1921103C, "Smart Array P830i", &SA5_access},
175         {0x1922103C, "Smart Array P430", &SA5_access},
176         {0x1923103C, "Smart Array P431", &SA5_access},
177         {0x1924103C, "Smart Array P830", &SA5_access},
178         {0x1926103C, "Smart Array P731m", &SA5_access},
179         {0x1928103C, "Smart Array P230i", &SA5_access},
180         {0x1929103C, "Smart Array P530", &SA5_access},
181         {0x21BD103C, "Smart Array P244br", &SA5_access},
182         {0x21BE103C, "Smart Array P741m", &SA5_access},
183         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184         {0x21C0103C, "Smart Array P440ar", &SA5_access},
185         {0x21C1103C, "Smart Array P840ar", &SA5_access},
186         {0x21C2103C, "Smart Array P440", &SA5_access},
187         {0x21C3103C, "Smart Array P441", &SA5_access},
188         {0x21C4103C, "Smart Array", &SA5_access},
189         {0x21C5103C, "Smart Array P841", &SA5_access},
190         {0x21C6103C, "Smart HBA H244br", &SA5_access},
191         {0x21C7103C, "Smart HBA H240", &SA5_access},
192         {0x21C8103C, "Smart HBA H241", &SA5_access},
193         {0x21C9103C, "Smart Array", &SA5_access},
194         {0x21CA103C, "Smart Array P246br", &SA5_access},
195         {0x21CB103C, "Smart Array P840", &SA5_access},
196         {0x21CC103C, "Smart Array", &SA5_access},
197         {0x21CD103C, "Smart Array", &SA5_access},
198         {0x21CE103C, "Smart HBA", &SA5_access},
199         {0x05809005, "SmartHBA-SA", &SA5_access},
200         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217                         struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221                 struct sas_rphy *rphy);
222
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235         void __user *arg);
236 #endif
237
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242                                             struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245         int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253         unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264         struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266         struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269         int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275                                u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277                                     unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280                                      int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295         struct ReportExtendedLUNdata *buf, int bufsize);
296 static int hpsa_luns_changed(struct ctlr_info *h);
297 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
298                                struct hpsa_scsi_dev_t *dev,
299                                unsigned char *scsi3addr);
300
301 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
302 {
303         unsigned long *priv = shost_priv(sdev->host);
304         return (struct ctlr_info *) *priv;
305 }
306
307 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
308 {
309         unsigned long *priv = shost_priv(sh);
310         return (struct ctlr_info *) *priv;
311 }
312
313 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
314 {
315         return c->scsi_cmd == SCSI_CMD_IDLE;
316 }
317
318 static inline bool hpsa_is_pending_event(struct CommandList *c)
319 {
320         return c->abort_pending || c->reset_pending;
321 }
322
323 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
324 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
325                         u8 *sense_key, u8 *asc, u8 *ascq)
326 {
327         struct scsi_sense_hdr sshdr;
328         bool rc;
329
330         *sense_key = -1;
331         *asc = -1;
332         *ascq = -1;
333
334         if (sense_data_len < 1)
335                 return;
336
337         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
338         if (rc) {
339                 *sense_key = sshdr.sense_key;
340                 *asc = sshdr.asc;
341                 *ascq = sshdr.ascq;
342         }
343 }
344
345 static int check_for_unit_attention(struct ctlr_info *h,
346         struct CommandList *c)
347 {
348         u8 sense_key, asc, ascq;
349         int sense_len;
350
351         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
352                 sense_len = sizeof(c->err_info->SenseInfo);
353         else
354                 sense_len = c->err_info->SenseLen;
355
356         decode_sense_data(c->err_info->SenseInfo, sense_len,
357                                 &sense_key, &asc, &ascq);
358         if (sense_key != UNIT_ATTENTION || asc == 0xff)
359                 return 0;
360
361         switch (asc) {
362         case STATE_CHANGED:
363                 dev_warn(&h->pdev->dev,
364                         "%s: a state change detected, command retried\n",
365                         h->devname);
366                 break;
367         case LUN_FAILED:
368                 dev_warn(&h->pdev->dev,
369                         "%s: LUN failure detected\n", h->devname);
370                 break;
371         case REPORT_LUNS_CHANGED:
372                 dev_warn(&h->pdev->dev,
373                         "%s: report LUN data changed\n", h->devname);
374         /*
375          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
376          * target (array) devices.
377          */
378                 break;
379         case POWER_OR_RESET:
380                 dev_warn(&h->pdev->dev,
381                         "%s: a power on or device reset detected\n",
382                         h->devname);
383                 break;
384         case UNIT_ATTENTION_CLEARED:
385                 dev_warn(&h->pdev->dev,
386                         "%s: unit attention cleared by another initiator\n",
387                         h->devname);
388                 break;
389         default:
390                 dev_warn(&h->pdev->dev,
391                         "%s: unknown unit attention detected\n",
392                         h->devname);
393                 break;
394         }
395         return 1;
396 }
397
398 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
399 {
400         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
401                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
402                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
403                 return 0;
404         dev_warn(&h->pdev->dev, HPSA "device busy");
405         return 1;
406 }
407
408 static u32 lockup_detected(struct ctlr_info *h);
409 static ssize_t host_show_lockup_detected(struct device *dev,
410                 struct device_attribute *attr, char *buf)
411 {
412         int ld;
413         struct ctlr_info *h;
414         struct Scsi_Host *shost = class_to_shost(dev);
415
416         h = shost_to_hba(shost);
417         ld = lockup_detected(h);
418
419         return sprintf(buf, "ld=%d\n", ld);
420 }
421
422 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
423                                          struct device_attribute *attr,
424                                          const char *buf, size_t count)
425 {
426         int status, len;
427         struct ctlr_info *h;
428         struct Scsi_Host *shost = class_to_shost(dev);
429         char tmpbuf[10];
430
431         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
432                 return -EACCES;
433         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
434         strncpy(tmpbuf, buf, len);
435         tmpbuf[len] = '\0';
436         if (sscanf(tmpbuf, "%d", &status) != 1)
437                 return -EINVAL;
438         h = shost_to_hba(shost);
439         h->acciopath_status = !!status;
440         dev_warn(&h->pdev->dev,
441                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
442                 h->acciopath_status ? "enabled" : "disabled");
443         return count;
444 }
445
446 static ssize_t host_store_raid_offload_debug(struct device *dev,
447                                          struct device_attribute *attr,
448                                          const char *buf, size_t count)
449 {
450         int debug_level, len;
451         struct ctlr_info *h;
452         struct Scsi_Host *shost = class_to_shost(dev);
453         char tmpbuf[10];
454
455         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
456                 return -EACCES;
457         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
458         strncpy(tmpbuf, buf, len);
459         tmpbuf[len] = '\0';
460         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
461                 return -EINVAL;
462         if (debug_level < 0)
463                 debug_level = 0;
464         h = shost_to_hba(shost);
465         h->raid_offload_debug = debug_level;
466         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
467                 h->raid_offload_debug);
468         return count;
469 }
470
471 static ssize_t host_store_rescan(struct device *dev,
472                                  struct device_attribute *attr,
473                                  const char *buf, size_t count)
474 {
475         struct ctlr_info *h;
476         struct Scsi_Host *shost = class_to_shost(dev);
477         h = shost_to_hba(shost);
478         hpsa_scan_start(h->scsi_host);
479         return count;
480 }
481
482 static ssize_t host_show_firmware_revision(struct device *dev,
483              struct device_attribute *attr, char *buf)
484 {
485         struct ctlr_info *h;
486         struct Scsi_Host *shost = class_to_shost(dev);
487         unsigned char *fwrev;
488
489         h = shost_to_hba(shost);
490         if (!h->hba_inquiry_data)
491                 return 0;
492         fwrev = &h->hba_inquiry_data[32];
493         return snprintf(buf, 20, "%c%c%c%c\n",
494                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
495 }
496
497 static ssize_t host_show_commands_outstanding(struct device *dev,
498              struct device_attribute *attr, char *buf)
499 {
500         struct Scsi_Host *shost = class_to_shost(dev);
501         struct ctlr_info *h = shost_to_hba(shost);
502
503         return snprintf(buf, 20, "%d\n",
504                         atomic_read(&h->commands_outstanding));
505 }
506
507 static ssize_t host_show_transport_mode(struct device *dev,
508         struct device_attribute *attr, char *buf)
509 {
510         struct ctlr_info *h;
511         struct Scsi_Host *shost = class_to_shost(dev);
512
513         h = shost_to_hba(shost);
514         return snprintf(buf, 20, "%s\n",
515                 h->transMethod & CFGTBL_Trans_Performant ?
516                         "performant" : "simple");
517 }
518
519 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
520         struct device_attribute *attr, char *buf)
521 {
522         struct ctlr_info *h;
523         struct Scsi_Host *shost = class_to_shost(dev);
524
525         h = shost_to_hba(shost);
526         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
527                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
528 }
529
530 /* List of controllers which cannot be hard reset on kexec with reset_devices */
531 static u32 unresettable_controller[] = {
532         0x324a103C, /* Smart Array P712m */
533         0x324b103C, /* Smart Array P711m */
534         0x3223103C, /* Smart Array P800 */
535         0x3234103C, /* Smart Array P400 */
536         0x3235103C, /* Smart Array P400i */
537         0x3211103C, /* Smart Array E200i */
538         0x3212103C, /* Smart Array E200 */
539         0x3213103C, /* Smart Array E200i */
540         0x3214103C, /* Smart Array E200i */
541         0x3215103C, /* Smart Array E200i */
542         0x3237103C, /* Smart Array E500 */
543         0x323D103C, /* Smart Array P700m */
544         0x40800E11, /* Smart Array 5i */
545         0x409C0E11, /* Smart Array 6400 */
546         0x409D0E11, /* Smart Array 6400 EM */
547         0x40700E11, /* Smart Array 5300 */
548         0x40820E11, /* Smart Array 532 */
549         0x40830E11, /* Smart Array 5312 */
550         0x409A0E11, /* Smart Array 641 */
551         0x409B0E11, /* Smart Array 642 */
552         0x40910E11, /* Smart Array 6i */
553 };
554
555 /* List of controllers which cannot even be soft reset */
556 static u32 soft_unresettable_controller[] = {
557         0x40800E11, /* Smart Array 5i */
558         0x40700E11, /* Smart Array 5300 */
559         0x40820E11, /* Smart Array 532 */
560         0x40830E11, /* Smart Array 5312 */
561         0x409A0E11, /* Smart Array 641 */
562         0x409B0E11, /* Smart Array 642 */
563         0x40910E11, /* Smart Array 6i */
564         /* Exclude 640x boards.  These are two pci devices in one slot
565          * which share a battery backed cache module.  One controls the
566          * cache, the other accesses the cache through the one that controls
567          * it.  If we reset the one controlling the cache, the other will
568          * likely not be happy.  Just forbid resetting this conjoined mess.
569          * The 640x isn't really supported by hpsa anyway.
570          */
571         0x409C0E11, /* Smart Array 6400 */
572         0x409D0E11, /* Smart Array 6400 EM */
573 };
574
575 static u32 needs_abort_tags_swizzled[] = {
576         0x323D103C, /* Smart Array P700m */
577         0x324a103C, /* Smart Array P712m */
578         0x324b103C, /* SmartArray P711m */
579 };
580
581 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
582 {
583         int i;
584
585         for (i = 0; i < nelems; i++)
586                 if (a[i] == board_id)
587                         return 1;
588         return 0;
589 }
590
591 static int ctlr_is_hard_resettable(u32 board_id)
592 {
593         return !board_id_in_array(unresettable_controller,
594                         ARRAY_SIZE(unresettable_controller), board_id);
595 }
596
597 static int ctlr_is_soft_resettable(u32 board_id)
598 {
599         return !board_id_in_array(soft_unresettable_controller,
600                         ARRAY_SIZE(soft_unresettable_controller), board_id);
601 }
602
603 static int ctlr_is_resettable(u32 board_id)
604 {
605         return ctlr_is_hard_resettable(board_id) ||
606                 ctlr_is_soft_resettable(board_id);
607 }
608
609 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
610 {
611         return board_id_in_array(needs_abort_tags_swizzled,
612                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
613 }
614
615 static ssize_t host_show_resettable(struct device *dev,
616         struct device_attribute *attr, char *buf)
617 {
618         struct ctlr_info *h;
619         struct Scsi_Host *shost = class_to_shost(dev);
620
621         h = shost_to_hba(shost);
622         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
623 }
624
625 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
626 {
627         return (scsi3addr[3] & 0xC0) == 0x40;
628 }
629
630 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
631         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
632 };
633 #define HPSA_RAID_0     0
634 #define HPSA_RAID_4     1
635 #define HPSA_RAID_1     2       /* also used for RAID 10 */
636 #define HPSA_RAID_5     3       /* also used for RAID 50 */
637 #define HPSA_RAID_51    4
638 #define HPSA_RAID_6     5       /* also used for RAID 60 */
639 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
640 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
641 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
642
643 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
644 {
645         return !device->physical_device;
646 }
647
648 static ssize_t raid_level_show(struct device *dev,
649              struct device_attribute *attr, char *buf)
650 {
651         ssize_t l = 0;
652         unsigned char rlevel;
653         struct ctlr_info *h;
654         struct scsi_device *sdev;
655         struct hpsa_scsi_dev_t *hdev;
656         unsigned long flags;
657
658         sdev = to_scsi_device(dev);
659         h = sdev_to_hba(sdev);
660         spin_lock_irqsave(&h->lock, flags);
661         hdev = sdev->hostdata;
662         if (!hdev) {
663                 spin_unlock_irqrestore(&h->lock, flags);
664                 return -ENODEV;
665         }
666
667         /* Is this even a logical drive? */
668         if (!is_logical_device(hdev)) {
669                 spin_unlock_irqrestore(&h->lock, flags);
670                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
671                 return l;
672         }
673
674         rlevel = hdev->raid_level;
675         spin_unlock_irqrestore(&h->lock, flags);
676         if (rlevel > RAID_UNKNOWN)
677                 rlevel = RAID_UNKNOWN;
678         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
679         return l;
680 }
681
682 static ssize_t lunid_show(struct device *dev,
683              struct device_attribute *attr, char *buf)
684 {
685         struct ctlr_info *h;
686         struct scsi_device *sdev;
687         struct hpsa_scsi_dev_t *hdev;
688         unsigned long flags;
689         unsigned char lunid[8];
690
691         sdev = to_scsi_device(dev);
692         h = sdev_to_hba(sdev);
693         spin_lock_irqsave(&h->lock, flags);
694         hdev = sdev->hostdata;
695         if (!hdev) {
696                 spin_unlock_irqrestore(&h->lock, flags);
697                 return -ENODEV;
698         }
699         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
700         spin_unlock_irqrestore(&h->lock, flags);
701         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
702                 lunid[0], lunid[1], lunid[2], lunid[3],
703                 lunid[4], lunid[5], lunid[6], lunid[7]);
704 }
705
706 static ssize_t unique_id_show(struct device *dev,
707              struct device_attribute *attr, char *buf)
708 {
709         struct ctlr_info *h;
710         struct scsi_device *sdev;
711         struct hpsa_scsi_dev_t *hdev;
712         unsigned long flags;
713         unsigned char sn[16];
714
715         sdev = to_scsi_device(dev);
716         h = sdev_to_hba(sdev);
717         spin_lock_irqsave(&h->lock, flags);
718         hdev = sdev->hostdata;
719         if (!hdev) {
720                 spin_unlock_irqrestore(&h->lock, flags);
721                 return -ENODEV;
722         }
723         memcpy(sn, hdev->device_id, sizeof(sn));
724         spin_unlock_irqrestore(&h->lock, flags);
725         return snprintf(buf, 16 * 2 + 2,
726                         "%02X%02X%02X%02X%02X%02X%02X%02X"
727                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
728                         sn[0], sn[1], sn[2], sn[3],
729                         sn[4], sn[5], sn[6], sn[7],
730                         sn[8], sn[9], sn[10], sn[11],
731                         sn[12], sn[13], sn[14], sn[15]);
732 }
733
734 static ssize_t sas_address_show(struct device *dev,
735               struct device_attribute *attr, char *buf)
736 {
737         struct ctlr_info *h;
738         struct scsi_device *sdev;
739         struct hpsa_scsi_dev_t *hdev;
740         unsigned long flags;
741         u64 sas_address;
742
743         sdev = to_scsi_device(dev);
744         h = sdev_to_hba(sdev);
745         spin_lock_irqsave(&h->lock, flags);
746         hdev = sdev->hostdata;
747         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
748                 spin_unlock_irqrestore(&h->lock, flags);
749                 return -ENODEV;
750         }
751         sas_address = hdev->sas_address;
752         spin_unlock_irqrestore(&h->lock, flags);
753
754         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
755 }
756
757 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
758              struct device_attribute *attr, char *buf)
759 {
760         struct ctlr_info *h;
761         struct scsi_device *sdev;
762         struct hpsa_scsi_dev_t *hdev;
763         unsigned long flags;
764         int offload_enabled;
765
766         sdev = to_scsi_device(dev);
767         h = sdev_to_hba(sdev);
768         spin_lock_irqsave(&h->lock, flags);
769         hdev = sdev->hostdata;
770         if (!hdev) {
771                 spin_unlock_irqrestore(&h->lock, flags);
772                 return -ENODEV;
773         }
774         offload_enabled = hdev->offload_enabled;
775         spin_unlock_irqrestore(&h->lock, flags);
776         return snprintf(buf, 20, "%d\n", offload_enabled);
777 }
778
779 #define MAX_PATHS 8
780 static ssize_t path_info_show(struct device *dev,
781              struct device_attribute *attr, char *buf)
782 {
783         struct ctlr_info *h;
784         struct scsi_device *sdev;
785         struct hpsa_scsi_dev_t *hdev;
786         unsigned long flags;
787         int i;
788         int output_len = 0;
789         u8 box;
790         u8 bay;
791         u8 path_map_index = 0;
792         char *active;
793         unsigned char phys_connector[2];
794
795         sdev = to_scsi_device(dev);
796         h = sdev_to_hba(sdev);
797         spin_lock_irqsave(&h->devlock, flags);
798         hdev = sdev->hostdata;
799         if (!hdev) {
800                 spin_unlock_irqrestore(&h->devlock, flags);
801                 return -ENODEV;
802         }
803
804         bay = hdev->bay;
805         for (i = 0; i < MAX_PATHS; i++) {
806                 path_map_index = 1<<i;
807                 if (i == hdev->active_path_index)
808                         active = "Active";
809                 else if (hdev->path_map & path_map_index)
810                         active = "Inactive";
811                 else
812                         continue;
813
814                 output_len += scnprintf(buf + output_len,
815                                 PAGE_SIZE - output_len,
816                                 "[%d:%d:%d:%d] %20.20s ",
817                                 h->scsi_host->host_no,
818                                 hdev->bus, hdev->target, hdev->lun,
819                                 scsi_device_type(hdev->devtype));
820
821                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
822                         output_len += scnprintf(buf + output_len,
823                                                 PAGE_SIZE - output_len,
824                                                 "%s\n", active);
825                         continue;
826                 }
827
828                 box = hdev->box[i];
829                 memcpy(&phys_connector, &hdev->phys_connector[i],
830                         sizeof(phys_connector));
831                 if (phys_connector[0] < '0')
832                         phys_connector[0] = '0';
833                 if (phys_connector[1] < '0')
834                         phys_connector[1] = '0';
835                 output_len += scnprintf(buf + output_len,
836                                 PAGE_SIZE - output_len,
837                                 "PORT: %.2s ",
838                                 phys_connector);
839                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
840                         hdev->expose_device) {
841                         if (box == 0 || box == 0xFF) {
842                                 output_len += scnprintf(buf + output_len,
843                                         PAGE_SIZE - output_len,
844                                         "BAY: %hhu %s\n",
845                                         bay, active);
846                         } else {
847                                 output_len += scnprintf(buf + output_len,
848                                         PAGE_SIZE - output_len,
849                                         "BOX: %hhu BAY: %hhu %s\n",
850                                         box, bay, active);
851                         }
852                 } else if (box != 0 && box != 0xFF) {
853                         output_len += scnprintf(buf + output_len,
854                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
855                                 box, active);
856                 } else
857                         output_len += scnprintf(buf + output_len,
858                                 PAGE_SIZE - output_len, "%s\n", active);
859         }
860
861         spin_unlock_irqrestore(&h->devlock, flags);
862         return output_len;
863 }
864
865 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
866 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
867 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
868 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
869 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
870 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
871                         host_show_hp_ssd_smart_path_enabled, NULL);
872 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
873 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
874                 host_show_hp_ssd_smart_path_status,
875                 host_store_hp_ssd_smart_path_status);
876 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
877                         host_store_raid_offload_debug);
878 static DEVICE_ATTR(firmware_revision, S_IRUGO,
879         host_show_firmware_revision, NULL);
880 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
881         host_show_commands_outstanding, NULL);
882 static DEVICE_ATTR(transport_mode, S_IRUGO,
883         host_show_transport_mode, NULL);
884 static DEVICE_ATTR(resettable, S_IRUGO,
885         host_show_resettable, NULL);
886 static DEVICE_ATTR(lockup_detected, S_IRUGO,
887         host_show_lockup_detected, NULL);
888
889 static struct device_attribute *hpsa_sdev_attrs[] = {
890         &dev_attr_raid_level,
891         &dev_attr_lunid,
892         &dev_attr_unique_id,
893         &dev_attr_hp_ssd_smart_path_enabled,
894         &dev_attr_path_info,
895         &dev_attr_sas_address,
896         NULL,
897 };
898
899 static struct device_attribute *hpsa_shost_attrs[] = {
900         &dev_attr_rescan,
901         &dev_attr_firmware_revision,
902         &dev_attr_commands_outstanding,
903         &dev_attr_transport_mode,
904         &dev_attr_resettable,
905         &dev_attr_hp_ssd_smart_path_status,
906         &dev_attr_raid_offload_debug,
907         &dev_attr_lockup_detected,
908         NULL,
909 };
910
911 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
912                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
913
914 static struct scsi_host_template hpsa_driver_template = {
915         .module                 = THIS_MODULE,
916         .name                   = HPSA,
917         .proc_name              = HPSA,
918         .queuecommand           = hpsa_scsi_queue_command,
919         .scan_start             = hpsa_scan_start,
920         .scan_finished          = hpsa_scan_finished,
921         .change_queue_depth     = hpsa_change_queue_depth,
922         .this_id                = -1,
923         .use_clustering         = ENABLE_CLUSTERING,
924         .eh_abort_handler       = hpsa_eh_abort_handler,
925         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
926         .ioctl                  = hpsa_ioctl,
927         .slave_alloc            = hpsa_slave_alloc,
928         .slave_configure        = hpsa_slave_configure,
929         .slave_destroy          = hpsa_slave_destroy,
930 #ifdef CONFIG_COMPAT
931         .compat_ioctl           = hpsa_compat_ioctl,
932 #endif
933         .sdev_attrs = hpsa_sdev_attrs,
934         .shost_attrs = hpsa_shost_attrs,
935         .max_sectors = 8192,
936         .no_write_same = 1,
937 };
938
939 static inline u32 next_command(struct ctlr_info *h, u8 q)
940 {
941         u32 a;
942         struct reply_queue_buffer *rq = &h->reply_queue[q];
943
944         if (h->transMethod & CFGTBL_Trans_io_accel1)
945                 return h->access.command_completed(h, q);
946
947         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
948                 return h->access.command_completed(h, q);
949
950         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
951                 a = rq->head[rq->current_entry];
952                 rq->current_entry++;
953                 atomic_dec(&h->commands_outstanding);
954         } else {
955                 a = FIFO_EMPTY;
956         }
957         /* Check for wraparound */
958         if (rq->current_entry == h->max_commands) {
959                 rq->current_entry = 0;
960                 rq->wraparound ^= 1;
961         }
962         return a;
963 }
964
965 /*
966  * There are some special bits in the bus address of the
967  * command that we have to set for the controller to know
968  * how to process the command:
969  *
970  * Normal performant mode:
971  * bit 0: 1 means performant mode, 0 means simple mode.
972  * bits 1-3 = block fetch table entry
973  * bits 4-6 = command type (== 0)
974  *
975  * ioaccel1 mode:
976  * bit 0 = "performant mode" bit.
977  * bits 1-3 = block fetch table entry
978  * bits 4-6 = command type (== 110)
979  * (command type is needed because ioaccel1 mode
980  * commands are submitted through the same register as normal
981  * mode commands, so this is how the controller knows whether
982  * the command is normal mode or ioaccel1 mode.)
983  *
984  * ioaccel2 mode:
985  * bit 0 = "performant mode" bit.
986  * bits 1-4 = block fetch table entry (note extra bit)
987  * bits 4-6 = not needed, because ioaccel2 mode has
988  * a separate special register for submitting commands.
989  */
990
991 /*
992  * set_performant_mode: Modify the tag for cciss performant
993  * set bit 0 for pull model, bits 3-1 for block fetch
994  * register number
995  */
996 #define DEFAULT_REPLY_QUEUE (-1)
997 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
998                                         int reply_queue)
999 {
1000         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1001                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1002                 if (unlikely(!h->msix_vector))
1003                         return;
1004                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1005                         c->Header.ReplyQueue =
1006                                 raw_smp_processor_id() % h->nreply_queues;
1007                 else
1008                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1009         }
1010 }
1011
1012 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1013                                                 struct CommandList *c,
1014                                                 int reply_queue)
1015 {
1016         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1017
1018         /*
1019          * Tell the controller to post the reply to the queue for this
1020          * processor.  This seems to give the best I/O throughput.
1021          */
1022         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1023                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1024         else
1025                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1026         /*
1027          * Set the bits in the address sent down to include:
1028          *  - performant mode bit (bit 0)
1029          *  - pull count (bits 1-3)
1030          *  - command type (bits 4-6)
1031          */
1032         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1033                                         IOACCEL1_BUSADDR_CMDTYPE;
1034 }
1035
1036 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1037                                                 struct CommandList *c,
1038                                                 int reply_queue)
1039 {
1040         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1041                 &h->ioaccel2_cmd_pool[c->cmdindex];
1042
1043         /* Tell the controller to post the reply to the queue for this
1044          * processor.  This seems to give the best I/O throughput.
1045          */
1046         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1047                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1048         else
1049                 cp->reply_queue = reply_queue % h->nreply_queues;
1050         /* Set the bits in the address sent down to include:
1051          *  - performant mode bit not used in ioaccel mode 2
1052          *  - pull count (bits 0-3)
1053          *  - command type isn't needed for ioaccel2
1054          */
1055         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1056 }
1057
1058 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1059                                                 struct CommandList *c,
1060                                                 int reply_queue)
1061 {
1062         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1063
1064         /*
1065          * Tell the controller to post the reply to the queue for this
1066          * processor.  This seems to give the best I/O throughput.
1067          */
1068         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1069                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1070         else
1071                 cp->reply_queue = reply_queue % h->nreply_queues;
1072         /*
1073          * Set the bits in the address sent down to include:
1074          *  - performant mode bit not used in ioaccel mode 2
1075          *  - pull count (bits 0-3)
1076          *  - command type isn't needed for ioaccel2
1077          */
1078         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1079 }
1080
1081 static int is_firmware_flash_cmd(u8 *cdb)
1082 {
1083         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1084 }
1085
1086 /*
1087  * During firmware flash, the heartbeat register may not update as frequently
1088  * as it should.  So we dial down lockup detection during firmware flash. and
1089  * dial it back up when firmware flash completes.
1090  */
1091 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1092 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1093 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1094                 struct CommandList *c)
1095 {
1096         if (!is_firmware_flash_cmd(c->Request.CDB))
1097                 return;
1098         atomic_inc(&h->firmware_flash_in_progress);
1099         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1100 }
1101
1102 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1103                 struct CommandList *c)
1104 {
1105         if (is_firmware_flash_cmd(c->Request.CDB) &&
1106                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1107                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1108 }
1109
1110 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1111         struct CommandList *c, int reply_queue)
1112 {
1113         dial_down_lockup_detection_during_fw_flash(h, c);
1114         atomic_inc(&h->commands_outstanding);
1115         switch (c->cmd_type) {
1116         case CMD_IOACCEL1:
1117                 set_ioaccel1_performant_mode(h, c, reply_queue);
1118                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1119                 break;
1120         case CMD_IOACCEL2:
1121                 set_ioaccel2_performant_mode(h, c, reply_queue);
1122                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1123                 break;
1124         case IOACCEL2_TMF:
1125                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1126                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1127                 break;
1128         default:
1129                 set_performant_mode(h, c, reply_queue);
1130                 h->access.submit_command(h, c);
1131         }
1132 }
1133
1134 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1135 {
1136         if (unlikely(hpsa_is_pending_event(c)))
1137                 return finish_cmd(c);
1138
1139         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1140 }
1141
1142 static inline int is_hba_lunid(unsigned char scsi3addr[])
1143 {
1144         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1145 }
1146
1147 static inline int is_scsi_rev_5(struct ctlr_info *h)
1148 {
1149         if (!h->hba_inquiry_data)
1150                 return 0;
1151         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1152                 return 1;
1153         return 0;
1154 }
1155
1156 static int hpsa_find_target_lun(struct ctlr_info *h,
1157         unsigned char scsi3addr[], int bus, int *target, int *lun)
1158 {
1159         /* finds an unused bus, target, lun for a new physical device
1160          * assumes h->devlock is held
1161          */
1162         int i, found = 0;
1163         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1164
1165         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1166
1167         for (i = 0; i < h->ndevices; i++) {
1168                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1169                         __set_bit(h->dev[i]->target, lun_taken);
1170         }
1171
1172         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1173         if (i < HPSA_MAX_DEVICES) {
1174                 /* *bus = 1; */
1175                 *target = i;
1176                 *lun = 0;
1177                 found = 1;
1178         }
1179         return !found;
1180 }
1181
1182 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1183         struct hpsa_scsi_dev_t *dev, char *description)
1184 {
1185 #define LABEL_SIZE 25
1186         char label[LABEL_SIZE];
1187
1188         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1189                 return;
1190
1191         switch (dev->devtype) {
1192         case TYPE_RAID:
1193                 snprintf(label, LABEL_SIZE, "controller");
1194                 break;
1195         case TYPE_ENCLOSURE:
1196                 snprintf(label, LABEL_SIZE, "enclosure");
1197                 break;
1198         case TYPE_DISK:
1199         case TYPE_ZBC:
1200                 if (dev->external)
1201                         snprintf(label, LABEL_SIZE, "external");
1202                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1203                         snprintf(label, LABEL_SIZE, "%s",
1204                                 raid_label[PHYSICAL_DRIVE]);
1205                 else
1206                         snprintf(label, LABEL_SIZE, "RAID-%s",
1207                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1208                                 raid_label[dev->raid_level]);
1209                 break;
1210         case TYPE_ROM:
1211                 snprintf(label, LABEL_SIZE, "rom");
1212                 break;
1213         case TYPE_TAPE:
1214                 snprintf(label, LABEL_SIZE, "tape");
1215                 break;
1216         case TYPE_MEDIUM_CHANGER:
1217                 snprintf(label, LABEL_SIZE, "changer");
1218                 break;
1219         default:
1220                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1221                 break;
1222         }
1223
1224         dev_printk(level, &h->pdev->dev,
1225                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1226                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1227                         description,
1228                         scsi_device_type(dev->devtype),
1229                         dev->vendor,
1230                         dev->model,
1231                         label,
1232                         dev->offload_config ? '+' : '-',
1233                         dev->offload_enabled ? '+' : '-',
1234                         dev->expose_device);
1235 }
1236
1237 /* Add an entry into h->dev[] array. */
1238 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1239                 struct hpsa_scsi_dev_t *device,
1240                 struct hpsa_scsi_dev_t *added[], int *nadded)
1241 {
1242         /* assumes h->devlock is held */
1243         int n = h->ndevices;
1244         int i;
1245         unsigned char addr1[8], addr2[8];
1246         struct hpsa_scsi_dev_t *sd;
1247
1248         if (n >= HPSA_MAX_DEVICES) {
1249                 dev_err(&h->pdev->dev, "too many devices, some will be "
1250                         "inaccessible.\n");
1251                 return -1;
1252         }
1253
1254         /* physical devices do not have lun or target assigned until now. */
1255         if (device->lun != -1)
1256                 /* Logical device, lun is already assigned. */
1257                 goto lun_assigned;
1258
1259         /* If this device a non-zero lun of a multi-lun device
1260          * byte 4 of the 8-byte LUN addr will contain the logical
1261          * unit no, zero otherwise.
1262          */
1263         if (device->scsi3addr[4] == 0) {
1264                 /* This is not a non-zero lun of a multi-lun device */
1265                 if (hpsa_find_target_lun(h, device->scsi3addr,
1266                         device->bus, &device->target, &device->lun) != 0)
1267                         return -1;
1268                 goto lun_assigned;
1269         }
1270
1271         /* This is a non-zero lun of a multi-lun device.
1272          * Search through our list and find the device which
1273          * has the same 8 byte LUN address, excepting byte 4 and 5.
1274          * Assign the same bus and target for this new LUN.
1275          * Use the logical unit number from the firmware.
1276          */
1277         memcpy(addr1, device->scsi3addr, 8);
1278         addr1[4] = 0;
1279         addr1[5] = 0;
1280         for (i = 0; i < n; i++) {
1281                 sd = h->dev[i];
1282                 memcpy(addr2, sd->scsi3addr, 8);
1283                 addr2[4] = 0;
1284                 addr2[5] = 0;
1285                 /* differ only in byte 4 and 5? */
1286                 if (memcmp(addr1, addr2, 8) == 0) {
1287                         device->bus = sd->bus;
1288                         device->target = sd->target;
1289                         device->lun = device->scsi3addr[4];
1290                         break;
1291                 }
1292         }
1293         if (device->lun == -1) {
1294                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1295                         " suspect firmware bug or unsupported hardware "
1296                         "configuration.\n");
1297                         return -1;
1298         }
1299
1300 lun_assigned:
1301
1302         h->dev[n] = device;
1303         h->ndevices++;
1304         added[*nadded] = device;
1305         (*nadded)++;
1306         hpsa_show_dev_msg(KERN_INFO, h, device,
1307                 device->expose_device ? "added" : "masked");
1308         device->offload_to_be_enabled = device->offload_enabled;
1309         device->offload_enabled = 0;
1310         return 0;
1311 }
1312
1313 /* Update an entry in h->dev[] array. */
1314 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1315         int entry, struct hpsa_scsi_dev_t *new_entry)
1316 {
1317         int offload_enabled;
1318         /* assumes h->devlock is held */
1319         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1320
1321         /* Raid level changed. */
1322         h->dev[entry]->raid_level = new_entry->raid_level;
1323
1324         /* Raid offload parameters changed.  Careful about the ordering. */
1325         if (new_entry->offload_config && new_entry->offload_enabled) {
1326                 /*
1327                  * if drive is newly offload_enabled, we want to copy the
1328                  * raid map data first.  If previously offload_enabled and
1329                  * offload_config were set, raid map data had better be
1330                  * the same as it was before.  if raid map data is changed
1331                  * then it had better be the case that
1332                  * h->dev[entry]->offload_enabled is currently 0.
1333                  */
1334                 h->dev[entry]->raid_map = new_entry->raid_map;
1335                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1336         }
1337         if (new_entry->hba_ioaccel_enabled) {
1338                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1339                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1340         }
1341         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1342         h->dev[entry]->offload_config = new_entry->offload_config;
1343         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1344         h->dev[entry]->queue_depth = new_entry->queue_depth;
1345
1346         /*
1347          * We can turn off ioaccel offload now, but need to delay turning
1348          * it on until we can update h->dev[entry]->phys_disk[], but we
1349          * can't do that until all the devices are updated.
1350          */
1351         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1352         if (!new_entry->offload_enabled)
1353                 h->dev[entry]->offload_enabled = 0;
1354
1355         offload_enabled = h->dev[entry]->offload_enabled;
1356         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1357         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1358         h->dev[entry]->offload_enabled = offload_enabled;
1359 }
1360
1361 /* Replace an entry from h->dev[] array. */
1362 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1363         int entry, struct hpsa_scsi_dev_t *new_entry,
1364         struct hpsa_scsi_dev_t *added[], int *nadded,
1365         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1366 {
1367         /* assumes h->devlock is held */
1368         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1369         removed[*nremoved] = h->dev[entry];
1370         (*nremoved)++;
1371
1372         /*
1373          * New physical devices won't have target/lun assigned yet
1374          * so we need to preserve the values in the slot we are replacing.
1375          */
1376         if (new_entry->target == -1) {
1377                 new_entry->target = h->dev[entry]->target;
1378                 new_entry->lun = h->dev[entry]->lun;
1379         }
1380
1381         h->dev[entry] = new_entry;
1382         added[*nadded] = new_entry;
1383         (*nadded)++;
1384         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1385         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1386         new_entry->offload_enabled = 0;
1387 }
1388
1389 /* Remove an entry from h->dev[] array. */
1390 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1391         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1392 {
1393         /* assumes h->devlock is held */
1394         int i;
1395         struct hpsa_scsi_dev_t *sd;
1396
1397         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1398
1399         sd = h->dev[entry];
1400         removed[*nremoved] = h->dev[entry];
1401         (*nremoved)++;
1402
1403         for (i = entry; i < h->ndevices-1; i++)
1404                 h->dev[i] = h->dev[i+1];
1405         h->ndevices--;
1406         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1407 }
1408
1409 #define SCSI3ADDR_EQ(a, b) ( \
1410         (a)[7] == (b)[7] && \
1411         (a)[6] == (b)[6] && \
1412         (a)[5] == (b)[5] && \
1413         (a)[4] == (b)[4] && \
1414         (a)[3] == (b)[3] && \
1415         (a)[2] == (b)[2] && \
1416         (a)[1] == (b)[1] && \
1417         (a)[0] == (b)[0])
1418
1419 static void fixup_botched_add(struct ctlr_info *h,
1420         struct hpsa_scsi_dev_t *added)
1421 {
1422         /* called when scsi_add_device fails in order to re-adjust
1423          * h->dev[] to match the mid layer's view.
