Merge branch 'drm-fixes-4.5' of git://people.freedesktop.org/~agd5f/linux into drm...
[cascardo/linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
79         HPSA_DRIVER_VERSION);
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION);
82 MODULE_LICENSE("GPL");
83
84 static int hpsa_allow_any;
85 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_allow_any,
87                 "Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91         "Use 'simple mode' rather than 'performant mode'");
92
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {0,}
149 };
150
151 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
152
153 /*  board_id = Subsystem Device ID & Vendor ID
154  *  product = Marketing Name for the board
155  *  access = Address of the struct of function pointers
156  */
157 static struct board_type products[] = {
158         {0x3241103C, "Smart Array P212", &SA5_access},
159         {0x3243103C, "Smart Array P410", &SA5_access},
160         {0x3245103C, "Smart Array P410i", &SA5_access},
161         {0x3247103C, "Smart Array P411", &SA5_access},
162         {0x3249103C, "Smart Array P812", &SA5_access},
163         {0x324A103C, "Smart Array P712m", &SA5_access},
164         {0x324B103C, "Smart Array P711m", &SA5_access},
165         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
166         {0x3350103C, "Smart Array P222", &SA5_access},
167         {0x3351103C, "Smart Array P420", &SA5_access},
168         {0x3352103C, "Smart Array P421", &SA5_access},
169         {0x3353103C, "Smart Array P822", &SA5_access},
170         {0x3354103C, "Smart Array P420i", &SA5_access},
171         {0x3355103C, "Smart Array P220i", &SA5_access},
172         {0x3356103C, "Smart Array P721m", &SA5_access},
173         {0x1921103C, "Smart Array P830i", &SA5_access},
174         {0x1922103C, "Smart Array P430", &SA5_access},
175         {0x1923103C, "Smart Array P431", &SA5_access},
176         {0x1924103C, "Smart Array P830", &SA5_access},
177         {0x1926103C, "Smart Array P731m", &SA5_access},
178         {0x1928103C, "Smart Array P230i", &SA5_access},
179         {0x1929103C, "Smart Array P530", &SA5_access},
180         {0x21BD103C, "Smart Array P244br", &SA5_access},
181         {0x21BE103C, "Smart Array P741m", &SA5_access},
182         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
183         {0x21C0103C, "Smart Array P440ar", &SA5_access},
184         {0x21C1103C, "Smart Array P840ar", &SA5_access},
185         {0x21C2103C, "Smart Array P440", &SA5_access},
186         {0x21C3103C, "Smart Array P441", &SA5_access},
187         {0x21C4103C, "Smart Array", &SA5_access},
188         {0x21C5103C, "Smart Array P841", &SA5_access},
189         {0x21C6103C, "Smart HBA H244br", &SA5_access},
190         {0x21C7103C, "Smart HBA H240", &SA5_access},
191         {0x21C8103C, "Smart HBA H241", &SA5_access},
192         {0x21C9103C, "Smart Array", &SA5_access},
193         {0x21CA103C, "Smart Array P246br", &SA5_access},
194         {0x21CB103C, "Smart Array P840", &SA5_access},
195         {0x21CC103C, "Smart Array", &SA5_access},
196         {0x21CD103C, "Smart Array", &SA5_access},
197         {0x21CE103C, "Smart HBA", &SA5_access},
198         {0x05809005, "SmartHBA-SA", &SA5_access},
199         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
200         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
201         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
202         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
203         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
204         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
205         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
206         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
207         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
208         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
209         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
210 };
211
212 static struct scsi_transport_template *hpsa_sas_transport_template;
213 static int hpsa_add_sas_host(struct ctlr_info *h);
214 static void hpsa_delete_sas_host(struct ctlr_info *h);
215 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
216                         struct hpsa_scsi_dev_t *device);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
218 static struct hpsa_scsi_dev_t
219         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
220                 struct sas_rphy *rphy);
221
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle;
226 static int number_of_controllers;
227
228 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
229 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
230 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
231
232 #ifdef CONFIG_COMPAT
233 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
234         void __user *arg);
235 #endif
236
237 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
238 static struct CommandList *cmd_alloc(struct ctlr_info *h);
239 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
240 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
241                                             struct scsi_cmnd *scmd);
242 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
243         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
244         int cmd_type);
245 static void hpsa_free_cmd_pool(struct ctlr_info *h);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
248
249 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
250 static void hpsa_scan_start(struct Scsi_Host *);
251 static int hpsa_scan_finished(struct Scsi_Host *sh,
252         unsigned long elapsed_time);
253 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
254
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_slave_alloc(struct scsi_device *sdev);
258 static int hpsa_slave_configure(struct scsi_device *sdev);
259 static void hpsa_slave_destroy(struct scsi_device *sdev);
260
261 static void hpsa_update_scsi_devices(struct ctlr_info *h);
262 static int check_for_unit_attention(struct ctlr_info *h,
263         struct CommandList *c);
264 static void check_ioctl_unit_attention(struct ctlr_info *h,
265         struct CommandList *c);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket, int num_buckets,
268         int nsgs, int min_blocks, u32 *bucket_map);
269 static void hpsa_free_performant_mode(struct ctlr_info *h);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
271 static inline u32 next_command(struct ctlr_info *h, u8 q);
272 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
273                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
274                                u64 *cfg_offset);
275 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
276                                     unsigned long *memory_bar);
277 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
278 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
279                                      int wait_for_ready);
280 static inline void finish_cmd(struct CommandList *c);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info *h);
285 static void hpsa_flush_cache(struct ctlr_info *h);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
287         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
288         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
289 static void hpsa_command_resubmit_worker(struct work_struct *work);
290 static u32 lockup_detected(struct ctlr_info *h);
291 static int detect_controller_lockup(struct ctlr_info *h);
292 static void hpsa_disable_rld_caching(struct ctlr_info *h);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
294         struct ReportExtendedLUNdata *buf, int bufsize);
295 static int hpsa_luns_changed(struct ctlr_info *h);
296
297 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
298 {
299         unsigned long *priv = shost_priv(sdev->host);
300         return (struct ctlr_info *) *priv;
301 }
302
303 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
304 {
305         unsigned long *priv = shost_priv(sh);
306         return (struct ctlr_info *) *priv;
307 }
308
309 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
310 {
311         return c->scsi_cmd == SCSI_CMD_IDLE;
312 }
313
314 static inline bool hpsa_is_pending_event(struct CommandList *c)
315 {
316         return c->abort_pending || c->reset_pending;
317 }
318
319 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
320 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
321                         u8 *sense_key, u8 *asc, u8 *ascq)
322 {
323         struct scsi_sense_hdr sshdr;
324         bool rc;
325
326         *sense_key = -1;
327         *asc = -1;
328         *ascq = -1;
329
330         if (sense_data_len < 1)
331                 return;
332
333         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
334         if (rc) {
335                 *sense_key = sshdr.sense_key;
336                 *asc = sshdr.asc;
337                 *ascq = sshdr.ascq;
338         }
339 }
340
341 static int check_for_unit_attention(struct ctlr_info *h,
342         struct CommandList *c)
343 {
344         u8 sense_key, asc, ascq;
345         int sense_len;
346
347         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
348                 sense_len = sizeof(c->err_info->SenseInfo);
349         else
350                 sense_len = c->err_info->SenseLen;
351
352         decode_sense_data(c->err_info->SenseInfo, sense_len,
353                                 &sense_key, &asc, &ascq);
354         if (sense_key != UNIT_ATTENTION || asc == 0xff)
355                 return 0;
356
357         switch (asc) {
358         case STATE_CHANGED:
359                 dev_warn(&h->pdev->dev,
360                         "%s: a state change detected, command retried\n",
361                         h->devname);
362                 break;
363         case LUN_FAILED:
364                 dev_warn(&h->pdev->dev,
365                         "%s: LUN failure detected\n", h->devname);
366                 break;
367         case REPORT_LUNS_CHANGED:
368                 dev_warn(&h->pdev->dev,
369                         "%s: report LUN data changed\n", h->devname);
370         /*
371          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372          * target (array) devices.
373          */
374                 break;
375         case POWER_OR_RESET:
376                 dev_warn(&h->pdev->dev,
377                         "%s: a power on or device reset detected\n",
378                         h->devname);
379                 break;
380         case UNIT_ATTENTION_CLEARED:
381                 dev_warn(&h->pdev->dev,
382                         "%s: unit attention cleared by another initiator\n",
383                         h->devname);
384                 break;
385         default:
386                 dev_warn(&h->pdev->dev,
387                         "%s: unknown unit attention detected\n",
388                         h->devname);
389                 break;
390         }
391         return 1;
392 }
393
394 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
395 {
396         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
397                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
398                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
399                 return 0;
400         dev_warn(&h->pdev->dev, HPSA "device busy");
401         return 1;
402 }
403
404 static u32 lockup_detected(struct ctlr_info *h);
405 static ssize_t host_show_lockup_detected(struct device *dev,
406                 struct device_attribute *attr, char *buf)
407 {
408         int ld;
409         struct ctlr_info *h;
410         struct Scsi_Host *shost = class_to_shost(dev);
411
412         h = shost_to_hba(shost);
413         ld = lockup_detected(h);
414
415         return sprintf(buf, "ld=%d\n", ld);
416 }
417
418 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
419                                          struct device_attribute *attr,
420                                          const char *buf, size_t count)
421 {
422         int status, len;
423         struct ctlr_info *h;
424         struct Scsi_Host *shost = class_to_shost(dev);
425         char tmpbuf[10];
426
427         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
428                 return -EACCES;
429         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
430         strncpy(tmpbuf, buf, len);
431         tmpbuf[len] = '\0';
432         if (sscanf(tmpbuf, "%d", &status) != 1)
433                 return -EINVAL;
434         h = shost_to_hba(shost);
435         h->acciopath_status = !!status;
436         dev_warn(&h->pdev->dev,
437                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
438                 h->acciopath_status ? "enabled" : "disabled");
439         return count;
440 }
441
442 static ssize_t host_store_raid_offload_debug(struct device *dev,
443                                          struct device_attribute *attr,
444                                          const char *buf, size_t count)
445 {
446         int debug_level, len;
447         struct ctlr_info *h;
448         struct Scsi_Host *shost = class_to_shost(dev);
449         char tmpbuf[10];
450
451         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
452                 return -EACCES;
453         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
454         strncpy(tmpbuf, buf, len);
455         tmpbuf[len] = '\0';
456         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
457                 return -EINVAL;
458         if (debug_level < 0)
459                 debug_level = 0;
460         h = shost_to_hba(shost);
461         h->raid_offload_debug = debug_level;
462         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
463                 h->raid_offload_debug);
464         return count;
465 }
466
467 static ssize_t host_store_rescan(struct device *dev,
468                                  struct device_attribute *attr,
469                                  const char *buf, size_t count)
470 {
471         struct ctlr_info *h;
472         struct Scsi_Host *shost = class_to_shost(dev);
473         h = shost_to_hba(shost);
474         hpsa_scan_start(h->scsi_host);
475         return count;
476 }
477
478 static ssize_t host_show_firmware_revision(struct device *dev,
479              struct device_attribute *attr, char *buf)
480 {
481         struct ctlr_info *h;
482         struct Scsi_Host *shost = class_to_shost(dev);
483         unsigned char *fwrev;
484
485         h = shost_to_hba(shost);
486         if (!h->hba_inquiry_data)
487                 return 0;
488         fwrev = &h->hba_inquiry_data[32];
489         return snprintf(buf, 20, "%c%c%c%c\n",
490                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
491 }
492
493 static ssize_t host_show_commands_outstanding(struct device *dev,
494              struct device_attribute *attr, char *buf)
495 {
496         struct Scsi_Host *shost = class_to_shost(dev);
497         struct ctlr_info *h = shost_to_hba(shost);
498
499         return snprintf(buf, 20, "%d\n",
500                         atomic_read(&h->commands_outstanding));
501 }
502
503 static ssize_t host_show_transport_mode(struct device *dev,
504         struct device_attribute *attr, char *buf)
505 {
506         struct ctlr_info *h;
507         struct Scsi_Host *shost = class_to_shost(dev);
508
509         h = shost_to_hba(shost);
510         return snprintf(buf, 20, "%s\n",
511                 h->transMethod & CFGTBL_Trans_Performant ?
512                         "performant" : "simple");
513 }
514
515 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
516         struct device_attribute *attr, char *buf)
517 {
518         struct ctlr_info *h;
519         struct Scsi_Host *shost = class_to_shost(dev);
520
521         h = shost_to_hba(shost);
522         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
523                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
524 }
525
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller[] = {
528         0x324a103C, /* Smart Array P712m */
529         0x324b103C, /* Smart Array P711m */
530         0x3223103C, /* Smart Array P800 */
531         0x3234103C, /* Smart Array P400 */
532         0x3235103C, /* Smart Array P400i */
533         0x3211103C, /* Smart Array E200i */
534         0x3212103C, /* Smart Array E200 */
535         0x3213103C, /* Smart Array E200i */
536         0x3214103C, /* Smart Array E200i */
537         0x3215103C, /* Smart Array E200i */
538         0x3237103C, /* Smart Array E500 */
539         0x323D103C, /* Smart Array P700m */
540         0x40800E11, /* Smart Array 5i */
541         0x409C0E11, /* Smart Array 6400 */
542         0x409D0E11, /* Smart Array 6400 EM */
543         0x40700E11, /* Smart Array 5300 */
544         0x40820E11, /* Smart Array 532 */
545         0x40830E11, /* Smart Array 5312 */
546         0x409A0E11, /* Smart Array 641 */
547         0x409B0E11, /* Smart Array 642 */
548         0x40910E11, /* Smart Array 6i */
549 };
550
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller[] = {
553         0x40800E11, /* Smart Array 5i */
554         0x40700E11, /* Smart Array 5300 */
555         0x40820E11, /* Smart Array 532 */
556         0x40830E11, /* Smart Array 5312 */
557         0x409A0E11, /* Smart Array 641 */
558         0x409B0E11, /* Smart Array 642 */
559         0x40910E11, /* Smart Array 6i */
560         /* Exclude 640x boards.  These are two pci devices in one slot
561          * which share a battery backed cache module.  One controls the
562          * cache, the other accesses the cache through the one that controls
563          * it.  If we reset the one controlling the cache, the other will
564          * likely not be happy.  Just forbid resetting this conjoined mess.
565          * The 640x isn't really supported by hpsa anyway.
566          */
567         0x409C0E11, /* Smart Array 6400 */
568         0x409D0E11, /* Smart Array 6400 EM */
569 };
570
571 static u32 needs_abort_tags_swizzled[] = {
572         0x323D103C, /* Smart Array P700m */
573         0x324a103C, /* Smart Array P712m */
574         0x324b103C, /* SmartArray P711m */
575 };
576
577 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
578 {
579         int i;
580
581         for (i = 0; i < nelems; i++)
582                 if (a[i] == board_id)
583                         return 1;
584         return 0;
585 }
586
587 static int ctlr_is_hard_resettable(u32 board_id)
588 {
589         return !board_id_in_array(unresettable_controller,
590                         ARRAY_SIZE(unresettable_controller), board_id);
591 }
592
593 static int ctlr_is_soft_resettable(u32 board_id)
594 {
595         return !board_id_in_array(soft_unresettable_controller,
596                         ARRAY_SIZE(soft_unresettable_controller), board_id);
597 }
598
599 static int ctlr_is_resettable(u32 board_id)
600 {
601         return ctlr_is_hard_resettable(board_id) ||
602                 ctlr_is_soft_resettable(board_id);
603 }
604
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
606 {
607         return board_id_in_array(needs_abort_tags_swizzled,
608                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
609 }
610
611 static ssize_t host_show_resettable(struct device *dev,
612         struct device_attribute *attr, char *buf)
613 {
614         struct ctlr_info *h;
615         struct Scsi_Host *shost = class_to_shost(dev);
616
617         h = shost_to_hba(shost);
618         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
619 }
620
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
622 {
623         return (scsi3addr[3] & 0xC0) == 0x40;
624 }
625
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
628 };
629 #define HPSA_RAID_0     0
630 #define HPSA_RAID_4     1
631 #define HPSA_RAID_1     2       /* also used for RAID 10 */
632 #define HPSA_RAID_5     3       /* also used for RAID 50 */
633 #define HPSA_RAID_51    4
634 #define HPSA_RAID_6     5       /* also used for RAID 60 */
635 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
638
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
640 {
641         return !device->physical_device;
642 }
643
644 static ssize_t raid_level_show(struct device *dev,
645              struct device_attribute *attr, char *buf)
646 {
647         ssize_t l = 0;
648         unsigned char rlevel;
649         struct ctlr_info *h;
650         struct scsi_device *sdev;
651         struct hpsa_scsi_dev_t *hdev;
652         unsigned long flags;
653
654         sdev = to_scsi_device(dev);
655         h = sdev_to_hba(sdev);
656         spin_lock_irqsave(&h->lock, flags);
657         hdev = sdev->hostdata;
658         if (!hdev) {
659                 spin_unlock_irqrestore(&h->lock, flags);
660                 return -ENODEV;
661         }
662
663         /* Is this even a logical drive? */
664         if (!is_logical_device(hdev)) {
665                 spin_unlock_irqrestore(&h->lock, flags);
666                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
667                 return l;
668         }
669
670         rlevel = hdev->raid_level;
671         spin_unlock_irqrestore(&h->lock, flags);
672         if (rlevel > RAID_UNKNOWN)
673                 rlevel = RAID_UNKNOWN;
674         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675         return l;
676 }
677
678 static ssize_t lunid_show(struct device *dev,
679              struct device_attribute *attr, char *buf)
680 {
681         struct ctlr_info *h;
682         struct scsi_device *sdev;
683         struct hpsa_scsi_dev_t *hdev;
684         unsigned long flags;
685         unsigned char lunid[8];
686
687         sdev = to_scsi_device(dev);
688         h = sdev_to_hba(sdev);
689         spin_lock_irqsave(&h->lock, flags);
690         hdev = sdev->hostdata;
691         if (!hdev) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 return -ENODEV;
694         }
695         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696         spin_unlock_irqrestore(&h->lock, flags);
697         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698                 lunid[0], lunid[1], lunid[2], lunid[3],
699                 lunid[4], lunid[5], lunid[6], lunid[7]);
700 }
701
702 static ssize_t unique_id_show(struct device *dev,
703              struct device_attribute *attr, char *buf)
704 {
705         struct ctlr_info *h;
706         struct scsi_device *sdev;
707         struct hpsa_scsi_dev_t *hdev;
708         unsigned long flags;
709         unsigned char sn[16];
710
711         sdev = to_scsi_device(dev);
712         h = sdev_to_hba(sdev);
713         spin_lock_irqsave(&h->lock, flags);
714         hdev = sdev->hostdata;
715         if (!hdev) {
716                 spin_unlock_irqrestore(&h->lock, flags);
717                 return -ENODEV;
718         }
719         memcpy(sn, hdev->device_id, sizeof(sn));
720         spin_unlock_irqrestore(&h->lock, flags);
721         return snprintf(buf, 16 * 2 + 2,
722                         "%02X%02X%02X%02X%02X%02X%02X%02X"
723                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
724                         sn[0], sn[1], sn[2], sn[3],
725                         sn[4], sn[5], sn[6], sn[7],
726                         sn[8], sn[9], sn[10], sn[11],
727                         sn[12], sn[13], sn[14], sn[15]);
728 }
729
730 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
731              struct device_attribute *attr, char *buf)
732 {
733         struct ctlr_info *h;
734         struct scsi_device *sdev;
735         struct hpsa_scsi_dev_t *hdev;
736         unsigned long flags;
737         int offload_enabled;
738
739         sdev = to_scsi_device(dev);
740         h = sdev_to_hba(sdev);
741         spin_lock_irqsave(&h->lock, flags);
742         hdev = sdev->hostdata;
743         if (!hdev) {
744                 spin_unlock_irqrestore(&h->lock, flags);
745                 return -ENODEV;
746         }
747         offload_enabled = hdev->offload_enabled;
748         spin_unlock_irqrestore(&h->lock, flags);
749         return snprintf(buf, 20, "%d\n", offload_enabled);
750 }
751
752 #define MAX_PATHS 8
753 static ssize_t path_info_show(struct device *dev,
754              struct device_attribute *attr, char *buf)
755 {
756         struct ctlr_info *h;
757         struct scsi_device *sdev;
758         struct hpsa_scsi_dev_t *hdev;
759         unsigned long flags;
760         int i;
761         int output_len = 0;
762         u8 box;
763         u8 bay;
764         u8 path_map_index = 0;
765         char *active;
766         unsigned char phys_connector[2];
767
768         sdev = to_scsi_device(dev);
769         h = sdev_to_hba(sdev);
770         spin_lock_irqsave(&h->devlock, flags);
771         hdev = sdev->hostdata;
772         if (!hdev) {
773                 spin_unlock_irqrestore(&h->devlock, flags);
774                 return -ENODEV;
775         }
776
777         bay = hdev->bay;
778         for (i = 0; i < MAX_PATHS; i++) {
779                 path_map_index = 1<<i;
780                 if (i == hdev->active_path_index)
781                         active = "Active";
782                 else if (hdev->path_map & path_map_index)
783                         active = "Inactive";
784                 else
785                         continue;
786
787                 output_len += scnprintf(buf + output_len,
788                                 PAGE_SIZE - output_len,
789                                 "[%d:%d:%d:%d] %20.20s ",
790                                 h->scsi_host->host_no,
791                                 hdev->bus, hdev->target, hdev->lun,
792                                 scsi_device_type(hdev->devtype));
793
794                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
795                         output_len += scnprintf(buf + output_len,
796                                                 PAGE_SIZE - output_len,
797                                                 "%s\n", active);
798                         continue;
799                 }
800
801                 box = hdev->box[i];
802                 memcpy(&phys_connector, &hdev->phys_connector[i],
803                         sizeof(phys_connector));
804                 if (phys_connector[0] < '0')
805                         phys_connector[0] = '0';
806                 if (phys_connector[1] < '0')
807                         phys_connector[1] = '0';
808                 output_len += scnprintf(buf + output_len,
809                                 PAGE_SIZE - output_len,
810                                 "PORT: %.2s ",
811                                 phys_connector);
812                 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
813                         if (box == 0 || box == 0xFF) {
814                                 output_len += scnprintf(buf + output_len,
815                                         PAGE_SIZE - output_len,
816                                         "BAY: %hhu %s\n",
817                                         bay, active);
818                         } else {
819                                 output_len += scnprintf(buf + output_len,
820                                         PAGE_SIZE - output_len,
821                                         "BOX: %hhu BAY: %hhu %s\n",
822                                         box, bay, active);
823                         }
824                 } else if (box != 0 && box != 0xFF) {
825                         output_len += scnprintf(buf + output_len,
826                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
827                                 box, active);
828                 } else
829                         output_len += scnprintf(buf + output_len,
830                                 PAGE_SIZE - output_len, "%s\n", active);
831         }
832
833         spin_unlock_irqrestore(&h->devlock, flags);
834         return output_len;
835 }
836
837 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
838 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
839 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
840 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
841 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
842                         host_show_hp_ssd_smart_path_enabled, NULL);
843 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
844 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
845                 host_show_hp_ssd_smart_path_status,
846                 host_store_hp_ssd_smart_path_status);
847 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
848                         host_store_raid_offload_debug);
849 static DEVICE_ATTR(firmware_revision, S_IRUGO,
850         host_show_firmware_revision, NULL);
851 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
852         host_show_commands_outstanding, NULL);
853 static DEVICE_ATTR(transport_mode, S_IRUGO,
854         host_show_transport_mode, NULL);
855 static DEVICE_ATTR(resettable, S_IRUGO,
856         host_show_resettable, NULL);
857 static DEVICE_ATTR(lockup_detected, S_IRUGO,
858         host_show_lockup_detected, NULL);
859
860 static struct device_attribute *hpsa_sdev_attrs[] = {
861         &dev_attr_raid_level,
862         &dev_attr_lunid,
863         &dev_attr_unique_id,
864         &dev_attr_hp_ssd_smart_path_enabled,
865         &dev_attr_path_info,
866         NULL,
867 };
868
869 static struct device_attribute *hpsa_shost_attrs[] = {
870         &dev_attr_rescan,
871         &dev_attr_firmware_revision,
872         &dev_attr_commands_outstanding,
873         &dev_attr_transport_mode,
874         &dev_attr_resettable,
875         &dev_attr_hp_ssd_smart_path_status,
876         &dev_attr_raid_offload_debug,
877         &dev_attr_lockup_detected,
878         NULL,
879 };
880
881 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
882                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
883
884 static struct scsi_host_template hpsa_driver_template = {
885         .module                 = THIS_MODULE,
886         .name                   = HPSA,
887         .proc_name              = HPSA,
888         .queuecommand           = hpsa_scsi_queue_command,
889         .scan_start             = hpsa_scan_start,
890         .scan_finished          = hpsa_scan_finished,
891         .change_queue_depth     = hpsa_change_queue_depth,
892         .this_id                = -1,
893         .use_clustering         = ENABLE_CLUSTERING,
894         .eh_abort_handler       = hpsa_eh_abort_handler,
895         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
896         .ioctl                  = hpsa_ioctl,
897         .slave_alloc            = hpsa_slave_alloc,
898         .slave_configure        = hpsa_slave_configure,
899         .slave_destroy          = hpsa_slave_destroy,
900 #ifdef CONFIG_COMPAT
901         .compat_ioctl           = hpsa_compat_ioctl,
902 #endif
903         .sdev_attrs = hpsa_sdev_attrs,
904         .shost_attrs = hpsa_shost_attrs,
905         .max_sectors = 8192,
906         .no_write_same = 1,
907 };
908
909 static inline u32 next_command(struct ctlr_info *h, u8 q)
910 {
911         u32 a;
912         struct reply_queue_buffer *rq = &h->reply_queue[q];
913
914         if (h->transMethod & CFGTBL_Trans_io_accel1)
915                 return h->access.command_completed(h, q);
916
917         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
918                 return h->access.command_completed(h, q);
919
920         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
921                 a = rq->head[rq->current_entry];
922                 rq->current_entry++;
923                 atomic_dec(&h->commands_outstanding);
924         } else {
925                 a = FIFO_EMPTY;
926         }
927         /* Check for wraparound */
928         if (rq->current_entry == h->max_commands) {
929                 rq->current_entry = 0;
930                 rq->wraparound ^= 1;
931         }
932         return a;
933 }
934
935 /*
936  * There are some special bits in the bus address of the
937  * command that we have to set for the controller to know
938  * how to process the command:
939  *
940  * Normal performant mode:
941  * bit 0: 1 means performant mode, 0 means simple mode.
942  * bits 1-3 = block fetch table entry
943  * bits 4-6 = command type (== 0)
944  *
945  * ioaccel1 mode:
946  * bit 0 = "performant mode" bit.
947  * bits 1-3 = block fetch table entry
948  * bits 4-6 = command type (== 110)
949  * (command type is needed because ioaccel1 mode
950  * commands are submitted through the same register as normal
951  * mode commands, so this is how the controller knows whether
952  * the command is normal mode or ioaccel1 mode.)
953  *
954  * ioaccel2 mode:
955  * bit 0 = "performant mode" bit.
956  * bits 1-4 = block fetch table entry (note extra bit)
957  * bits 4-6 = not needed, because ioaccel2 mode has
958  * a separate special register for submitting commands.
959  */
960
961 /*
962  * set_performant_mode: Modify the tag for cciss performant
963  * set bit 0 for pull model, bits 3-1 for block fetch
964  * register number
965  */
966 #define DEFAULT_REPLY_QUEUE (-1)
967 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
968                                         int reply_queue)
969 {
970         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
971                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
972                 if (unlikely(!h->msix_vector))
973                         return;
974                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
975                         c->Header.ReplyQueue =
976                                 raw_smp_processor_id() % h->nreply_queues;
977                 else
978                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
979         }
980 }
981
982 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
983                                                 struct CommandList *c,
984                                                 int reply_queue)
985 {
986         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
987
988         /*
989          * Tell the controller to post the reply to the queue for this
990          * processor.  This seems to give the best I/O throughput.
991          */
992         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
993                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
994         else
995                 cp->ReplyQueue = reply_queue % h->nreply_queues;
996         /*
997          * Set the bits in the address sent down to include:
998          *  - performant mode bit (bit 0)
999          *  - pull count (bits 1-3)
1000          *  - command type (bits 4-6)
1001          */
1002         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1003                                         IOACCEL1_BUSADDR_CMDTYPE;
1004 }
1005
1006 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1007                                                 struct CommandList *c,
1008                                                 int reply_queue)
1009 {
1010         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1011                 &h->ioaccel2_cmd_pool[c->cmdindex];
1012
1013         /* Tell the controller to post the reply to the queue for this
1014          * processor.  This seems to give the best I/O throughput.
1015          */
1016         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1017                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1018         else
1019                 cp->reply_queue = reply_queue % h->nreply_queues;
1020         /* Set the bits in the address sent down to include:
1021          *  - performant mode bit not used in ioaccel mode 2
1022          *  - pull count (bits 0-3)
1023          *  - command type isn't needed for ioaccel2
1024          */
1025         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1026 }
1027
1028 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1029                                                 struct CommandList *c,
1030                                                 int reply_queue)
1031 {
1032         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1033
1034         /*
1035          * Tell the controller to post the reply to the queue for this
1036          * processor.  This seems to give the best I/O throughput.
1037          */
1038         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1039                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1040         else
1041                 cp->reply_queue = reply_queue % h->nreply_queues;
1042         /*
1043          * Set the bits in the address sent down to include:
1044          *  - performant mode bit not used in ioaccel mode 2
1045          *  - pull count (bits 0-3)
1046          *  - command type isn't needed for ioaccel2
1047          */
1048         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1049 }
1050
1051 static int is_firmware_flash_cmd(u8 *cdb)
1052 {
1053         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1054 }
1055
1056 /*
1057  * During firmware flash, the heartbeat register may not update as frequently
1058  * as it should.  So we dial down lockup detection during firmware flash. and
1059  * dial it back up when firmware flash completes.
1060  */
1061 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1062 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1063 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1064                 struct CommandList *c)
1065 {
1066         if (!is_firmware_flash_cmd(c->Request.CDB))
1067                 return;
1068         atomic_inc(&h->firmware_flash_in_progress);
1069         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1070 }
1071
1072 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1073                 struct CommandList *c)
1074 {
1075         if (is_firmware_flash_cmd(c->Request.CDB) &&
1076                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1077                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1078 }
1079
1080 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1081         struct CommandList *c, int reply_queue)
1082 {
1083         dial_down_lockup_detection_during_fw_flash(h, c);
1084         atomic_inc(&h->commands_outstanding);
1085         switch (c->cmd_type) {
1086         case CMD_IOACCEL1:
1087                 set_ioaccel1_performant_mode(h, c, reply_queue);
1088                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1089                 break;
1090         case CMD_IOACCEL2:
1091                 set_ioaccel2_performant_mode(h, c, reply_queue);
1092                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1093                 break;
1094         case IOACCEL2_TMF:
1095                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1096                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1097                 break;
1098         default:
1099                 set_performant_mode(h, c, reply_queue);
1100                 h->access.submit_command(h, c);
1101         }
1102 }
1103
1104 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1105 {
1106         if (unlikely(hpsa_is_pending_event(c)))
1107                 return finish_cmd(c);
1108
1109         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1110 }
1111
1112 static inline int is_hba_lunid(unsigned char scsi3addr[])
1113 {
1114         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1115 }
1116
1117 static inline int is_scsi_rev_5(struct ctlr_info *h)
1118 {
1119         if (!h->hba_inquiry_data)
1120                 return 0;
1121         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1122                 return 1;
1123         return 0;
1124 }
1125
1126 static int hpsa_find_target_lun(struct ctlr_info *h,
1127         unsigned char scsi3addr[], int bus, int *target, int *lun)
1128 {
1129         /* finds an unused bus, target, lun for a new physical device
1130          * assumes h->devlock is held
1131          */
1132         int i, found = 0;
1133         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1134
1135         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1136
1137         for (i = 0; i < h->ndevices; i++) {
1138                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1139                         __set_bit(h->dev[i]->target, lun_taken);
1140         }
1141
1142         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1143         if (i < HPSA_MAX_DEVICES) {
1144                 /* *bus = 1; */
1145                 *target = i;
1146                 *lun = 0;
1147                 found = 1;
1148         }
1149         return !found;
1150 }
1151
1152 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1153         struct hpsa_scsi_dev_t *dev, char *description)
1154 {
1155 #define LABEL_SIZE 25
1156         char label[LABEL_SIZE];
1157
1158         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1159                 return;
1160
1161         switch (dev->devtype) {
1162         case TYPE_RAID:
1163                 snprintf(label, LABEL_SIZE, "controller");
1164                 break;
1165         case TYPE_ENCLOSURE:
1166                 snprintf(label, LABEL_SIZE, "enclosure");
1167                 break;
1168         case TYPE_DISK:
1169                 if (dev->external)
1170                         snprintf(label, LABEL_SIZE, "external");
1171                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1172                         snprintf(label, LABEL_SIZE, "%s",
1173                                 raid_label[PHYSICAL_DRIVE]);
1174                 else
1175                         snprintf(label, LABEL_SIZE, "RAID-%s",
1176                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1177                                 raid_label[dev->raid_level]);
1178                 break;
1179         case TYPE_ROM:
1180                 snprintf(label, LABEL_SIZE, "rom");
1181                 break;
1182         case TYPE_TAPE:
1183                 snprintf(label, LABEL_SIZE, "tape");
1184                 break;
1185         case TYPE_MEDIUM_CHANGER:
1186                 snprintf(label, LABEL_SIZE, "changer");
1187                 break;
1188         default:
1189                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1190                 break;
1191         }
1192
1193         dev_printk(level, &h->pdev->dev,
1194                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1195                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1196                         description,
1197                         scsi_device_type(dev->devtype),
1198                         dev->vendor,
1199                         dev->model,
1200                         label,
1201                         dev->offload_config ? '+' : '-',
1202                         dev->offload_enabled ? '+' : '-',
1203                         dev->expose_device);
1204 }
1205
1206 /* Add an entry into h->dev[] array. */
1207 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1208                 struct hpsa_scsi_dev_t *device,
1209                 struct hpsa_scsi_dev_t *added[], int *nadded)
1210 {
1211         /* assumes h->devlock is held */
1212         int n = h->ndevices;
1213         int i;
1214         unsigned char addr1[8], addr2[8];
1215         struct hpsa_scsi_dev_t *sd;
1216
1217         if (n >= HPSA_MAX_DEVICES) {
1218                 dev_err(&h->pdev->dev, "too many devices, some will be "
1219                         "inaccessible.\n");
1220                 return -1;
1221         }
1222
1223         /* physical devices do not have lun or target assigned until now. */
1224         if (device->lun != -1)
1225                 /* Logical device, lun is already assigned. */
1226                 goto lun_assigned;
1227
1228         /* If this device a non-zero lun of a multi-lun device
1229          * byte 4 of the 8-byte LUN addr will contain the logical
1230          * unit no, zero otherwise.
1231          */
1232         if (device->scsi3addr[4] == 0) {
1233                 /* This is not a non-zero lun of a multi-lun device */
1234                 if (hpsa_find_target_lun(h, device->scsi3addr,
1235                         device->bus, &device->target, &device->lun) != 0)
1236                         return -1;
1237                 goto lun_assigned;
1238         }
1239
1240         /* This is a non-zero lun of a multi-lun device.
1241          * Search through our list and find the device which
1242          * has the same 8 byte LUN address, excepting byte 4 and 5.
1243          * Assign the same bus and target for this new LUN.
1244          * Use the logical unit number from the firmware.
1245          */
1246         memcpy(addr1, device->scsi3addr, 8);
1247         addr1[4] = 0;
1248         addr1[5] = 0;
1249         for (i = 0; i < n; i++) {
1250                 sd = h->dev[i];
1251                 memcpy(addr2, sd->scsi3addr, 8);
1252                 addr2[4] = 0;
1253                 addr2[5] = 0;
1254                 /* differ only in byte 4 and 5? */
1255                 if (memcmp(addr1, addr2, 8) == 0) {
1256                         device->bus = sd->bus;
1257                         device->target = sd->target;
1258                         device->lun = device->scsi3addr[4];
1259                         break;
1260                 }
1261         }
1262         if (device->lun == -1) {
1263                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1264                         " suspect firmware bug or unsupported hardware "
1265                         "configuration.\n");
1266                         return -1;
1267         }
1268
1269 lun_assigned:
1270
1271         h->dev[n] = device;
1272         h->ndevices++;
1273         added[*nadded] = device;
1274         (*nadded)++;
1275         hpsa_show_dev_msg(KERN_INFO, h, device,
1276                 device->expose_device ? "added" : "masked");
1277         device->offload_to_be_enabled = device->offload_enabled;
1278         device->offload_enabled = 0;
1279         return 0;
1280 }
1281
1282 /* Update an entry in h->dev[] array. */
1283 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1284         int entry, struct hpsa_scsi_dev_t *new_entry)
1285 {
1286         int offload_enabled;
1287         /* assumes h->devlock is held */
1288         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1289
1290         /* Raid level changed. */
1291         h->dev[entry]->raid_level = new_entry->raid_level;
1292
1293         /* Raid offload parameters changed.  Careful about the ordering. */
1294         if (new_entry->offload_config && new_entry->offload_enabled) {
1295                 /*
1296                  * if drive is newly offload_enabled, we want to copy the
1297                  * raid map data first.  If previously offload_enabled and
1298                  * offload_config were set, raid map data had better be
1299                  * the same as it was before.  if raid map data is changed
1300                  * then it had better be the case that
1301                  * h->dev[entry]->offload_enabled is currently 0.
