Merge tag 'iommu-updates-v3.19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.4-1"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61
62 /* How long to wait (in milliseconds) for board to go into simple mode */
63 #define MAX_CONFIG_WAIT 30000
64 #define MAX_IOCTL_CONFIG_WAIT 1000
65
66 /*define how many times we will try a command because of bus resets */
67 #define MAX_CMD_RETRIES 3
68
69 /* Embedded module documentation macros - see modules.h */
70 MODULE_AUTHOR("Hewlett-Packard Company");
71 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
72         HPSA_DRIVER_VERSION);
73 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
74 MODULE_VERSION(HPSA_DRIVER_VERSION);
75 MODULE_LICENSE("GPL");
76
77 static int hpsa_allow_any;
78 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_allow_any,
80                 "Allow hpsa driver to access unknown HP Smart Array hardware");
81 static int hpsa_simple_mode;
82 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
83 MODULE_PARM_DESC(hpsa_simple_mode,
84         "Use 'simple mode' rather than 'performant mode'");
85
86 /* define the PCI info for the cards we can control */
87 static const struct pci_device_id hpsa_pci_device_id[] = {
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
128         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
129         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
130         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
131         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
132         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
133         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
134                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
135         {0,}
136 };
137
138 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
139
140 /*  board_id = Subsystem Device ID & Vendor ID
141  *  product = Marketing Name for the board
142  *  access = Address of the struct of function pointers
143  */
144 static struct board_type products[] = {
145         {0x3241103C, "Smart Array P212", &SA5_access},
146         {0x3243103C, "Smart Array P410", &SA5_access},
147         {0x3245103C, "Smart Array P410i", &SA5_access},
148         {0x3247103C, "Smart Array P411", &SA5_access},
149         {0x3249103C, "Smart Array P812", &SA5_access},
150         {0x324A103C, "Smart Array P712m", &SA5_access},
151         {0x324B103C, "Smart Array P711m", &SA5_access},
152         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
153         {0x3350103C, "Smart Array P222", &SA5_access},
154         {0x3351103C, "Smart Array P420", &SA5_access},
155         {0x3352103C, "Smart Array P421", &SA5_access},
156         {0x3353103C, "Smart Array P822", &SA5_access},
157         {0x3354103C, "Smart Array P420i", &SA5_access},
158         {0x3355103C, "Smart Array P220i", &SA5_access},
159         {0x3356103C, "Smart Array P721m", &SA5_access},
160         {0x1921103C, "Smart Array P830i", &SA5_access},
161         {0x1922103C, "Smart Array P430", &SA5_access},
162         {0x1923103C, "Smart Array P431", &SA5_access},
163         {0x1924103C, "Smart Array P830", &SA5_access},
164         {0x1926103C, "Smart Array P731m", &SA5_access},
165         {0x1928103C, "Smart Array P230i", &SA5_access},
166         {0x1929103C, "Smart Array P530", &SA5_access},
167         {0x21BD103C, "Smart Array", &SA5_access},
168         {0x21BE103C, "Smart Array", &SA5_access},
169         {0x21BF103C, "Smart Array", &SA5_access},
170         {0x21C0103C, "Smart Array", &SA5_access},
171         {0x21C1103C, "Smart Array", &SA5_access},
172         {0x21C2103C, "Smart Array", &SA5_access},
173         {0x21C3103C, "Smart Array", &SA5_access},
174         {0x21C4103C, "Smart Array", &SA5_access},
175         {0x21C5103C, "Smart Array", &SA5_access},
176         {0x21C6103C, "Smart Array", &SA5_access},
177         {0x21C7103C, "Smart Array", &SA5_access},
178         {0x21C8103C, "Smart Array", &SA5_access},
179         {0x21C9103C, "Smart Array", &SA5_access},
180         {0x21CA103C, "Smart Array", &SA5_access},
181         {0x21CB103C, "Smart Array", &SA5_access},
182         {0x21CC103C, "Smart Array", &SA5_access},
183         {0x21CD103C, "Smart Array", &SA5_access},
184         {0x21CE103C, "Smart Array", &SA5_access},
185         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
186         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
187         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
188         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
189         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
190         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
191 };
192
193 static int number_of_controllers;
194
195 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
196 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
197 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
198 static void lock_and_start_io(struct ctlr_info *h);
199 static void start_io(struct ctlr_info *h, unsigned long *flags);
200
201 #ifdef CONFIG_COMPAT
202 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
203         void __user *arg);
204 #endif
205
206 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
207 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
208 static struct CommandList *cmd_alloc(struct ctlr_info *h);
209 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
210 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
211         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
212         int cmd_type);
213 #define VPD_PAGE (1 << 8)
214
215 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
216 static void hpsa_scan_start(struct Scsi_Host *);
217 static int hpsa_scan_finished(struct Scsi_Host *sh,
218         unsigned long elapsed_time);
219
220 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
221 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
222 static int hpsa_slave_alloc(struct scsi_device *sdev);
223 static void hpsa_slave_destroy(struct scsi_device *sdev);
224
225 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
226 static int check_for_unit_attention(struct ctlr_info *h,
227         struct CommandList *c);
228 static void check_ioctl_unit_attention(struct ctlr_info *h,
229         struct CommandList *c);
230 /* performant mode helper functions */
231 static void calc_bucket_map(int *bucket, int num_buckets,
232         int nsgs, int min_blocks, int *bucket_map);
233 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
234 static inline u32 next_command(struct ctlr_info *h, u8 q);
235 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
236                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
237                                u64 *cfg_offset);
238 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
239                                     unsigned long *memory_bar);
240 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
241 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
242                                      int wait_for_ready);
243 static inline void finish_cmd(struct CommandList *c);
244 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
245 #define BOARD_NOT_READY 0
246 #define BOARD_READY 1
247 static void hpsa_drain_accel_commands(struct ctlr_info *h);
248 static void hpsa_flush_cache(struct ctlr_info *h);
249 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
250         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
251         u8 *scsi3addr);
252
253 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
254 {
255         unsigned long *priv = shost_priv(sdev->host);
256         return (struct ctlr_info *) *priv;
257 }
258
259 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
260 {
261         unsigned long *priv = shost_priv(sh);
262         return (struct ctlr_info *) *priv;
263 }
264
265 static int check_for_unit_attention(struct ctlr_info *h,
266         struct CommandList *c)
267 {
268         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
269                 return 0;
270
271         switch (c->err_info->SenseInfo[12]) {
272         case STATE_CHANGED:
273                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
274                         "detected, command retried\n", h->ctlr);
275                 break;
276         case LUN_FAILED:
277                 dev_warn(&h->pdev->dev,
278                         HPSA "%d: LUN failure detected\n", h->ctlr);
279                 break;
280         case REPORT_LUNS_CHANGED:
281                 dev_warn(&h->pdev->dev,
282                         HPSA "%d: report LUN data changed\n", h->ctlr);
283         /*
284          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
285          * target (array) devices.
286          */
287                 break;
288         case POWER_OR_RESET:
289                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
290                         "or device reset detected\n", h->ctlr);
291                 break;
292         case UNIT_ATTENTION_CLEARED:
293                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
294                     "cleared by another initiator\n", h->ctlr);
295                 break;
296         default:
297                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
298                         "unit attention detected\n", h->ctlr);
299                 break;
300         }
301         return 1;
302 }
303
304 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
305 {
306         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
307                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
308                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
309                 return 0;
310         dev_warn(&h->pdev->dev, HPSA "device busy");
311         return 1;
312 }
313
314 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
315                                          struct device_attribute *attr,
316                                          const char *buf, size_t count)
317 {
318         int status, len;
319         struct ctlr_info *h;
320         struct Scsi_Host *shost = class_to_shost(dev);
321         char tmpbuf[10];
322
323         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
324                 return -EACCES;
325         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
326         strncpy(tmpbuf, buf, len);
327         tmpbuf[len] = '\0';
328         if (sscanf(tmpbuf, "%d", &status) != 1)
329                 return -EINVAL;
330         h = shost_to_hba(shost);
331         h->acciopath_status = !!status;
332         dev_warn(&h->pdev->dev,
333                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
334                 h->acciopath_status ? "enabled" : "disabled");
335         return count;
336 }
337
338 static ssize_t host_store_raid_offload_debug(struct device *dev,
339                                          struct device_attribute *attr,
340                                          const char *buf, size_t count)
341 {
342         int debug_level, len;
343         struct ctlr_info *h;
344         struct Scsi_Host *shost = class_to_shost(dev);
345         char tmpbuf[10];
346
347         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
348                 return -EACCES;
349         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
350         strncpy(tmpbuf, buf, len);
351         tmpbuf[len] = '\0';
352         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
353                 return -EINVAL;
354         if (debug_level < 0)
355                 debug_level = 0;
356         h = shost_to_hba(shost);
357         h->raid_offload_debug = debug_level;
358         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
359                 h->raid_offload_debug);
360         return count;
361 }
362
363 static ssize_t host_store_rescan(struct device *dev,
364                                  struct device_attribute *attr,
365                                  const char *buf, size_t count)
366 {
367         struct ctlr_info *h;
368         struct Scsi_Host *shost = class_to_shost(dev);
369         h = shost_to_hba(shost);
370         hpsa_scan_start(h->scsi_host);
371         return count;
372 }
373
374 static ssize_t host_show_firmware_revision(struct device *dev,
375              struct device_attribute *attr, char *buf)
376 {
377         struct ctlr_info *h;
378         struct Scsi_Host *shost = class_to_shost(dev);
379         unsigned char *fwrev;
380
381         h = shost_to_hba(shost);
382         if (!h->hba_inquiry_data)
383                 return 0;
384         fwrev = &h->hba_inquiry_data[32];
385         return snprintf(buf, 20, "%c%c%c%c\n",
386                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
387 }
388
389 static ssize_t host_show_commands_outstanding(struct device *dev,
390              struct device_attribute *attr, char *buf)
391 {
392         struct Scsi_Host *shost = class_to_shost(dev);
393         struct ctlr_info *h = shost_to_hba(shost);
394
395         return snprintf(buf, 20, "%d\n",
396                         atomic_read(&h->commands_outstanding));
397 }
398
399 static ssize_t host_show_transport_mode(struct device *dev,
400         struct device_attribute *attr, char *buf)
401 {
402         struct ctlr_info *h;
403         struct Scsi_Host *shost = class_to_shost(dev);
404
405         h = shost_to_hba(shost);
406         return snprintf(buf, 20, "%s\n",
407                 h->transMethod & CFGTBL_Trans_Performant ?
408                         "performant" : "simple");
409 }
410
411 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
412         struct device_attribute *attr, char *buf)
413 {
414         struct ctlr_info *h;
415         struct Scsi_Host *shost = class_to_shost(dev);
416
417         h = shost_to_hba(shost);
418         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
419                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
420 }
421
422 /* List of controllers which cannot be hard reset on kexec with reset_devices */
423 static u32 unresettable_controller[] = {
424         0x324a103C, /* Smart Array P712m */
425         0x324b103C, /* SmartArray P711m */
426         0x3223103C, /* Smart Array P800 */
427         0x3234103C, /* Smart Array P400 */
428         0x3235103C, /* Smart Array P400i */
429         0x3211103C, /* Smart Array E200i */
430         0x3212103C, /* Smart Array E200 */
431         0x3213103C, /* Smart Array E200i */
432         0x3214103C, /* Smart Array E200i */
433         0x3215103C, /* Smart Array E200i */
434         0x3237103C, /* Smart Array E500 */
435         0x323D103C, /* Smart Array P700m */
436         0x40800E11, /* Smart Array 5i */
437         0x409C0E11, /* Smart Array 6400 */
438         0x409D0E11, /* Smart Array 6400 EM */
439         0x40700E11, /* Smart Array 5300 */
440         0x40820E11, /* Smart Array 532 */
441         0x40830E11, /* Smart Array 5312 */
442         0x409A0E11, /* Smart Array 641 */
443         0x409B0E11, /* Smart Array 642 */
444         0x40910E11, /* Smart Array 6i */
445 };
446
447 /* List of controllers which cannot even be soft reset */
448 static u32 soft_unresettable_controller[] = {
449         0x40800E11, /* Smart Array 5i */
450         0x40700E11, /* Smart Array 5300 */
451         0x40820E11, /* Smart Array 532 */
452         0x40830E11, /* Smart Array 5312 */
453         0x409A0E11, /* Smart Array 641 */
454         0x409B0E11, /* Smart Array 642 */
455         0x40910E11, /* Smart Array 6i */
456         /* Exclude 640x boards.  These are two pci devices in one slot
457          * which share a battery backed cache module.  One controls the
458          * cache, the other accesses the cache through the one that controls
459          * it.  If we reset the one controlling the cache, the other will
460          * likely not be happy.  Just forbid resetting this conjoined mess.
461          * The 640x isn't really supported by hpsa anyway.