1424          */
1425         unsigned long flags;
1426         int i, j;
1427
1428         spin_lock_irqsave(&h->lock, flags);
1429         for (i = 0; i < h->ndevices; i++) {
1430                 if (h->dev[i] == added) {
1431                         for (j = i; j < h->ndevices-1; j++)
1432                                 h->dev[j] = h->dev[j+1];
1433                         h->ndevices--;
1434                         break;
1435                 }
1436         }
1437         spin_unlock_irqrestore(&h->lock, flags);
1438         kfree(added);
1439 }
1440
1441 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1442         struct hpsa_scsi_dev_t *dev2)
1443 {
1444         /* we compare everything except lun and target as these
1445          * are not yet assigned.  Compare parts likely
1446          * to differ first
1447          */
1448         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1449                 sizeof(dev1->scsi3addr)) != 0)
1450                 return 0;
1451         if (memcmp(dev1->device_id, dev2->device_id,
1452                 sizeof(dev1->device_id)) != 0)
1453                 return 0;
1454         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1455                 return 0;
1456         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1457                 return 0;
1458         if (dev1->devtype != dev2->devtype)
1459                 return 0;
1460         if (dev1->bus != dev2->bus)
1461                 return 0;
1462         return 1;
1463 }
1464
1465 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1466         struct hpsa_scsi_dev_t *dev2)
1467 {
1468         /* Device attributes that can change, but don't mean
1469          * that the device is a different device, nor that the OS
1470          * needs to be told anything about the change.
1471          */
1472         if (dev1->raid_level != dev2->raid_level)
1473                 return 1;
1474         if (dev1->offload_config != dev2->offload_config)
1475                 return 1;
1476         if (dev1->offload_enabled != dev2->offload_enabled)
1477                 return 1;
1478         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1479                 if (dev1->queue_depth != dev2->queue_depth)
1480                         return 1;
1481         return 0;
1482 }
1483
1484 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1485  * and return needle location in *index.  If scsi3addr matches, but not
1486  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1487  * location in *index.
1488  * In the case of a minor device attribute change, such as RAID level, just
1489  * return DEVICE_UPDATED, along with the updated device's location in index.
1490  * If needle not found, return DEVICE_NOT_FOUND.
1491  */
1492 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1493         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1494         int *index)
1495 {
1496         int i;
1497 #define DEVICE_NOT_FOUND 0
1498 #define DEVICE_CHANGED 1
1499 #define DEVICE_SAME 2
1500 #define DEVICE_UPDATED 3
1501         if (needle == NULL)
1502                 return DEVICE_NOT_FOUND;
1503
1504         for (i = 0; i < haystack_size; i++) {
1505                 if (haystack[i] == NULL) /* previously removed. */
1506                         continue;
1507                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1508                         *index = i;
1509                         if (device_is_the_same(needle, haystack[i])) {
1510                                 if (device_updated(needle, haystack[i]))
1511                                         return DEVICE_UPDATED;
1512                                 return DEVICE_SAME;
1513                         } else {
1514                                 /* Keep offline devices offline */
1515                                 if (needle->volume_offline)
1516                                         return DEVICE_NOT_FOUND;
1517                                 return DEVICE_CHANGED;
1518                         }
1519                 }
1520         }
1521         *index = -1;
1522         return DEVICE_NOT_FOUND;
1523 }
1524
1525 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1526                                         unsigned char scsi3addr[])
1527 {
1528         struct offline_device_entry *device;
1529         unsigned long flags;
1530
1531         /* Check to see if device is already on the list */
1532         spin_lock_irqsave(&h->offline_device_lock, flags);
1533         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1534                 if (memcmp(device->scsi3addr, scsi3addr,
1535                         sizeof(device->scsi3addr)) == 0) {
1536                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1537                         return;
1538                 }
1539         }
1540         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1541
1542         /* Device is not on the list, add it. */
1543         device = kmalloc(sizeof(*device), GFP_KERNEL);
1544         if (!device) {
1545                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1546                 return;
1547         }
1548         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1549         spin_lock_irqsave(&h->offline_device_lock, flags);
1550         list_add_tail(&device->offline_list, &h->offline_device_list);
1551         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1552 }
1553
1554 /* Print a message explaining various offline volume states */
1555 static void hpsa_show_volume_status(struct ctlr_info *h,
1556         struct hpsa_scsi_dev_t *sd)
1557 {
1558         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1559                 dev_info(&h->pdev->dev,
1560                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1561                         h->scsi_host->host_no,
1562                         sd->bus, sd->target, sd->lun);
1563         switch (sd->volume_offline) {
1564         case HPSA_LV_OK:
1565                 break;
1566         case HPSA_LV_UNDERGOING_ERASE:
1567                 dev_info(&h->pdev->dev,
1568                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1569                         h->scsi_host->host_no,
1570                         sd->bus, sd->target, sd->lun);
1571                 break;
1572         case HPSA_LV_NOT_AVAILABLE:
1573                 dev_info(&h->pdev->dev,
1574                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1575                         h->scsi_host->host_no,
1576                         sd->bus, sd->target, sd->lun);
1577                 break;
1578         case HPSA_LV_UNDERGOING_RPI:
1579                 dev_info(&h->pdev->dev,
1580                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1581                         h->scsi_host->host_no,
1582                         sd->bus, sd->target, sd->lun);
1583                 break;
1584         case HPSA_LV_PENDING_RPI:
1585                 dev_info(&h->pdev->dev,
1586                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1587                         h->scsi_host->host_no,
1588                         sd->bus, sd->target, sd->lun);
1589                 break;
1590         case HPSA_LV_ENCRYPTED_NO_KEY:
1591                 dev_info(&h->pdev->dev,
1592                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1593                         h->scsi_host->host_no,
1594                         sd->bus, sd->target, sd->lun);
1595                 break;
1596         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1597                 dev_info(&h->pdev->dev,
1598                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1599                         h->scsi_host->host_no,
1600                         sd->bus, sd->target, sd->lun);
1601                 break;
1602         case HPSA_LV_UNDERGOING_ENCRYPTION:
1603                 dev_info(&h->pdev->dev,
1604                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1605                         h->scsi_host->host_no,
1606                         sd->bus, sd->target, sd->lun);
1607                 break;
1608         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1609                 dev_info(&h->pdev->dev,
1610                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1611                         h->scsi_host->host_no,
1612                         sd->bus, sd->target, sd->lun);
1613                 break;
1614         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1615                 dev_info(&h->pdev->dev,
1616                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1617                         h->scsi_host->host_no,
1618                         sd->bus, sd->target, sd->lun);
1619                 break;
1620         case HPSA_LV_PENDING_ENCRYPTION:
1621                 dev_info(&h->pdev->dev,
1622                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1623                         h->scsi_host->host_no,
1624                         sd->bus, sd->target, sd->lun);
1625                 break;
1626         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1627                 dev_info(&h->pdev->dev,
1628                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1629                         h->scsi_host->host_no,
1630                         sd->bus, sd->target, sd->lun);
1631                 break;
1632         }
1633 }
1634
1635 /*
1636  * Figure the list of physical drive pointers for a logical drive with
1637  * raid offload configured.
1638  */
1639 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1640                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1641                                 struct hpsa_scsi_dev_t *logical_drive)
1642 {
1643         struct raid_map_data *map = &logical_drive->raid_map;
1644         struct raid_map_disk_data *dd = &map->data[0];
1645         int i, j;
1646         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1647                                 le16_to_cpu(map->metadata_disks_per_row);
1648         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1649                                 le16_to_cpu(map->layout_map_count) *
1650                                 total_disks_per_row;
1651         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1652                                 total_disks_per_row;
1653         int qdepth;
1654
1655         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1656                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1657
1658         logical_drive->nphysical_disks = nraid_map_entries;
1659
1660         qdepth = 0;
1661         for (i = 0; i < nraid_map_entries; i++) {
1662                 logical_drive->phys_disk[i] = NULL;
1663                 if (!logical_drive->offload_config)
1664                         continue;
1665                 for (j = 0; j < ndevices; j++) {
1666                         if (dev[j] == NULL)
1667                                 continue;
1668                         if (dev[j]->devtype != TYPE_DISK &&
1669                             dev[j]->devtype != TYPE_ZBC)
1670                                 continue;
1671                         if (is_logical_device(dev[j]))
1672                                 continue;
1673                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1674                                 continue;
1675
1676                         logical_drive->phys_disk[i] = dev[j];
1677                         if (i < nphys_disk)
1678                                 qdepth = min(h->nr_cmds, qdepth +
1679                                     logical_drive->phys_disk[i]->queue_depth);
1680                         break;
1681                 }
1682
1683                 /*
1684                  * This can happen if a physical drive is removed and
1685                  * the logical drive is degraded.  In that case, the RAID
1686                  * map data will refer to a physical disk which isn't actually
1687                  * present.  And in that case offload_enabled should already
1688                  * be 0, but we'll turn it off here just in case
1689                  */
1690                 if (!logical_drive->phys_disk[i]) {
1691                         logical_drive->offload_enabled = 0;
1692                         logical_drive->offload_to_be_enabled = 0;
1693                         logical_drive->queue_depth = 8;
1694                 }
1695         }
1696         if (nraid_map_entries)
1697                 /*
1698                  * This is correct for reads, too high for full stripe writes,
1699                  * way too high for partial stripe writes
1700                  */
1701                 logical_drive->queue_depth = qdepth;
1702         else
1703                 logical_drive->queue_depth = h->nr_cmds;
1704 }
1705
1706 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1707                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1708 {
1709         int i;
1710
1711         for (i = 0; i < ndevices; i++) {
1712                 if (dev[i] == NULL)
1713                         continue;
1714                 if (dev[i]->devtype != TYPE_DISK &&
1715                     dev[i]->devtype != TYPE_ZBC)
1716                         continue;
1717                 if (!is_logical_device(dev[i]))
1718                         continue;
1719
1720                 /*
1721                  * If offload is currently enabled, the RAID map and
1722                  * phys_disk[] assignment *better* not be changing
1723                  * and since it isn't changing, we do not need to
1724                  * update it.
1725                  */
1726                 if (dev[i]->offload_enabled)
1727                         continue;
1728
1729                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1730         }
1731 }
1732
1733 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1734 {
1735         int rc = 0;
1736
1737         if (!h->scsi_host)
1738                 return 1;
1739
1740         if (is_logical_device(device)) /* RAID */
1741                 rc = scsi_add_device(h->scsi_host, device->bus,
1742                                         device->target, device->lun);
1743         else /* HBA */
1744                 rc = hpsa_add_sas_device(h->sas_host, device);
1745
1746         return rc;
1747 }
1748
1749 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1750                                                 struct hpsa_scsi_dev_t *dev)
1751 {
1752         int i;
1753         int count = 0;
1754
1755         for (i = 0; i < h->nr_cmds; i++) {
1756                 struct CommandList *c = h->cmd_pool + i;
1757                 int refcount = atomic_inc_return(&c->refcount);
1758
1759                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1760                                 dev->scsi3addr)) {
1761                         unsigned long flags;
1762
1763                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1764                         if (!hpsa_is_cmd_idle(c))
1765                                 ++count;
1766                         spin_unlock_irqrestore(&h->lock, flags);
1767                 }
1768
1769                 cmd_free(h, c);
1770         }
1771
1772         return count;
1773 }
1774
1775 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1776                                                 struct hpsa_scsi_dev_t *device)
1777 {
1778         int cmds = 0;
1779         int waits = 0;
1780
1781         while (1) {
1782                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1783                 if (cmds == 0)
1784                         break;
1785                 if (++waits > 20)
1786                         break;
1787                 dev_warn(&h->pdev->dev,
1788                         "%s: removing device with %d outstanding commands!\n",
1789                         __func__, cmds);
1790                 msleep(1000);
1791         }
1792 }
1793
1794 static void hpsa_remove_device(struct ctlr_info *h,
1795                         struct hpsa_scsi_dev_t *device)
1796 {
1797         struct scsi_device *sdev = NULL;
1798
1799         if (!h->scsi_host)
1800                 return;
1801
1802         if (is_logical_device(device)) { /* RAID */
1803                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1804                                                 device->target, device->lun);
1805                 if (sdev) {
1806                         scsi_remove_device(sdev);
1807                         scsi_device_put(sdev);
1808                 } else {
1809                         /*
1810                          * We don't expect to get here.  Future commands
1811                          * to this device will get a selection timeout as
1812                          * if the device were gone.
1813                          */
1814                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1815                                         "didn't find device for removal.");
1816                 }
1817         } else { /* HBA */
1818
1819                 device->removed = 1;
1820                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1821
1822                 hpsa_remove_sas_device(device);
1823         }
1824 }
1825
1826 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1827         struct hpsa_scsi_dev_t *sd[], int nsds)
1828 {
1829         /* sd contains scsi3 addresses and devtypes, and inquiry
1830          * data.  This function takes what's in sd to be the current
1831          * reality and updates h->dev[] to reflect that reality.
1832          */
1833         int i, entry, device_change, changes = 0;
1834         struct hpsa_scsi_dev_t *csd;
1835         unsigned long flags;
1836         struct hpsa_scsi_dev_t **added, **removed;
1837         int nadded, nremoved;
1838
1839         /*
1840          * A reset can cause a device status to change
1841          * re-schedule the scan to see what happened.
1842          */
1843         if (h->reset_in_progress) {
1844                 h->drv_req_rescan = 1;
1845                 return;
1846         }
1847
1848         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1849         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1850
1851         if (!added || !removed) {
1852                 dev_warn(&h->pdev->dev, "out of memory in "
1853                         "adjust_hpsa_scsi_table\n");
1854                 goto free_and_out;
1855         }
1856
1857         spin_lock_irqsave(&h->devlock, flags);
1858
1859         /* find any devices in h->dev[] that are not in
1860          * sd[] and remove them from h->dev[], and for any
1861          * devices which have changed, remove the old device
1862          * info and add the new device info.
1863          * If minor device attributes change, just update
1864          * the existing device structure.
1865          */
1866         i = 0;
1867         nremoved = 0;
1868         nadded = 0;
1869         while (i < h->ndevices) {
1870                 csd = h->dev[i];
1871                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1872                 if (device_change == DEVICE_NOT_FOUND) {
1873                         changes++;
1874                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1875                         continue; /* remove ^^^, hence i not incremented */
1876                 } else if (device_change == DEVICE_CHANGED) {
1877                         changes++;
1878                         hpsa_scsi_replace_entry(h, i, sd[entry],
1879                                 added, &nadded, removed, &nremoved);
1880                         /* Set it to NULL to prevent it from being freed
1881                          * at the bottom of hpsa_update_scsi_devices()
1882                          */
1883                         sd[entry] = NULL;
1884                 } else if (device_change == DEVICE_UPDATED) {
1885                         hpsa_scsi_update_entry(h, i, sd[entry]);
1886                 }
1887                 i++;
1888         }
1889
1890         /* Now, make sure every device listed in sd[] is also
1891          * listed in h->dev[], adding them if they aren't found
1892          */
1893
1894         for (i = 0; i < nsds; i++) {
1895                 if (!sd[i]) /* if already added above. */
1896                         continue;
1897
1898                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1899                  * as the SCSI mid-layer does not handle such devices well.
1900                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1901                  * at 160Hz, and prevents the system from coming up.
1902                  */
1903                 if (sd[i]->volume_offline) {
1904                         hpsa_show_volume_status(h, sd[i]);
1905                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1906                         continue;
1907                 }
1908
1909                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1910                                         h->ndevices, &entry);
1911                 if (device_change == DEVICE_NOT_FOUND) {
1912                         changes++;
1913                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1914                                 break;
1915                         sd[i] = NULL; /* prevent from being freed later. */
1916                 } else if (device_change == DEVICE_CHANGED) {
1917                         /* should never happen... */
1918                         changes++;
1919                         dev_warn(&h->pdev->dev,
1920                                 "device unexpectedly changed.\n");
1921                         /* but if it does happen, we just ignore that device */
1922                 }
1923         }
1924         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1925
1926         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1927          * any logical drives that need it enabled.
1928          */
1929         for (i = 0; i < h->ndevices; i++) {
1930                 if (h->dev[i] == NULL)
1931                         continue;
1932                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1933         }
1934
1935         spin_unlock_irqrestore(&h->devlock, flags);
1936
1937         /* Monitor devices which are in one of several NOT READY states to be
1938          * brought online later. This must be done without holding h->devlock,
1939          * so don't touch h->dev[]
1940          */
1941         for (i = 0; i < nsds; i++) {
1942                 if (!sd[i]) /* if already added above. */
1943                         continue;
1944                 if (sd[i]->volume_offline)
1945                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1946         }
1947
1948         /* Don't notify scsi mid layer of any changes the first time through
1949          * (or if there are no changes) scsi_scan_host will do it later the
1950          * first time through.
1951          */
1952         if (!changes)
1953                 goto free_and_out;
1954
1955         /* Notify scsi mid layer of any removed devices */
1956         for (i = 0; i < nremoved; i++) {
1957                 if (removed[i] == NULL)
1958                         continue;
1959                 if (removed[i]->expose_device)
1960                         hpsa_remove_device(h, removed[i]);
1961                 kfree(removed[i]);
1962                 removed[i] = NULL;
1963         }
1964
1965         /* Notify scsi mid layer of any added devices */
1966         for (i = 0; i < nadded; i++) {
1967                 int rc = 0;
1968
1969                 if (added[i] == NULL)
1970                         continue;
1971                 if (!(added[i]->expose_device))
1972                         continue;
1973                 rc = hpsa_add_device(h, added[i]);
1974                 if (!rc)
1975                         continue;
1976                 dev_warn(&h->pdev->dev,
1977                         "addition failed %d, device not added.", rc);
1978                 /* now we have to remove it from h->dev,
1979                  * since it didn't get added to scsi mid layer
1980                  */
1981                 fixup_botched_add(h, added[i]);
1982                 h->drv_req_rescan = 1;
1983         }
1984
1985 free_and_out:
1986         kfree(added);
1987         kfree(removed);
1988 }
1989
1990 /*
1991  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1992  * Assume's h->devlock is held.
1993  */
1994 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1995         int bus, int target, int lun)
1996 {
1997         int i;
1998         struct hpsa_scsi_dev_t *sd;
1999
2000         for (i = 0; i < h->ndevices; i++) {
2001                 sd = h->dev[i];
2002                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2003                         return sd;
2004         }
2005         return NULL;
2006 }
2007
2008 static int hpsa_slave_alloc(struct scsi_device *sdev)
2009 {
2010         struct hpsa_scsi_dev_t *sd;
2011         unsigned long flags;
2012         struct ctlr_info *h;
2013
2014         h = sdev_to_hba(sdev);
2015         spin_lock_irqsave(&h->devlock, flags);
2016         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2017                 struct scsi_target *starget;
2018                 struct sas_rphy *rphy;
2019
2020                 starget = scsi_target(sdev);
2021                 rphy = target_to_rphy(starget);
2022                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2023                 if (sd) {
2024                         sd->target = sdev_id(sdev);
2025                         sd->lun = sdev->lun;
2026                 }
2027         } else
2028                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2029                                         sdev_id(sdev), sdev->lun);
2030
2031         if (sd && sd->expose_device) {
2032                 atomic_set(&sd->ioaccel_cmds_out, 0);
2033                 sdev->hostdata = sd;
2034         } else
2035                 sdev->hostdata = NULL;
2036         spin_unlock_irqrestore(&h->devlock, flags);
2037         return 0;
2038 }
2039
2040 /* configure scsi device based on internal per-device structure */
2041 static int hpsa_slave_configure(struct scsi_device *sdev)
2042 {
2043         struct hpsa_scsi_dev_t *sd;
2044         int queue_depth;
2045
2046         sd = sdev->hostdata;
2047         sdev->no_uld_attach = !sd || !sd->expose_device;
2048
2049         if (sd)
2050                 queue_depth = sd->queue_depth != 0 ?
2051                         sd->queue_depth : sdev->host->can_queue;
2052         else
2053                 queue_depth = sdev->host->can_queue;
2054
2055         scsi_change_queue_depth(sdev, queue_depth);
2056
2057         return 0;
2058 }
2059
2060 static void hpsa_slave_destroy(struct scsi_device *sdev)
2061 {
2062         /* nothing to do. */
2063 }
2064
2065 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2066 {
2067         int i;
2068
2069         if (!h->ioaccel2_cmd_sg_list)
2070                 return;
2071         for (i = 0; i < h->nr_cmds; i++) {
2072                 kfree(h->ioaccel2_cmd_sg_list[i]);
2073                 h->ioaccel2_cmd_sg_list[i] = NULL;
2074         }
2075         kfree(h->ioaccel2_cmd_sg_list);
2076         h->ioaccel2_cmd_sg_list = NULL;
2077 }
2078
2079 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2080 {
2081         int i;
2082
2083         if (h->chainsize <= 0)
2084                 return 0;
2085
2086         h->ioaccel2_cmd_sg_list =
2087                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2088                                         GFP_KERNEL);
2089         if (!h->ioaccel2_cmd_sg_list)
2090                 return -ENOMEM;
2091         for (i = 0; i < h->nr_cmds; i++) {
2092                 h->ioaccel2_cmd_sg_list[i] =
2093                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2094                                         h->maxsgentries, GFP_KERNEL);
2095                 if (!h->ioaccel2_cmd_sg_list[i])
2096                         goto clean;
2097         }
2098         return 0;
2099
2100 clean:
2101         hpsa_free_ioaccel2_sg_chain_blocks(h);
2102         return -ENOMEM;
2103 }
2104
2105 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2106 {
2107         int i;
2108
2109         if (!h->cmd_sg_list)
2110                 return;
2111         for (i = 0; i < h->nr_cmds; i++) {
2112                 kfree(h->cmd_sg_list[i]);
2113                 h->cmd_sg_list[i] = NULL;
2114         }
2115         kfree(h->cmd_sg_list);
2116         h->cmd_sg_list = NULL;
2117 }
2118
2119 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2120 {
2121         int i;
2122
2123         if (h->chainsize <= 0)
2124                 return 0;
2125
2126         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2127                                 GFP_KERNEL);
2128         if (!h->cmd_sg_list) {
2129                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2130                 return -ENOMEM;
2131         }
2132         for (i = 0; i < h->nr_cmds; i++) {
2133                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2134                                                 h->chainsize, GFP_KERNEL);
2135                 if (!h->cmd_sg_list[i]) {
2136                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2137                         goto clean;
2138                 }
2139         }
2140         return 0;
2141
2142 clean:
2143         hpsa_free_sg_chain_blocks(h);
2144         return -ENOMEM;
2145 }
2146
2147 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2148         struct io_accel2_cmd *cp, struct CommandList *c)
2149 {
2150         struct ioaccel2_sg_element *chain_block;
2151         u64 temp64;
2152         u32 chain_size;
2153
2154         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2155         chain_size = le32_to_cpu(cp->sg[0].length);
2156         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2157                                 PCI_DMA_TODEVICE);
2158         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2159                 /* prevent subsequent unmapping */
2160                 cp->sg->address = 0;
2161                 return -1;
2162         }
2163         cp->sg->address = cpu_to_le64(temp64);
2164         return 0;
2165 }
2166
2167 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2168         struct io_accel2_cmd *cp)
2169 {
2170         struct ioaccel2_sg_element *chain_sg;
2171         u64 temp64;
2172         u32 chain_size;
2173
2174         chain_sg = cp->sg;
2175         temp64 = le64_to_cpu(chain_sg->address);
2176         chain_size = le32_to_cpu(cp->sg[0].length);
2177         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2178 }
2179
2180 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2181         struct CommandList *c)
2182 {
2183         struct SGDescriptor *chain_sg, *chain_block;
2184         u64 temp64;
2185         u32 chain_len;
2186
2187         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2188         chain_block = h->cmd_sg_list[c->cmdindex];
2189         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2190         chain_len = sizeof(*chain_sg) *
2191                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2192         chain_sg->Len = cpu_to_le32(chain_len);
2193         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2194                                 PCI_DMA_TODEVICE);
2195         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2196                 /* prevent subsequent unmapping */
2197                 chain_sg->Addr = cpu_to_le64(0);
2198                 return -1;
2199         }
2200         chain_sg->Addr = cpu_to_le64(temp64);
2201         return 0;
2202 }
2203
2204 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2205         struct CommandList *c)
2206 {
2207         struct SGDescriptor *chain_sg;
2208
2209         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2210                 return;
2211
2212         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2213         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2214                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2215 }
2216
2217
2218 /* Decode the various types of errors on ioaccel2 path.
2219  * Return 1 for any error that should generate a RAID path retry.
2220  * Return 0 for errors that don't require a RAID path retry.
2221  */
2222 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2223                                         struct CommandList *c,
2224                                         struct scsi_cmnd *cmd,
2225                                         struct io_accel2_cmd *c2,
2226                                         struct hpsa_scsi_dev_t *dev)
2227 {
2228         int data_len;
2229         int retry = 0;
2230         u32 ioaccel2_resid = 0;
2231
2232         switch (c2->error_data.serv_response) {
2233         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2234                 switch (c2->error_data.status) {
2235                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2236                         break;
2237                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2238                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2239                         if (c2->error_data.data_present !=
2240                                         IOACCEL2_SENSE_DATA_PRESENT) {
2241                                 memset(cmd->sense_buffer, 0,
2242                                         SCSI_SENSE_BUFFERSIZE);
2243                                 break;
2244                         }
2245                         /* copy the sense data */
2246                         data_len = c2->error_data.sense_data_len;
2247                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2248                                 data_len = SCSI_SENSE_BUFFERSIZE;
2249                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2250                                 data_len =
2251                                         sizeof(c2->error_data.sense_data_buff);
2252                         memcpy(cmd->sense_buffer,
2253                                 c2->error_data.sense_data_buff, data_len);
2254                         retry = 1;
2255                         break;
2256                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2257                         retry = 1;
2258                         break;
2259                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2260                         retry = 1;
2261                         break;
2262                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2263                         retry = 1;
2264                         break;
2265                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2266                         retry = 1;
2267                         break;
2268                 default:
2269                         retry = 1;
2270                         break;
2271                 }
2272                 break;
2273         case IOACCEL2_SERV_RESPONSE_FAILURE:
2274                 switch (c2->error_data.status) {
2275                 case IOACCEL2_STATUS_SR_IO_ERROR:
2276                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2277                 case IOACCEL2_STATUS_SR_OVERRUN:
2278                         retry = 1;
2279                         break;
2280                 case IOACCEL2_STATUS_SR_UNDERRUN:
2281                         cmd->result = (DID_OK << 16);           /* host byte */
2282                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2283                         ioaccel2_resid = get_unaligned_le32(
2284                                                 &c2->error_data.resid_cnt[0]);
2285                         scsi_set_resid(cmd, ioaccel2_resid);
2286                         break;
2287                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2288                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2289                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2290                         /*
2291                          * Did an HBA disk disappear? We will eventually
2292                          * get a state change event from the controller but
2293                          * in the meantime, we need to tell the OS that the
2294                          * HBA disk is no longer there and stop I/O
2295                          * from going down. This allows the potential re-insert
2296                          * of the disk to get the same device node.
2297                          */
2298                         if (dev->physical_device && dev->expose_device) {
2299                                 cmd->result = DID_NO_CONNECT << 16;
2300                                 dev->removed = 1;
2301                                 h->drv_req_rescan = 1;
2302                                 dev_warn(&h->pdev->dev,
2303                                         "%s: device is gone!\n", __func__);
2304                         } else
2305                                 /*
2306                                  * Retry by sending down the RAID path.
2307                                  * We will get an event from ctlr to
2308                                  * trigger rescan regardless.
2309                                  */
2310                                 retry = 1;
2311                         break;
2312                 default:
2313                         retry = 1;
2314                 }
2315                 break;
2316         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2317                 break;
2318         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2319                 break;
2320         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2321                 retry = 1;
2322                 break;
2323         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2324                 break;
2325         default:
2326                 retry = 1;
2327                 break;
2328         }
2329
2330         return retry;   /* retry on raid path? */
2331 }
2332
2333 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2334                 struct CommandList *c)
2335 {
2336         bool do_wake = false;
2337
2338         /*
2339          * Prevent the following race in the abort handler:
2340          *
2341          * 1. LLD is requested to abort a SCSI command
2342          * 2. The SCSI command completes
2343          * 3. The struct CommandList associated with step 2 is made available
2344          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2345          * 5. Abort handler follows scsi_cmnd->host_scribble and
2346          *    finds struct CommandList and tries to aborts it
2347          * Now we have aborted the wrong command.
2348          *
2349          * Reset c->scsi_cmd here so that the abort or reset handler will know
2350          * this command has completed.  Then, check to see if the handler is
2351          * waiting for this command, and, if so, wake it.
2352          */
2353         c->scsi_cmd = SCSI_CMD_IDLE;
2354         mb();   /* Declare command idle before checking for pending events. */
2355         if (c->abort_pending) {
2356                 do_wake = true;
2357                 c->abort_pending = false;
2358         }
2359         if (c->reset_pending) {
2360                 unsigned long flags;
2361                 struct hpsa_scsi_dev_t *dev;
2362
2363                 /*
2364                  * There appears to be a reset pending; lock the lock and
2365                  * reconfirm.  If so, then decrement the count of outstanding
2366                  * commands and wake the reset command if this is the last one.
2367                  */
2368                 spin_lock_irqsave(&h->lock, flags);
2369                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2370                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2371                         do_wake = true;
2372                 c->reset_pending = NULL;
2373                 spin_unlock_irqrestore(&h->lock, flags);
2374         }
2375
2376         if (do_wake)
2377                 wake_up_all(&h->event_sync_wait_queue);
2378 }
2379
2380 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2381                                       struct CommandList *c)
2382 {
2383         hpsa_cmd_resolve_events(h, c);
2384         cmd_tagged_free(h, c);
2385 }
2386
2387 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2388                 struct CommandList *c, struct scsi_cmnd *cmd)
2389 {
2390         hpsa_cmd_resolve_and_free(h, c);
2391         cmd->scsi_done(cmd);
2392 }
2393
2394 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2395 {
2396         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2397         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2398 }
2399
2400 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2401 {
2402         cmd->result = DID_ABORT << 16;
2403 }
2404
2405 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2406                                     struct scsi_cmnd *cmd)
2407 {
2408         hpsa_set_scsi_cmd_aborted(cmd);
2409         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2410                          c->Request.CDB, c->err_info->ScsiStatus);
2411         hpsa_cmd_resolve_and_free(h, c);
2412 }
2413
2414 static void process_ioaccel2_completion(struct ctlr_info *h,
2415                 struct CommandList *c, struct scsi_cmnd *cmd,
2416                 struct hpsa_scsi_dev_t *dev)
2417 {
2418         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2419
2420         /* check for good status */
2421         if (likely(c2->error_data.serv_response == 0 &&
2422                         c2->error_data.status == 0))
2423                 return hpsa_cmd_free_and_done(h, c, cmd);
2424
2425         /*
2426          * Any RAID offload error results in retry which will use
2427          * the normal I/O path so the controller can handle whatever's
2428          * wrong.
2429          */
2430         if (is_logical_device(dev) &&
2431                 c2->error_data.serv_response ==
2432                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2433                 if (c2->error_data.status ==
2434                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2435                         dev->offload_enabled = 0;
2436                         dev->offload_to_be_enabled = 0;
2437                 }
2438
2439                 return hpsa_retry_cmd(h, c);
2440         }
2441
2442         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2443                 return hpsa_retry_cmd(h, c);
2444
2445         return hpsa_cmd_free_and_done(h, c, cmd);
2446 }
2447
2448 /* Returns 0 on success, < 0 otherwise. */
2449 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2450                                         struct CommandList *cp)
2451 {
2452         u8 tmf_status = cp->err_info->ScsiStatus;
2453
2454         switch (tmf_status) {
2455         case CISS_TMF_COMPLETE:
2456                 /*
2457                  * CISS_TMF_COMPLETE never happens, instead,
2458                  * ei->CommandStatus == 0 for this case.
2459                  */
2460         case CISS_TMF_SUCCESS:
2461                 return 0;
2462         case CISS_TMF_INVALID_FRAME:
2463         case CISS_TMF_NOT_SUPPORTED:
2464         case CISS_TMF_FAILED:
2465         case CISS_TMF_WRONG_LUN:
2466         case CISS_TMF_OVERLAPPED_TAG:
2467                 break;
2468         default:
2469                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2470                                 tmf_status);
2471                 break;
2472         }
2473         return -tmf_status;
2474 }
2475
2476 static void complete_scsi_command(struct CommandList *cp)
2477 {
2478         struct scsi_cmnd *cmd;
2479         struct ctlr_info *h;
2480         struct ErrorInfo *ei;
2481         struct hpsa_scsi_dev_t *dev;
2482         struct io_accel2_cmd *c2;
2483
2484         u8 sense_key;
2485         u8 asc;      /* additional sense code */
2486         u8 ascq;     /* additional sense code qualifier */
2487         unsigned long sense_data_size;
2488
2489         ei = cp->err_info;
2490         cmd = cp->scsi_cmd;
2491         h = cp->h;
2492         dev = cmd->device->hostdata;
2493         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2494
2495         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2496         if ((cp->cmd_type == CMD_SCSI) &&
2497                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2498                 hpsa_unmap_sg_chain_block(h, cp);
2499
2500         if ((cp->cmd_type == CMD_IOACCEL2) &&
2501                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2502                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2503
2504         cmd->result = (DID_OK << 16);           /* host byte */
2505         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2506
2507         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2508                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2509
2510         /*
2511          * We check for lockup status here as it may be set for
2512          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2513          * fail_all_oustanding_cmds()
2514          */
2515         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2516                 /* DID_NO_CONNECT will prevent a retry */
2517                 cmd->result = DID_NO_CONNECT << 16;
2518                 return hpsa_cmd_free_and_done(h, cp, cmd);
2519         }
2520
2521         if ((unlikely(hpsa_is_pending_event(cp)))) {
2522                 if (cp->reset_pending)
2523                         return hpsa_cmd_resolve_and_free(h, cp);
2524                 if (cp->abort_pending)
2525                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2526         }
2527
2528         if (cp->cmd_type == CMD_IOACCEL2)
2529                 return process_ioaccel2_completion(h, cp, cmd, dev);
2530
2531         scsi_set_resid(cmd, ei->ResidualCnt);
2532         if (ei->CommandStatus == 0)
2533                 return hpsa_cmd_free_and_done(h, cp, cmd);
2534
2535         /* For I/O accelerator commands, copy over some fields to the normal
2536          * CISS header used below for error handling.
2537          */
2538         if (cp->cmd_type == CMD_IOACCEL1) {
2539                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2540                 cp->Header.SGList = scsi_sg_count(cmd);
2541                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2542                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2543                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2544                 cp->Header.tag = c->tag;
2545                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2546                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2547
2548                 /* Any RAID offload error results in retry which will use
2549                  * the normal I/O path so the controller can handle whatever's
2550                  * wrong.
2551                  */
2552                 if (is_logical_device(dev)) {
2553                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2554                                 dev->offload_enabled = 0;
2555                         return hpsa_retry_cmd(h, cp);
2556                 }
2557         }
2558
2559         /* an error has occurred */
2560         switch (ei->CommandStatus) {
2561
2562         case CMD_TARGET_STATUS:
2563                 cmd->result |= ei->ScsiStatus;
2564                 /* copy the sense data */
2565                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2566                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2567                 else
2568                         sense_data_size = sizeof(ei->SenseInfo);
2569                 if (ei->SenseLen < sense_data_size)
2570                         sense_data_size = ei->SenseLen;
2571                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2572                 if (ei->ScsiStatus)
2573                         decode_sense_data(ei->SenseInfo, sense_data_size,
2574                                 &sense_key, &asc, &ascq);
2575                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2576                         if (sense_key == ABORTED_COMMAND) {
2577                                 cmd->result |= DID_SOFT_ERROR << 16;
2578                                 break;
2579                         }
2580                         break;
2581                 }
2582                 /* Problem was not a check condition
2583                  * Pass it up to the upper layers...
2584                  */
2585                 if (ei->ScsiStatus) {
2586                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2587                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2588                                 "Returning result: 0x%x\n",
2589                                 cp, ei->ScsiStatus,
2590                                 sense_key, asc, ascq,
2591                                 cmd->result);
2592                 } else {  /* scsi status is zero??? How??? */
2593                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2594                                 "Returning no connection.\n", cp),
2595
2596                         /* Ordinarily, this case should never happen,
2597                          * but there is a bug in some released firmware
2598                          * revisions that allows it to happen if, for
2599                          * example, a 4100 backplane loses power and
2600                          * the tape drive is in it.  We assume that
2601                          * it's a fatal error of some kind because we
2602                          * can't show that it wasn't. We will make it
2603                          * look like selection timeout since that is
2604                          * the most common reason for this to occur,
2605                          * and it's severe enough.
2606                          */
2607
2608                         cmd->result = DID_NO_CONNECT << 16;
2609                 }
2610                 break;
2611
2612         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2613                 break;
2614         case CMD_DATA_OVERRUN:
2615                 dev_warn(&h->pdev->dev,
2616                         "CDB %16phN data overrun\n", cp->Request.CDB);
2617                 break;
2618         case CMD_INVALID: {
2619                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2620                 print_cmd(cp); */
2621                 /* We get CMD_INVALID if you address a non-existent device
2622                  * instead of a selection timeout (no response).  You will
2623                  * see this if you yank out a drive, then try to access it.