1302                  */
1303                 h->dev[entry]->raid_map = new_entry->raid_map;
1304                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1305         }
1306         if (new_entry->hba_ioaccel_enabled) {
1307                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1308                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1309         }
1310         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1311         h->dev[entry]->offload_config = new_entry->offload_config;
1312         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1313         h->dev[entry]->queue_depth = new_entry->queue_depth;
1314
1315         /*
1316          * We can turn off ioaccel offload now, but need to delay turning
1317          * it on until we can update h->dev[entry]->phys_disk[], but we
1318          * can't do that until all the devices are updated.
1319          */
1320         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1321         if (!new_entry->offload_enabled)
1322                 h->dev[entry]->offload_enabled = 0;
1323
1324         offload_enabled = h->dev[entry]->offload_enabled;
1325         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1326         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1327         h->dev[entry]->offload_enabled = offload_enabled;
1328 }
1329
1330 /* Replace an entry from h->dev[] array. */
1331 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1332         int entry, struct hpsa_scsi_dev_t *new_entry,
1333         struct hpsa_scsi_dev_t *added[], int *nadded,
1334         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1335 {
1336         /* assumes h->devlock is held */
1337         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1338         removed[*nremoved] = h->dev[entry];
1339         (*nremoved)++;
1340
1341         /*
1342          * New physical devices won't have target/lun assigned yet
1343          * so we need to preserve the values in the slot we are replacing.
1344          */
1345         if (new_entry->target == -1) {
1346                 new_entry->target = h->dev[entry]->target;
1347                 new_entry->lun = h->dev[entry]->lun;
1348         }
1349
1350         h->dev[entry] = new_entry;
1351         added[*nadded] = new_entry;
1352         (*nadded)++;
1353         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1354         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1355         new_entry->offload_enabled = 0;
1356 }
1357
1358 /* Remove an entry from h->dev[] array. */
1359 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1360         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1361 {
1362         /* assumes h->devlock is held */
1363         int i;
1364         struct hpsa_scsi_dev_t *sd;
1365
1366         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1367
1368         sd = h->dev[entry];
1369         removed[*nremoved] = h->dev[entry];
1370         (*nremoved)++;
1371
1372         for (i = entry; i < h->ndevices-1; i++)
1373                 h->dev[i] = h->dev[i+1];
1374         h->ndevices--;
1375         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1376 }
1377
1378 #define SCSI3ADDR_EQ(a, b) ( \
1379         (a)[7] == (b)[7] && \
1380         (a)[6] == (b)[6] && \
1381         (a)[5] == (b)[5] && \
1382         (a)[4] == (b)[4] && \
1383         (a)[3] == (b)[3] && \
1384         (a)[2] == (b)[2] && \
1385         (a)[1] == (b)[1] && \
1386         (a)[0] == (b)[0])
1387
1388 static void fixup_botched_add(struct ctlr_info *h,
1389         struct hpsa_scsi_dev_t *added)
1390 {
1391         /* called when scsi_add_device fails in order to re-adjust
1392          * h->dev[] to match the mid layer's view.
1393          */
1394         unsigned long flags;
1395         int i, j;
1396
1397         spin_lock_irqsave(&h->lock, flags);
1398         for (i = 0; i < h->ndevices; i++) {
1399                 if (h->dev[i] == added) {
1400                         for (j = i; j < h->ndevices-1; j++)
1401                                 h->dev[j] = h->dev[j+1];
1402                         h->ndevices--;
1403                         break;
1404                 }
1405         }
1406         spin_unlock_irqrestore(&h->lock, flags);
1407         kfree(added);
1408 }
1409
1410 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1411         struct hpsa_scsi_dev_t *dev2)
1412 {
1413         /* we compare everything except lun and target as these
1414          * are not yet assigned.  Compare parts likely
1415          * to differ first
1416          */
1417         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1418                 sizeof(dev1->scsi3addr)) != 0)
1419                 return 0;
1420         if (memcmp(dev1->device_id, dev2->device_id,
1421                 sizeof(dev1->device_id)) != 0)
1422                 return 0;
1423         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1424                 return 0;
1425         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1426                 return 0;
1427         if (dev1->devtype != dev2->devtype)
1428                 return 0;
1429         if (dev1->bus != dev2->bus)
1430                 return 0;
1431         return 1;
1432 }
1433
1434 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1435         struct hpsa_scsi_dev_t *dev2)
1436 {
1437         /* Device attributes that can change, but don't mean
1438          * that the device is a different device, nor that the OS
1439          * needs to be told anything about the change.
1440          */
1441         if (dev1->raid_level != dev2->raid_level)
1442                 return 1;
1443         if (dev1->offload_config != dev2->offload_config)
1444                 return 1;
1445         if (dev1->offload_enabled != dev2->offload_enabled)
1446                 return 1;
1447         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1448                 if (dev1->queue_depth != dev2->queue_depth)
1449                         return 1;
1450         return 0;
1451 }
1452
1453 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1454  * and return needle location in *index.  If scsi3addr matches, but not
1455  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1456  * location in *index.
1457  * In the case of a minor device attribute change, such as RAID level, just
1458  * return DEVICE_UPDATED, along with the updated device's location in index.
1459  * If needle not found, return DEVICE_NOT_FOUND.
1460  */
1461 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1462         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1463         int *index)
1464 {
1465         int i;
1466 #define DEVICE_NOT_FOUND 0
1467 #define DEVICE_CHANGED 1
1468 #define DEVICE_SAME 2
1469 #define DEVICE_UPDATED 3
1470         if (needle == NULL)
1471                 return DEVICE_NOT_FOUND;
1472
1473         for (i = 0; i < haystack_size; i++) {
1474                 if (haystack[i] == NULL) /* previously removed. */
1475                         continue;
1476                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1477                         *index = i;
1478                         if (device_is_the_same(needle, haystack[i])) {
1479                                 if (device_updated(needle, haystack[i]))
1480                                         return DEVICE_UPDATED;
1481                                 return DEVICE_SAME;
1482                         } else {
1483                                 /* Keep offline devices offline */
1484                                 if (needle->volume_offline)
1485                                         return DEVICE_NOT_FOUND;
1486                                 return DEVICE_CHANGED;
1487                         }
1488                 }
1489         }
1490         *index = -1;
1491         return DEVICE_NOT_FOUND;
1492 }
1493
1494 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1495                                         unsigned char scsi3addr[])
1496 {
1497         struct offline_device_entry *device;
1498         unsigned long flags;
1499
1500         /* Check to see if device is already on the list */
1501         spin_lock_irqsave(&h->offline_device_lock, flags);
1502         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1503                 if (memcmp(device->scsi3addr, scsi3addr,
1504                         sizeof(device->scsi3addr)) == 0) {
1505                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1506                         return;
1507                 }
1508         }
1509         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1510
1511         /* Device is not on the list, add it. */
1512         device = kmalloc(sizeof(*device), GFP_KERNEL);
1513         if (!device) {
1514                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1515                 return;
1516         }
1517         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1518         spin_lock_irqsave(&h->offline_device_lock, flags);
1519         list_add_tail(&device->offline_list, &h->offline_device_list);
1520         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1521 }
1522
1523 /* Print a message explaining various offline volume states */
1524 static void hpsa_show_volume_status(struct ctlr_info *h,
1525         struct hpsa_scsi_dev_t *sd)
1526 {
1527         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1528                 dev_info(&h->pdev->dev,
1529                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1530                         h->scsi_host->host_no,
1531                         sd->bus, sd->target, sd->lun);
1532         switch (sd->volume_offline) {
1533         case HPSA_LV_OK:
1534                 break;
1535         case HPSA_LV_UNDERGOING_ERASE:
1536                 dev_info(&h->pdev->dev,
1537                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1538                         h->scsi_host->host_no,
1539                         sd->bus, sd->target, sd->lun);
1540                 break;
1541         case HPSA_LV_NOT_AVAILABLE:
1542                 dev_info(&h->pdev->dev,
1543                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1544                         h->scsi_host->host_no,
1545                         sd->bus, sd->target, sd->lun);
1546                 break;
1547         case HPSA_LV_UNDERGOING_RPI:
1548                 dev_info(&h->pdev->dev,
1549                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1550                         h->scsi_host->host_no,
1551                         sd->bus, sd->target, sd->lun);
1552                 break;
1553         case HPSA_LV_PENDING_RPI:
1554                 dev_info(&h->pdev->dev,
1555                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1556                         h->scsi_host->host_no,
1557                         sd->bus, sd->target, sd->lun);
1558                 break;
1559         case HPSA_LV_ENCRYPTED_NO_KEY:
1560                 dev_info(&h->pdev->dev,
1561                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1562                         h->scsi_host->host_no,
1563                         sd->bus, sd->target, sd->lun);
1564                 break;
1565         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1566                 dev_info(&h->pdev->dev,
1567                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1568                         h->scsi_host->host_no,
1569                         sd->bus, sd->target, sd->lun);
1570                 break;
1571         case HPSA_LV_UNDERGOING_ENCRYPTION:
1572                 dev_info(&h->pdev->dev,
1573                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1574                         h->scsi_host->host_no,
1575                         sd->bus, sd->target, sd->lun);
1576                 break;
1577         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1578                 dev_info(&h->pdev->dev,
1579                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1580                         h->scsi_host->host_no,
1581                         sd->bus, sd->target, sd->lun);
1582                 break;
1583         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1584                 dev_info(&h->pdev->dev,
1585                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1586                         h->scsi_host->host_no,
1587                         sd->bus, sd->target, sd->lun);
1588                 break;
1589         case HPSA_LV_PENDING_ENCRYPTION:
1590                 dev_info(&h->pdev->dev,
1591                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1592                         h->scsi_host->host_no,
1593                         sd->bus, sd->target, sd->lun);
1594                 break;
1595         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1596                 dev_info(&h->pdev->dev,
1597                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1598                         h->scsi_host->host_no,
1599                         sd->bus, sd->target, sd->lun);
1600                 break;
1601         }
1602 }
1603
1604 /*
1605  * Figure the list of physical drive pointers for a logical drive with
1606  * raid offload configured.
1607  */
1608 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1609                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1610                                 struct hpsa_scsi_dev_t *logical_drive)
1611 {
1612         struct raid_map_data *map = &logical_drive->raid_map;
1613         struct raid_map_disk_data *dd = &map->data[0];
1614         int i, j;
1615         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1616                                 le16_to_cpu(map->metadata_disks_per_row);
1617         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1618                                 le16_to_cpu(map->layout_map_count) *
1619                                 total_disks_per_row;
1620         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1621                                 total_disks_per_row;
1622         int qdepth;
1623
1624         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1625                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1626
1627         logical_drive->nphysical_disks = nraid_map_entries;
1628
1629         qdepth = 0;
1630         for (i = 0; i < nraid_map_entries; i++) {
1631                 logical_drive->phys_disk[i] = NULL;
1632                 if (!logical_drive->offload_config)
1633                         continue;
1634                 for (j = 0; j < ndevices; j++) {
1635                         if (dev[j] == NULL)
1636                                 continue;
1637                         if (dev[j]->devtype != TYPE_DISK)
1638                                 continue;
1639                         if (is_logical_device(dev[j]))
1640                                 continue;
1641                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1642                                 continue;
1643
1644                         logical_drive->phys_disk[i] = dev[j];
1645                         if (i < nphys_disk)
1646                                 qdepth = min(h->nr_cmds, qdepth +
1647                                     logical_drive->phys_disk[i]->queue_depth);
1648                         break;
1649                 }
1650
1651                 /*
1652                  * This can happen if a physical drive is removed and
1653                  * the logical drive is degraded.  In that case, the RAID
1654                  * map data will refer to a physical disk which isn't actually
1655                  * present.  And in that case offload_enabled should already
1656                  * be 0, but we'll turn it off here just in case
1657                  */
1658                 if (!logical_drive->phys_disk[i]) {
1659                         logical_drive->offload_enabled = 0;
1660                         logical_drive->offload_to_be_enabled = 0;
1661                         logical_drive->queue_depth = 8;
1662                 }
1663         }
1664         if (nraid_map_entries)
1665                 /*
1666                  * This is correct for reads, too high for full stripe writes,
1667                  * way too high for partial stripe writes
1668                  */
1669                 logical_drive->queue_depth = qdepth;
1670         else
1671                 logical_drive->queue_depth = h->nr_cmds;
1672 }
1673
1674 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1675                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1676 {
1677         int i;
1678
1679         for (i = 0; i < ndevices; i++) {
1680                 if (dev[i] == NULL)
1681                         continue;
1682                 if (dev[i]->devtype != TYPE_DISK)
1683                         continue;
1684                 if (!is_logical_device(dev[i]))
1685                         continue;
1686
1687                 /*
1688                  * If offload is currently enabled, the RAID map and
1689                  * phys_disk[] assignment *better* not be changing
1690                  * and since it isn't changing, we do not need to
1691                  * update it.
1692                  */
1693                 if (dev[i]->offload_enabled)
1694                         continue;
1695
1696                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1697         }
1698 }
1699
1700 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1701 {
1702         int rc = 0;
1703
1704         if (!h->scsi_host)
1705                 return 1;
1706
1707         if (is_logical_device(device)) /* RAID */
1708                 rc = scsi_add_device(h->scsi_host, device->bus,
1709                                         device->target, device->lun);
1710         else /* HBA */
1711                 rc = hpsa_add_sas_device(h->sas_host, device);
1712
1713         return rc;
1714 }
1715
1716 static void hpsa_remove_device(struct ctlr_info *h,
1717                         struct hpsa_scsi_dev_t *device)
1718 {
1719         struct scsi_device *sdev = NULL;
1720
1721         if (!h->scsi_host)
1722                 return;
1723
1724         if (is_logical_device(device)) { /* RAID */
1725                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1726                                                 device->target, device->lun);
1727                 if (sdev) {
1728                         scsi_remove_device(sdev);
1729                         scsi_device_put(sdev);
1730                 } else {
1731                         /*
1732                          * We don't expect to get here.  Future commands
1733                          * to this device will get a selection timeout as
1734                          * if the device were gone.
1735                          */
1736                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1737                                         "didn't find device for removal.");
1738                 }
1739         } else /* HBA */
1740                 hpsa_remove_sas_device(device);
1741 }
1742
1743 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1744         struct hpsa_scsi_dev_t *sd[], int nsds)
1745 {
1746         /* sd contains scsi3 addresses and devtypes, and inquiry
1747          * data.  This function takes what's in sd to be the current
1748          * reality and updates h->dev[] to reflect that reality.
1749          */
1750         int i, entry, device_change, changes = 0;
1751         struct hpsa_scsi_dev_t *csd;
1752         unsigned long flags;
1753         struct hpsa_scsi_dev_t **added, **removed;
1754         int nadded, nremoved;
1755
1756         /*
1757          * A reset can cause a device status to change
1758          * re-schedule the scan to see what happened.
1759          */
1760         if (h->reset_in_progress) {
1761                 h->drv_req_rescan = 1;
1762                 return;
1763         }
1764
1765         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1766         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1767
1768         if (!added || !removed) {
1769                 dev_warn(&h->pdev->dev, "out of memory in "
1770                         "adjust_hpsa_scsi_table\n");
1771                 goto free_and_out;
1772         }
1773
1774         spin_lock_irqsave(&h->devlock, flags);
1775
1776         /* find any devices in h->dev[] that are not in
1777          * sd[] and remove them from h->dev[], and for any
1778          * devices which have changed, remove the old device
1779          * info and add the new device info.
1780          * If minor device attributes change, just update
1781          * the existing device structure.
1782          */
1783         i = 0;
1784         nremoved = 0;
1785         nadded = 0;
1786         while (i < h->ndevices) {
1787                 csd = h->dev[i];
1788                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1789                 if (device_change == DEVICE_NOT_FOUND) {
1790                         changes++;
1791                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1792                         continue; /* remove ^^^, hence i not incremented */
1793                 } else if (device_change == DEVICE_CHANGED) {
1794                         changes++;
1795                         hpsa_scsi_replace_entry(h, i, sd[entry],
1796                                 added, &nadded, removed, &nremoved);
1797                         /* Set it to NULL to prevent it from being freed
1798                          * at the bottom of hpsa_update_scsi_devices()
1799                          */
1800                         sd[entry] = NULL;
1801                 } else if (device_change == DEVICE_UPDATED) {
1802                         hpsa_scsi_update_entry(h, i, sd[entry]);
1803                 }
1804                 i++;
1805         }
1806
1807         /* Now, make sure every device listed in sd[] is also
1808          * listed in h->dev[], adding them if they aren't found
1809          */
1810
1811         for (i = 0; i < nsds; i++) {
1812                 if (!sd[i]) /* if already added above. */
1813                         continue;
1814
1815                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1816                  * as the SCSI mid-layer does not handle such devices well.
1817                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1818                  * at 160Hz, and prevents the system from coming up.
1819                  */
1820                 if (sd[i]->volume_offline) {
1821                         hpsa_show_volume_status(h, sd[i]);
1822                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1823                         continue;
1824                 }
1825
1826                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1827                                         h->ndevices, &entry);
1828                 if (device_change == DEVICE_NOT_FOUND) {
1829                         changes++;
1830                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1831                                 break;
1832                         sd[i] = NULL; /* prevent from being freed later. */
1833                 } else if (device_change == DEVICE_CHANGED) {
1834                         /* should never happen... */
1835                         changes++;
1836                         dev_warn(&h->pdev->dev,
1837                                 "device unexpectedly changed.\n");
1838                         /* but if it does happen, we just ignore that device */
1839                 }
1840         }
1841         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1842
1843         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1844          * any logical drives that need it enabled.
1845          */
1846         for (i = 0; i < h->ndevices; i++) {
1847                 if (h->dev[i] == NULL)
1848                         continue;
1849                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1850         }
1851
1852         spin_unlock_irqrestore(&h->devlock, flags);
1853
1854         /* Monitor devices which are in one of several NOT READY states to be
1855          * brought online later. This must be done without holding h->devlock,
1856          * so don't touch h->dev[]
1857          */
1858         for (i = 0; i < nsds; i++) {
1859                 if (!sd[i]) /* if already added above. */
1860                         continue;
1861                 if (sd[i]->volume_offline)
1862                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1863         }
1864
1865         /* Don't notify scsi mid layer of any changes the first time through
1866          * (or if there are no changes) scsi_scan_host will do it later the
1867          * first time through.
1868          */
1869         if (!changes)
1870                 goto free_and_out;
1871
1872         /* Notify scsi mid layer of any removed devices */
1873         for (i = 0; i < nremoved; i++) {
1874                 if (removed[i] == NULL)
1875                         continue;
1876                 if (removed[i]->expose_device)
1877                         hpsa_remove_device(h, removed[i]);
1878                 kfree(removed[i]);
1879                 removed[i] = NULL;
1880         }
1881
1882         /* Notify scsi mid layer of any added devices */
1883         for (i = 0; i < nadded; i++) {
1884                 int rc = 0;
1885
1886                 if (added[i] == NULL)
1887                         continue;
1888                 if (!(added[i]->expose_device))
1889                         continue;
1890                 rc = hpsa_add_device(h, added[i]);
1891                 if (!rc)
1892                         continue;
1893                 dev_warn(&h->pdev->dev,
1894                         "addition failed %d, device not added.", rc);
1895                 /* now we have to remove it from h->dev,
1896                  * since it didn't get added to scsi mid layer
1897                  */
1898                 fixup_botched_add(h, added[i]);
1899                 h->drv_req_rescan = 1;
1900         }
1901
1902 free_and_out:
1903         kfree(added);
1904         kfree(removed);
1905 }
1906
1907 /*
1908  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1909  * Assume's h->devlock is held.
1910  */
1911 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1912         int bus, int target, int lun)
1913 {
1914         int i;
1915         struct hpsa_scsi_dev_t *sd;
1916
1917         for (i = 0; i < h->ndevices; i++) {
1918                 sd = h->dev[i];
1919                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1920                         return sd;
1921         }
1922         return NULL;
1923 }
1924
1925 static int hpsa_slave_alloc(struct scsi_device *sdev)
1926 {
1927         struct hpsa_scsi_dev_t *sd;
1928         unsigned long flags;
1929         struct ctlr_info *h;
1930
1931         h = sdev_to_hba(sdev);
1932         spin_lock_irqsave(&h->devlock, flags);
1933         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1934                 struct scsi_target *starget;
1935                 struct sas_rphy *rphy;
1936
1937                 starget = scsi_target(sdev);
1938                 rphy = target_to_rphy(starget);
1939                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1940                 if (sd) {
1941                         sd->target = sdev_id(sdev);
1942                         sd->lun = sdev->lun;
1943                 }
1944         } else
1945                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1946                                         sdev_id(sdev), sdev->lun);
1947
1948         if (sd && sd->expose_device) {
1949                 atomic_set(&sd->ioaccel_cmds_out, 0);
1950                 sdev->hostdata = sd;
1951         } else
1952                 sdev->hostdata = NULL;
1953         spin_unlock_irqrestore(&h->devlock, flags);
1954         return 0;
1955 }
1956
1957 /* configure scsi device based on internal per-device structure */
1958 static int hpsa_slave_configure(struct scsi_device *sdev)
1959 {
1960         struct hpsa_scsi_dev_t *sd;
1961         int queue_depth;
1962
1963         sd = sdev->hostdata;
1964         sdev->no_uld_attach = !sd || !sd->expose_device;
1965
1966         if (sd)
1967                 queue_depth = sd->queue_depth != 0 ?
1968                         sd->queue_depth : sdev->host->can_queue;
1969         else
1970                 queue_depth = sdev->host->can_queue;
1971
1972         scsi_change_queue_depth(sdev, queue_depth);
1973
1974         return 0;
1975 }
1976
1977 static void hpsa_slave_destroy(struct scsi_device *sdev)
1978 {
1979         /* nothing to do. */
1980 }
1981
1982 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1983 {
1984         int i;
1985
1986         if (!h->ioaccel2_cmd_sg_list)
1987                 return;
1988         for (i = 0; i < h->nr_cmds; i++) {
1989                 kfree(h->ioaccel2_cmd_sg_list[i]);
1990                 h->ioaccel2_cmd_sg_list[i] = NULL;
1991         }
1992         kfree(h->ioaccel2_cmd_sg_list);
1993         h->ioaccel2_cmd_sg_list = NULL;
1994 }
1995
1996 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1997 {
1998         int i;
1999
2000         if (h->chainsize <= 0)
2001                 return 0;
2002
2003         h->ioaccel2_cmd_sg_list =
2004                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2005                                         GFP_KERNEL);
2006         if (!h->ioaccel2_cmd_sg_list)
2007                 return -ENOMEM;
2008         for (i = 0; i < h->nr_cmds; i++) {
2009                 h->ioaccel2_cmd_sg_list[i] =
2010                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2011                                         h->maxsgentries, GFP_KERNEL);
2012                 if (!h->ioaccel2_cmd_sg_list[i])
2013                         goto clean;
2014         }
2015         return 0;
2016
2017 clean:
2018         hpsa_free_ioaccel2_sg_chain_blocks(h);
2019         return -ENOMEM;
2020 }
2021
2022 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2023 {
2024         int i;
2025
2026         if (!h->cmd_sg_list)
2027                 return;
2028         for (i = 0; i < h->nr_cmds; i++) {
2029                 kfree(h->cmd_sg_list[i]);
2030                 h->cmd_sg_list[i] = NULL;
2031         }
2032         kfree(h->cmd_sg_list);
2033         h->cmd_sg_list = NULL;
2034 }
2035
2036 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2037 {
2038         int i;
2039
2040         if (h->chainsize <= 0)
2041                 return 0;
2042
2043         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2044                                 GFP_KERNEL);
2045         if (!h->cmd_sg_list) {
2046                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2047                 return -ENOMEM;
2048         }
2049         for (i = 0; i < h->nr_cmds; i++) {
2050                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2051                                                 h->chainsize, GFP_KERNEL);
2052                 if (!h->cmd_sg_list[i]) {
2053                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2054                         goto clean;
2055                 }
2056         }
2057         return 0;
2058
2059 clean:
2060         hpsa_free_sg_chain_blocks(h);
2061         return -ENOMEM;
2062 }
2063
2064 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2065         struct io_accel2_cmd *cp, struct CommandList *c)
2066 {
2067         struct ioaccel2_sg_element *chain_block;
2068         u64 temp64;
2069         u32 chain_size;
2070
2071         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2072         chain_size = le32_to_cpu(cp->sg[0].length);
2073         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2074                                 PCI_DMA_TODEVICE);
2075         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2076                 /* prevent subsequent unmapping */
2077                 cp->sg->address = 0;
2078                 return -1;
2079         }
2080         cp->sg->address = cpu_to_le64(temp64);
2081         return 0;
2082 }
2083
2084 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2085         struct io_accel2_cmd *cp)
2086 {
2087         struct ioaccel2_sg_element *chain_sg;
2088         u64 temp64;
2089         u32 chain_size;
2090
2091         chain_sg = cp->sg;
2092         temp64 = le64_to_cpu(chain_sg->address);
2093         chain_size = le32_to_cpu(cp->sg[0].length);
2094         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2095 }
2096
2097 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2098         struct CommandList *c)
2099 {
2100         struct SGDescriptor *chain_sg, *chain_block;
2101         u64 temp64;
2102         u32 chain_len;
2103
2104         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2105         chain_block = h->cmd_sg_list[c->cmdindex];
2106         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2107         chain_len = sizeof(*chain_sg) *
2108                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2109         chain_sg->Len = cpu_to_le32(chain_len);
2110         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2111                                 PCI_DMA_TODEVICE);
2112         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2113                 /* prevent subsequent unmapping */
2114                 chain_sg->Addr = cpu_to_le64(0);
2115                 return -1;
2116         }
2117         chain_sg->Addr = cpu_to_le64(temp64);
2118         return 0;
2119 }
2120
2121 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2122         struct CommandList *c)
2123 {
2124         struct SGDescriptor *chain_sg;
2125
2126         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2127                 return;
2128
2129         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2130         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2131                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2132 }
2133
2134
2135 /* Decode the various types of errors on ioaccel2 path.
2136  * Return 1 for any error that should generate a RAID path retry.
2137  * Return 0 for errors that don't require a RAID path retry.
2138  */
2139 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2140                                         struct CommandList *c,
2141                                         struct scsi_cmnd *cmd,
2142                                         struct io_accel2_cmd *c2)
2143 {
2144         int data_len;
2145         int retry = 0;
2146         u32 ioaccel2_resid = 0;
2147
2148         switch (c2->error_data.serv_response) {
2149         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2150                 switch (c2->error_data.status) {
2151                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2152                         break;
2153                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2154                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2155                         if (c2->error_data.data_present !=
2156                                         IOACCEL2_SENSE_DATA_PRESENT) {
2157                                 memset(cmd->sense_buffer, 0,
2158                                         SCSI_SENSE_BUFFERSIZE);
2159                                 break;
2160                         }
2161                         /* copy the sense data */
2162                         data_len = c2->error_data.sense_data_len;
2163                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2164                                 data_len = SCSI_SENSE_BUFFERSIZE;
2165                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2166                                 data_len =
2167                                         sizeof(c2->error_data.sense_data_buff);
2168                         memcpy(cmd->sense_buffer,
2169                                 c2->error_data.sense_data_buff, data_len);
2170                         retry = 1;
2171                         break;
2172                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2173                         retry = 1;
2174                         break;
2175                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2176                         retry = 1;
2177                         break;
2178                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2179                         retry = 1;
2180                         break;
2181                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2182                         retry = 1;
2183                         break;
2184                 default:
2185                         retry = 1;
2186                         break;
2187                 }
2188                 break;
2189         case IOACCEL2_SERV_RESPONSE_FAILURE:
2190                 switch (c2->error_data.status) {
2191                 case IOACCEL2_STATUS_SR_IO_ERROR:
2192                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2193                 case IOACCEL2_STATUS_SR_OVERRUN:
2194                         retry = 1;
2195                         break;
2196                 case IOACCEL2_STATUS_SR_UNDERRUN:
2197                         cmd->result = (DID_OK << 16);           /* host byte */
2198                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2199                         ioaccel2_resid = get_unaligned_le32(
2200                                                 &c2->error_data.resid_cnt[0]);
2201                         scsi_set_resid(cmd, ioaccel2_resid);
2202                         break;
2203                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2204                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2205                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2206                         /* We will get an event from ctlr to trigger rescan */
2207                         retry = 1;
2208                         break;
2209                 default:
2210                         retry = 1;
2211                 }
2212                 break;
2213         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2214                 break;
2215         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2216                 break;
2217         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2218                 retry = 1;
2219                 break;
2220         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2221                 break;
2222         default:
2223                 retry = 1;
2224                 break;
2225         }
2226
2227         return retry;   /* retry on raid path? */
2228 }
2229
2230 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2231                 struct CommandList *c)
2232 {
2233         bool do_wake = false;
2234
2235         /*
2236          * Prevent the following race in the abort handler:
2237          *
2238          * 1. LLD is requested to abort a SCSI command
2239          * 2. The SCSI command completes
2240          * 3. The struct CommandList associated with step 2 is made available
2241          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2242          * 5. Abort handler follows scsi_cmnd->host_scribble and
2243          *    finds struct CommandList and tries to aborts it
2244          * Now we have aborted the wrong command.
2245          *
2246          * Reset c->scsi_cmd here so that the abort or reset handler will know
2247          * this command has completed.  Then, check to see if the handler is
2248          * waiting for this command, and, if so, wake it.
2249          */
2250         c->scsi_cmd = SCSI_CMD_IDLE;
2251         mb();   /* Declare command idle before checking for pending events. */
2252         if (c->abort_pending) {
2253                 do_wake = true;
2254                 c->abort_pending = false;
2255         }
2256         if (c->reset_pending) {
2257                 unsigned long flags;
2258                 struct hpsa_scsi_dev_t *dev;
2259
2260                 /*
2261                  * There appears to be a reset pending; lock the lock and
2262                  * reconfirm.  If so, then decrement the count of outstanding
2263                  * commands and wake the reset command if this is the last one.
2264                  */
2265                 spin_lock_irqsave(&h->lock, flags);
2266                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2267                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2268                         do_wake = true;
2269                 c->reset_pending = NULL;
2270                 spin_unlock_irqrestore(&h->lock, flags);
2271         }
2272
2273         if (do_wake)
2274                 wake_up_all(&h->event_sync_wait_queue);
2275 }
2276
2277 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2278                                       struct CommandList *c)
2279 {
2280         hpsa_cmd_resolve_events(h, c);
2281         cmd_tagged_free(h, c);
2282 }
2283
2284 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2285                 struct CommandList *c, struct scsi_cmnd *cmd)
2286 {
2287         hpsa_cmd_resolve_and_free(h, c);
2288         cmd->scsi_done(cmd);
2289 }
2290
2291 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2292 {
2293         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2294         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2295 }
2296
2297 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2298 {
2299         cmd->result = DID_ABORT << 16;
2300 }
2301
2302 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2303                                     struct scsi_cmnd *cmd)
2304 {
2305         hpsa_set_scsi_cmd_aborted(cmd);
2306         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2307                          c->Request.CDB, c->err_info->ScsiStatus);
2308         hpsa_cmd_resolve_and_free(h, c);
2309 }
2310
2311 static void process_ioaccel2_completion(struct ctlr_info *h,
2312                 struct CommandList *c, struct scsi_cmnd *cmd,
2313                 struct hpsa_scsi_dev_t *dev)
2314 {
2315         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2316
2317         /* check for good status */
2318         if (likely(c2->error_data.serv_response == 0 &&
2319                         c2->error_data.status == 0))
2320                 return hpsa_cmd_free_and_done(h, c, cmd);
2321
2322         /*
2323          * Any RAID offload error results in retry which will use
2324          * the normal I/O path so the controller can handle whatever's
2325          * wrong.
2326          */
2327         if (is_logical_device(dev) &&
2328                 c2->error_data.serv_response ==
2329                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2330                 if (c2->error_data.status ==
2331                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2332                         dev->offload_enabled = 0;
2333
2334                 return hpsa_retry_cmd(h, c);
2335         }
2336
2337         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2338                 return hpsa_retry_cmd(h, c);
2339
2340         return hpsa_cmd_free_and_done(h, c, cmd);
2341 }
2342
2343 /* Returns 0 on success, < 0 otherwise. */
2344 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2345                                         struct CommandList *cp)
2346 {
2347         u8 tmf_status = cp->err_info->ScsiStatus;
2348
2349         switch (tmf_status) {
2350         case CISS_TMF_COMPLETE:
2351                 /*
2352                  * CISS_TMF_COMPLETE never happens, instead,
2353                  * ei->CommandStatus == 0 for this case.
2354                  */
2355         case CISS_TMF_SUCCESS:
2356                 return 0;
2357         case CISS_TMF_INVALID_FRAME:
2358         case CISS_TMF_NOT_SUPPORTED:
2359         case CISS_TMF_FAILED:
2360         case CISS_TMF_WRONG_LUN:
2361         case CISS_TMF_OVERLAPPED_TAG:
2362                 break;
2363         default:
2364                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2365                                 tmf_status);
2366                 break;
2367         }
2368         return -tmf_status;
2369 }
2370
2371 static void complete_scsi_command(struct CommandList *cp)
2372 {
2373         struct scsi_cmnd *cmd;
2374         struct ctlr_info *h;
2375         struct ErrorInfo *ei;
2376         struct hpsa_scsi_dev_t *dev;
2377         struct io_accel2_cmd *c2;
2378
2379         u8 sense_key;
2380         u8 asc;      /* additional sense code */
2381         u8 ascq;     /* additional sense code qualifier */
2382         unsigned long sense_data_size;
2383
2384         ei = cp->err_info;
2385         cmd = cp->scsi_cmd;
2386         h = cp->h;
2387         dev = cmd->device->hostdata;
2388         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2389
2390         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2391         if ((cp->cmd_type == CMD_SCSI) &&
2392                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2393                 hpsa_unmap_sg_chain_block(h, cp);
2394
2395         if ((cp->cmd_type == CMD_IOACCEL2) &&
2396                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2397                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2398
2399         cmd->result = (DID_OK << 16);           /* host byte */
2400         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2401
2402         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2403                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2404
2405         /*
2406          * We check for lockup status here as it may be set for
2407          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2408          * fail_all_oustanding_cmds()
2409          */
2410         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2411                 /* DID_NO_CONNECT will prevent a retry */
2412                 cmd->result = DID_NO_CONNECT << 16;
2413                 return hpsa_cmd_free_and_done(h, cp, cmd);
2414         }
2415
2416         if ((unlikely(hpsa_is_pending_event(cp)))) {
2417                 if (cp->reset_pending)
2418                         return hpsa_cmd_resolve_and_free(h, cp);
2419                 if (cp->abort_pending)
2420                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2421         }
2422
2423         if (cp->cmd_type == CMD_IOACCEL2)
2424                 return process_ioaccel2_completion(h, cp, cmd, dev);
2425
2426         scsi_set_resid(cmd, ei->ResidualCnt);
2427         if (ei->CommandStatus == 0)
2428                 return hpsa_cmd_free_and_done(h, cp, cmd);
2429
2430         /* For I/O accelerator commands, copy over some fields to the normal
2431          * CISS header used below for error handling.
2432          */
2433         if (cp->cmd_type == CMD_IOACCEL1) {
2434                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2435                 cp->Header.SGList = scsi_sg_count(cmd);
2436                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2437                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2438                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2439                 cp->Header.tag = c->tag;
2440                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2441                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2442
2443                 /* Any RAID offload error results in retry which will use
2444                  * the normal I/O path so the controller can handle whatever's
2445                  * wrong.
2446                  */
2447                 if (is_logical_device(dev)) {
2448                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2449                                 dev->offload_enabled = 0;
2450                         return hpsa_retry_cmd(h, cp);
2451                 }
2452         }
2453
2454         /* an error has occurred */
2455         switch (ei->CommandStatus) {
2456
2457         case CMD_TARGET_STATUS:
2458                 cmd->result |= ei->ScsiStatus;
2459                 /* copy the sense data */
2460                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2461                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2462                 else
2463                         sense_data_size = sizeof(ei->SenseInfo);
2464                 if (ei->SenseLen < sense_data_size)
2465                         sense_data_size = ei->SenseLen;
2466                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2467                 if (ei->ScsiStatus)
2468                         decode_sense_data(ei->SenseInfo, sense_data_size,
2469                                 &sense_key, &asc, &ascq);
2470                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2471                         if (sense_key == ABORTED_COMMAND) {
2472                                 cmd->result |= DID_SOFT_ERROR << 16;
2473                                 break;
2474                         }
2475                         break;
2476                 }
2477                 /* Problem was not a check condition
2478                  * Pass it up to the upper layers...
2479                  */
2480                 if (ei->ScsiStatus) {
2481                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2482                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2483                                 "Returning result: 0x%x\n",
2484                                 cp, ei->ScsiStatus,
2485                                 sense_key, asc, ascq,
2486                                 cmd->result);
2487                 } else {  /* scsi status is zero??? How??? */
2488                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2489                                 "Returning no connection.\n", cp),
2490
2491                         /* Ordinarily, this case should never happen,
2492                          * but there is a bug in some released firmware
2493                          * revisions that allows it to happen if, for
2494                          * example, a 4100 backplane loses power and
2495                          * the tape drive is in it.  We assume that
2496                          * it's a fatal error of some kind because we
2497                          * can't show that it wasn't. We will make it
2498                          * look like selection timeout since that is
2499                          * the most common reason for this to occur,
2500                          * and it's severe enough.
2501                          */
2502
2503                         cmd->result = DID_NO_CONNECT << 16;
2504                 }
2505                 break;
2506
2507         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2508                 break;
2509         case CMD_DATA_OVERRUN:
2510                 dev_warn(&h->pdev->dev,
2511                         "CDB %16phN data overrun\n", cp->Request.CDB);
2512                 break;
2513         case CMD_INVALID: {
2514                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2515                 print_cmd(cp); */
2516                 /* We get CMD_INVALID if you address a non-existent device
2517                  * instead of a selection timeout (no response).  You will
2518                  * see this if you yank out a drive, then try to access it.