462          */
463         0x409C0E11, /* Smart Array 6400 */
464         0x409D0E11, /* Smart Array 6400 EM */
465 };
466
467 static int ctlr_is_hard_resettable(u32 board_id)
468 {
469         int i;
470
471         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
472                 if (unresettable_controller[i] == board_id)
473                         return 0;
474         return 1;
475 }
476
477 static int ctlr_is_soft_resettable(u32 board_id)
478 {
479         int i;
480
481         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
482                 if (soft_unresettable_controller[i] == board_id)
483                         return 0;
484         return 1;
485 }
486
487 static int ctlr_is_resettable(u32 board_id)
488 {
489         return ctlr_is_hard_resettable(board_id) ||
490                 ctlr_is_soft_resettable(board_id);
491 }
492
493 static ssize_t host_show_resettable(struct device *dev,
494         struct device_attribute *attr, char *buf)
495 {
496         struct ctlr_info *h;
497         struct Scsi_Host *shost = class_to_shost(dev);
498
499         h = shost_to_hba(shost);
500         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
501 }
502
503 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
504 {
505         return (scsi3addr[3] & 0xC0) == 0x40;
506 }
507
508 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
509         "1(ADM)", "UNKNOWN"
510 };
511 #define HPSA_RAID_0     0
512 #define HPSA_RAID_4     1
513 #define HPSA_RAID_1     2       /* also used for RAID 10 */
514 #define HPSA_RAID_5     3       /* also used for RAID 50 */
515 #define HPSA_RAID_51    4
516 #define HPSA_RAID_6     5       /* also used for RAID 60 */
517 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
518 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
519
520 static ssize_t raid_level_show(struct device *dev,
521              struct device_attribute *attr, char *buf)
522 {
523         ssize_t l = 0;
524         unsigned char rlevel;
525         struct ctlr_info *h;
526         struct scsi_device *sdev;
527         struct hpsa_scsi_dev_t *hdev;
528         unsigned long flags;
529
530         sdev = to_scsi_device(dev);
531         h = sdev_to_hba(sdev);
532         spin_lock_irqsave(&h->lock, flags);
533         hdev = sdev->hostdata;
534         if (!hdev) {
535                 spin_unlock_irqrestore(&h->lock, flags);
536                 return -ENODEV;
537         }
538
539         /* Is this even a logical drive? */
540         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
541                 spin_unlock_irqrestore(&h->lock, flags);
542                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
543                 return l;
544         }
545
546         rlevel = hdev->raid_level;
547         spin_unlock_irqrestore(&h->lock, flags);
548         if (rlevel > RAID_UNKNOWN)
549                 rlevel = RAID_UNKNOWN;
550         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
551         return l;
552 }
553
554 static ssize_t lunid_show(struct device *dev,
555              struct device_attribute *attr, char *buf)
556 {
557         struct ctlr_info *h;
558         struct scsi_device *sdev;
559         struct hpsa_scsi_dev_t *hdev;
560         unsigned long flags;
561         unsigned char lunid[8];
562
563         sdev = to_scsi_device(dev);
564         h = sdev_to_hba(sdev);
565         spin_lock_irqsave(&h->lock, flags);
566         hdev = sdev->hostdata;
567         if (!hdev) {
568                 spin_unlock_irqrestore(&h->lock, flags);
569                 return -ENODEV;
570         }
571         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
572         spin_unlock_irqrestore(&h->lock, flags);
573         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
574                 lunid[0], lunid[1], lunid[2], lunid[3],
575                 lunid[4], lunid[5], lunid[6], lunid[7]);
576 }
577
578 static ssize_t unique_id_show(struct device *dev,
579              struct device_attribute *attr, char *buf)
580 {
581         struct ctlr_info *h;
582         struct scsi_device *sdev;
583         struct hpsa_scsi_dev_t *hdev;
584         unsigned long flags;
585         unsigned char sn[16];
586
587         sdev = to_scsi_device(dev);
588         h = sdev_to_hba(sdev);
589         spin_lock_irqsave(&h->lock, flags);
590         hdev = sdev->hostdata;
591         if (!hdev) {
592                 spin_unlock_irqrestore(&h->lock, flags);
593                 return -ENODEV;
594         }
595         memcpy(sn, hdev->device_id, sizeof(sn));
596         spin_unlock_irqrestore(&h->lock, flags);
597         return snprintf(buf, 16 * 2 + 2,
598                         "%02X%02X%02X%02X%02X%02X%02X%02X"
599                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
600                         sn[0], sn[1], sn[2], sn[3],
601                         sn[4], sn[5], sn[6], sn[7],
602                         sn[8], sn[9], sn[10], sn[11],
603                         sn[12], sn[13], sn[14], sn[15]);
604 }
605
606 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
607              struct device_attribute *attr, char *buf)
608 {
609         struct ctlr_info *h;
610         struct scsi_device *sdev;
611         struct hpsa_scsi_dev_t *hdev;
612         unsigned long flags;
613         int offload_enabled;
614
615         sdev = to_scsi_device(dev);
616         h = sdev_to_hba(sdev);
617         spin_lock_irqsave(&h->lock, flags);
618         hdev = sdev->hostdata;
619         if (!hdev) {
620                 spin_unlock_irqrestore(&h->lock, flags);
621                 return -ENODEV;
622         }
623         offload_enabled = hdev->offload_enabled;
624         spin_unlock_irqrestore(&h->lock, flags);
625         return snprintf(buf, 20, "%d\n", offload_enabled);
626 }
627
628 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
629 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
630 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
631 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
632 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
633                         host_show_hp_ssd_smart_path_enabled, NULL);
634 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
635                 host_show_hp_ssd_smart_path_status,
636                 host_store_hp_ssd_smart_path_status);
637 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
638                         host_store_raid_offload_debug);
639 static DEVICE_ATTR(firmware_revision, S_IRUGO,
640         host_show_firmware_revision, NULL);
641 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
642         host_show_commands_outstanding, NULL);
643 static DEVICE_ATTR(transport_mode, S_IRUGO,
644         host_show_transport_mode, NULL);
645 static DEVICE_ATTR(resettable, S_IRUGO,
646         host_show_resettable, NULL);
647
648 static struct device_attribute *hpsa_sdev_attrs[] = {
649         &dev_attr_raid_level,
650         &dev_attr_lunid,
651         &dev_attr_unique_id,
652         &dev_attr_hp_ssd_smart_path_enabled,
653         NULL,
654 };
655
656 static struct device_attribute *hpsa_shost_attrs[] = {
657         &dev_attr_rescan,
658         &dev_attr_firmware_revision,
659         &dev_attr_commands_outstanding,
660         &dev_attr_transport_mode,
661         &dev_attr_resettable,
662         &dev_attr_hp_ssd_smart_path_status,
663         &dev_attr_raid_offload_debug,
664         NULL,
665 };
666
667 static struct scsi_host_template hpsa_driver_template = {
668         .module                 = THIS_MODULE,
669         .name                   = HPSA,
670         .proc_name              = HPSA,
671         .queuecommand           = hpsa_scsi_queue_command,
672         .scan_start             = hpsa_scan_start,
673         .scan_finished          = hpsa_scan_finished,
674         .change_queue_depth     = scsi_change_queue_depth,
675         .this_id                = -1,
676         .use_clustering         = ENABLE_CLUSTERING,
677         .eh_abort_handler       = hpsa_eh_abort_handler,
678         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
679         .ioctl                  = hpsa_ioctl,
680         .slave_alloc            = hpsa_slave_alloc,
681         .slave_destroy          = hpsa_slave_destroy,
682 #ifdef CONFIG_COMPAT
683         .compat_ioctl           = hpsa_compat_ioctl,
684 #endif
685         .sdev_attrs = hpsa_sdev_attrs,
686         .shost_attrs = hpsa_shost_attrs,
687         .max_sectors = 8192,
688         .no_write_same = 1,
689 };
690
691
692 /* Enqueuing and dequeuing functions for cmdlists. */
693 static inline void addQ(struct list_head *list, struct CommandList *c)
694 {
695         list_add_tail(&c->list, list);
696 }
697
698 static inline u32 next_command(struct ctlr_info *h, u8 q)
699 {
700         u32 a;
701         struct reply_queue_buffer *rq = &h->reply_queue[q];
702
703         if (h->transMethod & CFGTBL_Trans_io_accel1)
704                 return h->access.command_completed(h, q);
705
706         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
707                 return h->access.command_completed(h, q);
708
709         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
710                 a = rq->head[rq->current_entry];
711                 rq->current_entry++;
712                 atomic_dec(&h->commands_outstanding);
713         } else {
714                 a = FIFO_EMPTY;
715         }
716         /* Check for wraparound */
717         if (rq->current_entry == h->max_commands) {
718                 rq->current_entry = 0;
719                 rq->wraparound ^= 1;
720         }
721         return a;
722 }
723
724 /*
725  * There are some special bits in the bus address of the
726  * command that we have to set for the controller to know
727  * how to process the command:
728  *
729  * Normal performant mode:
730  * bit 0: 1 means performant mode, 0 means simple mode.
731  * bits 1-3 = block fetch table entry
732  * bits 4-6 = command type (== 0)
733  *
734  * ioaccel1 mode:
735  * bit 0 = "performant mode" bit.
736  * bits 1-3 = block fetch table entry
737  * bits 4-6 = command type (== 110)
738  * (command type is needed because ioaccel1 mode
739  * commands are submitted through the same register as normal
740  * mode commands, so this is how the controller knows whether
741  * the command is normal mode or ioaccel1 mode.)
742  *
743  * ioaccel2 mode:
744  * bit 0 = "performant mode" bit.
745  * bits 1-4 = block fetch table entry (note extra bit)
746  * bits 4-6 = not needed, because ioaccel2 mode has
747  * a separate special register for submitting commands.
748  */
749
750 /* set_performant_mode: Modify the tag for cciss performant
751  * set bit 0 for pull model, bits 3-1 for block fetch
752  * register number
753  */
754 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
755 {
756         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
757                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
758                 if (likely(h->msix_vector > 0))
759                         c->Header.ReplyQueue =
760                                 raw_smp_processor_id() % h->nreply_queues;
761         }
762 }
763
764 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
765                                                 struct CommandList *c)
766 {
767         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
768
769         /* Tell the controller to post the reply to the queue for this
770          * processor.  This seems to give the best I/O throughput.
771          */
772         cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
773         /* Set the bits in the address sent down to include:
774          *  - performant mode bit (bit 0)
775          *  - pull count (bits 1-3)
776          *  - command type (bits 4-6)
777          */
778         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
779                                         IOACCEL1_BUSADDR_CMDTYPE;
780 }
781
782 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
783                                                 struct CommandList *c)
784 {
785         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
786
787         /* Tell the controller to post the reply to the queue for this
788          * processor.  This seems to give the best I/O throughput.
789          */
790         cp->reply_queue = smp_processor_id() % h->nreply_queues;
791         /* Set the bits in the address sent down to include:
792          *  - performant mode bit not used in ioaccel mode 2
793          *  - pull count (bits 0-3)
794          *  - command type isn't needed for ioaccel2
795          */
796         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
797 }
798
799 static int is_firmware_flash_cmd(u8 *cdb)
800 {
801         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
802 }
803
804 /*
805  * During firmware flash, the heartbeat register may not update as frequently
806  * as it should.  So we dial down lockup detection during firmware flash. and
807  * dial it back up when firmware flash completes.
808  */
809 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
810 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
811 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
812                 struct CommandList *c)
813 {
814         if (!is_firmware_flash_cmd(c->Request.CDB))
815                 return;
816         atomic_inc(&h->firmware_flash_in_progress);
817         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
818 }
819
820 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
821                 struct CommandList *c)
822 {
823         if (is_firmware_flash_cmd(c->Request.CDB) &&
824                 atomic_dec_and_test(&h->firmware_flash_in_progress))
825                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
826 }
827
828 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
829         struct CommandList *c)
830 {
831         unsigned long flags;
832
833         switch (c->cmd_type) {
834         case CMD_IOACCEL1:
835                 set_ioaccel1_performant_mode(h, c);
836                 break;
837         case CMD_IOACCEL2:
838                 set_ioaccel2_performant_mode(h, c);
839                 break;
840         default:
841                 set_performant_mode(h, c);
842         }
843         dial_down_lockup_detection_during_fw_flash(h, c);
844         spin_lock_irqsave(&h->lock, flags);
845         addQ(&h->reqQ, c);
846         h->Qdepth++;
847         start_io(h, &flags);
848         spin_unlock_irqrestore(&h->lock, flags);
849 }
850
851 static inline void removeQ(struct CommandList *c)
852 {
853         if (WARN_ON(list_empty(&c->list)))
854                 return;
855         list_del_init(&c->list);
856 }
857
858 static inline int is_hba_lunid(unsigned char scsi3addr[])
859 {
860         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
861 }
862
863 static inline int is_scsi_rev_5(struct ctlr_info *h)
864 {
865         if (!h->hba_inquiry_data)
866                 return 0;
867         if ((h->hba_inquiry_data[2] & 0x07) == 5)
868                 return 1;
869         return 0;
870 }
871
872 static int hpsa_find_target_lun(struct ctlr_info *h,
873         unsigned char scsi3addr[], int bus, int *target, int *lun)
874 {
875         /* finds an unused bus, target, lun for a new physical device
876          * assumes h->devlock is held
877          */
878         int i, found = 0;
879         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
880
881         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
882
883         for (i = 0; i < h->ndevices; i++) {
884                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
885                         __set_bit(h->dev[i]->target, lun_taken);
886         }
887
888         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
889         if (i < HPSA_MAX_DEVICES) {
890                 /* *bus = 1; */
891                 *target = i;
892                 *lun = 0;
893                 found = 1;
894         }
895         return !found;
896 }
897
898 /* Add an entry into h->dev[] array. */
899 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
900                 struct hpsa_scsi_dev_t *device,
901                 struct hpsa_scsi_dev_t *added[], int *nadded)
902 {
903         /* assumes h->devlock is held */
904         int n = h->ndevices;
905         int i;
906         unsigned char addr1[8], addr2[8];
907         struct hpsa_scsi_dev_t *sd;
908
909         if (n >= HPSA_MAX_DEVICES) {
910                 dev_err(&h->pdev->dev, "too many devices, some will be "
911                         "inaccessible.\n");
912                 return -1;
913         }
914
915         /* physical devices do not have lun or target assigned until now. */
916         if (device->lun != -1)
917                 /* Logical device, lun is already assigned. */
918                 goto lun_assigned;
919
920         /* If this device a non-zero lun of a multi-lun device
921          * byte 4 of the 8-byte LUN addr will contain the logical
922          * unit no, zero otherise.
923          */
924         if (device->scsi3addr[4] == 0) {
925                 /* This is not a non-zero lun of a multi-lun device */
926                 if (hpsa_find_target_lun(h, device->scsi3addr,
927                         device->bus, &device->target, &device->lun) != 0)
928                         return -1;
929                 goto lun_assigned;
930         }
931
932         /* This is a non-zero lun of a multi-lun device.
933          * Search through our list and find the device which
934          * has the same 8 byte LUN address, excepting byte 4.
935          * Assign the same bus and target for this new LUN.
936          * Use the logical unit number from the firmware.