2624                  * This is kind of a shame because it means that any other
2625                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2626                  * missing target. */
2627                 cmd->result = DID_NO_CONNECT << 16;
2628         }
2629                 break;
2630         case CMD_PROTOCOL_ERR:
2631                 cmd->result = DID_ERROR << 16;
2632                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2633                                 cp->Request.CDB);
2634                 break;
2635         case CMD_HARDWARE_ERR:
2636                 cmd->result = DID_ERROR << 16;
2637                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2638                         cp->Request.CDB);
2639                 break;
2640         case CMD_CONNECTION_LOST:
2641                 cmd->result = DID_ERROR << 16;
2642                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2643                         cp->Request.CDB);
2644                 break;
2645         case CMD_ABORTED:
2646                 /* Return now to avoid calling scsi_done(). */
2647                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2648         case CMD_ABORT_FAILED:
2649                 cmd->result = DID_ERROR << 16;
2650                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2651                         cp->Request.CDB);
2652                 break;
2653         case CMD_UNSOLICITED_ABORT:
2654                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2655                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2656                         cp->Request.CDB);
2657                 break;
2658         case CMD_TIMEOUT:
2659                 cmd->result = DID_TIME_OUT << 16;
2660                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2661                         cp->Request.CDB);
2662                 break;
2663         case CMD_UNABORTABLE:
2664                 cmd->result = DID_ERROR << 16;
2665                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2666                 break;
2667         case CMD_TMF_STATUS:
2668                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2669                         cmd->result = DID_ERROR << 16;
2670                 break;
2671         case CMD_IOACCEL_DISABLED:
2672                 /* This only handles the direct pass-through case since RAID
2673                  * offload is handled above.  Just attempt a retry.
2674                  */
2675                 cmd->result = DID_SOFT_ERROR << 16;
2676                 dev_warn(&h->pdev->dev,
2677                                 "cp %p had HP SSD Smart Path error\n", cp);
2678                 break;
2679         default:
2680                 cmd->result = DID_ERROR << 16;
2681                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2682                                 cp, ei->CommandStatus);
2683         }
2684
2685         return hpsa_cmd_free_and_done(h, cp, cmd);
2686 }
2687
2688 static void hpsa_pci_unmap(struct pci_dev *pdev,
2689         struct CommandList *c, int sg_used, int data_direction)
2690 {
2691         int i;
2692
2693         for (i = 0; i < sg_used; i++)
2694                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2695                                 le32_to_cpu(c->SG[i].Len),
2696                                 data_direction);
2697 }
2698
2699 static int hpsa_map_one(struct pci_dev *pdev,
2700                 struct CommandList *cp,
2701                 unsigned char *buf,
2702                 size_t buflen,
2703                 int data_direction)
2704 {
2705         u64 addr64;
2706
2707         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2708                 cp->Header.SGList = 0;
2709                 cp->Header.SGTotal = cpu_to_le16(0);
2710                 return 0;
2711         }
2712
2713         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2714         if (dma_mapping_error(&pdev->dev, addr64)) {
2715                 /* Prevent subsequent unmap of something never mapped */
2716                 cp->Header.SGList = 0;
2717                 cp->Header.SGTotal = cpu_to_le16(0);
2718                 return -1;
2719         }
2720         cp->SG[0].Addr = cpu_to_le64(addr64);
2721         cp->SG[0].Len = cpu_to_le32(buflen);
2722         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2723         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2724         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2725         return 0;
2726 }
2727
2728 #define NO_TIMEOUT ((unsigned long) -1)
2729 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2730 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2731         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2732 {
2733         DECLARE_COMPLETION_ONSTACK(wait);
2734
2735         c->waiting = &wait;
2736         __enqueue_cmd_and_start_io(h, c, reply_queue);
2737         if (timeout_msecs == NO_TIMEOUT) {
2738                 /* TODO: get rid of this no-timeout thing */
2739                 wait_for_completion_io(&wait);
2740                 return IO_OK;
2741         }
2742         if (!wait_for_completion_io_timeout(&wait,
2743                                         msecs_to_jiffies(timeout_msecs))) {
2744                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2745                 return -ETIMEDOUT;
2746         }
2747         return IO_OK;
2748 }
2749
2750 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2751                                    int reply_queue, unsigned long timeout_msecs)
2752 {
2753         if (unlikely(lockup_detected(h))) {
2754                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2755                 return IO_OK;
2756         }
2757         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2758 }
2759
2760 static u32 lockup_detected(struct ctlr_info *h)
2761 {
2762         int cpu;
2763         u32 rc, *lockup_detected;
2764
2765         cpu = get_cpu();
2766         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2767         rc = *lockup_detected;
2768         put_cpu();
2769         return rc;
2770 }
2771
2772 #define MAX_DRIVER_CMD_RETRIES 25
2773 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2774         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2775 {
2776         int backoff_time = 10, retry_count = 0;
2777         int rc;
2778
2779         do {
2780                 memset(c->err_info, 0, sizeof(*c->err_info));
2781                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2782                                                   timeout_msecs);
2783                 if (rc)
2784                         break;
2785                 retry_count++;
2786                 if (retry_count > 3) {
2787                         msleep(backoff_time);
2788                         if (backoff_time < 1000)
2789                                 backoff_time *= 2;
2790                 }
2791         } while ((check_for_unit_attention(h, c) ||
2792                         check_for_busy(h, c)) &&
2793                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2794         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2795         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2796                 rc = -EIO;
2797         return rc;
2798 }
2799
2800 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2801                                 struct CommandList *c)
2802 {
2803         const u8 *cdb = c->Request.CDB;
2804         const u8 *lun = c->Header.LUN.LunAddrBytes;
2805
2806         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2807         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2808                 txt, lun[0], lun[1], lun[2], lun[3],
2809                 lun[4], lun[5], lun[6], lun[7],
2810                 cdb[0], cdb[1], cdb[2], cdb[3],
2811                 cdb[4], cdb[5], cdb[6], cdb[7],
2812                 cdb[8], cdb[9], cdb[10], cdb[11],
2813                 cdb[12], cdb[13], cdb[14], cdb[15]);
2814 }
2815
2816 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2817                         struct CommandList *cp)
2818 {
2819         const struct ErrorInfo *ei = cp->err_info;
2820         struct device *d = &cp->h->pdev->dev;
2821         u8 sense_key, asc, ascq;
2822         int sense_len;
2823
2824         switch (ei->CommandStatus) {
2825         case CMD_TARGET_STATUS:
2826                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2827                         sense_len = sizeof(ei->SenseInfo);
2828                 else
2829                         sense_len = ei->SenseLen;
2830                 decode_sense_data(ei->SenseInfo, sense_len,
2831                                         &sense_key, &asc, &ascq);
2832                 hpsa_print_cmd(h, "SCSI status", cp);
2833                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2834                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2835                                 sense_key, asc, ascq);
2836                 else
2837                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2838                 if (ei->ScsiStatus == 0)
2839                         dev_warn(d, "SCSI status is abnormally zero.  "
2840                         "(probably indicates selection timeout "
2841                         "reported incorrectly due to a known "
2842                         "firmware bug, circa July, 2001.)\n");
2843                 break;
2844         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2845                 break;
2846         case CMD_DATA_OVERRUN:
2847                 hpsa_print_cmd(h, "overrun condition", cp);
2848                 break;
2849         case CMD_INVALID: {
2850                 /* controller unfortunately reports SCSI passthru's
2851                  * to non-existent targets as invalid commands.
2852                  */
2853                 hpsa_print_cmd(h, "invalid command", cp);
2854                 dev_warn(d, "probably means device no longer present\n");
2855                 }
2856                 break;
2857         case CMD_PROTOCOL_ERR:
2858                 hpsa_print_cmd(h, "protocol error", cp);
2859                 break;
2860         case CMD_HARDWARE_ERR:
2861                 hpsa_print_cmd(h, "hardware error", cp);
2862                 break;
2863         case CMD_CONNECTION_LOST:
2864                 hpsa_print_cmd(h, "connection lost", cp);
2865                 break;
2866         case CMD_ABORTED:
2867                 hpsa_print_cmd(h, "aborted", cp);
2868                 break;
2869         case CMD_ABORT_FAILED:
2870                 hpsa_print_cmd(h, "abort failed", cp);
2871                 break;
2872         case CMD_UNSOLICITED_ABORT:
2873                 hpsa_print_cmd(h, "unsolicited abort", cp);
2874                 break;
2875         case CMD_TIMEOUT:
2876                 hpsa_print_cmd(h, "timed out", cp);
2877                 break;
2878         case CMD_UNABORTABLE:
2879                 hpsa_print_cmd(h, "unabortable", cp);
2880                 break;
2881         case CMD_CTLR_LOCKUP:
2882                 hpsa_print_cmd(h, "controller lockup detected", cp);
2883                 break;
2884         default:
2885                 hpsa_print_cmd(h, "unknown status", cp);
2886                 dev_warn(d, "Unknown command status %x\n",
2887                                 ei->CommandStatus);
2888         }
2889 }
2890
2891 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2892                         u16 page, unsigned char *buf,
2893                         unsigned char bufsize)
2894 {
2895         int rc = IO_OK;
2896         struct CommandList *c;
2897         struct ErrorInfo *ei;
2898
2899         c = cmd_alloc(h);
2900
2901         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2902                         page, scsi3addr, TYPE_CMD)) {
2903                 rc = -1;
2904                 goto out;
2905         }
2906         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2907                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2908         if (rc)
2909                 goto out;
2910         ei = c->err_info;
2911         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2912                 hpsa_scsi_interpret_error(h, c);
2913                 rc = -1;
2914         }
2915 out:
2916         cmd_free(h, c);
2917         return rc;
2918 }
2919
2920 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2921         u8 reset_type, int reply_queue)
2922 {
2923         int rc = IO_OK;
2924         struct CommandList *c;
2925         struct ErrorInfo *ei;
2926
2927         c = cmd_alloc(h);
2928
2929
2930         /* fill_cmd can't fail here, no data buffer to map. */
2931         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2932                         scsi3addr, TYPE_MSG);
2933         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2934         if (rc) {
2935                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2936                 goto out;
2937         }
2938         /* no unmap needed here because no data xfer. */
2939
2940         ei = c->err_info;
2941         if (ei->CommandStatus != 0) {
2942                 hpsa_scsi_interpret_error(h, c);
2943                 rc = -1;
2944         }
2945 out:
2946         cmd_free(h, c);
2947         return rc;
2948 }
2949
2950 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2951                                struct hpsa_scsi_dev_t *dev,
2952                                unsigned char *scsi3addr)
2953 {
2954         int i;
2955         bool match = false;
2956         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2957         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2958
2959         if (hpsa_is_cmd_idle(c))
2960                 return false;
2961
2962         switch (c->cmd_type) {
2963         case CMD_SCSI:
2964         case CMD_IOCTL_PEND:
2965                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2966                                 sizeof(c->Header.LUN.LunAddrBytes));
2967                 break;
2968
2969         case CMD_IOACCEL1:
2970         case CMD_IOACCEL2:
2971                 if (c->phys_disk == dev) {
2972                         /* HBA mode match */
2973                         match = true;
2974                 } else {
2975                         /* Possible RAID mode -- check each phys dev. */
2976                         /* FIXME:  Do we need to take out a lock here?  If
2977                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2978                          * instead. */
2979                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2980                                 /* FIXME: an alternate test might be
2981                                  *
2982                                  * match = dev->phys_disk[i]->ioaccel_handle
2983                                  *              == c2->scsi_nexus;      */
2984                                 match = dev->phys_disk[i] == c->phys_disk;
2985                         }
2986                 }
2987                 break;
2988
2989         case IOACCEL2_TMF:
2990                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2991                         match = dev->phys_disk[i]->ioaccel_handle ==
2992                                         le32_to_cpu(ac->it_nexus);
2993                 }
2994                 break;
2995
2996         case 0:         /* The command is in the middle of being initialized. */
2997                 match = false;
2998                 break;
2999
3000         default:
3001                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3002                         c->cmd_type);
3003                 BUG();
3004         }
3005
3006         return match;
3007 }
3008
3009 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3010         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3011 {
3012         int i;
3013         int rc = 0;
3014
3015         /* We can really only handle one reset at a time */
3016         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3017                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3018                 return -EINTR;
3019         }
3020
3021         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3022
3023         for (i = 0; i < h->nr_cmds; i++) {
3024                 struct CommandList *c = h->cmd_pool + i;
3025                 int refcount = atomic_inc_return(&c->refcount);
3026
3027                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3028                         unsigned long flags;
3029
3030                         /*
3031                          * Mark the target command as having a reset pending,
3032                          * then lock a lock so that the command cannot complete
3033                          * while we're considering it.  If the command is not
3034                          * idle then count it; otherwise revoke the event.
3035                          */
3036                         c->reset_pending = dev;
3037                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3038                         if (!hpsa_is_cmd_idle(c))
3039                                 atomic_inc(&dev->reset_cmds_out);
3040                         else
3041                                 c->reset_pending = NULL;
3042                         spin_unlock_irqrestore(&h->lock, flags);
3043                 }
3044
3045                 cmd_free(h, c);
3046         }
3047
3048         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3049         if (!rc)
3050                 wait_event(h->event_sync_wait_queue,
3051                         atomic_read(&dev->reset_cmds_out) == 0 ||
3052                         lockup_detected(h));
3053
3054         if (unlikely(lockup_detected(h))) {
3055                 dev_warn(&h->pdev->dev,
3056                          "Controller lockup detected during reset wait\n");
3057                 rc = -ENODEV;
3058         }
3059
3060         if (unlikely(rc))
3061                 atomic_set(&dev->reset_cmds_out, 0);
3062
3063         mutex_unlock(&h->reset_mutex);
3064         return rc;
3065 }
3066
3067 static void hpsa_get_raid_level(struct ctlr_info *h,
3068         unsigned char *scsi3addr, unsigned char *raid_level)
3069 {
3070         int rc;
3071         unsigned char *buf;
3072
3073         *raid_level = RAID_UNKNOWN;
3074         buf = kzalloc(64, GFP_KERNEL);
3075         if (!buf)
3076                 return;
3077         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
3078         if (rc == 0)
3079                 *raid_level = buf[8];
3080         if (*raid_level > RAID_UNKNOWN)
3081                 *raid_level = RAID_UNKNOWN;
3082         kfree(buf);
3083         return;
3084 }
3085
3086 #define HPSA_MAP_DEBUG
3087 #ifdef HPSA_MAP_DEBUG
3088 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3089                                 struct raid_map_data *map_buff)
3090 {
3091         struct raid_map_disk_data *dd = &map_buff->data[0];
3092         int map, row, col;
3093         u16 map_cnt, row_cnt, disks_per_row;
3094
3095         if (rc != 0)
3096                 return;
3097
3098         /* Show details only if debugging has been activated. */
3099         if (h->raid_offload_debug < 2)
3100                 return;
3101
3102         dev_info(&h->pdev->dev, "structure_size = %u\n",
3103                                 le32_to_cpu(map_buff->structure_size));
3104         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3105                         le32_to_cpu(map_buff->volume_blk_size));
3106         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3107                         le64_to_cpu(map_buff->volume_blk_cnt));
3108         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3109                         map_buff->phys_blk_shift);
3110         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3111                         map_buff->parity_rotation_shift);
3112         dev_info(&h->pdev->dev, "strip_size = %u\n",
3113                         le16_to_cpu(map_buff->strip_size));
3114         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3115                         le64_to_cpu(map_buff->disk_starting_blk));
3116         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3117                         le64_to_cpu(map_buff->disk_blk_cnt));
3118         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3119                         le16_to_cpu(map_buff->data_disks_per_row));
3120         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3121                         le16_to_cpu(map_buff->metadata_disks_per_row));
3122         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3123                         le16_to_cpu(map_buff->row_cnt));
3124         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3125                         le16_to_cpu(map_buff->layout_map_count));
3126         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3127                         le16_to_cpu(map_buff->flags));
3128         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3129                         le16_to_cpu(map_buff->flags) &
3130                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3131         dev_info(&h->pdev->dev, "dekindex = %u\n",
3132                         le16_to_cpu(map_buff->dekindex));
3133         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3134         for (map = 0; map < map_cnt; map++) {
3135                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3136                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3137                 for (row = 0; row < row_cnt; row++) {
3138                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3139                         disks_per_row =
3140                                 le16_to_cpu(map_buff->data_disks_per_row);
3141                         for (col = 0; col < disks_per_row; col++, dd++)
3142                                 dev_info(&h->pdev->dev,
3143                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3144                                         col, dd->ioaccel_handle,
3145                                         dd->xor_mult[0], dd->xor_mult[1]);
3146                         disks_per_row =
3147                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3148                         for (col = 0; col < disks_per_row; col++, dd++)
3149                                 dev_info(&h->pdev->dev,
3150                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3151                                         col, dd->ioaccel_handle,
3152                                         dd->xor_mult[0], dd->xor_mult[1]);
3153                 }
3154         }
3155 }
3156 #else
3157 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3158                         __attribute__((unused)) int rc,
3159                         __attribute__((unused)) struct raid_map_data *map_buff)
3160 {
3161 }
3162 #endif
3163
3164 static int hpsa_get_raid_map(struct ctlr_info *h,
3165         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3166 {
3167         int rc = 0;
3168         struct CommandList *c;
3169         struct ErrorInfo *ei;
3170
3171         c = cmd_alloc(h);
3172
3173         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3174                         sizeof(this_device->raid_map), 0,
3175                         scsi3addr, TYPE_CMD)) {
3176                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3177                 cmd_free(h, c);
3178                 return -1;
3179         }
3180         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3181                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3182         if (rc)
3183                 goto out;
3184         ei = c->err_info;
3185         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3186                 hpsa_scsi_interpret_error(h, c);
3187                 rc = -1;
3188                 goto out;
3189         }
3190         cmd_free(h, c);
3191
3192         /* @todo in the future, dynamically allocate RAID map memory */
3193         if (le32_to_cpu(this_device->raid_map.structure_size) >
3194                                 sizeof(this_device->raid_map)) {
3195                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3196                 rc = -1;
3197         }
3198         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3199         return rc;
3200 out:
3201         cmd_free(h, c);
3202         return rc;
3203 }
3204
3205 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3206                 unsigned char scsi3addr[], u16 bmic_device_index,
3207                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3208 {
3209         int rc = IO_OK;
3210         struct CommandList *c;
3211         struct ErrorInfo *ei;
3212
3213         c = cmd_alloc(h);
3214
3215         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3216                 0, RAID_CTLR_LUNID, TYPE_CMD);
3217         if (rc)
3218                 goto out;
3219
3220         c->Request.CDB[2] = bmic_device_index & 0xff;
3221         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3222
3223         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3224                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3225         if (rc)
3226                 goto out;
3227         ei = c->err_info;
3228         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3229                 hpsa_scsi_interpret_error(h, c);
3230                 rc = -1;
3231         }
3232 out:
3233         cmd_free(h, c);
3234         return rc;
3235 }
3236
3237 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3238         struct bmic_identify_controller *buf, size_t bufsize)
3239 {
3240         int rc = IO_OK;
3241         struct CommandList *c;
3242         struct ErrorInfo *ei;
3243
3244         c = cmd_alloc(h);
3245
3246         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3247                 0, RAID_CTLR_LUNID, TYPE_CMD);
3248         if (rc)
3249                 goto out;
3250
3251         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3252                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3253         if (rc)
3254                 goto out;
3255         ei = c->err_info;
3256         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3257                 hpsa_scsi_interpret_error(h, c);
3258                 rc = -1;
3259         }
3260 out:
3261         cmd_free(h, c);
3262         return rc;
3263 }
3264
3265 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3266                 unsigned char scsi3addr[], u16 bmic_device_index,
3267                 struct bmic_identify_physical_device *buf, size_t bufsize)
3268 {
3269         int rc = IO_OK;
3270         struct CommandList *c;
3271         struct ErrorInfo *ei;
3272
3273         c = cmd_alloc(h);
3274         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3275                 0, RAID_CTLR_LUNID, TYPE_CMD);
3276         if (rc)
3277                 goto out;
3278
3279         c->Request.CDB[2] = bmic_device_index & 0xff;
3280         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3281
3282         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3283                                                 DEFAULT_TIMEOUT);
3284         ei = c->err_info;
3285         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3286                 hpsa_scsi_interpret_error(h, c);
3287                 rc = -1;
3288         }
3289 out:
3290         cmd_free(h, c);
3291
3292         return rc;
3293 }
3294
3295 /*
3296  * get enclosure information
3297  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3298  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3299  * Uses id_physical_device to determine the box_index.
3300  */
3301 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3302                         unsigned char *scsi3addr,
3303                         struct ReportExtendedLUNdata *rlep, int rle_index,
3304                         struct hpsa_scsi_dev_t *encl_dev)
3305 {
3306         int rc = -1;
3307         struct CommandList *c = NULL;
3308         struct ErrorInfo *ei = NULL;
3309         struct bmic_sense_storage_box_params *bssbp = NULL;
3310         struct bmic_identify_physical_device *id_phys = NULL;
3311         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3312         u16 bmic_device_index = 0;
3313
3314         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3315
3316         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3317                 rc = IO_OK;
3318                 goto out;
3319         }
3320
3321         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3322         if (!bssbp)
3323                 goto out;
3324
3325         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3326         if (!id_phys)
3327                 goto out;
3328
3329         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3330                                                 id_phys, sizeof(*id_phys));
3331         if (rc) {
3332                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3333                         __func__, encl_dev->external, bmic_device_index);
3334                 goto out;
3335         }
3336
3337         c = cmd_alloc(h);
3338
3339         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3340                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3341
3342         if (rc)
3343                 goto out;
3344
3345         if (id_phys->phys_connector[1] == 'E')
3346                 c->Request.CDB[5] = id_phys->box_index;
3347         else
3348                 c->Request.CDB[5] = 0;
3349
3350         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3351                                                 DEFAULT_TIMEOUT);
3352         if (rc)
3353                 goto out;
3354
3355         ei = c->err_info;
3356         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3357                 rc = -1;
3358                 goto out;
3359         }
3360
3361         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3362         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3363                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3364
3365         rc = IO_OK;
3366 out:
3367         kfree(bssbp);
3368         kfree(id_phys);
3369
3370         if (c)
3371                 cmd_free(h, c);
3372
3373         if (rc != IO_OK)
3374                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3375                         "Error, could not get enclosure information\n");
3376 }
3377
3378 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3379                                                 unsigned char *scsi3addr)
3380 {
3381         struct ReportExtendedLUNdata *physdev;
3382         u32 nphysicals;
3383         u64 sa = 0;
3384         int i;
3385
3386         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3387         if (!physdev)
3388                 return 0;
3389
3390         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3391                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3392                 kfree(physdev);
3393                 return 0;
3394         }
3395         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3396
3397         for (i = 0; i < nphysicals; i++)
3398                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3399                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3400                         break;
3401                 }
3402
3403         kfree(physdev);
3404
3405         return sa;
3406 }
3407
3408 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3409                                         struct hpsa_scsi_dev_t *dev)
3410 {
3411         int rc;
3412         u64 sa = 0;
3413
3414         if (is_hba_lunid(scsi3addr)) {
3415                 struct bmic_sense_subsystem_info *ssi;
3416
3417                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3418                 if (ssi == NULL) {
3419                         dev_warn(&h->pdev->dev,
3420                                 "%s: out of memory\n", __func__);
3421                         return;
3422                 }
3423
3424                 rc = hpsa_bmic_sense_subsystem_information(h,
3425                                         scsi3addr, 0, ssi, sizeof(*ssi));
3426                 if (rc == 0) {
3427                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3428                         h->sas_address = sa;
3429                 }
3430
3431                 kfree(ssi);
3432         } else
3433                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3434
3435         dev->sas_address = sa;
3436 }
3437
3438 /* Get a device id from inquiry page 0x83 */
3439 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3440         unsigned char scsi3addr[], u8 page)
3441 {
3442         int rc;
3443         int i;
3444         int pages;
3445         unsigned char *buf, bufsize;
3446
3447         buf = kzalloc(256, GFP_KERNEL);
3448         if (!buf)
3449                 return 0;
3450
3451         /* Get the size of the page list first */
3452         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3453                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3454                                 buf, HPSA_VPD_HEADER_SZ);
3455         if (rc != 0)
3456                 goto exit_unsupported;
3457         pages = buf[3];
3458         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3459                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3460         else
3461                 bufsize = 255;
3462
3463         /* Get the whole VPD page list */
3464         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3465                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3466                                 buf, bufsize);
3467         if (rc != 0)
3468                 goto exit_unsupported;
3469
3470         pages = buf[3];
3471         for (i = 1; i <= pages; i++)
3472                 if (buf[3 + i] == page)
3473                         goto exit_supported;
3474 exit_unsupported:
3475         kfree(buf);
3476         return 0;
3477 exit_supported:
3478         kfree(buf);
3479         return 1;
3480 }
3481
3482 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3483         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3484 {
3485         int rc;
3486         unsigned char *buf;
3487         u8 ioaccel_status;
3488
3489         this_device->offload_config = 0;
3490         this_device->offload_enabled = 0;
3491         this_device->offload_to_be_enabled = 0;
3492
3493         buf = kzalloc(64, GFP_KERNEL);
3494         if (!buf)
3495                 return;
3496         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3497                 goto out;
3498         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3499                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3500         if (rc != 0)
3501                 goto out;
3502
3503 #define IOACCEL_STATUS_BYTE 4
3504 #define OFFLOAD_CONFIGURED_BIT 0x01
3505 #define OFFLOAD_ENABLED_BIT 0x02
3506         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3507         this_device->offload_config =
3508                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3509         if (this_device->offload_config) {
3510                 this_device->offload_enabled =
3511                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3512                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3513                         this_device->offload_enabled = 0;
3514         }
3515         this_device->offload_to_be_enabled = this_device->offload_enabled;
3516 out:
3517         kfree(buf);
3518         return;
3519 }
3520
3521 /* Get the device id from inquiry page 0x83 */
3522 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3523         unsigned char *device_id, int index, int buflen)
3524 {
3525         int rc;
3526         unsigned char *buf;
3527
3528         if (buflen > 16)
3529                 buflen = 16;
3530         buf = kzalloc(64, GFP_KERNEL);
3531         if (!buf)
3532                 return -ENOMEM;
3533         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3534         if (rc == 0)
3535                 memcpy(device_id, &buf[index], buflen);
3536
3537         kfree(buf);
3538
3539         return rc != 0;
3540 }
3541
3542 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3543                 void *buf, int bufsize,
3544                 int extended_response)
3545 {
3546         int rc = IO_OK;
3547         struct CommandList *c;
3548         unsigned char scsi3addr[8];
3549         struct ErrorInfo *ei;
3550
3551         c = cmd_alloc(h);
3552
3553         /* address the controller */
3554         memset(scsi3addr, 0, sizeof(scsi3addr));
3555         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3556                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3557                 rc = -1;
3558                 goto out;
3559         }
3560         if (extended_response)
3561                 c->Request.CDB[1] = extended_response;
3562         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3563                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3564         if (rc)
3565                 goto out;
3566         ei = c->err_info;
3567         if (ei->CommandStatus != 0 &&
3568             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3569                 hpsa_scsi_interpret_error(h, c);
3570                 rc = -1;
3571         } else {
3572                 struct ReportLUNdata *rld = buf;
3573
3574                 if (rld->extended_response_flag != extended_response) {
3575                         dev_err(&h->pdev->dev,
3576                                 "report luns requested format %u, got %u\n",
3577                                 extended_response,
3578                                 rld->extended_response_flag);
3579                         rc = -1;
3580                 }
3581         }
3582 out:
3583         cmd_free(h, c);
3584         return rc;
3585 }
3586
3587 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3588                 struct ReportExtendedLUNdata *buf, int bufsize)
3589 {
3590         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3591                                                 HPSA_REPORT_PHYS_EXTENDED);
3592 }
3593
3594 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3595                 struct ReportLUNdata *buf, int bufsize)
3596 {
3597         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3598 }
3599
3600 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3601         int bus, int target, int lun)
3602 {
3603         device->bus = bus;
3604         device->target = target;
3605         device->lun = lun;
3606 }
3607
3608 /* Use VPD inquiry to get details of volume status */
3609 static int hpsa_get_volume_status(struct ctlr_info *h,
3610                                         unsigned char scsi3addr[])
3611 {
3612         int rc;
3613         int status;
3614         int size;
3615         unsigned char *buf;
3616
3617         buf = kzalloc(64, GFP_KERNEL);
3618         if (!buf)
3619                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3620
3621         /* Does controller have VPD for logical volume status? */
3622         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3623                 goto exit_failed;
3624
3625         /* Get the size of the VPD return buffer */
3626         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3627                                         buf, HPSA_VPD_HEADER_SZ);
3628         if (rc != 0)
3629                 goto exit_failed;
3630         size = buf[3];
3631
3632         /* Now get the whole VPD buffer */
3633         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3634                                         buf, size + HPSA_VPD_HEADER_SZ);
3635         if (rc != 0)
3636                 goto exit_failed;
3637         status = buf[4]; /* status byte */
3638
3639         kfree(buf);
3640         return status;
3641 exit_failed:
3642         kfree(buf);
3643         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3644 }
3645
3646 /* Determine offline status of a volume.
3647  * Return either:
3648  *  0 (not offline)
3649  *  0xff (offline for unknown reasons)
3650  *  # (integer code indicating one of several NOT READY states
3651  *     describing why a volume is to be kept offline)
3652  */
3653 static int hpsa_volume_offline(struct ctlr_info *h,
3654                                         unsigned char scsi3addr[])
3655 {
3656         struct CommandList *c;
3657         unsigned char *sense;
3658         u8 sense_key, asc, ascq;
3659         int sense_len;
3660         int rc, ldstat = 0;
3661         u16 cmd_status;
3662         u8 scsi_status;
3663 #define ASC_LUN_NOT_READY 0x04
3664 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3665 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3666
3667         c = cmd_alloc(h);
3668
3669         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3670         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3671                                         DEFAULT_TIMEOUT);
3672         if (rc) {
3673                 cmd_free(h, c);
3674                 return 0;
3675         }
3676         sense = c->err_info->SenseInfo;
3677         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3678                 sense_len = sizeof(c->err_info->SenseInfo);
3679         else
3680                 sense_len = c->err_info->SenseLen;
3681         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3682         cmd_status = c->err_info->CommandStatus;
3683         scsi_status = c->err_info->ScsiStatus;
3684         cmd_free(h, c);
3685         /* Is the volume 'not ready'? */
3686         if (cmd_status != CMD_TARGET_STATUS ||
3687                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3688                 sense_key != NOT_READY ||
3689                 asc != ASC_LUN_NOT_READY)  {
3690                 return 0;
3691         }
3692
3693         /* Determine the reason for not ready state */
3694         ldstat = hpsa_get_volume_status(h, scsi3addr);
3695
3696         /* Keep volume offline in certain cases: */
3697         switch (ldstat) {
3698         case HPSA_LV_UNDERGOING_ERASE:
3699         case HPSA_LV_NOT_AVAILABLE:
3700         case HPSA_LV_UNDERGOING_RPI:
3701         case HPSA_LV_PENDING_RPI:
3702         case HPSA_LV_ENCRYPTED_NO_KEY:
3703         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3704         case HPSA_LV_UNDERGOING_ENCRYPTION:
3705         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3706         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3707                 return ldstat;
3708         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3709                 /* If VPD status page isn't available,
3710                  * use ASC/ASCQ to determine state
3711                  */
3712                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3713                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3714                         return ldstat;
3715                 break;
3716         default:
3717                 break;
3718         }
3719         return 0;
3720 }
3721
3722 /*
3723  * Find out if a logical device supports aborts by simply trying one.
3724  * Smart Array may claim not to support aborts on logical drives, but
3725  * if a MSA2000 * is connected, the drives on that will be presented
3726  * by the Smart Array as logical drives, and aborts may be sent to
3727  * those devices successfully.  So the simplest way to find out is
3728  * to simply try an abort and see how the device responds.
3729  */
3730 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3731                                         unsigned char *scsi3addr)
3732 {
3733         struct CommandList *c;
3734         struct ErrorInfo *ei;
3735         int rc = 0;
3736
3737         u64 tag = (u64) -1; /* bogus tag */
3738
3739         /* Assume that physical devices support aborts */
3740         if (!is_logical_dev_addr_mode(scsi3addr))
3741                 return 1;
3742
3743         c = cmd_alloc(h);
3744
3745         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3746         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3747                                         DEFAULT_TIMEOUT);
3748         /* no unmap needed here because no data xfer. */
3749         ei = c->err_info;
3750         switch (ei->CommandStatus) {
3751         case CMD_INVALID:
3752                 rc = 0;
3753                 break;
3754         case CMD_UNABORTABLE:
3755         case CMD_ABORT_FAILED:
3756                 rc = 1;
3757                 break;
3758         case CMD_TMF_STATUS:
3759                 rc = hpsa_evaluate_tmf_status(h, c);
3760                 break;
3761         default:
3762                 rc = 0;
3763                 break;
3764         }
3765         cmd_free(h, c);
3766         return rc;
3767 }
3768
3769 static int hpsa_update_device_info(struct ctlr_info *h,
3770         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3771         unsigned char *is_OBDR_device)
3772 {
3773
3774 #define OBDR_SIG_OFFSET 43
3775 #define OBDR_TAPE_SIG "$DR-10"
3776 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3777 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3778
3779         unsigned char *inq_buff;
3780         unsigned char *obdr_sig;
3781         int rc = 0;
3782
3783         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3784         if (!inq_buff) {
3785                 rc = -ENOMEM;
3786                 goto bail_out;
3787         }
3788
3789         /* Do an inquiry to the device to see what it is. */
3790         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3791                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3792                 /* Inquiry failed (msg printed already) */
3793                 dev_err(&h->pdev->dev,
3794                         "hpsa_update_device_info: inquiry failed\n");
3795                 rc = -EIO;
3796                 goto bail_out;
3797         }
3798
3799         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3800         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3801
3802         this_device->devtype = (inq_buff[0] & 0x1f);
3803         memcpy(this_device->scsi3addr, scsi3addr, 8);
3804         memcpy(this_device->vendor, &inq_buff[8],
3805                 sizeof(this_device->vendor));
3806         memcpy(this_device->model, &inq_buff[16],
3807                 sizeof(this_device->model));
3808         memset(this_device->device_id, 0,
3809                 sizeof(this_device->device_id));
3810         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3811                 sizeof(this_device->device_id));
3812
3813         if ((this_device->devtype == TYPE_DISK ||
3814                 this_device->devtype == TYPE_ZBC) &&
3815                 is_logical_dev_addr_mode(scsi3addr)) {
3816                 int volume_offline;
3817
3818                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3819                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3820                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3821                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3822                 if (volume_offline < 0 || volume_offline > 0xff)
3823                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3824                 this_device->volume_offline = volume_offline & 0xff;
3825         } else {
3826                 this_device->raid_level = RAID_UNKNOWN;
3827                 this_device->offload_config = 0;
3828                 this_device->offload_enabled = 0;
3829                 this_device->offload_to_be_enabled = 0;
3830                 this_device->hba_ioaccel_enabled = 0;
3831                 this_device->volume_offline = 0;
3832                 this_device->queue_depth = h->nr_cmds;
3833         }
3834
3835         if (is_OBDR_device) {
3836                 /* See if this is a One-Button-Disaster-Recovery device
3837                  * by looking for "$DR-10" at offset 43 in inquiry data.
3838                  */
3839                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3840                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3841                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3842                                                 OBDR_SIG_LEN) == 0);
3843         }
3844         kfree(inq_buff);
3845         return 0;
3846
3847 bail_out:
3848         kfree(inq_buff);
3849         return rc;
3850 }
3851
3852 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3853                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3854 {
3855         unsigned long flags;
3856         int rc, entry;
3857         /*
3858          * See if this device supports aborts.  If we already know
3859          * the device, we already know if it supports aborts, otherwise
3860          * we have to find out if it supports aborts by trying one.
3861          */
3862         spin_lock_irqsave(&h->devlock, flags);
3863         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3864         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3865                 entry >= 0 && entry < h->ndevices) {
3866                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3867                 spin_unlock_irqrestore(&h->devlock, flags);
3868         } else {
3869                 spin_unlock_irqrestore(&h->devlock, flags);
3870                 dev->supports_aborts =
3871                                 hpsa_device_supports_aborts(h, scsi3addr);
3872                 if (dev->supports_aborts < 0)
3873                         dev->supports_aborts = 0;
3874         }
3875 }
3876
3877 /*
3878  * Helper function to assign bus, target, lun mapping of devices.
3879  * Logical drive target and lun are assigned at this time, but
3880  * physical device lun and target assignment are deferred (assigned
3881  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3882 */
3883 static void figure_bus_target_lun(struct ctlr_info *h,
3884         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3885 {
3886         u32 lunid = get_unaligned_le32(lunaddrbytes);
3887
3888         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3889                 /* physical device, target and lun filled in later */
3890                 if (is_hba_lunid(lunaddrbytes))
3891                         hpsa_set_bus_target_lun(device,
3892                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3893                 else
3894                         /* defer target, lun assignment for physical devices */
3895                         hpsa_set_bus_target_lun(device,
3896                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3897                 return;
3898         }
3899         /* It's a logical device */
3900         if (device->external) {
3901                 hpsa_set_bus_target_lun(device,
3902                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3903                         lunid & 0x00ff);
3904                 return;
3905         }
3906         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3907                                 0, lunid & 0x3fff);
3908 }
3909
3910
3911 /*
3912  * Get address of physical disk used for an ioaccel2 mode command:
3913  *      1. Extract ioaccel2 handle from the command.
3914  *      2. Find a matching ioaccel2 handle from list of physical disks.
3915  *      3. Return:
3916  *              1 and set scsi3addr to address of matching physical
3917  *              0 if no matching physical disk was found.
3918  */
3919 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3920         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3921 {
3922         struct io_accel2_cmd *c2 =
3923                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3924         unsigned long flags;
3925         int i;
3926
3927         spin_lock_irqsave(&h->devlock, flags);
3928         for (i = 0; i < h->ndevices; i++)
3929                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3930                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3931                                 sizeof(h->dev[i]->scsi3addr));
3932                         spin_unlock_irqrestore(&h->devlock, flags);
3933                         return 1;
3934                 }
3935         spin_unlock_irqrestore(&h->devlock, flags);
3936         return 0;
3937 }
3938
3939 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3940         int i, int nphysicals, int nlocal_logicals)
3941 {
3942         /* In report logicals, local logicals are listed first,
3943         * then any externals.