2519                  * This is kind of a shame because it means that any other
2520                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2521                  * missing target. */
2522                 cmd->result = DID_NO_CONNECT << 16;
2523         }
2524                 break;
2525         case CMD_PROTOCOL_ERR:
2526                 cmd->result = DID_ERROR << 16;
2527                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2528                                 cp->Request.CDB);
2529                 break;
2530         case CMD_HARDWARE_ERR:
2531                 cmd->result = DID_ERROR << 16;
2532                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2533                         cp->Request.CDB);
2534                 break;
2535         case CMD_CONNECTION_LOST:
2536                 cmd->result = DID_ERROR << 16;
2537                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2538                         cp->Request.CDB);
2539                 break;
2540         case CMD_ABORTED:
2541                 /* Return now to avoid calling scsi_done(). */
2542                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2543         case CMD_ABORT_FAILED:
2544                 cmd->result = DID_ERROR << 16;
2545                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2546                         cp->Request.CDB);
2547                 break;
2548         case CMD_UNSOLICITED_ABORT:
2549                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2550                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2551                         cp->Request.CDB);
2552                 break;
2553         case CMD_TIMEOUT:
2554                 cmd->result = DID_TIME_OUT << 16;
2555                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2556                         cp->Request.CDB);
2557                 break;
2558         case CMD_UNABORTABLE:
2559                 cmd->result = DID_ERROR << 16;
2560                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2561                 break;
2562         case CMD_TMF_STATUS:
2563                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2564                         cmd->result = DID_ERROR << 16;
2565                 break;
2566         case CMD_IOACCEL_DISABLED:
2567                 /* This only handles the direct pass-through case since RAID
2568                  * offload is handled above.  Just attempt a retry.
2569                  */
2570                 cmd->result = DID_SOFT_ERROR << 16;
2571                 dev_warn(&h->pdev->dev,
2572                                 "cp %p had HP SSD Smart Path error\n", cp);
2573                 break;
2574         default:
2575                 cmd->result = DID_ERROR << 16;
2576                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2577                                 cp, ei->CommandStatus);
2578         }
2579
2580         return hpsa_cmd_free_and_done(h, cp, cmd);
2581 }
2582
2583 static void hpsa_pci_unmap(struct pci_dev *pdev,
2584         struct CommandList *c, int sg_used, int data_direction)
2585 {
2586         int i;
2587
2588         for (i = 0; i < sg_used; i++)
2589                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2590                                 le32_to_cpu(c->SG[i].Len),
2591                                 data_direction);
2592 }
2593
2594 static int hpsa_map_one(struct pci_dev *pdev,
2595                 struct CommandList *cp,
2596                 unsigned char *buf,
2597                 size_t buflen,
2598                 int data_direction)
2599 {
2600         u64 addr64;
2601
2602         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2603                 cp->Header.SGList = 0;
2604                 cp->Header.SGTotal = cpu_to_le16(0);
2605                 return 0;
2606         }
2607
2608         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2609         if (dma_mapping_error(&pdev->dev, addr64)) {
2610                 /* Prevent subsequent unmap of something never mapped */
2611                 cp->Header.SGList = 0;
2612                 cp->Header.SGTotal = cpu_to_le16(0);
2613                 return -1;
2614         }
2615         cp->SG[0].Addr = cpu_to_le64(addr64);
2616         cp->SG[0].Len = cpu_to_le32(buflen);
2617         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2618         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2619         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2620         return 0;
2621 }
2622
2623 #define NO_TIMEOUT ((unsigned long) -1)
2624 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2625 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2626         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2627 {
2628         DECLARE_COMPLETION_ONSTACK(wait);
2629
2630         c->waiting = &wait;
2631         __enqueue_cmd_and_start_io(h, c, reply_queue);
2632         if (timeout_msecs == NO_TIMEOUT) {
2633                 /* TODO: get rid of this no-timeout thing */
2634                 wait_for_completion_io(&wait);
2635                 return IO_OK;
2636         }
2637         if (!wait_for_completion_io_timeout(&wait,
2638                                         msecs_to_jiffies(timeout_msecs))) {
2639                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2640                 return -ETIMEDOUT;
2641         }
2642         return IO_OK;
2643 }
2644
2645 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2646                                    int reply_queue, unsigned long timeout_msecs)
2647 {
2648         if (unlikely(lockup_detected(h))) {
2649                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2650                 return IO_OK;
2651         }
2652         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2653 }
2654
2655 static u32 lockup_detected(struct ctlr_info *h)
2656 {
2657         int cpu;
2658         u32 rc, *lockup_detected;
2659
2660         cpu = get_cpu();
2661         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2662         rc = *lockup_detected;
2663         put_cpu();
2664         return rc;
2665 }
2666
2667 #define MAX_DRIVER_CMD_RETRIES 25
2668 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2669         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2670 {
2671         int backoff_time = 10, retry_count = 0;
2672         int rc;
2673
2674         do {
2675                 memset(c->err_info, 0, sizeof(*c->err_info));
2676                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2677                                                   timeout_msecs);
2678                 if (rc)
2679                         break;
2680                 retry_count++;
2681                 if (retry_count > 3) {
2682                         msleep(backoff_time);
2683                         if (backoff_time < 1000)
2684                                 backoff_time *= 2;
2685                 }
2686         } while ((check_for_unit_attention(h, c) ||
2687                         check_for_busy(h, c)) &&
2688                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2689         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2690         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2691                 rc = -EIO;
2692         return rc;
2693 }
2694
2695 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2696                                 struct CommandList *c)
2697 {
2698         const u8 *cdb = c->Request.CDB;
2699         const u8 *lun = c->Header.LUN.LunAddrBytes;
2700
2701         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2702         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2703                 txt, lun[0], lun[1], lun[2], lun[3],
2704                 lun[4], lun[5], lun[6], lun[7],
2705                 cdb[0], cdb[1], cdb[2], cdb[3],
2706                 cdb[4], cdb[5], cdb[6], cdb[7],
2707                 cdb[8], cdb[9], cdb[10], cdb[11],
2708                 cdb[12], cdb[13], cdb[14], cdb[15]);
2709 }
2710
2711 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2712                         struct CommandList *cp)
2713 {
2714         const struct ErrorInfo *ei = cp->err_info;
2715         struct device *d = &cp->h->pdev->dev;
2716         u8 sense_key, asc, ascq;
2717         int sense_len;
2718
2719         switch (ei->CommandStatus) {
2720         case CMD_TARGET_STATUS:
2721                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2722                         sense_len = sizeof(ei->SenseInfo);
2723                 else
2724                         sense_len = ei->SenseLen;
2725                 decode_sense_data(ei->SenseInfo, sense_len,
2726                                         &sense_key, &asc, &ascq);
2727                 hpsa_print_cmd(h, "SCSI status", cp);
2728                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2729                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2730                                 sense_key, asc, ascq);
2731                 else
2732                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2733                 if (ei->ScsiStatus == 0)
2734                         dev_warn(d, "SCSI status is abnormally zero.  "
2735                         "(probably indicates selection timeout "
2736                         "reported incorrectly due to a known "
2737                         "firmware bug, circa July, 2001.)\n");
2738                 break;
2739         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2740                 break;
2741         case CMD_DATA_OVERRUN:
2742                 hpsa_print_cmd(h, "overrun condition", cp);
2743                 break;
2744         case CMD_INVALID: {
2745                 /* controller unfortunately reports SCSI passthru's
2746                  * to non-existent targets as invalid commands.
2747                  */
2748                 hpsa_print_cmd(h, "invalid command", cp);
2749                 dev_warn(d, "probably means device no longer present\n");
2750                 }
2751                 break;
2752         case CMD_PROTOCOL_ERR:
2753                 hpsa_print_cmd(h, "protocol error", cp);
2754                 break;
2755         case CMD_HARDWARE_ERR:
2756                 hpsa_print_cmd(h, "hardware error", cp);
2757                 break;
2758         case CMD_CONNECTION_LOST:
2759                 hpsa_print_cmd(h, "connection lost", cp);
2760                 break;
2761         case CMD_ABORTED:
2762                 hpsa_print_cmd(h, "aborted", cp);
2763                 break;
2764         case CMD_ABORT_FAILED:
2765                 hpsa_print_cmd(h, "abort failed", cp);
2766                 break;
2767         case CMD_UNSOLICITED_ABORT:
2768                 hpsa_print_cmd(h, "unsolicited abort", cp);
2769                 break;
2770         case CMD_TIMEOUT:
2771                 hpsa_print_cmd(h, "timed out", cp);
2772                 break;
2773         case CMD_UNABORTABLE:
2774                 hpsa_print_cmd(h, "unabortable", cp);
2775                 break;
2776         case CMD_CTLR_LOCKUP:
2777                 hpsa_print_cmd(h, "controller lockup detected", cp);
2778                 break;
2779         default:
2780                 hpsa_print_cmd(h, "unknown status", cp);
2781                 dev_warn(d, "Unknown command status %x\n",
2782                                 ei->CommandStatus);
2783         }
2784 }
2785
2786 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2787                         u16 page, unsigned char *buf,
2788                         unsigned char bufsize)
2789 {
2790         int rc = IO_OK;
2791         struct CommandList *c;
2792         struct ErrorInfo *ei;
2793
2794         c = cmd_alloc(h);
2795
2796         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2797                         page, scsi3addr, TYPE_CMD)) {
2798                 rc = -1;
2799                 goto out;
2800         }
2801         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2802                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2803         if (rc)
2804                 goto out;
2805         ei = c->err_info;
2806         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2807                 hpsa_scsi_interpret_error(h, c);
2808                 rc = -1;
2809         }
2810 out:
2811         cmd_free(h, c);
2812         return rc;
2813 }
2814
2815 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2816         u8 reset_type, int reply_queue)
2817 {
2818         int rc = IO_OK;
2819         struct CommandList *c;
2820         struct ErrorInfo *ei;
2821
2822         c = cmd_alloc(h);
2823
2824
2825         /* fill_cmd can't fail here, no data buffer to map. */
2826         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2827                         scsi3addr, TYPE_MSG);
2828         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2829         if (rc) {
2830                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2831                 goto out;
2832         }
2833         /* no unmap needed here because no data xfer. */
2834
2835         ei = c->err_info;
2836         if (ei->CommandStatus != 0) {
2837                 hpsa_scsi_interpret_error(h, c);
2838                 rc = -1;
2839         }
2840 out:
2841         cmd_free(h, c);
2842         return rc;
2843 }
2844
2845 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2846                                struct hpsa_scsi_dev_t *dev,
2847                                unsigned char *scsi3addr)
2848 {
2849         int i;
2850         bool match = false;
2851         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2852         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2853
2854         if (hpsa_is_cmd_idle(c))
2855                 return false;
2856
2857         switch (c->cmd_type) {
2858         case CMD_SCSI:
2859         case CMD_IOCTL_PEND:
2860                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2861                                 sizeof(c->Header.LUN.LunAddrBytes));
2862                 break;
2863
2864         case CMD_IOACCEL1:
2865         case CMD_IOACCEL2:
2866                 if (c->phys_disk == dev) {
2867                         /* HBA mode match */
2868                         match = true;
2869                 } else {
2870                         /* Possible RAID mode -- check each phys dev. */
2871                         /* FIXME:  Do we need to take out a lock here?  If
2872                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2873                          * instead. */
2874                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2875                                 /* FIXME: an alternate test might be
2876                                  *
2877                                  * match = dev->phys_disk[i]->ioaccel_handle
2878                                  *              == c2->scsi_nexus;      */
2879                                 match = dev->phys_disk[i] == c->phys_disk;
2880                         }
2881                 }
2882                 break;
2883
2884         case IOACCEL2_TMF:
2885                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2886                         match = dev->phys_disk[i]->ioaccel_handle ==
2887                                         le32_to_cpu(ac->it_nexus);
2888                 }
2889                 break;
2890
2891         case 0:         /* The command is in the middle of being initialized. */
2892                 match = false;
2893                 break;
2894
2895         default:
2896                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2897                         c->cmd_type);
2898                 BUG();
2899         }
2900
2901         return match;
2902 }
2903
2904 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2905         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2906 {
2907         int i;
2908         int rc = 0;
2909
2910         /* We can really only handle one reset at a time */
2911         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2912                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2913                 return -EINTR;
2914         }
2915
2916         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2917
2918         for (i = 0; i < h->nr_cmds; i++) {
2919                 struct CommandList *c = h->cmd_pool + i;
2920                 int refcount = atomic_inc_return(&c->refcount);
2921
2922                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2923                         unsigned long flags;
2924
2925                         /*
2926                          * Mark the target command as having a reset pending,
2927                          * then lock a lock so that the command cannot complete
2928                          * while we're considering it.  If the command is not
2929                          * idle then count it; otherwise revoke the event.
2930                          */
2931                         c->reset_pending = dev;
2932                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2933                         if (!hpsa_is_cmd_idle(c))
2934                                 atomic_inc(&dev->reset_cmds_out);
2935                         else
2936                                 c->reset_pending = NULL;
2937                         spin_unlock_irqrestore(&h->lock, flags);
2938                 }
2939
2940                 cmd_free(h, c);
2941         }
2942
2943         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2944         if (!rc)
2945                 wait_event(h->event_sync_wait_queue,
2946                         atomic_read(&dev->reset_cmds_out) == 0 ||
2947                         lockup_detected(h));
2948
2949         if (unlikely(lockup_detected(h))) {
2950                 dev_warn(&h->pdev->dev,
2951                          "Controller lockup detected during reset wait\n");
2952                 rc = -ENODEV;
2953         }
2954
2955         if (unlikely(rc))
2956                 atomic_set(&dev->reset_cmds_out, 0);
2957
2958         mutex_unlock(&h->reset_mutex);
2959         return rc;
2960 }
2961
2962 static void hpsa_get_raid_level(struct ctlr_info *h,
2963         unsigned char *scsi3addr, unsigned char *raid_level)
2964 {
2965         int rc;
2966         unsigned char *buf;
2967
2968         *raid_level = RAID_UNKNOWN;
2969         buf = kzalloc(64, GFP_KERNEL);
2970         if (!buf)
2971                 return;
2972         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2973         if (rc == 0)
2974                 *raid_level = buf[8];
2975         if (*raid_level > RAID_UNKNOWN)
2976                 *raid_level = RAID_UNKNOWN;
2977         kfree(buf);
2978         return;
2979 }
2980
2981 #define HPSA_MAP_DEBUG
2982 #ifdef HPSA_MAP_DEBUG
2983 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2984                                 struct raid_map_data *map_buff)
2985 {
2986         struct raid_map_disk_data *dd = &map_buff->data[0];
2987         int map, row, col;
2988         u16 map_cnt, row_cnt, disks_per_row;
2989
2990         if (rc != 0)
2991                 return;
2992
2993         /* Show details only if debugging has been activated. */
2994         if (h->raid_offload_debug < 2)
2995                 return;
2996
2997         dev_info(&h->pdev->dev, "structure_size = %u\n",
2998                                 le32_to_cpu(map_buff->structure_size));
2999         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3000                         le32_to_cpu(map_buff->volume_blk_size));
3001         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3002                         le64_to_cpu(map_buff->volume_blk_cnt));
3003         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3004                         map_buff->phys_blk_shift);
3005         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3006                         map_buff->parity_rotation_shift);
3007         dev_info(&h->pdev->dev, "strip_size = %u\n",
3008                         le16_to_cpu(map_buff->strip_size));
3009         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3010                         le64_to_cpu(map_buff->disk_starting_blk));
3011         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3012                         le64_to_cpu(map_buff->disk_blk_cnt));
3013         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3014                         le16_to_cpu(map_buff->data_disks_per_row));
3015         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3016                         le16_to_cpu(map_buff->metadata_disks_per_row));
3017         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3018                         le16_to_cpu(map_buff->row_cnt));
3019         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3020                         le16_to_cpu(map_buff->layout_map_count));
3021         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3022                         le16_to_cpu(map_buff->flags));
3023         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3024                         le16_to_cpu(map_buff->flags) &
3025                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3026         dev_info(&h->pdev->dev, "dekindex = %u\n",
3027                         le16_to_cpu(map_buff->dekindex));
3028         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3029         for (map = 0; map < map_cnt; map++) {
3030                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3031                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3032                 for (row = 0; row < row_cnt; row++) {
3033                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3034                         disks_per_row =
3035                                 le16_to_cpu(map_buff->data_disks_per_row);
3036                         for (col = 0; col < disks_per_row; col++, dd++)
3037                                 dev_info(&h->pdev->dev,
3038                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3039                                         col, dd->ioaccel_handle,
3040                                         dd->xor_mult[0], dd->xor_mult[1]);
3041                         disks_per_row =
3042                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3043                         for (col = 0; col < disks_per_row; col++, dd++)
3044                                 dev_info(&h->pdev->dev,
3045                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3046                                         col, dd->ioaccel_handle,
3047                                         dd->xor_mult[0], dd->xor_mult[1]);
3048                 }
3049         }
3050 }
3051 #else
3052 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3053                         __attribute__((unused)) int rc,
3054                         __attribute__((unused)) struct raid_map_data *map_buff)
3055 {
3056 }
3057 #endif
3058
3059 static int hpsa_get_raid_map(struct ctlr_info *h,
3060         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3061 {
3062         int rc = 0;
3063         struct CommandList *c;
3064         struct ErrorInfo *ei;
3065
3066         c = cmd_alloc(h);
3067
3068         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3069                         sizeof(this_device->raid_map), 0,
3070                         scsi3addr, TYPE_CMD)) {
3071                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3072                 cmd_free(h, c);
3073                 return -1;
3074         }
3075         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3076                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3077         if (rc)
3078                 goto out;
3079         ei = c->err_info;
3080         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3081                 hpsa_scsi_interpret_error(h, c);
3082                 rc = -1;
3083                 goto out;
3084         }
3085         cmd_free(h, c);
3086
3087         /* @todo in the future, dynamically allocate RAID map memory */
3088         if (le32_to_cpu(this_device->raid_map.structure_size) >
3089                                 sizeof(this_device->raid_map)) {
3090                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3091                 rc = -1;
3092         }
3093         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3094         return rc;
3095 out:
3096         cmd_free(h, c);
3097         return rc;
3098 }
3099
3100 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3101                 unsigned char scsi3addr[], u16 bmic_device_index,
3102                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3103 {
3104         int rc = IO_OK;
3105         struct CommandList *c;
3106         struct ErrorInfo *ei;
3107
3108         c = cmd_alloc(h);
3109
3110         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3111                 0, RAID_CTLR_LUNID, TYPE_CMD);
3112         if (rc)
3113                 goto out;
3114
3115         c->Request.CDB[2] = bmic_device_index & 0xff;
3116         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3117
3118         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3119                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3120         if (rc)
3121                 goto out;
3122         ei = c->err_info;
3123         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3124                 hpsa_scsi_interpret_error(h, c);
3125                 rc = -1;
3126         }
3127 out:
3128         cmd_free(h, c);
3129         return rc;
3130 }
3131
3132 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3133         struct bmic_identify_controller *buf, size_t bufsize)
3134 {
3135         int rc = IO_OK;
3136         struct CommandList *c;
3137         struct ErrorInfo *ei;
3138
3139         c = cmd_alloc(h);
3140
3141         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3142                 0, RAID_CTLR_LUNID, TYPE_CMD);
3143         if (rc)
3144                 goto out;
3145
3146         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3147                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3148         if (rc)
3149                 goto out;
3150         ei = c->err_info;
3151         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3152                 hpsa_scsi_interpret_error(h, c);
3153                 rc = -1;
3154         }
3155 out:
3156         cmd_free(h, c);
3157         return rc;
3158 }
3159
3160 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3161                 unsigned char scsi3addr[], u16 bmic_device_index,
3162                 struct bmic_identify_physical_device *buf, size_t bufsize)
3163 {
3164         int rc = IO_OK;
3165         struct CommandList *c;
3166         struct ErrorInfo *ei;
3167
3168         c = cmd_alloc(h);
3169         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3170                 0, RAID_CTLR_LUNID, TYPE_CMD);
3171         if (rc)
3172                 goto out;
3173
3174         c->Request.CDB[2] = bmic_device_index & 0xff;
3175         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3176
3177         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3178                                                 NO_TIMEOUT);
3179         ei = c->err_info;
3180         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3181                 hpsa_scsi_interpret_error(h, c);
3182                 rc = -1;
3183         }
3184 out:
3185         cmd_free(h, c);
3186
3187         return rc;
3188 }
3189
3190 /*
3191  * get enclosure information
3192  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3193  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3194  * Uses id_physical_device to determine the box_index.
3195  */
3196 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3197                         unsigned char *scsi3addr,
3198                         struct ReportExtendedLUNdata *rlep, int rle_index,
3199                         struct hpsa_scsi_dev_t *encl_dev)
3200 {
3201         int rc = -1;
3202         struct CommandList *c = NULL;
3203         struct ErrorInfo *ei = NULL;
3204         struct bmic_sense_storage_box_params *bssbp = NULL;
3205         struct bmic_identify_physical_device *id_phys = NULL;
3206         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3207         u16 bmic_device_index = 0;
3208
3209         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3210
3211         if (bmic_device_index == 0xFF00)
3212                 goto out;
3213
3214         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3215         if (!bssbp)
3216                 goto out;
3217
3218         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3219         if (!id_phys)
3220                 goto out;
3221
3222         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3223                                                 id_phys, sizeof(*id_phys));
3224         if (rc) {
3225                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3226                         __func__, encl_dev->external, bmic_device_index);
3227                 goto out;
3228         }
3229
3230         c = cmd_alloc(h);
3231
3232         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3233                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3234
3235         if (rc)
3236                 goto out;
3237
3238         if (id_phys->phys_connector[1] == 'E')
3239                 c->Request.CDB[5] = id_phys->box_index;
3240         else
3241                 c->Request.CDB[5] = 0;
3242
3243         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3244                                                 NO_TIMEOUT);
3245         if (rc)
3246                 goto out;
3247
3248         ei = c->err_info;
3249         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3250                 rc = -1;
3251                 goto out;
3252         }
3253
3254         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3255         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3256                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3257
3258         rc = IO_OK;
3259 out:
3260         kfree(bssbp);
3261         kfree(id_phys);
3262
3263         if (c)
3264                 cmd_free(h, c);
3265
3266         if (rc != IO_OK)
3267                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3268                         "Error, could not get enclosure information\n");
3269 }
3270
3271 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3272                                                 unsigned char *scsi3addr)
3273 {
3274         struct ReportExtendedLUNdata *physdev;
3275         u32 nphysicals;
3276         u64 sa = 0;
3277         int i;
3278
3279         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3280         if (!physdev)
3281                 return 0;
3282
3283         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3284                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3285                 kfree(physdev);
3286                 return 0;
3287         }
3288         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3289
3290         for (i = 0; i < nphysicals; i++)
3291                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3292                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3293                         break;
3294                 }
3295
3296         kfree(physdev);
3297
3298         return sa;
3299 }
3300
3301 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3302                                         struct hpsa_scsi_dev_t *dev)
3303 {
3304         int rc;
3305         u64 sa = 0;
3306
3307         if (is_hba_lunid(scsi3addr)) {
3308                 struct bmic_sense_subsystem_info *ssi;
3309
3310                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3311                 if (ssi == NULL) {
3312                         dev_warn(&h->pdev->dev,
3313                                 "%s: out of memory\n", __func__);
3314                         return;
3315                 }
3316
3317                 rc = hpsa_bmic_sense_subsystem_information(h,
3318                                         scsi3addr, 0, ssi, sizeof(*ssi));
3319                 if (rc == 0) {
3320                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3321                         h->sas_address = sa;
3322                 }
3323
3324                 kfree(ssi);
3325         } else
3326                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3327
3328         dev->sas_address = sa;
3329 }
3330
3331 /* Get a device id from inquiry page 0x83 */
3332 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3333         unsigned char scsi3addr[], u8 page)
3334 {
3335         int rc;
3336         int i;
3337         int pages;
3338         unsigned char *buf, bufsize;
3339
3340         buf = kzalloc(256, GFP_KERNEL);
3341         if (!buf)
3342                 return 0;
3343
3344         /* Get the size of the page list first */
3345         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3346                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3347                                 buf, HPSA_VPD_HEADER_SZ);
3348         if (rc != 0)
3349                 goto exit_unsupported;
3350         pages = buf[3];
3351         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3352                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3353         else
3354                 bufsize = 255;
3355
3356         /* Get the whole VPD page list */
3357         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3358                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3359                                 buf, bufsize);
3360         if (rc != 0)
3361                 goto exit_unsupported;
3362
3363         pages = buf[3];
3364         for (i = 1; i <= pages; i++)
3365                 if (buf[3 + i] == page)
3366                         goto exit_supported;
3367 exit_unsupported:
3368         kfree(buf);
3369         return 0;
3370 exit_supported:
3371         kfree(buf);
3372         return 1;
3373 }
3374
3375 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3376         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3377 {
3378         int rc;
3379         unsigned char *buf;
3380         u8 ioaccel_status;
3381
3382         this_device->offload_config = 0;
3383         this_device->offload_enabled = 0;
3384         this_device->offload_to_be_enabled = 0;
3385
3386         buf = kzalloc(64, GFP_KERNEL);
3387         if (!buf)
3388                 return;
3389         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3390                 goto out;
3391         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3392                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3393         if (rc != 0)
3394                 goto out;
3395
3396 #define IOACCEL_STATUS_BYTE 4
3397 #define OFFLOAD_CONFIGURED_BIT 0x01
3398 #define OFFLOAD_ENABLED_BIT 0x02
3399         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3400         this_device->offload_config =
3401                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3402         if (this_device->offload_config) {
3403                 this_device->offload_enabled =
3404                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3405                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3406                         this_device->offload_enabled = 0;
3407         }
3408         this_device->offload_to_be_enabled = this_device->offload_enabled;
3409 out:
3410         kfree(buf);
3411         return;
3412 }
3413
3414 /* Get the device id from inquiry page 0x83 */
3415 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3416         unsigned char *device_id, int index, int buflen)
3417 {
3418         int rc;
3419         unsigned char *buf;
3420
3421         if (buflen > 16)
3422                 buflen = 16;
3423         buf = kzalloc(64, GFP_KERNEL);
3424         if (!buf)
3425                 return -ENOMEM;
3426         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3427         if (rc == 0)
3428                 memcpy(device_id, &buf[index], buflen);
3429
3430         kfree(buf);
3431
3432         return rc != 0;
3433 }
3434
3435 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3436                 void *buf, int bufsize,
3437                 int extended_response)
3438 {
3439         int rc = IO_OK;
3440         struct CommandList *c;
3441         unsigned char scsi3addr[8];
3442         struct ErrorInfo *ei;
3443
3444         c = cmd_alloc(h);
3445
3446         /* address the controller */
3447         memset(scsi3addr, 0, sizeof(scsi3addr));
3448         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3449                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3450                 rc = -1;
3451                 goto out;
3452         }
3453         if (extended_response)
3454                 c->Request.CDB[1] = extended_response;
3455         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3456                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3457         if (rc)
3458                 goto out;
3459         ei = c->err_info;
3460         if (ei->CommandStatus != 0 &&
3461             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3462                 hpsa_scsi_interpret_error(h, c);
3463                 rc = -1;
3464         } else {
3465                 struct ReportLUNdata *rld = buf;
3466
3467                 if (rld->extended_response_flag != extended_response) {
3468                         dev_err(&h->pdev->dev,
3469                                 "report luns requested format %u, got %u\n",
3470                                 extended_response,
3471                                 rld->extended_response_flag);
3472                         rc = -1;
3473                 }
3474         }
3475 out:
3476         cmd_free(h, c);
3477         return rc;
3478 }
3479
3480 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3481                 struct ReportExtendedLUNdata *buf, int bufsize)
3482 {
3483         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3484                                                 HPSA_REPORT_PHYS_EXTENDED);
3485 }
3486
3487 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3488                 struct ReportLUNdata *buf, int bufsize)
3489 {
3490         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3491 }
3492
3493 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3494         int bus, int target, int lun)
3495 {
3496         device->bus = bus;
3497         device->target = target;
3498         device->lun = lun;
3499 }
3500
3501 /* Use VPD inquiry to get details of volume status */
3502 static int hpsa_get_volume_status(struct ctlr_info *h,
3503                                         unsigned char scsi3addr[])
3504 {
3505         int rc;
3506         int status;
3507         int size;
3508         unsigned char *buf;
3509
3510         buf = kzalloc(64, GFP_KERNEL);
3511         if (!buf)
3512                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3513
3514         /* Does controller have VPD for logical volume status? */
3515         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3516                 goto exit_failed;
3517
3518         /* Get the size of the VPD return buffer */
3519         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3520                                         buf, HPSA_VPD_HEADER_SZ);
3521         if (rc != 0)
3522                 goto exit_failed;
3523         size = buf[3];
3524
3525         /* Now get the whole VPD buffer */
3526         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3527                                         buf, size + HPSA_VPD_HEADER_SZ);
3528         if (rc != 0)
3529                 goto exit_failed;
3530         status = buf[4]; /* status byte */
3531
3532         kfree(buf);
3533         return status;
3534 exit_failed:
3535         kfree(buf);
3536         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3537 }
3538
3539 /* Determine offline status of a volume.
3540  * Return either:
3541  *  0 (not offline)
3542  *  0xff (offline for unknown reasons)
3543  *  # (integer code indicating one of several NOT READY states
3544  *     describing why a volume is to be kept offline)
3545  */
3546 static int hpsa_volume_offline(struct ctlr_info *h,
3547                                         unsigned char scsi3addr[])
3548 {
3549         struct CommandList *c;
3550         unsigned char *sense;
3551         u8 sense_key, asc, ascq;
3552         int sense_len;
3553         int rc, ldstat = 0;
3554         u16 cmd_status;
3555         u8 scsi_status;
3556 #define ASC_LUN_NOT_READY 0x04
3557 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3558 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3559
3560         c = cmd_alloc(h);
3561
3562         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3563         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3564         if (rc) {
3565                 cmd_free(h, c);
3566                 return 0;
3567         }
3568         sense = c->err_info->SenseInfo;
3569         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3570                 sense_len = sizeof(c->err_info->SenseInfo);
3571         else
3572                 sense_len = c->err_info->SenseLen;
3573         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3574         cmd_status = c->err_info->CommandStatus;
3575         scsi_status = c->err_info->ScsiStatus;
3576         cmd_free(h, c);
3577         /* Is the volume 'not ready'? */
3578         if (cmd_status != CMD_TARGET_STATUS ||
3579                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3580                 sense_key != NOT_READY ||
3581                 asc != ASC_LUN_NOT_READY)  {
3582                 return 0;
3583         }
3584
3585         /* Determine the reason for not ready state */
3586         ldstat = hpsa_get_volume_status(h, scsi3addr);
3587
3588         /* Keep volume offline in certain cases: */
3589         switch (ldstat) {
3590         case HPSA_LV_UNDERGOING_ERASE:
3591         case HPSA_LV_NOT_AVAILABLE:
3592         case HPSA_LV_UNDERGOING_RPI:
3593         case HPSA_LV_PENDING_RPI:
3594         case HPSA_LV_ENCRYPTED_NO_KEY:
3595         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3596         case HPSA_LV_UNDERGOING_ENCRYPTION:
3597         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3598         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3599                 return ldstat;
3600         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3601                 /* If VPD status page isn't available,
3602                  * use ASC/ASCQ to determine state
3603                  */
3604                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3605                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3606                         return ldstat;
3607                 break;
3608         default:
3609                 break;
3610         }
3611         return 0;
3612 }
3613
3614 /*
3615  * Find out if a logical device supports aborts by simply trying one.
3616  * Smart Array may claim not to support aborts on logical drives, but
3617  * if a MSA2000 * is connected, the drives on that will be presented
3618  * by the Smart Array as logical drives, and aborts may be sent to
3619  * those devices successfully.  So the simplest way to find out is
3620  * to simply try an abort and see how the device responds.
3621  */
3622 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3623                                         unsigned char *scsi3addr)
3624 {
3625         struct CommandList *c;
3626         struct ErrorInfo *ei;
3627         int rc = 0;
3628
3629         u64 tag = (u64) -1; /* bogus tag */
3630
3631         /* Assume that physical devices support aborts */
3632         if (!is_logical_dev_addr_mode(scsi3addr))
3633                 return 1;
3634
3635         c = cmd_alloc(h);
3636
3637         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3638         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3639         /* no unmap needed here because no data xfer. */
3640         ei = c->err_info;
3641         switch (ei->CommandStatus) {
3642         case CMD_INVALID:
3643                 rc = 0;
3644                 break;
3645         case CMD_UNABORTABLE:
3646         case CMD_ABORT_FAILED:
3647                 rc = 1;
3648                 break;
3649         case CMD_TMF_STATUS:
3650                 rc = hpsa_evaluate_tmf_status(h, c);
3651                 break;
3652         default:
3653                 rc = 0;
3654                 break;
3655         }
3656         cmd_free(h, c);
3657         return rc;
3658 }
3659
3660 static void sanitize_inquiry_string(unsigned char *s, int len)
3661 {
3662         bool terminated = false;
3663
3664         for (; len > 0; (--len, ++s)) {
3665                 if (*s == 0)
3666                         terminated = true;
3667                 if (terminated || *s < 0x20 || *s > 0x7e)
3668                         *s = ' ';
3669         }
3670 }
3671
3672 static int hpsa_update_device_info(struct ctlr_info *h,
3673         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3674         unsigned char *is_OBDR_device)
3675 {
3676
3677 #define OBDR_SIG_OFFSET 43
3678 #define OBDR_TAPE_SIG "$DR-10"
3679 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3680 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3681
3682         unsigned char *inq_buff;
3683         unsigned char *obdr_sig;
3684         int rc = 0;
3685
3686         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3687         if (!inq_buff) {
3688                 rc = -ENOMEM;
3689                 goto bail_out;
3690         }
3691
3692         /* Do an inquiry to the device to see what it is. */
3693         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3694                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3695                 /* Inquiry failed (msg printed already) */
3696                 dev_err(&h->pdev->dev,
3697                         "hpsa_update_device_info: inquiry failed\n");
3698                 rc = -EIO;
3699                 goto bail_out;
3700         }
3701
3702         sanitize_inquiry_string(&inq_buff[8], 8);
3703         sanitize_inquiry_string(&inq_buff[16], 16);
3704
3705         this_device->devtype = (inq_buff[0] & 0x1f);
3706         memcpy(this_device->scsi3addr, scsi3addr, 8);
3707         memcpy(this_device->vendor, &inq_buff[8],
3708                 sizeof(this_device->vendor));
3709         memcpy(this_device->model, &inq_buff[16],
3710                 sizeof(this_device->model));
3711         memset(this_device->device_id, 0,
3712                 sizeof(this_device->device_id));
3713         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3714                 sizeof(this_device->device_id));
3715
3716         if (this_device->devtype == TYPE_DISK &&
3717                 is_logical_dev_addr_mode(scsi3addr)) {
3718                 int volume_offline;
3719
3720                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3721                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3722                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3723                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3724                 if (volume_offline < 0 || volume_offline > 0xff)
3725                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3726                 this_device->volume_offline = volume_offline & 0xff;
3727         } else {
3728                 this_device->raid_level = RAID_UNKNOWN;
3729                 this_device->offload_config = 0;
3730                 this_device->offload_enabled = 0;
3731                 this_device->offload_to_be_enabled = 0;
3732                 this_device->hba_ioaccel_enabled = 0;
3733                 this_device->volume_offline = 0;
3734                 this_device->queue_depth = h->nr_cmds;
3735         }
3736
3737         if (is_OBDR_device) {
3738                 /* See if this is a One-Button-Disaster-Recovery device
3739                  * by looking for "$DR-10" at offset 43 in inquiry data.
3740                  */
3741                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3742                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3743                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3744                                                 OBDR_SIG_LEN) == 0);
3745         }
3746         kfree(inq_buff);
3747         return 0;
3748
3749 bail_out:
3750         kfree(inq_buff);
3751         return rc;
3752 }
3753
3754 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3755                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3756 {
3757         unsigned long flags;
3758         int rc, entry;
3759         /*
3760          * See if this device supports aborts.  If we already know
3761          * the device, we already know if it supports aborts, otherwise
3762          * we have to find out if it supports aborts by trying one.
3763          */
3764         spin_lock_irqsave(&h->devlock, flags);
3765         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3766         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3767                 entry >= 0 && entry < h->ndevices) {
3768                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3769                 spin_unlock_irqrestore(&h->devlock, flags);
3770         } else {
3771                 spin_unlock_irqrestore(&h->devlock, flags);
3772                 dev->supports_aborts =
3773                                 hpsa_device_supports_aborts(h, scsi3addr);
3774                 if (dev->supports_aborts < 0)
3775                         dev->supports_aborts = 0;
3776         }
3777 }
3778
3779 /*
3780  * Helper function to assign bus, target, lun mapping of devices.
3781  * Logical drive target and lun are assigned at this time, but
3782  * physical device lun and target assignment are deferred (assigned
3783  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3784 */
3785 static void figure_bus_target_lun(struct ctlr_info *h,
3786         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3787 {
3788         u32 lunid = get_unaligned_le32(lunaddrbytes);
3789
3790         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3791                 /* physical device, target and lun filled in later */
3792                 if (is_hba_lunid(lunaddrbytes))
3793                         hpsa_set_bus_target_lun(device,
3794                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3795                 else
3796                         /* defer target, lun assignment for physical devices */
3797                         hpsa_set_bus_target_lun(device,
3798                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3799                 return;
3800         }
3801         /* It's a logical device */
3802         if (device->external) {
3803                 hpsa_set_bus_target_lun(device,
3804                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3805                         lunid & 0x00ff);
3806                 return;
3807         }
3808         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3809                                 0, lunid & 0x3fff);
3810 }
3811
3812
3813 /*
3814  * Get address of physical disk used for an ioaccel2 mode command:
3815  *      1. Extract ioaccel2 handle from the command.