937          */
938         memcpy(addr1, device->scsi3addr, 8);
939         addr1[4] = 0;
940         for (i = 0; i < n; i++) {
941                 sd = h->dev[i];
942                 memcpy(addr2, sd->scsi3addr, 8);
943                 addr2[4] = 0;
944                 /* differ only in byte 4? */
945                 if (memcmp(addr1, addr2, 8) == 0) {
946                         device->bus = sd->bus;
947                         device->target = sd->target;
948                         device->lun = device->scsi3addr[4];
949                         break;
950                 }
951         }
952         if (device->lun == -1) {
953                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
954                         " suspect firmware bug or unsupported hardware "
955                         "configuration.\n");
956                         return -1;
957         }
958
959 lun_assigned:
960
961         h->dev[n] = device;
962         h->ndevices++;
963         added[*nadded] = device;
964         (*nadded)++;
965
966         /* initially, (before registering with scsi layer) we don't
967          * know our hostno and we don't want to print anything first
968          * time anyway (the scsi layer's inquiries will show that info)
969          */
970         /* if (hostno != -1) */
971                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
972                         scsi_device_type(device->devtype), hostno,
973                         device->bus, device->target, device->lun);
974         return 0;
975 }
976
977 /* Update an entry in h->dev[] array. */
978 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
979         int entry, struct hpsa_scsi_dev_t *new_entry)
980 {
981         /* assumes h->devlock is held */
982         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
983
984         /* Raid level changed. */
985         h->dev[entry]->raid_level = new_entry->raid_level;
986
987         /* Raid offload parameters changed. */
988         h->dev[entry]->offload_config = new_entry->offload_config;
989         h->dev[entry]->offload_enabled = new_entry->offload_enabled;
990         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
991         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
992         h->dev[entry]->raid_map = new_entry->raid_map;
993
994         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
995                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
996                 new_entry->target, new_entry->lun);
997 }
998
999 /* Replace an entry from h->dev[] array. */
1000 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1001         int entry, struct hpsa_scsi_dev_t *new_entry,
1002         struct hpsa_scsi_dev_t *added[], int *nadded,
1003         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1004 {
1005         /* assumes h->devlock is held */
1006         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1007         removed[*nremoved] = h->dev[entry];
1008         (*nremoved)++;
1009
1010         /*
1011          * New physical devices won't have target/lun assigned yet
1012          * so we need to preserve the values in the slot we are replacing.
1013          */
1014         if (new_entry->target == -1) {
1015                 new_entry->target = h->dev[entry]->target;
1016                 new_entry->lun = h->dev[entry]->lun;
1017         }
1018
1019         h->dev[entry] = new_entry;
1020         added[*nadded] = new_entry;
1021         (*nadded)++;
1022         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1023                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1024                         new_entry->target, new_entry->lun);
1025 }
1026
1027 /* Remove an entry from h->dev[] array. */
1028 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1029         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1030 {
1031         /* assumes h->devlock is held */
1032         int i;
1033         struct hpsa_scsi_dev_t *sd;
1034
1035         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1036
1037         sd = h->dev[entry];
1038         removed[*nremoved] = h->dev[entry];
1039         (*nremoved)++;
1040
1041         for (i = entry; i < h->ndevices-1; i++)
1042                 h->dev[i] = h->dev[i+1];
1043         h->ndevices--;
1044         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1045                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1046                 sd->lun);
1047 }
1048
1049 #define SCSI3ADDR_EQ(a, b) ( \
1050         (a)[7] == (b)[7] && \
1051         (a)[6] == (b)[6] && \
1052         (a)[5] == (b)[5] && \
1053         (a)[4] == (b)[4] && \
1054         (a)[3] == (b)[3] && \
1055         (a)[2] == (b)[2] && \
1056         (a)[1] == (b)[1] && \
1057         (a)[0] == (b)[0])
1058
1059 static void fixup_botched_add(struct ctlr_info *h,
1060         struct hpsa_scsi_dev_t *added)
1061 {
1062         /* called when scsi_add_device fails in order to re-adjust
1063          * h->dev[] to match the mid layer's view.
1064          */
1065         unsigned long flags;
1066         int i, j;
1067
1068         spin_lock_irqsave(&h->lock, flags);
1069         for (i = 0; i < h->ndevices; i++) {
1070                 if (h->dev[i] == added) {
1071                         for (j = i; j < h->ndevices-1; j++)
1072                                 h->dev[j] = h->dev[j+1];
1073                         h->ndevices--;
1074                         break;
1075                 }
1076         }
1077         spin_unlock_irqrestore(&h->lock, flags);
1078         kfree(added);
1079 }
1080
1081 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1082         struct hpsa_scsi_dev_t *dev2)
1083 {
1084         /* we compare everything except lun and target as these
1085          * are not yet assigned.  Compare parts likely
1086          * to differ first
1087          */
1088         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1089                 sizeof(dev1->scsi3addr)) != 0)
1090                 return 0;
1091         if (memcmp(dev1->device_id, dev2->device_id,
1092                 sizeof(dev1->device_id)) != 0)
1093                 return 0;
1094         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1095                 return 0;
1096         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1097                 return 0;
1098         if (dev1->devtype != dev2->devtype)
1099                 return 0;
1100         if (dev1->bus != dev2->bus)
1101                 return 0;
1102         return 1;
1103 }
1104
1105 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1106         struct hpsa_scsi_dev_t *dev2)
1107 {
1108         /* Device attributes that can change, but don't mean
1109          * that the device is a different device, nor that the OS
1110          * needs to be told anything about the change.
1111          */
1112         if (dev1->raid_level != dev2->raid_level)
1113                 return 1;
1114         if (dev1->offload_config != dev2->offload_config)
1115                 return 1;
1116         if (dev1->offload_enabled != dev2->offload_enabled)
1117                 return 1;
1118         return 0;
1119 }
1120
1121 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1122  * and return needle location in *index.  If scsi3addr matches, but not
1123  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1124  * location in *index.
1125  * In the case of a minor device attribute change, such as RAID level, just
1126  * return DEVICE_UPDATED, along with the updated device's location in index.
1127  * If needle not found, return DEVICE_NOT_FOUND.
1128  */
1129 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1130         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1131         int *index)
1132 {
1133         int i;
1134 #define DEVICE_NOT_FOUND 0
1135 #define DEVICE_CHANGED 1
1136 #define DEVICE_SAME 2
1137 #define DEVICE_UPDATED 3
1138         for (i = 0; i < haystack_size; i++) {
1139                 if (haystack[i] == NULL) /* previously removed. */
1140                         continue;
1141                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1142                         *index = i;
1143                         if (device_is_the_same(needle, haystack[i])) {
1144                                 if (device_updated(needle, haystack[i]))
1145                                         return DEVICE_UPDATED;
1146                                 return DEVICE_SAME;
1147                         } else {
1148                                 /* Keep offline devices offline */
1149                                 if (needle->volume_offline)
1150                                         return DEVICE_NOT_FOUND;
1151                                 return DEVICE_CHANGED;
1152                         }
1153                 }
1154         }
1155         *index = -1;
1156         return DEVICE_NOT_FOUND;
1157 }
1158
1159 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1160                                         unsigned char scsi3addr[])
1161 {
1162         struct offline_device_entry *device;
1163         unsigned long flags;
1164
1165         /* Check to see if device is already on the list */
1166         spin_lock_irqsave(&h->offline_device_lock, flags);
1167         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1168                 if (memcmp(device->scsi3addr, scsi3addr,
1169                         sizeof(device->scsi3addr)) == 0) {
1170                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1171                         return;
1172                 }
1173         }
1174         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1175
1176         /* Device is not on the list, add it. */
1177         device = kmalloc(sizeof(*device), GFP_KERNEL);
1178         if (!device) {
1179                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1180                 return;
1181         }
1182         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1183         spin_lock_irqsave(&h->offline_device_lock, flags);
1184         list_add_tail(&device->offline_list, &h->offline_device_list);
1185         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1186 }
1187
1188 /* Print a message explaining various offline volume states */
1189 static void hpsa_show_volume_status(struct ctlr_info *h,
1190         struct hpsa_scsi_dev_t *sd)
1191 {
1192         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1193                 dev_info(&h->pdev->dev,
1194                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1195                         h->scsi_host->host_no,
1196                         sd->bus, sd->target, sd->lun);
1197         switch (sd->volume_offline) {
1198         case HPSA_LV_OK:
1199                 break;
1200         case HPSA_LV_UNDERGOING_ERASE:
1201                 dev_info(&h->pdev->dev,
1202                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1203                         h->scsi_host->host_no,
1204                         sd->bus, sd->target, sd->lun);
1205                 break;
1206         case HPSA_LV_UNDERGOING_RPI:
1207                 dev_info(&h->pdev->dev,
1208                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1209                         h->scsi_host->host_no,
1210                         sd->bus, sd->target, sd->lun);
1211                 break;
1212         case HPSA_LV_PENDING_RPI:
1213                 dev_info(&h->pdev->dev,
1214                                 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1215                                 h->scsi_host->host_no,
1216                                 sd->bus, sd->target, sd->lun);
1217                 break;
1218         case HPSA_LV_ENCRYPTED_NO_KEY:
1219                 dev_info(&h->pdev->dev,
1220                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1221                         h->scsi_host->host_no,
1222                         sd->bus, sd->target, sd->lun);
1223                 break;
1224         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1225                 dev_info(&h->pdev->dev,
1226                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1227                         h->scsi_host->host_no,
1228                         sd->bus, sd->target, sd->lun);
1229                 break;
1230         case HPSA_LV_UNDERGOING_ENCRYPTION:
1231                 dev_info(&h->pdev->dev,
1232                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1233                         h->scsi_host->host_no,
1234                         sd->bus, sd->target, sd->lun);
1235                 break;
1236         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1237                 dev_info(&h->pdev->dev,
1238                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1239                         h->scsi_host->host_no,
1240                         sd->bus, sd->target, sd->lun);
1241                 break;
1242         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1243                 dev_info(&h->pdev->dev,
1244                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1245                         h->scsi_host->host_no,
1246                         sd->bus, sd->target, sd->lun);
1247                 break;
1248         case HPSA_LV_PENDING_ENCRYPTION:
1249                 dev_info(&h->pdev->dev,
1250                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1251                         h->scsi_host->host_no,
1252                         sd->bus, sd->target, sd->lun);
1253                 break;
1254         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1255                 dev_info(&h->pdev->dev,
1256                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1257                         h->scsi_host->host_no,
1258                         sd->bus, sd->target, sd->lun);
1259                 break;
1260         }
1261 }
1262
1263 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1264         struct hpsa_scsi_dev_t *sd[], int nsds)
1265 {
1266         /* sd contains scsi3 addresses and devtypes, and inquiry
1267          * data.  This function takes what's in sd to be the current
1268          * reality and updates h->dev[] to reflect that reality.
1269          */
1270         int i, entry, device_change, changes = 0;
1271         struct hpsa_scsi_dev_t *csd;
1272         unsigned long flags;
1273         struct hpsa_scsi_dev_t **added, **removed;
1274         int nadded, nremoved;
1275         struct Scsi_Host *sh = NULL;
1276
1277         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1278         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1279
1280         if (!added || !removed) {
1281                 dev_warn(&h->pdev->dev, "out of memory in "
1282                         "adjust_hpsa_scsi_table\n");
1283                 goto free_and_out;
1284         }
1285
1286         spin_lock_irqsave(&h->devlock, flags);
1287
1288         /* find any devices in h->dev[] that are not in
1289          * sd[] and remove them from h->dev[], and for any
1290          * devices which have changed, remove the old device
1291          * info and add the new device info.
1292          * If minor device attributes change, just update
1293          * the existing device structure.
1294          */
1295         i = 0;
1296         nremoved = 0;
1297         nadded = 0;
1298         while (i < h->ndevices) {
1299                 csd = h->dev[i];
1300                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1301                 if (device_change == DEVICE_NOT_FOUND) {
1302                         changes++;
1303                         hpsa_scsi_remove_entry(h, hostno, i,
1304                                 removed, &nremoved);
1305                         continue; /* remove ^^^, hence i not incremented */
1306                 } else if (device_change == DEVICE_CHANGED) {
1307                         changes++;
1308                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1309                                 added, &nadded, removed, &nremoved);
1310                         /* Set it to NULL to prevent it from being freed
1311                          * at the bottom of hpsa_update_scsi_devices()
1312                          */
1313                         sd[entry] = NULL;
1314                 } else if (device_change == DEVICE_UPDATED) {
1315                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1316                 }
1317                 i++;
1318         }
1319
1320         /* Now, make sure every device listed in sd[] is also
1321          * listed in h->dev[], adding them if they aren't found
1322          */
1323
1324         for (i = 0; i < nsds; i++) {
1325                 if (!sd[i]) /* if already added above. */
1326                         continue;
1327
1328                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1329                  * as the SCSI mid-layer does not handle such devices well.
1330                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1331                  * at 160Hz, and prevents the system from coming up.
1332                  */
1333                 if (sd[i]->volume_offline) {
1334                         hpsa_show_volume_status(h, sd[i]);
1335                         dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1336                                 h->scsi_host->host_no,
1337                                 sd[i]->bus, sd[i]->target, sd[i]->lun);
1338                         continue;
1339                 }
1340
1341                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1342                                         h->ndevices, &entry);
1343                 if (device_change == DEVICE_NOT_FOUND) {
1344                         changes++;
1345                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1346                                 added, &nadded) != 0)
1347                                 break;
1348                         sd[i] = NULL; /* prevent from being freed later. */
1349                 } else if (device_change == DEVICE_CHANGED) {
1350                         /* should never happen... */
1351                         changes++;
1352                         dev_warn(&h->pdev->dev,
1353                                 "device unexpectedly changed.\n");
1354                         /* but if it does happen, we just ignore that device */
1355                 }
1356         }
1357         spin_unlock_irqrestore(&h->devlock, flags);
1358
1359         /* Monitor devices which are in one of several NOT READY states to be
1360          * brought online later. This must be done without holding h->devlock,
1361          * so don't touch h->dev[]
1362          */
1363         for (i = 0; i < nsds; i++) {
1364                 if (!sd[i]) /* if already added above. */
1365                         continue;
1366                 if (sd[i]->volume_offline)
1367                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1368         }
1369
1370         /* Don't notify scsi mid layer of any changes the first time through
1371          * (or if there are no changes) scsi_scan_host will do it later the
1372          * first time through.
1373          */
1374         if (hostno == -1 || !changes)
1375                 goto free_and_out;
1376
1377         sh = h->scsi_host;
1378         /* Notify scsi mid layer of any removed devices */
1379         for (i = 0; i < nremoved; i++) {
1380                 struct scsi_device *sdev =
1381                         scsi_device_lookup(sh, removed[i]->bus,
1382                                 removed[i]->target, removed[i]->lun);
1383                 if (sdev != NULL) {
1384                         scsi_remove_device(sdev);
1385                         scsi_device_put(sdev);
1386                 } else {
1387                         /* We don't expect to get here.