3944         */
3945         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3946
3947         if (i == raid_ctlr_position)
3948                 return 0;
3949
3950         if (i < logicals_start)
3951                 return 0;
3952
3953         /* i is in logicals range, but still within local logicals */
3954         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3955                 return 0;
3956
3957         return 1; /* it's an external lun */
3958 }
3959
3960 /*
3961  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3962  * logdev.  The number of luns in physdev and logdev are returned in
3963  * *nphysicals and *nlogicals, respectively.
3964  * Returns 0 on success, -1 otherwise.
3965  */
3966 static int hpsa_gather_lun_info(struct ctlr_info *h,
3967         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3968         struct ReportLUNdata *logdev, u32 *nlogicals)
3969 {
3970         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3971                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3972                 return -1;
3973         }
3974         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3975         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3976                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3977                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3978                 *nphysicals = HPSA_MAX_PHYS_LUN;
3979         }
3980         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3981                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3982                 return -1;
3983         }
3984         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3985         /* Reject Logicals in excess of our max capability. */
3986         if (*nlogicals > HPSA_MAX_LUN) {
3987                 dev_warn(&h->pdev->dev,
3988                         "maximum logical LUNs (%d) exceeded.  "
3989                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3990                         *nlogicals - HPSA_MAX_LUN);
3991                         *nlogicals = HPSA_MAX_LUN;
3992         }
3993         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3994                 dev_warn(&h->pdev->dev,
3995                         "maximum logical + physical LUNs (%d) exceeded. "
3996                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3997                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3998                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3999         }
4000         return 0;
4001 }
4002
4003 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4004         int i, int nphysicals, int nlogicals,
4005         struct ReportExtendedLUNdata *physdev_list,
4006         struct ReportLUNdata *logdev_list)
4007 {
4008         /* Helper function, figure out where the LUN ID info is coming from
4009          * given index i, lists of physical and logical devices, where in
4010          * the list the raid controller is supposed to appear (first or last)
4011          */
4012
4013         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4014         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4015
4016         if (i == raid_ctlr_position)
4017                 return RAID_CTLR_LUNID;
4018
4019         if (i < logicals_start)
4020                 return &physdev_list->LUN[i -
4021                                 (raid_ctlr_position == 0)].lunid[0];
4022
4023         if (i < last_device)
4024                 return &logdev_list->LUN[i - nphysicals -
4025                         (raid_ctlr_position == 0)][0];
4026         BUG();
4027         return NULL;
4028 }
4029
4030 /* get physical drive ioaccel handle and queue depth */
4031 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4032                 struct hpsa_scsi_dev_t *dev,
4033                 struct ReportExtendedLUNdata *rlep, int rle_index,
4034                 struct bmic_identify_physical_device *id_phys)
4035 {
4036         int rc;
4037         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4038
4039         dev->ioaccel_handle = rle->ioaccel_handle;
4040         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4041                 dev->hba_ioaccel_enabled = 1;
4042         memset(id_phys, 0, sizeof(*id_phys));
4043         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4044                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4045                         sizeof(*id_phys));
4046         if (!rc)
4047                 /* Reserve space for FW operations */
4048 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4049 #define DRIVE_QUEUE_DEPTH 7
4050                 dev->queue_depth =
4051                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4052                                 DRIVE_CMDS_RESERVED_FOR_FW;
4053         else
4054                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4055 }
4056
4057 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4058         struct ReportExtendedLUNdata *rlep, int rle_index,
4059         struct bmic_identify_physical_device *id_phys)
4060 {
4061         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4062
4063         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4064                 this_device->hba_ioaccel_enabled = 1;
4065
4066         memcpy(&this_device->active_path_index,
4067                 &id_phys->active_path_number,
4068                 sizeof(this_device->active_path_index));
4069         memcpy(&this_device->path_map,
4070                 &id_phys->redundant_path_present_map,
4071                 sizeof(this_device->path_map));
4072         memcpy(&this_device->box,
4073                 &id_phys->alternate_paths_phys_box_on_port,
4074                 sizeof(this_device->box));
4075         memcpy(&this_device->phys_connector,
4076                 &id_phys->alternate_paths_phys_connector,
4077                 sizeof(this_device->phys_connector));
4078         memcpy(&this_device->bay,
4079                 &id_phys->phys_bay_in_box,
4080                 sizeof(this_device->bay));
4081 }
4082
4083 /* get number of local logical disks. */
4084 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4085         struct bmic_identify_controller *id_ctlr,
4086         u32 *nlocals)
4087 {
4088         int rc;
4089
4090         if (!id_ctlr) {
4091                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4092                         __func__);
4093                 return -ENOMEM;
4094         }
4095         memset(id_ctlr, 0, sizeof(*id_ctlr));
4096         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4097         if (!rc)
4098                 if (id_ctlr->configured_logical_drive_count < 256)
4099                         *nlocals = id_ctlr->configured_logical_drive_count;
4100                 else
4101                         *nlocals = le16_to_cpu(
4102                                         id_ctlr->extended_logical_unit_count);
4103         else
4104                 *nlocals = -1;
4105         return rc;
4106 }
4107
4108 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4109 {
4110         struct bmic_identify_physical_device *id_phys;
4111         bool is_spare = false;
4112         int rc;
4113
4114         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4115         if (!id_phys)
4116                 return false;
4117
4118         rc = hpsa_bmic_id_physical_device(h,
4119                                         lunaddrbytes,
4120                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4121                                         id_phys, sizeof(*id_phys));
4122         if (rc == 0)
4123                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4124
4125         kfree(id_phys);
4126         return is_spare;
4127 }
4128
4129 #define RPL_DEV_FLAG_NON_DISK                           0x1
4130 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4131 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4132
4133 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4134
4135 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4136                                 struct ext_report_lun_entry *rle)
4137 {
4138         u8 device_flags;
4139         u8 device_type;
4140
4141         if (!MASKED_DEVICE(lunaddrbytes))
4142                 return false;
4143
4144         device_flags = rle->device_flags;
4145         device_type = rle->device_type;
4146
4147         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4148                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4149                         return false;
4150                 return true;
4151         }
4152
4153         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4154                 return false;
4155
4156         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4157                 return false;
4158
4159         /*
4160          * Spares may be spun down, we do not want to
4161          * do an Inquiry to a RAID set spare drive as
4162          * that would have them spun up, that is a
4163          * performance hit because I/O to the RAID device
4164          * stops while the spin up occurs which can take
4165          * over 50 seconds.
4166          */
4167         if (hpsa_is_disk_spare(h, lunaddrbytes))
4168                 return true;
4169
4170         return false;
4171 }
4172
4173 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4174 {
4175         /* the idea here is we could get notified
4176          * that some devices have changed, so we do a report
4177          * physical luns and report logical luns cmd, and adjust
4178          * our list of devices accordingly.
4179          *
4180          * The scsi3addr's of devices won't change so long as the
4181          * adapter is not reset.  That means we can rescan and
4182          * tell which devices we already know about, vs. new
4183          * devices, vs.  disappearing devices.
4184          */
4185         struct ReportExtendedLUNdata *physdev_list = NULL;
4186         struct ReportLUNdata *logdev_list = NULL;
4187         struct bmic_identify_physical_device *id_phys = NULL;
4188         struct bmic_identify_controller *id_ctlr = NULL;
4189         u32 nphysicals = 0;
4190         u32 nlogicals = 0;
4191         u32 nlocal_logicals = 0;
4192         u32 ndev_allocated = 0;
4193         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4194         int ncurrent = 0;
4195         int i, n_ext_target_devs, ndevs_to_allocate;
4196         int raid_ctlr_position;
4197         bool physical_device;
4198         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4199
4200         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4201         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4202         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4203         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4204         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4205         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4206
4207         if (!currentsd || !physdev_list || !logdev_list ||
4208                 !tmpdevice || !id_phys || !id_ctlr) {
4209                 dev_err(&h->pdev->dev, "out of memory\n");
4210                 goto out;
4211         }
4212         memset(lunzerobits, 0, sizeof(lunzerobits));
4213
4214         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4215
4216         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4217                         logdev_list, &nlogicals)) {
4218                 h->drv_req_rescan = 1;
4219                 goto out;
4220         }
4221
4222         /* Set number of local logicals (non PTRAID) */
4223         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4224                 dev_warn(&h->pdev->dev,
4225                         "%s: Can't determine number of local logical devices.\n",
4226                         __func__);
4227         }
4228
4229         /* We might see up to the maximum number of logical and physical disks
4230          * plus external target devices, and a device for the local RAID
4231          * controller.
4232          */
4233         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4234
4235         /* Allocate the per device structures */
4236         for (i = 0; i < ndevs_to_allocate; i++) {
4237                 if (i >= HPSA_MAX_DEVICES) {
4238                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4239                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4240                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4241                         break;
4242                 }
4243
4244                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4245                 if (!currentsd[i]) {
4246                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4247                                 __FILE__, __LINE__);
4248                         h->drv_req_rescan = 1;
4249                         goto out;
4250                 }
4251                 ndev_allocated++;
4252         }
4253
4254         if (is_scsi_rev_5(h))
4255                 raid_ctlr_position = 0;
4256         else
4257                 raid_ctlr_position = nphysicals + nlogicals;
4258
4259         /* adjust our table of devices */
4260         n_ext_target_devs = 0;
4261         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4262                 u8 *lunaddrbytes, is_OBDR = 0;
4263                 int rc = 0;
4264                 int phys_dev_index = i - (raid_ctlr_position == 0);
4265                 bool skip_device = false;
4266
4267                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4268
4269                 /* Figure out where the LUN ID info is coming from */
4270                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4271                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4272
4273                 /*
4274                  * Skip over some devices such as a spare.
4275                  */
4276                 if (!tmpdevice->external && physical_device) {
4277                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4278                                         &physdev_list->LUN[phys_dev_index]);
4279                         if (skip_device)
4280                                 continue;
4281                 }
4282
4283                 /* Get device type, vendor, model, device id */
4284                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4285                                                         &is_OBDR);
4286                 if (rc == -ENOMEM) {
4287                         dev_warn(&h->pdev->dev,
4288                                 "Out of memory, rescan deferred.\n");
4289                         h->drv_req_rescan = 1;
4290                         goto out;
4291                 }
4292                 if (rc) {
4293                         dev_warn(&h->pdev->dev,
4294                                 "Inquiry failed, skipping device.\n");
4295                         continue;
4296                 }
4297
4298                 /* Determine if this is a lun from an external target array */
4299                 tmpdevice->external =
4300                         figure_external_status(h, raid_ctlr_position, i,
4301                                                 nphysicals, nlocal_logicals);
4302
4303                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4304                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4305                 this_device = currentsd[ncurrent];
4306
4307                 /* Turn on discovery_polling if there are ext target devices.
4308                  * Event-based change notification is unreliable for those.
4309                  */
4310                 if (!h->discovery_polling) {
4311                         if (tmpdevice->external) {
4312                                 h->discovery_polling = 1;
4313                                 dev_info(&h->pdev->dev,
4314                                         "External target, activate discovery polling.\n");
4315                         }
4316                 }
4317
4318
4319                 *this_device = *tmpdevice;
4320                 this_device->physical_device = physical_device;
4321
4322                 /*
4323                  * Expose all devices except for physical devices that
4324                  * are masked.
4325                  */
4326                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4327                         this_device->expose_device = 0;
4328                 else
4329                         this_device->expose_device = 1;
4330
4331
4332                 /*
4333                  * Get the SAS address for physical devices that are exposed.
4334                  */
4335                 if (this_device->physical_device && this_device->expose_device)
4336                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4337
4338                 switch (this_device->devtype) {
4339                 case TYPE_ROM:
4340                         /* We don't *really* support actual CD-ROM devices,
4341                          * just "One Button Disaster Recovery" tape drive
4342                          * which temporarily pretends to be a CD-ROM drive.
4343                          * So we check that the device is really an OBDR tape
4344                          * device by checking for "$DR-10" in bytes 43-48 of
4345                          * the inquiry data.
4346                          */
4347                         if (is_OBDR)
4348                                 ncurrent++;
4349                         break;
4350                 case TYPE_DISK:
4351                 case TYPE_ZBC:
4352                         if (this_device->physical_device) {
4353                                 /* The disk is in HBA mode. */
4354                                 /* Never use RAID mapper in HBA mode. */
4355                                 this_device->offload_enabled = 0;
4356                                 hpsa_get_ioaccel_drive_info(h, this_device,
4357                                         physdev_list, phys_dev_index, id_phys);
4358                                 hpsa_get_path_info(this_device,
4359                                         physdev_list, phys_dev_index, id_phys);
4360                         }
4361                         ncurrent++;
4362                         break;
4363                 case TYPE_TAPE:
4364                 case TYPE_MEDIUM_CHANGER:
4365                         ncurrent++;
4366                         break;
4367                 case TYPE_ENCLOSURE:
4368                         if (!this_device->external)
4369                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4370                                                 physdev_list, phys_dev_index,
4371                                                 this_device);
4372                         ncurrent++;
4373                         break;
4374                 case TYPE_RAID:
4375                         /* Only present the Smartarray HBA as a RAID controller.
4376                          * If it's a RAID controller other than the HBA itself
4377                          * (an external RAID controller, MSA500 or similar)
4378                          * don't present it.
4379                          */
4380                         if (!is_hba_lunid(lunaddrbytes))
4381                                 break;
4382                         ncurrent++;
4383                         break;
4384                 default:
4385                         break;
4386                 }
4387                 if (ncurrent >= HPSA_MAX_DEVICES)
4388                         break;
4389         }
4390
4391         if (h->sas_host == NULL) {
4392                 int rc = 0;
4393
4394                 rc = hpsa_add_sas_host(h);
4395                 if (rc) {
4396                         dev_warn(&h->pdev->dev,
4397                                 "Could not add sas host %d\n", rc);
4398                         goto out;
4399                 }
4400         }
4401
4402         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4403 out:
4404         kfree(tmpdevice);
4405         for (i = 0; i < ndev_allocated; i++)
4406                 kfree(currentsd[i]);
4407         kfree(currentsd);
4408         kfree(physdev_list);
4409         kfree(logdev_list);
4410         kfree(id_ctlr);
4411         kfree(id_phys);
4412 }
4413
4414 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4415                                    struct scatterlist *sg)
4416 {
4417         u64 addr64 = (u64) sg_dma_address(sg);
4418         unsigned int len = sg_dma_len(sg);
4419
4420         desc->Addr = cpu_to_le64(addr64);
4421         desc->Len = cpu_to_le32(len);
4422         desc->Ext = 0;
4423 }
4424
4425 /*
4426  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4427  * dma mapping  and fills in the scatter gather entries of the
4428  * hpsa command, cp.
4429  */
4430 static int hpsa_scatter_gather(struct ctlr_info *h,
4431                 struct CommandList *cp,
4432                 struct scsi_cmnd *cmd)
4433 {
4434         struct scatterlist *sg;
4435         int use_sg, i, sg_limit, chained, last_sg;
4436         struct SGDescriptor *curr_sg;
4437
4438         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4439
4440         use_sg = scsi_dma_map(cmd);
4441         if (use_sg < 0)
4442                 return use_sg;
4443
4444         if (!use_sg)
4445                 goto sglist_finished;
4446
4447         /*
4448          * If the number of entries is greater than the max for a single list,
4449          * then we have a chained list; we will set up all but one entry in the
4450          * first list (the last entry is saved for link information);
4451          * otherwise, we don't have a chained list and we'll set up at each of
4452          * the entries in the one list.
4453          */
4454         curr_sg = cp->SG;
4455         chained = use_sg > h->max_cmd_sg_entries;
4456         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4457         last_sg = scsi_sg_count(cmd) - 1;
4458         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4459                 hpsa_set_sg_descriptor(curr_sg, sg);
4460                 curr_sg++;
4461         }
4462
4463         if (chained) {
4464                 /*
4465                  * Continue with the chained list.  Set curr_sg to the chained
4466                  * list.  Modify the limit to the total count less the entries
4467                  * we've already set up.  Resume the scan at the list entry
4468                  * where the previous loop left off.
4469                  */
4470                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4471                 sg_limit = use_sg - sg_limit;
4472                 for_each_sg(sg, sg, sg_limit, i) {
4473                         hpsa_set_sg_descriptor(curr_sg, sg);
4474                         curr_sg++;
4475                 }
4476         }
4477
4478         /* Back the pointer up to the last entry and mark it as "last". */
4479         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4480
4481         if (use_sg + chained > h->maxSG)
4482                 h->maxSG = use_sg + chained;
4483
4484         if (chained) {
4485                 cp->Header.SGList = h->max_cmd_sg_entries;
4486                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4487                 if (hpsa_map_sg_chain_block(h, cp)) {
4488                         scsi_dma_unmap(cmd);
4489                         return -1;
4490                 }
4491                 return 0;
4492         }
4493
4494 sglist_finished:
4495
4496         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4497         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4498         return 0;
4499 }
4500
4501 #define IO_ACCEL_INELIGIBLE (1)
4502 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4503 {
4504         int is_write = 0;
4505         u32 block;
4506         u32 block_cnt;
4507
4508         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4509         switch (cdb[0]) {
4510         case WRITE_6:
4511         case WRITE_12:
4512                 is_write = 1;
4513         case READ_6:
4514         case READ_12:
4515                 if (*cdb_len == 6) {
4516                         block = get_unaligned_be16(&cdb[2]);
4517                         block_cnt = cdb[4];
4518                         if (block_cnt == 0)
4519                                 block_cnt = 256;
4520                 } else {
4521                         BUG_ON(*cdb_len != 12);
4522                         block = get_unaligned_be32(&cdb[2]);
4523                         block_cnt = get_unaligned_be32(&cdb[6]);
4524                 }
4525                 if (block_cnt > 0xffff)
4526                         return IO_ACCEL_INELIGIBLE;
4527
4528                 cdb[0] = is_write ? WRITE_10 : READ_10;
4529                 cdb[1] = 0;
4530                 cdb[2] = (u8) (block >> 24);
4531                 cdb[3] = (u8) (block >> 16);
4532                 cdb[4] = (u8) (block >> 8);
4533                 cdb[5] = (u8) (block);
4534                 cdb[6] = 0;
4535                 cdb[7] = (u8) (block_cnt >> 8);
4536                 cdb[8] = (u8) (block_cnt);
4537                 cdb[9] = 0;
4538                 *cdb_len = 10;
4539                 break;
4540         }
4541         return 0;
4542 }
4543
4544 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4545         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4546         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4547 {
4548         struct scsi_cmnd *cmd = c->scsi_cmd;
4549         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4550         unsigned int len;
4551         unsigned int total_len = 0;
4552         struct scatterlist *sg;
4553         u64 addr64;
4554         int use_sg, i;
4555         struct SGDescriptor *curr_sg;
4556         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4557
4558         /* TODO: implement chaining support */
4559         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4560                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4561                 return IO_ACCEL_INELIGIBLE;
4562         }
4563
4564         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4565
4566         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4567                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4568                 return IO_ACCEL_INELIGIBLE;
4569         }
4570
4571         c->cmd_type = CMD_IOACCEL1;
4572
4573         /* Adjust the DMA address to point to the accelerated command buffer */
4574         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4575                                 (c->cmdindex * sizeof(*cp));
4576         BUG_ON(c->busaddr & 0x0000007F);
4577
4578         use_sg = scsi_dma_map(cmd);
4579         if (use_sg < 0) {
4580                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4581                 return use_sg;
4582         }
4583
4584         if (use_sg) {
4585                 curr_sg = cp->SG;
4586                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4587                         addr64 = (u64) sg_dma_address(sg);
4588                         len  = sg_dma_len(sg);
4589                         total_len += len;
4590                         curr_sg->Addr = cpu_to_le64(addr64);
4591                         curr_sg->Len = cpu_to_le32(len);
4592                         curr_sg->Ext = cpu_to_le32(0);
4593                         curr_sg++;
4594                 }
4595                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4596
4597                 switch (cmd->sc_data_direction) {
4598                 case DMA_TO_DEVICE:
4599                         control |= IOACCEL1_CONTROL_DATA_OUT;
4600                         break;
4601                 case DMA_FROM_DEVICE:
4602                         control |= IOACCEL1_CONTROL_DATA_IN;
4603                         break;
4604                 case DMA_NONE:
4605                         control |= IOACCEL1_CONTROL_NODATAXFER;
4606                         break;
4607                 default:
4608                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4609                         cmd->sc_data_direction);
4610                         BUG();
4611                         break;
4612                 }
4613         } else {
4614                 control |= IOACCEL1_CONTROL_NODATAXFER;
4615         }
4616
4617         c->Header.SGList = use_sg;
4618         /* Fill out the command structure to submit */
4619         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4620         cp->transfer_len = cpu_to_le32(total_len);
4621         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4622                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4623         cp->control = cpu_to_le32(control);
4624         memcpy(cp->CDB, cdb, cdb_len);
4625         memcpy(cp->CISS_LUN, scsi3addr, 8);
4626         /* Tag was already set at init time. */
4627         enqueue_cmd_and_start_io(h, c);
4628         return 0;
4629 }
4630
4631 /*
4632  * Queue a command directly to a device behind the controller using the
4633  * I/O accelerator path.
4634  */
4635 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4636         struct CommandList *c)
4637 {
4638         struct scsi_cmnd *cmd = c->scsi_cmd;
4639         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4640
4641         c->phys_disk = dev;
4642
4643         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4644                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4645 }
4646
4647 /*
4648  * Set encryption parameters for the ioaccel2 request
4649  */
4650 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4651         struct CommandList *c, struct io_accel2_cmd *cp)
4652 {
4653         struct scsi_cmnd *cmd = c->scsi_cmd;
4654         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4655         struct raid_map_data *map = &dev->raid_map;
4656         u64 first_block;
4657
4658         /* Are we doing encryption on this device */
4659         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4660                 return;
4661         /* Set the data encryption key index. */
4662         cp->dekindex = map->dekindex;
4663
4664         /* Set the encryption enable flag, encoded into direction field. */
4665         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4666
4667         /* Set encryption tweak values based on logical block address
4668          * If block size is 512, tweak value is LBA.
4669          * For other block sizes, tweak is (LBA * block size)/ 512)
4670          */
4671         switch (cmd->cmnd[0]) {
4672         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4673         case WRITE_6:
4674         case READ_6:
4675                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4676                 break;
4677         case WRITE_10:
4678         case READ_10:
4679         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4680         case WRITE_12:
4681         case READ_12:
4682                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4683                 break;
4684         case WRITE_16:
4685         case READ_16:
4686                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4687                 break;
4688         default:
4689                 dev_err(&h->pdev->dev,
4690                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4691                         __func__, cmd->cmnd[0]);
4692                 BUG();
4693                 break;
4694         }
4695
4696         if (le32_to_cpu(map->volume_blk_size) != 512)
4697                 first_block = first_block *
4698                                 le32_to_cpu(map->volume_blk_size)/512;
4699
4700         cp->tweak_lower = cpu_to_le32(first_block);
4701         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4702 }
4703
4704 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4705         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4706         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4707 {
4708         struct scsi_cmnd *cmd = c->scsi_cmd;
4709         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4710         struct ioaccel2_sg_element *curr_sg;
4711         int use_sg, i;
4712         struct scatterlist *sg;
4713         u64 addr64;
4714         u32 len;
4715         u32 total_len = 0;
4716
4717         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4718
4719         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4720                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4721                 return IO_ACCEL_INELIGIBLE;
4722         }
4723
4724         c->cmd_type = CMD_IOACCEL2;
4725         /* Adjust the DMA address to point to the accelerated command buffer */
4726         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4727                                 (c->cmdindex * sizeof(*cp));
4728         BUG_ON(c->busaddr & 0x0000007F);
4729
4730         memset(cp, 0, sizeof(*cp));
4731         cp->IU_type = IOACCEL2_IU_TYPE;
4732
4733         use_sg = scsi_dma_map(cmd);
4734         if (use_sg < 0) {
4735                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4736                 return use_sg;
4737         }
4738
4739         if (use_sg) {
4740                 curr_sg = cp->sg;
4741                 if (use_sg > h->ioaccel_maxsg) {
4742                         addr64 = le64_to_cpu(
4743                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4744                         curr_sg->address = cpu_to_le64(addr64);
4745                         curr_sg->length = 0;
4746                         curr_sg->reserved[0] = 0;
4747                         curr_sg->reserved[1] = 0;
4748                         curr_sg->reserved[2] = 0;
4749                         curr_sg->chain_indicator = 0x80;
4750
4751                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4752                 }
4753                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4754                         addr64 = (u64) sg_dma_address(sg);
4755                         len  = sg_dma_len(sg);
4756                         total_len += len;
4757                         curr_sg->address = cpu_to_le64(addr64);
4758                         curr_sg->length = cpu_to_le32(len);
4759                         curr_sg->reserved[0] = 0;
4760                         curr_sg->reserved[1] = 0;
4761                         curr_sg->reserved[2] = 0;
4762                         curr_sg->chain_indicator = 0;
4763                         curr_sg++;
4764                 }
4765
4766                 switch (cmd->sc_data_direction) {
4767                 case DMA_TO_DEVICE:
4768                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4769                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4770                         break;
4771                 case DMA_FROM_DEVICE:
4772                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4773                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4774                         break;
4775                 case DMA_NONE:
4776                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4777                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4778                         break;
4779                 default:
4780                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4781                                 cmd->sc_data_direction);
4782                         BUG();
4783                         break;
4784                 }
4785         } else {
4786                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4787                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4788         }
4789
4790         /* Set encryption parameters, if necessary */
4791         set_encrypt_ioaccel2(h, c, cp);
4792
4793         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4794         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4795         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4796
4797         cp->data_len = cpu_to_le32(total_len);
4798         cp->err_ptr = cpu_to_le64(c->busaddr +
4799                         offsetof(struct io_accel2_cmd, error_data));
4800         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4801
4802         /* fill in sg elements */
4803         if (use_sg > h->ioaccel_maxsg) {
4804                 cp->sg_count = 1;
4805                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4806                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4807                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4808                         scsi_dma_unmap(cmd);
4809                         return -1;
4810                 }
4811         } else
4812                 cp->sg_count = (u8) use_sg;
4813
4814         enqueue_cmd_and_start_io(h, c);
4815         return 0;
4816 }
4817
4818 /*
4819  * Queue a command to the correct I/O accelerator path.
4820  */
4821 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4822         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4823         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4824 {
4825         /* Try to honor the device's queue depth */
4826         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4827                                         phys_disk->queue_depth) {
4828                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4829                 return IO_ACCEL_INELIGIBLE;
4830         }
4831         if (h->transMethod & CFGTBL_Trans_io_accel1)
4832                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4833                                                 cdb, cdb_len, scsi3addr,
4834                                                 phys_disk);
4835         else
4836                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4837                                                 cdb, cdb_len, scsi3addr,
4838                                                 phys_disk);
4839 }
4840
4841 static void raid_map_helper(struct raid_map_data *map,
4842                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4843 {
4844         if (offload_to_mirror == 0)  {
4845                 /* use physical disk in the first mirrored group. */
4846                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4847                 return;
4848         }
4849         do {
4850                 /* determine mirror group that *map_index indicates */
4851                 *current_group = *map_index /
4852                         le16_to_cpu(map->data_disks_per_row);
4853                 if (offload_to_mirror == *current_group)
4854                         continue;
4855                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4856                         /* select map index from next group */
4857                         *map_index += le16_to_cpu(map->data_disks_per_row);
4858                         (*current_group)++;
4859                 } else {
4860                         /* select map index from first group */
4861                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4862                         *current_group = 0;
4863                 }
4864         } while (offload_to_mirror != *current_group);
4865 }
4866
4867 /*
4868  * Attempt to perform offload RAID mapping for a logical volume I/O.
4869  */
4870 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4871         struct CommandList *c)
4872 {
4873         struct scsi_cmnd *cmd = c->scsi_cmd;
4874         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4875         struct raid_map_data *map = &dev->raid_map;
4876         struct raid_map_disk_data *dd = &map->data[0];
4877         int is_write = 0;
4878         u32 map_index;
4879         u64 first_block, last_block;
4880         u32 block_cnt;
4881         u32 blocks_per_row;
4882         u64 first_row, last_row;
4883         u32 first_row_offset, last_row_offset;
4884         u32 first_column, last_column;
4885         u64 r0_first_row, r0_last_row;
4886         u32 r5or6_blocks_per_row;
4887         u64 r5or6_first_row, r5or6_last_row;
4888         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4889         u32 r5or6_first_column, r5or6_last_column;
4890         u32 total_disks_per_row;
4891         u32 stripesize;
4892         u32 first_group, last_group, current_group;
4893         u32 map_row;
4894         u32 disk_handle;
4895         u64 disk_block;
4896         u32 disk_block_cnt;
4897         u8 cdb[16];
4898         u8 cdb_len;
4899         u16 strip_size;
4900 #if BITS_PER_LONG == 32
4901         u64 tmpdiv;
4902 #endif
4903         int offload_to_mirror;
4904
4905         /* check for valid opcode, get LBA and block count */
4906         switch (cmd->cmnd[0]) {
4907         case WRITE_6:
4908                 is_write = 1;
4909         case READ_6:
4910                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4911                 block_cnt = cmd->cmnd[4];
4912                 if (block_cnt == 0)
4913                         block_cnt = 256;
4914                 break;
4915         case WRITE_10:
4916                 is_write = 1;
4917         case READ_10:
4918                 first_block =
4919                         (((u64) cmd->cmnd[2]) << 24) |
4920                         (((u64) cmd->cmnd[3]) << 16) |
4921                         (((u64) cmd->cmnd[4]) << 8) |
4922                         cmd->cmnd[5];
4923                 block_cnt =
4924                         (((u32) cmd->cmnd[7]) << 8) |
4925                         cmd->cmnd[8];
4926                 break;
4927         case WRITE_12:
4928                 is_write = 1;
4929         case READ_12:
4930                 first_block =
4931                         (((u64) cmd->cmnd[2]) << 24) |
4932                         (((u64) cmd->cmnd[3]) << 16) |
4933                         (((u64) cmd->cmnd[4]) << 8) |
4934                         cmd->cmnd[5];
4935                 block_cnt =
4936                         (((u32) cmd->cmnd[6]) << 24) |
4937                         (((u32) cmd->cmnd[7]) << 16) |
4938                         (((u32) cmd->cmnd[8]) << 8) |
4939                 cmd->cmnd[9];
4940                 break;
4941         case WRITE_16:
4942                 is_write = 1;
4943         case READ_16:
4944                 first_block =
4945                         (((u64) cmd->cmnd[2]) << 56) |
4946                         (((u64) cmd->cmnd[3]) << 48) |
4947                         (((u64) cmd->cmnd[4]) << 40) |
4948                         (((u64) cmd->cmnd[5]) << 32) |
4949                         (((u64) cmd->cmnd[6]) << 24) |
4950                         (((u64) cmd->cmnd[7]) << 16) |
4951                         (((u64) cmd->cmnd[8]) << 8) |
4952                         cmd->cmnd[9];
4953                 block_cnt =
4954                         (((u32) cmd->cmnd[10]) << 24) |
4955                         (((u32) cmd->cmnd[11]) << 16) |
4956                         (((u32) cmd->cmnd[12]) << 8) |
4957                         cmd->cmnd[13];
4958                 break;
4959         default:
4960                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4961         }
4962         last_block = first_block + block_cnt - 1;
4963
4964         /* check for write to non-RAID-0 */
4965         if (is_write && dev->raid_level != 0)
4966                 return IO_ACCEL_INELIGIBLE;
4967
4968         /* check for invalid block or wraparound */
4969         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4970                 last_block < first_block)
4971                 return IO_ACCEL_INELIGIBLE;
4972
4973         /* calculate stripe information for the request */
4974         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4975                                 le16_to_cpu(map->strip_size);
4976         strip_size = le16_to_cpu(map->strip_size);
4977 #if BITS_PER_LONG == 32
4978         tmpdiv = first_block;
4979         (void) do_div(tmpdiv, blocks_per_row);
4980         first_row = tmpdiv;
4981         tmpdiv = last_block;
4982         (void) do_div(tmpdiv, blocks_per_row);
4983         last_row = tmpdiv;
4984         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4985         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4986         tmpdiv = first_row_offset;
4987         (void) do_div(tmpdiv, strip_size);
4988         first_column = tmpdiv;
4989         tmpdiv = last_row_offset;
4990         (void) do_div(tmpdiv, strip_size);
4991         last_column = tmpdiv;
4992 #else
4993         first_row = first_block / blocks_per_row;
4994         last_row = last_block / blocks_per_row;
4995         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4996         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4997         first_column = first_row_offset / strip_size;
4998         last_column = last_row_offset / strip_size;
4999 #endif
5000
5001         /* if this isn't a single row/column then give to the controller */
5002         if ((first_row != last_row) || (first_column != last_column))
5003                 return IO_ACCEL_INELIGIBLE;
5004
5005         /* proceeding with driver mapping */
5006         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5007                                 le16_to_cpu(map->metadata_disks_per_row);
5008         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5009                                 le16_to_cpu(map->row_cnt);
5010         map_index = (map_row * total_disks_per_row) + first_column;
5011
5012         switch (dev->raid_level) {
5013         case HPSA_RAID_0:
5014                 break; /* nothing special to do */
5015         case HPSA_RAID_1:
5016                 /* Handles load balance across RAID 1 members.
5017                  * (2-drive R1 and R10 with even # of drives.)
5018                  * Appropriate for SSDs, not optimal for HDDs
5019                  */
5020                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5021                 if (dev->offload_to_mirror)
5022                         map_index += le16_to_cpu(map->data_disks_per_row);
5023                 dev->offload_to_mirror = !dev->offload_to_mirror;
5024                 break;
5025         case HPSA_RAID_ADM:
5026                 /* Handles N-way mirrors  (R1-ADM)
5027                  * and R10 with # of drives divisible by 3.)
5028                  */
5029                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5030
5031                 offload_to_mirror = dev->offload_to_mirror;
5032                 raid_map_helper(map, offload_to_mirror,
5033                                 &map_index, &current_group);
5034                 /* set mirror group to use next time */
5035                 offload_to_mirror =
5036                         (offload_to_mirror >=
5037                         le16_to_cpu(map->layout_map_count) - 1)
5038                         ? 0 : offload_to_mirror + 1;
5039                 dev->offload_to_mirror = offload_to_mirror;
5040                 /* Avoid direct use of dev->offload_to_mirror within this
5041                  * function since multiple threads might simultaneously
5042                  * increment it beyond the range of dev->layout_map_count -1.