3816  *      2. Find a matching ioaccel2 handle from list of physical disks.
3817  *      3. Return:
3818  *              1 and set scsi3addr to address of matching physical
3819  *              0 if no matching physical disk was found.
3820  */
3821 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3822         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3823 {
3824         struct io_accel2_cmd *c2 =
3825                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3826         unsigned long flags;
3827         int i;
3828
3829         spin_lock_irqsave(&h->devlock, flags);
3830         for (i = 0; i < h->ndevices; i++)
3831                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3832                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3833                                 sizeof(h->dev[i]->scsi3addr));
3834                         spin_unlock_irqrestore(&h->devlock, flags);
3835                         return 1;
3836                 }
3837         spin_unlock_irqrestore(&h->devlock, flags);
3838         return 0;
3839 }
3840
3841 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3842         int i, int nphysicals, int nlocal_logicals)
3843 {
3844         /* In report logicals, local logicals are listed first,
3845         * then any externals.
3846         */
3847         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3848
3849         if (i == raid_ctlr_position)
3850                 return 0;
3851
3852         if (i < logicals_start)
3853                 return 0;
3854
3855         /* i is in logicals range, but still within local logicals */
3856         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3857                 return 0;
3858
3859         return 1; /* it's an external lun */
3860 }
3861
3862 /*
3863  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3864  * logdev.  The number of luns in physdev and logdev are returned in
3865  * *nphysicals and *nlogicals, respectively.
3866  * Returns 0 on success, -1 otherwise.
3867  */
3868 static int hpsa_gather_lun_info(struct ctlr_info *h,
3869         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3870         struct ReportLUNdata *logdev, u32 *nlogicals)
3871 {
3872         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3873                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3874                 return -1;
3875         }
3876         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3877         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3878                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3879                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3880                 *nphysicals = HPSA_MAX_PHYS_LUN;
3881         }
3882         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3883                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3884                 return -1;
3885         }
3886         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3887         /* Reject Logicals in excess of our max capability. */
3888         if (*nlogicals > HPSA_MAX_LUN) {
3889                 dev_warn(&h->pdev->dev,
3890                         "maximum logical LUNs (%d) exceeded.  "
3891                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3892                         *nlogicals - HPSA_MAX_LUN);
3893                         *nlogicals = HPSA_MAX_LUN;
3894         }
3895         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3896                 dev_warn(&h->pdev->dev,
3897                         "maximum logical + physical LUNs (%d) exceeded. "
3898                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3899                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3900                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3901         }
3902         return 0;
3903 }
3904
3905 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3906         int i, int nphysicals, int nlogicals,
3907         struct ReportExtendedLUNdata *physdev_list,
3908         struct ReportLUNdata *logdev_list)
3909 {
3910         /* Helper function, figure out where the LUN ID info is coming from
3911          * given index i, lists of physical and logical devices, where in
3912          * the list the raid controller is supposed to appear (first or last)
3913          */
3914
3915         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3916         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3917
3918         if (i == raid_ctlr_position)
3919                 return RAID_CTLR_LUNID;
3920
3921         if (i < logicals_start)
3922                 return &physdev_list->LUN[i -
3923                                 (raid_ctlr_position == 0)].lunid[0];
3924
3925         if (i < last_device)
3926                 return &logdev_list->LUN[i - nphysicals -
3927                         (raid_ctlr_position == 0)][0];
3928         BUG();
3929         return NULL;
3930 }
3931
3932 /* get physical drive ioaccel handle and queue depth */
3933 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3934                 struct hpsa_scsi_dev_t *dev,
3935                 struct ReportExtendedLUNdata *rlep, int rle_index,
3936                 struct bmic_identify_physical_device *id_phys)
3937 {
3938         int rc;
3939         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3940
3941         dev->ioaccel_handle = rle->ioaccel_handle;
3942         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3943                 dev->hba_ioaccel_enabled = 1;
3944         memset(id_phys, 0, sizeof(*id_phys));
3945         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3946                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3947                         sizeof(*id_phys));
3948         if (!rc)
3949                 /* Reserve space for FW operations */
3950 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3951 #define DRIVE_QUEUE_DEPTH 7
3952                 dev->queue_depth =
3953                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3954                                 DRIVE_CMDS_RESERVED_FOR_FW;
3955         else
3956                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3957 }
3958
3959 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3960         struct ReportExtendedLUNdata *rlep, int rle_index,
3961         struct bmic_identify_physical_device *id_phys)
3962 {
3963         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3964
3965         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3966                 this_device->hba_ioaccel_enabled = 1;
3967
3968         memcpy(&this_device->active_path_index,
3969                 &id_phys->active_path_number,
3970                 sizeof(this_device->active_path_index));
3971         memcpy(&this_device->path_map,
3972                 &id_phys->redundant_path_present_map,
3973                 sizeof(this_device->path_map));
3974         memcpy(&this_device->box,
3975                 &id_phys->alternate_paths_phys_box_on_port,
3976                 sizeof(this_device->box));
3977         memcpy(&this_device->phys_connector,
3978                 &id_phys->alternate_paths_phys_connector,
3979                 sizeof(this_device->phys_connector));
3980         memcpy(&this_device->bay,
3981                 &id_phys->phys_bay_in_box,
3982                 sizeof(this_device->bay));
3983 }
3984
3985 /* get number of local logical disks. */
3986 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3987         struct bmic_identify_controller *id_ctlr,
3988         u32 *nlocals)
3989 {
3990         int rc;
3991
3992         if (!id_ctlr) {
3993                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3994                         __func__);
3995                 return -ENOMEM;
3996         }
3997         memset(id_ctlr, 0, sizeof(*id_ctlr));
3998         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3999         if (!rc)
4000                 if (id_ctlr->configured_logical_drive_count < 256)
4001                         *nlocals = id_ctlr->configured_logical_drive_count;
4002                 else
4003                         *nlocals = le16_to_cpu(
4004                                         id_ctlr->extended_logical_unit_count);
4005         else
4006                 *nlocals = -1;
4007         return rc;
4008 }
4009
4010
4011 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4012 {
4013         /* the idea here is we could get notified
4014          * that some devices have changed, so we do a report
4015          * physical luns and report logical luns cmd, and adjust
4016          * our list of devices accordingly.
4017          *
4018          * The scsi3addr's of devices won't change so long as the
4019          * adapter is not reset.  That means we can rescan and
4020          * tell which devices we already know about, vs. new
4021          * devices, vs.  disappearing devices.
4022          */
4023         struct ReportExtendedLUNdata *physdev_list = NULL;
4024         struct ReportLUNdata *logdev_list = NULL;
4025         struct bmic_identify_physical_device *id_phys = NULL;
4026         struct bmic_identify_controller *id_ctlr = NULL;
4027         u32 nphysicals = 0;
4028         u32 nlogicals = 0;
4029         u32 nlocal_logicals = 0;
4030         u32 ndev_allocated = 0;
4031         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4032         int ncurrent = 0;
4033         int i, n_ext_target_devs, ndevs_to_allocate;
4034         int raid_ctlr_position;
4035         bool physical_device;
4036         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4037
4038         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4039         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4040         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4041         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4042         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4043         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4044
4045         if (!currentsd || !physdev_list || !logdev_list ||
4046                 !tmpdevice || !id_phys || !id_ctlr) {
4047                 dev_err(&h->pdev->dev, "out of memory\n");
4048                 goto out;
4049         }
4050         memset(lunzerobits, 0, sizeof(lunzerobits));
4051
4052         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4053
4054         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4055                         logdev_list, &nlogicals)) {
4056                 h->drv_req_rescan = 1;
4057                 goto out;
4058         }
4059
4060         /* Set number of local logicals (non PTRAID) */
4061         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4062                 dev_warn(&h->pdev->dev,
4063                         "%s: Can't determine number of local logical devices.\n",
4064                         __func__);
4065         }
4066
4067         /* We might see up to the maximum number of logical and physical disks
4068          * plus external target devices, and a device for the local RAID
4069          * controller.
4070          */
4071         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4072
4073         /* Allocate the per device structures */
4074         for (i = 0; i < ndevs_to_allocate; i++) {
4075                 if (i >= HPSA_MAX_DEVICES) {
4076                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4077                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4078                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4079                         break;
4080                 }
4081
4082                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4083                 if (!currentsd[i]) {
4084                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4085                                 __FILE__, __LINE__);
4086                         h->drv_req_rescan = 1;
4087                         goto out;
4088                 }
4089                 ndev_allocated++;
4090         }
4091
4092         if (is_scsi_rev_5(h))
4093                 raid_ctlr_position = 0;
4094         else
4095                 raid_ctlr_position = nphysicals + nlogicals;
4096
4097         /* adjust our table of devices */
4098         n_ext_target_devs = 0;
4099         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4100                 u8 *lunaddrbytes, is_OBDR = 0;
4101                 int rc = 0;
4102                 int phys_dev_index = i - (raid_ctlr_position == 0);
4103
4104                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4105
4106                 /* Figure out where the LUN ID info is coming from */
4107                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4108                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4109
4110                 /* skip masked non-disk devices */
4111                 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4112                    (physdev_list->LUN[phys_dev_index].device_type != 0x06) &&
4113                    (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4114                         continue;
4115
4116                 /* Get device type, vendor, model, device id */
4117                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4118                                                         &is_OBDR);
4119                 if (rc == -ENOMEM) {
4120                         dev_warn(&h->pdev->dev,
4121                                 "Out of memory, rescan deferred.\n");
4122                         h->drv_req_rescan = 1;
4123                         goto out;
4124                 }
4125                 if (rc) {
4126                         dev_warn(&h->pdev->dev,
4127                                 "Inquiry failed, skipping device.\n");
4128                         continue;
4129                 }
4130
4131                 /* Determine if this is a lun from an external target array */
4132                 tmpdevice->external =
4133                         figure_external_status(h, raid_ctlr_position, i,
4134                                                 nphysicals, nlocal_logicals);
4135
4136                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4137                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4138                 this_device = currentsd[ncurrent];
4139
4140                 /* Turn on discovery_polling if there are ext target devices.
4141                  * Event-based change notification is unreliable for those.
4142                  */
4143                 if (!h->discovery_polling) {
4144                         if (tmpdevice->external) {
4145                                 h->discovery_polling = 1;
4146                                 dev_info(&h->pdev->dev,
4147                                         "External target, activate discovery polling.\n");
4148                         }
4149                 }
4150
4151
4152                 *this_device = *tmpdevice;
4153                 this_device->physical_device = physical_device;
4154
4155                 /*
4156                  * Expose all devices except for physical devices that
4157                  * are masked.
4158                  */
4159                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4160                         this_device->expose_device = 0;
4161                 else
4162                         this_device->expose_device = 1;
4163
4164
4165                 /*
4166                  * Get the SAS address for physical devices that are exposed.
4167                  */
4168                 if (this_device->physical_device && this_device->expose_device)
4169                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4170
4171                 switch (this_device->devtype) {
4172                 case TYPE_ROM:
4173                         /* We don't *really* support actual CD-ROM devices,
4174                          * just "One Button Disaster Recovery" tape drive
4175                          * which temporarily pretends to be a CD-ROM drive.
4176                          * So we check that the device is really an OBDR tape
4177                          * device by checking for "$DR-10" in bytes 43-48 of
4178                          * the inquiry data.
4179                          */
4180                         if (is_OBDR)
4181                                 ncurrent++;
4182                         break;
4183                 case TYPE_DISK:
4184                         if (this_device->physical_device) {
4185                                 /* The disk is in HBA mode. */
4186                                 /* Never use RAID mapper in HBA mode. */
4187                                 this_device->offload_enabled = 0;
4188                                 hpsa_get_ioaccel_drive_info(h, this_device,
4189                                         physdev_list, phys_dev_index, id_phys);
4190                                 hpsa_get_path_info(this_device,
4191                                         physdev_list, phys_dev_index, id_phys);
4192                         }
4193                         ncurrent++;
4194                         break;
4195                 case TYPE_TAPE:
4196                 case TYPE_MEDIUM_CHANGER:
4197                         ncurrent++;
4198                         break;
4199                 case TYPE_ENCLOSURE:
4200                         hpsa_get_enclosure_info(h, lunaddrbytes,
4201                                                 physdev_list, phys_dev_index,
4202                                                 this_device);
4203                         ncurrent++;
4204                         break;
4205                 case TYPE_RAID:
4206                         /* Only present the Smartarray HBA as a RAID controller.
4207                          * If it's a RAID controller other than the HBA itself
4208                          * (an external RAID controller, MSA500 or similar)
4209                          * don't present it.
4210                          */
4211                         if (!is_hba_lunid(lunaddrbytes))
4212                                 break;
4213                         ncurrent++;
4214                         break;
4215                 default:
4216                         break;
4217                 }
4218                 if (ncurrent >= HPSA_MAX_DEVICES)
4219                         break;
4220         }
4221
4222         if (h->sas_host == NULL) {
4223                 int rc = 0;
4224
4225                 rc = hpsa_add_sas_host(h);
4226                 if (rc) {
4227                         dev_warn(&h->pdev->dev,
4228                                 "Could not add sas host %d\n", rc);
4229                         goto out;
4230                 }
4231         }
4232
4233         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4234 out:
4235         kfree(tmpdevice);
4236         for (i = 0; i < ndev_allocated; i++)
4237                 kfree(currentsd[i]);
4238         kfree(currentsd);
4239         kfree(physdev_list);
4240         kfree(logdev_list);
4241         kfree(id_ctlr);
4242         kfree(id_phys);
4243 }
4244
4245 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4246                                    struct scatterlist *sg)
4247 {
4248         u64 addr64 = (u64) sg_dma_address(sg);
4249         unsigned int len = sg_dma_len(sg);
4250
4251         desc->Addr = cpu_to_le64(addr64);
4252         desc->Len = cpu_to_le32(len);
4253         desc->Ext = 0;
4254 }
4255
4256 /*
4257  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4258  * dma mapping  and fills in the scatter gather entries of the
4259  * hpsa command, cp.
4260  */
4261 static int hpsa_scatter_gather(struct ctlr_info *h,
4262                 struct CommandList *cp,
4263                 struct scsi_cmnd *cmd)
4264 {
4265         struct scatterlist *sg;
4266         int use_sg, i, sg_limit, chained, last_sg;
4267         struct SGDescriptor *curr_sg;
4268
4269         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4270
4271         use_sg = scsi_dma_map(cmd);
4272         if (use_sg < 0)
4273                 return use_sg;
4274
4275         if (!use_sg)
4276                 goto sglist_finished;
4277
4278         /*
4279          * If the number of entries is greater than the max for a single list,
4280          * then we have a chained list; we will set up all but one entry in the
4281          * first list (the last entry is saved for link information);
4282          * otherwise, we don't have a chained list and we'll set up at each of
4283          * the entries in the one list.
4284          */
4285         curr_sg = cp->SG;
4286         chained = use_sg > h->max_cmd_sg_entries;
4287         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4288         last_sg = scsi_sg_count(cmd) - 1;
4289         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4290                 hpsa_set_sg_descriptor(curr_sg, sg);
4291                 curr_sg++;
4292         }
4293
4294         if (chained) {
4295                 /*
4296                  * Continue with the chained list.  Set curr_sg to the chained
4297                  * list.  Modify the limit to the total count less the entries
4298                  * we've already set up.  Resume the scan at the list entry
4299                  * where the previous loop left off.
4300                  */
4301                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4302                 sg_limit = use_sg - sg_limit;
4303                 for_each_sg(sg, sg, sg_limit, i) {
4304                         hpsa_set_sg_descriptor(curr_sg, sg);
4305                         curr_sg++;
4306                 }
4307         }
4308
4309         /* Back the pointer up to the last entry and mark it as "last". */
4310         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4311
4312         if (use_sg + chained > h->maxSG)
4313                 h->maxSG = use_sg + chained;
4314
4315         if (chained) {
4316                 cp->Header.SGList = h->max_cmd_sg_entries;
4317                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4318                 if (hpsa_map_sg_chain_block(h, cp)) {
4319                         scsi_dma_unmap(cmd);
4320                         return -1;
4321                 }
4322                 return 0;
4323         }
4324
4325 sglist_finished:
4326
4327         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4328         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4329         return 0;
4330 }
4331
4332 #define IO_ACCEL_INELIGIBLE (1)
4333 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4334 {
4335         int is_write = 0;
4336         u32 block;
4337         u32 block_cnt;
4338
4339         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4340         switch (cdb[0]) {
4341         case WRITE_6:
4342         case WRITE_12:
4343                 is_write = 1;
4344         case READ_6:
4345         case READ_12:
4346                 if (*cdb_len == 6) {
4347                         block = get_unaligned_be16(&cdb[2]);
4348                         block_cnt = cdb[4];
4349                         if (block_cnt == 0)
4350                                 block_cnt = 256;
4351                 } else {
4352                         BUG_ON(*cdb_len != 12);
4353                         block = get_unaligned_be32(&cdb[2]);
4354                         block_cnt = get_unaligned_be32(&cdb[6]);
4355                 }
4356                 if (block_cnt > 0xffff)
4357                         return IO_ACCEL_INELIGIBLE;
4358
4359                 cdb[0] = is_write ? WRITE_10 : READ_10;
4360                 cdb[1] = 0;
4361                 cdb[2] = (u8) (block >> 24);
4362                 cdb[3] = (u8) (block >> 16);
4363                 cdb[4] = (u8) (block >> 8);
4364                 cdb[5] = (u8) (block);
4365                 cdb[6] = 0;
4366                 cdb[7] = (u8) (block_cnt >> 8);
4367                 cdb[8] = (u8) (block_cnt);
4368                 cdb[9] = 0;
4369                 *cdb_len = 10;
4370                 break;
4371         }
4372         return 0;
4373 }
4374
4375 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4376         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4377         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4378 {
4379         struct scsi_cmnd *cmd = c->scsi_cmd;
4380         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4381         unsigned int len;
4382         unsigned int total_len = 0;
4383         struct scatterlist *sg;
4384         u64 addr64;
4385         int use_sg, i;
4386         struct SGDescriptor *curr_sg;
4387         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4388
4389         /* TODO: implement chaining support */
4390         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4391                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4392                 return IO_ACCEL_INELIGIBLE;
4393         }
4394
4395         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4396
4397         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4398                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4399                 return IO_ACCEL_INELIGIBLE;
4400         }
4401
4402         c->cmd_type = CMD_IOACCEL1;
4403
4404         /* Adjust the DMA address to point to the accelerated command buffer */
4405         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4406                                 (c->cmdindex * sizeof(*cp));
4407         BUG_ON(c->busaddr & 0x0000007F);
4408
4409         use_sg = scsi_dma_map(cmd);
4410         if (use_sg < 0) {
4411                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4412                 return use_sg;
4413         }
4414
4415         if (use_sg) {
4416                 curr_sg = cp->SG;
4417                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4418                         addr64 = (u64) sg_dma_address(sg);
4419                         len  = sg_dma_len(sg);
4420                         total_len += len;
4421                         curr_sg->Addr = cpu_to_le64(addr64);
4422                         curr_sg->Len = cpu_to_le32(len);
4423                         curr_sg->Ext = cpu_to_le32(0);
4424                         curr_sg++;
4425                 }
4426                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4427
4428                 switch (cmd->sc_data_direction) {
4429                 case DMA_TO_DEVICE:
4430                         control |= IOACCEL1_CONTROL_DATA_OUT;
4431                         break;
4432                 case DMA_FROM_DEVICE:
4433                         control |= IOACCEL1_CONTROL_DATA_IN;
4434                         break;
4435                 case DMA_NONE:
4436                         control |= IOACCEL1_CONTROL_NODATAXFER;
4437                         break;
4438                 default:
4439                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4440                         cmd->sc_data_direction);
4441                         BUG();
4442                         break;
4443                 }
4444         } else {
4445                 control |= IOACCEL1_CONTROL_NODATAXFER;
4446         }
4447
4448         c->Header.SGList = use_sg;
4449         /* Fill out the command structure to submit */
4450         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4451         cp->transfer_len = cpu_to_le32(total_len);
4452         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4453                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4454         cp->control = cpu_to_le32(control);
4455         memcpy(cp->CDB, cdb, cdb_len);
4456         memcpy(cp->CISS_LUN, scsi3addr, 8);
4457         /* Tag was already set at init time. */
4458         enqueue_cmd_and_start_io(h, c);
4459         return 0;
4460 }
4461
4462 /*
4463  * Queue a command directly to a device behind the controller using the
4464  * I/O accelerator path.
4465  */
4466 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4467         struct CommandList *c)
4468 {
4469         struct scsi_cmnd *cmd = c->scsi_cmd;
4470         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4471
4472         c->phys_disk = dev;
4473
4474         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4475                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4476 }
4477
4478 /*
4479  * Set encryption parameters for the ioaccel2 request
4480  */
4481 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4482         struct CommandList *c, struct io_accel2_cmd *cp)
4483 {
4484         struct scsi_cmnd *cmd = c->scsi_cmd;
4485         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4486         struct raid_map_data *map = &dev->raid_map;
4487         u64 first_block;
4488
4489         /* Are we doing encryption on this device */
4490         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4491                 return;
4492         /* Set the data encryption key index. */
4493         cp->dekindex = map->dekindex;
4494
4495         /* Set the encryption enable flag, encoded into direction field. */
4496         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4497
4498         /* Set encryption tweak values based on logical block address
4499          * If block size is 512, tweak value is LBA.
4500          * For other block sizes, tweak is (LBA * block size)/ 512)
4501          */
4502         switch (cmd->cmnd[0]) {
4503         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4504         case WRITE_6:
4505         case READ_6:
4506                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4507                 break;
4508         case WRITE_10:
4509         case READ_10:
4510         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4511         case WRITE_12:
4512         case READ_12:
4513                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4514                 break;
4515         case WRITE_16:
4516         case READ_16:
4517                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4518                 break;
4519         default:
4520                 dev_err(&h->pdev->dev,
4521                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4522                         __func__, cmd->cmnd[0]);
4523                 BUG();
4524                 break;
4525         }
4526
4527         if (le32_to_cpu(map->volume_blk_size) != 512)
4528                 first_block = first_block *
4529                                 le32_to_cpu(map->volume_blk_size)/512;
4530
4531         cp->tweak_lower = cpu_to_le32(first_block);
4532         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4533 }
4534
4535 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4536         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4537         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4538 {
4539         struct scsi_cmnd *cmd = c->scsi_cmd;
4540         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4541         struct ioaccel2_sg_element *curr_sg;
4542         int use_sg, i;
4543         struct scatterlist *sg;
4544         u64 addr64;
4545         u32 len;
4546         u32 total_len = 0;
4547
4548         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4549
4550         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4551                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4552                 return IO_ACCEL_INELIGIBLE;
4553         }
4554
4555         c->cmd_type = CMD_IOACCEL2;
4556         /* Adjust the DMA address to point to the accelerated command buffer */
4557         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4558                                 (c->cmdindex * sizeof(*cp));
4559         BUG_ON(c->busaddr & 0x0000007F);
4560
4561         memset(cp, 0, sizeof(*cp));
4562         cp->IU_type = IOACCEL2_IU_TYPE;
4563
4564         use_sg = scsi_dma_map(cmd);
4565         if (use_sg < 0) {
4566                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4567                 return use_sg;
4568         }
4569
4570         if (use_sg) {
4571                 curr_sg = cp->sg;
4572                 if (use_sg > h->ioaccel_maxsg) {
4573                         addr64 = le64_to_cpu(
4574                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4575                         curr_sg->address = cpu_to_le64(addr64);
4576                         curr_sg->length = 0;
4577                         curr_sg->reserved[0] = 0;
4578                         curr_sg->reserved[1] = 0;
4579                         curr_sg->reserved[2] = 0;
4580                         curr_sg->chain_indicator = 0x80;
4581
4582                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4583                 }
4584                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4585                         addr64 = (u64) sg_dma_address(sg);
4586                         len  = sg_dma_len(sg);
4587                         total_len += len;
4588                         curr_sg->address = cpu_to_le64(addr64);
4589                         curr_sg->length = cpu_to_le32(len);
4590                         curr_sg->reserved[0] = 0;
4591                         curr_sg->reserved[1] = 0;
4592                         curr_sg->reserved[2] = 0;
4593                         curr_sg->chain_indicator = 0;
4594                         curr_sg++;
4595                 }
4596
4597                 switch (cmd->sc_data_direction) {
4598                 case DMA_TO_DEVICE:
4599                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4600                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4601                         break;
4602                 case DMA_FROM_DEVICE:
4603                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4604                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4605                         break;
4606                 case DMA_NONE:
4607                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4608                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4609                         break;
4610                 default:
4611                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4612                                 cmd->sc_data_direction);
4613                         BUG();
4614                         break;
4615                 }
4616         } else {
4617                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4618                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4619         }
4620
4621         /* Set encryption parameters, if necessary */
4622         set_encrypt_ioaccel2(h, c, cp);
4623
4624         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4625         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4626         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4627
4628         cp->data_len = cpu_to_le32(total_len);
4629         cp->err_ptr = cpu_to_le64(c->busaddr +
4630                         offsetof(struct io_accel2_cmd, error_data));
4631         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4632
4633         /* fill in sg elements */
4634         if (use_sg > h->ioaccel_maxsg) {
4635                 cp->sg_count = 1;
4636                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4637                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4638                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4639                         scsi_dma_unmap(cmd);
4640                         return -1;
4641                 }
4642         } else
4643                 cp->sg_count = (u8) use_sg;
4644
4645         enqueue_cmd_and_start_io(h, c);
4646         return 0;
4647 }
4648
4649 /*
4650  * Queue a command to the correct I/O accelerator path.
4651  */
4652 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4653         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4654         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4655 {
4656         /* Try to honor the device's queue depth */
4657         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4658                                         phys_disk->queue_depth) {
4659                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4660                 return IO_ACCEL_INELIGIBLE;
4661         }
4662         if (h->transMethod & CFGTBL_Trans_io_accel1)
4663                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4664                                                 cdb, cdb_len, scsi3addr,
4665                                                 phys_disk);
4666         else
4667                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4668                                                 cdb, cdb_len, scsi3addr,
4669                                                 phys_disk);
4670 }
4671
4672 static void raid_map_helper(struct raid_map_data *map,
4673                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4674 {
4675         if (offload_to_mirror == 0)  {
4676                 /* use physical disk in the first mirrored group. */
4677                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4678                 return;
4679         }
4680         do {
4681                 /* determine mirror group that *map_index indicates */
4682                 *current_group = *map_index /
4683                         le16_to_cpu(map->data_disks_per_row);
4684                 if (offload_to_mirror == *current_group)
4685                         continue;
4686                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4687                         /* select map index from next group */
4688                         *map_index += le16_to_cpu(map->data_disks_per_row);
4689                         (*current_group)++;
4690                 } else {
4691                         /* select map index from first group */
4692                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4693                         *current_group = 0;
4694                 }
4695         } while (offload_to_mirror != *current_group);
4696 }
4697
4698 /*
4699  * Attempt to perform offload RAID mapping for a logical volume I/O.
4700  */
4701 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4702         struct CommandList *c)
4703 {
4704         struct scsi_cmnd *cmd = c->scsi_cmd;
4705         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4706         struct raid_map_data *map = &dev->raid_map;
4707         struct raid_map_disk_data *dd = &map->data[0];
4708         int is_write = 0;
4709         u32 map_index;
4710         u64 first_block, last_block;
4711         u32 block_cnt;
4712         u32 blocks_per_row;
4713         u64 first_row, last_row;
4714         u32 first_row_offset, last_row_offset;
4715         u32 first_column, last_column;
4716         u64 r0_first_row, r0_last_row;
4717         u32 r5or6_blocks_per_row;
4718         u64 r5or6_first_row, r5or6_last_row;
4719         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4720         u32 r5or6_first_column, r5or6_last_column;
4721         u32 total_disks_per_row;
4722         u32 stripesize;
4723         u32 first_group, last_group, current_group;
4724         u32 map_row;
4725         u32 disk_handle;
4726         u64 disk_block;
4727         u32 disk_block_cnt;
4728         u8 cdb[16];
4729         u8 cdb_len;
4730         u16 strip_size;
4731 #if BITS_PER_LONG == 32
4732         u64 tmpdiv;
4733 #endif
4734         int offload_to_mirror;
4735
4736         /* check for valid opcode, get LBA and block count */
4737         switch (cmd->cmnd[0]) {
4738         case WRITE_6:
4739                 is_write = 1;
4740         case READ_6:
4741                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4742                 block_cnt = cmd->cmnd[4];
4743                 if (block_cnt == 0)
4744                         block_cnt = 256;
4745                 break;
4746         case WRITE_10:
4747                 is_write = 1;
4748         case READ_10:
4749                 first_block =
4750                         (((u64) cmd->cmnd[2]) << 24) |
4751                         (((u64) cmd->cmnd[3]) << 16) |
4752                         (((u64) cmd->cmnd[4]) << 8) |
4753                         cmd->cmnd[5];
4754                 block_cnt =
4755                         (((u32) cmd->cmnd[7]) << 8) |
4756                         cmd->cmnd[8];
4757                 break;
4758         case WRITE_12:
4759                 is_write = 1;
4760         case READ_12:
4761                 first_block =
4762                         (((u64) cmd->cmnd[2]) << 24) |
4763                         (((u64) cmd->cmnd[3]) << 16) |
4764                         (((u64) cmd->cmnd[4]) << 8) |
4765                         cmd->cmnd[5];
4766                 block_cnt =
4767                         (((u32) cmd->cmnd[6]) << 24) |
4768                         (((u32) cmd->cmnd[7]) << 16) |
4769                         (((u32) cmd->cmnd[8]) << 8) |
4770                 cmd->cmnd[9];
4771                 break;
4772         case WRITE_16:
4773                 is_write = 1;
4774         case READ_16:
4775                 first_block =
4776                         (((u64) cmd->cmnd[2]) << 56) |
4777                         (((u64) cmd->cmnd[3]) << 48) |
4778                         (((u64) cmd->cmnd[4]) << 40) |
4779                         (((u64) cmd->cmnd[5]) << 32) |
4780                         (((u64) cmd->cmnd[6]) << 24) |
4781                         (((u64) cmd->cmnd[7]) << 16) |
4782                         (((u64) cmd->cmnd[8]) << 8) |
4783                         cmd->cmnd[9];
4784                 block_cnt =
4785                         (((u32) cmd->cmnd[10]) << 24) |
4786                         (((u32) cmd->cmnd[11]) << 16) |
4787                         (((u32) cmd->cmnd[12]) << 8) |
4788                         cmd->cmnd[13];
4789                 break;
4790         default:
4791                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4792         }
4793         last_block = first_block + block_cnt - 1;
4794
4795         /* check for write to non-RAID-0 */
4796         if (is_write && dev->raid_level != 0)
4797                 return IO_ACCEL_INELIGIBLE;
4798
4799         /* check for invalid block or wraparound */
4800         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4801                 last_block < first_block)
4802                 return IO_ACCEL_INELIGIBLE;
4803
4804         /* calculate stripe information for the request */
4805         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4806                                 le16_to_cpu(map->strip_size);
4807         strip_size = le16_to_cpu(map->strip_size);
4808 #if BITS_PER_LONG == 32
4809         tmpdiv = first_block;
4810         (void) do_div(tmpdiv, blocks_per_row);
4811         first_row = tmpdiv;
4812         tmpdiv = last_block;
4813         (void) do_div(tmpdiv, blocks_per_row);
4814         last_row = tmpdiv;
4815         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4816         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4817         tmpdiv = first_row_offset;
4818         (void) do_div(tmpdiv, strip_size);
4819         first_column = tmpdiv;
4820         tmpdiv = last_row_offset;
4821         (void) do_div(tmpdiv, strip_size);
4822         last_column = tmpdiv;
4823 #else
4824         first_row = first_block / blocks_per_row;
4825         last_row = last_block / blocks_per_row;
4826         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4827         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4828         first_column = first_row_offset / strip_size;
4829         last_column = last_row_offset / strip_size;
4830 #endif
4831
4832         /* if this isn't a single row/column then give to the controller */
4833         if ((first_row != last_row) || (first_column != last_column))
4834                 return IO_ACCEL_INELIGIBLE;
4835
4836         /* proceeding with driver mapping */
4837         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4838                                 le16_to_cpu(map->metadata_disks_per_row);
4839         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4840                                 le16_to_cpu(map->row_cnt);
4841         map_index = (map_row * total_disks_per_row) + first_column;
4842
4843         switch (dev->raid_level) {
4844         case HPSA_RAID_0:
4845                 break; /* nothing special to do */
4846         case HPSA_RAID_1:
4847                 /* Handles load balance across RAID 1 members.
4848                  * (2-drive R1 and R10 with even # of drives.)
4849                  * Appropriate for SSDs, not optimal for HDDs
4850                  */
4851                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4852                 if (dev->offload_to_mirror)
4853                         map_index += le16_to_cpu(map->data_disks_per_row);
4854                 dev->offload_to_mirror = !dev->offload_to_mirror;
4855                 break;
4856         case HPSA_RAID_ADM:
4857                 /* Handles N-way mirrors  (R1-ADM)
4858                  * and R10 with # of drives divisible by 3.)
4859                  */
4860                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4861
4862                 offload_to_mirror = dev->offload_to_mirror;
4863                 raid_map_helper(map, offload_to_mirror,
4864                                 &map_index, &current_group);
4865                 /* set mirror group to use next time */
4866                 offload_to_mirror =
4867                         (offload_to_mirror >=
4868                         le16_to_cpu(map->layout_map_count) - 1)
4869                         ? 0 : offload_to_mirror + 1;
4870                 dev->offload_to_mirror = offload_to_mirror;
4871                 /* Avoid direct use of dev->offload_to_mirror within this
4872                  * function since multiple threads might simultaneously
4873                  * increment it beyond the range of dev->layout_map_count -1.