1388                          * future cmds to this device will get selection
1389                          * timeout as if the device was gone.
1390                          */
1391                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1392                                 " for removal.", hostno, removed[i]->bus,
1393                                 removed[i]->target, removed[i]->lun);
1394                 }
1395                 kfree(removed[i]);
1396                 removed[i] = NULL;
1397         }
1398
1399         /* Notify scsi mid layer of any added devices */
1400         for (i = 0; i < nadded; i++) {
1401                 if (scsi_add_device(sh, added[i]->bus,
1402                         added[i]->target, added[i]->lun) == 0)
1403                         continue;
1404                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1405                         "device not added.\n", hostno, added[i]->bus,
1406                         added[i]->target, added[i]->lun);
1407                 /* now we have to remove it from h->dev,
1408                  * since it didn't get added to scsi mid layer
1409                  */
1410                 fixup_botched_add(h, added[i]);
1411         }
1412
1413 free_and_out:
1414         kfree(added);
1415         kfree(removed);
1416 }
1417
1418 /*
1419  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1420  * Assume's h->devlock is held.
1421  */
1422 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1423         int bus, int target, int lun)
1424 {
1425         int i;
1426         struct hpsa_scsi_dev_t *sd;
1427
1428         for (i = 0; i < h->ndevices; i++) {
1429                 sd = h->dev[i];
1430                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1431                         return sd;
1432         }
1433         return NULL;
1434 }
1435
1436 /* link sdev->hostdata to our per-device structure. */
1437 static int hpsa_slave_alloc(struct scsi_device *sdev)
1438 {
1439         struct hpsa_scsi_dev_t *sd;
1440         unsigned long flags;
1441         struct ctlr_info *h;
1442
1443         h = sdev_to_hba(sdev);
1444         spin_lock_irqsave(&h->devlock, flags);
1445         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1446                 sdev_id(sdev), sdev->lun);
1447         if (sd != NULL)
1448                 sdev->hostdata = sd;
1449         spin_unlock_irqrestore(&h->devlock, flags);
1450         return 0;
1451 }
1452
1453 static void hpsa_slave_destroy(struct scsi_device *sdev)
1454 {
1455         /* nothing to do. */
1456 }
1457
1458 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1459 {
1460         int i;
1461
1462         if (!h->cmd_sg_list)
1463                 return;
1464         for (i = 0; i < h->nr_cmds; i++) {
1465                 kfree(h->cmd_sg_list[i]);
1466                 h->cmd_sg_list[i] = NULL;
1467         }
1468         kfree(h->cmd_sg_list);
1469         h->cmd_sg_list = NULL;
1470 }
1471
1472 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1473 {
1474         int i;
1475
1476         if (h->chainsize <= 0)
1477                 return 0;
1478
1479         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1480                                 GFP_KERNEL);
1481         if (!h->cmd_sg_list)
1482                 return -ENOMEM;
1483         for (i = 0; i < h->nr_cmds; i++) {
1484                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1485                                                 h->chainsize, GFP_KERNEL);
1486                 if (!h->cmd_sg_list[i])
1487                         goto clean;
1488         }
1489         return 0;
1490
1491 clean:
1492         hpsa_free_sg_chain_blocks(h);
1493         return -ENOMEM;
1494 }
1495
1496 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1497         struct CommandList *c)
1498 {
1499         struct SGDescriptor *chain_sg, *chain_block;
1500         u64 temp64;
1501         u32 chain_len;
1502
1503         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1504         chain_block = h->cmd_sg_list[c->cmdindex];
1505         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1506         chain_len = sizeof(*chain_sg) *
1507                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1508         chain_sg->Len = cpu_to_le32(chain_len);
1509         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1510                                 PCI_DMA_TODEVICE);
1511         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1512                 /* prevent subsequent unmapping */
1513                 chain_sg->Addr = cpu_to_le64(0);
1514                 return -1;
1515         }
1516         chain_sg->Addr = cpu_to_le64(temp64);
1517         return 0;
1518 }
1519
1520 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1521         struct CommandList *c)
1522 {
1523         struct SGDescriptor *chain_sg;
1524
1525         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1526                 return;
1527
1528         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1529         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1530                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1531 }
1532
1533
1534 /* Decode the various types of errors on ioaccel2 path.
1535  * Return 1 for any error that should generate a RAID path retry.
1536  * Return 0 for errors that don't require a RAID path retry.
1537  */
1538 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1539                                         struct CommandList *c,
1540                                         struct scsi_cmnd *cmd,
1541                                         struct io_accel2_cmd *c2)
1542 {
1543         int data_len;
1544         int retry = 0;
1545
1546         switch (c2->error_data.serv_response) {
1547         case IOACCEL2_SERV_RESPONSE_COMPLETE:
1548                 switch (c2->error_data.status) {
1549                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1550                         break;
1551                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1552                         dev_warn(&h->pdev->dev,
1553                                 "%s: task complete with check condition.\n",
1554                                 "HP SSD Smart Path");
1555                         cmd->result |= SAM_STAT_CHECK_CONDITION;
1556                         if (c2->error_data.data_present !=
1557                                         IOACCEL2_SENSE_DATA_PRESENT) {
1558                                 memset(cmd->sense_buffer, 0,
1559                                         SCSI_SENSE_BUFFERSIZE);
1560                                 break;
1561                         }
1562                         /* copy the sense data */
1563                         data_len = c2->error_data.sense_data_len;
1564                         if (data_len > SCSI_SENSE_BUFFERSIZE)
1565                                 data_len = SCSI_SENSE_BUFFERSIZE;
1566                         if (data_len > sizeof(c2->error_data.sense_data_buff))
1567                                 data_len =
1568                                         sizeof(c2->error_data.sense_data_buff);
1569                         memcpy(cmd->sense_buffer,
1570                                 c2->error_data.sense_data_buff, data_len);
1571                         retry = 1;
1572                         break;
1573                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1574                         dev_warn(&h->pdev->dev,
1575                                 "%s: task complete with BUSY status.\n",
1576                                 "HP SSD Smart Path");
1577                         retry = 1;
1578                         break;
1579                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1580                         dev_warn(&h->pdev->dev,
1581                                 "%s: task complete with reservation conflict.\n",
1582                                 "HP SSD Smart Path");
1583                         retry = 1;
1584                         break;
1585                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1586                         /* Make scsi midlayer do unlimited retries */
1587                         cmd->result = DID_IMM_RETRY << 16;
1588                         break;
1589                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1590                         dev_warn(&h->pdev->dev,
1591                                 "%s: task complete with aborted status.\n",
1592                                 "HP SSD Smart Path");
1593                         retry = 1;
1594                         break;
1595                 default:
1596                         dev_warn(&h->pdev->dev,
1597                                 "%s: task complete with unrecognized status: 0x%02x\n",
1598                                 "HP SSD Smart Path", c2->error_data.status);
1599                         retry = 1;
1600                         break;
1601                 }
1602                 break;
1603         case IOACCEL2_SERV_RESPONSE_FAILURE:
1604                 /* don't expect to get here. */
1605                 dev_warn(&h->pdev->dev,
1606                         "unexpected delivery or target failure, status = 0x%02x\n",
1607                         c2->error_data.status);
1608                 retry = 1;
1609                 break;
1610         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1611                 break;
1612         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1613                 break;
1614         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1615                 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1616                 retry = 1;
1617                 break;
1618         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1619                 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1620                 break;
1621         default:
1622                 dev_warn(&h->pdev->dev,
1623                         "%s: Unrecognized server response: 0x%02x\n",
1624                         "HP SSD Smart Path",
1625                         c2->error_data.serv_response);
1626                 retry = 1;
1627                 break;
1628         }
1629
1630         return retry;   /* retry on raid path? */
1631 }
1632
1633 static void process_ioaccel2_completion(struct ctlr_info *h,
1634                 struct CommandList *c, struct scsi_cmnd *cmd,
1635                 struct hpsa_scsi_dev_t *dev)
1636 {
1637         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1638         int raid_retry = 0;
1639
1640         /* check for good status */
1641         if (likely(c2->error_data.serv_response == 0 &&
1642                         c2->error_data.status == 0)) {
1643                 cmd_free(h, c);
1644                 cmd->scsi_done(cmd);
1645                 return;
1646         }
1647
1648         /* Any RAID offload error results in retry which will use
1649          * the normal I/O path so the controller can handle whatever's
1650          * wrong.
1651          */
1652         if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1653                 c2->error_data.serv_response ==
1654                         IOACCEL2_SERV_RESPONSE_FAILURE) {
1655                 dev->offload_enabled = 0;
1656                 h->drv_req_rescan = 1;  /* schedule controller for a rescan */
1657                 cmd->result = DID_SOFT_ERROR << 16;
1658                 cmd_free(h, c);
1659                 cmd->scsi_done(cmd);
1660                 return;
1661         }
1662         raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1663         /* If error found, disable Smart Path, schedule a rescan,
1664          * and force a retry on the standard path.
1665          */
1666         if (raid_retry) {
1667                 dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1668                         "HP SSD Smart Path");
1669                 dev->offload_enabled = 0; /* Disable Smart Path */
1670                 h->drv_req_rescan = 1;    /* schedule controller rescan */
1671                 cmd->result = DID_SOFT_ERROR << 16;
1672         }
1673         cmd_free(h, c);
1674         cmd->scsi_done(cmd);
1675 }
1676
1677 static void complete_scsi_command(struct CommandList *cp)
1678 {
1679         struct scsi_cmnd *cmd;
1680         struct ctlr_info *h;
1681         struct ErrorInfo *ei;
1682         struct hpsa_scsi_dev_t *dev;
1683
1684         unsigned char sense_key;
1685         unsigned char asc;      /* additional sense code */
1686         unsigned char ascq;     /* additional sense code qualifier */
1687         unsigned long sense_data_size;
1688
1689         ei = cp->err_info;
1690         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1691         h = cp->h;
1692         dev = cmd->device->hostdata;
1693
1694         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1695         if ((cp->cmd_type == CMD_SCSI) &&
1696                 (cp->Header.SGTotal > h->max_cmd_sg_entries))
1697                 hpsa_unmap_sg_chain_block(h, cp);
1698
1699         cmd->result = (DID_OK << 16);           /* host byte */
1700         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1701
1702         if (cp->cmd_type == CMD_IOACCEL2)
1703                 return process_ioaccel2_completion(h, cp, cmd, dev);
1704
1705         cmd->result |= ei->ScsiStatus;
1706
1707         scsi_set_resid(cmd, ei->ResidualCnt);
1708         if (ei->CommandStatus == 0) {
1709                 cmd_free(h, cp);
1710                 cmd->scsi_done(cmd);
1711                 return;
1712         }
1713
1714         /* copy the sense data */
1715         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1716                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1717         else
1718                 sense_data_size = sizeof(ei->SenseInfo);
1719         if (ei->SenseLen < sense_data_size)
1720                 sense_data_size = ei->SenseLen;
1721
1722         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1723
1724         /* For I/O accelerator commands, copy over some fields to the normal
1725          * CISS header used below for error handling.
1726          */
1727         if (cp->cmd_type == CMD_IOACCEL1) {
1728                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1729                 cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
1730                 cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
1731                 cp->Header.tag = c->tag;
1732                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1733                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1734
1735                 /* Any RAID offload error results in retry which will use
1736                  * the normal I/O path so the controller can handle whatever's
1737                  * wrong.
1738                  */
1739                 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1740                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1741                                 dev->offload_enabled = 0;
1742                         cmd->result = DID_SOFT_ERROR << 16;
1743                         cmd_free(h, cp);
1744                         cmd->scsi_done(cmd);
1745                         return;
1746                 }
1747         }
1748
1749         /* an error has occurred */
1750         switch (ei->CommandStatus) {
1751
1752         case CMD_TARGET_STATUS:
1753                 if (ei->ScsiStatus) {
1754                         /* Get sense key */
1755                         sense_key = 0xf & ei->SenseInfo[2];
1756                         /* Get additional sense code */
1757                         asc = ei->SenseInfo[12];
1758                         /* Get addition sense code qualifier */
1759                         ascq = ei->SenseInfo[13];
1760                 }
1761                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1762                         if (sense_key == ABORTED_COMMAND) {
1763                                 cmd->result |= DID_SOFT_ERROR << 16;
1764                                 break;
1765                         }
1766                         break;
1767                 }
1768                 /* Problem was not a check condition
1769                  * Pass it up to the upper layers...
1770                  */
1771                 if (ei->ScsiStatus) {
1772                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1773                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1774                                 "Returning result: 0x%x\n",
1775                                 cp, ei->ScsiStatus,
1776                                 sense_key, asc, ascq,
1777                                 cmd->result);
1778                 } else {  /* scsi status is zero??? How??? */
1779                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1780                                 "Returning no connection.\n", cp),
1781
1782                         /* Ordinarily, this case should never happen,
1783                          * but there is a bug in some released firmware
1784                          * revisions that allows it to happen if, for
1785                          * example, a 4100 backplane loses power and
1786                          * the tape drive is in it.  We assume that
1787                          * it's a fatal error of some kind because we
1788                          * can't show that it wasn't. We will make it
1789                          * look like selection timeout since that is
1790                          * the most common reason for this to occur,
1791                          * and it's severe enough.
1792                          */
1793
1794                         cmd->result = DID_NO_CONNECT << 16;
1795                 }
1796                 break;
1797
1798         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1799                 break;
1800         case CMD_DATA_OVERRUN:
1801                 dev_warn(&h->pdev->dev, "cp %p has"
1802                         " completed with data overrun "
1803                         "reported\n", cp);
1804                 break;
1805         case CMD_INVALID: {
1806                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1807                 print_cmd(cp); */
1808                 /* We get CMD_INVALID if you address a non-existent device
1809                  * instead of a selection timeout (no response).  You will
1810                  * see this if you yank out a drive, then try to access it.