5043                  */
5044                 break;
5045         case HPSA_RAID_5:
5046         case HPSA_RAID_6:
5047                 if (le16_to_cpu(map->layout_map_count) <= 1)
5048                         break;
5049
5050                 /* Verify first and last block are in same RAID group */
5051                 r5or6_blocks_per_row =
5052                         le16_to_cpu(map->strip_size) *
5053                         le16_to_cpu(map->data_disks_per_row);
5054                 BUG_ON(r5or6_blocks_per_row == 0);
5055                 stripesize = r5or6_blocks_per_row *
5056                         le16_to_cpu(map->layout_map_count);
5057 #if BITS_PER_LONG == 32
5058                 tmpdiv = first_block;
5059                 first_group = do_div(tmpdiv, stripesize);
5060                 tmpdiv = first_group;
5061                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5062                 first_group = tmpdiv;
5063                 tmpdiv = last_block;
5064                 last_group = do_div(tmpdiv, stripesize);
5065                 tmpdiv = last_group;
5066                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5067                 last_group = tmpdiv;
5068 #else
5069                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5070                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5071 #endif
5072                 if (first_group != last_group)
5073                         return IO_ACCEL_INELIGIBLE;
5074
5075                 /* Verify request is in a single row of RAID 5/6 */
5076 #if BITS_PER_LONG == 32
5077                 tmpdiv = first_block;
5078                 (void) do_div(tmpdiv, stripesize);
5079                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5080                 tmpdiv = last_block;
5081                 (void) do_div(tmpdiv, stripesize);
5082                 r5or6_last_row = r0_last_row = tmpdiv;
5083 #else
5084                 first_row = r5or6_first_row = r0_first_row =
5085                                                 first_block / stripesize;
5086                 r5or6_last_row = r0_last_row = last_block / stripesize;
5087 #endif
5088                 if (r5or6_first_row != r5or6_last_row)
5089                         return IO_ACCEL_INELIGIBLE;
5090
5091
5092                 /* Verify request is in a single column */
5093 #if BITS_PER_LONG == 32
5094                 tmpdiv = first_block;
5095                 first_row_offset = do_div(tmpdiv, stripesize);
5096                 tmpdiv = first_row_offset;
5097                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5098                 r5or6_first_row_offset = first_row_offset;
5099                 tmpdiv = last_block;
5100                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5101                 tmpdiv = r5or6_last_row_offset;
5102                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5103                 tmpdiv = r5or6_first_row_offset;
5104                 (void) do_div(tmpdiv, map->strip_size);
5105                 first_column = r5or6_first_column = tmpdiv;
5106                 tmpdiv = r5or6_last_row_offset;
5107                 (void) do_div(tmpdiv, map->strip_size);
5108                 r5or6_last_column = tmpdiv;
5109 #else
5110                 first_row_offset = r5or6_first_row_offset =
5111                         (u32)((first_block % stripesize) %
5112                                                 r5or6_blocks_per_row);
5113
5114                 r5or6_last_row_offset =
5115                         (u32)((last_block % stripesize) %
5116                                                 r5or6_blocks_per_row);
5117
5118                 first_column = r5or6_first_column =
5119                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5120                 r5or6_last_column =
5121                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5122 #endif
5123                 if (r5or6_first_column != r5or6_last_column)
5124                         return IO_ACCEL_INELIGIBLE;
5125
5126                 /* Request is eligible */
5127                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5128                         le16_to_cpu(map->row_cnt);
5129
5130                 map_index = (first_group *
5131                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5132                         (map_row * total_disks_per_row) + first_column;
5133                 break;
5134         default:
5135                 return IO_ACCEL_INELIGIBLE;
5136         }
5137
5138         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5139                 return IO_ACCEL_INELIGIBLE;
5140
5141         c->phys_disk = dev->phys_disk[map_index];
5142         if (!c->phys_disk)
5143                 return IO_ACCEL_INELIGIBLE;
5144
5145         disk_handle = dd[map_index].ioaccel_handle;
5146         disk_block = le64_to_cpu(map->disk_starting_blk) +
5147                         first_row * le16_to_cpu(map->strip_size) +
5148                         (first_row_offset - first_column *
5149                         le16_to_cpu(map->strip_size));
5150         disk_block_cnt = block_cnt;
5151
5152         /* handle differing logical/physical block sizes */
5153         if (map->phys_blk_shift) {
5154                 disk_block <<= map->phys_blk_shift;
5155                 disk_block_cnt <<= map->phys_blk_shift;
5156         }
5157         BUG_ON(disk_block_cnt > 0xffff);
5158
5159         /* build the new CDB for the physical disk I/O */
5160         if (disk_block > 0xffffffff) {
5161                 cdb[0] = is_write ? WRITE_16 : READ_16;
5162                 cdb[1] = 0;
5163                 cdb[2] = (u8) (disk_block >> 56);
5164                 cdb[3] = (u8) (disk_block >> 48);
5165                 cdb[4] = (u8) (disk_block >> 40);
5166                 cdb[5] = (u8) (disk_block >> 32);
5167                 cdb[6] = (u8) (disk_block >> 24);
5168                 cdb[7] = (u8) (disk_block >> 16);
5169                 cdb[8] = (u8) (disk_block >> 8);
5170                 cdb[9] = (u8) (disk_block);
5171                 cdb[10] = (u8) (disk_block_cnt >> 24);
5172                 cdb[11] = (u8) (disk_block_cnt >> 16);
5173                 cdb[12] = (u8) (disk_block_cnt >> 8);
5174                 cdb[13] = (u8) (disk_block_cnt);
5175                 cdb[14] = 0;
5176                 cdb[15] = 0;
5177                 cdb_len = 16;
5178         } else {
5179                 cdb[0] = is_write ? WRITE_10 : READ_10;
5180                 cdb[1] = 0;
5181                 cdb[2] = (u8) (disk_block >> 24);
5182                 cdb[3] = (u8) (disk_block >> 16);
5183                 cdb[4] = (u8) (disk_block >> 8);
5184                 cdb[5] = (u8) (disk_block);
5185                 cdb[6] = 0;
5186                 cdb[7] = (u8) (disk_block_cnt >> 8);
5187                 cdb[8] = (u8) (disk_block_cnt);
5188                 cdb[9] = 0;
5189                 cdb_len = 10;
5190         }
5191         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5192                                                 dev->scsi3addr,
5193                                                 dev->phys_disk[map_index]);
5194 }
5195
5196 /*
5197  * Submit commands down the "normal" RAID stack path
5198  * All callers to hpsa_ciss_submit must check lockup_detected
5199  * beforehand, before (opt.) and after calling cmd_alloc
5200  */
5201 static int hpsa_ciss_submit(struct ctlr_info *h,
5202         struct CommandList *c, struct scsi_cmnd *cmd,
5203         unsigned char scsi3addr[])
5204 {
5205         cmd->host_scribble = (unsigned char *) c;
5206         c->cmd_type = CMD_SCSI;
5207         c->scsi_cmd = cmd;
5208         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5209         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5210         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5211
5212         /* Fill in the request block... */
5213
5214         c->Request.Timeout = 0;
5215         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5216         c->Request.CDBLen = cmd->cmd_len;
5217         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5218         switch (cmd->sc_data_direction) {
5219         case DMA_TO_DEVICE:
5220                 c->Request.type_attr_dir =
5221                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5222                 break;
5223         case DMA_FROM_DEVICE:
5224                 c->Request.type_attr_dir =
5225                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5226                 break;
5227         case DMA_NONE:
5228                 c->Request.type_attr_dir =
5229                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5230                 break;
5231         case DMA_BIDIRECTIONAL:
5232                 /* This can happen if a buggy application does a scsi passthru
5233                  * and sets both inlen and outlen to non-zero. ( see
5234                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5235                  */
5236
5237                 c->Request.type_attr_dir =
5238                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5239                 /* This is technically wrong, and hpsa controllers should
5240                  * reject it with CMD_INVALID, which is the most correct
5241                  * response, but non-fibre backends appear to let it
5242                  * slide by, and give the same results as if this field
5243                  * were set correctly.  Either way is acceptable for
5244                  * our purposes here.
5245                  */
5246
5247                 break;
5248
5249         default:
5250                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5251                         cmd->sc_data_direction);
5252                 BUG();
5253                 break;
5254         }
5255
5256         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5257                 hpsa_cmd_resolve_and_free(h, c);
5258                 return SCSI_MLQUEUE_HOST_BUSY;
5259         }
5260         enqueue_cmd_and_start_io(h, c);
5261         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5262         return 0;
5263 }
5264
5265 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5266                                 struct CommandList *c)
5267 {
5268         dma_addr_t cmd_dma_handle, err_dma_handle;
5269
5270         /* Zero out all of commandlist except the last field, refcount */
5271         memset(c, 0, offsetof(struct CommandList, refcount));
5272         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5273         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5274         c->err_info = h->errinfo_pool + index;
5275         memset(c->err_info, 0, sizeof(*c->err_info));
5276         err_dma_handle = h->errinfo_pool_dhandle
5277             + index * sizeof(*c->err_info);
5278         c->cmdindex = index;
5279         c->busaddr = (u32) cmd_dma_handle;
5280         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5281         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5282         c->h = h;
5283         c->scsi_cmd = SCSI_CMD_IDLE;
5284 }
5285
5286 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5287 {
5288         int i;
5289
5290         for (i = 0; i < h->nr_cmds; i++) {
5291                 struct CommandList *c = h->cmd_pool + i;
5292
5293                 hpsa_cmd_init(h, i, c);
5294                 atomic_set(&c->refcount, 0);
5295         }
5296 }
5297
5298 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5299                                 struct CommandList *c)
5300 {
5301         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5302
5303         BUG_ON(c->cmdindex != index);
5304
5305         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5306         memset(c->err_info, 0, sizeof(*c->err_info));
5307         c->busaddr = (u32) cmd_dma_handle;
5308 }
5309
5310 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5311                 struct CommandList *c, struct scsi_cmnd *cmd,
5312                 unsigned char *scsi3addr)
5313 {
5314         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5315         int rc = IO_ACCEL_INELIGIBLE;
5316
5317         cmd->host_scribble = (unsigned char *) c;
5318
5319         if (dev->offload_enabled) {
5320                 hpsa_cmd_init(h, c->cmdindex, c);
5321                 c->cmd_type = CMD_SCSI;
5322                 c->scsi_cmd = cmd;
5323                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5324                 if (rc < 0)     /* scsi_dma_map failed. */
5325                         rc = SCSI_MLQUEUE_HOST_BUSY;
5326         } else if (dev->hba_ioaccel_enabled) {
5327                 hpsa_cmd_init(h, c->cmdindex, c);
5328                 c->cmd_type = CMD_SCSI;
5329                 c->scsi_cmd = cmd;
5330                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5331                 if (rc < 0)     /* scsi_dma_map failed. */
5332                         rc = SCSI_MLQUEUE_HOST_BUSY;
5333         }
5334         return rc;
5335 }
5336
5337 static void hpsa_command_resubmit_worker(struct work_struct *work)
5338 {
5339         struct scsi_cmnd *cmd;
5340         struct hpsa_scsi_dev_t *dev;
5341         struct CommandList *c = container_of(work, struct CommandList, work);
5342
5343         cmd = c->scsi_cmd;
5344         dev = cmd->device->hostdata;
5345         if (!dev) {
5346                 cmd->result = DID_NO_CONNECT << 16;
5347                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5348         }
5349         if (c->reset_pending)
5350                 return hpsa_cmd_resolve_and_free(c->h, c);
5351         if (c->abort_pending)
5352                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5353         if (c->cmd_type == CMD_IOACCEL2) {
5354                 struct ctlr_info *h = c->h;
5355                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5356                 int rc;
5357
5358                 if (c2->error_data.serv_response ==
5359                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5360                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5361                         if (rc == 0)
5362                                 return;
5363                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5364                                 /*
5365                                  * If we get here, it means dma mapping failed.
5366                                  * Try again via scsi mid layer, which will
5367                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5368                                  */
5369                                 cmd->result = DID_IMM_RETRY << 16;
5370                                 return hpsa_cmd_free_and_done(h, c, cmd);
5371                         }
5372                         /* else, fall thru and resubmit down CISS path */
5373                 }
5374         }
5375         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5376         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5377                 /*
5378                  * If we get here, it means dma mapping failed. Try
5379                  * again via scsi mid layer, which will then get
5380                  * SCSI_MLQUEUE_HOST_BUSY.
5381                  *
5382                  * hpsa_ciss_submit will have already freed c
5383                  * if it encountered a dma mapping failure.
5384                  */
5385                 cmd->result = DID_IMM_RETRY << 16;
5386                 cmd->scsi_done(cmd);
5387         }
5388 }
5389
5390 /* Running in struct Scsi_Host->host_lock less mode */
5391 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5392 {
5393         struct ctlr_info *h;
5394         struct hpsa_scsi_dev_t *dev;
5395         unsigned char scsi3addr[8];
5396         struct CommandList *c;
5397         int rc = 0;
5398
5399         /* Get the ptr to our adapter structure out of cmd->host. */
5400         h = sdev_to_hba(cmd->device);
5401
5402         BUG_ON(cmd->request->tag < 0);
5403
5404         dev = cmd->device->hostdata;
5405         if (!dev) {
5406                 cmd->result = NOT_READY << 16; /* host byte */
5407                 cmd->scsi_done(cmd);
5408                 return 0;
5409         }
5410
5411         if (dev->removed) {
5412                 cmd->result = DID_NO_CONNECT << 16;
5413                 cmd->scsi_done(cmd);
5414                 return 0;
5415         }
5416
5417         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5418
5419         if (unlikely(lockup_detected(h))) {
5420                 cmd->result = DID_NO_CONNECT << 16;
5421                 cmd->scsi_done(cmd);
5422                 return 0;
5423         }
5424         c = cmd_tagged_alloc(h, cmd);
5425
5426         /*
5427          * Call alternate submit routine for I/O accelerated commands.
5428          * Retries always go down the normal I/O path.
5429          */
5430         if (likely(cmd->retries == 0 &&
5431                 cmd->request->cmd_type == REQ_TYPE_FS &&
5432                 h->acciopath_status)) {
5433                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5434                 if (rc == 0)
5435                         return 0;
5436                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5437                         hpsa_cmd_resolve_and_free(h, c);
5438                         return SCSI_MLQUEUE_HOST_BUSY;
5439                 }
5440         }
5441         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5442 }
5443
5444 static void hpsa_scan_complete(struct ctlr_info *h)
5445 {
5446         unsigned long flags;
5447
5448         spin_lock_irqsave(&h->scan_lock, flags);
5449         h->scan_finished = 1;
5450         wake_up_all(&h->scan_wait_queue);
5451         spin_unlock_irqrestore(&h->scan_lock, flags);
5452 }
5453
5454 static void hpsa_scan_start(struct Scsi_Host *sh)
5455 {
5456         struct ctlr_info *h = shost_to_hba(sh);
5457         unsigned long flags;
5458
5459         /*
5460          * Don't let rescans be initiated on a controller known to be locked
5461          * up.  If the controller locks up *during* a rescan, that thread is
5462          * probably hosed, but at least we can prevent new rescan threads from
5463          * piling up on a locked up controller.
5464          */
5465         if (unlikely(lockup_detected(h)))
5466                 return hpsa_scan_complete(h);
5467
5468         /* wait until any scan already in progress is finished. */
5469         while (1) {
5470                 spin_lock_irqsave(&h->scan_lock, flags);
5471                 if (h->scan_finished)
5472                         break;
5473                 spin_unlock_irqrestore(&h->scan_lock, flags);
5474                 wait_event(h->scan_wait_queue, h->scan_finished);
5475                 /* Note: We don't need to worry about a race between this
5476                  * thread and driver unload because the midlayer will
5477                  * have incremented the reference count, so unload won't
5478                  * happen if we're in here.
5479                  */
5480         }
5481         h->scan_finished = 0; /* mark scan as in progress */
5482         spin_unlock_irqrestore(&h->scan_lock, flags);
5483
5484         if (unlikely(lockup_detected(h)))
5485                 return hpsa_scan_complete(h);
5486
5487         hpsa_update_scsi_devices(h);
5488
5489         hpsa_scan_complete(h);
5490 }
5491
5492 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5493 {
5494         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5495
5496         if (!logical_drive)
5497                 return -ENODEV;
5498
5499         if (qdepth < 1)
5500                 qdepth = 1;
5501         else if (qdepth > logical_drive->queue_depth)
5502                 qdepth = logical_drive->queue_depth;
5503
5504         return scsi_change_queue_depth(sdev, qdepth);
5505 }
5506
5507 static int hpsa_scan_finished(struct Scsi_Host *sh,
5508         unsigned long elapsed_time)
5509 {
5510         struct ctlr_info *h = shost_to_hba(sh);
5511         unsigned long flags;
5512         int finished;
5513
5514         spin_lock_irqsave(&h->scan_lock, flags);
5515         finished = h->scan_finished;
5516         spin_unlock_irqrestore(&h->scan_lock, flags);
5517         return finished;
5518 }
5519
5520 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5521 {
5522         struct Scsi_Host *sh;
5523
5524         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5525         if (sh == NULL) {
5526                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5527                 return -ENOMEM;
5528         }
5529
5530         sh->io_port = 0;
5531         sh->n_io_port = 0;
5532         sh->this_id = -1;
5533         sh->max_channel = 3;
5534         sh->max_cmd_len = MAX_COMMAND_SIZE;
5535         sh->max_lun = HPSA_MAX_LUN;
5536         sh->max_id = HPSA_MAX_LUN;
5537         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5538         sh->cmd_per_lun = sh->can_queue;
5539         sh->sg_tablesize = h->maxsgentries;
5540         sh->transportt = hpsa_sas_transport_template;
5541         sh->hostdata[0] = (unsigned long) h;
5542         sh->irq = h->intr[h->intr_mode];
5543         sh->unique_id = sh->irq;
5544
5545         h->scsi_host = sh;
5546         return 0;
5547 }
5548
5549 static int hpsa_scsi_add_host(struct ctlr_info *h)
5550 {
5551         int rv;
5552
5553         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5554         if (rv) {
5555                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5556                 return rv;
5557         }
5558         scsi_scan_host(h->scsi_host);
5559         return 0;
5560 }
5561
5562 /*
5563  * The block layer has already gone to the trouble of picking out a unique,
5564  * small-integer tag for this request.  We use an offset from that value as
5565  * an index to select our command block.  (The offset allows us to reserve the
5566  * low-numbered entries for our own uses.)
5567  */
5568 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5569 {
5570         int idx = scmd->request->tag;
5571
5572         if (idx < 0)
5573                 return idx;
5574
5575         /* Offset to leave space for internal cmds. */
5576         return idx += HPSA_NRESERVED_CMDS;
5577 }
5578
5579 /*
5580  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5581  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5582  */
5583 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5584                                 struct CommandList *c, unsigned char lunaddr[],
5585                                 int reply_queue)
5586 {
5587         int rc;
5588
5589         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5590         (void) fill_cmd(c, TEST_UNIT_READY, h,
5591                         NULL, 0, 0, lunaddr, TYPE_CMD);
5592         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5593         if (rc)
5594                 return rc;
5595         /* no unmap needed here because no data xfer. */
5596
5597         /* Check if the unit is already ready. */
5598         if (c->err_info->CommandStatus == CMD_SUCCESS)
5599                 return 0;
5600
5601         /*
5602          * The first command sent after reset will receive "unit attention" to
5603          * indicate that the LUN has been reset...this is actually what we're
5604          * looking for (but, success is good too).
5605          */
5606         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5607                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5608                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5609                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5610                 return 0;
5611
5612         return 1;
5613 }
5614
5615 /*
5616  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5617  * returns zero when the unit is ready, and non-zero when giving up.
5618  */
5619 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5620                                 struct CommandList *c,
5621                                 unsigned char lunaddr[], int reply_queue)
5622 {
5623         int rc;
5624         int count = 0;
5625         int waittime = 1; /* seconds */
5626
5627         /* Send test unit ready until device ready, or give up. */
5628         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5629
5630                 /*
5631                  * Wait for a bit.  do this first, because if we send
5632                  * the TUR right away, the reset will just abort it.
5633                  */
5634                 msleep(1000 * waittime);
5635
5636                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5637                 if (!rc)
5638                         break;
5639
5640                 /* Increase wait time with each try, up to a point. */
5641                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5642                         waittime *= 2;
5643
5644                 dev_warn(&h->pdev->dev,
5645                          "waiting %d secs for device to become ready.\n",
5646                          waittime);
5647         }
5648
5649         return rc;
5650 }
5651
5652 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5653                                            unsigned char lunaddr[],
5654                                            int reply_queue)
5655 {
5656         int first_queue;
5657         int last_queue;
5658         int rq;
5659         int rc = 0;
5660         struct CommandList *c;
5661
5662         c = cmd_alloc(h);
5663
5664         /*
5665          * If no specific reply queue was requested, then send the TUR
5666          * repeatedly, requesting a reply on each reply queue; otherwise execute
5667          * the loop exactly once using only the specified queue.
5668          */
5669         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5670                 first_queue = 0;
5671                 last_queue = h->nreply_queues - 1;
5672         } else {
5673                 first_queue = reply_queue;
5674                 last_queue = reply_queue;
5675         }
5676
5677         for (rq = first_queue; rq <= last_queue; rq++) {
5678                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5679                 if (rc)
5680                         break;
5681         }
5682
5683         if (rc)
5684                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5685         else
5686                 dev_warn(&h->pdev->dev, "device is ready.\n");
5687
5688         cmd_free(h, c);
5689         return rc;
5690 }
5691
5692 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5693  * complaining.  Doing a host- or bus-reset can't do anything good here.
5694  */
5695 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5696 {
5697         int rc;
5698         struct ctlr_info *h;
5699         struct hpsa_scsi_dev_t *dev;
5700         u8 reset_type;
5701         char msg[48];
5702
5703         /* find the controller to which the command to be aborted was sent */
5704         h = sdev_to_hba(scsicmd->device);
5705         if (h == NULL) /* paranoia */
5706                 return FAILED;
5707
5708         if (lockup_detected(h))
5709                 return FAILED;
5710
5711         dev = scsicmd->device->hostdata;
5712         if (!dev) {
5713                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5714                 return FAILED;
5715         }
5716
5717         /* if controller locked up, we can guarantee command won't complete */
5718         if (lockup_detected(h)) {
5719                 snprintf(msg, sizeof(msg),
5720                          "cmd %d RESET FAILED, lockup detected",
5721                          hpsa_get_cmd_index(scsicmd));
5722                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5723                 return FAILED;
5724         }
5725
5726         /* this reset request might be the result of a lockup; check */
5727         if (detect_controller_lockup(h)) {
5728                 snprintf(msg, sizeof(msg),
5729                          "cmd %d RESET FAILED, new lockup detected",
5730                          hpsa_get_cmd_index(scsicmd));
5731                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5732                 return FAILED;
5733         }
5734
5735         /* Do not attempt on controller */
5736         if (is_hba_lunid(dev->scsi3addr))
5737                 return SUCCESS;
5738
5739         if (is_logical_dev_addr_mode(dev->scsi3addr))
5740                 reset_type = HPSA_DEVICE_RESET_MSG;
5741         else
5742                 reset_type = HPSA_PHYS_TARGET_RESET;
5743
5744         sprintf(msg, "resetting %s",
5745                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5746         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5747
5748         h->reset_in_progress = 1;
5749
5750         /* send a reset to the SCSI LUN which the command was sent to */
5751         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5752                            DEFAULT_REPLY_QUEUE);
5753         sprintf(msg, "reset %s %s",
5754                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5755                 rc == 0 ? "completed successfully" : "failed");
5756         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5757         h->reset_in_progress = 0;
5758         return rc == 0 ? SUCCESS : FAILED;
5759 }
5760
5761 static void swizzle_abort_tag(u8 *tag)
5762 {
5763         u8 original_tag[8];
5764
5765         memcpy(original_tag, tag, 8);
5766         tag[0] = original_tag[3];
5767         tag[1] = original_tag[2];
5768         tag[2] = original_tag[1];
5769         tag[3] = original_tag[0];
5770         tag[4] = original_tag[7];
5771         tag[5] = original_tag[6];
5772         tag[6] = original_tag[5];
5773         tag[7] = original_tag[4];
5774 }
5775
5776 static void hpsa_get_tag(struct ctlr_info *h,
5777         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5778 {
5779         u64 tag;
5780         if (c->cmd_type == CMD_IOACCEL1) {
5781                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5782                         &h->ioaccel_cmd_pool[c->cmdindex];
5783                 tag = le64_to_cpu(cm1->tag);
5784                 *tagupper = cpu_to_le32(tag >> 32);
5785                 *taglower = cpu_to_le32(tag);
5786                 return;
5787         }
5788         if (c->cmd_type == CMD_IOACCEL2) {
5789                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5790                         &h->ioaccel2_cmd_pool[c->cmdindex];
5791                 /* upper tag not used in ioaccel2 mode */
5792                 memset(tagupper, 0, sizeof(*tagupper));
5793                 *taglower = cm2->Tag;
5794                 return;
5795         }
5796         tag = le64_to_cpu(c->Header.tag);
5797         *tagupper = cpu_to_le32(tag >> 32);
5798         *taglower = cpu_to_le32(tag);
5799 }
5800
5801 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5802         struct CommandList *abort, int reply_queue)
5803 {
5804         int rc = IO_OK;
5805         struct CommandList *c;
5806         struct ErrorInfo *ei;
5807         __le32 tagupper, taglower;
5808
5809         c = cmd_alloc(h);
5810
5811         /* fill_cmd can't fail here, no buffer to map */
5812         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5813                 0, 0, scsi3addr, TYPE_MSG);
5814         if (h->needs_abort_tags_swizzled)
5815                 swizzle_abort_tag(&c->Request.CDB[4]);
5816         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5817         hpsa_get_tag(h, abort, &taglower, &tagupper);
5818         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5819                 __func__, tagupper, taglower);
5820         /* no unmap needed here because no data xfer. */
5821
5822         ei = c->err_info;
5823         switch (ei->CommandStatus) {
5824         case CMD_SUCCESS:
5825                 break;
5826         case CMD_TMF_STATUS:
5827                 rc = hpsa_evaluate_tmf_status(h, c);
5828                 break;
5829         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5830                 rc = -1;
5831                 break;
5832         default:
5833                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5834                         __func__, tagupper, taglower);
5835                 hpsa_scsi_interpret_error(h, c);
5836                 rc = -1;
5837                 break;
5838         }
5839         cmd_free(h, c);
5840         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5841                 __func__, tagupper, taglower);
5842         return rc;
5843 }
5844
5845 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5846         struct CommandList *command_to_abort, int reply_queue)
5847 {
5848         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5849         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5850         struct io_accel2_cmd *c2a =
5851                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5852         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5853         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5854
5855         /*
5856          * We're overlaying struct hpsa_tmf_struct on top of something which
5857          * was allocated as a struct io_accel2_cmd, so we better be sure it
5858          * actually fits, and doesn't overrun the error info space.
5859          */
5860         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5861                         sizeof(struct io_accel2_cmd));
5862         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5863                         offsetof(struct hpsa_tmf_struct, error_len) +
5864                                 sizeof(ac->error_len));
5865
5866         c->cmd_type = IOACCEL2_TMF;
5867         c->scsi_cmd = SCSI_CMD_BUSY;
5868
5869         /* Adjust the DMA address to point to the accelerated command buffer */
5870         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5871                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5872         BUG_ON(c->busaddr & 0x0000007F);
5873
5874         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5875         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5876         ac->reply_queue = reply_queue;
5877         ac->tmf = IOACCEL2_TMF_ABORT;
5878         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5879         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5880         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5881         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5882         ac->error_ptr = cpu_to_le64(c->busaddr +
5883                         offsetof(struct io_accel2_cmd, error_data));
5884         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5885 }
5886
5887 /* ioaccel2 path firmware cannot handle abort task requests.
5888  * Change abort requests to physical target reset, and send to the
5889  * address of the physical disk used for the ioaccel 2 command.
5890  * Return 0 on success (IO_OK)
5891  *       -1 on failure
5892  */
5893
5894 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5895         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5896 {
5897         int rc = IO_OK;
5898         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5899         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5900         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5901         unsigned char *psa = &phys_scsi3addr[0];
5902
5903         /* Get a pointer to the hpsa logical device. */
5904         scmd = abort->scsi_cmd;
5905         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5906         if (dev == NULL) {
5907                 dev_warn(&h->pdev->dev,
5908                         "Cannot abort: no device pointer for command.\n");
5909                         return -1; /* not abortable */
5910         }
5911
5912         if (h->raid_offload_debug > 0)
5913                 dev_info(&h->pdev->dev,
5914                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5915                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5916                         "Reset as abort",
5917                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5918                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5919
5920         if (!dev->offload_enabled) {
5921                 dev_warn(&h->pdev->dev,
5922                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5923                 return -1; /* not abortable */
5924         }
5925
5926         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5927         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5928                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5929                 return -1; /* not abortable */
5930         }
5931
5932         /* send the reset */
5933         if (h->raid_offload_debug > 0)
5934                 dev_info(&h->pdev->dev,
5935                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5936                         psa[0], psa[1], psa[2], psa[3],
5937                         psa[4], psa[5], psa[6], psa[7]);
5938         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5939         if (rc != 0) {
5940                 dev_warn(&h->pdev->dev,
5941                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5942                         psa[0], psa[1], psa[2], psa[3],
5943                         psa[4], psa[5], psa[6], psa[7]);
5944                 return rc; /* failed to reset */
5945         }
5946
5947         /* wait for device to recover */
5948         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5949                 dev_warn(&h->pdev->dev,
5950                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5951                         psa[0], psa[1], psa[2], psa[3],
5952                         psa[4], psa[5], psa[6], psa[7]);
5953                 return -1;  /* failed to recover */
5954         }
5955
5956         /* device recovered */
5957         dev_info(&h->pdev->dev,
5958                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5959                 psa[0], psa[1], psa[2], psa[3],
5960                 psa[4], psa[5], psa[6], psa[7]);
5961
5962         return rc; /* success */
5963 }
5964
5965 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5966         struct CommandList *abort, int reply_queue)
5967 {
5968         int rc = IO_OK;
5969         struct CommandList *c;
5970         __le32 taglower, tagupper;
5971         struct hpsa_scsi_dev_t *dev;
5972         struct io_accel2_cmd *c2;
5973
5974         dev = abort->scsi_cmd->device->hostdata;
5975         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5976                 return -1;
5977
5978         c = cmd_alloc(h);
5979         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5980         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5981         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5982         hpsa_get_tag(h, abort, &taglower, &tagupper);
5983         dev_dbg(&h->pdev->dev,
5984                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5985                 __func__, tagupper, taglower);
5986         /* no unmap needed here because no data xfer. */
5987
5988         dev_dbg(&h->pdev->dev,
5989                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5990                 __func__, tagupper, taglower, c2->error_data.serv_response);
5991         switch (c2->error_data.serv_response) {
5992         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5993         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5994                 rc = 0;
5995                 break;
5996         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5997         case IOACCEL2_SERV_RESPONSE_FAILURE:
5998         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5999                 rc = -1;
6000                 break;
6001         default:
6002                 dev_warn(&h->pdev->dev,
6003                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6004                         __func__, tagupper, taglower,
6005                         c2->error_data.serv_response);
6006                 rc = -1;
6007         }
6008         cmd_free(h, c);
6009         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6010                 tagupper, taglower);
6011         return rc;
6012 }
6013
6014 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6015         struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6016 {
6017         /*
6018          * ioccelerator mode 2 commands should be aborted via the
6019          * accelerated path, since RAID path is unaware of these commands,
6020          * but not all underlying firmware can handle abort TMF.
6021          * Change abort to physical device reset when abort TMF is unsupported.
6022          */
6023         if (abort->cmd_type == CMD_IOACCEL2) {
6024                 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6025                         dev->physical_device)
6026                         return hpsa_send_abort_ioaccel2(h, abort,
6027                                                 reply_queue);
6028                 else
6029                         return hpsa_send_reset_as_abort_ioaccel2(h,
6030                                                         dev->scsi3addr,
6031                                                         abort, reply_queue);
6032         }
6033         return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6034 }
6035
6036 /* Find out which reply queue a command was meant to return on */
6037 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6038                                         struct CommandList *c)
6039 {
6040         if (c->cmd_type == CMD_IOACCEL2)
6041                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6042         return c->Header.ReplyQueue;
6043 }
6044
6045 /*
6046  * Limit concurrency of abort commands to prevent
6047  * over-subscription of commands
6048  */
6049 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6050 {
6051 #define ABORT_CMD_WAIT_MSECS 5000
6052         return !wait_event_timeout(h->abort_cmd_wait_queue,
6053                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6054                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6055 }
6056
6057 /* Send an abort for the specified command.
6058  *      If the device and controller support it,
6059  *              send a task abort request.
6060  */
6061 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6062 {
6063
6064         int rc;
6065         struct ctlr_info *h;
6066         struct hpsa_scsi_dev_t *dev;
6067         struct CommandList *abort; /* pointer to command to be aborted */
6068         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
6069         char msg[256];          /* For debug messaging. */
6070         int ml = 0;
6071         __le32 tagupper, taglower;
6072         int refcount, reply_queue;
6073
6074         if (sc == NULL)
6075                 return FAILED;
6076
6077         if (sc->device == NULL)
6078                 return FAILED;
6079
6080         /* Find the controller of the command to be aborted */
6081         h = sdev_to_hba(sc->device);
6082         if (h == NULL)
6083                 return FAILED;
6084
6085         /* Find the device of the command to be aborted */
6086         dev = sc->device->hostdata;
6087         if (!dev) {
6088                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6089                                 msg);
6090                 return FAILED;
6091         }
6092
6093         /* If controller locked up, we can guarantee command won't complete */
6094         if (lockup_detected(h)) {
6095                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6096                                         "ABORT FAILED, lockup detected");
6097                 return FAILED;
6098         }
6099
6100         /* This is a good time to check if controller lockup has occurred */
6101         if (detect_controller_lockup(h)) {
6102                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6103                                         "ABORT FAILED, new lockup detected");
6104                 return FAILED;
6105         }
6106
6107         /* Check that controller supports some kind of task abort */
6108         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6109                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6110                 return FAILED;
6111
6112         memset(msg, 0, sizeof(msg));
6113         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6114                 h->scsi_host->host_no, sc->device->channel,
6115                 sc->device->id, sc->device->lun,
6116                 "Aborting command", sc);
6117
6118         /* Get SCSI command to be aborted */
6119         abort = (struct CommandList *) sc->host_scribble;
6120         if (abort == NULL) {
6121                 /* This can happen if the command already completed. */
6122                 return SUCCESS;
6123         }
6124         refcount = atomic_inc_return(&abort->refcount);
6125         if (refcount == 1) { /* Command is done already. */
6126                 cmd_free(h, abort);
6127                 return SUCCESS;
6128         }
6129
6130         /* Don't bother trying the abort if we know it won't work. */
6131         if (abort->cmd_type != CMD_IOACCEL2 &&
6132                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6133                 cmd_free(h, abort);
6134                 return FAILED;
6135         }
6136
6137         /*
6138          * Check that we're aborting the right command.
6139          * It's possible the CommandList already completed and got re-used.
6140          */
6141         if (abort->scsi_cmd != sc) {
6142                 cmd_free(h, abort);
6143                 return SUCCESS;
6144         }
6145
6146         abort->abort_pending = true;
6147         hpsa_get_tag(h, abort, &taglower, &tagupper);
6148         reply_queue = hpsa_extract_reply_queue(h, abort);
6149         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6150         as  = abort->scsi_cmd;
6151         if (as != NULL)
6152                 ml += sprintf(msg+ml,
6153                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6154                         as->cmd_len, as->cmnd[0], as->cmnd[1],
6155                         as->serial_number);
6156         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6157         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6158
6159         /*
6160          * Command is in flight, or possibly already completed
6161          * by the firmware (but not to the scsi mid layer) but we can't
6162          * distinguish which.  Send the abort down.
6163          */
6164         if (wait_for_available_abort_cmd(h)) {
6165                 dev_warn(&h->pdev->dev,
6166                         "%s FAILED, timeout waiting for an abort command to become available.\n",
6167                         msg);
6168                 cmd_free(h, abort);
6169                 return FAILED;
6170         }
6171         rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6172         atomic_inc(&h->abort_cmds_available);
6173         wake_up_all(&h->abort_cmd_wait_queue);
6174         if (rc != 0) {
6175                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6176                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6177                                 "FAILED to abort command");
6178                 cmd_free(h, abort);
6179                 return FAILED;
6180         }
6181         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6182         wait_event(h->event_sync_wait_queue,
6183                    abort->scsi_cmd != sc || lockup_detected(h));
6184         cmd_free(h, abort);
6185         return !lockup_detected(h) ? SUCCESS : FAILED;
6186 }
6187
6188 /*
6189  * For operations with an associated SCSI command, a command block is allocated
6190  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6191  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6192  * the complement, although cmd_free() may be called instead.
6193  */
6194 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6195                                             struct scsi_cmnd *scmd)
6196 {
6197         int idx = hpsa_get_cmd_index(scmd);
6198         struct CommandList *c = h->cmd_pool + idx;
6199
6200         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6201                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6202                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6203                 /* The index value comes from the block layer, so if it's out of
6204                  * bounds, it's probably not our bug.
6205                  */
6206                 BUG();
6207         }
6208
6209         atomic_inc(&c->refcount);
6210         if (unlikely(!hpsa_is_cmd_idle(c))) {
6211                 /*
6212                  * We expect that the SCSI layer will hand us a unique tag
6213                  * value.  Thus, there should never be a collision here between
6214                  * two requests...because if the selected command isn't idle
6215                  * then someone is going to be very disappointed.
6216                  */
6217                 dev_err(&h->pdev->dev,
6218                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6219                         idx);
6220                 if (c->scsi_cmd != NULL)
6221                         scsi_print_command(c->scsi_cmd);
6222                 scsi_print_command(scmd);
6223         }
6224
6225         hpsa_cmd_partial_init(h, idx, c);
6226         return c;
6227 }
6228
6229 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6230 {
6231         /*
6232          * Release our reference to the block.  We don't need to do anything
6233          * else to free it, because it is accessed by index.  (There's no point
6234          * in checking the result of the decrement, since we cannot guarantee
6235          * that there isn't a concurrent abort which is also accessing it.)
6236          */
6237         (void)atomic_dec(&c->refcount);
6238 }
6239
6240 /*
6241  * For operations that cannot sleep, a command block is allocated at init,
6242  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6243  * which ones are free or in use.  Lock must be held when calling this.
6244  * cmd_free() is the complement.
6245  * This function never gives up and returns NULL.  If it hangs,
6246  * another thread must call cmd_free() to free some tags.
6247  */
6248
6249 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6250 {
6251         struct CommandList *c;
6252         int refcount, i;
6253         int offset = 0;
6254
6255         /*
6256          * There is some *extremely* small but non-zero chance that that
6257          * multiple threads could get in here, and one thread could
6258          * be scanning through the list of bits looking for a free
6259          * one, but the free ones are always behind him, and other
6260          * threads sneak in behind him and eat them before he can
6261          * get to them, so that while there is always a free one, a
6262          * very unlucky thread might be starved anyway, never able to
6263          * beat the other threads.  In reality, this happens so
6264          * infrequently as to be indistinguishable from never.
6265          *
6266          * Note that we start allocating commands before the SCSI host structure
6267          * is initialized.  Since the search starts at bit zero, this
6268          * all works, since we have at least one command structure available;
6269          * however, it means that the structures with the low indexes have to be
6270          * reserved for driver-initiated requests, while requests from the block
6271          * layer will use the higher indexes.
6272          */
6273
6274         for (;;) {
6275                 i = find_next_zero_bit(h->cmd_pool_bits,
6276                                         HPSA_NRESERVED_CMDS,
6277                                         offset);
6278                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6279                         offset = 0;
6280                         continue;
6281                 }
6282                 c = h->cmd_pool + i;
6283                 refcount = atomic_inc_return(&c->refcount);
6284                 if (unlikely(refcount > 1)) {
6285                         cmd_free(h, c); /* already in use */
6286                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6287                         continue;
6288                 }
6289                 set_bit(i & (BITS_PER_LONG - 1),
6290                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6291                 break; /* it's ours now. */
6292         }
6293         hpsa_cmd_partial_init(h, i, c);
6294         return c;
6295 }
6296
6297 /*
6298  * This is the complementary operation to cmd_alloc().  Note, however, in some
6299  * corner cases it may also be used to free blocks allocated by
6300  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6301  * the clear-bit is harmless.