4874                  */
4875                 break;
4876         case HPSA_RAID_5:
4877         case HPSA_RAID_6:
4878                 if (le16_to_cpu(map->layout_map_count) <= 1)
4879                         break;
4880
4881                 /* Verify first and last block are in same RAID group */
4882                 r5or6_blocks_per_row =
4883                         le16_to_cpu(map->strip_size) *
4884                         le16_to_cpu(map->data_disks_per_row);
4885                 BUG_ON(r5or6_blocks_per_row == 0);
4886                 stripesize = r5or6_blocks_per_row *
4887                         le16_to_cpu(map->layout_map_count);
4888 #if BITS_PER_LONG == 32
4889                 tmpdiv = first_block;
4890                 first_group = do_div(tmpdiv, stripesize);
4891                 tmpdiv = first_group;
4892                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4893                 first_group = tmpdiv;
4894                 tmpdiv = last_block;
4895                 last_group = do_div(tmpdiv, stripesize);
4896                 tmpdiv = last_group;
4897                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4898                 last_group = tmpdiv;
4899 #else
4900                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4901                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4902 #endif
4903                 if (first_group != last_group)
4904                         return IO_ACCEL_INELIGIBLE;
4905
4906                 /* Verify request is in a single row of RAID 5/6 */
4907 #if BITS_PER_LONG == 32
4908                 tmpdiv = first_block;
4909                 (void) do_div(tmpdiv, stripesize);
4910                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4911                 tmpdiv = last_block;
4912                 (void) do_div(tmpdiv, stripesize);
4913                 r5or6_last_row = r0_last_row = tmpdiv;
4914 #else
4915                 first_row = r5or6_first_row = r0_first_row =
4916                                                 first_block / stripesize;
4917                 r5or6_last_row = r0_last_row = last_block / stripesize;
4918 #endif
4919                 if (r5or6_first_row != r5or6_last_row)
4920                         return IO_ACCEL_INELIGIBLE;
4921
4922
4923                 /* Verify request is in a single column */
4924 #if BITS_PER_LONG == 32
4925                 tmpdiv = first_block;
4926                 first_row_offset = do_div(tmpdiv, stripesize);
4927                 tmpdiv = first_row_offset;
4928                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4929                 r5or6_first_row_offset = first_row_offset;
4930                 tmpdiv = last_block;
4931                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4932                 tmpdiv = r5or6_last_row_offset;
4933                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4934                 tmpdiv = r5or6_first_row_offset;
4935                 (void) do_div(tmpdiv, map->strip_size);
4936                 first_column = r5or6_first_column = tmpdiv;
4937                 tmpdiv = r5or6_last_row_offset;
4938                 (void) do_div(tmpdiv, map->strip_size);
4939                 r5or6_last_column = tmpdiv;
4940 #else
4941                 first_row_offset = r5or6_first_row_offset =
4942                         (u32)((first_block % stripesize) %
4943                                                 r5or6_blocks_per_row);
4944
4945                 r5or6_last_row_offset =
4946                         (u32)((last_block % stripesize) %
4947                                                 r5or6_blocks_per_row);
4948
4949                 first_column = r5or6_first_column =
4950                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4951                 r5or6_last_column =
4952                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4953 #endif
4954                 if (r5or6_first_column != r5or6_last_column)
4955                         return IO_ACCEL_INELIGIBLE;
4956
4957                 /* Request is eligible */
4958                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4959                         le16_to_cpu(map->row_cnt);
4960
4961                 map_index = (first_group *
4962                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4963                         (map_row * total_disks_per_row) + first_column;
4964                 break;
4965         default:
4966                 return IO_ACCEL_INELIGIBLE;
4967         }
4968
4969         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4970                 return IO_ACCEL_INELIGIBLE;
4971
4972         c->phys_disk = dev->phys_disk[map_index];
4973
4974         disk_handle = dd[map_index].ioaccel_handle;
4975         disk_block = le64_to_cpu(map->disk_starting_blk) +
4976                         first_row * le16_to_cpu(map->strip_size) +
4977                         (first_row_offset - first_column *
4978                         le16_to_cpu(map->strip_size));
4979         disk_block_cnt = block_cnt;
4980
4981         /* handle differing logical/physical block sizes */
4982         if (map->phys_blk_shift) {
4983                 disk_block <<= map->phys_blk_shift;
4984                 disk_block_cnt <<= map->phys_blk_shift;
4985         }
4986         BUG_ON(disk_block_cnt > 0xffff);
4987
4988         /* build the new CDB for the physical disk I/O */
4989         if (disk_block > 0xffffffff) {
4990                 cdb[0] = is_write ? WRITE_16 : READ_16;
4991                 cdb[1] = 0;
4992                 cdb[2] = (u8) (disk_block >> 56);
4993                 cdb[3] = (u8) (disk_block >> 48);
4994                 cdb[4] = (u8) (disk_block >> 40);
4995                 cdb[5] = (u8) (disk_block >> 32);
4996                 cdb[6] = (u8) (disk_block >> 24);
4997                 cdb[7] = (u8) (disk_block >> 16);
4998                 cdb[8] = (u8) (disk_block >> 8);
4999                 cdb[9] = (u8) (disk_block);
5000                 cdb[10] = (u8) (disk_block_cnt >> 24);
5001                 cdb[11] = (u8) (disk_block_cnt >> 16);
5002                 cdb[12] = (u8) (disk_block_cnt >> 8);
5003                 cdb[13] = (u8) (disk_block_cnt);
5004                 cdb[14] = 0;
5005                 cdb[15] = 0;
5006                 cdb_len = 16;
5007         } else {
5008                 cdb[0] = is_write ? WRITE_10 : READ_10;
5009                 cdb[1] = 0;
5010                 cdb[2] = (u8) (disk_block >> 24);
5011                 cdb[3] = (u8) (disk_block >> 16);
5012                 cdb[4] = (u8) (disk_block >> 8);
5013                 cdb[5] = (u8) (disk_block);
5014                 cdb[6] = 0;
5015                 cdb[7] = (u8) (disk_block_cnt >> 8);
5016                 cdb[8] = (u8) (disk_block_cnt);
5017                 cdb[9] = 0;
5018                 cdb_len = 10;
5019         }
5020         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5021                                                 dev->scsi3addr,
5022                                                 dev->phys_disk[map_index]);
5023 }
5024
5025 /*
5026  * Submit commands down the "normal" RAID stack path
5027  * All callers to hpsa_ciss_submit must check lockup_detected
5028  * beforehand, before (opt.) and after calling cmd_alloc
5029  */
5030 static int hpsa_ciss_submit(struct ctlr_info *h,
5031         struct CommandList *c, struct scsi_cmnd *cmd,
5032         unsigned char scsi3addr[])
5033 {
5034         cmd->host_scribble = (unsigned char *) c;
5035         c->cmd_type = CMD_SCSI;
5036         c->scsi_cmd = cmd;
5037         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5038         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5039         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5040
5041         /* Fill in the request block... */
5042
5043         c->Request.Timeout = 0;
5044         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5045         c->Request.CDBLen = cmd->cmd_len;
5046         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5047         switch (cmd->sc_data_direction) {
5048         case DMA_TO_DEVICE:
5049                 c->Request.type_attr_dir =
5050                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5051                 break;
5052         case DMA_FROM_DEVICE:
5053                 c->Request.type_attr_dir =
5054                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5055                 break;
5056         case DMA_NONE:
5057                 c->Request.type_attr_dir =
5058                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5059                 break;
5060         case DMA_BIDIRECTIONAL:
5061                 /* This can happen if a buggy application does a scsi passthru
5062                  * and sets both inlen and outlen to non-zero. ( see
5063                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5064                  */
5065
5066                 c->Request.type_attr_dir =
5067                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5068                 /* This is technically wrong, and hpsa controllers should
5069                  * reject it with CMD_INVALID, which is the most correct
5070                  * response, but non-fibre backends appear to let it
5071                  * slide by, and give the same results as if this field
5072                  * were set correctly.  Either way is acceptable for
5073                  * our purposes here.
5074                  */
5075
5076                 break;
5077
5078         default:
5079                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5080                         cmd->sc_data_direction);
5081                 BUG();
5082                 break;
5083         }
5084
5085         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5086                 hpsa_cmd_resolve_and_free(h, c);
5087                 return SCSI_MLQUEUE_HOST_BUSY;
5088         }
5089         enqueue_cmd_and_start_io(h, c);
5090         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5091         return 0;
5092 }
5093
5094 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5095                                 struct CommandList *c)
5096 {
5097         dma_addr_t cmd_dma_handle, err_dma_handle;
5098
5099         /* Zero out all of commandlist except the last field, refcount */
5100         memset(c, 0, offsetof(struct CommandList, refcount));
5101         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5102         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5103         c->err_info = h->errinfo_pool + index;
5104         memset(c->err_info, 0, sizeof(*c->err_info));
5105         err_dma_handle = h->errinfo_pool_dhandle
5106             + index * sizeof(*c->err_info);
5107         c->cmdindex = index;
5108         c->busaddr = (u32) cmd_dma_handle;
5109         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5110         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5111         c->h = h;
5112         c->scsi_cmd = SCSI_CMD_IDLE;
5113 }
5114
5115 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5116 {
5117         int i;
5118
5119         for (i = 0; i < h->nr_cmds; i++) {
5120                 struct CommandList *c = h->cmd_pool + i;
5121
5122                 hpsa_cmd_init(h, i, c);
5123                 atomic_set(&c->refcount, 0);
5124         }
5125 }
5126
5127 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5128                                 struct CommandList *c)
5129 {
5130         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5131
5132         BUG_ON(c->cmdindex != index);
5133
5134         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5135         memset(c->err_info, 0, sizeof(*c->err_info));
5136         c->busaddr = (u32) cmd_dma_handle;
5137 }
5138
5139 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5140                 struct CommandList *c, struct scsi_cmnd *cmd,
5141                 unsigned char *scsi3addr)
5142 {
5143         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5144         int rc = IO_ACCEL_INELIGIBLE;
5145
5146         cmd->host_scribble = (unsigned char *) c;
5147
5148         if (dev->offload_enabled) {
5149                 hpsa_cmd_init(h, c->cmdindex, c);
5150                 c->cmd_type = CMD_SCSI;
5151                 c->scsi_cmd = cmd;
5152                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5153                 if (rc < 0)     /* scsi_dma_map failed. */
5154                         rc = SCSI_MLQUEUE_HOST_BUSY;
5155         } else if (dev->hba_ioaccel_enabled) {
5156                 hpsa_cmd_init(h, c->cmdindex, c);
5157                 c->cmd_type = CMD_SCSI;
5158                 c->scsi_cmd = cmd;
5159                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5160                 if (rc < 0)     /* scsi_dma_map failed. */
5161                         rc = SCSI_MLQUEUE_HOST_BUSY;
5162         }
5163         return rc;
5164 }
5165
5166 static void hpsa_command_resubmit_worker(struct work_struct *work)
5167 {
5168         struct scsi_cmnd *cmd;
5169         struct hpsa_scsi_dev_t *dev;
5170         struct CommandList *c = container_of(work, struct CommandList, work);
5171
5172         cmd = c->scsi_cmd;
5173         dev = cmd->device->hostdata;
5174         if (!dev) {
5175                 cmd->result = DID_NO_CONNECT << 16;
5176                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5177         }
5178         if (c->reset_pending)
5179                 return hpsa_cmd_resolve_and_free(c->h, c);
5180         if (c->abort_pending)
5181                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5182         if (c->cmd_type == CMD_IOACCEL2) {
5183                 struct ctlr_info *h = c->h;
5184                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5185                 int rc;
5186
5187                 if (c2->error_data.serv_response ==
5188                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5189                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5190                         if (rc == 0)
5191                                 return;
5192                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5193                                 /*
5194                                  * If we get here, it means dma mapping failed.
5195                                  * Try again via scsi mid layer, which will
5196                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5197                                  */
5198                                 cmd->result = DID_IMM_RETRY << 16;
5199                                 return hpsa_cmd_free_and_done(h, c, cmd);
5200                         }
5201                         /* else, fall thru and resubmit down CISS path */
5202                 }
5203         }
5204         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5205         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5206                 /*
5207                  * If we get here, it means dma mapping failed. Try
5208                  * again via scsi mid layer, which will then get
5209                  * SCSI_MLQUEUE_HOST_BUSY.
5210                  *
5211                  * hpsa_ciss_submit will have already freed c
5212                  * if it encountered a dma mapping failure.
5213                  */
5214                 cmd->result = DID_IMM_RETRY << 16;
5215                 cmd->scsi_done(cmd);
5216         }
5217 }
5218
5219 /* Running in struct Scsi_Host->host_lock less mode */
5220 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5221 {
5222         struct ctlr_info *h;
5223         struct hpsa_scsi_dev_t *dev;
5224         unsigned char scsi3addr[8];
5225         struct CommandList *c;
5226         int rc = 0;
5227
5228         /* Get the ptr to our adapter structure out of cmd->host. */
5229         h = sdev_to_hba(cmd->device);
5230
5231         BUG_ON(cmd->request->tag < 0);
5232
5233         dev = cmd->device->hostdata;
5234         if (!dev) {
5235                 cmd->result = DID_NO_CONNECT << 16;
5236                 cmd->scsi_done(cmd);
5237                 return 0;
5238         }
5239
5240         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5241
5242         if (unlikely(lockup_detected(h))) {
5243                 cmd->result = DID_NO_CONNECT << 16;
5244                 cmd->scsi_done(cmd);
5245                 return 0;
5246         }
5247         c = cmd_tagged_alloc(h, cmd);
5248
5249         /*
5250          * Call alternate submit routine for I/O accelerated commands.
5251          * Retries always go down the normal I/O path.
5252          */
5253         if (likely(cmd->retries == 0 &&
5254                 cmd->request->cmd_type == REQ_TYPE_FS &&
5255                 h->acciopath_status)) {
5256                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5257                 if (rc == 0)
5258                         return 0;
5259                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5260                         hpsa_cmd_resolve_and_free(h, c);
5261                         return SCSI_MLQUEUE_HOST_BUSY;
5262                 }
5263         }
5264         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5265 }
5266
5267 static void hpsa_scan_complete(struct ctlr_info *h)
5268 {
5269         unsigned long flags;
5270
5271         spin_lock_irqsave(&h->scan_lock, flags);
5272         h->scan_finished = 1;
5273         wake_up_all(&h->scan_wait_queue);
5274         spin_unlock_irqrestore(&h->scan_lock, flags);
5275 }
5276
5277 static void hpsa_scan_start(struct Scsi_Host *sh)
5278 {
5279         struct ctlr_info *h = shost_to_hba(sh);
5280         unsigned long flags;
5281
5282         /*
5283          * Don't let rescans be initiated on a controller known to be locked
5284          * up.  If the controller locks up *during* a rescan, that thread is
5285          * probably hosed, but at least we can prevent new rescan threads from
5286          * piling up on a locked up controller.
5287          */
5288         if (unlikely(lockup_detected(h)))
5289                 return hpsa_scan_complete(h);
5290
5291         /* wait until any scan already in progress is finished. */
5292         while (1) {
5293                 spin_lock_irqsave(&h->scan_lock, flags);
5294                 if (h->scan_finished)
5295                         break;
5296                 spin_unlock_irqrestore(&h->scan_lock, flags);
5297                 wait_event(h->scan_wait_queue, h->scan_finished);
5298                 /* Note: We don't need to worry about a race between this
5299                  * thread and driver unload because the midlayer will
5300                  * have incremented the reference count, so unload won't
5301                  * happen if we're in here.
5302                  */
5303         }
5304         h->scan_finished = 0; /* mark scan as in progress */
5305         spin_unlock_irqrestore(&h->scan_lock, flags);
5306
5307         if (unlikely(lockup_detected(h)))
5308                 return hpsa_scan_complete(h);
5309
5310         hpsa_update_scsi_devices(h);
5311
5312         hpsa_scan_complete(h);
5313 }
5314
5315 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5316 {
5317         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5318
5319         if (!logical_drive)
5320                 return -ENODEV;
5321
5322         if (qdepth < 1)
5323                 qdepth = 1;
5324         else if (qdepth > logical_drive->queue_depth)
5325                 qdepth = logical_drive->queue_depth;
5326
5327         return scsi_change_queue_depth(sdev, qdepth);
5328 }
5329
5330 static int hpsa_scan_finished(struct Scsi_Host *sh,
5331         unsigned long elapsed_time)
5332 {
5333         struct ctlr_info *h = shost_to_hba(sh);
5334         unsigned long flags;
5335         int finished;
5336
5337         spin_lock_irqsave(&h->scan_lock, flags);
5338         finished = h->scan_finished;
5339         spin_unlock_irqrestore(&h->scan_lock, flags);
5340         return finished;
5341 }
5342
5343 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5344 {
5345         struct Scsi_Host *sh;
5346
5347         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5348         if (sh == NULL) {
5349                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5350                 return -ENOMEM;
5351         }
5352
5353         sh->io_port = 0;
5354         sh->n_io_port = 0;
5355         sh->this_id = -1;
5356         sh->max_channel = 3;
5357         sh->max_cmd_len = MAX_COMMAND_SIZE;
5358         sh->max_lun = HPSA_MAX_LUN;
5359         sh->max_id = HPSA_MAX_LUN;
5360         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5361         sh->cmd_per_lun = sh->can_queue;
5362         sh->sg_tablesize = h->maxsgentries;
5363         sh->transportt = hpsa_sas_transport_template;
5364         sh->hostdata[0] = (unsigned long) h;
5365         sh->irq = h->intr[h->intr_mode];
5366         sh->unique_id = sh->irq;
5367
5368         h->scsi_host = sh;
5369         return 0;
5370 }
5371
5372 static int hpsa_scsi_add_host(struct ctlr_info *h)
5373 {
5374         int rv;
5375
5376         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5377         if (rv) {
5378                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5379                 return rv;
5380         }
5381         scsi_scan_host(h->scsi_host);
5382         return 0;
5383 }
5384
5385 /*
5386  * The block layer has already gone to the trouble of picking out a unique,
5387  * small-integer tag for this request.  We use an offset from that value as
5388  * an index to select our command block.  (The offset allows us to reserve the
5389  * low-numbered entries for our own uses.)
5390  */
5391 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5392 {
5393         int idx = scmd->request->tag;
5394
5395         if (idx < 0)
5396                 return idx;
5397
5398         /* Offset to leave space for internal cmds. */
5399         return idx += HPSA_NRESERVED_CMDS;
5400 }
5401
5402 /*
5403  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5404  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5405  */
5406 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5407                                 struct CommandList *c, unsigned char lunaddr[],
5408                                 int reply_queue)
5409 {
5410         int rc;
5411
5412         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5413         (void) fill_cmd(c, TEST_UNIT_READY, h,
5414                         NULL, 0, 0, lunaddr, TYPE_CMD);
5415         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5416         if (rc)
5417                 return rc;
5418         /* no unmap needed here because no data xfer. */
5419
5420         /* Check if the unit is already ready. */
5421         if (c->err_info->CommandStatus == CMD_SUCCESS)
5422                 return 0;
5423
5424         /*
5425          * The first command sent after reset will receive "unit attention" to
5426          * indicate that the LUN has been reset...this is actually what we're
5427          * looking for (but, success is good too).
5428          */
5429         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5430                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5431                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5432                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5433                 return 0;
5434
5435         return 1;
5436 }
5437
5438 /*
5439  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5440  * returns zero when the unit is ready, and non-zero when giving up.
5441  */
5442 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5443                                 struct CommandList *c,
5444                                 unsigned char lunaddr[], int reply_queue)
5445 {
5446         int rc;
5447         int count = 0;
5448         int waittime = 1; /* seconds */
5449
5450         /* Send test unit ready until device ready, or give up. */
5451         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5452
5453                 /*
5454                  * Wait for a bit.  do this first, because if we send
5455                  * the TUR right away, the reset will just abort it.
5456                  */
5457                 msleep(1000 * waittime);
5458
5459                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5460                 if (!rc)
5461                         break;
5462
5463                 /* Increase wait time with each try, up to a point. */
5464                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5465                         waittime *= 2;
5466
5467                 dev_warn(&h->pdev->dev,
5468                          "waiting %d secs for device to become ready.\n",
5469                          waittime);
5470         }
5471
5472         return rc;
5473 }
5474
5475 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5476                                            unsigned char lunaddr[],
5477                                            int reply_queue)
5478 {
5479         int first_queue;
5480         int last_queue;
5481         int rq;
5482         int rc = 0;
5483         struct CommandList *c;
5484
5485         c = cmd_alloc(h);
5486
5487         /*
5488          * If no specific reply queue was requested, then send the TUR
5489          * repeatedly, requesting a reply on each reply queue; otherwise execute
5490          * the loop exactly once using only the specified queue.
5491          */
5492         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5493                 first_queue = 0;
5494                 last_queue = h->nreply_queues - 1;
5495         } else {
5496                 first_queue = reply_queue;
5497                 last_queue = reply_queue;
5498         }
5499
5500         for (rq = first_queue; rq <= last_queue; rq++) {
5501                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5502                 if (rc)
5503                         break;
5504         }
5505
5506         if (rc)
5507                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5508         else
5509                 dev_warn(&h->pdev->dev, "device is ready.\n");
5510
5511         cmd_free(h, c);
5512         return rc;
5513 }
5514
5515 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5516  * complaining.  Doing a host- or bus-reset can't do anything good here.
5517  */
5518 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5519 {
5520         int rc;
5521         struct ctlr_info *h;
5522         struct hpsa_scsi_dev_t *dev;
5523         u8 reset_type;
5524         char msg[48];
5525
5526         /* find the controller to which the command to be aborted was sent */
5527         h = sdev_to_hba(scsicmd->device);
5528         if (h == NULL) /* paranoia */
5529                 return FAILED;
5530
5531         if (lockup_detected(h))
5532                 return FAILED;
5533
5534         dev = scsicmd->device->hostdata;
5535         if (!dev) {
5536                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5537                 return FAILED;
5538         }
5539
5540         /* if controller locked up, we can guarantee command won't complete */
5541         if (lockup_detected(h)) {
5542                 snprintf(msg, sizeof(msg),
5543                          "cmd %d RESET FAILED, lockup detected",
5544                          hpsa_get_cmd_index(scsicmd));
5545                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5546                 return FAILED;
5547         }
5548
5549         /* this reset request might be the result of a lockup; check */
5550         if (detect_controller_lockup(h)) {
5551                 snprintf(msg, sizeof(msg),
5552                          "cmd %d RESET FAILED, new lockup detected",
5553                          hpsa_get_cmd_index(scsicmd));
5554                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5555                 return FAILED;
5556         }
5557
5558         /* Do not attempt on controller */
5559         if (is_hba_lunid(dev->scsi3addr))
5560                 return SUCCESS;
5561
5562         if (is_logical_dev_addr_mode(dev->scsi3addr))
5563                 reset_type = HPSA_DEVICE_RESET_MSG;
5564         else
5565                 reset_type = HPSA_PHYS_TARGET_RESET;
5566
5567         sprintf(msg, "resetting %s",
5568                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5569         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5570
5571         h->reset_in_progress = 1;
5572
5573         /* send a reset to the SCSI LUN which the command was sent to */
5574         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5575                            DEFAULT_REPLY_QUEUE);
5576         sprintf(msg, "reset %s %s",
5577                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5578                 rc == 0 ? "completed successfully" : "failed");
5579         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5580         h->reset_in_progress = 0;
5581         return rc == 0 ? SUCCESS : FAILED;
5582 }
5583
5584 static void swizzle_abort_tag(u8 *tag)
5585 {
5586         u8 original_tag[8];
5587
5588         memcpy(original_tag, tag, 8);
5589         tag[0] = original_tag[3];
5590         tag[1] = original_tag[2];
5591         tag[2] = original_tag[1];
5592         tag[3] = original_tag[0];
5593         tag[4] = original_tag[7];
5594         tag[5] = original_tag[6];
5595         tag[6] = original_tag[5];
5596         tag[7] = original_tag[4];
5597 }
5598
5599 static void hpsa_get_tag(struct ctlr_info *h,
5600         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5601 {
5602         u64 tag;
5603         if (c->cmd_type == CMD_IOACCEL1) {
5604                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5605                         &h->ioaccel_cmd_pool[c->cmdindex];
5606                 tag = le64_to_cpu(cm1->tag);
5607                 *tagupper = cpu_to_le32(tag >> 32);
5608                 *taglower = cpu_to_le32(tag);
5609                 return;
5610         }
5611         if (c->cmd_type == CMD_IOACCEL2) {
5612                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5613                         &h->ioaccel2_cmd_pool[c->cmdindex];
5614                 /* upper tag not used in ioaccel2 mode */
5615                 memset(tagupper, 0, sizeof(*tagupper));
5616                 *taglower = cm2->Tag;
5617                 return;
5618         }
5619         tag = le64_to_cpu(c->Header.tag);
5620         *tagupper = cpu_to_le32(tag >> 32);
5621         *taglower = cpu_to_le32(tag);
5622 }
5623
5624 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5625         struct CommandList *abort, int reply_queue)
5626 {
5627         int rc = IO_OK;
5628         struct CommandList *c;
5629         struct ErrorInfo *ei;
5630         __le32 tagupper, taglower;
5631
5632         c = cmd_alloc(h);
5633
5634         /* fill_cmd can't fail here, no buffer to map */
5635         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5636                 0, 0, scsi3addr, TYPE_MSG);
5637         if (h->needs_abort_tags_swizzled)
5638                 swizzle_abort_tag(&c->Request.CDB[4]);
5639         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5640         hpsa_get_tag(h, abort, &taglower, &tagupper);
5641         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5642                 __func__, tagupper, taglower);
5643         /* no unmap needed here because no data xfer. */
5644
5645         ei = c->err_info;
5646         switch (ei->CommandStatus) {
5647         case CMD_SUCCESS:
5648                 break;
5649         case CMD_TMF_STATUS:
5650                 rc = hpsa_evaluate_tmf_status(h, c);
5651                 break;
5652         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5653                 rc = -1;
5654                 break;
5655         default:
5656                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5657                         __func__, tagupper, taglower);
5658                 hpsa_scsi_interpret_error(h, c);
5659                 rc = -1;
5660                 break;
5661         }
5662         cmd_free(h, c);
5663         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5664                 __func__, tagupper, taglower);
5665         return rc;
5666 }
5667
5668 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5669         struct CommandList *command_to_abort, int reply_queue)
5670 {
5671         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5672         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5673         struct io_accel2_cmd *c2a =
5674                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5675         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5676         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5677
5678         /*
5679          * We're overlaying struct hpsa_tmf_struct on top of something which
5680          * was allocated as a struct io_accel2_cmd, so we better be sure it
5681          * actually fits, and doesn't overrun the error info space.
5682          */
5683         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5684                         sizeof(struct io_accel2_cmd));
5685         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5686                         offsetof(struct hpsa_tmf_struct, error_len) +
5687                                 sizeof(ac->error_len));
5688
5689         c->cmd_type = IOACCEL2_TMF;
5690         c->scsi_cmd = SCSI_CMD_BUSY;
5691
5692         /* Adjust the DMA address to point to the accelerated command buffer */
5693         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5694                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5695         BUG_ON(c->busaddr & 0x0000007F);
5696
5697         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5698         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5699         ac->reply_queue = reply_queue;
5700         ac->tmf = IOACCEL2_TMF_ABORT;
5701         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5702         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5703         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5704         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5705         ac->error_ptr = cpu_to_le64(c->busaddr +
5706                         offsetof(struct io_accel2_cmd, error_data));
5707         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5708 }
5709
5710 /* ioaccel2 path firmware cannot handle abort task requests.
5711  * Change abort requests to physical target reset, and send to the
5712  * address of the physical disk used for the ioaccel 2 command.
5713  * Return 0 on success (IO_OK)
5714  *       -1 on failure
5715  */
5716
5717 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5718         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5719 {
5720         int rc = IO_OK;
5721         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5722         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5723         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5724         unsigned char *psa = &phys_scsi3addr[0];
5725
5726         /* Get a pointer to the hpsa logical device. */
5727         scmd = abort->scsi_cmd;
5728         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5729         if (dev == NULL) {
5730                 dev_warn(&h->pdev->dev,
5731                         "Cannot abort: no device pointer for command.\n");
5732                         return -1; /* not abortable */
5733         }
5734
5735         if (h->raid_offload_debug > 0)
5736                 dev_info(&h->pdev->dev,
5737                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5738                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5739                         "Reset as abort",
5740                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5741                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5742
5743         if (!dev->offload_enabled) {
5744                 dev_warn(&h->pdev->dev,
5745                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5746                 return -1; /* not abortable */
5747         }
5748
5749         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5750         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5751                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5752                 return -1; /* not abortable */
5753         }
5754
5755         /* send the reset */
5756         if (h->raid_offload_debug > 0)
5757                 dev_info(&h->pdev->dev,
5758                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5759                         psa[0], psa[1], psa[2], psa[3],
5760                         psa[4], psa[5], psa[6], psa[7]);
5761         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5762         if (rc != 0) {
5763                 dev_warn(&h->pdev->dev,
5764                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5765                         psa[0], psa[1], psa[2], psa[3],
5766                         psa[4], psa[5], psa[6], psa[7]);
5767                 return rc; /* failed to reset */
5768         }
5769
5770         /* wait for device to recover */
5771         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5772                 dev_warn(&h->pdev->dev,
5773                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5774                         psa[0], psa[1], psa[2], psa[3],
5775                         psa[4], psa[5], psa[6], psa[7]);
5776                 return -1;  /* failed to recover */
5777         }
5778
5779         /* device recovered */
5780         dev_info(&h->pdev->dev,
5781                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5782                 psa[0], psa[1], psa[2], psa[3],
5783                 psa[4], psa[5], psa[6], psa[7]);
5784
5785         return rc; /* success */
5786 }
5787
5788 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5789         struct CommandList *abort, int reply_queue)
5790 {
5791         int rc = IO_OK;
5792         struct CommandList *c;
5793         __le32 taglower, tagupper;
5794         struct hpsa_scsi_dev_t *dev;
5795         struct io_accel2_cmd *c2;
5796
5797         dev = abort->scsi_cmd->device->hostdata;
5798         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5799                 return -1;
5800
5801         c = cmd_alloc(h);
5802         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5803         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5804         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5805         hpsa_get_tag(h, abort, &taglower, &tagupper);
5806         dev_dbg(&h->pdev->dev,
5807                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5808                 __func__, tagupper, taglower);
5809         /* no unmap needed here because no data xfer. */
5810
5811         dev_dbg(&h->pdev->dev,
5812                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5813                 __func__, tagupper, taglower, c2->error_data.serv_response);
5814         switch (c2->error_data.serv_response) {
5815         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5816         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5817                 rc = 0;
5818                 break;
5819         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5820         case IOACCEL2_SERV_RESPONSE_FAILURE:
5821         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5822                 rc = -1;
5823                 break;
5824         default:
5825                 dev_warn(&h->pdev->dev,
5826                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5827                         __func__, tagupper, taglower,
5828                         c2->error_data.serv_response);
5829                 rc = -1;
5830         }
5831         cmd_free(h, c);
5832         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5833                 tagupper, taglower);
5834         return rc;
5835 }
5836
5837 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5838         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5839 {
5840         /*
5841          * ioccelerator mode 2 commands should be aborted via the
5842          * accelerated path, since RAID path is unaware of these commands,
5843          * but not all underlying firmware can handle abort TMF.
5844          * Change abort to physical device reset when abort TMF is unsupported.
5845          */
5846         if (abort->cmd_type == CMD_IOACCEL2) {
5847                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5848                         return hpsa_send_abort_ioaccel2(h, abort,
5849                                                 reply_queue);
5850                 else
5851                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5852                                                         abort, reply_queue);
5853         }
5854         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5855 }
5856
5857 /* Find out which reply queue a command was meant to return on */
5858 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5859                                         struct CommandList *c)
5860 {
5861         if (c->cmd_type == CMD_IOACCEL2)
5862                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5863         return c->Header.ReplyQueue;
5864 }
5865
5866 /*
5867  * Limit concurrency of abort commands to prevent
5868  * over-subscription of commands
5869  */
5870 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5871 {
5872 #define ABORT_CMD_WAIT_MSECS 5000
5873         return !wait_event_timeout(h->abort_cmd_wait_queue,
5874                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5875                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5876 }
5877
5878 /* Send an abort for the specified command.
5879  *      If the device and controller support it,
5880  *              send a task abort request.
5881  */
5882 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5883 {
5884
5885         int rc;
5886         struct ctlr_info *h;
5887         struct hpsa_scsi_dev_t *dev;
5888         struct CommandList *abort; /* pointer to command to be aborted */
5889         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5890         char msg[256];          /* For debug messaging. */
5891         int ml = 0;
5892         __le32 tagupper, taglower;
5893         int refcount, reply_queue;
5894
5895         if (sc == NULL)
5896                 return FAILED;
5897
5898         if (sc->device == NULL)
5899                 return FAILED;
5900
5901         /* Find the controller of the command to be aborted */
5902         h = sdev_to_hba(sc->device);
5903         if (h == NULL)
5904                 return FAILED;
5905
5906         /* Find the device of the command to be aborted */
5907         dev = sc->device->hostdata;
5908         if (!dev) {
5909                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5910                                 msg);
5911                 return FAILED;
5912         }
5913
5914         /* If controller locked up, we can guarantee command won't complete */
5915         if (lockup_detected(h)) {
5916                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5917                                         "ABORT FAILED, lockup detected");
5918                 return FAILED;
5919         }
5920
5921         /* This is a good time to check if controller lockup has occurred */
5922         if (detect_controller_lockup(h)) {
5923                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5924                                         "ABORT FAILED, new lockup detected");
5925                 return FAILED;
5926         }
5927
5928         /* Check that controller supports some kind of task abort */
5929         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5930                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5931                 return FAILED;
5932
5933         memset(msg, 0, sizeof(msg));
5934         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5935                 h->scsi_host->host_no, sc->device->channel,
5936                 sc->device->id, sc->device->lun,
5937                 "Aborting command", sc);
5938
5939         /* Get SCSI command to be aborted */
5940         abort = (struct CommandList *) sc->host_scribble;
5941         if (abort == NULL) {
5942                 /* This can happen if the command already completed. */
5943                 return SUCCESS;
5944         }
5945         refcount = atomic_inc_return(&abort->refcount);
5946         if (refcount == 1) { /* Command is done already. */
5947                 cmd_free(h, abort);
5948                 return SUCCESS;
5949         }
5950
5951         /* Don't bother trying the abort if we know it won't work. */
5952         if (abort->cmd_type != CMD_IOACCEL2 &&
5953                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5954                 cmd_free(h, abort);
5955                 return FAILED;
5956         }
5957
5958         /*
5959          * Check that we're aborting the right command.
5960          * It's possible the CommandList already completed and got re-used.
5961          */
5962         if (abort->scsi_cmd != sc) {
5963                 cmd_free(h, abort);
5964                 return SUCCESS;
5965         }
5966
5967         abort->abort_pending = true;
5968         hpsa_get_tag(h, abort, &taglower, &tagupper);
5969         reply_queue = hpsa_extract_reply_queue(h, abort);
5970         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5971         as  = abort->scsi_cmd;
5972         if (as != NULL)
5973                 ml += sprintf(msg+ml,
5974                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5975                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5976                         as->serial_number);
5977         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5978         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5979
5980         /*
5981          * Command is in flight, or possibly already completed
5982          * by the firmware (but not to the scsi mid layer) but we can't
5983          * distinguish which.  Send the abort down.
5984          */
5985         if (wait_for_available_abort_cmd(h)) {
5986                 dev_warn(&h->pdev->dev,
5987                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5988                         msg);
5989                 cmd_free(h, abort);
5990                 return FAILED;
5991         }
5992         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5993         atomic_inc(&h->abort_cmds_available);
5994         wake_up_all(&h->abort_cmd_wait_queue);
5995         if (rc != 0) {
5996                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5997                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5998                                 "FAILED to abort command");
5999                 cmd_free(h, abort);
6000                 return FAILED;
6001         }
6002         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6003         wait_event(h->event_sync_wait_queue,
6004                    abort->scsi_cmd != sc || lockup_detected(h));
6005         cmd_free(h, abort);
6006         return !lockup_detected(h) ? SUCCESS : FAILED;
6007 }
6008
6009 /*
6010  * For operations with an associated SCSI command, a command block is allocated
6011  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6012  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6013  * the complement, although cmd_free() may be called instead.
6014  */
6015 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6016                                             struct scsi_cmnd *scmd)
6017 {
6018         int idx = hpsa_get_cmd_index(scmd);
6019         struct CommandList *c = h->cmd_pool + idx;
6020
6021         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6022                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6023                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6024                 /* The index value comes from the block layer, so if it's out of
6025                  * bounds, it's probably not our bug.
6026                  */
6027                 BUG();
6028         }
6029
6030         atomic_inc(&c->refcount);
6031         if (unlikely(!hpsa_is_cmd_idle(c))) {
6032                 /*
6033                  * We expect that the SCSI layer will hand us a unique tag
6034                  * value.  Thus, there should never be a collision here between
6035                  * two requests...because if the selected command isn't idle
6036                  * then someone is going to be very disappointed.
6037                  */
6038                 dev_err(&h->pdev->dev,
6039                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6040                         idx);
6041                 if (c->scsi_cmd != NULL)
6042                         scsi_print_command(c->scsi_cmd);
6043                 scsi_print_command(scmd);
6044         }
6045
6046         hpsa_cmd_partial_init(h, idx, c);
6047         return c;
6048 }
6049
6050 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6051 {
6052         /*
6053          * Release our reference to the block.  We don't need to do anything
6054          * else to free it, because it is accessed by index.  (There's no point
6055          * in checking the result of the decrement, since we cannot guarantee
6056          * that there isn't a concurrent abort which is also accessing it.)
6057          */
6058         (void)atomic_dec(&c->refcount);
6059 }
6060
6061 /*
6062  * For operations that cannot sleep, a command block is allocated at init,
6063  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6064  * which ones are free or in use.  Lock must be held when calling this.
6065  * cmd_free() is the complement.
6066  * This function never gives up and returns NULL.  If it hangs,
6067  * another thread must call cmd_free() to free some tags.
6068  */
6069
6070 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6071 {
6072         struct CommandList *c;
6073         int refcount, i;
6074         int offset = 0;
6075
6076         /*
6077          * There is some *extremely* small but non-zero chance that that
6078          * multiple threads could get in here, and one thread could
6079          * be scanning through the list of bits looking for a free
6080          * one, but the free ones are always behind him, and other
6081          * threads sneak in behind him and eat them before he can
6082          * get to them, so that while there is always a free one, a
6083          * very unlucky thread might be starved anyway, never able to
6084          * beat the other threads.  In reality, this happens so
6085          * infrequently as to be indistinguishable from never.
6086          *
6087          * Note that we start allocating commands before the SCSI host structure
6088          * is initialized.  Since the search starts at bit zero, this
6089          * all works, since we have at least one command structure available;
6090          * however, it means that the structures with the low indexes have to be
6091          * reserved for driver-initiated requests, while requests from the block
6092          * layer will use the higher indexes.
6093          */
6094
6095         for (;;) {
6096                 i = find_next_zero_bit(h->cmd_pool_bits,
6097                                         HPSA_NRESERVED_CMDS,
6098                                         offset);
6099                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6100                         offset = 0;
6101                         continue;
6102                 }
6103                 c = h->cmd_pool + i;
6104                 refcount = atomic_inc_return(&c->refcount);
6105                 if (unlikely(refcount > 1)) {
6106                         cmd_free(h, c); /* already in use */
6107                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6108                         continue;
6109                 }
6110                 set_bit(i & (BITS_PER_LONG - 1),
6111                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6112                 break; /* it's ours now. */
6113         }
6114         hpsa_cmd_partial_init(h, i, c);
6115         return c;
6116 }
6117
6118 /*
6119  * This is the complementary operation to cmd_alloc().  Note, however, in some
6120  * corner cases it may also be used to free blocks allocated by
6121  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6122  * the clear-bit is harmless.