1811                  * This is kind of a shame because it means that any other
1812                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1813                  * missing target. */
1814                 cmd->result = DID_NO_CONNECT << 16;
1815         }
1816                 break;
1817         case CMD_PROTOCOL_ERR:
1818                 cmd->result = DID_ERROR << 16;
1819                 dev_warn(&h->pdev->dev, "cp %p has "
1820                         "protocol error\n", cp);
1821                 break;
1822         case CMD_HARDWARE_ERR:
1823                 cmd->result = DID_ERROR << 16;
1824                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1825                 break;
1826         case CMD_CONNECTION_LOST:
1827                 cmd->result = DID_ERROR << 16;
1828                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1829                 break;
1830         case CMD_ABORTED:
1831                 cmd->result = DID_ABORT << 16;
1832                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1833                                 cp, ei->ScsiStatus);
1834                 break;
1835         case CMD_ABORT_FAILED:
1836                 cmd->result = DID_ERROR << 16;
1837                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1838                 break;
1839         case CMD_UNSOLICITED_ABORT:
1840                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1841                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1842                         "abort\n", cp);
1843                 break;
1844         case CMD_TIMEOUT:
1845                 cmd->result = DID_TIME_OUT << 16;
1846                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1847                 break;
1848         case CMD_UNABORTABLE:
1849                 cmd->result = DID_ERROR << 16;
1850                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1851                 break;
1852         case CMD_IOACCEL_DISABLED:
1853                 /* This only handles the direct pass-through case since RAID
1854                  * offload is handled above.  Just attempt a retry.
1855                  */
1856                 cmd->result = DID_SOFT_ERROR << 16;
1857                 dev_warn(&h->pdev->dev,
1858                                 "cp %p had HP SSD Smart Path error\n", cp);
1859                 break;
1860         default:
1861                 cmd->result = DID_ERROR << 16;
1862                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1863                                 cp, ei->CommandStatus);
1864         }
1865         cmd_free(h, cp);
1866         cmd->scsi_done(cmd);
1867 }
1868
1869 static void hpsa_pci_unmap(struct pci_dev *pdev,
1870         struct CommandList *c, int sg_used, int data_direction)
1871 {
1872         int i;
1873
1874         for (i = 0; i < sg_used; i++)
1875                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1876                                 le32_to_cpu(c->SG[i].Len),
1877                                 data_direction);
1878 }
1879
1880 static int hpsa_map_one(struct pci_dev *pdev,
1881                 struct CommandList *cp,
1882                 unsigned char *buf,
1883                 size_t buflen,
1884                 int data_direction)
1885 {
1886         u64 addr64;
1887
1888         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1889                 cp->Header.SGList = 0;
1890                 cp->Header.SGTotal = cpu_to_le16(0);
1891                 return 0;
1892         }
1893
1894         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1895         if (dma_mapping_error(&pdev->dev, addr64)) {
1896                 /* Prevent subsequent unmap of something never mapped */
1897                 cp->Header.SGList = 0;
1898                 cp->Header.SGTotal = cpu_to_le16(0);
1899                 return -1;
1900         }
1901         cp->SG[0].Addr = cpu_to_le64(addr64);
1902         cp->SG[0].Len = cpu_to_le32(buflen);
1903         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1904         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
1905         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1906         return 0;
1907 }
1908
1909 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1910         struct CommandList *c)
1911 {
1912         DECLARE_COMPLETION_ONSTACK(wait);
1913
1914         c->waiting = &wait;
1915         enqueue_cmd_and_start_io(h, c);
1916         wait_for_completion(&wait);
1917 }
1918
1919 static u32 lockup_detected(struct ctlr_info *h)
1920 {
1921         int cpu;
1922         u32 rc, *lockup_detected;
1923
1924         cpu = get_cpu();
1925         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1926         rc = *lockup_detected;
1927         put_cpu();
1928         return rc;
1929 }
1930
1931 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1932         struct CommandList *c)
1933 {
1934         /* If controller lockup detected, fake a hardware error. */
1935         if (unlikely(lockup_detected(h)))
1936                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1937         else
1938                 hpsa_scsi_do_simple_cmd_core(h, c);
1939 }
1940
1941 #define MAX_DRIVER_CMD_RETRIES 25
1942 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1943         struct CommandList *c, int data_direction)
1944 {
1945         int backoff_time = 10, retry_count = 0;
1946
1947         do {
1948                 memset(c->err_info, 0, sizeof(*c->err_info));
1949                 hpsa_scsi_do_simple_cmd_core(h, c);
1950                 retry_count++;
1951                 if (retry_count > 3) {
1952                         msleep(backoff_time);
1953                         if (backoff_time < 1000)
1954                                 backoff_time *= 2;
1955                 }
1956         } while ((check_for_unit_attention(h, c) ||
1957                         check_for_busy(h, c)) &&
1958                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1959         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1960 }
1961
1962 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
1963                                 struct CommandList *c)
1964 {
1965         const u8 *cdb = c->Request.CDB;
1966         const u8 *lun = c->Header.LUN.LunAddrBytes;
1967
1968         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
1969         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
1970                 txt, lun[0], lun[1], lun[2], lun[3],
1971                 lun[4], lun[5], lun[6], lun[7],
1972                 cdb[0], cdb[1], cdb[2], cdb[3],
1973                 cdb[4], cdb[5], cdb[6], cdb[7],
1974                 cdb[8], cdb[9], cdb[10], cdb[11],
1975                 cdb[12], cdb[13], cdb[14], cdb[15]);
1976 }
1977
1978 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
1979                         struct CommandList *cp)
1980 {
1981         const struct ErrorInfo *ei = cp->err_info;
1982         struct device *d = &cp->h->pdev->dev;
1983         const u8 *sd = ei->SenseInfo;
1984
1985         switch (ei->CommandStatus) {
1986         case CMD_TARGET_STATUS:
1987                 hpsa_print_cmd(h, "SCSI status", cp);
1988                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
1989                         dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
1990                                 sd[2] & 0x0f, sd[12], sd[13]);
1991                 else
1992                         dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
1993                 if (ei->ScsiStatus == 0)
1994                         dev_warn(d, "SCSI status is abnormally zero.  "
1995                         "(probably indicates selection timeout "
1996                         "reported incorrectly due to a known "
1997                         "firmware bug, circa July, 2001.)\n");
1998                 break;
1999         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2000                 break;
2001         case CMD_DATA_OVERRUN:
2002                 hpsa_print_cmd(h, "overrun condition", cp);
2003                 break;
2004         case CMD_INVALID: {
2005                 /* controller unfortunately reports SCSI passthru's
2006                  * to non-existent targets as invalid commands.
2007                  */
2008                 hpsa_print_cmd(h, "invalid command", cp);
2009                 dev_warn(d, "probably means device no longer present\n");
2010                 }
2011                 break;
2012         case CMD_PROTOCOL_ERR:
2013                 hpsa_print_cmd(h, "protocol error", cp);
2014                 break;
2015         case CMD_HARDWARE_ERR:
2016                 hpsa_print_cmd(h, "hardware error", cp);
2017                 break;
2018         case CMD_CONNECTION_LOST:
2019                 hpsa_print_cmd(h, "connection lost", cp);
2020                 break;
2021         case CMD_ABORTED:
2022                 hpsa_print_cmd(h, "aborted", cp);
2023                 break;
2024         case CMD_ABORT_FAILED:
2025                 hpsa_print_cmd(h, "abort failed", cp);
2026                 break;
2027         case CMD_UNSOLICITED_ABORT:
2028                 hpsa_print_cmd(h, "unsolicited abort", cp);
2029                 break;
2030         case CMD_TIMEOUT:
2031                 hpsa_print_cmd(h, "timed out", cp);
2032                 break;
2033         case CMD_UNABORTABLE:
2034                 hpsa_print_cmd(h, "unabortable", cp);
2035                 break;
2036         default:
2037                 hpsa_print_cmd(h, "unknown status", cp);
2038                 dev_warn(d, "Unknown command status %x\n",
2039                                 ei->CommandStatus);
2040         }
2041 }
2042
2043 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2044                         u16 page, unsigned char *buf,
2045                         unsigned char bufsize)
2046 {
2047         int rc = IO_OK;
2048         struct CommandList *c;
2049         struct ErrorInfo *ei;
2050
2051         c = cmd_special_alloc(h);
2052
2053         if (c == NULL) {                        /* trouble... */
2054                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2055                 return -ENOMEM;
2056         }
2057
2058         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2059                         page, scsi3addr, TYPE_CMD)) {
2060                 rc = -1;
2061                 goto out;
2062         }
2063         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2064         ei = c->err_info;
2065         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2066                 hpsa_scsi_interpret_error(h, c);
2067                 rc = -1;
2068         }
2069 out:
2070         cmd_special_free(h, c);
2071         return rc;
2072 }
2073
2074 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2075                 unsigned char *scsi3addr, unsigned char page,
2076                 struct bmic_controller_parameters *buf, size_t bufsize)
2077 {
2078         int rc = IO_OK;
2079         struct CommandList *c;
2080         struct ErrorInfo *ei;
2081
2082         c = cmd_special_alloc(h);
2083
2084         if (c == NULL) {                        /* trouble... */
2085                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2086                 return -ENOMEM;
2087         }
2088
2089         if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2090                         page, scsi3addr, TYPE_CMD)) {
2091                 rc = -1;
2092                 goto out;
2093         }
2094         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2095         ei = c->err_info;
2096         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2097                 hpsa_scsi_interpret_error(h, c);
2098                 rc = -1;
2099         }
2100 out:
2101         cmd_special_free(h, c);
2102         return rc;
2103         }
2104
2105 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2106         u8 reset_type)
2107 {
2108         int rc = IO_OK;
2109         struct CommandList *c;
2110         struct ErrorInfo *ei;
2111
2112         c = cmd_special_alloc(h);
2113
2114         if (c == NULL) {                        /* trouble... */
2115                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2116                 return -ENOMEM;
2117         }
2118
2119         /* fill_cmd can't fail here, no data buffer to map. */
2120         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2121                         scsi3addr, TYPE_MSG);
2122         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2123         hpsa_scsi_do_simple_cmd_core(h, c);
2124         /* no unmap needed here because no data xfer. */
2125
2126         ei = c->err_info;
2127         if (ei->CommandStatus != 0) {
2128                 hpsa_scsi_interpret_error(h, c);
2129                 rc = -1;
2130         }
2131         cmd_special_free(h, c);
2132         return rc;
2133 }
2134
2135 static void hpsa_get_raid_level(struct ctlr_info *h,
2136         unsigned char *scsi3addr, unsigned char *raid_level)
2137 {
2138         int rc;
2139         unsigned char *buf;
2140
2141         *raid_level = RAID_UNKNOWN;
2142         buf = kzalloc(64, GFP_KERNEL);
2143         if (!buf)
2144                 return;
2145         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2146         if (rc == 0)
2147                 *raid_level = buf[8];
2148         if (*raid_level > RAID_UNKNOWN)
2149                 *raid_level = RAID_UNKNOWN;
2150         kfree(buf);
2151         return;
2152 }
2153
2154 #define HPSA_MAP_DEBUG
2155 #ifdef HPSA_MAP_DEBUG
2156 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2157                                 struct raid_map_data *map_buff)
2158 {
2159         struct raid_map_disk_data *dd = &map_buff->data[0];
2160         int map, row, col;
2161         u16 map_cnt, row_cnt, disks_per_row;
2162
2163         if (rc != 0)
2164                 return;
2165
2166         /* Show details only if debugging has been activated. */
2167         if (h->raid_offload_debug < 2)
2168                 return;
2169
2170         dev_info(&h->pdev->dev, "structure_size = %u\n",
2171                                 le32_to_cpu(map_buff->structure_size));
2172         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2173                         le32_to_cpu(map_buff->volume_blk_size));
2174         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2175                         le64_to_cpu(map_buff->volume_blk_cnt));
2176         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2177                         map_buff->phys_blk_shift);
2178         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2179                         map_buff->parity_rotation_shift);
2180         dev_info(&h->pdev->dev, "strip_size = %u\n",
2181                         le16_to_cpu(map_buff->strip_size));
2182         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2183                         le64_to_cpu(map_buff->disk_starting_blk));
2184         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2185                         le64_to_cpu(map_buff->disk_blk_cnt));
2186         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2187                         le16_to_cpu(map_buff->data_disks_per_row));
2188         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2189                         le16_to_cpu(map_buff->metadata_disks_per_row));
2190         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2191                         le16_to_cpu(map_buff->row_cnt));
2192         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2193                         le16_to_cpu(map_buff->layout_map_count));
2194         dev_info(&h->pdev->dev, "flags = %u\n",
2195                         le16_to_cpu(map_buff->flags));
2196         if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
2197                 dev_info(&h->pdev->dev, "encrypytion = ON\n");
2198         else
2199                 dev_info(&h->pdev->dev, "encrypytion = OFF\n");
2200         dev_info(&h->pdev->dev, "dekindex = %u\n",
2201                         le16_to_cpu(map_buff->dekindex));
2202
2203         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2204         for (map = 0; map < map_cnt; map++) {
2205                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2206                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2207                 for (row = 0; row < row_cnt; row++) {
2208                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2209                         disks_per_row =
2210                                 le16_to_cpu(map_buff->data_disks_per_row);
2211                         for (col = 0; col < disks_per_row; col++, dd++)
2212                                 dev_info(&h->pdev->dev,
2213                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2214                                         col, dd->ioaccel_handle,
2215                                         dd->xor_mult[0], dd->xor_mult[1]);
2216                         disks_per_row =
2217                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2218                         for (col = 0; col < disks_per_row; col++, dd++)
2219                                 dev_info(&h->pdev->dev,
2220                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2221                                         col, dd->ioaccel_handle,
2222                                         dd->xor_mult[0], dd->xor_mult[1]);
2223                 }
2224         }
2225 }
2226 #else
2227 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2228                         __attribute__((unused)) int rc,
2229                         __attribute__((unused)) struct raid_map_data *map_buff)
2230 {
2231 }
2232 #endif
2233
2234 static int hpsa_get_raid_map(struct ctlr_info *h,
2235         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2236 {
2237         int rc = 0;
2238         struct CommandList *c;
2239         struct ErrorInfo *ei;
2240
2241         c = cmd_special_alloc(h);
2242         if (c == NULL) {
2243                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2244                 return -ENOMEM;
2245         }
2246         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2247                         sizeof(this_device->raid_map), 0,
2248                         scsi3addr, TYPE_CMD)) {
2249                 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2250                 cmd_special_free(h, c);
2251                 return -ENOMEM;
2252         }
2253         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2254         ei = c->err_info;