6302  */
6303 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6304 {
6305         if (atomic_dec_and_test(&c->refcount)) {
6306                 int i;
6307
6308                 i = c - h->cmd_pool;
6309                 clear_bit(i & (BITS_PER_LONG - 1),
6310                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6311         }
6312 }
6313
6314 #ifdef CONFIG_COMPAT
6315
6316 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6317         void __user *arg)
6318 {
6319         IOCTL32_Command_struct __user *arg32 =
6320             (IOCTL32_Command_struct __user *) arg;
6321         IOCTL_Command_struct arg64;
6322         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6323         int err;
6324         u32 cp;
6325
6326         memset(&arg64, 0, sizeof(arg64));
6327         err = 0;
6328         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6329                            sizeof(arg64.LUN_info));
6330         err |= copy_from_user(&arg64.Request, &arg32->Request,
6331                            sizeof(arg64.Request));
6332         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6333                            sizeof(arg64.error_info));
6334         err |= get_user(arg64.buf_size, &arg32->buf_size);
6335         err |= get_user(cp, &arg32->buf);
6336         arg64.buf = compat_ptr(cp);
6337         err |= copy_to_user(p, &arg64, sizeof(arg64));
6338
6339         if (err)
6340                 return -EFAULT;
6341
6342         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6343         if (err)
6344                 return err;
6345         err |= copy_in_user(&arg32->error_info, &p->error_info,
6346                          sizeof(arg32->error_info));
6347         if (err)
6348                 return -EFAULT;
6349         return err;
6350 }
6351
6352 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6353         int cmd, void __user *arg)
6354 {
6355         BIG_IOCTL32_Command_struct __user *arg32 =
6356             (BIG_IOCTL32_Command_struct __user *) arg;
6357         BIG_IOCTL_Command_struct arg64;
6358         BIG_IOCTL_Command_struct __user *p =
6359             compat_alloc_user_space(sizeof(arg64));
6360         int err;
6361         u32 cp;
6362
6363         memset(&arg64, 0, sizeof(arg64));
6364         err = 0;
6365         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6366                            sizeof(arg64.LUN_info));
6367         err |= copy_from_user(&arg64.Request, &arg32->Request,
6368                            sizeof(arg64.Request));
6369         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6370                            sizeof(arg64.error_info));
6371         err |= get_user(arg64.buf_size, &arg32->buf_size);
6372         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6373         err |= get_user(cp, &arg32->buf);
6374         arg64.buf = compat_ptr(cp);
6375         err |= copy_to_user(p, &arg64, sizeof(arg64));
6376
6377         if (err)
6378                 return -EFAULT;
6379
6380         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6381         if (err)
6382                 return err;
6383         err |= copy_in_user(&arg32->error_info, &p->error_info,
6384                          sizeof(arg32->error_info));
6385         if (err)
6386                 return -EFAULT;
6387         return err;
6388 }
6389
6390 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6391 {
6392         switch (cmd) {
6393         case CCISS_GETPCIINFO:
6394         case CCISS_GETINTINFO:
6395         case CCISS_SETINTINFO:
6396         case CCISS_GETNODENAME:
6397         case CCISS_SETNODENAME:
6398         case CCISS_GETHEARTBEAT:
6399         case CCISS_GETBUSTYPES:
6400         case CCISS_GETFIRMVER:
6401         case CCISS_GETDRIVVER:
6402         case CCISS_REVALIDVOLS:
6403         case CCISS_DEREGDISK:
6404         case CCISS_REGNEWDISK:
6405         case CCISS_REGNEWD:
6406         case CCISS_RESCANDISK:
6407         case CCISS_GETLUNINFO:
6408                 return hpsa_ioctl(dev, cmd, arg);
6409
6410         case CCISS_PASSTHRU32:
6411                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6412         case CCISS_BIG_PASSTHRU32:
6413                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6414
6415         default:
6416                 return -ENOIOCTLCMD;
6417         }
6418 }
6419 #endif
6420
6421 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6422 {
6423         struct hpsa_pci_info pciinfo;
6424
6425         if (!argp)
6426                 return -EINVAL;
6427         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6428         pciinfo.bus = h->pdev->bus->number;
6429         pciinfo.dev_fn = h->pdev->devfn;
6430         pciinfo.board_id = h->board_id;
6431         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6432                 return -EFAULT;
6433         return 0;
6434 }
6435
6436 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6437 {
6438         DriverVer_type DriverVer;
6439         unsigned char vmaj, vmin, vsubmin;
6440         int rc;
6441
6442         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6443                 &vmaj, &vmin, &vsubmin);
6444         if (rc != 3) {
6445                 dev_info(&h->pdev->dev, "driver version string '%s' "
6446                         "unrecognized.", HPSA_DRIVER_VERSION);
6447                 vmaj = 0;
6448                 vmin = 0;
6449                 vsubmin = 0;
6450         }
6451         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6452         if (!argp)
6453                 return -EINVAL;
6454         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6455                 return -EFAULT;
6456         return 0;
6457 }
6458
6459 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6460 {
6461         IOCTL_Command_struct iocommand;
6462         struct CommandList *c;
6463         char *buff = NULL;
6464         u64 temp64;
6465         int rc = 0;
6466
6467         if (!argp)
6468                 return -EINVAL;
6469         if (!capable(CAP_SYS_RAWIO))
6470                 return -EPERM;
6471         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6472                 return -EFAULT;
6473         if ((iocommand.buf_size < 1) &&
6474             (iocommand.Request.Type.Direction != XFER_NONE)) {
6475                 return -EINVAL;
6476         }
6477         if (iocommand.buf_size > 0) {
6478                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6479                 if (buff == NULL)
6480                         return -ENOMEM;
6481                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6482                         /* Copy the data into the buffer we created */
6483                         if (copy_from_user(buff, iocommand.buf,
6484                                 iocommand.buf_size)) {
6485                                 rc = -EFAULT;
6486                                 goto out_kfree;
6487                         }
6488                 } else {
6489                         memset(buff, 0, iocommand.buf_size);
6490                 }
6491         }
6492         c = cmd_alloc(h);
6493
6494         /* Fill in the command type */
6495         c->cmd_type = CMD_IOCTL_PEND;
6496         c->scsi_cmd = SCSI_CMD_BUSY;
6497         /* Fill in Command Header */
6498         c->Header.ReplyQueue = 0; /* unused in simple mode */
6499         if (iocommand.buf_size > 0) {   /* buffer to fill */
6500                 c->Header.SGList = 1;
6501                 c->Header.SGTotal = cpu_to_le16(1);
6502         } else  { /* no buffers to fill */
6503                 c->Header.SGList = 0;
6504                 c->Header.SGTotal = cpu_to_le16(0);
6505         }
6506         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6507
6508         /* Fill in Request block */
6509         memcpy(&c->Request, &iocommand.Request,
6510                 sizeof(c->Request));
6511
6512         /* Fill in the scatter gather information */
6513         if (iocommand.buf_size > 0) {
6514                 temp64 = pci_map_single(h->pdev, buff,
6515                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6516                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6517                         c->SG[0].Addr = cpu_to_le64(0);
6518                         c->SG[0].Len = cpu_to_le32(0);
6519                         rc = -ENOMEM;
6520                         goto out;
6521                 }
6522                 c->SG[0].Addr = cpu_to_le64(temp64);
6523                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6524                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6525         }
6526         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6527                                         NO_TIMEOUT);
6528         if (iocommand.buf_size > 0)
6529                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6530         check_ioctl_unit_attention(h, c);
6531         if (rc) {
6532                 rc = -EIO;
6533                 goto out;
6534         }
6535
6536         /* Copy the error information out */
6537         memcpy(&iocommand.error_info, c->err_info,
6538                 sizeof(iocommand.error_info));
6539         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6540                 rc = -EFAULT;
6541                 goto out;
6542         }
6543         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6544                 iocommand.buf_size > 0) {
6545                 /* Copy the data out of the buffer we created */
6546                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6547                         rc = -EFAULT;
6548                         goto out;
6549                 }
6550         }
6551 out:
6552         cmd_free(h, c);
6553 out_kfree:
6554         kfree(buff);
6555         return rc;
6556 }
6557
6558 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6559 {
6560         BIG_IOCTL_Command_struct *ioc;
6561         struct CommandList *c;
6562         unsigned char **buff = NULL;
6563         int *buff_size = NULL;
6564         u64 temp64;
6565         BYTE sg_used = 0;
6566         int status = 0;
6567         u32 left;
6568         u32 sz;
6569         BYTE __user *data_ptr;
6570
6571         if (!argp)
6572                 return -EINVAL;
6573         if (!capable(CAP_SYS_RAWIO))
6574                 return -EPERM;
6575         ioc = (BIG_IOCTL_Command_struct *)
6576             kmalloc(sizeof(*ioc), GFP_KERNEL);
6577         if (!ioc) {
6578                 status = -ENOMEM;
6579                 goto cleanup1;
6580         }
6581         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6582                 status = -EFAULT;
6583                 goto cleanup1;
6584         }
6585         if ((ioc->buf_size < 1) &&
6586             (ioc->Request.Type.Direction != XFER_NONE)) {
6587                 status = -EINVAL;
6588                 goto cleanup1;
6589         }
6590         /* Check kmalloc limits  using all SGs */
6591         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6592                 status = -EINVAL;
6593                 goto cleanup1;
6594         }
6595         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6596                 status = -EINVAL;
6597                 goto cleanup1;
6598         }
6599         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6600         if (!buff) {
6601                 status = -ENOMEM;
6602                 goto cleanup1;
6603         }
6604         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6605         if (!buff_size) {
6606                 status = -ENOMEM;
6607                 goto cleanup1;
6608         }
6609         left = ioc->buf_size;
6610         data_ptr = ioc->buf;
6611         while (left) {
6612                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6613                 buff_size[sg_used] = sz;
6614                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6615                 if (buff[sg_used] == NULL) {
6616                         status = -ENOMEM;
6617                         goto cleanup1;
6618                 }
6619                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6620                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6621                                 status = -EFAULT;
6622                                 goto cleanup1;
6623                         }
6624                 } else
6625                         memset(buff[sg_used], 0, sz);
6626                 left -= sz;
6627                 data_ptr += sz;
6628                 sg_used++;
6629         }
6630         c = cmd_alloc(h);
6631
6632         c->cmd_type = CMD_IOCTL_PEND;
6633         c->scsi_cmd = SCSI_CMD_BUSY;
6634         c->Header.ReplyQueue = 0;
6635         c->Header.SGList = (u8) sg_used;
6636         c->Header.SGTotal = cpu_to_le16(sg_used);
6637         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6638         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6639         if (ioc->buf_size > 0) {
6640                 int i;
6641                 for (i = 0; i < sg_used; i++) {
6642                         temp64 = pci_map_single(h->pdev, buff[i],
6643                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6644                         if (dma_mapping_error(&h->pdev->dev,
6645                                                         (dma_addr_t) temp64)) {
6646                                 c->SG[i].Addr = cpu_to_le64(0);
6647                                 c->SG[i].Len = cpu_to_le32(0);
6648                                 hpsa_pci_unmap(h->pdev, c, i,
6649                                         PCI_DMA_BIDIRECTIONAL);
6650                                 status = -ENOMEM;
6651                                 goto cleanup0;
6652                         }
6653                         c->SG[i].Addr = cpu_to_le64(temp64);
6654                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6655                         c->SG[i].Ext = cpu_to_le32(0);
6656                 }
6657                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6658         }
6659         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6660                                                 NO_TIMEOUT);
6661         if (sg_used)
6662                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6663         check_ioctl_unit_attention(h, c);
6664         if (status) {
6665                 status = -EIO;
6666                 goto cleanup0;
6667         }
6668
6669         /* Copy the error information out */
6670         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6671         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6672                 status = -EFAULT;
6673                 goto cleanup0;
6674         }
6675         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6676                 int i;
6677
6678                 /* Copy the data out of the buffer we created */
6679                 BYTE __user *ptr = ioc->buf;
6680                 for (i = 0; i < sg_used; i++) {
6681                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6682                                 status = -EFAULT;
6683                                 goto cleanup0;
6684                         }
6685                         ptr += buff_size[i];
6686                 }
6687         }
6688         status = 0;
6689 cleanup0:
6690         cmd_free(h, c);
6691 cleanup1:
6692         if (buff) {
6693                 int i;
6694
6695                 for (i = 0; i < sg_used; i++)
6696                         kfree(buff[i]);
6697                 kfree(buff);
6698         }
6699         kfree(buff_size);
6700         kfree(ioc);
6701         return status;
6702 }
6703
6704 static void check_ioctl_unit_attention(struct ctlr_info *h,
6705         struct CommandList *c)
6706 {
6707         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6708                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6709                 (void) check_for_unit_attention(h, c);
6710 }
6711
6712 /*
6713  * ioctl
6714  */
6715 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6716 {
6717         struct ctlr_info *h;
6718         void __user *argp = (void __user *)arg;
6719         int rc;
6720
6721         h = sdev_to_hba(dev);
6722
6723         switch (cmd) {
6724         case CCISS_DEREGDISK:
6725         case CCISS_REGNEWDISK:
6726         case CCISS_REGNEWD:
6727                 hpsa_scan_start(h->scsi_host);
6728                 return 0;
6729         case CCISS_GETPCIINFO:
6730                 return hpsa_getpciinfo_ioctl(h, argp);
6731         case CCISS_GETDRIVVER:
6732                 return hpsa_getdrivver_ioctl(h, argp);
6733         case CCISS_PASSTHRU:
6734                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6735                         return -EAGAIN;
6736                 rc = hpsa_passthru_ioctl(h, argp);
6737                 atomic_inc(&h->passthru_cmds_avail);
6738                 return rc;
6739         case CCISS_BIG_PASSTHRU:
6740                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6741                         return -EAGAIN;
6742                 rc = hpsa_big_passthru_ioctl(h, argp);
6743                 atomic_inc(&h->passthru_cmds_avail);
6744                 return rc;
6745         default:
6746                 return -ENOTTY;
6747         }
6748 }
6749
6750 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6751                                 u8 reset_type)
6752 {
6753         struct CommandList *c;
6754
6755         c = cmd_alloc(h);
6756
6757         /* fill_cmd can't fail here, no data buffer to map */
6758         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6759                 RAID_CTLR_LUNID, TYPE_MSG);
6760         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6761         c->waiting = NULL;
6762         enqueue_cmd_and_start_io(h, c);
6763         /* Don't wait for completion, the reset won't complete.  Don't free
6764          * the command either.  This is the last command we will send before
6765          * re-initializing everything, so it doesn't matter and won't leak.
6766          */
6767         return;
6768 }
6769
6770 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6771         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6772         int cmd_type)
6773 {
6774         int pci_dir = XFER_NONE;
6775         u64 tag; /* for commands to be aborted */
6776
6777         c->cmd_type = CMD_IOCTL_PEND;
6778         c->scsi_cmd = SCSI_CMD_BUSY;
6779         c->Header.ReplyQueue = 0;
6780         if (buff != NULL && size > 0) {
6781                 c->Header.SGList = 1;
6782                 c->Header.SGTotal = cpu_to_le16(1);
6783         } else {
6784                 c->Header.SGList = 0;
6785                 c->Header.SGTotal = cpu_to_le16(0);
6786         }
6787         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6788
6789         if (cmd_type == TYPE_CMD) {
6790                 switch (cmd) {
6791                 case HPSA_INQUIRY:
6792                         /* are we trying to read a vital product page */
6793                         if (page_code & VPD_PAGE) {
6794                                 c->Request.CDB[1] = 0x01;
6795                                 c->Request.CDB[2] = (page_code & 0xff);
6796                         }
6797                         c->Request.CDBLen = 6;
6798                         c->Request.type_attr_dir =
6799                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6800                         c->Request.Timeout = 0;
6801                         c->Request.CDB[0] = HPSA_INQUIRY;
6802                         c->Request.CDB[4] = size & 0xFF;
6803                         break;
6804                 case HPSA_REPORT_LOG:
6805                 case HPSA_REPORT_PHYS:
6806                         /* Talking to controller so It's a physical command
6807                            mode = 00 target = 0.  Nothing to write.
6808                          */
6809                         c->Request.CDBLen = 12;
6810                         c->Request.type_attr_dir =
6811                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6812                         c->Request.Timeout = 0;
6813                         c->Request.CDB[0] = cmd;
6814                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6815                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6816                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6817                         c->Request.CDB[9] = size & 0xFF;
6818                         break;
6819                 case BMIC_SENSE_DIAG_OPTIONS:
6820                         c->Request.CDBLen = 16;
6821                         c->Request.type_attr_dir =
6822                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6823                         c->Request.Timeout = 0;
6824                         /* Spec says this should be BMIC_WRITE */
6825                         c->Request.CDB[0] = BMIC_READ;
6826                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6827                         break;
6828                 case BMIC_SET_DIAG_OPTIONS:
6829                         c->Request.CDBLen = 16;
6830                         c->Request.type_attr_dir =
6831                                         TYPE_ATTR_DIR(cmd_type,
6832                                                 ATTR_SIMPLE, XFER_WRITE);
6833                         c->Request.Timeout = 0;
6834                         c->Request.CDB[0] = BMIC_WRITE;
6835                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6836                         break;
6837                 case HPSA_CACHE_FLUSH:
6838                         c->Request.CDBLen = 12;
6839                         c->Request.type_attr_dir =
6840                                         TYPE_ATTR_DIR(cmd_type,
6841                                                 ATTR_SIMPLE, XFER_WRITE);
6842                         c->Request.Timeout = 0;
6843                         c->Request.CDB[0] = BMIC_WRITE;
6844                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6845                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6846                         c->Request.CDB[8] = size & 0xFF;
6847                         break;
6848                 case TEST_UNIT_READY:
6849                         c->Request.CDBLen = 6;
6850                         c->Request.type_attr_dir =
6851                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6852                         c->Request.Timeout = 0;
6853                         break;
6854                 case HPSA_GET_RAID_MAP:
6855                         c->Request.CDBLen = 12;
6856                         c->Request.type_attr_dir =
6857                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6858                         c->Request.Timeout = 0;
6859                         c->Request.CDB[0] = HPSA_CISS_READ;
6860                         c->Request.CDB[1] = cmd;
6861                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6862                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6863                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6864                         c->Request.CDB[9] = size & 0xFF;
6865                         break;
6866                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6867                         c->Request.CDBLen = 10;
6868                         c->Request.type_attr_dir =
6869                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6870                         c->Request.Timeout = 0;
6871                         c->Request.CDB[0] = BMIC_READ;
6872                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6873                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6874                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6875                         break;
6876                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6877                         c->Request.CDBLen = 10;
6878                         c->Request.type_attr_dir =
6879                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6880                         c->Request.Timeout = 0;
6881                         c->Request.CDB[0] = BMIC_READ;
6882                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6883                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6884                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6885                         break;
6886                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6887                         c->Request.CDBLen = 10;
6888                         c->Request.type_attr_dir =
6889                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6890                         c->Request.Timeout = 0;
6891                         c->Request.CDB[0] = BMIC_READ;
6892                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6893                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6894                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6895                         break;
6896                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6897                         c->Request.CDBLen = 10;
6898                         c->Request.type_attr_dir =
6899                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6900                         c->Request.Timeout = 0;
6901                         c->Request.CDB[0] = BMIC_READ;
6902                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6903                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6904                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6905                         break;
6906                 case BMIC_IDENTIFY_CONTROLLER:
6907                         c->Request.CDBLen = 10;
6908                         c->Request.type_attr_dir =
6909                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6910                         c->Request.Timeout = 0;
6911                         c->Request.CDB[0] = BMIC_READ;
6912                         c->Request.CDB[1] = 0;
6913                         c->Request.CDB[2] = 0;
6914                         c->Request.CDB[3] = 0;
6915                         c->Request.CDB[4] = 0;
6916                         c->Request.CDB[5] = 0;
6917                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6918                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6919                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6920                         c->Request.CDB[9] = 0;
6921                         break;
6922                 default:
6923                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6924                         BUG();
6925                         return -1;
6926                 }
6927         } else if (cmd_type == TYPE_MSG) {
6928                 switch (cmd) {
6929
6930                 case  HPSA_PHYS_TARGET_RESET:
6931                         c->Request.CDBLen = 16;
6932                         c->Request.type_attr_dir =
6933                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6934                         c->Request.Timeout = 0; /* Don't time out */
6935                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6936                         c->Request.CDB[0] = HPSA_RESET;
6937                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6938                         /* Physical target reset needs no control bytes 4-7*/
6939                         c->Request.CDB[4] = 0x00;
6940                         c->Request.CDB[5] = 0x00;
6941                         c->Request.CDB[6] = 0x00;
6942                         c->Request.CDB[7] = 0x00;
6943                         break;
6944                 case  HPSA_DEVICE_RESET_MSG:
6945                         c->Request.CDBLen = 16;
6946                         c->Request.type_attr_dir =
6947                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6948                         c->Request.Timeout = 0; /* Don't time out */
6949                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6950                         c->Request.CDB[0] =  cmd;
6951                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6952                         /* If bytes 4-7 are zero, it means reset the */
6953                         /* LunID device */
6954                         c->Request.CDB[4] = 0x00;
6955                         c->Request.CDB[5] = 0x00;
6956                         c->Request.CDB[6] = 0x00;
6957                         c->Request.CDB[7] = 0x00;
6958                         break;
6959                 case  HPSA_ABORT_MSG:
6960                         memcpy(&tag, buff, sizeof(tag));
6961                         dev_dbg(&h->pdev->dev,
6962                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6963                                 tag, c->Header.tag);
6964                         c->Request.CDBLen = 16;
6965                         c->Request.type_attr_dir =
6966                                         TYPE_ATTR_DIR(cmd_type,
6967                                                 ATTR_SIMPLE, XFER_WRITE);
6968                         c->Request.Timeout = 0; /* Don't time out */
6969                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6970                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6971                         c->Request.CDB[2] = 0x00; /* reserved */
6972                         c->Request.CDB[3] = 0x00; /* reserved */
6973                         /* Tag to abort goes in CDB[4]-CDB[11] */
6974                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6975                         c->Request.CDB[12] = 0x00; /* reserved */
6976                         c->Request.CDB[13] = 0x00; /* reserved */
6977                         c->Request.CDB[14] = 0x00; /* reserved */
6978                         c->Request.CDB[15] = 0x00; /* reserved */
6979                 break;
6980                 default:
6981                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6982                                 cmd);
6983                         BUG();
6984                 }
6985         } else {
6986                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6987                 BUG();
6988         }
6989
6990         switch (GET_DIR(c->Request.type_attr_dir)) {
6991         case XFER_READ:
6992                 pci_dir = PCI_DMA_FROMDEVICE;
6993                 break;
6994         case XFER_WRITE:
6995                 pci_dir = PCI_DMA_TODEVICE;
6996                 break;
6997         case XFER_NONE:
6998                 pci_dir = PCI_DMA_NONE;
6999                 break;
7000         default:
7001                 pci_dir = PCI_DMA_BIDIRECTIONAL;
7002         }
7003         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7004                 return -1;
7005         return 0;
7006 }
7007
7008 /*
7009  * Map (physical) PCI mem into (virtual) kernel space
7010  */
7011 static void __iomem *remap_pci_mem(ulong base, ulong size)
7012 {
7013         ulong page_base = ((ulong) base) & PAGE_MASK;
7014         ulong page_offs = ((ulong) base) - page_base;
7015         void __iomem *page_remapped = ioremap_nocache(page_base,
7016                 page_offs + size);
7017
7018         return page_remapped ? (page_remapped + page_offs) : NULL;
7019 }
7020
7021 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7022 {
7023         return h->access.command_completed(h, q);
7024 }
7025
7026 static inline bool interrupt_pending(struct ctlr_info *h)
7027 {
7028         return h->access.intr_pending(h);
7029 }
7030
7031 static inline long interrupt_not_for_us(struct ctlr_info *h)
7032 {
7033         return (h->access.intr_pending(h) == 0) ||
7034                 (h->interrupts_enabled == 0);
7035 }
7036
7037 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7038         u32 raw_tag)
7039 {
7040         if (unlikely(tag_index >= h->nr_cmds)) {
7041                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7042                 return 1;
7043         }
7044         return 0;
7045 }
7046
7047 static inline void finish_cmd(struct CommandList *c)
7048 {
7049         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7050         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7051                         || c->cmd_type == CMD_IOACCEL2))
7052                 complete_scsi_command(c);
7053         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7054                 complete(c->waiting);
7055 }
7056
7057 /* process completion of an indexed ("direct lookup") command */
7058 static inline void process_indexed_cmd(struct ctlr_info *h,
7059         u32 raw_tag)
7060 {
7061         u32 tag_index;
7062         struct CommandList *c;
7063
7064         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7065         if (!bad_tag(h, tag_index, raw_tag)) {
7066                 c = h->cmd_pool + tag_index;
7067                 finish_cmd(c);
7068         }
7069 }
7070
7071 /* Some controllers, like p400, will give us one interrupt
7072  * after a soft reset, even if we turned interrupts off.
7073  * Only need to check for this in the hpsa_xxx_discard_completions
7074  * functions.
7075  */
7076 static int ignore_bogus_interrupt(struct ctlr_info *h)
7077 {
7078         if (likely(!reset_devices))
7079                 return 0;
7080
7081         if (likely(h->interrupts_enabled))
7082                 return 0;
7083
7084         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7085                 "(known firmware bug.)  Ignoring.\n");
7086
7087         return 1;
7088 }
7089
7090 /*
7091  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7092  * Relies on (h-q[x] == x) being true for x such that
7093  * 0 <= x < MAX_REPLY_QUEUES.
7094  */
7095 static struct ctlr_info *queue_to_hba(u8 *queue)
7096 {
7097         return container_of((queue - *queue), struct ctlr_info, q[0]);
7098 }
7099
7100 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7101 {
7102         struct ctlr_info *h = queue_to_hba(queue);
7103         u8 q = *(u8 *) queue;
7104         u32 raw_tag;
7105
7106         if (ignore_bogus_interrupt(h))
7107                 return IRQ_NONE;
7108
7109         if (interrupt_not_for_us(h))
7110                 return IRQ_NONE;
7111         h->last_intr_timestamp = get_jiffies_64();
7112         while (interrupt_pending(h)) {
7113                 raw_tag = get_next_completion(h, q);
7114                 while (raw_tag != FIFO_EMPTY)
7115                         raw_tag = next_command(h, q);
7116         }
7117         return IRQ_HANDLED;
7118 }
7119
7120 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7121 {
7122         struct ctlr_info *h = queue_to_hba(queue);
7123         u32 raw_tag;
7124         u8 q = *(u8 *) queue;
7125
7126         if (ignore_bogus_interrupt(h))
7127                 return IRQ_NONE;
7128
7129         h->last_intr_timestamp = get_jiffies_64();
7130         raw_tag = get_next_completion(h, q);
7131         while (raw_tag != FIFO_EMPTY)
7132                 raw_tag = next_command(h, q);
7133         return IRQ_HANDLED;
7134 }
7135
7136 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7137 {
7138         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7139         u32 raw_tag;
7140         u8 q = *(u8 *) queue;
7141
7142         if (interrupt_not_for_us(h))
7143                 return IRQ_NONE;
7144         h->last_intr_timestamp = get_jiffies_64();
7145         while (interrupt_pending(h)) {
7146                 raw_tag = get_next_completion(h, q);
7147                 while (raw_tag != FIFO_EMPTY) {
7148                         process_indexed_cmd(h, raw_tag);
7149                         raw_tag = next_command(h, q);
7150                 }
7151         }
7152         return IRQ_HANDLED;
7153 }
7154
7155 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7156 {
7157         struct ctlr_info *h = queue_to_hba(queue);
7158         u32 raw_tag;
7159         u8 q = *(u8 *) queue;
7160
7161         h->last_intr_timestamp = get_jiffies_64();
7162         raw_tag = get_next_completion(h, q);
7163         while (raw_tag != FIFO_EMPTY) {
7164                 process_indexed_cmd(h, raw_tag);
7165                 raw_tag = next_command(h, q);
7166         }
7167         return IRQ_HANDLED;
7168 }
7169
7170 /* Send a message CDB to the firmware. Careful, this only works
7171  * in simple mode, not performant mode due to the tag lookup.
7172  * We only ever use this immediately after a controller reset.
7173  */
7174 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7175                         unsigned char type)
7176 {
7177         struct Command {
7178                 struct CommandListHeader CommandHeader;
7179                 struct RequestBlock Request;
7180                 struct ErrDescriptor ErrorDescriptor;
7181         };
7182         struct Command *cmd;
7183         static const size_t cmd_sz = sizeof(*cmd) +
7184                                         sizeof(cmd->ErrorDescriptor);
7185         dma_addr_t paddr64;
7186         __le32 paddr32;
7187         u32 tag;
7188         void __iomem *vaddr;
7189         int i, err;
7190
7191         vaddr = pci_ioremap_bar(pdev, 0);
7192         if (vaddr == NULL)
7193                 return -ENOMEM;
7194
7195         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7196          * CCISS commands, so they must be allocated from the lower 4GiB of
7197          * memory.
7198          */
7199         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7200         if (err) {
7201                 iounmap(vaddr);
7202                 return err;
7203         }
7204
7205         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7206         if (cmd == NULL) {
7207                 iounmap(vaddr);
7208                 return -ENOMEM;
7209         }
7210
7211         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7212          * although there's no guarantee, we assume that the address is at
7213          * least 4-byte aligned (most likely, it's page-aligned).
7214          */
7215         paddr32 = cpu_to_le32(paddr64);
7216
7217         cmd->CommandHeader.ReplyQueue = 0;
7218         cmd->CommandHeader.SGList = 0;
7219         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7220         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7221         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7222
7223         cmd->Request.CDBLen = 16;
7224         cmd->Request.type_attr_dir =
7225                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7226         cmd->Request.Timeout = 0; /* Don't time out */
7227         cmd->Request.CDB[0] = opcode;
7228         cmd->Request.CDB[1] = type;
7229         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7230         cmd->ErrorDescriptor.Addr =
7231                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7232         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7233
7234         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7235
7236         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7237                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7238                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7239                         break;
7240                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7241         }
7242
7243         iounmap(vaddr);
7244
7245         /* we leak the DMA buffer here ... no choice since the controller could
7246          *  still complete the command.
7247          */
7248         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7249                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7250                         opcode, type);
7251                 return -ETIMEDOUT;
7252         }
7253
7254         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7255
7256         if (tag & HPSA_ERROR_BIT) {
7257                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7258                         opcode, type);
7259                 return -EIO;
7260         }
7261
7262         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7263                 opcode, type);
7264         return 0;
7265 }
7266
7267 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7268
7269 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7270         void __iomem *vaddr, u32 use_doorbell)
7271 {
7272
7273         if (use_doorbell) {
7274                 /* For everything after the P600, the PCI power state method
7275                  * of resetting the controller doesn't work, so we have this
7276                  * other way using the doorbell register.
7277                  */
7278                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7279                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7280
7281                 /* PMC hardware guys tell us we need a 10 second delay after
7282                  * doorbell reset and before any attempt to talk to the board
7283                  * at all to ensure that this actually works and doesn't fall
7284                  * over in some weird corner cases.
7285                  */
7286                 msleep(10000);
7287         } else { /* Try to do it the PCI power state way */
7288
7289                 /* Quoting from the Open CISS Specification: "The Power
7290                  * Management Control/Status Register (CSR) controls the power
7291                  * state of the device.  The normal operating state is D0,
7292                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7293                  * the controller, place the interface device in D3 then to D0,
7294                  * this causes a secondary PCI reset which will reset the
7295                  * controller." */
7296
7297                 int rc = 0;
7298
7299                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7300
7301                 /* enter the D3hot power management state */
7302                 rc = pci_set_power_state(pdev, PCI_D3hot);
7303                 if (rc)
7304                         return rc;
7305
7306                 msleep(500);
7307
7308                 /* enter the D0 power management state */
7309                 rc = pci_set_power_state(pdev, PCI_D0);
7310                 if (rc)
7311                         return rc;
7312
7313                 /*
7314                  * The P600 requires a small delay when changing states.
7315                  * Otherwise we may think the board did not reset and we bail.
7316                  * This for kdump only and is particular to the P600.
7317                  */
7318                 msleep(500);
7319         }
7320         return 0;
7321 }
7322
7323 static void init_driver_version(char *driver_version, int len)
7324 {
7325         memset(driver_version, 0, len);
7326         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7327 }
7328
7329 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7330 {
7331         char *driver_version;
7332         int i, size = sizeof(cfgtable->driver_version);
7333
7334         driver_version = kmalloc(size, GFP_KERNEL);
7335         if (!driver_version)
7336                 return -ENOMEM;
7337
7338         init_driver_version(driver_version, size);
7339         for (i = 0; i < size; i++)
7340                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7341         kfree(driver_version);
7342         return 0;
7343 }
7344
7345 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7346                                           unsigned char *driver_ver)
7347 {
7348         int i;
7349
7350         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7351                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7352 }
7353
7354 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7355 {
7356
7357         char *driver_ver, *old_driver_ver;
7358         int rc, size = sizeof(cfgtable->driver_version);
7359
7360         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7361         if (!old_driver_ver)
7362                 return -ENOMEM;
7363         driver_ver = old_driver_ver + size;
7364
7365         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7366          * should have been changed, otherwise we know the reset failed.
7367          */
7368         init_driver_version(old_driver_ver, size);
7369         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7370         rc = !memcmp(driver_ver, old_driver_ver, size);
7371         kfree(old_driver_ver);
7372         return rc;
7373 }
7374 /* This does a hard reset of the controller using PCI power management
7375  * states or the using the doorbell register.
7376  */
7377 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7378 {
7379         u64 cfg_offset;
7380         u32 cfg_base_addr;
7381         u64 cfg_base_addr_index;
7382         void __iomem *vaddr;
7383         unsigned long paddr;
7384         u32 misc_fw_support;
7385         int rc;
7386         struct CfgTable __iomem *cfgtable;
7387         u32 use_doorbell;
7388         u16 command_register;
7389
7390         /* For controllers as old as the P600, this is very nearly
7391          * the same thing as
7392          *
7393          * pci_save_state(pci_dev);
7394          * pci_set_power_state(pci_dev, PCI_D3hot);
7395          * pci_set_power_state(pci_dev, PCI_D0);
7396          * pci_restore_state(pci_dev);
7397          *
7398          * For controllers newer than the P600, the pci power state
7399          * method of resetting doesn't work so we have another way
7400          * using the doorbell register.
7401          */
7402
7403         if (!ctlr_is_resettable(board_id)) {
7404                 dev_warn(&pdev->dev, "Controller not resettable\n");
7405                 return -ENODEV;
7406         }
7407
7408         /* if controller is soft- but not hard resettable... */
7409         if (!ctlr_is_hard_resettable(board_id))
7410                 return -ENOTSUPP; /* try soft reset later. */
7411
7412         /* Save the PCI command register */
7413         pci_read_config_word(pdev, 4, &command_register);
7414         pci_save_state(pdev);
7415
7416         /* find the first memory BAR, so we can find the cfg table */
7417         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7418         if (rc)
7419                 return rc;
7420         vaddr = remap_pci_mem(paddr, 0x250);
7421         if (!vaddr)
7422                 return -ENOMEM;
7423
7424         /* find cfgtable in order to check if reset via doorbell is supported */
7425         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7426                                         &cfg_base_addr_index, &cfg_offset);
7427         if (rc)
7428                 goto unmap_vaddr;
7429         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7430                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7431         if (!cfgtable) {
7432                 rc = -ENOMEM;
7433                 goto unmap_vaddr;
7434         }
7435         rc = write_driver_ver_to_cfgtable(cfgtable);
7436         if (rc)
7437                 goto unmap_cfgtable;
7438
7439         /* If reset via doorbell register is supported, use that.
7440          * There are two such methods.  Favor the newest method.
7441          */
7442         misc_fw_support = readl(&cfgtable->misc_fw_support);
7443         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7444         if (use_doorbell) {
7445                 use_doorbell = DOORBELL_CTLR_RESET2;
7446         } else {
7447                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7448                 if (use_doorbell) {
7449                         dev_warn(&pdev->dev,
7450                                 "Soft reset not supported. Firmware update is required.\n");
7451                         rc = -ENOTSUPP; /* try soft reset */
7452                         goto unmap_cfgtable;
7453                 }
7454         }
7455
7456         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7457         if (rc)
7458                 goto unmap_cfgtable;
7459
7460         pci_restore_state(pdev);
7461         pci_write_config_word(pdev, 4, command_register);
7462
7463         /* Some devices (notably the HP Smart Array 5i Controller)
7464            need a little pause here */
7465         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7466
7467         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7468         if (rc) {
7469                 dev_warn(&pdev->dev,
7470                         "Failed waiting for board to become ready after hard reset\n");
7471                 goto unmap_cfgtable;
7472         }
7473
7474         rc = controller_reset_failed(vaddr);
7475         if (rc < 0)
7476                 goto unmap_cfgtable;
7477         if (rc) {
7478                 dev_warn(&pdev->dev, "Unable to successfully reset "
7479                         "controller. Will try soft reset.\n");
7480                 rc = -ENOTSUPP;
7481         } else {
7482                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7483         }
7484
7485 unmap_cfgtable:
7486         iounmap(cfgtable);
7487
7488 unmap_vaddr:
7489         iounmap(vaddr);
7490         return rc;
7491 }
7492
7493 /*
7494  *  We cannot read the structure directly, for portability we must use
7495  *   the io functions.
7496  *   This is for debug only.