6123  */
6124 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6125 {
6126         if (atomic_dec_and_test(&c->refcount)) {
6127                 int i;
6128
6129                 i = c - h->cmd_pool;
6130                 clear_bit(i & (BITS_PER_LONG - 1),
6131                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6132         }
6133 }
6134
6135 #ifdef CONFIG_COMPAT
6136
6137 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6138         void __user *arg)
6139 {
6140         IOCTL32_Command_struct __user *arg32 =
6141             (IOCTL32_Command_struct __user *) arg;
6142         IOCTL_Command_struct arg64;
6143         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6144         int err;
6145         u32 cp;
6146
6147         memset(&arg64, 0, sizeof(arg64));
6148         err = 0;
6149         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6150                            sizeof(arg64.LUN_info));
6151         err |= copy_from_user(&arg64.Request, &arg32->Request,
6152                            sizeof(arg64.Request));
6153         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6154                            sizeof(arg64.error_info));
6155         err |= get_user(arg64.buf_size, &arg32->buf_size);
6156         err |= get_user(cp, &arg32->buf);
6157         arg64.buf = compat_ptr(cp);
6158         err |= copy_to_user(p, &arg64, sizeof(arg64));
6159
6160         if (err)
6161                 return -EFAULT;
6162
6163         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6164         if (err)
6165                 return err;
6166         err |= copy_in_user(&arg32->error_info, &p->error_info,
6167                          sizeof(arg32->error_info));
6168         if (err)
6169                 return -EFAULT;
6170         return err;
6171 }
6172
6173 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6174         int cmd, void __user *arg)
6175 {
6176         BIG_IOCTL32_Command_struct __user *arg32 =
6177             (BIG_IOCTL32_Command_struct __user *) arg;
6178         BIG_IOCTL_Command_struct arg64;
6179         BIG_IOCTL_Command_struct __user *p =
6180             compat_alloc_user_space(sizeof(arg64));
6181         int err;
6182         u32 cp;
6183
6184         memset(&arg64, 0, sizeof(arg64));
6185         err = 0;
6186         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6187                            sizeof(arg64.LUN_info));
6188         err |= copy_from_user(&arg64.Request, &arg32->Request,
6189                            sizeof(arg64.Request));
6190         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6191                            sizeof(arg64.error_info));
6192         err |= get_user(arg64.buf_size, &arg32->buf_size);
6193         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6194         err |= get_user(cp, &arg32->buf);
6195         arg64.buf = compat_ptr(cp);
6196         err |= copy_to_user(p, &arg64, sizeof(arg64));
6197
6198         if (err)
6199                 return -EFAULT;
6200
6201         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6202         if (err)
6203                 return err;
6204         err |= copy_in_user(&arg32->error_info, &p->error_info,
6205                          sizeof(arg32->error_info));
6206         if (err)
6207                 return -EFAULT;
6208         return err;
6209 }
6210
6211 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6212 {
6213         switch (cmd) {
6214         case CCISS_GETPCIINFO:
6215         case CCISS_GETINTINFO:
6216         case CCISS_SETINTINFO:
6217         case CCISS_GETNODENAME:
6218         case CCISS_SETNODENAME:
6219         case CCISS_GETHEARTBEAT:
6220         case CCISS_GETBUSTYPES:
6221         case CCISS_GETFIRMVER:
6222         case CCISS_GETDRIVVER:
6223         case CCISS_REVALIDVOLS:
6224         case CCISS_DEREGDISK:
6225         case CCISS_REGNEWDISK:
6226         case CCISS_REGNEWD:
6227         case CCISS_RESCANDISK:
6228         case CCISS_GETLUNINFO:
6229                 return hpsa_ioctl(dev, cmd, arg);
6230
6231         case CCISS_PASSTHRU32:
6232                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6233         case CCISS_BIG_PASSTHRU32:
6234                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6235
6236         default:
6237                 return -ENOIOCTLCMD;
6238         }
6239 }
6240 #endif
6241
6242 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6243 {
6244         struct hpsa_pci_info pciinfo;
6245
6246         if (!argp)
6247                 return -EINVAL;
6248         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6249         pciinfo.bus = h->pdev->bus->number;
6250         pciinfo.dev_fn = h->pdev->devfn;
6251         pciinfo.board_id = h->board_id;
6252         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6253                 return -EFAULT;
6254         return 0;
6255 }
6256
6257 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6258 {
6259         DriverVer_type DriverVer;
6260         unsigned char vmaj, vmin, vsubmin;
6261         int rc;
6262
6263         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6264                 &vmaj, &vmin, &vsubmin);
6265         if (rc != 3) {
6266                 dev_info(&h->pdev->dev, "driver version string '%s' "
6267                         "unrecognized.", HPSA_DRIVER_VERSION);
6268                 vmaj = 0;
6269                 vmin = 0;
6270                 vsubmin = 0;
6271         }
6272         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6273         if (!argp)
6274                 return -EINVAL;
6275         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6276                 return -EFAULT;
6277         return 0;
6278 }
6279
6280 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6281 {
6282         IOCTL_Command_struct iocommand;
6283         struct CommandList *c;
6284         char *buff = NULL;
6285         u64 temp64;
6286         int rc = 0;
6287
6288         if (!argp)
6289                 return -EINVAL;
6290         if (!capable(CAP_SYS_RAWIO))
6291                 return -EPERM;
6292         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6293                 return -EFAULT;
6294         if ((iocommand.buf_size < 1) &&
6295             (iocommand.Request.Type.Direction != XFER_NONE)) {
6296                 return -EINVAL;
6297         }
6298         if (iocommand.buf_size > 0) {
6299                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6300                 if (buff == NULL)
6301                         return -ENOMEM;
6302                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6303                         /* Copy the data into the buffer we created */
6304                         if (copy_from_user(buff, iocommand.buf,
6305                                 iocommand.buf_size)) {
6306                                 rc = -EFAULT;
6307                                 goto out_kfree;
6308                         }
6309                 } else {
6310                         memset(buff, 0, iocommand.buf_size);
6311                 }
6312         }
6313         c = cmd_alloc(h);
6314
6315         /* Fill in the command type */
6316         c->cmd_type = CMD_IOCTL_PEND;
6317         c->scsi_cmd = SCSI_CMD_BUSY;
6318         /* Fill in Command Header */
6319         c->Header.ReplyQueue = 0; /* unused in simple mode */
6320         if (iocommand.buf_size > 0) {   /* buffer to fill */
6321                 c->Header.SGList = 1;
6322                 c->Header.SGTotal = cpu_to_le16(1);
6323         } else  { /* no buffers to fill */
6324                 c->Header.SGList = 0;
6325                 c->Header.SGTotal = cpu_to_le16(0);
6326         }
6327         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6328
6329         /* Fill in Request block */
6330         memcpy(&c->Request, &iocommand.Request,
6331                 sizeof(c->Request));
6332
6333         /* Fill in the scatter gather information */
6334         if (iocommand.buf_size > 0) {
6335                 temp64 = pci_map_single(h->pdev, buff,
6336                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6337                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6338                         c->SG[0].Addr = cpu_to_le64(0);
6339                         c->SG[0].Len = cpu_to_le32(0);
6340                         rc = -ENOMEM;
6341                         goto out;
6342                 }
6343                 c->SG[0].Addr = cpu_to_le64(temp64);
6344                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6345                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6346         }
6347         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6348         if (iocommand.buf_size > 0)
6349                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6350         check_ioctl_unit_attention(h, c);
6351         if (rc) {
6352                 rc = -EIO;
6353                 goto out;
6354         }
6355
6356         /* Copy the error information out */
6357         memcpy(&iocommand.error_info, c->err_info,
6358                 sizeof(iocommand.error_info));
6359         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6360                 rc = -EFAULT;
6361                 goto out;
6362         }
6363         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6364                 iocommand.buf_size > 0) {
6365                 /* Copy the data out of the buffer we created */
6366                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6367                         rc = -EFAULT;
6368                         goto out;
6369                 }
6370         }
6371 out:
6372         cmd_free(h, c);
6373 out_kfree:
6374         kfree(buff);
6375         return rc;
6376 }
6377
6378 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6379 {
6380         BIG_IOCTL_Command_struct *ioc;
6381         struct CommandList *c;
6382         unsigned char **buff = NULL;
6383         int *buff_size = NULL;
6384         u64 temp64;
6385         BYTE sg_used = 0;
6386         int status = 0;
6387         u32 left;
6388         u32 sz;
6389         BYTE __user *data_ptr;
6390
6391         if (!argp)
6392                 return -EINVAL;
6393         if (!capable(CAP_SYS_RAWIO))
6394                 return -EPERM;
6395         ioc = (BIG_IOCTL_Command_struct *)
6396             kmalloc(sizeof(*ioc), GFP_KERNEL);
6397         if (!ioc) {
6398                 status = -ENOMEM;
6399                 goto cleanup1;
6400         }
6401         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6402                 status = -EFAULT;
6403                 goto cleanup1;
6404         }
6405         if ((ioc->buf_size < 1) &&
6406             (ioc->Request.Type.Direction != XFER_NONE)) {
6407                 status = -EINVAL;
6408                 goto cleanup1;
6409         }
6410         /* Check kmalloc limits  using all SGs */
6411         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6412                 status = -EINVAL;
6413                 goto cleanup1;
6414         }
6415         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6416                 status = -EINVAL;
6417                 goto cleanup1;
6418         }
6419         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6420         if (!buff) {
6421                 status = -ENOMEM;
6422                 goto cleanup1;
6423         }
6424         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6425         if (!buff_size) {
6426                 status = -ENOMEM;
6427                 goto cleanup1;
6428         }
6429         left = ioc->buf_size;
6430         data_ptr = ioc->buf;
6431         while (left) {
6432                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6433                 buff_size[sg_used] = sz;
6434                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6435                 if (buff[sg_used] == NULL) {
6436                         status = -ENOMEM;
6437                         goto cleanup1;
6438                 }
6439                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6440                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6441                                 status = -EFAULT;
6442                                 goto cleanup1;
6443                         }
6444                 } else
6445                         memset(buff[sg_used], 0, sz);
6446                 left -= sz;
6447                 data_ptr += sz;
6448                 sg_used++;
6449         }
6450         c = cmd_alloc(h);
6451
6452         c->cmd_type = CMD_IOCTL_PEND;
6453         c->scsi_cmd = SCSI_CMD_BUSY;
6454         c->Header.ReplyQueue = 0;
6455         c->Header.SGList = (u8) sg_used;
6456         c->Header.SGTotal = cpu_to_le16(sg_used);
6457         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6458         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6459         if (ioc->buf_size > 0) {
6460                 int i;
6461                 for (i = 0; i < sg_used; i++) {
6462                         temp64 = pci_map_single(h->pdev, buff[i],
6463                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6464                         if (dma_mapping_error(&h->pdev->dev,
6465                                                         (dma_addr_t) temp64)) {
6466                                 c->SG[i].Addr = cpu_to_le64(0);
6467                                 c->SG[i].Len = cpu_to_le32(0);
6468                                 hpsa_pci_unmap(h->pdev, c, i,
6469                                         PCI_DMA_BIDIRECTIONAL);
6470                                 status = -ENOMEM;
6471                                 goto cleanup0;
6472                         }
6473                         c->SG[i].Addr = cpu_to_le64(temp64);
6474                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6475                         c->SG[i].Ext = cpu_to_le32(0);
6476                 }
6477                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6478         }
6479         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6480         if (sg_used)
6481                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6482         check_ioctl_unit_attention(h, c);
6483         if (status) {
6484                 status = -EIO;
6485                 goto cleanup0;
6486         }
6487
6488         /* Copy the error information out */
6489         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6490         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6491                 status = -EFAULT;
6492                 goto cleanup0;
6493         }
6494         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6495                 int i;
6496
6497                 /* Copy the data out of the buffer we created */
6498                 BYTE __user *ptr = ioc->buf;
6499                 for (i = 0; i < sg_used; i++) {
6500                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6501                                 status = -EFAULT;
6502                                 goto cleanup0;
6503                         }
6504                         ptr += buff_size[i];
6505                 }
6506         }
6507         status = 0;
6508 cleanup0:
6509         cmd_free(h, c);
6510 cleanup1:
6511         if (buff) {
6512                 int i;
6513
6514                 for (i = 0; i < sg_used; i++)
6515                         kfree(buff[i]);
6516                 kfree(buff);
6517         }
6518         kfree(buff_size);
6519         kfree(ioc);
6520         return status;
6521 }
6522
6523 static void check_ioctl_unit_attention(struct ctlr_info *h,
6524         struct CommandList *c)
6525 {
6526         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6527                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6528                 (void) check_for_unit_attention(h, c);
6529 }
6530
6531 /*
6532  * ioctl
6533  */
6534 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6535 {
6536         struct ctlr_info *h;
6537         void __user *argp = (void __user *)arg;
6538         int rc;
6539
6540         h = sdev_to_hba(dev);
6541
6542         switch (cmd) {
6543         case CCISS_DEREGDISK:
6544         case CCISS_REGNEWDISK:
6545         case CCISS_REGNEWD:
6546                 hpsa_scan_start(h->scsi_host);
6547                 return 0;
6548         case CCISS_GETPCIINFO:
6549                 return hpsa_getpciinfo_ioctl(h, argp);
6550         case CCISS_GETDRIVVER:
6551                 return hpsa_getdrivver_ioctl(h, argp);
6552         case CCISS_PASSTHRU:
6553                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6554                         return -EAGAIN;
6555                 rc = hpsa_passthru_ioctl(h, argp);
6556                 atomic_inc(&h->passthru_cmds_avail);
6557                 return rc;
6558         case CCISS_BIG_PASSTHRU:
6559                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6560                         return -EAGAIN;
6561                 rc = hpsa_big_passthru_ioctl(h, argp);
6562                 atomic_inc(&h->passthru_cmds_avail);
6563                 return rc;
6564         default:
6565                 return -ENOTTY;
6566         }
6567 }
6568
6569 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6570                                 u8 reset_type)
6571 {
6572         struct CommandList *c;
6573
6574         c = cmd_alloc(h);
6575
6576         /* fill_cmd can't fail here, no data buffer to map */
6577         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6578                 RAID_CTLR_LUNID, TYPE_MSG);
6579         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6580         c->waiting = NULL;
6581         enqueue_cmd_and_start_io(h, c);
6582         /* Don't wait for completion, the reset won't complete.  Don't free
6583          * the command either.  This is the last command we will send before
6584          * re-initializing everything, so it doesn't matter and won't leak.
6585          */
6586         return;
6587 }
6588
6589 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6590         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6591         int cmd_type)
6592 {
6593         int pci_dir = XFER_NONE;
6594         u64 tag; /* for commands to be aborted */
6595
6596         c->cmd_type = CMD_IOCTL_PEND;
6597         c->scsi_cmd = SCSI_CMD_BUSY;
6598         c->Header.ReplyQueue = 0;
6599         if (buff != NULL && size > 0) {
6600                 c->Header.SGList = 1;
6601                 c->Header.SGTotal = cpu_to_le16(1);
6602         } else {
6603                 c->Header.SGList = 0;
6604                 c->Header.SGTotal = cpu_to_le16(0);
6605         }
6606         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6607
6608         if (cmd_type == TYPE_CMD) {
6609                 switch (cmd) {
6610                 case HPSA_INQUIRY:
6611                         /* are we trying to read a vital product page */
6612                         if (page_code & VPD_PAGE) {
6613                                 c->Request.CDB[1] = 0x01;
6614                                 c->Request.CDB[2] = (page_code & 0xff);
6615                         }
6616                         c->Request.CDBLen = 6;
6617                         c->Request.type_attr_dir =
6618                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6619                         c->Request.Timeout = 0;
6620                         c->Request.CDB[0] = HPSA_INQUIRY;
6621                         c->Request.CDB[4] = size & 0xFF;
6622                         break;
6623                 case HPSA_REPORT_LOG:
6624                 case HPSA_REPORT_PHYS:
6625                         /* Talking to controller so It's a physical command
6626                            mode = 00 target = 0.  Nothing to write.
6627                          */
6628                         c->Request.CDBLen = 12;
6629                         c->Request.type_attr_dir =
6630                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6631                         c->Request.Timeout = 0;
6632                         c->Request.CDB[0] = cmd;
6633                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6634                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6635                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6636                         c->Request.CDB[9] = size & 0xFF;
6637                         break;
6638                 case BMIC_SENSE_DIAG_OPTIONS:
6639                         c->Request.CDBLen = 16;
6640                         c->Request.type_attr_dir =
6641                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6642                         c->Request.Timeout = 0;
6643                         /* Spec says this should be BMIC_WRITE */
6644                         c->Request.CDB[0] = BMIC_READ;
6645                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6646                         break;
6647                 case BMIC_SET_DIAG_OPTIONS:
6648                         c->Request.CDBLen = 16;
6649                         c->Request.type_attr_dir =
6650                                         TYPE_ATTR_DIR(cmd_type,
6651                                                 ATTR_SIMPLE, XFER_WRITE);
6652                         c->Request.Timeout = 0;
6653                         c->Request.CDB[0] = BMIC_WRITE;
6654                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6655                         break;
6656                 case HPSA_CACHE_FLUSH:
6657                         c->Request.CDBLen = 12;
6658                         c->Request.type_attr_dir =
6659                                         TYPE_ATTR_DIR(cmd_type,
6660                                                 ATTR_SIMPLE, XFER_WRITE);
6661                         c->Request.Timeout = 0;
6662                         c->Request.CDB[0] = BMIC_WRITE;
6663                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6664                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6665                         c->Request.CDB[8] = size & 0xFF;
6666                         break;
6667                 case TEST_UNIT_READY:
6668                         c->Request.CDBLen = 6;
6669                         c->Request.type_attr_dir =
6670                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6671                         c->Request.Timeout = 0;
6672                         break;
6673                 case HPSA_GET_RAID_MAP:
6674                         c->Request.CDBLen = 12;
6675                         c->Request.type_attr_dir =
6676                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6677                         c->Request.Timeout = 0;
6678                         c->Request.CDB[0] = HPSA_CISS_READ;
6679                         c->Request.CDB[1] = cmd;
6680                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6681                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6682                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6683                         c->Request.CDB[9] = size & 0xFF;
6684                         break;
6685                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6686                         c->Request.CDBLen = 10;
6687                         c->Request.type_attr_dir =
6688                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6689                         c->Request.Timeout = 0;
6690                         c->Request.CDB[0] = BMIC_READ;
6691                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6692                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6693                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6694                         break;
6695                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6696                         c->Request.CDBLen = 10;
6697                         c->Request.type_attr_dir =
6698                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6699                         c->Request.Timeout = 0;
6700                         c->Request.CDB[0] = BMIC_READ;
6701                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6702                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6703                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6704                         break;
6705                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6706                         c->Request.CDBLen = 10;
6707                         c->Request.type_attr_dir =
6708                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6709                         c->Request.Timeout = 0;
6710                         c->Request.CDB[0] = BMIC_READ;
6711                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6712                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6713                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6714                         break;
6715                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6716                         c->Request.CDBLen = 10;
6717                         c->Request.type_attr_dir =
6718                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6719                         c->Request.Timeout = 0;
6720                         c->Request.CDB[0] = BMIC_READ;
6721                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6722                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6723                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6724                         break;
6725                 case BMIC_IDENTIFY_CONTROLLER:
6726                         c->Request.CDBLen = 10;
6727                         c->Request.type_attr_dir =
6728                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6729                         c->Request.Timeout = 0;
6730                         c->Request.CDB[0] = BMIC_READ;
6731                         c->Request.CDB[1] = 0;
6732                         c->Request.CDB[2] = 0;
6733                         c->Request.CDB[3] = 0;
6734                         c->Request.CDB[4] = 0;
6735                         c->Request.CDB[5] = 0;
6736                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6737                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6738                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6739                         c->Request.CDB[9] = 0;
6740                         break;
6741                 default:
6742                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6743                         BUG();
6744                         return -1;
6745                 }
6746         } else if (cmd_type == TYPE_MSG) {
6747                 switch (cmd) {
6748
6749                 case  HPSA_PHYS_TARGET_RESET:
6750                         c->Request.CDBLen = 16;
6751                         c->Request.type_attr_dir =
6752                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6753                         c->Request.Timeout = 0; /* Don't time out */
6754                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6755                         c->Request.CDB[0] = HPSA_RESET;
6756                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6757                         /* Physical target reset needs no control bytes 4-7*/
6758                         c->Request.CDB[4] = 0x00;
6759                         c->Request.CDB[5] = 0x00;
6760                         c->Request.CDB[6] = 0x00;
6761                         c->Request.CDB[7] = 0x00;
6762                         break;
6763                 case  HPSA_DEVICE_RESET_MSG:
6764                         c->Request.CDBLen = 16;
6765                         c->Request.type_attr_dir =
6766                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6767                         c->Request.Timeout = 0; /* Don't time out */
6768                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6769                         c->Request.CDB[0] =  cmd;
6770                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6771                         /* If bytes 4-7 are zero, it means reset the */
6772                         /* LunID device */
6773                         c->Request.CDB[4] = 0x00;
6774                         c->Request.CDB[5] = 0x00;
6775                         c->Request.CDB[6] = 0x00;
6776                         c->Request.CDB[7] = 0x00;
6777                         break;
6778                 case  HPSA_ABORT_MSG:
6779                         memcpy(&tag, buff, sizeof(tag));
6780                         dev_dbg(&h->pdev->dev,
6781                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6782                                 tag, c->Header.tag);
6783                         c->Request.CDBLen = 16;
6784                         c->Request.type_attr_dir =
6785                                         TYPE_ATTR_DIR(cmd_type,
6786                                                 ATTR_SIMPLE, XFER_WRITE);
6787                         c->Request.Timeout = 0; /* Don't time out */
6788                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6789                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6790                         c->Request.CDB[2] = 0x00; /* reserved */
6791                         c->Request.CDB[3] = 0x00; /* reserved */
6792                         /* Tag to abort goes in CDB[4]-CDB[11] */
6793                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6794                         c->Request.CDB[12] = 0x00; /* reserved */
6795                         c->Request.CDB[13] = 0x00; /* reserved */
6796                         c->Request.CDB[14] = 0x00; /* reserved */
6797                         c->Request.CDB[15] = 0x00; /* reserved */
6798                 break;
6799                 default:
6800                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6801                                 cmd);
6802                         BUG();
6803                 }
6804         } else {
6805                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6806                 BUG();
6807         }
6808
6809         switch (GET_DIR(c->Request.type_attr_dir)) {
6810         case XFER_READ:
6811                 pci_dir = PCI_DMA_FROMDEVICE;
6812                 break;
6813         case XFER_WRITE:
6814                 pci_dir = PCI_DMA_TODEVICE;
6815                 break;
6816         case XFER_NONE:
6817                 pci_dir = PCI_DMA_NONE;
6818                 break;
6819         default:
6820                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6821         }
6822         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6823                 return -1;
6824         return 0;
6825 }
6826
6827 /*
6828  * Map (physical) PCI mem into (virtual) kernel space
6829  */
6830 static void __iomem *remap_pci_mem(ulong base, ulong size)
6831 {
6832         ulong page_base = ((ulong) base) & PAGE_MASK;
6833         ulong page_offs = ((ulong) base) - page_base;
6834         void __iomem *page_remapped = ioremap_nocache(page_base,
6835                 page_offs + size);
6836
6837         return page_remapped ? (page_remapped + page_offs) : NULL;
6838 }
6839
6840 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6841 {
6842         return h->access.command_completed(h, q);
6843 }
6844
6845 static inline bool interrupt_pending(struct ctlr_info *h)
6846 {
6847         return h->access.intr_pending(h);
6848 }
6849
6850 static inline long interrupt_not_for_us(struct ctlr_info *h)
6851 {
6852         return (h->access.intr_pending(h) == 0) ||
6853                 (h->interrupts_enabled == 0);
6854 }
6855
6856 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6857         u32 raw_tag)
6858 {
6859         if (unlikely(tag_index >= h->nr_cmds)) {
6860                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6861                 return 1;
6862         }
6863         return 0;
6864 }
6865
6866 static inline void finish_cmd(struct CommandList *c)
6867 {
6868         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6869         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6870                         || c->cmd_type == CMD_IOACCEL2))
6871                 complete_scsi_command(c);
6872         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6873                 complete(c->waiting);
6874 }
6875
6876 /* process completion of an indexed ("direct lookup") command */
6877 static inline void process_indexed_cmd(struct ctlr_info *h,
6878         u32 raw_tag)
6879 {
6880         u32 tag_index;
6881         struct CommandList *c;
6882
6883         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6884         if (!bad_tag(h, tag_index, raw_tag)) {
6885                 c = h->cmd_pool + tag_index;
6886                 finish_cmd(c);
6887         }
6888 }
6889
6890 /* Some controllers, like p400, will give us one interrupt
6891  * after a soft reset, even if we turned interrupts off.
6892  * Only need to check for this in the hpsa_xxx_discard_completions
6893  * functions.
6894  */
6895 static int ignore_bogus_interrupt(struct ctlr_info *h)
6896 {
6897         if (likely(!reset_devices))
6898                 return 0;
6899
6900         if (likely(h->interrupts_enabled))
6901                 return 0;
6902
6903         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6904                 "(known firmware bug.)  Ignoring.\n");
6905
6906         return 1;
6907 }
6908
6909 /*
6910  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6911  * Relies on (h-q[x] == x) being true for x such that
6912  * 0 <= x < MAX_REPLY_QUEUES.
6913  */
6914 static struct ctlr_info *queue_to_hba(u8 *queue)
6915 {
6916         return container_of((queue - *queue), struct ctlr_info, q[0]);
6917 }
6918
6919 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6920 {
6921         struct ctlr_info *h = queue_to_hba(queue);
6922         u8 q = *(u8 *) queue;
6923         u32 raw_tag;
6924
6925         if (ignore_bogus_interrupt(h))
6926                 return IRQ_NONE;
6927
6928         if (interrupt_not_for_us(h))
6929                 return IRQ_NONE;
6930         h->last_intr_timestamp = get_jiffies_64();
6931         while (interrupt_pending(h)) {
6932                 raw_tag = get_next_completion(h, q);
6933                 while (raw_tag != FIFO_EMPTY)
6934                         raw_tag = next_command(h, q);
6935         }
6936         return IRQ_HANDLED;
6937 }
6938
6939 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6940 {
6941         struct ctlr_info *h = queue_to_hba(queue);
6942         u32 raw_tag;
6943         u8 q = *(u8 *) queue;
6944
6945         if (ignore_bogus_interrupt(h))
6946                 return IRQ_NONE;
6947
6948         h->last_intr_timestamp = get_jiffies_64();
6949         raw_tag = get_next_completion(h, q);
6950         while (raw_tag != FIFO_EMPTY)
6951                 raw_tag = next_command(h, q);
6952         return IRQ_HANDLED;
6953 }
6954
6955 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6956 {
6957         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6958         u32 raw_tag;
6959         u8 q = *(u8 *) queue;
6960
6961         if (interrupt_not_for_us(h))
6962                 return IRQ_NONE;
6963         h->last_intr_timestamp = get_jiffies_64();
6964         while (interrupt_pending(h)) {
6965                 raw_tag = get_next_completion(h, q);
6966                 while (raw_tag != FIFO_EMPTY) {
6967                         process_indexed_cmd(h, raw_tag);
6968                         raw_tag = next_command(h, q);
6969                 }
6970         }
6971         return IRQ_HANDLED;
6972 }
6973
6974 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6975 {
6976         struct ctlr_info *h = queue_to_hba(queue);
6977         u32 raw_tag;
6978         u8 q = *(u8 *) queue;
6979
6980         h->last_intr_timestamp = get_jiffies_64();
6981         raw_tag = get_next_completion(h, q);
6982         while (raw_tag != FIFO_EMPTY) {
6983                 process_indexed_cmd(h, raw_tag);
6984                 raw_tag = next_command(h, q);
6985         }
6986         return IRQ_HANDLED;
6987 }
6988
6989 /* Send a message CDB to the firmware. Careful, this only works
6990  * in simple mode, not performant mode due to the tag lookup.
6991  * We only ever use this immediately after a controller reset.
6992  */
6993 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6994                         unsigned char type)
6995 {
6996         struct Command {
6997                 struct CommandListHeader CommandHeader;
6998                 struct RequestBlock Request;
6999                 struct ErrDescriptor ErrorDescriptor;
7000         };
7001         struct Command *cmd;
7002         static const size_t cmd_sz = sizeof(*cmd) +
7003                                         sizeof(cmd->ErrorDescriptor);
7004         dma_addr_t paddr64;
7005         __le32 paddr32;
7006         u32 tag;
7007         void __iomem *vaddr;
7008         int i, err;
7009
7010         vaddr = pci_ioremap_bar(pdev, 0);
7011         if (vaddr == NULL)
7012                 return -ENOMEM;
7013
7014         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7015          * CCISS commands, so they must be allocated from the lower 4GiB of
7016          * memory.
7017          */
7018         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7019         if (err) {
7020                 iounmap(vaddr);
7021                 return err;
7022         }
7023
7024         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7025         if (cmd == NULL) {
7026                 iounmap(vaddr);
7027                 return -ENOMEM;
7028         }
7029
7030         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7031          * although there's no guarantee, we assume that the address is at
7032          * least 4-byte aligned (most likely, it's page-aligned).
7033          */
7034         paddr32 = cpu_to_le32(paddr64);
7035
7036         cmd->CommandHeader.ReplyQueue = 0;
7037         cmd->CommandHeader.SGList = 0;
7038         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7039         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7040         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7041
7042         cmd->Request.CDBLen = 16;
7043         cmd->Request.type_attr_dir =
7044                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7045         cmd->Request.Timeout = 0; /* Don't time out */
7046         cmd->Request.CDB[0] = opcode;
7047         cmd->Request.CDB[1] = type;
7048         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7049         cmd->ErrorDescriptor.Addr =
7050                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7051         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7052
7053         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7054
7055         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7056                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7057                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7058                         break;
7059                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7060         }
7061
7062         iounmap(vaddr);
7063
7064         /* we leak the DMA buffer here ... no choice since the controller could
7065          *  still complete the command.
7066          */
7067         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7068                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7069                         opcode, type);
7070                 return -ETIMEDOUT;
7071         }
7072
7073         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7074
7075         if (tag & HPSA_ERROR_BIT) {
7076                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7077                         opcode, type);
7078                 return -EIO;
7079         }
7080
7081         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7082                 opcode, type);
7083         return 0;
7084 }
7085
7086 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7087
7088 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7089         void __iomem *vaddr, u32 use_doorbell)
7090 {
7091
7092         if (use_doorbell) {
7093                 /* For everything after the P600, the PCI power state method
7094                  * of resetting the controller doesn't work, so we have this
7095                  * other way using the doorbell register.
7096                  */
7097                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7098                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7099
7100                 /* PMC hardware guys tell us we need a 10 second delay after
7101                  * doorbell reset and before any attempt to talk to the board
7102                  * at all to ensure that this actually works and doesn't fall
7103                  * over in some weird corner cases.
7104                  */
7105                 msleep(10000);
7106         } else { /* Try to do it the PCI power state way */
7107
7108                 /* Quoting from the Open CISS Specification: "The Power
7109                  * Management Control/Status Register (CSR) controls the power
7110                  * state of the device.  The normal operating state is D0,
7111                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7112                  * the controller, place the interface device in D3 then to D0,
7113                  * this causes a secondary PCI reset which will reset the
7114                  * controller." */
7115
7116                 int rc = 0;
7117
7118                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7119
7120                 /* enter the D3hot power management state */
7121                 rc = pci_set_power_state(pdev, PCI_D3hot);
7122                 if (rc)
7123                         return rc;
7124
7125                 msleep(500);
7126
7127                 /* enter the D0 power management state */
7128                 rc = pci_set_power_state(pdev, PCI_D0);
7129                 if (rc)
7130                         return rc;
7131
7132                 /*
7133                  * The P600 requires a small delay when changing states.
7134                  * Otherwise we may think the board did not reset and we bail.
7135                  * This for kdump only and is particular to the P600.
7136                  */
7137                 msleep(500);
7138         }
7139         return 0;
7140 }
7141
7142 static void init_driver_version(char *driver_version, int len)
7143 {
7144         memset(driver_version, 0, len);
7145         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7146 }
7147
7148 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7149 {
7150         char *driver_version;
7151         int i, size = sizeof(cfgtable->driver_version);
7152
7153         driver_version = kmalloc(size, GFP_KERNEL);
7154         if (!driver_version)
7155                 return -ENOMEM;
7156
7157         init_driver_version(driver_version, size);
7158         for (i = 0; i < size; i++)
7159                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7160         kfree(driver_version);
7161         return 0;
7162 }
7163
7164 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7165                                           unsigned char *driver_ver)
7166 {
7167         int i;
7168
7169         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7170                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7171 }
7172
7173 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7174 {
7175
7176         char *driver_ver, *old_driver_ver;
7177         int rc, size = sizeof(cfgtable->driver_version);
7178
7179         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7180         if (!old_driver_ver)
7181                 return -ENOMEM;
7182         driver_ver = old_driver_ver + size;
7183
7184         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7185          * should have been changed, otherwise we know the reset failed.
7186          */
7187         init_driver_version(old_driver_ver, size);
7188         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7189         rc = !memcmp(driver_ver, old_driver_ver, size);
7190         kfree(old_driver_ver);
7191         return rc;
7192 }
7193 /* This does a hard reset of the controller using PCI power management
7194  * states or the using the doorbell register.
7195  */
7196 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7197 {
7198         u64 cfg_offset;
7199         u32 cfg_base_addr;
7200         u64 cfg_base_addr_index;
7201         void __iomem *vaddr;
7202         unsigned long paddr;
7203         u32 misc_fw_support;
7204         int rc;
7205         struct CfgTable __iomem *cfgtable;
7206         u32 use_doorbell;
7207         u16 command_register;
7208
7209         /* For controllers as old as the P600, this is very nearly
7210          * the same thing as
7211          *
7212          * pci_save_state(pci_dev);
7213          * pci_set_power_state(pci_dev, PCI_D3hot);
7214          * pci_set_power_state(pci_dev, PCI_D0);
7215          * pci_restore_state(pci_dev);
7216          *
7217          * For controllers newer than the P600, the pci power state
7218          * method of resetting doesn't work so we have another way
7219          * using the doorbell register.
7220          */
7221
7222         if (!ctlr_is_resettable(board_id)) {
7223                 dev_warn(&pdev->dev, "Controller not resettable\n");
7224                 return -ENODEV;
7225         }
7226
7227         /* if controller is soft- but not hard resettable... */
7228         if (!ctlr_is_hard_resettable(board_id))
7229                 return -ENOTSUPP; /* try soft reset later. */
7230
7231         /* Save the PCI command register */
7232         pci_read_config_word(pdev, 4, &command_register);
7233         pci_save_state(pdev);
7234
7235         /* find the first memory BAR, so we can find the cfg table */
7236         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7237         if (rc)
7238                 return rc;
7239         vaddr = remap_pci_mem(paddr, 0x250);
7240         if (!vaddr)
7241                 return -ENOMEM;
7242
7243         /* find cfgtable in order to check if reset via doorbell is supported */
7244         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7245                                         &cfg_base_addr_index, &cfg_offset);
7246         if (rc)
7247                 goto unmap_vaddr;
7248         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7249                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7250         if (!cfgtable) {
7251                 rc = -ENOMEM;
7252                 goto unmap_vaddr;
7253         }
7254         rc = write_driver_ver_to_cfgtable(cfgtable);
7255         if (rc)
7256                 goto unmap_cfgtable;
7257
7258         /* If reset via doorbell register is supported, use that.
7259          * There are two such methods.  Favor the newest method.
7260          */
7261         misc_fw_support = readl(&cfgtable->misc_fw_support);
7262         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7263         if (use_doorbell) {
7264                 use_doorbell = DOORBELL_CTLR_RESET2;
7265         } else {
7266                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7267                 if (use_doorbell) {
7268                         dev_warn(&pdev->dev,
7269                                 "Soft reset not supported. Firmware update is required.\n");
7270                         rc = -ENOTSUPP; /* try soft reset */
7271                         goto unmap_cfgtable;
7272                 }
7273         }
7274
7275         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7276         if (rc)
7277                 goto unmap_cfgtable;
7278
7279         pci_restore_state(pdev);
7280         pci_write_config_word(pdev, 4, command_register);
7281
7282         /* Some devices (notably the HP Smart Array 5i Controller)
7283            need a little pause here */
7284         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7285
7286         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7287         if (rc) {
7288                 dev_warn(&pdev->dev,
7289                         "Failed waiting for board to become ready after hard reset\n");
7290                 goto unmap_cfgtable;
7291         }
7292
7293         rc = controller_reset_failed(vaddr);
7294         if (rc < 0)
7295                 goto unmap_cfgtable;
7296         if (rc) {
7297                 dev_warn(&pdev->dev, "Unable to successfully reset "
7298                         "controller. Will try soft reset.\n");
7299                 rc = -ENOTSUPP;
7300         } else {
7301                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7302         }
7303
7304 unmap_cfgtable:
7305         iounmap(cfgtable);
7306
7307 unmap_vaddr:
7308         iounmap(vaddr);
7309         return rc;
7310 }
7311
7312 /*
7313  *  We cannot read the structure directly, for portability we must use
7314  *   the io functions.
7315  *   This is for debug only.
7316  */
7317 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7318 {
7319 #ifdef HPSA_DEBUG
7320         int i;
7321         char temp_name[17];
7322
7323         dev_info(dev, "Controller Configuration information\n");
7324         dev_info(dev, "------------------------------------\n");
7325         for (i = 0; i < 4; i++)
7326                 temp_name[i] = readb(&(tb->Signature[i]));
7327         temp_name[4] = '\0';
7328         dev_info(dev, "   Signature = %s\n", temp_name);
7329         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7330         dev_info(dev, "   Transport methods supported = 0x%x\n",
7331                readl(&(tb->TransportSupport)));
7332         dev_info(dev, "   Transport methods active = 0x%x\n",
7333                readl(&(tb->TransportActive)));
7334         dev_info(dev, "   Requested transport Method = 0x%x\n",
7335                readl(&(tb->HostWrite.TransportRequest)));
7336         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7337                readl(&(tb->HostWrite.CoalIntDelay)));
7338         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7339                readl(&(tb->HostWrite.CoalIntCount)));
7340         dev_info(dev, "   Max outstanding commands = %d\n",
7341                readl(&(tb->CmdsOutMax)));
7342         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7343         for (i = 0; i < 16; i++)
7344                 temp_name[i] = readb(&(tb->ServerName[i]));
7345         temp_name[16] = '\0';
7346         dev_info(dev, "   Server Name = %s\n", temp_name);
7347         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7348                 readl(&(tb->HeartBeat)));
7349 #endif                          /* HPSA_DEBUG */
7350 }
7351
7352 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7353 {
7354         int i, offset, mem_type, bar_type;
7355
7356         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7357                 return 0;
7358         offset = 0;
7359         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7360                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7361                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7362                         offset += 4;
7363                 else {
7364                         mem_type = pci_resource_flags(pdev, i) &
7365                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7366                         switch (mem_type) {
7367                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7368                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7369                                 offset += 4;    /* 32 bit */
7370                                 break;
7371                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7372                                 offset += 8;
7373                                 break;
7374                         default:        /* reserved in PCI 2.2 */
7375                                 dev_warn(&pdev->dev,
7376                                        "base address is invalid\n");
7377                                 return -1;
7378                                 break;
7379                         }
7380                 }
7381                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7382                         return i + 1;
7383         }
7384         return -1;
7385 }
7386
7387 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7388 {
7389         if (h->msix_vector) {
7390                 if (h->pdev->msix_enabled)
7391                         pci_disable_msix(h->pdev);
7392                 h->msix_vector = 0;
7393         } else if (h->msi_vector) {
7394                 if (h->pdev->msi_enabled)
7395                         pci_disable_msi(h->pdev);
7396                 h->msi_vector = 0;
7397         }
7398 }
7399
7400 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7401  * controllers that are capable. If not, we use legacy INTx mode.