2255         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2256                 hpsa_scsi_interpret_error(h, c);
2257                 cmd_special_free(h, c);
2258                 return -1;
2259         }
2260         cmd_special_free(h, c);
2261
2262         /* @todo in the future, dynamically allocate RAID map memory */
2263         if (le32_to_cpu(this_device->raid_map.structure_size) >
2264                                 sizeof(this_device->raid_map)) {
2265                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2266                 rc = -1;
2267         }
2268         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2269         return rc;
2270 }
2271
2272 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2273         unsigned char scsi3addr[], u8 page)
2274 {
2275         int rc;
2276         int i;
2277         int pages;
2278         unsigned char *buf, bufsize;
2279
2280         buf = kzalloc(256, GFP_KERNEL);
2281         if (!buf)
2282                 return 0;
2283
2284         /* Get the size of the page list first */
2285         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2286                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2287                                 buf, HPSA_VPD_HEADER_SZ);
2288         if (rc != 0)
2289                 goto exit_unsupported;
2290         pages = buf[3];
2291         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2292                 bufsize = pages + HPSA_VPD_HEADER_SZ;
2293         else
2294                 bufsize = 255;
2295
2296         /* Get the whole VPD page list */
2297         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2298                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2299                                 buf, bufsize);
2300         if (rc != 0)
2301                 goto exit_unsupported;
2302
2303         pages = buf[3];
2304         for (i = 1; i <= pages; i++)
2305                 if (buf[3 + i] == page)
2306                         goto exit_supported;
2307 exit_unsupported:
2308         kfree(buf);
2309         return 0;
2310 exit_supported:
2311         kfree(buf);
2312         return 1;
2313 }
2314
2315 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2316         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2317 {
2318         int rc;
2319         unsigned char *buf;
2320         u8 ioaccel_status;
2321
2322         this_device->offload_config = 0;
2323         this_device->offload_enabled = 0;
2324
2325         buf = kzalloc(64, GFP_KERNEL);
2326         if (!buf)
2327                 return;
2328         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2329                 goto out;
2330         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2331                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2332         if (rc != 0)
2333                 goto out;
2334
2335 #define IOACCEL_STATUS_BYTE 4
2336 #define OFFLOAD_CONFIGURED_BIT 0x01
2337 #define OFFLOAD_ENABLED_BIT 0x02
2338         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2339         this_device->offload_config =
2340                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2341         if (this_device->offload_config) {
2342                 this_device->offload_enabled =
2343                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2344                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2345                         this_device->offload_enabled = 0;
2346         }
2347 out:
2348         kfree(buf);
2349         return;
2350 }
2351
2352 /* Get the device id from inquiry page 0x83 */
2353 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2354         unsigned char *device_id, int buflen)
2355 {
2356         int rc;
2357         unsigned char *buf;
2358
2359         if (buflen > 16)
2360                 buflen = 16;
2361         buf = kzalloc(64, GFP_KERNEL);
2362         if (!buf)
2363                 return -ENOMEM;
2364         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2365         if (rc == 0)
2366                 memcpy(device_id, &buf[8], buflen);
2367         kfree(buf);
2368         return rc != 0;
2369 }
2370
2371 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2372                 struct ReportLUNdata *buf, int bufsize,
2373                 int extended_response)
2374 {
2375         int rc = IO_OK;
2376         struct CommandList *c;
2377         unsigned char scsi3addr[8];
2378         struct ErrorInfo *ei;
2379
2380         c = cmd_special_alloc(h);
2381         if (c == NULL) {                        /* trouble... */
2382                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2383                 return -1;
2384         }
2385         /* address the controller */
2386         memset(scsi3addr, 0, sizeof(scsi3addr));
2387         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2388                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2389                 rc = -1;
2390                 goto out;
2391         }
2392         if (extended_response)
2393                 c->Request.CDB[1] = extended_response;
2394         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2395         ei = c->err_info;
2396         if (ei->CommandStatus != 0 &&
2397             ei->CommandStatus != CMD_DATA_UNDERRUN) {
2398                 hpsa_scsi_interpret_error(h, c);
2399                 rc = -1;
2400         } else {
2401                 if (buf->extended_response_flag != extended_response) {
2402                         dev_err(&h->pdev->dev,
2403                                 "report luns requested format %u, got %u\n",
2404                                 extended_response,
2405                                 buf->extended_response_flag);
2406                         rc = -1;
2407                 }
2408         }
2409 out:
2410         cmd_special_free(h, c);
2411         return rc;
2412 }
2413
2414 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2415                 struct ReportLUNdata *buf,
2416                 int bufsize, int extended_response)
2417 {
2418         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2419 }
2420
2421 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2422                 struct ReportLUNdata *buf, int bufsize)
2423 {
2424         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2425 }
2426
2427 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2428         int bus, int target, int lun)
2429 {
2430         device->bus = bus;
2431         device->target = target;
2432         device->lun = lun;
2433 }
2434
2435 /* Use VPD inquiry to get details of volume status */
2436 static int hpsa_get_volume_status(struct ctlr_info *h,
2437                                         unsigned char scsi3addr[])
2438 {
2439         int rc;
2440         int status;
2441         int size;
2442         unsigned char *buf;
2443
2444         buf = kzalloc(64, GFP_KERNEL);
2445         if (!buf)
2446                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2447
2448         /* Does controller have VPD for logical volume status? */
2449         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2450                 goto exit_failed;
2451
2452         /* Get the size of the VPD return buffer */
2453         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2454                                         buf, HPSA_VPD_HEADER_SZ);
2455         if (rc != 0)
2456                 goto exit_failed;
2457         size = buf[3];
2458
2459         /* Now get the whole VPD buffer */
2460         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2461                                         buf, size + HPSA_VPD_HEADER_SZ);
2462         if (rc != 0)
2463                 goto exit_failed;
2464         status = buf[4]; /* status byte */
2465
2466         kfree(buf);
2467         return status;
2468 exit_failed:
2469         kfree(buf);
2470         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2471 }
2472
2473 /* Determine offline status of a volume.
2474  * Return either:
2475  *  0 (not offline)
2476  *  0xff (offline for unknown reasons)
2477  *  # (integer code indicating one of several NOT READY states
2478  *     describing why a volume is to be kept offline)
2479  */
2480 static int hpsa_volume_offline(struct ctlr_info *h,
2481                                         unsigned char scsi3addr[])
2482 {
2483         struct CommandList *c;
2484         unsigned char *sense, sense_key, asc, ascq;
2485         int ldstat = 0;
2486         u16 cmd_status;
2487         u8 scsi_status;
2488 #define ASC_LUN_NOT_READY 0x04
2489 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2490 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2491
2492         c = cmd_alloc(h);
2493         if (!c)
2494                 return 0;
2495         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2496         hpsa_scsi_do_simple_cmd_core(h, c);
2497         sense = c->err_info->SenseInfo;
2498         sense_key = sense[2];
2499         asc = sense[12];
2500         ascq = sense[13];
2501         cmd_status = c->err_info->CommandStatus;
2502         scsi_status = c->err_info->ScsiStatus;
2503         cmd_free(h, c);
2504         /* Is the volume 'not ready'? */
2505         if (cmd_status != CMD_TARGET_STATUS ||
2506                 scsi_status != SAM_STAT_CHECK_CONDITION ||
2507                 sense_key != NOT_READY ||
2508                 asc != ASC_LUN_NOT_READY)  {
2509                 return 0;
2510         }
2511
2512         /* Determine the reason for not ready state */
2513         ldstat = hpsa_get_volume_status(h, scsi3addr);
2514
2515         /* Keep volume offline in certain cases: */
2516         switch (ldstat) {
2517         case HPSA_LV_UNDERGOING_ERASE:
2518         case HPSA_LV_UNDERGOING_RPI:
2519         case HPSA_LV_PENDING_RPI:
2520         case HPSA_LV_ENCRYPTED_NO_KEY:
2521         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2522         case HPSA_LV_UNDERGOING_ENCRYPTION:
2523         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2524         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2525                 return ldstat;
2526         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2527                 /* If VPD status page isn't available,
2528                  * use ASC/ASCQ to determine state
2529                  */
2530                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2531                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2532                         return ldstat;
2533                 break;
2534         default:
2535                 break;
2536         }
2537         return 0;
2538 }
2539
2540 static int hpsa_update_device_info(struct ctlr_info *h,
2541         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2542         unsigned char *is_OBDR_device)
2543 {
2544
2545 #define OBDR_SIG_OFFSET 43
2546 #define OBDR_TAPE_SIG "$DR-10"
2547 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2548 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2549
2550         unsigned char *inq_buff;
2551         unsigned char *obdr_sig;
2552
2553         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2554         if (!inq_buff)
2555                 goto bail_out;
2556
2557         /* Do an inquiry to the device to see what it is. */
2558         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2559                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2560                 /* Inquiry failed (msg printed already) */
2561                 dev_err(&h->pdev->dev,
2562                         "hpsa_update_device_info: inquiry failed\n");
2563                 goto bail_out;
2564         }
2565
2566         this_device->devtype = (inq_buff[0] & 0x1f);
2567         memcpy(this_device->scsi3addr, scsi3addr, 8);
2568         memcpy(this_device->vendor, &inq_buff[8],
2569                 sizeof(this_device->vendor));
2570         memcpy(this_device->model, &inq_buff[16],
2571                 sizeof(this_device->model));
2572         memset(this_device->device_id, 0,
2573                 sizeof(this_device->device_id));
2574         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2575                 sizeof(this_device->device_id));
2576
2577         if (this_device->devtype == TYPE_DISK &&
2578                 is_logical_dev_addr_mode(scsi3addr)) {
2579                 int volume_offline;
2580
2581                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2582                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2583                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2584                 volume_offline = hpsa_volume_offline(h, scsi3addr);
2585                 if (volume_offline < 0 || volume_offline > 0xff)
2586                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2587                 this_device->volume_offline = volume_offline & 0xff;
2588         } else {
2589                 this_device->raid_level = RAID_UNKNOWN;
2590                 this_device->offload_config = 0;
2591                 this_device->offload_enabled = 0;
2592                 this_device->volume_offline = 0;
2593         }
2594
2595         if (is_OBDR_device) {
2596                 /* See if this is a One-Button-Disaster-Recovery device
2597                  * by looking for "$DR-10" at offset 43 in inquiry data.
2598                  */
2599                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2600                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2601                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
2602                                                 OBDR_SIG_LEN) == 0);
2603         }
2604
2605         kfree(inq_buff);
2606         return 0;
2607
2608 bail_out:
2609         kfree(inq_buff);
2610         return 1;
2611 }
2612
2613 static unsigned char *ext_target_model[] = {
2614         "MSA2012",
2615         "MSA2024",
2616         "MSA2312",
2617         "MSA2324",
2618         "P2000 G3 SAS",
2619         "MSA 2040 SAS",
2620         NULL,
2621 };
2622
2623 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2624 {
2625         int i;
2626
2627         for (i = 0; ext_target_model[i]; i++)
2628                 if (strncmp(device->model, ext_target_model[i],
2629                         strlen(ext_target_model[i])) == 0)
2630                         return 1;
2631         return 0;
2632 }
2633
2634 /* Helper function to assign bus, target, lun mapping of devices.
2635  * Puts non-external target logical volumes on bus 0, external target logical
2636  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2637  * Logical drive target and lun are assigned at this time, but
2638  * physical device lun and target assignment are deferred (assigned
2639  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2640  */
2641 static void figure_bus_target_lun(struct ctlr_info *h,
2642         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2643 {
2644         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2645
2646         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2647                 /* physical device, target and lun filled in later */
2648                 if (is_hba_lunid(lunaddrbytes))
2649                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2650                 else
2651                         /* defer target, lun assignment for physical devices */
2652                         hpsa_set_bus_target_lun(device, 2, -1, -1);
2653                 return;
2654         }
2655         /* It's a logical device */
2656         if (is_ext_target(h, device)) {
2657                 /* external target way, put logicals on bus 1
2658                  * and match target/lun numbers box
2659                  * reports, other smart array, bus 0, target 0, match lunid
2660                  */
2661                 hpsa_set_bus_target_lun(device,
2662                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2663                 return;
2664         }
2665         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2666 }
2667
2668 /*
2669  * If there is no lun 0 on a target, linux won't find any devices.
2670  * For the external targets (arrays), we have to manually detect the enclosure
2671  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2672  * it for some reason.  *tmpdevice is the target we're adding,
2673  * this_device is a pointer into the current element of currentsd[]
2674  * that we're building up in update_scsi_devices(), below.
2675  * lunzerobits is a bitmap that tracks which targets already have a
2676  * lun 0 assigned.
2677  * Returns 1 if an enclosure was added, 0 if not.
2678  */
2679 static int add_ext_target_dev(struct ctlr_info *h,
2680         struct hpsa_scsi_dev_t *tmpdevice,
2681         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2682         unsigned long lunzerobits[], int *n_ext_target_devs)
2683 {
2684         unsigned char scsi3addr[8];
2685
2686         if (test_bit(tmpdevice->target, lunzerobits))
2687                 return 0; /* There is already a lun 0 on this target. */
2688
2689         if (!is_logical_dev_addr_mode(lunaddrbytes))
2690                 return 0; /* It's the logical targets that may lack lun 0. */
2691
2692         if (!is_ext_target(h, tmpdevice))
2693                 return 0; /* Only external target devices have this problem. */
2694
2695         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2696                 return 0;
2697
2698         memset(scsi3addr, 0, 8);
2699         scsi3addr[3] = tmpdevice->target;
2700         if (is_hba_lunid(scsi3addr))
2701                 return 0; /* Don't add the RAID controller here. */
2702
2703         if (is_scsi_rev_5(h))
2704                 return 0; /* p1210m doesn't need to do this. */
2705
2706         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2707                 dev_warn(&h->pdev->dev, "Maximum number of external "
2708                         "target devices exceeded.  Check your hardware "
2709                         "configuration.");
2710                 return 0;
2711         }
2712
2713         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2714                 return 0;
2715         (*n_ext_target_devs)++;
2716         hpsa_set_bus_target_lun(this_device,
2717                                 tmpdevice->bus, tmpdevice->target, 0);
2718         set_bit(tmpdevice->target, lunzerobits);
2719         return 1;
2720 }
2721
2722 /*
2723  * Get address of physical disk used for an ioaccel2 mode command:
2724  *      1. Extract ioaccel2 handle from the command.