7497  */
7498 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7499 {
7500 #ifdef HPSA_DEBUG
7501         int i;
7502         char temp_name[17];
7503
7504         dev_info(dev, "Controller Configuration information\n");
7505         dev_info(dev, "------------------------------------\n");
7506         for (i = 0; i < 4; i++)
7507                 temp_name[i] = readb(&(tb->Signature[i]));
7508         temp_name[4] = '\0';
7509         dev_info(dev, "   Signature = %s\n", temp_name);
7510         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7511         dev_info(dev, "   Transport methods supported = 0x%x\n",
7512                readl(&(tb->TransportSupport)));
7513         dev_info(dev, "   Transport methods active = 0x%x\n",
7514                readl(&(tb->TransportActive)));
7515         dev_info(dev, "   Requested transport Method = 0x%x\n",
7516                readl(&(tb->HostWrite.TransportRequest)));
7517         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7518                readl(&(tb->HostWrite.CoalIntDelay)));
7519         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7520                readl(&(tb->HostWrite.CoalIntCount)));
7521         dev_info(dev, "   Max outstanding commands = %d\n",
7522                readl(&(tb->CmdsOutMax)));
7523         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7524         for (i = 0; i < 16; i++)
7525                 temp_name[i] = readb(&(tb->ServerName[i]));
7526         temp_name[16] = '\0';
7527         dev_info(dev, "   Server Name = %s\n", temp_name);
7528         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7529                 readl(&(tb->HeartBeat)));
7530 #endif                          /* HPSA_DEBUG */
7531 }
7532
7533 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7534 {
7535         int i, offset, mem_type, bar_type;
7536
7537         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7538                 return 0;
7539         offset = 0;
7540         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7541                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7542                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7543                         offset += 4;
7544                 else {
7545                         mem_type = pci_resource_flags(pdev, i) &
7546                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7547                         switch (mem_type) {
7548                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7549                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7550                                 offset += 4;    /* 32 bit */
7551                                 break;
7552                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7553                                 offset += 8;
7554                                 break;
7555                         default:        /* reserved in PCI 2.2 */
7556                                 dev_warn(&pdev->dev,
7557                                        "base address is invalid\n");
7558                                 return -1;
7559                                 break;
7560                         }
7561                 }
7562                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7563                         return i + 1;
7564         }
7565         return -1;
7566 }
7567
7568 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7569 {
7570         if (h->msix_vector) {
7571                 if (h->pdev->msix_enabled)
7572                         pci_disable_msix(h->pdev);
7573                 h->msix_vector = 0;
7574         } else if (h->msi_vector) {
7575                 if (h->pdev->msi_enabled)
7576                         pci_disable_msi(h->pdev);
7577                 h->msi_vector = 0;
7578         }
7579 }
7580
7581 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7582  * controllers that are capable. If not, we use legacy INTx mode.
7583  */
7584 static void hpsa_interrupt_mode(struct ctlr_info *h)
7585 {
7586 #ifdef CONFIG_PCI_MSI
7587         int err, i;
7588         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7589
7590         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7591                 hpsa_msix_entries[i].vector = 0;
7592                 hpsa_msix_entries[i].entry = i;
7593         }
7594
7595         /* Some boards advertise MSI but don't really support it */
7596         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7597             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7598                 goto default_int_mode;
7599         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7600                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7601                 h->msix_vector = MAX_REPLY_QUEUES;
7602                 if (h->msix_vector > num_online_cpus())
7603                         h->msix_vector = num_online_cpus();
7604                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7605                                             1, h->msix_vector);
7606                 if (err < 0) {
7607                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7608                         h->msix_vector = 0;
7609                         goto single_msi_mode;
7610                 } else if (err < h->msix_vector) {
7611                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7612                                "available\n", err);
7613                 }
7614                 h->msix_vector = err;
7615                 for (i = 0; i < h->msix_vector; i++)
7616                         h->intr[i] = hpsa_msix_entries[i].vector;
7617                 return;
7618         }
7619 single_msi_mode:
7620         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7621                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7622                 if (!pci_enable_msi(h->pdev))
7623                         h->msi_vector = 1;
7624                 else
7625                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7626         }
7627 default_int_mode:
7628 #endif                          /* CONFIG_PCI_MSI */
7629         /* if we get here we're going to use the default interrupt mode */
7630         h->intr[h->intr_mode] = h->pdev->irq;
7631 }
7632
7633 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7634 {
7635         int i;
7636         u32 subsystem_vendor_id, subsystem_device_id;
7637
7638         subsystem_vendor_id = pdev->subsystem_vendor;
7639         subsystem_device_id = pdev->subsystem_device;
7640         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7641                     subsystem_vendor_id;
7642
7643         for (i = 0; i < ARRAY_SIZE(products); i++)
7644                 if (*board_id == products[i].board_id)
7645                         return i;
7646
7647         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7648                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7649                 !hpsa_allow_any) {
7650                 dev_warn(&pdev->dev, "unrecognized board ID: "
7651                         "0x%08x, ignoring.\n", *board_id);
7652                         return -ENODEV;
7653         }
7654         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7655 }
7656
7657 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7658                                     unsigned long *memory_bar)
7659 {
7660         int i;
7661
7662         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7663                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7664                         /* addressing mode bits already removed */
7665                         *memory_bar = pci_resource_start(pdev, i);
7666                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7667                                 *memory_bar);
7668                         return 0;
7669                 }
7670         dev_warn(&pdev->dev, "no memory BAR found\n");
7671         return -ENODEV;
7672 }
7673
7674 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7675                                      int wait_for_ready)
7676 {
7677         int i, iterations;
7678         u32 scratchpad;
7679         if (wait_for_ready)
7680                 iterations = HPSA_BOARD_READY_ITERATIONS;
7681         else
7682                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7683
7684         for (i = 0; i < iterations; i++) {
7685                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7686                 if (wait_for_ready) {
7687                         if (scratchpad == HPSA_FIRMWARE_READY)
7688                                 return 0;
7689                 } else {
7690                         if (scratchpad != HPSA_FIRMWARE_READY)
7691                                 return 0;
7692                 }
7693                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7694         }
7695         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7696         return -ENODEV;
7697 }
7698
7699 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7700                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7701                                u64 *cfg_offset)
7702 {
7703         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7704         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7705         *cfg_base_addr &= (u32) 0x0000ffff;
7706         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7707         if (*cfg_base_addr_index == -1) {
7708                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7709                 return -ENODEV;
7710         }
7711         return 0;
7712 }
7713
7714 static void hpsa_free_cfgtables(struct ctlr_info *h)
7715 {
7716         if (h->transtable) {
7717                 iounmap(h->transtable);
7718                 h->transtable = NULL;
7719         }
7720         if (h->cfgtable) {
7721                 iounmap(h->cfgtable);
7722                 h->cfgtable = NULL;
7723         }
7724 }
7725
7726 /* Find and map CISS config table and transfer table
7727 + * several items must be unmapped (freed) later
7728 + * */
7729 static int hpsa_find_cfgtables(struct ctlr_info *h)
7730 {
7731         u64 cfg_offset;
7732         u32 cfg_base_addr;
7733         u64 cfg_base_addr_index;
7734         u32 trans_offset;
7735         int rc;
7736
7737         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7738                 &cfg_base_addr_index, &cfg_offset);
7739         if (rc)
7740                 return rc;
7741         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7742                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7743         if (!h->cfgtable) {
7744                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7745                 return -ENOMEM;
7746         }
7747         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7748         if (rc)
7749                 return rc;
7750         /* Find performant mode table. */
7751         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7752         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7753                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7754                                 sizeof(*h->transtable));
7755         if (!h->transtable) {
7756                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7757                 hpsa_free_cfgtables(h);
7758                 return -ENOMEM;
7759         }
7760         return 0;
7761 }
7762
7763 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7764 {
7765 #define MIN_MAX_COMMANDS 16
7766         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7767
7768         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7769
7770         /* Limit commands in memory limited kdump scenario. */
7771         if (reset_devices && h->max_commands > 32)
7772                 h->max_commands = 32;
7773
7774         if (h->max_commands < MIN_MAX_COMMANDS) {
7775                 dev_warn(&h->pdev->dev,
7776                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7777                         h->max_commands,
7778                         MIN_MAX_COMMANDS);
7779                 h->max_commands = MIN_MAX_COMMANDS;
7780         }
7781 }
7782
7783 /* If the controller reports that the total max sg entries is greater than 512,
7784  * then we know that chained SG blocks work.  (Original smart arrays did not
7785  * support chained SG blocks and would return zero for max sg entries.)
7786  */
7787 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7788 {
7789         return h->maxsgentries > 512;
7790 }
7791
7792 /* Interrogate the hardware for some limits:
7793  * max commands, max SG elements without chaining, and with chaining,
7794  * SG chain block size, etc.
7795  */
7796 static void hpsa_find_board_params(struct ctlr_info *h)
7797 {
7798         hpsa_get_max_perf_mode_cmds(h);
7799         h->nr_cmds = h->max_commands;
7800         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7801         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7802         if (hpsa_supports_chained_sg_blocks(h)) {
7803                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7804                 h->max_cmd_sg_entries = 32;
7805                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7806                 h->maxsgentries--; /* save one for chain pointer */
7807         } else {
7808                 /*
7809                  * Original smart arrays supported at most 31 s/g entries
7810                  * embedded inline in the command (trying to use more
7811                  * would lock up the controller)
7812                  */
7813                 h->max_cmd_sg_entries = 31;
7814                 h->maxsgentries = 31; /* default to traditional values */
7815                 h->chainsize = 0;
7816         }
7817
7818         /* Find out what task management functions are supported and cache */
7819         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7820         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7821                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7822         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7823                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7824         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7825                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7826 }
7827
7828 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7829 {
7830         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7831                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7832                 return false;
7833         }
7834         return true;
7835 }
7836
7837 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7838 {
7839         u32 driver_support;
7840
7841         driver_support = readl(&(h->cfgtable->driver_support));
7842         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7843 #ifdef CONFIG_X86
7844         driver_support |= ENABLE_SCSI_PREFETCH;
7845 #endif
7846         driver_support |= ENABLE_UNIT_ATTN;
7847         writel(driver_support, &(h->cfgtable->driver_support));
7848 }
7849
7850 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7851  * in a prefetch beyond physical memory.
7852  */
7853 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7854 {
7855         u32 dma_prefetch;
7856
7857         if (h->board_id != 0x3225103C)
7858                 return;
7859         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7860         dma_prefetch |= 0x8000;
7861         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7862 }
7863
7864 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7865 {
7866         int i;
7867         u32 doorbell_value;
7868         unsigned long flags;
7869         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7870         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7871                 spin_lock_irqsave(&h->lock, flags);
7872                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7873                 spin_unlock_irqrestore(&h->lock, flags);
7874                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7875                         goto done;
7876                 /* delay and try again */
7877                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7878         }
7879         return -ENODEV;
7880 done:
7881         return 0;
7882 }
7883
7884 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7885 {
7886         int i;
7887         u32 doorbell_value;
7888         unsigned long flags;
7889
7890         /* under certain very rare conditions, this can take awhile.
7891          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7892          * as we enter this code.)
7893          */
7894         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7895                 if (h->remove_in_progress)
7896                         goto done;
7897                 spin_lock_irqsave(&h->lock, flags);
7898                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7899                 spin_unlock_irqrestore(&h->lock, flags);
7900                 if (!(doorbell_value & CFGTBL_ChangeReq))
7901                         goto done;
7902                 /* delay and try again */
7903                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7904         }
7905         return -ENODEV;
7906 done:
7907         return 0;
7908 }
7909
7910 /* return -ENODEV or other reason on error, 0 on success */
7911 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7912 {
7913         u32 trans_support;
7914
7915         trans_support = readl(&(h->cfgtable->TransportSupport));
7916         if (!(trans_support & SIMPLE_MODE))
7917                 return -ENOTSUPP;
7918
7919         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7920
7921         /* Update the field, and then ring the doorbell */
7922         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7923         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7924         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7925         if (hpsa_wait_for_mode_change_ack(h))
7926                 goto error;
7927         print_cfg_table(&h->pdev->dev, h->cfgtable);
7928         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7929                 goto error;
7930         h->transMethod = CFGTBL_Trans_Simple;
7931         return 0;
7932 error:
7933         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7934         return -ENODEV;
7935 }
7936
7937 /* free items allocated or mapped by hpsa_pci_init */
7938 static void hpsa_free_pci_init(struct ctlr_info *h)
7939 {
7940         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7941         iounmap(h->vaddr);                      /* pci_init 3 */
7942         h->vaddr = NULL;
7943         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7944         /*
7945          * call pci_disable_device before pci_release_regions per
7946          * Documentation/PCI/pci.txt
7947          */
7948         pci_disable_device(h->pdev);            /* pci_init 1 */
7949         pci_release_regions(h->pdev);           /* pci_init 2 */
7950 }
7951
7952 /* several items must be freed later */
7953 static int hpsa_pci_init(struct ctlr_info *h)
7954 {
7955         int prod_index, err;
7956
7957         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7958         if (prod_index < 0)
7959                 return prod_index;
7960         h->product_name = products[prod_index].product_name;
7961         h->access = *(products[prod_index].access);
7962
7963         h->needs_abort_tags_swizzled =
7964                 ctlr_needs_abort_tags_swizzled(h->board_id);
7965
7966         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7967                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7968
7969         err = pci_enable_device(h->pdev);
7970         if (err) {
7971                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7972                 pci_disable_device(h->pdev);
7973                 return err;
7974         }
7975
7976         err = pci_request_regions(h->pdev, HPSA);
7977         if (err) {
7978                 dev_err(&h->pdev->dev,
7979                         "failed to obtain PCI resources\n");
7980                 pci_disable_device(h->pdev);
7981                 return err;
7982         }
7983
7984         pci_set_master(h->pdev);
7985
7986         hpsa_interrupt_mode(h);
7987         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7988         if (err)
7989                 goto clean2;    /* intmode+region, pci */
7990         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7991         if (!h->vaddr) {
7992                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7993                 err = -ENOMEM;
7994                 goto clean2;    /* intmode+region, pci */
7995         }
7996         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7997         if (err)
7998                 goto clean3;    /* vaddr, intmode+region, pci */
7999         err = hpsa_find_cfgtables(h);
8000         if (err)
8001                 goto clean3;    /* vaddr, intmode+region, pci */
8002         hpsa_find_board_params(h);
8003
8004         if (!hpsa_CISS_signature_present(h)) {
8005                 err = -ENODEV;
8006                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8007         }
8008         hpsa_set_driver_support_bits(h);
8009         hpsa_p600_dma_prefetch_quirk(h);
8010         err = hpsa_enter_simple_mode(h);
8011         if (err)
8012                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8013         return 0;
8014
8015 clean4: /* cfgtables, vaddr, intmode+region, pci */
8016         hpsa_free_cfgtables(h);
8017 clean3: /* vaddr, intmode+region, pci */
8018         iounmap(h->vaddr);
8019         h->vaddr = NULL;
8020 clean2: /* intmode+region, pci */
8021         hpsa_disable_interrupt_mode(h);
8022         /*
8023          * call pci_disable_device before pci_release_regions per
8024          * Documentation/PCI/pci.txt
8025          */
8026         pci_disable_device(h->pdev);
8027         pci_release_regions(h->pdev);
8028         return err;
8029 }
8030
8031 static void hpsa_hba_inquiry(struct ctlr_info *h)
8032 {
8033         int rc;
8034
8035 #define HBA_INQUIRY_BYTE_COUNT 64
8036         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8037         if (!h->hba_inquiry_data)
8038                 return;
8039         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8040                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8041         if (rc != 0) {
8042                 kfree(h->hba_inquiry_data);
8043                 h->hba_inquiry_data = NULL;
8044         }
8045 }
8046
8047 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8048 {
8049         int rc, i;
8050         void __iomem *vaddr;
8051
8052         if (!reset_devices)
8053                 return 0;
8054
8055         /* kdump kernel is loading, we don't know in which state is
8056          * the pci interface. The dev->enable_cnt is equal zero
8057          * so we call enable+disable, wait a while and switch it on.
8058          */
8059         rc = pci_enable_device(pdev);
8060         if (rc) {
8061                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8062                 return -ENODEV;
8063         }
8064         pci_disable_device(pdev);
8065         msleep(260);                    /* a randomly chosen number */
8066         rc = pci_enable_device(pdev);
8067         if (rc) {
8068                 dev_warn(&pdev->dev, "failed to enable device.\n");
8069                 return -ENODEV;
8070         }
8071
8072         pci_set_master(pdev);
8073
8074         vaddr = pci_ioremap_bar(pdev, 0);
8075         if (vaddr == NULL) {
8076                 rc = -ENOMEM;
8077                 goto out_disable;
8078         }
8079         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8080         iounmap(vaddr);
8081
8082         /* Reset the controller with a PCI power-cycle or via doorbell */
8083         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8084
8085         /* -ENOTSUPP here means we cannot reset the controller
8086          * but it's already (and still) up and running in
8087          * "performant mode".  Or, it might be 640x, which can't reset
8088          * due to concerns about shared bbwc between 6402/6404 pair.
8089          */
8090         if (rc)
8091                 goto out_disable;
8092
8093         /* Now try to get the controller to respond to a no-op */
8094         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8095         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8096                 if (hpsa_noop(pdev) == 0)
8097                         break;
8098                 else
8099                         dev_warn(&pdev->dev, "no-op failed%s\n",
8100                                         (i < 11 ? "; re-trying" : ""));
8101         }
8102
8103 out_disable:
8104
8105         pci_disable_device(pdev);
8106         return rc;
8107 }
8108
8109 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8110 {
8111         kfree(h->cmd_pool_bits);
8112         h->cmd_pool_bits = NULL;
8113         if (h->cmd_pool) {
8114                 pci_free_consistent(h->pdev,
8115                                 h->nr_cmds * sizeof(struct CommandList),
8116                                 h->cmd_pool,
8117                                 h->cmd_pool_dhandle);
8118                 h->cmd_pool = NULL;
8119                 h->cmd_pool_dhandle = 0;
8120         }
8121         if (h->errinfo_pool) {
8122                 pci_free_consistent(h->pdev,
8123                                 h->nr_cmds * sizeof(struct ErrorInfo),
8124                                 h->errinfo_pool,
8125                                 h->errinfo_pool_dhandle);
8126                 h->errinfo_pool = NULL;
8127                 h->errinfo_pool_dhandle = 0;
8128         }
8129 }
8130
8131 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8132 {
8133         h->cmd_pool_bits = kzalloc(
8134                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8135                 sizeof(unsigned long), GFP_KERNEL);
8136         h->cmd_pool = pci_alloc_consistent(h->pdev,
8137                     h->nr_cmds * sizeof(*h->cmd_pool),
8138                     &(h->cmd_pool_dhandle));
8139         h->errinfo_pool = pci_alloc_consistent(h->pdev,
8140                     h->nr_cmds * sizeof(*h->errinfo_pool),
8141                     &(h->errinfo_pool_dhandle));
8142         if ((h->cmd_pool_bits == NULL)
8143             || (h->cmd_pool == NULL)
8144             || (h->errinfo_pool == NULL)) {
8145                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8146                 goto clean_up;
8147         }
8148         hpsa_preinitialize_commands(h);
8149         return 0;
8150 clean_up:
8151         hpsa_free_cmd_pool(h);
8152         return -ENOMEM;
8153 }
8154
8155 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
8156 {
8157         int i, cpu;
8158
8159         cpu = cpumask_first(cpu_online_mask);
8160         for (i = 0; i < h->msix_vector; i++) {
8161                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
8162                 cpu = cpumask_next(cpu, cpu_online_mask);
8163         }
8164 }
8165
8166 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8167 static void hpsa_free_irqs(struct ctlr_info *h)
8168 {
8169         int i;
8170
8171         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
8172                 /* Single reply queue, only one irq to free */
8173                 i = h->intr_mode;
8174                 irq_set_affinity_hint(h->intr[i], NULL);
8175                 free_irq(h->intr[i], &h->q[i]);
8176                 h->q[i] = 0;
8177                 return;
8178         }
8179
8180         for (i = 0; i < h->msix_vector; i++) {
8181                 irq_set_affinity_hint(h->intr[i], NULL);
8182                 free_irq(h->intr[i], &h->q[i]);
8183                 h->q[i] = 0;
8184         }
8185         for (; i < MAX_REPLY_QUEUES; i++)
8186                 h->q[i] = 0;
8187 }
8188
8189 /* returns 0 on success; cleans up and returns -Enn on error */
8190 static int hpsa_request_irqs(struct ctlr_info *h,
8191         irqreturn_t (*msixhandler)(int, void *),
8192         irqreturn_t (*intxhandler)(int, void *))
8193 {
8194         int rc, i;
8195
8196         /*
8197          * initialize h->q[x] = x so that interrupt handlers know which
8198          * queue to process.
8199          */
8200         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8201                 h->q[i] = (u8) i;
8202
8203         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8204                 /* If performant mode and MSI-X, use multiple reply queues */
8205                 for (i = 0; i < h->msix_vector; i++) {
8206                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8207                         rc = request_irq(h->intr[i], msixhandler,
8208                                         0, h->intrname[i],
8209                                         &h->q[i]);
8210                         if (rc) {
8211                                 int j;
8212
8213                                 dev_err(&h->pdev->dev,
8214                                         "failed to get irq %d for %s\n",
8215                                        h->intr[i], h->devname);
8216                                 for (j = 0; j < i; j++) {
8217                                         free_irq(h->intr[j], &h->q[j]);
8218                                         h->q[j] = 0;
8219                                 }
8220                                 for (; j < MAX_REPLY_QUEUES; j++)
8221                                         h->q[j] = 0;
8222                                 return rc;
8223                         }
8224                 }
8225                 hpsa_irq_affinity_hints(h);
8226         } else {
8227                 /* Use single reply pool */
8228                 if (h->msix_vector > 0 || h->msi_vector) {
8229                         if (h->msix_vector)
8230                                 sprintf(h->intrname[h->intr_mode],
8231                                         "%s-msix", h->devname);
8232                         else
8233                                 sprintf(h->intrname[h->intr_mode],
8234                                         "%s-msi", h->devname);
8235                         rc = request_irq(h->intr[h->intr_mode],
8236                                 msixhandler, 0,
8237                                 h->intrname[h->intr_mode],
8238                                 &h->q[h->intr_mode]);
8239                 } else {
8240                         sprintf(h->intrname[h->intr_mode],
8241                                 "%s-intx", h->devname);
8242                         rc = request_irq(h->intr[h->intr_mode],
8243                                 intxhandler, IRQF_SHARED,
8244                                 h->intrname[h->intr_mode],
8245                                 &h->q[h->intr_mode]);
8246                 }
8247                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8248         }
8249         if (rc) {
8250                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8251                        h->intr[h->intr_mode], h->devname);
8252                 hpsa_free_irqs(h);
8253                 return -ENODEV;
8254         }
8255         return 0;
8256 }
8257
8258 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8259 {
8260         int rc;
8261         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8262
8263         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8264         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8265         if (rc) {
8266                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8267                 return rc;
8268         }
8269
8270         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8271         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8272         if (rc) {
8273                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8274                         "after soft reset.\n");
8275                 return rc;
8276         }
8277
8278         return 0;
8279 }
8280
8281 static void hpsa_free_reply_queues(struct ctlr_info *h)
8282 {
8283         int i;
8284
8285         for (i = 0; i < h->nreply_queues; i++) {
8286                 if (!h->reply_queue[i].head)
8287                         continue;
8288                 pci_free_consistent(h->pdev,
8289                                         h->reply_queue_size,
8290                                         h->reply_queue[i].head,
8291                                         h->reply_queue[i].busaddr);
8292                 h->reply_queue[i].head = NULL;
8293                 h->reply_queue[i].busaddr = 0;
8294         }
8295         h->reply_queue_size = 0;
8296 }
8297
8298 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8299 {
8300         hpsa_free_performant_mode(h);           /* init_one 7 */
8301         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8302         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8303         hpsa_free_irqs(h);                      /* init_one 4 */
8304         scsi_host_put(h->scsi_host);            /* init_one 3 */
8305         h->scsi_host = NULL;                    /* init_one 3 */
8306         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8307         free_percpu(h->lockup_detected);        /* init_one 2 */
8308         h->lockup_detected = NULL;              /* init_one 2 */
8309         if (h->resubmit_wq) {
8310                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8311                 h->resubmit_wq = NULL;
8312         }
8313         if (h->rescan_ctlr_wq) {
8314                 destroy_workqueue(h->rescan_ctlr_wq);
8315                 h->rescan_ctlr_wq = NULL;
8316         }
8317         kfree(h);                               /* init_one 1 */
8318 }
8319
8320 /* Called when controller lockup detected. */
8321 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8322 {
8323         int i, refcount;
8324         struct CommandList *c;
8325         int failcount = 0;
8326
8327         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8328         for (i = 0; i < h->nr_cmds; i++) {
8329                 c = h->cmd_pool + i;
8330                 refcount = atomic_inc_return(&c->refcount);
8331                 if (refcount > 1) {
8332                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8333                         finish_cmd(c);
8334                         atomic_dec(&h->commands_outstanding);
8335                         failcount++;
8336                 }
8337                 cmd_free(h, c);
8338         }
8339         dev_warn(&h->pdev->dev,
8340                 "failed %d commands in fail_all\n", failcount);
8341 }
8342
8343 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8344 {
8345         int cpu;
8346
8347         for_each_online_cpu(cpu) {
8348                 u32 *lockup_detected;
8349                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8350                 *lockup_detected = value;
8351         }
8352         wmb(); /* be sure the per-cpu variables are out to memory */
8353 }
8354
8355 static void controller_lockup_detected(struct ctlr_info *h)
8356 {
8357         unsigned long flags;
8358         u32 lockup_detected;
8359
8360         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8361         spin_lock_irqsave(&h->lock, flags);
8362         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8363         if (!lockup_detected) {
8364                 /* no heartbeat, but controller gave us a zero. */
8365                 dev_warn(&h->pdev->dev,
8366                         "lockup detected after %d but scratchpad register is zero\n",
8367                         h->heartbeat_sample_interval / HZ);
8368                 lockup_detected = 0xffffffff;
8369         }
8370         set_lockup_detected_for_all_cpus(h, lockup_detected);
8371         spin_unlock_irqrestore(&h->lock, flags);
8372         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8373                         lockup_detected, h->heartbeat_sample_interval / HZ);
8374         pci_disable_device(h->pdev);
8375         fail_all_outstanding_cmds(h);
8376 }
8377
8378 static int detect_controller_lockup(struct ctlr_info *h)
8379 {
8380         u64 now;
8381         u32 heartbeat;
8382         unsigned long flags;
8383
8384         now = get_jiffies_64();
8385         /* If we've received an interrupt recently, we're ok. */
8386         if (time_after64(h->last_intr_timestamp +
8387                                 (h->heartbeat_sample_interval), now))
8388                 return false;
8389
8390         /*
8391          * If we've already checked the heartbeat recently, we're ok.
8392          * This could happen if someone sends us a signal. We
8393          * otherwise don't care about signals in this thread.
8394          */
8395         if (time_after64(h->last_heartbeat_timestamp +
8396                                 (h->heartbeat_sample_interval), now))
8397                 return false;
8398
8399         /* If heartbeat has not changed since we last looked, we're not ok. */
8400         spin_lock_irqsave(&h->lock, flags);
8401         heartbeat = readl(&h->cfgtable->HeartBeat);
8402         spin_unlock_irqrestore(&h->lock, flags);
8403         if (h->last_heartbeat == heartbeat) {
8404                 controller_lockup_detected(h);
8405                 return true;
8406         }
8407
8408         /* We're ok. */
8409         h->last_heartbeat = heartbeat;
8410         h->last_heartbeat_timestamp = now;
8411         return false;
8412 }
8413
8414 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8415 {
8416         int i;
8417         char *event_type;
8418
8419         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8420                 return;
8421
8422         /* Ask the controller to clear the events we're handling. */
8423         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8424                         | CFGTBL_Trans_io_accel2)) &&
8425                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8426                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8427
8428                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8429                         event_type = "state change";
8430                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8431                         event_type = "configuration change";
8432                 /* Stop sending new RAID offload reqs via the IO accelerator */
8433                 scsi_block_requests(h->scsi_host);
8434                 for (i = 0; i < h->ndevices; i++) {
8435                         h->dev[i]->offload_enabled = 0;
8436                         h->dev[i]->offload_to_be_enabled = 0;
8437                 }
8438                 hpsa_drain_accel_commands(h);
8439                 /* Set 'accelerator path config change' bit */
8440                 dev_warn(&h->pdev->dev,
8441                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8442                         h->events, event_type);
8443                 writel(h->events, &(h->cfgtable->clear_event_notify));
8444                 /* Set the "clear event notify field update" bit 6 */
8445                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8446                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8447                 hpsa_wait_for_clear_event_notify_ack(h);
8448                 scsi_unblock_requests(h->scsi_host);
8449         } else {
8450                 /* Acknowledge controller notification events. */
8451                 writel(h->events, &(h->cfgtable->clear_event_notify));
8452                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8453                 hpsa_wait_for_clear_event_notify_ack(h);
8454 #if 0
8455                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8456                 hpsa_wait_for_mode_change_ack(h);
8457 #endif
8458         }
8459         return;
8460 }
8461
8462 /* Check a register on the controller to see if there are configuration
8463  * changes (added/changed/removed logical drives, etc.) which mean that
8464  * we should rescan the controller for devices.
8465  * Also check flag for driver-initiated rescan.
8466  */
8467 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8468 {
8469         if (h->drv_req_rescan) {
8470                 h->drv_req_rescan = 0;
8471                 return 1;
8472         }
8473
8474         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8475                 return 0;
8476
8477         h->events = readl(&(h->cfgtable->event_notify));
8478         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8479 }
8480
8481 /*
8482  * Check if any of the offline devices have become ready
8483  */
8484 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8485 {
8486         unsigned long flags;
8487         struct offline_device_entry *d;
8488         struct list_head *this, *tmp;
8489
8490         spin_lock_irqsave(&h->offline_device_lock, flags);
8491         list_for_each_safe(this, tmp, &h->offline_device_list) {
8492                 d = list_entry(this, struct offline_device_entry,
8493                                 offline_list);
8494                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8495                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8496                         spin_lock_irqsave(&h->offline_device_lock, flags);
8497                         list_del(&d->offline_list);
8498                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8499                         return 1;
8500                 }
8501                 spin_lock_irqsave(&h->offline_device_lock, flags);
8502         }
8503         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8504         return 0;
8505 }
8506
8507 static int hpsa_luns_changed(struct ctlr_info *h)
8508 {
8509         int rc = 1; /* assume there are changes */
8510         struct ReportLUNdata *logdev = NULL;
8511
8512         /* if we can't find out if lun data has changed,
8513          * assume that it has.
8514          */
8515
8516         if (!h->lastlogicals)
8517                 goto out;
8518
8519         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8520         if (!logdev) {
8521                 dev_warn(&h->pdev->dev,
8522                         "Out of memory, can't track lun changes.\n");
8523                 goto out;
8524         }
8525         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8526                 dev_warn(&h->pdev->dev,
8527                         "report luns failed, can't track lun changes.\n");
8528                 goto out;
8529         }
8530         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8531                 dev_info(&h->pdev->dev,
8532                         "Lun changes detected.\n");
8533                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8534                 goto out;
8535         } else
8536                 rc = 0; /* no changes detected. */
8537 out:
8538         kfree(logdev);
8539         return rc;
8540 }
8541
8542 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8543 {
8544         unsigned long flags;
8545         struct ctlr_info *h = container_of(to_delayed_work(work),
8546                                         struct ctlr_info, rescan_ctlr_work);
8547
8548
8549         if (h->remove_in_progress)
8550                 return;
8551
8552         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8553                 scsi_host_get(h->scsi_host);
8554                 hpsa_ack_ctlr_events(h);
8555                 hpsa_scan_start(h->scsi_host);
8556                 scsi_host_put(h->scsi_host);
8557         } else if (h->discovery_polling) {
8558                 hpsa_disable_rld_caching(h);
8559                 if (hpsa_luns_changed(h)) {
8560                         struct Scsi_Host *sh = NULL;
8561
8562                         dev_info(&h->pdev->dev,
8563                                 "driver discovery polling rescan.\n");
8564                         sh = scsi_host_get(h->scsi_host);
8565                         if (sh != NULL) {
8566                                 hpsa_scan_start(sh);
8567                                 scsi_host_put(sh);
8568                         }
8569                 }
8570         }
8571         spin_lock_irqsave(&h->lock, flags);
8572         if (!h->remove_in_progress)
8573                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8574                                 h->heartbeat_sample_interval);
8575         spin_unlock_irqrestore(&h->lock, flags);
8576 }
8577
8578 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8579 {
8580         unsigned long flags;
8581         struct ctlr_info *h = container_of(to_delayed_work(work),
8582                                         struct ctlr_info, monitor_ctlr_work);
8583
8584         detect_controller_lockup(h);
8585         if (lockup_detected(h))
8586                 return;
8587
8588         spin_lock_irqsave(&h->lock, flags);
8589         if (!h->remove_in_progress)
8590                 schedule_delayed_work(&h->monitor_ctlr_work,
8591                                 h->heartbeat_sample_interval);
8592         spin_unlock_irqrestore(&h->lock, flags);
8593 }
8594
8595 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8596                                                 char *name)
8597 {
8598         struct workqueue_struct *wq = NULL;
8599
8600         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8601         if (!wq)
8602                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8603
8604         return wq;
8605 }
8606
8607 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8608 {
8609         int dac, rc;
8610         struct ctlr_info *h;
8611         int try_soft_reset = 0;
8612         unsigned long flags;
8613         u32 board_id;
8614
8615         if (number_of_controllers == 0)
8616                 printk(KERN_INFO DRIVER_NAME "\n");
8617
8618         rc = hpsa_lookup_board_id(pdev, &board_id);
8619         if (rc < 0) {
8620                 dev_warn(&pdev->dev, "Board ID not found\n");
8621                 return rc;
8622         }
8623
8624         rc = hpsa_init_reset_devices(pdev, board_id);
8625         if (rc) {
8626                 if (rc != -ENOTSUPP)
8627                         return rc;
8628                 /* If the reset fails in a particular way (it has no way to do
8629                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8630                  * a soft reset once we get the controller configured up to the
8631                  * point that it can accept a command.
8632                  */
8633                 try_soft_reset = 1;
8634                 rc = 0;
8635         }
8636
8637 reinit_after_soft_reset:
8638
8639         /* Command structures must be aligned on a 32-byte boundary because
8640          * the 5 lower bits of the address are used by the hardware. and by
8641          * the driver.  See comments in hpsa.h for more info.
8642          */
8643         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8644         h = kzalloc(sizeof(*h), GFP_KERNEL);
8645         if (!h) {
8646                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8647                 return -ENOMEM;
8648         }
8649
8650         h->pdev = pdev;
8651
8652         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8653         INIT_LIST_HEAD(&h->offline_device_list);
8654         spin_lock_init(&h->lock);
8655         spin_lock_init(&h->offline_device_lock);
8656         spin_lock_init(&h->scan_lock);
8657         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8658         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8659
8660         /* Allocate and clear per-cpu variable lockup_detected */
8661         h->lockup_detected = alloc_percpu(u32);
8662         if (!h->lockup_detected) {
8663                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8664                 rc = -ENOMEM;
8665                 goto clean1;    /* aer/h */
8666         }
8667         set_lockup_detected_for_all_cpus(h, 0);
8668
8669         rc = hpsa_pci_init(h);
8670         if (rc)
8671                 goto clean2;    /* lu, aer/h */
8672
8673         /* relies on h-> settings made by hpsa_pci_init, including
8674          * interrupt_mode h->intr */
8675         rc = hpsa_scsi_host_alloc(h);
8676         if (rc)
8677                 goto clean2_5;  /* pci, lu, aer/h */
8678
8679         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8680         h->ctlr = number_of_controllers;
8681         number_of_controllers++;
8682
8683         /* configure PCI DMA stuff */
8684         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8685         if (rc == 0) {
8686                 dac = 1;
8687         } else {
8688                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8689                 if (rc == 0) {
8690                         dac = 0;
8691                 } else {
8692                         dev_err(&pdev->dev, "no suitable DMA available\n");
8693                         goto clean3;    /* shost, pci, lu, aer/h */
8694                 }
8695         }
8696
8697         /* make sure the board interrupts are off */
8698         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8699
8700         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8701         if (rc)
8702                 goto clean3;    /* shost, pci, lu, aer/h */
8703         rc = hpsa_alloc_cmd_pool(h);
8704         if (rc)
8705                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8706         rc = hpsa_alloc_sg_chain_blocks(h);
8707         if (rc)
8708                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8709         init_waitqueue_head(&h->scan_wait_queue);
8710         init_waitqueue_head(&h->abort_cmd_wait_queue);
8711         init_waitqueue_head(&h->event_sync_wait_queue);
8712         mutex_init(&h->reset_mutex);
8713         h->scan_finished = 1; /* no scan currently in progress */
8714
8715         pci_set_drvdata(pdev, h);
8716         h->ndevices = 0;
8717
8718         spin_lock_init(&h->devlock);
8719         rc = hpsa_put_ctlr_into_performant_mode(h);
8720         if (rc)
8721                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8722
8723         /* create the resubmit workqueue */
8724         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8725         if (!h->rescan_ctlr_wq) {
8726                 rc = -ENOMEM;
8727                 goto clean7;
8728         }
8729
8730         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8731         if (!h->resubmit_wq) {
8732                 rc = -ENOMEM;
8733                 goto clean7;    /* aer/h */
8734         }
8735
8736         /*
8737          * At this point, the controller is ready to take commands.
8738          * Now, if reset_devices and the hard reset didn't work, try
8739          * the soft reset and see if that works.
8740          */
8741         if (try_soft_reset) {
8742
8743                 /* This is kind of gross.  We may or may not get a completion
8744                  * from the soft reset command, and if we do, then the value
8745                  * from the fifo may or may not be valid.  So, we wait 10 secs
8746                  * after the reset throwing away any completions we get during
8747                  * that time.  Unregister the interrupt handler and register
8748                  * fake ones to scoop up any residual completions.
8749                  */
8750                 spin_lock_irqsave(&h->lock, flags);
8751                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8752                 spin_unlock_irqrestore(&h->lock, flags);
8753                 hpsa_free_irqs(h);
8754                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8755                                         hpsa_intx_discard_completions);
8756                 if (rc) {
8757                         dev_warn(&h->pdev->dev,
8758                                 "Failed to request_irq after soft reset.\n");
8759                         /*
8760                          * cannot goto clean7 or free_irqs will be called
8761                          * again. Instead, do its work
8762                          */
8763                         hpsa_free_performant_mode(h);   /* clean7 */
8764                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8765                         hpsa_free_cmd_pool(h);          /* clean5 */
8766                         /*
8767                          * skip hpsa_free_irqs(h) clean4 since that
8768                          * was just called before request_irqs failed
8769                          */
8770                         goto clean3;
8771                 }
8772
8773                 rc = hpsa_kdump_soft_reset(h);
8774                 if (rc)
8775                         /* Neither hard nor soft reset worked, we're hosed. */
8776                         goto clean7;
8777
8778                 dev_info(&h->pdev->dev, "Board READY.\n");
8779                 dev_info(&h->pdev->dev,
8780                         "Waiting for stale completions to drain.\n");
8781                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8782                 msleep(10000);
8783                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8784
8785                 rc = controller_reset_failed(h->cfgtable);
8786                 if (rc)
8787                         dev_info(&h->pdev->dev,
8788                                 "Soft reset appears to have failed.\n");
8789
8790                 /* since the controller's reset, we have to go back and re-init
8791                  * everything.  Easiest to just forget what we've done and do it
8792                  * all over again.