7402  */
7403 static void hpsa_interrupt_mode(struct ctlr_info *h)
7404 {
7405 #ifdef CONFIG_PCI_MSI
7406         int err, i;
7407         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7408
7409         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7410                 hpsa_msix_entries[i].vector = 0;
7411                 hpsa_msix_entries[i].entry = i;
7412         }
7413
7414         /* Some boards advertise MSI but don't really support it */
7415         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7416             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7417                 goto default_int_mode;
7418         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7419                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7420                 h->msix_vector = MAX_REPLY_QUEUES;
7421                 if (h->msix_vector > num_online_cpus())
7422                         h->msix_vector = num_online_cpus();
7423                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7424                                             1, h->msix_vector);
7425                 if (err < 0) {
7426                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7427                         h->msix_vector = 0;
7428                         goto single_msi_mode;
7429                 } else if (err < h->msix_vector) {
7430                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7431                                "available\n", err);
7432                 }
7433                 h->msix_vector = err;
7434                 for (i = 0; i < h->msix_vector; i++)
7435                         h->intr[i] = hpsa_msix_entries[i].vector;
7436                 return;
7437         }
7438 single_msi_mode:
7439         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7440                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7441                 if (!pci_enable_msi(h->pdev))
7442                         h->msi_vector = 1;
7443                 else
7444                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7445         }
7446 default_int_mode:
7447 #endif                          /* CONFIG_PCI_MSI */
7448         /* if we get here we're going to use the default interrupt mode */
7449         h->intr[h->intr_mode] = h->pdev->irq;
7450 }
7451
7452 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7453 {
7454         int i;
7455         u32 subsystem_vendor_id, subsystem_device_id;
7456
7457         subsystem_vendor_id = pdev->subsystem_vendor;
7458         subsystem_device_id = pdev->subsystem_device;
7459         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7460                     subsystem_vendor_id;
7461
7462         for (i = 0; i < ARRAY_SIZE(products); i++)
7463                 if (*board_id == products[i].board_id)
7464                         return i;
7465
7466         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7467                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7468                 !hpsa_allow_any) {
7469                 dev_warn(&pdev->dev, "unrecognized board ID: "
7470                         "0x%08x, ignoring.\n", *board_id);
7471                         return -ENODEV;
7472         }
7473         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7474 }
7475
7476 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7477                                     unsigned long *memory_bar)
7478 {
7479         int i;
7480
7481         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7482                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7483                         /* addressing mode bits already removed */
7484                         *memory_bar = pci_resource_start(pdev, i);
7485                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7486                                 *memory_bar);
7487                         return 0;
7488                 }
7489         dev_warn(&pdev->dev, "no memory BAR found\n");
7490         return -ENODEV;
7491 }
7492
7493 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7494                                      int wait_for_ready)
7495 {
7496         int i, iterations;
7497         u32 scratchpad;
7498         if (wait_for_ready)
7499                 iterations = HPSA_BOARD_READY_ITERATIONS;
7500         else
7501                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7502
7503         for (i = 0; i < iterations; i++) {
7504                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7505                 if (wait_for_ready) {
7506                         if (scratchpad == HPSA_FIRMWARE_READY)
7507                                 return 0;
7508                 } else {
7509                         if (scratchpad != HPSA_FIRMWARE_READY)
7510                                 return 0;
7511                 }
7512                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7513         }
7514         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7515         return -ENODEV;
7516 }
7517
7518 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7519                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7520                                u64 *cfg_offset)
7521 {
7522         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7523         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7524         *cfg_base_addr &= (u32) 0x0000ffff;
7525         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7526         if (*cfg_base_addr_index == -1) {
7527                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7528                 return -ENODEV;
7529         }
7530         return 0;
7531 }
7532
7533 static void hpsa_free_cfgtables(struct ctlr_info *h)
7534 {
7535         if (h->transtable) {
7536                 iounmap(h->transtable);
7537                 h->transtable = NULL;
7538         }
7539         if (h->cfgtable) {
7540                 iounmap(h->cfgtable);
7541                 h->cfgtable = NULL;
7542         }
7543 }
7544
7545 /* Find and map CISS config table and transfer table
7546 + * several items must be unmapped (freed) later
7547 + * */
7548 static int hpsa_find_cfgtables(struct ctlr_info *h)
7549 {
7550         u64 cfg_offset;
7551         u32 cfg_base_addr;
7552         u64 cfg_base_addr_index;
7553         u32 trans_offset;
7554         int rc;
7555
7556         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7557                 &cfg_base_addr_index, &cfg_offset);
7558         if (rc)
7559                 return rc;
7560         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7561                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7562         if (!h->cfgtable) {
7563                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7564                 return -ENOMEM;
7565         }
7566         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7567         if (rc)
7568                 return rc;
7569         /* Find performant mode table. */
7570         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7571         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7572                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7573                                 sizeof(*h->transtable));
7574         if (!h->transtable) {
7575                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7576                 hpsa_free_cfgtables(h);
7577                 return -ENOMEM;
7578         }
7579         return 0;
7580 }
7581
7582 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7583 {
7584 #define MIN_MAX_COMMANDS 16
7585         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7586
7587         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7588
7589         /* Limit commands in memory limited kdump scenario. */
7590         if (reset_devices && h->max_commands > 32)
7591                 h->max_commands = 32;
7592
7593         if (h->max_commands < MIN_MAX_COMMANDS) {
7594                 dev_warn(&h->pdev->dev,
7595                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7596                         h->max_commands,
7597                         MIN_MAX_COMMANDS);
7598                 h->max_commands = MIN_MAX_COMMANDS;
7599         }
7600 }
7601
7602 /* If the controller reports that the total max sg entries is greater than 512,
7603  * then we know that chained SG blocks work.  (Original smart arrays did not
7604  * support chained SG blocks and would return zero for max sg entries.)
7605  */
7606 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7607 {
7608         return h->maxsgentries > 512;
7609 }
7610
7611 /* Interrogate the hardware for some limits:
7612  * max commands, max SG elements without chaining, and with chaining,
7613  * SG chain block size, etc.
7614  */
7615 static void hpsa_find_board_params(struct ctlr_info *h)
7616 {
7617         hpsa_get_max_perf_mode_cmds(h);
7618         h->nr_cmds = h->max_commands;
7619         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7620         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7621         if (hpsa_supports_chained_sg_blocks(h)) {
7622                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7623                 h->max_cmd_sg_entries = 32;
7624                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7625                 h->maxsgentries--; /* save one for chain pointer */
7626         } else {
7627                 /*
7628                  * Original smart arrays supported at most 31 s/g entries
7629                  * embedded inline in the command (trying to use more
7630                  * would lock up the controller)
7631                  */
7632                 h->max_cmd_sg_entries = 31;
7633                 h->maxsgentries = 31; /* default to traditional values */
7634                 h->chainsize = 0;
7635         }
7636
7637         /* Find out what task management functions are supported and cache */
7638         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7639         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7640                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7641         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7642                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7643         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7644                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7645 }
7646
7647 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7648 {
7649         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7650                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7651                 return false;
7652         }
7653         return true;
7654 }
7655
7656 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7657 {
7658         u32 driver_support;
7659
7660         driver_support = readl(&(h->cfgtable->driver_support));
7661         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7662 #ifdef CONFIG_X86
7663         driver_support |= ENABLE_SCSI_PREFETCH;
7664 #endif
7665         driver_support |= ENABLE_UNIT_ATTN;
7666         writel(driver_support, &(h->cfgtable->driver_support));
7667 }
7668
7669 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7670  * in a prefetch beyond physical memory.
7671  */
7672 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7673 {
7674         u32 dma_prefetch;
7675
7676         if (h->board_id != 0x3225103C)
7677                 return;
7678         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7679         dma_prefetch |= 0x8000;
7680         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7681 }
7682
7683 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7684 {
7685         int i;
7686         u32 doorbell_value;
7687         unsigned long flags;
7688         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7689         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7690                 spin_lock_irqsave(&h->lock, flags);
7691                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7692                 spin_unlock_irqrestore(&h->lock, flags);
7693                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7694                         goto done;
7695                 /* delay and try again */
7696                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7697         }
7698         return -ENODEV;
7699 done:
7700         return 0;
7701 }
7702
7703 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7704 {
7705         int i;
7706         u32 doorbell_value;
7707         unsigned long flags;
7708
7709         /* under certain very rare conditions, this can take awhile.
7710          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7711          * as we enter this code.)
7712          */
7713         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7714                 if (h->remove_in_progress)
7715                         goto done;
7716                 spin_lock_irqsave(&h->lock, flags);
7717                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7718                 spin_unlock_irqrestore(&h->lock, flags);
7719                 if (!(doorbell_value & CFGTBL_ChangeReq))
7720                         goto done;
7721                 /* delay and try again */
7722                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7723         }
7724         return -ENODEV;
7725 done:
7726         return 0;
7727 }
7728
7729 /* return -ENODEV or other reason on error, 0 on success */
7730 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7731 {
7732         u32 trans_support;
7733
7734         trans_support = readl(&(h->cfgtable->TransportSupport));
7735         if (!(trans_support & SIMPLE_MODE))
7736                 return -ENOTSUPP;
7737
7738         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7739
7740         /* Update the field, and then ring the doorbell */
7741         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7742         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7743         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7744         if (hpsa_wait_for_mode_change_ack(h))
7745                 goto error;
7746         print_cfg_table(&h->pdev->dev, h->cfgtable);
7747         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7748                 goto error;
7749         h->transMethod = CFGTBL_Trans_Simple;
7750         return 0;
7751 error:
7752         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7753         return -ENODEV;
7754 }
7755
7756 /* free items allocated or mapped by hpsa_pci_init */
7757 static void hpsa_free_pci_init(struct ctlr_info *h)
7758 {
7759         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7760         iounmap(h->vaddr);                      /* pci_init 3 */
7761         h->vaddr = NULL;
7762         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7763         /*
7764          * call pci_disable_device before pci_release_regions per
7765          * Documentation/PCI/pci.txt
7766          */
7767         pci_disable_device(h->pdev);            /* pci_init 1 */
7768         pci_release_regions(h->pdev);           /* pci_init 2 */
7769 }
7770
7771 /* several items must be freed later */
7772 static int hpsa_pci_init(struct ctlr_info *h)
7773 {
7774         int prod_index, err;
7775
7776         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7777         if (prod_index < 0)
7778                 return prod_index;
7779         h->product_name = products[prod_index].product_name;
7780         h->access = *(products[prod_index].access);
7781
7782         h->needs_abort_tags_swizzled =
7783                 ctlr_needs_abort_tags_swizzled(h->board_id);
7784
7785         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7786                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7787
7788         err = pci_enable_device(h->pdev);
7789         if (err) {
7790                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7791                 pci_disable_device(h->pdev);
7792                 return err;
7793         }
7794
7795         err = pci_request_regions(h->pdev, HPSA);
7796         if (err) {
7797                 dev_err(&h->pdev->dev,
7798                         "failed to obtain PCI resources\n");
7799                 pci_disable_device(h->pdev);
7800                 return err;
7801         }
7802
7803         pci_set_master(h->pdev);
7804
7805         hpsa_interrupt_mode(h);
7806         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7807         if (err)
7808                 goto clean2;    /* intmode+region, pci */
7809         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7810         if (!h->vaddr) {
7811                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7812                 err = -ENOMEM;
7813                 goto clean2;    /* intmode+region, pci */
7814         }
7815         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7816         if (err)
7817                 goto clean3;    /* vaddr, intmode+region, pci */
7818         err = hpsa_find_cfgtables(h);
7819         if (err)
7820                 goto clean3;    /* vaddr, intmode+region, pci */
7821         hpsa_find_board_params(h);
7822
7823         if (!hpsa_CISS_signature_present(h)) {
7824                 err = -ENODEV;
7825                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7826         }
7827         hpsa_set_driver_support_bits(h);
7828         hpsa_p600_dma_prefetch_quirk(h);
7829         err = hpsa_enter_simple_mode(h);
7830         if (err)
7831                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7832         return 0;
7833
7834 clean4: /* cfgtables, vaddr, intmode+region, pci */
7835         hpsa_free_cfgtables(h);
7836 clean3: /* vaddr, intmode+region, pci */
7837         iounmap(h->vaddr);
7838         h->vaddr = NULL;
7839 clean2: /* intmode+region, pci */
7840         hpsa_disable_interrupt_mode(h);
7841         /*
7842          * call pci_disable_device before pci_release_regions per
7843          * Documentation/PCI/pci.txt
7844          */
7845         pci_disable_device(h->pdev);
7846         pci_release_regions(h->pdev);
7847         return err;
7848 }
7849
7850 static void hpsa_hba_inquiry(struct ctlr_info *h)
7851 {
7852         int rc;
7853
7854 #define HBA_INQUIRY_BYTE_COUNT 64
7855         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7856         if (!h->hba_inquiry_data)
7857                 return;
7858         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7859                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7860         if (rc != 0) {
7861                 kfree(h->hba_inquiry_data);
7862                 h->hba_inquiry_data = NULL;
7863         }
7864 }
7865
7866 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7867 {
7868         int rc, i;
7869         void __iomem *vaddr;
7870
7871         if (!reset_devices)
7872                 return 0;
7873
7874         /* kdump kernel is loading, we don't know in which state is
7875          * the pci interface. The dev->enable_cnt is equal zero
7876          * so we call enable+disable, wait a while and switch it on.
7877          */
7878         rc = pci_enable_device(pdev);
7879         if (rc) {
7880                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7881                 return -ENODEV;
7882         }
7883         pci_disable_device(pdev);
7884         msleep(260);                    /* a randomly chosen number */
7885         rc = pci_enable_device(pdev);
7886         if (rc) {
7887                 dev_warn(&pdev->dev, "failed to enable device.\n");
7888                 return -ENODEV;
7889         }
7890
7891         pci_set_master(pdev);
7892
7893         vaddr = pci_ioremap_bar(pdev, 0);
7894         if (vaddr == NULL) {
7895                 rc = -ENOMEM;
7896                 goto out_disable;
7897         }
7898         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7899         iounmap(vaddr);
7900
7901         /* Reset the controller with a PCI power-cycle or via doorbell */
7902         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7903
7904         /* -ENOTSUPP here means we cannot reset the controller
7905          * but it's already (and still) up and running in
7906          * "performant mode".  Or, it might be 640x, which can't reset
7907          * due to concerns about shared bbwc between 6402/6404 pair.
7908          */
7909         if (rc)
7910                 goto out_disable;
7911
7912         /* Now try to get the controller to respond to a no-op */
7913         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7914         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7915                 if (hpsa_noop(pdev) == 0)
7916                         break;
7917                 else
7918                         dev_warn(&pdev->dev, "no-op failed%s\n",
7919                                         (i < 11 ? "; re-trying" : ""));
7920         }
7921
7922 out_disable:
7923
7924         pci_disable_device(pdev);
7925         return rc;
7926 }
7927
7928 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7929 {
7930         kfree(h->cmd_pool_bits);
7931         h->cmd_pool_bits = NULL;
7932         if (h->cmd_pool) {
7933                 pci_free_consistent(h->pdev,
7934                                 h->nr_cmds * sizeof(struct CommandList),
7935                                 h->cmd_pool,
7936                                 h->cmd_pool_dhandle);
7937                 h->cmd_pool = NULL;
7938                 h->cmd_pool_dhandle = 0;
7939         }
7940         if (h->errinfo_pool) {
7941                 pci_free_consistent(h->pdev,
7942                                 h->nr_cmds * sizeof(struct ErrorInfo),
7943                                 h->errinfo_pool,
7944                                 h->errinfo_pool_dhandle);
7945                 h->errinfo_pool = NULL;
7946                 h->errinfo_pool_dhandle = 0;
7947         }
7948 }
7949
7950 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7951 {
7952         h->cmd_pool_bits = kzalloc(
7953                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7954                 sizeof(unsigned long), GFP_KERNEL);
7955         h->cmd_pool = pci_alloc_consistent(h->pdev,
7956                     h->nr_cmds * sizeof(*h->cmd_pool),
7957                     &(h->cmd_pool_dhandle));
7958         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7959                     h->nr_cmds * sizeof(*h->errinfo_pool),
7960                     &(h->errinfo_pool_dhandle));
7961         if ((h->cmd_pool_bits == NULL)
7962             || (h->cmd_pool == NULL)
7963             || (h->errinfo_pool == NULL)) {
7964                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7965                 goto clean_up;
7966         }
7967         hpsa_preinitialize_commands(h);
7968         return 0;
7969 clean_up:
7970         hpsa_free_cmd_pool(h);
7971         return -ENOMEM;
7972 }
7973
7974 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7975 {
7976         int i, cpu;
7977
7978         cpu = cpumask_first(cpu_online_mask);
7979         for (i = 0; i < h->msix_vector; i++) {
7980                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7981                 cpu = cpumask_next(cpu, cpu_online_mask);
7982         }
7983 }
7984
7985 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7986 static void hpsa_free_irqs(struct ctlr_info *h)
7987 {
7988         int i;
7989
7990         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7991                 /* Single reply queue, only one irq to free */
7992                 i = h->intr_mode;
7993                 irq_set_affinity_hint(h->intr[i], NULL);
7994                 free_irq(h->intr[i], &h->q[i]);
7995                 h->q[i] = 0;
7996                 return;
7997         }
7998
7999         for (i = 0; i < h->msix_vector; i++) {
8000                 irq_set_affinity_hint(h->intr[i], NULL);
8001                 free_irq(h->intr[i], &h->q[i]);
8002                 h->q[i] = 0;
8003         }
8004         for (; i < MAX_REPLY_QUEUES; i++)
8005                 h->q[i] = 0;
8006 }
8007
8008 /* returns 0 on success; cleans up and returns -Enn on error */
8009 static int hpsa_request_irqs(struct ctlr_info *h,
8010         irqreturn_t (*msixhandler)(int, void *),
8011         irqreturn_t (*intxhandler)(int, void *))
8012 {
8013         int rc, i;
8014
8015         /*
8016          * initialize h->q[x] = x so that interrupt handlers know which
8017          * queue to process.
8018          */
8019         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8020                 h->q[i] = (u8) i;
8021
8022         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8023                 /* If performant mode and MSI-X, use multiple reply queues */
8024                 for (i = 0; i < h->msix_vector; i++) {
8025                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8026                         rc = request_irq(h->intr[i], msixhandler,
8027                                         0, h->intrname[i],
8028                                         &h->q[i]);
8029                         if (rc) {
8030                                 int j;
8031
8032                                 dev_err(&h->pdev->dev,
8033                                         "failed to get irq %d for %s\n",
8034                                        h->intr[i], h->devname);
8035                                 for (j = 0; j < i; j++) {
8036                                         free_irq(h->intr[j], &h->q[j]);
8037                                         h->q[j] = 0;
8038                                 }
8039                                 for (; j < MAX_REPLY_QUEUES; j++)
8040                                         h->q[j] = 0;
8041                                 return rc;
8042                         }
8043                 }
8044                 hpsa_irq_affinity_hints(h);
8045         } else {
8046                 /* Use single reply pool */
8047                 if (h->msix_vector > 0 || h->msi_vector) {
8048                         if (h->msix_vector)
8049                                 sprintf(h->intrname[h->intr_mode],
8050                                         "%s-msix", h->devname);
8051                         else
8052                                 sprintf(h->intrname[h->intr_mode],
8053                                         "%s-msi", h->devname);
8054                         rc = request_irq(h->intr[h->intr_mode],
8055                                 msixhandler, 0,
8056                                 h->intrname[h->intr_mode],
8057                                 &h->q[h->intr_mode]);
8058                 } else {
8059                         sprintf(h->intrname[h->intr_mode],
8060                                 "%s-intx", h->devname);
8061                         rc = request_irq(h->intr[h->intr_mode],
8062                                 intxhandler, IRQF_SHARED,
8063                                 h->intrname[h->intr_mode],
8064                                 &h->q[h->intr_mode]);
8065                 }
8066                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8067         }
8068         if (rc) {
8069                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8070                        h->intr[h->intr_mode], h->devname);
8071                 hpsa_free_irqs(h);
8072                 return -ENODEV;
8073         }
8074         return 0;
8075 }
8076
8077 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8078 {
8079         int rc;
8080         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8081
8082         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8083         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8084         if (rc) {
8085                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8086                 return rc;
8087         }
8088
8089         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8090         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8091         if (rc) {
8092                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8093                         "after soft reset.\n");
8094                 return rc;
8095         }
8096
8097         return 0;
8098 }
8099
8100 static void hpsa_free_reply_queues(struct ctlr_info *h)
8101 {
8102         int i;
8103
8104         for (i = 0; i < h->nreply_queues; i++) {
8105                 if (!h->reply_queue[i].head)
8106                         continue;
8107                 pci_free_consistent(h->pdev,
8108                                         h->reply_queue_size,
8109                                         h->reply_queue[i].head,
8110                                         h->reply_queue[i].busaddr);
8111                 h->reply_queue[i].head = NULL;
8112                 h->reply_queue[i].busaddr = 0;
8113         }
8114         h->reply_queue_size = 0;
8115 }
8116
8117 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8118 {
8119         hpsa_free_performant_mode(h);           /* init_one 7 */
8120         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8121         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8122         hpsa_free_irqs(h);                      /* init_one 4 */
8123         scsi_host_put(h->scsi_host);            /* init_one 3 */
8124         h->scsi_host = NULL;                    /* init_one 3 */
8125         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8126         free_percpu(h->lockup_detected);        /* init_one 2 */
8127         h->lockup_detected = NULL;              /* init_one 2 */
8128         if (h->resubmit_wq) {
8129                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8130                 h->resubmit_wq = NULL;
8131         }
8132         if (h->rescan_ctlr_wq) {
8133                 destroy_workqueue(h->rescan_ctlr_wq);
8134                 h->rescan_ctlr_wq = NULL;
8135         }
8136         kfree(h);                               /* init_one 1 */
8137 }
8138
8139 /* Called when controller lockup detected. */
8140 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8141 {
8142         int i, refcount;
8143         struct CommandList *c;
8144         int failcount = 0;
8145
8146         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8147         for (i = 0; i < h->nr_cmds; i++) {
8148                 c = h->cmd_pool + i;
8149                 refcount = atomic_inc_return(&c->refcount);
8150                 if (refcount > 1) {
8151                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8152                         finish_cmd(c);
8153                         atomic_dec(&h->commands_outstanding);
8154                         failcount++;
8155                 }
8156                 cmd_free(h, c);
8157         }
8158         dev_warn(&h->pdev->dev,
8159                 "failed %d commands in fail_all\n", failcount);
8160 }
8161
8162 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8163 {
8164         int cpu;
8165
8166         for_each_online_cpu(cpu) {
8167                 u32 *lockup_detected;
8168                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8169                 *lockup_detected = value;
8170         }
8171         wmb(); /* be sure the per-cpu variables are out to memory */
8172 }
8173
8174 static void controller_lockup_detected(struct ctlr_info *h)
8175 {
8176         unsigned long flags;
8177         u32 lockup_detected;
8178
8179         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8180         spin_lock_irqsave(&h->lock, flags);
8181         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8182         if (!lockup_detected) {
8183                 /* no heartbeat, but controller gave us a zero. */
8184                 dev_warn(&h->pdev->dev,
8185                         "lockup detected after %d but scratchpad register is zero\n",
8186                         h->heartbeat_sample_interval / HZ);
8187                 lockup_detected = 0xffffffff;
8188         }
8189         set_lockup_detected_for_all_cpus(h, lockup_detected);
8190         spin_unlock_irqrestore(&h->lock, flags);
8191         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8192                         lockup_detected, h->heartbeat_sample_interval / HZ);
8193         pci_disable_device(h->pdev);
8194         fail_all_outstanding_cmds(h);
8195 }
8196
8197 static int detect_controller_lockup(struct ctlr_info *h)
8198 {
8199         u64 now;
8200         u32 heartbeat;
8201         unsigned long flags;
8202
8203         now = get_jiffies_64();
8204         /* If we've received an interrupt recently, we're ok. */
8205         if (time_after64(h->last_intr_timestamp +
8206                                 (h->heartbeat_sample_interval), now))
8207                 return false;
8208
8209         /*
8210          * If we've already checked the heartbeat recently, we're ok.
8211          * This could happen if someone sends us a signal. We
8212          * otherwise don't care about signals in this thread.
8213          */
8214         if (time_after64(h->last_heartbeat_timestamp +
8215                                 (h->heartbeat_sample_interval), now))
8216                 return false;
8217
8218         /* If heartbeat has not changed since we last looked, we're not ok. */
8219         spin_lock_irqsave(&h->lock, flags);
8220         heartbeat = readl(&h->cfgtable->HeartBeat);
8221         spin_unlock_irqrestore(&h->lock, flags);
8222         if (h->last_heartbeat == heartbeat) {
8223                 controller_lockup_detected(h);
8224                 return true;
8225         }
8226
8227         /* We're ok. */
8228         h->last_heartbeat = heartbeat;
8229         h->last_heartbeat_timestamp = now;
8230         return false;
8231 }
8232
8233 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8234 {
8235         int i;
8236         char *event_type;
8237
8238         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8239                 return;
8240
8241         /* Ask the controller to clear the events we're handling. */
8242         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8243                         | CFGTBL_Trans_io_accel2)) &&
8244                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8245                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8246
8247                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8248                         event_type = "state change";
8249                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8250                         event_type = "configuration change";
8251                 /* Stop sending new RAID offload reqs via the IO accelerator */
8252                 scsi_block_requests(h->scsi_host);
8253                 for (i = 0; i < h->ndevices; i++)
8254                         h->dev[i]->offload_enabled = 0;
8255                 hpsa_drain_accel_commands(h);
8256                 /* Set 'accelerator path config change' bit */
8257                 dev_warn(&h->pdev->dev,
8258                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8259                         h->events, event_type);
8260                 writel(h->events, &(h->cfgtable->clear_event_notify));
8261                 /* Set the "clear event notify field update" bit 6 */
8262                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8263                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8264                 hpsa_wait_for_clear_event_notify_ack(h);
8265                 scsi_unblock_requests(h->scsi_host);
8266         } else {
8267                 /* Acknowledge controller notification events. */
8268                 writel(h->events, &(h->cfgtable->clear_event_notify));
8269                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8270                 hpsa_wait_for_clear_event_notify_ack(h);
8271 #if 0
8272                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8273                 hpsa_wait_for_mode_change_ack(h);
8274 #endif
8275         }
8276         return;
8277 }
8278
8279 /* Check a register on the controller to see if there are configuration
8280  * changes (added/changed/removed logical drives, etc.) which mean that
8281  * we should rescan the controller for devices.
8282  * Also check flag for driver-initiated rescan.
8283  */
8284 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8285 {
8286         if (h->drv_req_rescan) {
8287                 h->drv_req_rescan = 0;
8288                 return 1;
8289         }
8290
8291         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8292                 return 0;
8293
8294         h->events = readl(&(h->cfgtable->event_notify));
8295         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8296 }
8297
8298 /*
8299  * Check if any of the offline devices have become ready
8300  */
8301 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8302 {
8303         unsigned long flags;
8304         struct offline_device_entry *d;
8305         struct list_head *this, *tmp;
8306
8307         spin_lock_irqsave(&h->offline_device_lock, flags);
8308         list_for_each_safe(this, tmp, &h->offline_device_list) {
8309                 d = list_entry(this, struct offline_device_entry,
8310                                 offline_list);
8311                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8312                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8313                         spin_lock_irqsave(&h->offline_device_lock, flags);
8314                         list_del(&d->offline_list);
8315                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8316                         return 1;
8317                 }
8318                 spin_lock_irqsave(&h->offline_device_lock, flags);
8319         }
8320         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8321         return 0;
8322 }
8323
8324 static int hpsa_luns_changed(struct ctlr_info *h)
8325 {
8326         int rc = 1; /* assume there are changes */
8327         struct ReportLUNdata *logdev = NULL;
8328
8329         /* if we can't find out if lun data has changed,
8330          * assume that it has.
8331          */
8332
8333         if (!h->lastlogicals)
8334                 goto out;
8335
8336         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8337         if (!logdev) {
8338                 dev_warn(&h->pdev->dev,
8339                         "Out of memory, can't track lun changes.\n");
8340                 goto out;
8341         }
8342         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8343                 dev_warn(&h->pdev->dev,
8344                         "report luns failed, can't track lun changes.\n");
8345                 goto out;
8346         }
8347         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8348                 dev_info(&h->pdev->dev,
8349                         "Lun changes detected.\n");
8350                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8351                 goto out;
8352         } else
8353                 rc = 0; /* no changes detected. */
8354 out:
8355         kfree(logdev);
8356         return rc;
8357 }
8358
8359 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8360 {
8361         unsigned long flags;
8362         struct ctlr_info *h = container_of(to_delayed_work(work),
8363                                         struct ctlr_info, rescan_ctlr_work);
8364
8365
8366         if (h->remove_in_progress)
8367                 return;
8368
8369         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8370                 scsi_host_get(h->scsi_host);
8371                 hpsa_ack_ctlr_events(h);
8372                 hpsa_scan_start(h->scsi_host);
8373                 scsi_host_put(h->scsi_host);
8374         } else if (h->discovery_polling) {
8375                 hpsa_disable_rld_caching(h);
8376                 if (hpsa_luns_changed(h)) {
8377                         struct Scsi_Host *sh = NULL;
8378
8379                         dev_info(&h->pdev->dev,
8380                                 "driver discovery polling rescan.\n");
8381                         sh = scsi_host_get(h->scsi_host);
8382                         if (sh != NULL) {
8383                                 hpsa_scan_start(sh);
8384                                 scsi_host_put(sh);
8385                         }
8386                 }
8387         }
8388         spin_lock_irqsave(&h->lock, flags);
8389         if (!h->remove_in_progress)
8390                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8391                                 h->heartbeat_sample_interval);
8392         spin_unlock_irqrestore(&h->lock, flags);
8393 }
8394
8395 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8396 {
8397         unsigned long flags;
8398         struct ctlr_info *h = container_of(to_delayed_work(work),
8399                                         struct ctlr_info, monitor_ctlr_work);
8400
8401         detect_controller_lockup(h);
8402         if (lockup_detected(h))
8403                 return;
8404
8405         spin_lock_irqsave(&h->lock, flags);
8406         if (!h->remove_in_progress)
8407                 schedule_delayed_work(&h->monitor_ctlr_work,
8408                                 h->heartbeat_sample_interval);
8409         spin_unlock_irqrestore(&h->lock, flags);
8410 }
8411
8412 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8413                                                 char *name)
8414 {
8415         struct workqueue_struct *wq = NULL;
8416
8417         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8418         if (!wq)
8419                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8420
8421         return wq;
8422 }
8423
8424 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8425 {
8426         int dac, rc;
8427         struct ctlr_info *h;
8428         int try_soft_reset = 0;
8429         unsigned long flags;
8430         u32 board_id;
8431
8432         if (number_of_controllers == 0)
8433                 printk(KERN_INFO DRIVER_NAME "\n");
8434
8435         rc = hpsa_lookup_board_id(pdev, &board_id);
8436         if (rc < 0) {
8437                 dev_warn(&pdev->dev, "Board ID not found\n");
8438                 return rc;
8439         }
8440
8441         rc = hpsa_init_reset_devices(pdev, board_id);
8442         if (rc) {
8443                 if (rc != -ENOTSUPP)
8444                         return rc;
8445                 /* If the reset fails in a particular way (it has no way to do
8446                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8447                  * a soft reset once we get the controller configured up to the
8448                  * point that it can accept a command.
8449                  */
8450                 try_soft_reset = 1;
8451                 rc = 0;
8452         }
8453
8454 reinit_after_soft_reset:
8455
8456         /* Command structures must be aligned on a 32-byte boundary because
8457          * the 5 lower bits of the address are used by the hardware. and by
8458          * the driver.  See comments in hpsa.h for more info.
8459          */
8460         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8461         h = kzalloc(sizeof(*h), GFP_KERNEL);
8462         if (!h) {
8463                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8464                 return -ENOMEM;
8465         }
8466
8467         h->pdev = pdev;
8468
8469         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8470         INIT_LIST_HEAD(&h->offline_device_list);
8471         spin_lock_init(&h->lock);
8472         spin_lock_init(&h->offline_device_lock);
8473         spin_lock_init(&h->scan_lock);
8474         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8475         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8476
8477         /* Allocate and clear per-cpu variable lockup_detected */
8478         h->lockup_detected = alloc_percpu(u32);
8479         if (!h->lockup_detected) {
8480                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8481                 rc = -ENOMEM;
8482                 goto clean1;    /* aer/h */
8483         }
8484         set_lockup_detected_for_all_cpus(h, 0);
8485
8486         rc = hpsa_pci_init(h);
8487         if (rc)
8488                 goto clean2;    /* lu, aer/h */
8489
8490         /* relies on h-> settings made by hpsa_pci_init, including
8491          * interrupt_mode h->intr */
8492         rc = hpsa_scsi_host_alloc(h);
8493         if (rc)
8494                 goto clean2_5;  /* pci, lu, aer/h */
8495
8496         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8497         h->ctlr = number_of_controllers;
8498         number_of_controllers++;
8499
8500         /* configure PCI DMA stuff */
8501         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8502         if (rc == 0) {
8503                 dac = 1;
8504         } else {
8505                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8506                 if (rc == 0) {
8507                         dac = 0;
8508                 } else {
8509                         dev_err(&pdev->dev, "no suitable DMA available\n");
8510                         goto clean3;    /* shost, pci, lu, aer/h */
8511                 }
8512         }
8513
8514         /* make sure the board interrupts are off */
8515         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8516
8517         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8518         if (rc)
8519                 goto clean3;    /* shost, pci, lu, aer/h */
8520         rc = hpsa_alloc_cmd_pool(h);
8521         if (rc)
8522                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8523         rc = hpsa_alloc_sg_chain_blocks(h);
8524         if (rc)
8525                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8526         init_waitqueue_head(&h->scan_wait_queue);
8527         init_waitqueue_head(&h->abort_cmd_wait_queue);
8528         init_waitqueue_head(&h->event_sync_wait_queue);
8529         mutex_init(&h->reset_mutex);
8530         h->scan_finished = 1; /* no scan currently in progress */
8531
8532         pci_set_drvdata(pdev, h);
8533         h->ndevices = 0;
8534
8535         spin_lock_init(&h->devlock);
8536         rc = hpsa_put_ctlr_into_performant_mode(h);
8537         if (rc)
8538                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8539
8540         /* hook into SCSI subsystem */
8541         rc = hpsa_scsi_add_host(h);
8542         if (rc)
8543                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8544
8545         /* create the resubmit workqueue */
8546         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8547         if (!h->rescan_ctlr_wq) {
8548                 rc = -ENOMEM;
8549                 goto clean7;
8550         }
8551
8552         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8553         if (!h->resubmit_wq) {
8554                 rc = -ENOMEM;
8555                 goto clean7;    /* aer/h */
8556         }
8557
8558         /*
8559          * At this point, the controller is ready to take commands.
8560          * Now, if reset_devices and the hard reset didn't work, try
8561          * the soft reset and see if that works.
8562          */
8563         if (try_soft_reset) {
8564
8565                 /* This is kind of gross.  We may or may not get a completion
8566                  * from the soft reset command, and if we do, then the value
8567                  * from the fifo may or may not be valid.  So, we wait 10 secs
8568                  * after the reset throwing away any completions we get during
8569                  * that time.  Unregister the interrupt handler and register
8570                  * fake ones to scoop up any residual completions.
8571                  */
8572                 spin_lock_irqsave(&h->lock, flags);
8573                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8574                 spin_unlock_irqrestore(&h->lock, flags);
8575                 hpsa_free_irqs(h);
8576                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8577                                         hpsa_intx_discard_completions);
8578                 if (rc) {
8579                         dev_warn(&h->pdev->dev,
8580                                 "Failed to request_irq after soft reset.\n");
8581                         /*
8582                          * cannot goto clean7 or free_irqs will be called
8583                          * again. Instead, do its work
8584                          */
8585                         hpsa_free_performant_mode(h);   /* clean7 */
8586                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8587                         hpsa_free_cmd_pool(h);          /* clean5 */
8588                         /*
8589                          * skip hpsa_free_irqs(h) clean4 since that
8590                          * was just called before request_irqs failed
8591                          */
8592                         goto clean3;
8593                 }
8594
8595                 rc = hpsa_kdump_soft_reset(h);
8596                 if (rc)
8597                         /* Neither hard nor soft reset worked, we're hosed. */
8598                         goto clean7;
8599
8600                 dev_info(&h->pdev->dev, "Board READY.\n");
8601                 dev_info(&h->pdev->dev,
8602                         "Waiting for stale completions to drain.\n");
8603                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8604                 msleep(10000);
8605                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8606
8607                 rc = controller_reset_failed(h->cfgtable);
8608                 if (rc)
8609                         dev_info(&h->pdev->dev,
8610                                 "Soft reset appears to have failed.\n");
8611
8612                 /* since the controller's reset, we have to go back and re-init
8613                  * everything.  Easiest to just forget what we've done and do it
8614                  * all over again.