2725  *      2. Find a matching ioaccel2 handle from list of physical disks.
2726  *      3. Return:
2727  *              1 and set scsi3addr to address of matching physical
2728  *              0 if no matching physical disk was found.
2729  */
2730 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2731         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2732 {
2733         struct ReportExtendedLUNdata *physicals = NULL;
2734         int responsesize = 24;  /* size of physical extended response */
2735         int extended = 2;       /* flag forces reporting 'other dev info'. */
2736         int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2737         u32 nphysicals = 0;     /* number of reported physical devs */
2738         int found = 0;          /* found match (1) or not (0) */
2739         u32 find;               /* handle we need to match */
2740         int i;
2741         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2742         struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2743         struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2744         u32 it_nexus;           /* 4 byte device handle for the ioaccel2 cmd */
2745         u32 scsi_nexus;         /* 4 byte device handle for the ioaccel2 cmd */
2746
2747         if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2748                 return 0; /* no match */
2749
2750         /* point to the ioaccel2 device handle */
2751         c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2752         if (c2a == NULL)
2753                 return 0; /* no match */
2754
2755         scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2756         if (scmd == NULL)
2757                 return 0; /* no match */
2758
2759         d = scmd->device->hostdata;
2760         if (d == NULL)
2761                 return 0; /* no match */
2762
2763         it_nexus = cpu_to_le32(d->ioaccel_handle);
2764         scsi_nexus = cpu_to_le32(c2a->scsi_nexus);
2765         find = c2a->scsi_nexus;
2766
2767         if (h->raid_offload_debug > 0)
2768                 dev_info(&h->pdev->dev,
2769                         "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2770                         __func__, scsi_nexus,
2771                         d->device_id[0], d->device_id[1], d->device_id[2],
2772                         d->device_id[3], d->device_id[4], d->device_id[5],
2773                         d->device_id[6], d->device_id[7], d->device_id[8],
2774                         d->device_id[9], d->device_id[10], d->device_id[11],
2775                         d->device_id[12], d->device_id[13], d->device_id[14],
2776                         d->device_id[15]);
2777
2778         /* Get the list of physical devices */
2779         physicals = kzalloc(reportsize, GFP_KERNEL);
2780         if (physicals == NULL)
2781                 return 0;
2782         if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2783                 reportsize, extended)) {
2784                 dev_err(&h->pdev->dev,
2785                         "Can't lookup %s device handle: report physical LUNs failed.\n",
2786                         "HP SSD Smart Path");
2787                 kfree(physicals);
2788                 return 0;
2789         }
2790         nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2791                                                         responsesize;
2792
2793         /* find ioaccel2 handle in list of physicals: */
2794         for (i = 0; i < nphysicals; i++) {
2795                 struct ext_report_lun_entry *entry = &physicals->LUN[i];
2796
2797                 /* handle is in bytes 28-31 of each lun */
2798                 if (entry->ioaccel_handle != find)
2799                         continue; /* didn't match */
2800                 found = 1;
2801                 memcpy(scsi3addr, entry->lunid, 8);
2802                 if (h->raid_offload_debug > 0)
2803                         dev_info(&h->pdev->dev,
2804                                 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2805                                 __func__, find,
2806                                 entry->ioaccel_handle, scsi3addr);
2807                 break; /* found it */
2808         }
2809
2810         kfree(physicals);
2811         if (found)
2812                 return 1;
2813         else
2814                 return 0;
2815
2816 }
2817 /*
2818  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2819  * logdev.  The number of luns in physdev and logdev are returned in
2820  * *nphysicals and *nlogicals, respectively.
2821  * Returns 0 on success, -1 otherwise.
2822  */
2823 static int hpsa_gather_lun_info(struct ctlr_info *h,
2824         int reportphyslunsize, int reportloglunsize,
2825         struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2826         struct ReportLUNdata *logdev, u32 *nlogicals)
2827 {
2828         int physical_entry_size = 8;
2829
2830         *physical_mode = 0;
2831
2832         /* For I/O accelerator mode we need to read physical device handles */
2833         if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2834                 h->transMethod & CFGTBL_Trans_io_accel2) {
2835                 *physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2836                 physical_entry_size = 24;
2837         }
2838         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
2839                                                         *physical_mode)) {
2840                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2841                 return -1;
2842         }
2843         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2844                                                         physical_entry_size;
2845         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2846                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2847                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2848                         *nphysicals - HPSA_MAX_PHYS_LUN);
2849                 *nphysicals = HPSA_MAX_PHYS_LUN;
2850         }
2851         if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
2852                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2853                 return -1;
2854         }
2855         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2856         /* Reject Logicals in excess of our max capability. */
2857         if (*nlogicals > HPSA_MAX_LUN) {
2858                 dev_warn(&h->pdev->dev,
2859                         "maximum logical LUNs (%d) exceeded.  "
2860                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
2861                         *nlogicals - HPSA_MAX_LUN);
2862                         *nlogicals = HPSA_MAX_LUN;
2863         }
2864         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2865                 dev_warn(&h->pdev->dev,
2866                         "maximum logical + physical LUNs (%d) exceeded. "
2867                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2868                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2869                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2870         }
2871         return 0;
2872 }
2873
2874 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2875         int i, int nphysicals, int nlogicals,
2876         struct ReportExtendedLUNdata *physdev_list,
2877         struct ReportLUNdata *logdev_list)
2878 {
2879         /* Helper function, figure out where the LUN ID info is coming from
2880          * given index i, lists of physical and logical devices, where in
2881          * the list the raid controller is supposed to appear (first or last)
2882          */
2883
2884         int logicals_start = nphysicals + (raid_ctlr_position == 0);
2885         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2886
2887         if (i == raid_ctlr_position)
2888                 return RAID_CTLR_LUNID;
2889
2890         if (i < logicals_start)
2891                 return &physdev_list->LUN[i -
2892                                 (raid_ctlr_position == 0)].lunid[0];
2893
2894         if (i < last_device)
2895                 return &logdev_list->LUN[i - nphysicals -
2896                         (raid_ctlr_position == 0)][0];
2897         BUG();
2898         return NULL;
2899 }
2900
2901 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2902 {
2903         int rc;
2904         int hba_mode_enabled;
2905         struct bmic_controller_parameters *ctlr_params;
2906         ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2907                 GFP_KERNEL);
2908
2909         if (!ctlr_params)
2910                 return -ENOMEM;
2911         rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2912                 sizeof(struct bmic_controller_parameters));
2913         if (rc) {
2914                 kfree(ctlr_params);
2915                 return rc;
2916         }
2917
2918         hba_mode_enabled =
2919                 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2920         kfree(ctlr_params);
2921         return hba_mode_enabled;
2922 }
2923
2924 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2925 {
2926         /* the idea here is we could get notified
2927          * that some devices have changed, so we do a report
2928          * physical luns and report logical luns cmd, and adjust
2929          * our list of devices accordingly.
2930          *
2931          * The scsi3addr's of devices won't change so long as the
2932          * adapter is not reset.  That means we can rescan and
2933          * tell which devices we already know about, vs. new
2934          * devices, vs.  disappearing devices.
2935          */
2936         struct ReportExtendedLUNdata *physdev_list = NULL;
2937         struct ReportLUNdata *logdev_list = NULL;
2938         u32 nphysicals = 0;
2939         u32 nlogicals = 0;
2940         int physical_mode = 0;
2941         u32 ndev_allocated = 0;
2942         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
2943         int ncurrent = 0;
2944         int i, n_ext_target_devs, ndevs_to_allocate;
2945         int raid_ctlr_position;
2946         int rescan_hba_mode;
2947         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
2948
2949         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
2950         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
2951         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
2952         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
2953
2954         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2955                 dev_err(&h->pdev->dev, "out of memory\n");
2956                 goto out;
2957         }
2958         memset(lunzerobits, 0, sizeof(lunzerobits));
2959
2960         rescan_hba_mode = hpsa_hba_mode_enabled(h);
2961         if (rescan_hba_mode < 0)
2962                 goto out;
2963
2964         if (!h->hba_mode_enabled && rescan_hba_mode)
2965                 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
2966         else if (h->hba_mode_enabled && !rescan_hba_mode)
2967                 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
2968
2969         h->hba_mode_enabled = rescan_hba_mode;
2970
2971         if (hpsa_gather_lun_info(h,
2972                         sizeof(*physdev_list), sizeof(*logdev_list),
2973                         (struct ReportLUNdata *) physdev_list, &nphysicals,
2974                         &physical_mode, logdev_list, &nlogicals))
2975                 goto out;
2976
2977         /* We might see up to the maximum number of logical and physical disks
2978          * plus external target devices, and a device for the local RAID
2979          * controller.
2980          */
2981         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2982
2983         /* Allocate the per device structures */
2984         for (i = 0; i < ndevs_to_allocate; i++) {
2985                 if (i >= HPSA_MAX_DEVICES) {
2986                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2987                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
2988                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
2989                         break;
2990                 }
2991
2992                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2993                 if (!currentsd[i]) {
2994                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2995                                 __FILE__, __LINE__);
2996                         goto out;
2997                 }
2998                 ndev_allocated++;
2999         }
3000
3001         if (is_scsi_rev_5(h))
3002                 raid_ctlr_position = 0;
3003         else
3004                 raid_ctlr_position = nphysicals + nlogicals;
3005
3006         /* adjust our table of devices */
3007         n_ext_target_devs = 0;
3008         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3009                 u8 *lunaddrbytes, is_OBDR = 0;
3010
3011                 /* Figure out where the LUN ID info is coming from */
3012                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3013                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3014                 /* skip masked physical devices. */
3015                 if (lunaddrbytes[3] & 0xC0 &&
3016                         i < nphysicals + (raid_ctlr_position == 0))
3017                         continue;
3018
3019                 /* Get device type, vendor, model, device id */
3020                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3021                                                         &is_OBDR))
3022                         continue; /* skip it if we can't talk to it. */
3023                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3024                 this_device = currentsd[ncurrent];
3025
3026                 /*
3027                  * For external target devices, we have to insert a LUN 0 which
3028                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3029                  * is nonetheless an enclosure device there.  We have to
3030                  * present that otherwise linux won't find anything if
3031                  * there is no lun 0.
3032                  */
3033                 if (add_ext_target_dev(h, tmpdevice, this_device,
3034                                 lunaddrbytes, lunzerobits,
3035                                 &n_ext_target_devs)) {
3036                         ncurrent++;
3037                         this_device = currentsd[ncurrent];
3038                 }
3039
3040                 *this_device = *tmpdevice;
3041
3042                 switch (this_device->devtype) {
3043                 case TYPE_ROM:
3044                         /* We don't *really* support actual CD-ROM devices,
3045                          * just "One Button Disaster Recovery" tape drive
3046                          * which temporarily pretends to be a CD-ROM drive.
3047                          * So we check that the device is really an OBDR tape
3048                          * device by checking for "$DR-10" in bytes 43-48 of
3049                          * the inquiry data.
3050                          */
3051                         if (is_OBDR)
3052                                 ncurrent++;
3053                         break;
3054                 case TYPE_DISK:
3055                         if (h->hba_mode_enabled) {
3056                                 /* never use raid mapper in HBA mode */
3057                                 this_device->offload_enabled = 0;
3058                                 ncurrent++;
3059                                 break;
3060                         } else if (h->acciopath_status) {
3061                                 if (i >= nphysicals) {
3062                                         ncurrent++;
3063                                         break;
3064                                 }
3065                         } else {
3066                                 if (i < nphysicals)
3067                                         break;
3068                                 ncurrent++;
3069                                 break;
3070                         }
3071                         if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3072                                 memcpy(&this_device->ioaccel_handle,
3073                                         &lunaddrbytes[20],
3074                                         sizeof(this_device->ioaccel_handle));
3075                                 ncurrent++;
3076                         }
3077                         break;
3078                 case TYPE_TAPE:
3079                 case TYPE_MEDIUM_CHANGER:
3080                         ncurrent++;
3081                         break;
3082                 case TYPE_RAID:
3083                         /* Only present the Smartarray HBA as a RAID controller.
3084                          * If it's a RAID controller other than the HBA itself
3085                          * (an external RAID controller, MSA500 or similar)
3086                          * don't present it.
3087                          */
3088                         if (!is_hba_lunid(lunaddrbytes))
3089                                 break;
3090                         ncurrent++;
3091                         break;
3092                 default:
3093                         break;
3094                 }
3095                 if (ncurrent >= HPSA_MAX_DEVICES)
3096                         break;
3097         }
3098         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3099 out:
3100         kfree(tmpdevice);
3101         for (i = 0; i < ndev_allocated; i++)
3102                 kfree(currentsd[i]);
3103         kfree(currentsd);
3104         kfree(physdev_list);
3105         kfree(logdev_list);
3106 }
3107
3108 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3109  * dma mapping  and fills in the scatter gather entries of the
3110  * hpsa command, cp.