8793                  */
8794                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8795                 try_soft_reset = 0;
8796                 if (rc)
8797                         /* don't goto clean, we already unallocated */
8798                         return -ENODEV;
8799
8800                 goto reinit_after_soft_reset;
8801         }
8802
8803         /* Enable Accelerated IO path at driver layer */
8804         h->acciopath_status = 1;
8805         /* Disable discovery polling.*/
8806         h->discovery_polling = 0;
8807
8808
8809         /* Turn the interrupts on so we can service requests */
8810         h->access.set_intr_mask(h, HPSA_INTR_ON);
8811
8812         hpsa_hba_inquiry(h);
8813
8814         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8815         if (!h->lastlogicals)
8816                 dev_info(&h->pdev->dev,
8817                         "Can't track change to report lun data\n");
8818
8819         /* hook into SCSI subsystem */
8820         rc = hpsa_scsi_add_host(h);
8821         if (rc)
8822                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8823
8824         /* Monitor the controller for firmware lockups */
8825         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8826         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8827         schedule_delayed_work(&h->monitor_ctlr_work,
8828                                 h->heartbeat_sample_interval);
8829         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8830         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8831                                 h->heartbeat_sample_interval);
8832         return 0;
8833
8834 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8835         hpsa_free_performant_mode(h);
8836         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8837 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8838         hpsa_free_sg_chain_blocks(h);
8839 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8840         hpsa_free_cmd_pool(h);
8841 clean4: /* irq, shost, pci, lu, aer/h */
8842         hpsa_free_irqs(h);
8843 clean3: /* shost, pci, lu, aer/h */
8844         scsi_host_put(h->scsi_host);
8845         h->scsi_host = NULL;
8846 clean2_5: /* pci, lu, aer/h */
8847         hpsa_free_pci_init(h);
8848 clean2: /* lu, aer/h */
8849         if (h->lockup_detected) {
8850                 free_percpu(h->lockup_detected);
8851                 h->lockup_detected = NULL;
8852         }
8853 clean1: /* wq/aer/h */
8854         if (h->resubmit_wq) {
8855                 destroy_workqueue(h->resubmit_wq);
8856                 h->resubmit_wq = NULL;
8857         }
8858         if (h->rescan_ctlr_wq) {
8859                 destroy_workqueue(h->rescan_ctlr_wq);
8860                 h->rescan_ctlr_wq = NULL;
8861         }
8862         kfree(h);
8863         return rc;
8864 }
8865
8866 static void hpsa_flush_cache(struct ctlr_info *h)
8867 {
8868         char *flush_buf;
8869         struct CommandList *c;
8870         int rc;
8871
8872         if (unlikely(lockup_detected(h)))
8873                 return;
8874         flush_buf = kzalloc(4, GFP_KERNEL);
8875         if (!flush_buf)
8876                 return;
8877
8878         c = cmd_alloc(h);
8879
8880         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8881                 RAID_CTLR_LUNID, TYPE_CMD)) {
8882                 goto out;
8883         }
8884         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8885                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8886         if (rc)
8887                 goto out;
8888         if (c->err_info->CommandStatus != 0)
8889 out:
8890                 dev_warn(&h->pdev->dev,
8891                         "error flushing cache on controller\n");
8892         cmd_free(h, c);
8893         kfree(flush_buf);
8894 }
8895
8896 /* Make controller gather fresh report lun data each time we
8897  * send down a report luns request
8898  */
8899 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8900 {
8901         u32 *options;
8902         struct CommandList *c;
8903         int rc;
8904
8905         /* Don't bother trying to set diag options if locked up */
8906         if (unlikely(h->lockup_detected))
8907                 return;
8908
8909         options = kzalloc(sizeof(*options), GFP_KERNEL);
8910         if (!options) {
8911                 dev_err(&h->pdev->dev,
8912                         "Error: failed to disable rld caching, during alloc.\n");
8913                 return;
8914         }
8915
8916         c = cmd_alloc(h);
8917
8918         /* first, get the current diag options settings */
8919         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8920                 RAID_CTLR_LUNID, TYPE_CMD))
8921                 goto errout;
8922
8923         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8924                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8925         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8926                 goto errout;
8927
8928         /* Now, set the bit for disabling the RLD caching */
8929         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8930
8931         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8932                 RAID_CTLR_LUNID, TYPE_CMD))
8933                 goto errout;
8934
8935         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8936                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8937         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8938                 goto errout;
8939
8940         /* Now verify that it got set: */
8941         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8942                 RAID_CTLR_LUNID, TYPE_CMD))
8943                 goto errout;
8944
8945         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8946                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8947         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8948                 goto errout;
8949
8950         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8951                 goto out;
8952
8953 errout:
8954         dev_err(&h->pdev->dev,
8955                         "Error: failed to disable report lun data caching.\n");
8956 out:
8957         cmd_free(h, c);
8958         kfree(options);
8959 }
8960
8961 static void hpsa_shutdown(struct pci_dev *pdev)
8962 {
8963         struct ctlr_info *h;
8964
8965         h = pci_get_drvdata(pdev);
8966         /* Turn board interrupts off  and send the flush cache command
8967          * sendcmd will turn off interrupt, and send the flush...
8968          * To write all data in the battery backed cache to disks
8969          */
8970         hpsa_flush_cache(h);
8971         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8972         hpsa_free_irqs(h);                      /* init_one 4 */
8973         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8974 }
8975
8976 static void hpsa_free_device_info(struct ctlr_info *h)
8977 {
8978         int i;
8979
8980         for (i = 0; i < h->ndevices; i++) {
8981                 kfree(h->dev[i]);
8982                 h->dev[i] = NULL;
8983         }
8984 }
8985
8986 static void hpsa_remove_one(struct pci_dev *pdev)
8987 {
8988         struct ctlr_info *h;
8989         unsigned long flags;
8990
8991         if (pci_get_drvdata(pdev) == NULL) {
8992                 dev_err(&pdev->dev, "unable to remove device\n");
8993                 return;
8994         }
8995         h = pci_get_drvdata(pdev);
8996
8997         /* Get rid of any controller monitoring work items */
8998         spin_lock_irqsave(&h->lock, flags);
8999         h->remove_in_progress = 1;
9000         spin_unlock_irqrestore(&h->lock, flags);
9001         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9002         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9003         destroy_workqueue(h->rescan_ctlr_wq);
9004         destroy_workqueue(h->resubmit_wq);
9005
9006         /*
9007          * Call before disabling interrupts.
9008          * scsi_remove_host can trigger I/O operations especially
9009          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9010          * operations which cannot complete and will hang the system.
9011          */
9012         if (h->scsi_host)
9013                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9014         /* includes hpsa_free_irqs - init_one 4 */
9015         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9016         hpsa_shutdown(pdev);
9017
9018         hpsa_free_device_info(h);               /* scan */
9019
9020         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9021         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9022         hpsa_free_ioaccel2_sg_chain_blocks(h);
9023         hpsa_free_performant_mode(h);                   /* init_one 7 */
9024         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9025         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9026         kfree(h->lastlogicals);
9027
9028         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9029
9030         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9031         h->scsi_host = NULL;                            /* init_one 3 */
9032
9033         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9034         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9035
9036         free_percpu(h->lockup_detected);                /* init_one 2 */
9037         h->lockup_detected = NULL;                      /* init_one 2 */
9038         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9039
9040         hpsa_delete_sas_host(h);
9041
9042         kfree(h);                                       /* init_one 1 */
9043 }
9044
9045 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9046         __attribute__((unused)) pm_message_t state)
9047 {
9048         return -ENOSYS;
9049 }
9050
9051 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9052 {
9053         return -ENOSYS;
9054 }
9055
9056 static struct pci_driver hpsa_pci_driver = {
9057         .name = HPSA,
9058         .probe = hpsa_init_one,
9059         .remove = hpsa_remove_one,
9060         .id_table = hpsa_pci_device_id, /* id_table */
9061         .shutdown = hpsa_shutdown,
9062         .suspend = hpsa_suspend,
9063         .resume = hpsa_resume,
9064 };
9065
9066 /* Fill in bucket_map[], given nsgs (the max number of
9067  * scatter gather elements supported) and bucket[],
9068  * which is an array of 8 integers.  The bucket[] array
9069  * contains 8 different DMA transfer sizes (in 16
9070  * byte increments) which the controller uses to fetch
9071  * commands.  This function fills in bucket_map[], which
9072  * maps a given number of scatter gather elements to one of
9073  * the 8 DMA transfer sizes.  The point of it is to allow the
9074  * controller to only do as much DMA as needed to fetch the
9075  * command, with the DMA transfer size encoded in the lower
9076  * bits of the command address.
9077  */
9078 static void  calc_bucket_map(int bucket[], int num_buckets,
9079         int nsgs, int min_blocks, u32 *bucket_map)
9080 {
9081         int i, j, b, size;
9082
9083         /* Note, bucket_map must have nsgs+1 entries. */
9084         for (i = 0; i <= nsgs; i++) {
9085                 /* Compute size of a command with i SG entries */
9086                 size = i + min_blocks;
9087                 b = num_buckets; /* Assume the biggest bucket */
9088                 /* Find the bucket that is just big enough */
9089                 for (j = 0; j < num_buckets; j++) {
9090                         if (bucket[j] >= size) {
9091                                 b = j;
9092                                 break;
9093                         }
9094                 }
9095                 /* for a command with i SG entries, use bucket b. */
9096                 bucket_map[i] = b;
9097         }
9098 }
9099
9100 /*
9101  * return -ENODEV on err, 0 on success (or no action)
9102  * allocates numerous items that must be freed later
9103  */
9104 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9105 {
9106         int i;
9107         unsigned long register_value;
9108         unsigned long transMethod = CFGTBL_Trans_Performant |
9109                         (trans_support & CFGTBL_Trans_use_short_tags) |
9110                                 CFGTBL_Trans_enable_directed_msix |
9111                         (trans_support & (CFGTBL_Trans_io_accel1 |
9112                                 CFGTBL_Trans_io_accel2));
9113         struct access_method access = SA5_performant_access;
9114
9115         /* This is a bit complicated.  There are 8 registers on
9116          * the controller which we write to to tell it 8 different
9117          * sizes of commands which there may be.  It's a way of
9118          * reducing the DMA done to fetch each command.  Encoded into
9119          * each command's tag are 3 bits which communicate to the controller
9120          * which of the eight sizes that command fits within.  The size of
9121          * each command depends on how many scatter gather entries there are.
9122          * Each SG entry requires 16 bytes.  The eight registers are programmed
9123          * with the number of 16-byte blocks a command of that size requires.
9124          * The smallest command possible requires 5 such 16 byte blocks.
9125          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9126          * blocks.  Note, this only extends to the SG entries contained
9127          * within the command block, and does not extend to chained blocks
9128          * of SG elements.   bft[] contains the eight values we write to
9129          * the registers.  They are not evenly distributed, but have more
9130          * sizes for small commands, and fewer sizes for larger commands.
9131          */
9132         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9133 #define MIN_IOACCEL2_BFT_ENTRY 5
9134 #define HPSA_IOACCEL2_HEADER_SZ 4
9135         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9136                         13, 14, 15, 16, 17, 18, 19,
9137                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9138         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9139         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9140         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9141                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9142         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9143         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9144         /*  5 = 1 s/g entry or 4k
9145          *  6 = 2 s/g entry or 8k
9146          *  8 = 4 s/g entry or 16k
9147          * 10 = 6 s/g entry or 24k
9148          */
9149
9150         /* If the controller supports either ioaccel method then
9151          * we can also use the RAID stack submit path that does not
9152          * perform the superfluous readl() after each command submission.
9153          */
9154         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9155                 access = SA5_performant_access_no_read;
9156
9157         /* Controller spec: zero out this buffer. */
9158         for (i = 0; i < h->nreply_queues; i++)
9159                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9160
9161         bft[7] = SG_ENTRIES_IN_CMD + 4;
9162         calc_bucket_map(bft, ARRAY_SIZE(bft),
9163                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9164         for (i = 0; i < 8; i++)
9165                 writel(bft[i], &h->transtable->BlockFetch[i]);
9166
9167         /* size of controller ring buffer */
9168         writel(h->max_commands, &h->transtable->RepQSize);
9169         writel(h->nreply_queues, &h->transtable->RepQCount);
9170         writel(0, &h->transtable->RepQCtrAddrLow32);
9171         writel(0, &h->transtable->RepQCtrAddrHigh32);
9172
9173         for (i = 0; i < h->nreply_queues; i++) {
9174                 writel(0, &h->transtable->RepQAddr[i].upper);
9175                 writel(h->reply_queue[i].busaddr,
9176                         &h->transtable->RepQAddr[i].lower);
9177         }
9178
9179         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9180         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9181         /*
9182          * enable outbound interrupt coalescing in accelerator mode;
9183          */
9184         if (trans_support & CFGTBL_Trans_io_accel1) {
9185                 access = SA5_ioaccel_mode1_access;
9186                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9187                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9188         } else {
9189                 if (trans_support & CFGTBL_Trans_io_accel2) {
9190                         access = SA5_ioaccel_mode2_access;
9191                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9192                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9193                 }
9194         }
9195         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9196         if (hpsa_wait_for_mode_change_ack(h)) {
9197                 dev_err(&h->pdev->dev,
9198                         "performant mode problem - doorbell timeout\n");
9199                 return -ENODEV;
9200         }
9201         register_value = readl(&(h->cfgtable->TransportActive));
9202         if (!(register_value & CFGTBL_Trans_Performant)) {
9203                 dev_err(&h->pdev->dev,
9204                         "performant mode problem - transport not active\n");
9205                 return -ENODEV;
9206         }
9207         /* Change the access methods to the performant access methods */
9208         h->access = access;
9209         h->transMethod = transMethod;
9210
9211         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9212                 (trans_support & CFGTBL_Trans_io_accel2)))
9213                 return 0;
9214
9215         if (trans_support & CFGTBL_Trans_io_accel1) {
9216                 /* Set up I/O accelerator mode */
9217                 for (i = 0; i < h->nreply_queues; i++) {
9218                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9219                         h->reply_queue[i].current_entry =
9220                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9221                 }
9222                 bft[7] = h->ioaccel_maxsg + 8;
9223                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9224                                 h->ioaccel1_blockFetchTable);
9225
9226                 /* initialize all reply queue entries to unused */
9227                 for (i = 0; i < h->nreply_queues; i++)
9228                         memset(h->reply_queue[i].head,
9229                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9230                                 h->reply_queue_size);
9231
9232                 /* set all the constant fields in the accelerator command
9233                  * frames once at init time to save CPU cycles later.
9234                  */
9235                 for (i = 0; i < h->nr_cmds; i++) {
9236                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9237
9238                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9239                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9240                                         (i * sizeof(struct ErrorInfo)));
9241                         cp->err_info_len = sizeof(struct ErrorInfo);
9242                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9243                         cp->host_context_flags =
9244                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9245                         cp->timeout_sec = 0;
9246                         cp->ReplyQueue = 0;
9247                         cp->tag =
9248                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9249                         cp->host_addr =
9250                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9251                                         (i * sizeof(struct io_accel1_cmd)));
9252                 }
9253         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9254                 u64 cfg_offset, cfg_base_addr_index;
9255                 u32 bft2_offset, cfg_base_addr;
9256                 int rc;
9257
9258                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9259                         &cfg_base_addr_index, &cfg_offset);
9260                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9261                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9262                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9263                                 4, h->ioaccel2_blockFetchTable);
9264                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9265                 BUILD_BUG_ON(offsetof(struct CfgTable,
9266                                 io_accel_request_size_offset) != 0xb8);
9267                 h->ioaccel2_bft2_regs =
9268                         remap_pci_mem(pci_resource_start(h->pdev,
9269                                         cfg_base_addr_index) +
9270                                         cfg_offset + bft2_offset,
9271                                         ARRAY_SIZE(bft2) *
9272                                         sizeof(*h->ioaccel2_bft2_regs));
9273                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9274                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9275         }
9276         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9277         if (hpsa_wait_for_mode_change_ack(h)) {
9278                 dev_err(&h->pdev->dev,
9279                         "performant mode problem - enabling ioaccel mode\n");
9280                 return -ENODEV;
9281         }
9282         return 0;
9283 }
9284
9285 /* Free ioaccel1 mode command blocks and block fetch table */
9286 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9287 {
9288         if (h->ioaccel_cmd_pool) {
9289                 pci_free_consistent(h->pdev,
9290                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9291                         h->ioaccel_cmd_pool,
9292                         h->ioaccel_cmd_pool_dhandle);
9293                 h->ioaccel_cmd_pool = NULL;
9294                 h->ioaccel_cmd_pool_dhandle = 0;
9295         }
9296         kfree(h->ioaccel1_blockFetchTable);
9297         h->ioaccel1_blockFetchTable = NULL;
9298 }
9299
9300 /* Allocate ioaccel1 mode command blocks and block fetch table */
9301 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9302 {
9303         h->ioaccel_maxsg =
9304                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9305         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9306                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9307
9308         /* Command structures must be aligned on a 128-byte boundary
9309          * because the 7 lower bits of the address are used by the
9310          * hardware.
9311          */
9312         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9313                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9314         h->ioaccel_cmd_pool =
9315                 pci_alloc_consistent(h->pdev,
9316                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9317                         &(h->ioaccel_cmd_pool_dhandle));
9318
9319         h->ioaccel1_blockFetchTable =
9320                 kmalloc(((h->ioaccel_maxsg + 1) *
9321                                 sizeof(u32)), GFP_KERNEL);
9322
9323         if ((h->ioaccel_cmd_pool == NULL) ||
9324                 (h->ioaccel1_blockFetchTable == NULL))
9325                 goto clean_up;
9326
9327         memset(h->ioaccel_cmd_pool, 0,
9328                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9329         return 0;
9330
9331 clean_up:
9332         hpsa_free_ioaccel1_cmd_and_bft(h);
9333         return -ENOMEM;
9334 }
9335
9336 /* Free ioaccel2 mode command blocks and block fetch table */
9337 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9338 {
9339         hpsa_free_ioaccel2_sg_chain_blocks(h);
9340
9341         if (h->ioaccel2_cmd_pool) {
9342                 pci_free_consistent(h->pdev,
9343                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9344                         h->ioaccel2_cmd_pool,
9345                         h->ioaccel2_cmd_pool_dhandle);
9346                 h->ioaccel2_cmd_pool = NULL;
9347                 h->ioaccel2_cmd_pool_dhandle = 0;
9348         }
9349         kfree(h->ioaccel2_blockFetchTable);
9350         h->ioaccel2_blockFetchTable = NULL;
9351 }
9352
9353 /* Allocate ioaccel2 mode command blocks and block fetch table */
9354 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9355 {
9356         int rc;
9357
9358         /* Allocate ioaccel2 mode command blocks and block fetch table */
9359
9360         h->ioaccel_maxsg =
9361                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9362         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9363                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9364
9365         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9366                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9367         h->ioaccel2_cmd_pool =
9368                 pci_alloc_consistent(h->pdev,
9369                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9370                         &(h->ioaccel2_cmd_pool_dhandle));
9371
9372         h->ioaccel2_blockFetchTable =
9373                 kmalloc(((h->ioaccel_maxsg + 1) *
9374                                 sizeof(u32)), GFP_KERNEL);
9375
9376         if ((h->ioaccel2_cmd_pool == NULL) ||
9377                 (h->ioaccel2_blockFetchTable == NULL)) {
9378                 rc = -ENOMEM;
9379                 goto clean_up;
9380         }
9381
9382         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9383         if (rc)
9384                 goto clean_up;
9385
9386         memset(h->ioaccel2_cmd_pool, 0,
9387                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9388         return 0;
9389
9390 clean_up:
9391         hpsa_free_ioaccel2_cmd_and_bft(h);
9392         return rc;
9393 }
9394
9395 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9396 static void hpsa_free_performant_mode(struct ctlr_info *h)
9397 {
9398         kfree(h->blockFetchTable);
9399         h->blockFetchTable = NULL;
9400         hpsa_free_reply_queues(h);
9401         hpsa_free_ioaccel1_cmd_and_bft(h);
9402         hpsa_free_ioaccel2_cmd_and_bft(h);
9403 }
9404
9405 /* return -ENODEV on error, 0 on success (or no action)
9406  * allocates numerous items that must be freed later
9407  */
9408 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9409 {
9410         u32 trans_support;
9411         unsigned long transMethod = CFGTBL_Trans_Performant |
9412                                         CFGTBL_Trans_use_short_tags;
9413         int i, rc;
9414
9415         if (hpsa_simple_mode)
9416                 return 0;
9417
9418         trans_support = readl(&(h->cfgtable->TransportSupport));
9419         if (!(trans_support & PERFORMANT_MODE))
9420                 return 0;
9421
9422         /* Check for I/O accelerator mode support */
9423         if (trans_support & CFGTBL_Trans_io_accel1) {
9424                 transMethod |= CFGTBL_Trans_io_accel1 |
9425                                 CFGTBL_Trans_enable_directed_msix;
9426                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9427                 if (rc)
9428                         return rc;
9429         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9430                 transMethod |= CFGTBL_Trans_io_accel2 |
9431                                 CFGTBL_Trans_enable_directed_msix;
9432                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9433                 if (rc)
9434                         return rc;
9435         }
9436
9437         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9438         hpsa_get_max_perf_mode_cmds(h);
9439         /* Performant mode ring buffer and supporting data structures */
9440         h->reply_queue_size = h->max_commands * sizeof(u64);
9441
9442         for (i = 0; i < h->nreply_queues; i++) {
9443                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9444                                                 h->reply_queue_size,
9445                                                 &(h->reply_queue[i].busaddr));
9446                 if (!h->reply_queue[i].head) {
9447                         rc = -ENOMEM;
9448                         goto clean1;    /* rq, ioaccel */
9449                 }
9450                 h->reply_queue[i].size = h->max_commands;
9451                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9452                 h->reply_queue[i].current_entry = 0;
9453         }
9454
9455         /* Need a block fetch table for performant mode */
9456         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9457                                 sizeof(u32)), GFP_KERNEL);
9458         if (!h->blockFetchTable) {
9459                 rc = -ENOMEM;
9460                 goto clean1;    /* rq, ioaccel */
9461         }
9462
9463         rc = hpsa_enter_performant_mode(h, trans_support);
9464         if (rc)
9465                 goto clean2;    /* bft, rq, ioaccel */
9466         return 0;
9467
9468 clean2: /* bft, rq, ioaccel */
9469         kfree(h->blockFetchTable);
9470         h->blockFetchTable = NULL;
9471 clean1: /* rq, ioaccel */
9472         hpsa_free_reply_queues(h);
9473         hpsa_free_ioaccel1_cmd_and_bft(h);
9474         hpsa_free_ioaccel2_cmd_and_bft(h);
9475         return rc;
9476 }
9477
9478 static int is_accelerated_cmd(struct CommandList *c)
9479 {
9480         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9481 }
9482
9483 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9484 {
9485         struct CommandList *c = NULL;
9486         int i, accel_cmds_out;
9487         int refcount;
9488
9489         do { /* wait for all outstanding ioaccel commands to drain out */
9490                 accel_cmds_out = 0;
9491                 for (i = 0; i < h->nr_cmds; i++) {
9492                         c = h->cmd_pool + i;
9493                         refcount = atomic_inc_return(&c->refcount);
9494                         if (refcount > 1) /* Command is allocated */
9495                                 accel_cmds_out += is_accelerated_cmd(c);
9496                         cmd_free(h, c);
9497                 }
9498                 if (accel_cmds_out <= 0)
9499                         break;
9500                 msleep(100);
9501         } while (1);
9502 }
9503
9504 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9505                                 struct hpsa_sas_port *hpsa_sas_port)
9506 {
9507         struct hpsa_sas_phy *hpsa_sas_phy;
9508         struct sas_phy *phy;
9509
9510         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9511         if (!hpsa_sas_phy)
9512                 return NULL;
9513
9514         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9515                 hpsa_sas_port->next_phy_index);
9516         if (!phy) {
9517                 kfree(hpsa_sas_phy);
9518                 return NULL;
9519         }
9520
9521         hpsa_sas_port->next_phy_index++;
9522         hpsa_sas_phy->phy = phy;
9523         hpsa_sas_phy->parent_port = hpsa_sas_port;
9524
9525         return hpsa_sas_phy;
9526 }
9527
9528 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9529 {
9530         struct sas_phy *phy = hpsa_sas_phy->phy;
9531
9532         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9533         sas_phy_free(phy);
9534         if (hpsa_sas_phy->added_to_port)
9535                 list_del(&hpsa_sas_phy->phy_list_entry);
9536         kfree(hpsa_sas_phy);
9537 }
9538
9539 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9540 {
9541         int rc;
9542         struct hpsa_sas_port *hpsa_sas_port;
9543         struct sas_phy *phy;
9544         struct sas_identify *identify;
9545
9546         hpsa_sas_port = hpsa_sas_phy->parent_port;
9547         phy = hpsa_sas_phy->phy;
9548
9549         identify = &phy->identify;
9550         memset(identify, 0, sizeof(*identify));
9551         identify->sas_address = hpsa_sas_port->sas_address;
9552         identify->device_type = SAS_END_DEVICE;
9553         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9554         identify->target_port_protocols = SAS_PROTOCOL_STP;
9555         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9556         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9557         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9558         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9559         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9560
9561         rc = sas_phy_add(hpsa_sas_phy->phy);
9562         if (rc)
9563                 return rc;
9564
9565         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9566         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9567                         &hpsa_sas_port->phy_list_head);
9568         hpsa_sas_phy->added_to_port = true;
9569
9570         return 0;
9571 }
9572
9573 static int
9574         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9575                                 struct sas_rphy *rphy)
9576 {
9577         struct sas_identify *identify;
9578
9579         identify = &rphy->identify;
9580         identify->sas_address = hpsa_sas_port->sas_address;
9581         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9582         identify->target_port_protocols = SAS_PROTOCOL_STP;
9583
9584         return sas_rphy_add(rphy);
9585 }
9586
9587 static struct hpsa_sas_port
9588         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9589                                 u64 sas_address)
9590 {
9591         int rc;
9592         struct hpsa_sas_port *hpsa_sas_port;
9593         struct sas_port *port;
9594
9595         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9596         if (!hpsa_sas_port)
9597                 return NULL;
9598
9599         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9600         hpsa_sas_port->parent_node = hpsa_sas_node;
9601
9602         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9603         if (!port)
9604                 goto free_hpsa_port;
9605
9606         rc = sas_port_add(port);
9607         if (rc)
9608                 goto free_sas_port;
9609
9610         hpsa_sas_port->port = port;
9611         hpsa_sas_port->sas_address = sas_address;
9612         list_add_tail(&hpsa_sas_port->port_list_entry,
9613                         &hpsa_sas_node->port_list_head);
9614
9615         return hpsa_sas_port;
9616
9617 free_sas_port:
9618         sas_port_free(port);
9619 free_hpsa_port:
9620         kfree(hpsa_sas_port);
9621
9622         return NULL;
9623 }
9624
9625 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9626 {
9627         struct hpsa_sas_phy *hpsa_sas_phy;
9628         struct hpsa_sas_phy *next;
9629
9630         list_for_each_entry_safe(hpsa_sas_phy, next,
9631                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9632                 hpsa_free_sas_phy(hpsa_sas_phy);
9633
9634         sas_port_delete(hpsa_sas_port->port);
9635         list_del(&hpsa_sas_port->port_list_entry);
9636         kfree(hpsa_sas_port);
9637 }
9638
9639 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9640 {
9641         struct hpsa_sas_node *hpsa_sas_node;
9642
9643         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9644         if (hpsa_sas_node) {
9645                 hpsa_sas_node->parent_dev = parent_dev;
9646                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9647         }
9648
9649         return hpsa_sas_node;
9650 }
9651
9652 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9653 {
9654         struct hpsa_sas_port *hpsa_sas_port;
9655         struct hpsa_sas_port *next;
9656
9657         if (!hpsa_sas_node)
9658                 return;
9659
9660         list_for_each_entry_safe(hpsa_sas_port, next,
9661                         &hpsa_sas_node->port_list_head, port_list_entry)
9662                 hpsa_free_sas_port(hpsa_sas_port);
9663
9664         kfree(hpsa_sas_node);
9665 }
9666
9667 static struct hpsa_scsi_dev_t
9668         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9669                                         struct sas_rphy *rphy)
9670 {
9671         int i;
9672         struct hpsa_scsi_dev_t *device;
9673
9674         for (i = 0; i < h->ndevices; i++) {
9675                 device = h->dev[i];
9676                 if (!device->sas_port)
9677                         continue;
9678                 if (device->sas_port->rphy == rphy)
9679                         return device;
9680         }
9681
9682         return NULL;
9683 }
9684
9685 static int hpsa_add_sas_host(struct ctlr_info *h)
9686 {
9687         int rc;
9688         struct device *parent_dev;
9689         struct hpsa_sas_node *hpsa_sas_node;
9690         struct hpsa_sas_port *hpsa_sas_port;
9691         struct hpsa_sas_phy *hpsa_sas_phy;
9692
9693         parent_dev = &h->scsi_host->shost_gendev;
9694
9695         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9696         if (!hpsa_sas_node)
9697                 return -ENOMEM;
9698
9699         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9700         if (!hpsa_sas_port) {
9701                 rc = -ENODEV;
9702                 goto free_sas_node;
9703         }
9704
9705         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9706         if (!hpsa_sas_phy) {
9707                 rc = -ENODEV;
9708                 goto free_sas_port;
9709         }
9710
9711         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9712         if (rc)
9713                 goto free_sas_phy;
9714
9715         h->sas_host = hpsa_sas_node;
9716
9717         return 0;
9718
9719 free_sas_phy:
9720         hpsa_free_sas_phy(hpsa_sas_phy);
9721 free_sas_port:
9722         hpsa_free_sas_port(hpsa_sas_port);
9723 free_sas_node:
9724         hpsa_free_sas_node(hpsa_sas_node);
9725
9726         return rc;
9727 }
9728
9729 static void hpsa_delete_sas_host(struct ctlr_info *h)
9730 {
9731         hpsa_free_sas_node(h->sas_host);
9732 }
9733
9734 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9735                                 struct hpsa_scsi_dev_t *device)
9736 {
9737         int rc;
9738         struct hpsa_sas_port *hpsa_sas_port;
9739         struct sas_rphy *rphy;
9740
9741         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9742         if (!hpsa_sas_port)
9743                 return -ENOMEM;
9744
9745         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9746         if (!rphy) {
9747                 rc = -ENODEV;
9748                 goto free_sas_port;
9749         }
9750
9751         hpsa_sas_port->rphy = rphy;
9752         device->sas_port = hpsa_sas_port;
9753
9754         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9755         if (rc)
9756                 goto free_sas_port;
9757
9758         return 0;
9759
9760 free_sas_port:
9761         hpsa_free_sas_port(hpsa_sas_port);
9762         device->sas_port = NULL;
9763
9764         return rc;
9765 }
9766
9767 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9768 {
9769         if (device->sas_port) {
9770                 hpsa_free_sas_port(device->sas_port);
9771                 device->sas_port = NULL;
9772         }
9773 }
9774
9775 static int
9776 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9777 {
9778         return 0;
9779 }
9780
9781 static int
9782 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9783 {
9784         *identifier = 0;
9785         return 0;
9786 }
9787
9788 static int
9789 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9790 {
9791         return -ENXIO;
9792 }
9793
9794 static int
9795 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9796 {
9797         return 0;
9798 }
9799
9800 static int
9801 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9802 {
9803         return 0;
9804 }
9805
9806 static int
9807 hpsa_sas_phy_setup(struct sas_phy *phy)
9808 {
9809         return 0;
9810 }
9811
9812 static void
9813 hpsa_sas_phy_release(struct sas_phy *phy)
9814 {
9815 }
9816
9817 static int
9818 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9819 {
9820         return -EINVAL;
9821 }
9822
9823 /* SMP = Serial Management Protocol */
9824 static int
9825 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9826 struct request *req)
9827 {
9828         return -EINVAL;
9829 }
9830
9831 static struct sas_function_template hpsa_sas_transport_functions = {
9832         .get_linkerrors = hpsa_sas_get_linkerrors,
9833         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9834         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9835         .phy_reset = hpsa_sas_phy_reset,
9836         .phy_enable = hpsa_sas_phy_enable,
9837         .phy_setup = hpsa_sas_phy_setup,
9838         .phy_release = hpsa_sas_phy_release,
9839         .set_phy_speed = hpsa_sas_phy_speed,
9840         .smp_handler = hpsa_sas_smp_handler,
9841 };
9842
9843 /*
9844  *  This is it.  Register the PCI driver information for the cards we control
9845  *  the OS will call our registered routines when it finds one of our cards.
9846  */
9847 static int __init hpsa_init(void)
9848 {
9849         int rc;
9850
9851         hpsa_sas_transport_template =
9852                 sas_attach_transport(&hpsa_sas_transport_functions);
9853         if (!hpsa_sas_transport_template)
9854                 return -ENODEV;
9855
9856         rc = pci_register_driver(&hpsa_pci_driver);
9857
9858         if (rc)
9859                 sas_release_transport(hpsa_sas_transport_template);
9860
9861         return rc;
9862 }
9863
9864 static void __exit hpsa_cleanup(void)
9865 {
9866         pci_unregister_driver(&hpsa_pci_driver);
9867         sas_release_transport(hpsa_sas_transport_template);
9868 }
9869
9870 static void __attribute__((unused)) verify_offsets(void)
9871 {
9872 #define VERIFY_OFFSET(member, offset) \
9873         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9874
9875         VERIFY_OFFSET(structure_size, 0);
9876         VERIFY_OFFSET(volume_blk_size, 4);
9877         VERIFY_OFFSET(volume_blk_cnt, 8);
9878         VERIFY_OFFSET(phys_blk_shift, 16);
9879         VERIFY_OFFSET(parity_rotation_shift, 17);
9880         VERIFY_OFFSET(strip_size, 18);
9881         VERIFY_OFFSET(disk_starting_blk, 20);
9882         VERIFY_OFFSET(disk_blk_cnt, 28);
9883         VERIFY_OFFSET(data_disks_per_row, 36);
9884         VERIFY_OFFSET(metadata_disks_per_row, 38);
9885         VERIFY_OFFSET(row_cnt, 40);
9886         VERIFY_OFFSET(layout_map_count, 42);
9887         VERIFY_OFFSET(flags, 44);
9888         VERIFY_OFFSET(dekindex, 46);
9889         /* VERIFY_OFFSET(reserved, 48 */
9890         VERIFY_OFFSET(data, 64);
9891
9892 #undef VERIFY_OFFSET
9893
9894 #define VERIFY_OFFSET(member, offset) \
9895         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9896
9897         VERIFY_OFFSET(IU_type, 0);
9898         VERIFY_OFFSET(direction, 1);
9899         VERIFY_OFFSET(reply_queue, 2);
9900         /* VERIFY_OFFSET(reserved1, 3);  */
9901         VERIFY_OFFSET(scsi_nexus, 4);
9902         VERIFY_OFFSET(Tag, 8);
9903         VERIFY_OFFSET(cdb, 16);
9904         VERIFY_OFFSET(cciss_lun, 32);
9905         VERIFY_OFFSET(data_len, 40);
9906         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9907         VERIFY_OFFSET(sg_count, 45);
9908         /* VERIFY_OFFSET(reserved3 */
9909         VERIFY_OFFSET(err_ptr, 48);
9910         VERIFY_OFFSET(err_len, 56);
9911         /* VERIFY_OFFSET(reserved4  */
9912         VERIFY_OFFSET(sg, 64);
9913
9914 #undef VERIFY_OFFSET
9915
9916 #define VERIFY_OFFSET(member, offset) \
9917         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9918
9919         VERIFY_OFFSET(dev_handle, 0x00);
9920         VERIFY_OFFSET(reserved1, 0x02);
9921         VERIFY_OFFSET(function, 0x03);
9922         VERIFY_OFFSET(reserved2, 0x04);
9923         VERIFY_OFFSET(err_info, 0x0C);
9924         VERIFY_OFFSET(reserved3, 0x10);
9925         VERIFY_OFFSET(err_info_len, 0x12);
9926         VERIFY_OFFSET(reserved4, 0x13);
9927         VERIFY_OFFSET(sgl_offset, 0x14);
9928         VERIFY_OFFSET(reserved5, 0x15);
9929         VERIFY_OFFSET(transfer_len, 0x1C);
9930         VERIFY_OFFSET(reserved6, 0x20);
9931         VERIFY_OFFSET(io_flags, 0x24);
9932         VERIFY_OFFSET(reserved7, 0x26);
9933         VERIFY_OFFSET(LUN, 0x34);
9934         VERIFY_OFFSET(control, 0x3C);
9935         VERIFY_OFFSET(CDB, 0x40);
9936         VERIFY_OFFSET(reserved8, 0x50);
9937         VERIFY_OFFSET(host_context_flags, 0x60);
9938         VERIFY_OFFSET(timeout_sec, 0x62);
9939         VERIFY_OFFSET(ReplyQueue, 0x64);
9940         VERIFY_OFFSET(reserved9, 0x65);
9941         VERIFY_OFFSET(tag, 0x68);
9942         VERIFY_OFFSET(host_addr, 0x70);
9943         VERIFY_OFFSET(CISS_LUN, 0x78);
9944         VERIFY_OFFSET(SG, 0x78 + 8);
9945 #undef VERIFY_OFFSET
9946 }
9947
9948 module_init(hpsa_init);
9949 module_exit(hpsa_cleanup);