8615                  */
8616                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8617                 try_soft_reset = 0;
8618                 if (rc)
8619                         /* don't goto clean, we already unallocated */
8620                         return -ENODEV;
8621
8622                 goto reinit_after_soft_reset;
8623         }
8624
8625         /* Enable Accelerated IO path at driver layer */
8626         h->acciopath_status = 1;
8627         /* Disable discovery polling.*/
8628         h->discovery_polling = 0;
8629
8630
8631         /* Turn the interrupts on so we can service requests */
8632         h->access.set_intr_mask(h, HPSA_INTR_ON);
8633
8634         hpsa_hba_inquiry(h);
8635
8636         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8637         if (!h->lastlogicals)
8638                 dev_info(&h->pdev->dev,
8639                         "Can't track change to report lun data\n");
8640
8641         /* Monitor the controller for firmware lockups */
8642         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8643         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8644         schedule_delayed_work(&h->monitor_ctlr_work,
8645                                 h->heartbeat_sample_interval);
8646         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8647         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8648                                 h->heartbeat_sample_interval);
8649         return 0;
8650
8651 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8652         hpsa_free_performant_mode(h);
8653         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8654 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8655         hpsa_free_sg_chain_blocks(h);
8656 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8657         hpsa_free_cmd_pool(h);
8658 clean4: /* irq, shost, pci, lu, aer/h */
8659         hpsa_free_irqs(h);
8660 clean3: /* shost, pci, lu, aer/h */
8661         scsi_host_put(h->scsi_host);
8662         h->scsi_host = NULL;
8663 clean2_5: /* pci, lu, aer/h */
8664         hpsa_free_pci_init(h);
8665 clean2: /* lu, aer/h */
8666         if (h->lockup_detected) {
8667                 free_percpu(h->lockup_detected);
8668                 h->lockup_detected = NULL;
8669         }
8670 clean1: /* wq/aer/h */
8671         if (h->resubmit_wq) {
8672                 destroy_workqueue(h->resubmit_wq);
8673                 h->resubmit_wq = NULL;
8674         }
8675         if (h->rescan_ctlr_wq) {
8676                 destroy_workqueue(h->rescan_ctlr_wq);
8677                 h->rescan_ctlr_wq = NULL;
8678         }
8679         kfree(h);
8680         return rc;
8681 }
8682
8683 static void hpsa_flush_cache(struct ctlr_info *h)
8684 {
8685         char *flush_buf;
8686         struct CommandList *c;
8687         int rc;
8688
8689         if (unlikely(lockup_detected(h)))
8690                 return;
8691         flush_buf = kzalloc(4, GFP_KERNEL);
8692         if (!flush_buf)
8693                 return;
8694
8695         c = cmd_alloc(h);
8696
8697         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8698                 RAID_CTLR_LUNID, TYPE_CMD)) {
8699                 goto out;
8700         }
8701         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8702                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8703         if (rc)
8704                 goto out;
8705         if (c->err_info->CommandStatus != 0)
8706 out:
8707                 dev_warn(&h->pdev->dev,
8708                         "error flushing cache on controller\n");
8709         cmd_free(h, c);
8710         kfree(flush_buf);
8711 }
8712
8713 /* Make controller gather fresh report lun data each time we
8714  * send down a report luns request
8715  */
8716 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8717 {
8718         u32 *options;
8719         struct CommandList *c;
8720         int rc;
8721
8722         /* Don't bother trying to set diag options if locked up */
8723         if (unlikely(h->lockup_detected))
8724                 return;
8725
8726         options = kzalloc(sizeof(*options), GFP_KERNEL);
8727         if (!options) {
8728                 dev_err(&h->pdev->dev,
8729                         "Error: failed to disable rld caching, during alloc.\n");
8730                 return;
8731         }
8732
8733         c = cmd_alloc(h);
8734
8735         /* first, get the current diag options settings */
8736         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8737                 RAID_CTLR_LUNID, TYPE_CMD))
8738                 goto errout;
8739
8740         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8741                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8742         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8743                 goto errout;
8744
8745         /* Now, set the bit for disabling the RLD caching */
8746         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8747
8748         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8749                 RAID_CTLR_LUNID, TYPE_CMD))
8750                 goto errout;
8751
8752         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8753                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8754         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8755                 goto errout;
8756
8757         /* Now verify that it got set: */
8758         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8759                 RAID_CTLR_LUNID, TYPE_CMD))
8760                 goto errout;
8761
8762         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8763                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8764         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8765                 goto errout;
8766
8767         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8768                 goto out;
8769
8770 errout:
8771         dev_err(&h->pdev->dev,
8772                         "Error: failed to disable report lun data caching.\n");
8773 out:
8774         cmd_free(h, c);
8775         kfree(options);
8776 }
8777
8778 static void hpsa_shutdown(struct pci_dev *pdev)
8779 {
8780         struct ctlr_info *h;
8781
8782         h = pci_get_drvdata(pdev);
8783         /* Turn board interrupts off  and send the flush cache command
8784          * sendcmd will turn off interrupt, and send the flush...
8785          * To write all data in the battery backed cache to disks
8786          */
8787         hpsa_flush_cache(h);
8788         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8789         hpsa_free_irqs(h);                      /* init_one 4 */
8790         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8791 }
8792
8793 static void hpsa_free_device_info(struct ctlr_info *h)
8794 {
8795         int i;
8796
8797         for (i = 0; i < h->ndevices; i++) {
8798                 kfree(h->dev[i]);
8799                 h->dev[i] = NULL;
8800         }
8801 }
8802
8803 static void hpsa_remove_one(struct pci_dev *pdev)
8804 {
8805         struct ctlr_info *h;
8806         unsigned long flags;
8807
8808         if (pci_get_drvdata(pdev) == NULL) {
8809                 dev_err(&pdev->dev, "unable to remove device\n");
8810                 return;
8811         }
8812         h = pci_get_drvdata(pdev);
8813
8814         /* Get rid of any controller monitoring work items */
8815         spin_lock_irqsave(&h->lock, flags);
8816         h->remove_in_progress = 1;
8817         spin_unlock_irqrestore(&h->lock, flags);
8818         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8819         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8820         destroy_workqueue(h->rescan_ctlr_wq);
8821         destroy_workqueue(h->resubmit_wq);
8822
8823         /*
8824          * Call before disabling interrupts.
8825          * scsi_remove_host can trigger I/O operations especially
8826          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8827          * operations which cannot complete and will hang the system.
8828          */
8829         if (h->scsi_host)
8830                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8831         /* includes hpsa_free_irqs - init_one 4 */
8832         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8833         hpsa_shutdown(pdev);
8834
8835         hpsa_free_device_info(h);               /* scan */
8836
8837         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8838         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8839         hpsa_free_ioaccel2_sg_chain_blocks(h);
8840         hpsa_free_performant_mode(h);                   /* init_one 7 */
8841         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8842         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8843         kfree(h->lastlogicals);
8844
8845         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8846
8847         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8848         h->scsi_host = NULL;                            /* init_one 3 */
8849
8850         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8851         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8852
8853         free_percpu(h->lockup_detected);                /* init_one 2 */
8854         h->lockup_detected = NULL;                      /* init_one 2 */
8855         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8856
8857         hpsa_delete_sas_host(h);
8858
8859         kfree(h);                                       /* init_one 1 */
8860 }
8861
8862 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8863         __attribute__((unused)) pm_message_t state)
8864 {
8865         return -ENOSYS;
8866 }
8867
8868 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8869 {
8870         return -ENOSYS;
8871 }
8872
8873 static struct pci_driver hpsa_pci_driver = {
8874         .name = HPSA,
8875         .probe = hpsa_init_one,
8876         .remove = hpsa_remove_one,
8877         .id_table = hpsa_pci_device_id, /* id_table */
8878         .shutdown = hpsa_shutdown,
8879         .suspend = hpsa_suspend,
8880         .resume = hpsa_resume,
8881 };
8882
8883 /* Fill in bucket_map[], given nsgs (the max number of
8884  * scatter gather elements supported) and bucket[],
8885  * which is an array of 8 integers.  The bucket[] array
8886  * contains 8 different DMA transfer sizes (in 16
8887  * byte increments) which the controller uses to fetch
8888  * commands.  This function fills in bucket_map[], which
8889  * maps a given number of scatter gather elements to one of
8890  * the 8 DMA transfer sizes.  The point of it is to allow the
8891  * controller to only do as much DMA as needed to fetch the
8892  * command, with the DMA transfer size encoded in the lower
8893  * bits of the command address.
8894  */
8895 static void  calc_bucket_map(int bucket[], int num_buckets,
8896         int nsgs, int min_blocks, u32 *bucket_map)
8897 {
8898         int i, j, b, size;
8899
8900         /* Note, bucket_map must have nsgs+1 entries. */
8901         for (i = 0; i <= nsgs; i++) {
8902                 /* Compute size of a command with i SG entries */
8903                 size = i + min_blocks;
8904                 b = num_buckets; /* Assume the biggest bucket */
8905                 /* Find the bucket that is just big enough */
8906                 for (j = 0; j < num_buckets; j++) {
8907                         if (bucket[j] >= size) {
8908                                 b = j;
8909                                 break;
8910                         }
8911                 }
8912                 /* for a command with i SG entries, use bucket b. */
8913                 bucket_map[i] = b;
8914         }
8915 }
8916
8917 /*
8918  * return -ENODEV on err, 0 on success (or no action)
8919  * allocates numerous items that must be freed later
8920  */
8921 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8922 {
8923         int i;
8924         unsigned long register_value;
8925         unsigned long transMethod = CFGTBL_Trans_Performant |
8926                         (trans_support & CFGTBL_Trans_use_short_tags) |
8927                                 CFGTBL_Trans_enable_directed_msix |
8928                         (trans_support & (CFGTBL_Trans_io_accel1 |
8929                                 CFGTBL_Trans_io_accel2));
8930         struct access_method access = SA5_performant_access;
8931
8932         /* This is a bit complicated.  There are 8 registers on
8933          * the controller which we write to to tell it 8 different
8934          * sizes of commands which there may be.  It's a way of
8935          * reducing the DMA done to fetch each command.  Encoded into
8936          * each command's tag are 3 bits which communicate to the controller
8937          * which of the eight sizes that command fits within.  The size of
8938          * each command depends on how many scatter gather entries there are.
8939          * Each SG entry requires 16 bytes.  The eight registers are programmed
8940          * with the number of 16-byte blocks a command of that size requires.
8941          * The smallest command possible requires 5 such 16 byte blocks.
8942          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8943          * blocks.  Note, this only extends to the SG entries contained
8944          * within the command block, and does not extend to chained blocks
8945          * of SG elements.   bft[] contains the eight values we write to
8946          * the registers.  They are not evenly distributed, but have more
8947          * sizes for small commands, and fewer sizes for larger commands.
8948          */
8949         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8950 #define MIN_IOACCEL2_BFT_ENTRY 5
8951 #define HPSA_IOACCEL2_HEADER_SZ 4
8952         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8953                         13, 14, 15, 16, 17, 18, 19,
8954                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8955         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8956         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8957         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8958                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8959         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8960         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8961         /*  5 = 1 s/g entry or 4k
8962          *  6 = 2 s/g entry or 8k
8963          *  8 = 4 s/g entry or 16k
8964          * 10 = 6 s/g entry or 24k
8965          */
8966
8967         /* If the controller supports either ioaccel method then
8968          * we can also use the RAID stack submit path that does not
8969          * perform the superfluous readl() after each command submission.
8970          */
8971         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8972                 access = SA5_performant_access_no_read;
8973
8974         /* Controller spec: zero out this buffer. */
8975         for (i = 0; i < h->nreply_queues; i++)
8976                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8977
8978         bft[7] = SG_ENTRIES_IN_CMD + 4;
8979         calc_bucket_map(bft, ARRAY_SIZE(bft),
8980                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8981         for (i = 0; i < 8; i++)
8982                 writel(bft[i], &h->transtable->BlockFetch[i]);
8983
8984         /* size of controller ring buffer */
8985         writel(h->max_commands, &h->transtable->RepQSize);
8986         writel(h->nreply_queues, &h->transtable->RepQCount);
8987         writel(0, &h->transtable->RepQCtrAddrLow32);
8988         writel(0, &h->transtable->RepQCtrAddrHigh32);
8989
8990         for (i = 0; i < h->nreply_queues; i++) {
8991                 writel(0, &h->transtable->RepQAddr[i].upper);
8992                 writel(h->reply_queue[i].busaddr,
8993                         &h->transtable->RepQAddr[i].lower);
8994         }
8995
8996         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8997         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8998         /*
8999          * enable outbound interrupt coalescing in accelerator mode;
9000          */
9001         if (trans_support & CFGTBL_Trans_io_accel1) {
9002                 access = SA5_ioaccel_mode1_access;
9003                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9004                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9005         } else {
9006                 if (trans_support & CFGTBL_Trans_io_accel2) {
9007                         access = SA5_ioaccel_mode2_access;
9008                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9009                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9010                 }
9011         }
9012         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9013         if (hpsa_wait_for_mode_change_ack(h)) {
9014                 dev_err(&h->pdev->dev,
9015                         "performant mode problem - doorbell timeout\n");
9016                 return -ENODEV;
9017         }
9018         register_value = readl(&(h->cfgtable->TransportActive));
9019         if (!(register_value & CFGTBL_Trans_Performant)) {
9020                 dev_err(&h->pdev->dev,
9021                         "performant mode problem - transport not active\n");
9022                 return -ENODEV;
9023         }
9024         /* Change the access methods to the performant access methods */
9025         h->access = access;
9026         h->transMethod = transMethod;
9027
9028         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9029                 (trans_support & CFGTBL_Trans_io_accel2)))
9030                 return 0;
9031
9032         if (trans_support & CFGTBL_Trans_io_accel1) {
9033                 /* Set up I/O accelerator mode */
9034                 for (i = 0; i < h->nreply_queues; i++) {
9035                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9036                         h->reply_queue[i].current_entry =
9037                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9038                 }
9039                 bft[7] = h->ioaccel_maxsg + 8;
9040                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9041                                 h->ioaccel1_blockFetchTable);
9042
9043                 /* initialize all reply queue entries to unused */
9044                 for (i = 0; i < h->nreply_queues; i++)
9045                         memset(h->reply_queue[i].head,
9046                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9047                                 h->reply_queue_size);
9048
9049                 /* set all the constant fields in the accelerator command
9050                  * frames once at init time to save CPU cycles later.
9051                  */
9052                 for (i = 0; i < h->nr_cmds; i++) {
9053                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9054
9055                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9056                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9057                                         (i * sizeof(struct ErrorInfo)));
9058                         cp->err_info_len = sizeof(struct ErrorInfo);
9059                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9060                         cp->host_context_flags =
9061                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9062                         cp->timeout_sec = 0;
9063                         cp->ReplyQueue = 0;
9064                         cp->tag =
9065                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9066                         cp->host_addr =
9067                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9068                                         (i * sizeof(struct io_accel1_cmd)));
9069                 }
9070         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9071                 u64 cfg_offset, cfg_base_addr_index;
9072                 u32 bft2_offset, cfg_base_addr;
9073                 int rc;
9074
9075                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9076                         &cfg_base_addr_index, &cfg_offset);
9077                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9078                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9079                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9080                                 4, h->ioaccel2_blockFetchTable);
9081                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9082                 BUILD_BUG_ON(offsetof(struct CfgTable,
9083                                 io_accel_request_size_offset) != 0xb8);
9084                 h->ioaccel2_bft2_regs =
9085                         remap_pci_mem(pci_resource_start(h->pdev,
9086                                         cfg_base_addr_index) +
9087                                         cfg_offset + bft2_offset,
9088                                         ARRAY_SIZE(bft2) *
9089                                         sizeof(*h->ioaccel2_bft2_regs));
9090                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9091                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9092         }
9093         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9094         if (hpsa_wait_for_mode_change_ack(h)) {
9095                 dev_err(&h->pdev->dev,
9096                         "performant mode problem - enabling ioaccel mode\n");
9097                 return -ENODEV;
9098         }
9099         return 0;
9100 }
9101
9102 /* Free ioaccel1 mode command blocks and block fetch table */
9103 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9104 {
9105         if (h->ioaccel_cmd_pool) {
9106                 pci_free_consistent(h->pdev,
9107                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9108                         h->ioaccel_cmd_pool,
9109                         h->ioaccel_cmd_pool_dhandle);
9110                 h->ioaccel_cmd_pool = NULL;
9111                 h->ioaccel_cmd_pool_dhandle = 0;
9112         }
9113         kfree(h->ioaccel1_blockFetchTable);
9114         h->ioaccel1_blockFetchTable = NULL;
9115 }
9116
9117 /* Allocate ioaccel1 mode command blocks and block fetch table */
9118 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9119 {
9120         h->ioaccel_maxsg =
9121                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9122         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9123                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9124
9125         /* Command structures must be aligned on a 128-byte boundary
9126          * because the 7 lower bits of the address are used by the
9127          * hardware.
9128          */
9129         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9130                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9131         h->ioaccel_cmd_pool =
9132                 pci_alloc_consistent(h->pdev,
9133                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9134                         &(h->ioaccel_cmd_pool_dhandle));
9135
9136         h->ioaccel1_blockFetchTable =
9137                 kmalloc(((h->ioaccel_maxsg + 1) *
9138                                 sizeof(u32)), GFP_KERNEL);
9139
9140         if ((h->ioaccel_cmd_pool == NULL) ||
9141                 (h->ioaccel1_blockFetchTable == NULL))
9142                 goto clean_up;
9143
9144         memset(h->ioaccel_cmd_pool, 0,
9145                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9146         return 0;
9147
9148 clean_up:
9149         hpsa_free_ioaccel1_cmd_and_bft(h);
9150         return -ENOMEM;
9151 }
9152
9153 /* Free ioaccel2 mode command blocks and block fetch table */
9154 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9155 {
9156         hpsa_free_ioaccel2_sg_chain_blocks(h);
9157
9158         if (h->ioaccel2_cmd_pool) {
9159                 pci_free_consistent(h->pdev,
9160                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9161                         h->ioaccel2_cmd_pool,
9162                         h->ioaccel2_cmd_pool_dhandle);
9163                 h->ioaccel2_cmd_pool = NULL;
9164                 h->ioaccel2_cmd_pool_dhandle = 0;
9165         }
9166         kfree(h->ioaccel2_blockFetchTable);
9167         h->ioaccel2_blockFetchTable = NULL;
9168 }
9169
9170 /* Allocate ioaccel2 mode command blocks and block fetch table */
9171 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9172 {
9173         int rc;
9174
9175         /* Allocate ioaccel2 mode command blocks and block fetch table */
9176
9177         h->ioaccel_maxsg =
9178                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9179         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9180                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9181
9182         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9183                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9184         h->ioaccel2_cmd_pool =
9185                 pci_alloc_consistent(h->pdev,
9186                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9187                         &(h->ioaccel2_cmd_pool_dhandle));
9188
9189         h->ioaccel2_blockFetchTable =
9190                 kmalloc(((h->ioaccel_maxsg + 1) *
9191                                 sizeof(u32)), GFP_KERNEL);
9192
9193         if ((h->ioaccel2_cmd_pool == NULL) ||
9194                 (h->ioaccel2_blockFetchTable == NULL)) {
9195                 rc = -ENOMEM;
9196                 goto clean_up;
9197         }
9198
9199         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9200         if (rc)
9201                 goto clean_up;
9202
9203         memset(h->ioaccel2_cmd_pool, 0,
9204                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9205         return 0;
9206
9207 clean_up:
9208         hpsa_free_ioaccel2_cmd_and_bft(h);
9209         return rc;
9210 }
9211
9212 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9213 static void hpsa_free_performant_mode(struct ctlr_info *h)
9214 {
9215         kfree(h->blockFetchTable);
9216         h->blockFetchTable = NULL;
9217         hpsa_free_reply_queues(h);
9218         hpsa_free_ioaccel1_cmd_and_bft(h);
9219         hpsa_free_ioaccel2_cmd_and_bft(h);
9220 }
9221
9222 /* return -ENODEV on error, 0 on success (or no action)
9223  * allocates numerous items that must be freed later
9224  */
9225 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9226 {
9227         u32 trans_support;
9228         unsigned long transMethod = CFGTBL_Trans_Performant |
9229                                         CFGTBL_Trans_use_short_tags;
9230         int i, rc;
9231
9232         if (hpsa_simple_mode)
9233                 return 0;
9234
9235         trans_support = readl(&(h->cfgtable->TransportSupport));
9236         if (!(trans_support & PERFORMANT_MODE))
9237                 return 0;
9238
9239         /* Check for I/O accelerator mode support */
9240         if (trans_support & CFGTBL_Trans_io_accel1) {
9241                 transMethod |= CFGTBL_Trans_io_accel1 |
9242                                 CFGTBL_Trans_enable_directed_msix;
9243                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9244                 if (rc)
9245                         return rc;
9246         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9247                 transMethod |= CFGTBL_Trans_io_accel2 |
9248                                 CFGTBL_Trans_enable_directed_msix;
9249                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9250                 if (rc)
9251                         return rc;
9252         }
9253
9254         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9255         hpsa_get_max_perf_mode_cmds(h);
9256         /* Performant mode ring buffer and supporting data structures */
9257         h->reply_queue_size = h->max_commands * sizeof(u64);
9258
9259         for (i = 0; i < h->nreply_queues; i++) {
9260                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9261                                                 h->reply_queue_size,
9262                                                 &(h->reply_queue[i].busaddr));
9263                 if (!h->reply_queue[i].head) {
9264                         rc = -ENOMEM;
9265                         goto clean1;    /* rq, ioaccel */
9266                 }
9267                 h->reply_queue[i].size = h->max_commands;
9268                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9269                 h->reply_queue[i].current_entry = 0;
9270         }
9271
9272         /* Need a block fetch table for performant mode */
9273         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9274                                 sizeof(u32)), GFP_KERNEL);
9275         if (!h->blockFetchTable) {
9276                 rc = -ENOMEM;
9277                 goto clean1;    /* rq, ioaccel */
9278         }
9279
9280         rc = hpsa_enter_performant_mode(h, trans_support);
9281         if (rc)
9282                 goto clean2;    /* bft, rq, ioaccel */
9283         return 0;
9284
9285 clean2: /* bft, rq, ioaccel */
9286         kfree(h->blockFetchTable);
9287         h->blockFetchTable = NULL;
9288 clean1: /* rq, ioaccel */
9289         hpsa_free_reply_queues(h);
9290         hpsa_free_ioaccel1_cmd_and_bft(h);
9291         hpsa_free_ioaccel2_cmd_and_bft(h);
9292         return rc;
9293 }
9294
9295 static int is_accelerated_cmd(struct CommandList *c)
9296 {
9297         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9298 }
9299
9300 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9301 {
9302         struct CommandList *c = NULL;
9303         int i, accel_cmds_out;
9304         int refcount;
9305
9306         do { /* wait for all outstanding ioaccel commands to drain out */
9307                 accel_cmds_out = 0;
9308                 for (i = 0; i < h->nr_cmds; i++) {
9309                         c = h->cmd_pool + i;
9310                         refcount = atomic_inc_return(&c->refcount);
9311                         if (refcount > 1) /* Command is allocated */
9312                                 accel_cmds_out += is_accelerated_cmd(c);
9313                         cmd_free(h, c);
9314                 }
9315                 if (accel_cmds_out <= 0)
9316                         break;
9317                 msleep(100);
9318         } while (1);
9319 }
9320
9321 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9322                                 struct hpsa_sas_port *hpsa_sas_port)
9323 {
9324         struct hpsa_sas_phy *hpsa_sas_phy;
9325         struct sas_phy *phy;
9326
9327         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9328         if (!hpsa_sas_phy)
9329                 return NULL;
9330
9331         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9332                 hpsa_sas_port->next_phy_index);
9333         if (!phy) {
9334                 kfree(hpsa_sas_phy);
9335                 return NULL;
9336         }
9337
9338         hpsa_sas_port->next_phy_index++;
9339         hpsa_sas_phy->phy = phy;
9340         hpsa_sas_phy->parent_port = hpsa_sas_port;
9341
9342         return hpsa_sas_phy;
9343 }
9344
9345 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9346 {
9347         struct sas_phy *phy = hpsa_sas_phy->phy;
9348
9349         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9350         sas_phy_free(phy);
9351         if (hpsa_sas_phy->added_to_port)
9352                 list_del(&hpsa_sas_phy->phy_list_entry);
9353         kfree(hpsa_sas_phy);
9354 }
9355
9356 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9357 {
9358         int rc;
9359         struct hpsa_sas_port *hpsa_sas_port;
9360         struct sas_phy *phy;
9361         struct sas_identify *identify;
9362
9363         hpsa_sas_port = hpsa_sas_phy->parent_port;
9364         phy = hpsa_sas_phy->phy;
9365
9366         identify = &phy->identify;
9367         memset(identify, 0, sizeof(*identify));
9368         identify->sas_address = hpsa_sas_port->sas_address;
9369         identify->device_type = SAS_END_DEVICE;
9370         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9371         identify->target_port_protocols = SAS_PROTOCOL_STP;
9372         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9373         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9374         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9375         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9376         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9377
9378         rc = sas_phy_add(hpsa_sas_phy->phy);
9379         if (rc)
9380                 return rc;
9381
9382         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9383         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9384                         &hpsa_sas_port->phy_list_head);
9385         hpsa_sas_phy->added_to_port = true;
9386
9387         return 0;
9388 }
9389
9390 static int
9391         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9392                                 struct sas_rphy *rphy)
9393 {
9394         struct sas_identify *identify;
9395
9396         identify = &rphy->identify;
9397         identify->sas_address = hpsa_sas_port->sas_address;
9398         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9399         identify->target_port_protocols = SAS_PROTOCOL_STP;
9400
9401         return sas_rphy_add(rphy);
9402 }
9403
9404 static struct hpsa_sas_port
9405         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9406                                 u64 sas_address)
9407 {
9408         int rc;
9409         struct hpsa_sas_port *hpsa_sas_port;
9410         struct sas_port *port;
9411
9412         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9413         if (!hpsa_sas_port)
9414                 return NULL;
9415
9416         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9417         hpsa_sas_port->parent_node = hpsa_sas_node;
9418
9419         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9420         if (!port)
9421                 goto free_hpsa_port;
9422
9423         rc = sas_port_add(port);
9424         if (rc)
9425                 goto free_sas_port;
9426
9427         hpsa_sas_port->port = port;
9428         hpsa_sas_port->sas_address = sas_address;
9429         list_add_tail(&hpsa_sas_port->port_list_entry,
9430                         &hpsa_sas_node->port_list_head);
9431
9432         return hpsa_sas_port;
9433
9434 free_sas_port:
9435         sas_port_free(port);
9436 free_hpsa_port:
9437         kfree(hpsa_sas_port);
9438
9439         return NULL;
9440 }
9441
9442 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9443 {
9444         struct hpsa_sas_phy *hpsa_sas_phy;
9445         struct hpsa_sas_phy *next;
9446
9447         list_for_each_entry_safe(hpsa_sas_phy, next,
9448                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9449                 hpsa_free_sas_phy(hpsa_sas_phy);
9450
9451         sas_port_delete(hpsa_sas_port->port);
9452         list_del(&hpsa_sas_port->port_list_entry);
9453         kfree(hpsa_sas_port);
9454 }
9455
9456 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9457 {
9458         struct hpsa_sas_node *hpsa_sas_node;
9459
9460         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9461         if (hpsa_sas_node) {
9462                 hpsa_sas_node->parent_dev = parent_dev;
9463                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9464         }
9465
9466         return hpsa_sas_node;
9467 }
9468
9469 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9470 {
9471         struct hpsa_sas_port *hpsa_sas_port;
9472         struct hpsa_sas_port *next;
9473
9474         if (!hpsa_sas_node)
9475                 return;
9476
9477         list_for_each_entry_safe(hpsa_sas_port, next,
9478                         &hpsa_sas_node->port_list_head, port_list_entry)
9479                 hpsa_free_sas_port(hpsa_sas_port);
9480
9481         kfree(hpsa_sas_node);
9482 }
9483
9484 static struct hpsa_scsi_dev_t
9485         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9486                                         struct sas_rphy *rphy)
9487 {
9488         int i;
9489         struct hpsa_scsi_dev_t *device;
9490
9491         for (i = 0; i < h->ndevices; i++) {
9492                 device = h->dev[i];
9493                 if (!device->sas_port)
9494                         continue;
9495                 if (device->sas_port->rphy == rphy)
9496                         return device;
9497         }
9498
9499         return NULL;
9500 }
9501
9502 static int hpsa_add_sas_host(struct ctlr_info *h)
9503 {
9504         int rc;
9505         struct device *parent_dev;
9506         struct hpsa_sas_node *hpsa_sas_node;
9507         struct hpsa_sas_port *hpsa_sas_port;
9508         struct hpsa_sas_phy *hpsa_sas_phy;
9509
9510         parent_dev = &h->scsi_host->shost_gendev;
9511
9512         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9513         if (!hpsa_sas_node)
9514                 return -ENOMEM;
9515
9516         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9517         if (!hpsa_sas_port) {
9518                 rc = -ENODEV;
9519                 goto free_sas_node;
9520         }
9521
9522         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9523         if (!hpsa_sas_phy) {
9524                 rc = -ENODEV;
9525                 goto free_sas_port;
9526         }
9527
9528         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9529         if (rc)
9530                 goto free_sas_phy;
9531
9532         h->sas_host = hpsa_sas_node;
9533
9534         return 0;
9535
9536 free_sas_phy:
9537         hpsa_free_sas_phy(hpsa_sas_phy);
9538 free_sas_port:
9539         hpsa_free_sas_port(hpsa_sas_port);
9540 free_sas_node:
9541         hpsa_free_sas_node(hpsa_sas_node);
9542
9543         return rc;
9544 }
9545
9546 static void hpsa_delete_sas_host(struct ctlr_info *h)
9547 {
9548         hpsa_free_sas_node(h->sas_host);
9549 }
9550
9551 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9552                                 struct hpsa_scsi_dev_t *device)
9553 {
9554         int rc;
9555         struct hpsa_sas_port *hpsa_sas_port;
9556         struct sas_rphy *rphy;
9557
9558         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9559         if (!hpsa_sas_port)
9560                 return -ENOMEM;
9561
9562         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9563         if (!rphy) {
9564                 rc = -ENODEV;
9565                 goto free_sas_port;
9566         }
9567
9568         hpsa_sas_port->rphy = rphy;
9569         device->sas_port = hpsa_sas_port;
9570
9571         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9572         if (rc)
9573                 goto free_sas_port;
9574
9575         return 0;
9576
9577 free_sas_port:
9578         hpsa_free_sas_port(hpsa_sas_port);
9579         device->sas_port = NULL;
9580
9581         return rc;
9582 }
9583
9584 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9585 {
9586         if (device->sas_port) {
9587                 hpsa_free_sas_port(device->sas_port);
9588                 device->sas_port = NULL;
9589         }
9590 }
9591
9592 static int
9593 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9594 {
9595         return 0;
9596 }
9597
9598 static int
9599 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9600 {
9601         return 0;
9602 }
9603
9604 static int
9605 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9606 {
9607         return -ENXIO;
9608 }
9609
9610 static int
9611 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9612 {
9613         return 0;
9614 }
9615
9616 static int
9617 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9618 {
9619         return 0;
9620 }
9621
9622 static int
9623 hpsa_sas_phy_setup(struct sas_phy *phy)
9624 {
9625         return 0;
9626 }
9627
9628 static void
9629 hpsa_sas_phy_release(struct sas_phy *phy)
9630 {
9631 }
9632
9633 static int
9634 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9635 {
9636         return -EINVAL;
9637 }
9638
9639 /* SMP = Serial Management Protocol */
9640 static int
9641 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9642 struct request *req)
9643 {
9644         return -EINVAL;
9645 }
9646
9647 static struct sas_function_template hpsa_sas_transport_functions = {
9648         .get_linkerrors = hpsa_sas_get_linkerrors,
9649         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9650         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9651         .phy_reset = hpsa_sas_phy_reset,
9652         .phy_enable = hpsa_sas_phy_enable,
9653         .phy_setup = hpsa_sas_phy_setup,
9654         .phy_release = hpsa_sas_phy_release,
9655         .set_phy_speed = hpsa_sas_phy_speed,
9656         .smp_handler = hpsa_sas_smp_handler,
9657 };
9658
9659 /*
9660  *  This is it.  Register the PCI driver information for the cards we control
9661  *  the OS will call our registered routines when it finds one of our cards.
9662  */
9663 static int __init hpsa_init(void)
9664 {
9665         int rc;
9666
9667         hpsa_sas_transport_template =
9668                 sas_attach_transport(&hpsa_sas_transport_functions);
9669         if (!hpsa_sas_transport_template)
9670                 return -ENODEV;
9671
9672         rc = pci_register_driver(&hpsa_pci_driver);
9673
9674         if (rc)
9675                 sas_release_transport(hpsa_sas_transport_template);
9676
9677         return rc;
9678 }
9679
9680 static void __exit hpsa_cleanup(void)
9681 {
9682         pci_unregister_driver(&hpsa_pci_driver);
9683         sas_release_transport(hpsa_sas_transport_template);
9684 }
9685
9686 static void __attribute__((unused)) verify_offsets(void)
9687 {
9688 #define VERIFY_OFFSET(member, offset) \
9689         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9690
9691         VERIFY_OFFSET(structure_size, 0);
9692         VERIFY_OFFSET(volume_blk_size, 4);
9693         VERIFY_OFFSET(volume_blk_cnt, 8);
9694         VERIFY_OFFSET(phys_blk_shift, 16);
9695         VERIFY_OFFSET(parity_rotation_shift, 17);
9696         VERIFY_OFFSET(strip_size, 18);
9697         VERIFY_OFFSET(disk_starting_blk, 20);
9698         VERIFY_OFFSET(disk_blk_cnt, 28);
9699         VERIFY_OFFSET(data_disks_per_row, 36);
9700         VERIFY_OFFSET(metadata_disks_per_row, 38);
9701         VERIFY_OFFSET(row_cnt, 40);
9702         VERIFY_OFFSET(layout_map_count, 42);
9703         VERIFY_OFFSET(flags, 44);
9704         VERIFY_OFFSET(dekindex, 46);
9705         /* VERIFY_OFFSET(reserved, 48 */
9706         VERIFY_OFFSET(data, 64);
9707
9708 #undef VERIFY_OFFSET
9709
9710 #define VERIFY_OFFSET(member, offset) \
9711         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9712
9713         VERIFY_OFFSET(IU_type, 0);
9714         VERIFY_OFFSET(direction, 1);
9715         VERIFY_OFFSET(reply_queue, 2);
9716         /* VERIFY_OFFSET(reserved1, 3);  */
9717         VERIFY_OFFSET(scsi_nexus, 4);
9718         VERIFY_OFFSET(Tag, 8);
9719         VERIFY_OFFSET(cdb, 16);
9720         VERIFY_OFFSET(cciss_lun, 32);
9721         VERIFY_OFFSET(data_len, 40);
9722         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9723         VERIFY_OFFSET(sg_count, 45);
9724         /* VERIFY_OFFSET(reserved3 */
9725         VERIFY_OFFSET(err_ptr, 48);
9726         VERIFY_OFFSET(err_len, 56);
9727         /* VERIFY_OFFSET(reserved4  */
9728         VERIFY_OFFSET(sg, 64);
9729
9730 #undef VERIFY_OFFSET
9731
9732 #define VERIFY_OFFSET(member, offset) \
9733         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9734
9735         VERIFY_OFFSET(dev_handle, 0x00);
9736         VERIFY_OFFSET(reserved1, 0x02);
9737         VERIFY_OFFSET(function, 0x03);
9738         VERIFY_OFFSET(reserved2, 0x04);
9739         VERIFY_OFFSET(err_info, 0x0C);
9740         VERIFY_OFFSET(reserved3, 0x10);
9741         VERIFY_OFFSET(err_info_len, 0x12);
9742         VERIFY_OFFSET(reserved4, 0x13);
9743         VERIFY_OFFSET(sgl_offset, 0x14);
9744         VERIFY_OFFSET(reserved5, 0x15);
9745         VERIFY_OFFSET(transfer_len, 0x1C);
9746         VERIFY_OFFSET(reserved6, 0x20);
9747         VERIFY_OFFSET(io_flags, 0x24);
9748         VERIFY_OFFSET(reserved7, 0x26);
9749         VERIFY_OFFSET(LUN, 0x34);
9750         VERIFY_OFFSET(control, 0x3C);
9751         VERIFY_OFFSET(CDB, 0x40);
9752         VERIFY_OFFSET(reserved8, 0x50);
9753         VERIFY_OFFSET(host_context_flags, 0x60);
9754         VERIFY_OFFSET(timeout_sec, 0x62);
9755         VERIFY_OFFSET(ReplyQueue, 0x64);
9756         VERIFY_OFFSET(reserved9, 0x65);
9757         VERIFY_OFFSET(tag, 0x68);
9758         VERIFY_OFFSET(host_addr, 0x70);
9759         VERIFY_OFFSET(CISS_LUN, 0x78);
9760         VERIFY_OFFSET(SG, 0x78 + 8);
9761 #undef VERIFY_OFFSET
9762 }
9763
9764 module_init(hpsa_init);
9765 module_exit(hpsa_cleanup);