3111  */
3112 static int hpsa_scatter_gather(struct ctlr_info *h,
3113                 struct CommandList *cp,
3114                 struct scsi_cmnd *cmd)
3115 {
3116         unsigned int len;
3117         struct scatterlist *sg;
3118         u64 addr64;
3119         int use_sg, i, sg_index, chained;
3120         struct SGDescriptor *curr_sg;
3121
3122         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3123
3124         use_sg = scsi_dma_map(cmd);
3125         if (use_sg < 0)
3126                 return use_sg;
3127
3128         if (!use_sg)
3129                 goto sglist_finished;
3130
3131         curr_sg = cp->SG;
3132         chained = 0;
3133         sg_index = 0;
3134         scsi_for_each_sg(cmd, sg, use_sg, i) {
3135                 if (i == h->max_cmd_sg_entries - 1 &&
3136                         use_sg > h->max_cmd_sg_entries) {
3137                         chained = 1;
3138                         curr_sg = h->cmd_sg_list[cp->cmdindex];
3139                         sg_index = 0;
3140                 }
3141                 addr64 = (u64) sg_dma_address(sg);
3142                 len  = sg_dma_len(sg);
3143                 curr_sg->Addr = cpu_to_le64(addr64);
3144                 curr_sg->Len = cpu_to_le32(len);
3145                 curr_sg->Ext = cpu_to_le32(0);
3146                 curr_sg++;
3147         }
3148         (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3149
3150         if (use_sg + chained > h->maxSG)
3151                 h->maxSG = use_sg + chained;
3152
3153         if (chained) {
3154                 cp->Header.SGList = h->max_cmd_sg_entries;
3155                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3156                 if (hpsa_map_sg_chain_block(h, cp)) {
3157                         scsi_dma_unmap(cmd);
3158                         return -1;
3159                 }
3160                 return 0;
3161         }
3162
3163 sglist_finished:
3164
3165         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3166         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in this cmd list */
3167         return 0;
3168 }
3169
3170 #define IO_ACCEL_INELIGIBLE (1)
3171 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3172 {
3173         int is_write = 0;
3174         u32 block;
3175         u32 block_cnt;
3176
3177         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3178         switch (cdb[0]) {
3179         case WRITE_6:
3180         case WRITE_12:
3181                 is_write = 1;
3182         case READ_6:
3183         case READ_12:
3184                 if (*cdb_len == 6) {
3185                         block = (((u32) cdb[2]) << 8) | cdb[3];
3186                         block_cnt = cdb[4];
3187                 } else {
3188                         BUG_ON(*cdb_len != 12);
3189                         block = (((u32) cdb[2]) << 24) |
3190                                 (((u32) cdb[3]) << 16) |
3191                                 (((u32) cdb[4]) << 8) |
3192                                 cdb[5];
3193                         block_cnt =
3194                                 (((u32) cdb[6]) << 24) |
3195                                 (((u32) cdb[7]) << 16) |
3196                                 (((u32) cdb[8]) << 8) |
3197                                 cdb[9];
3198                 }
3199                 if (block_cnt > 0xffff)
3200                         return IO_ACCEL_INELIGIBLE;
3201
3202                 cdb[0] = is_write ? WRITE_10 : READ_10;
3203                 cdb[1] = 0;
3204                 cdb[2] = (u8) (block >> 24);
3205                 cdb[3] = (u8) (block >> 16);
3206                 cdb[4] = (u8) (block >> 8);
3207                 cdb[5] = (u8) (block);
3208                 cdb[6] = 0;
3209                 cdb[7] = (u8) (block_cnt >> 8);
3210                 cdb[8] = (u8) (block_cnt);
3211                 cdb[9] = 0;
3212                 *cdb_len = 10;
3213                 break;
3214         }
3215         return 0;
3216 }
3217
3218 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3219         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3220         u8 *scsi3addr)
3221 {
3222         struct scsi_cmnd *cmd = c->scsi_cmd;
3223         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3224         unsigned int len;
3225         unsigned int total_len = 0;
3226         struct scatterlist *sg;
3227         u64 addr64;
3228         int use_sg, i;
3229         struct SGDescriptor *curr_sg;
3230         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3231
3232         /* TODO: implement chaining support */
3233         if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3234                 return IO_ACCEL_INELIGIBLE;
3235
3236         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3237
3238         if (fixup_ioaccel_cdb(cdb, &cdb_len))
3239                 return IO_ACCEL_INELIGIBLE;
3240
3241         c->cmd_type = CMD_IOACCEL1;
3242
3243         /* Adjust the DMA address to point to the accelerated command buffer */
3244         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3245                                 (c->cmdindex * sizeof(*cp));
3246         BUG_ON(c->busaddr & 0x0000007F);
3247
3248         use_sg = scsi_dma_map(cmd);
3249         if (use_sg < 0)
3250                 return use_sg;
3251
3252         if (use_sg) {
3253                 curr_sg = cp->SG;
3254                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3255                         addr64 = (u64) sg_dma_address(sg);
3256                         len  = sg_dma_len(sg);
3257                         total_len += len;
3258                         curr_sg->Addr = cpu_to_le64(addr64);
3259                         curr_sg->Len = cpu_to_le32(len);
3260                         curr_sg->Ext = cpu_to_le32(0);
3261                         curr_sg++;
3262                 }
3263                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3264
3265                 switch (cmd->sc_data_direction) {
3266                 case DMA_TO_DEVICE:
3267                         control |= IOACCEL1_CONTROL_DATA_OUT;
3268                         break;
3269                 case DMA_FROM_DEVICE:
3270                         control |= IOACCEL1_CONTROL_DATA_IN;
3271                         break;
3272                 case DMA_NONE:
3273                         control |= IOACCEL1_CONTROL_NODATAXFER;
3274                         break;
3275                 default:
3276                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3277                         cmd->sc_data_direction);
3278                         BUG();
3279                         break;
3280                 }
3281         } else {
3282                 control |= IOACCEL1_CONTROL_NODATAXFER;
3283         }
3284
3285         c->Header.SGList = use_sg;
3286         /* Fill out the command structure to submit */
3287         cp->dev_handle = ioaccel_handle & 0xFFFF;
3288         cp->transfer_len = total_len;
3289         cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3290                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3291         cp->control = control;
3292         memcpy(cp->CDB, cdb, cdb_len);
3293         memcpy(cp->CISS_LUN, scsi3addr, 8);
3294         /* Tag was already set at init time. */
3295         enqueue_cmd_and_start_io(h, c);
3296         return 0;
3297 }
3298
3299 /*
3300  * Queue a command directly to a device behind the controller using the
3301  * I/O accelerator path.
3302  */
3303 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3304         struct CommandList *c)
3305 {
3306         struct scsi_cmnd *cmd = c->scsi_cmd;
3307         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3308
3309         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3310                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3311 }
3312
3313 /*
3314  * Set encryption parameters for the ioaccel2 request
3315  */
3316 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3317         struct CommandList *c, struct io_accel2_cmd *cp)
3318 {
3319         struct scsi_cmnd *cmd = c->scsi_cmd;
3320         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3321         struct raid_map_data *map = &dev->raid_map;
3322         u64 first_block;
3323
3324         BUG_ON(!(dev->offload_config && dev->offload_enabled));
3325
3326         /* Are we doing encryption on this device */
3327         if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
3328                 return;
3329         /* Set the data encryption key index. */
3330         cp->dekindex = map->dekindex;
3331
3332         /* Set the encryption enable flag, encoded into direction field. */
3333         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3334
3335         /* Set encryption tweak values based on logical block address
3336          * If block size is 512, tweak value is LBA.
3337          * For other block sizes, tweak is (LBA * block size)/ 512)
3338          */
3339         switch (cmd->cmnd[0]) {
3340         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3341         case WRITE_6:
3342         case READ_6:
3343                 if (map->volume_blk_size == 512) {
3344                         cp->tweak_lower =
3345                                 (((u32) cmd->cmnd[2]) << 8) |
3346                                         cmd->cmnd[3];
3347                         cp->tweak_upper = 0;
3348                 } else {
3349                         first_block =
3350                                 (((u64) cmd->cmnd[2]) << 8) |
3351                                         cmd->cmnd[3];
3352                         first_block = (first_block * map->volume_blk_size)/512;
3353                         cp->tweak_lower = (u32)first_block;
3354                         cp->tweak_upper = (u32)(first_block >> 32);
3355                 }
3356                 break;
3357         case WRITE_10:
3358         case READ_10:
3359                 if (map->volume_blk_size == 512) {
3360                         cp->tweak_lower =
3361                                 (((u32) cmd->cmnd[2]) << 24) |
3362                                 (((u32) cmd->cmnd[3]) << 16) |
3363                                 (((u32) cmd->cmnd[4]) << 8) |
3364                                         cmd->cmnd[5];
3365                         cp->tweak_upper = 0;
3366                 } else {
3367                         first_block =
3368                                 (((u64) cmd->cmnd[2]) << 24) |
3369                                 (((u64) cmd->cmnd[3]) << 16) |
3370                                 (((u64) cmd->cmnd[4]) << 8) |
3371                                         cmd->cmnd[5];
3372                         first_block = (first_block * map->volume_blk_size)/512;
3373                         cp->tweak_lower = (u32)first_block;
3374                         cp->tweak_upper = (u32)(first_block >> 32);
3375                 }
3376                 break;
3377         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3378         case WRITE_12:
3379         case READ_12:
3380                 if (map->volume_blk_size == 512) {
3381                         cp->tweak_lower =
3382                                 (((u32) cmd->cmnd[2]) << 24) |
3383                                 (((u32) cmd->cmnd[3]) << 16) |
3384                                 (((u32) cmd->cmnd[4]) << 8) |
3385                                         cmd->cmnd[5];
3386                         cp->tweak_upper = 0;
3387                 } else {
3388                         first_block =
3389                                 (((u64) cmd->cmnd[2]) << 24) |
3390                                 (((u64) cmd->cmnd[3]) << 16) |
3391                                 (((u64) cmd->cmnd[4]) << 8) |
3392                                         cmd->cmnd[5];
3393                         first_block = (first_block * map->volume_blk_size)/512;
3394                         cp->tweak_lower = (u32)first_block;
3395                         cp->tweak_upper = (u32)(first_block >> 32);
3396                 }
3397                 break;
3398         case WRITE_16:
3399         case READ_16:
3400                 if (map->volume_blk_size == 512) {
3401                         cp->tweak_lower =
3402                                 (((u32) cmd->cmnd[6]) << 24) |
3403                                 (((u32) cmd->cmnd[7]) << 16) |
3404                                 (((u32) cmd->cmnd[8]) << 8) |
3405                                         cmd->cmnd[9];
3406                         cp->tweak_upper =
3407                                 (((u32) cmd->cmnd[2]) << 24) |
3408                                 (((u32) cmd->cmnd[3]) << 16) |
3409                                 (((u32) cmd->cmnd[4]) << 8) |
3410                                         cmd->cmnd[5];
3411                 } else {
3412                         first_block =
3413                                 (((u64) cmd->cmnd[2]) << 56) |
3414                                 (((u64) cmd->cmnd[3]) << 48) |
3415                                 (((u64) cmd->cmnd[4]) << 40) |
3416                                 (((u64) cmd->cmnd[5]) << 32) |
3417                                 (((u64) cmd->cmnd[6]) << 24) |
3418                                 (((u64) cmd->cmnd[7]) << 16) |
3419                                 (((u64) cmd->cmnd[8]) << 8) |
3420                                         cmd->cmnd[9];
3421                         first_block = (first_block * map->volume_blk_size)/512;
3422                         cp->tweak_lower = (u32)first_block;
3423                         cp->tweak_upper = (u32)(first_block >> 32);
3424                 }
3425                 break;
3426         default:
3427                 dev_err(&h->pdev->dev,
3428                         "ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3429                         __func__);
3430                 BUG();
3431                 break;
3432         }
3433 }
3434
3435 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3436         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3437         u8 *scsi3addr)
3438 {
3439         struct scsi_cmnd *cmd = c->scsi_cmd;
3440         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3441         struct ioaccel2_sg_element *curr_sg;
3442         int use_sg, i;
3443         struct scatterlist *sg;
3444         u64 addr64;
3445         u32 len;
3446         u32 total_len = 0;
3447
3448         if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3449                 return IO_ACCEL_INELIGIBLE;
3450
3451         if (fixup_ioaccel_cdb(cdb, &cdb_len))
3452                 return IO_ACCEL_INELIGIBLE;
3453         c->cmd_type = CMD_IOACCEL2;
3454         /* Adjust the DMA address to point to the accelerated command buffer */
3455         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3456                                 (c->cmdindex * sizeof(*cp));
3457         BUG_ON(c->busaddr & 0x0000007F);
3458
3459         memset(cp, 0, sizeof(*cp));
3460         cp->IU_type = IOACCEL2_IU_TYPE;
3461
3462         use_sg = scsi_dma_map(cmd);
3463         if (use_sg < 0)
3464                 return use_sg;
3465
3466         if (use_sg) {
3467                 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3468                 curr_sg = cp->sg;
3469                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3470                         addr64 = (u64) sg_dma_address(sg);
3471                         len  = sg_dma_len(sg);
3472                         total_len += len;
3473                         curr_sg->address = cpu_to_le64(addr64);
3474                         curr_sg->length = cpu_to_le32(len);
3475                         curr_sg->reserved[0] = 0;
3476                         curr_sg->reserved[1] = 0;
3477                         curr_sg->reserved[2] = 0;
3478                         curr_sg->chain_indicator = 0;
3479                         curr_sg++;
3480                 }
3481
3482                 switch (cmd->sc_data_direction) {
3483                 case DMA_TO_DEVICE:
3484                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3485                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
3486                         break;
3487                 case DMA_FROM_DEVICE:
3488                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3489                         cp->direction |= IOACCEL2_DIR_DATA_IN;
3490                         break;
3491                 case DMA_NONE:
3492                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3493                         cp->direction |= IOACCEL2_DIR_NO_DATA;
3494                         break;
3495                 default:
3496                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3497                                 cmd->sc_data_direction);
3498                         BUG();
3499                         break;
3500                 }
3501         } else {
3502                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3503                 cp->direction |= IOACCEL2_DIR_NO_DATA;
3504         }
3505
3506         /* Set encryption parameters, if necessary */
3507         set_encrypt_ioaccel2(h, c, cp);
3508
3509         cp->scsi_nexus = ioaccel_handle;
3510         cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3511                                 DIRECT_LOOKUP_BIT;
3512         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3513
3514         /* fill in sg elements */
3515         cp->sg_count = (u8) use_sg;
3516
3517         cp->data_len = cpu_to_le32(total_len);
3518         cp->err_ptr = cpu_to_le64(c->busaddr +
3519                         offsetof(struct io_accel2_cmd, error_data));
3520         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3521
3522         enqueue_cmd_and_start_io(h, c);
3523         return 0;
3524 }
3525
3526 /*
3527  * Queue a command to the correct I/O accelerator path.
3528  */
3529 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3530         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3531         u8 *scsi3addr)
3532 {
3533         if (h->transMethod & CFGTBL_Trans_io_accel1)
3534                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3535                                                 cdb, cdb_len, scsi3addr);
3536         else
3537                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3538                                                 cdb, cdb_len, scsi3addr);
3539 }
3540
3541 static void raid_map_helper(struct raid_map_data *map,
3542                 int offload_to_mirror, u32 *map_index, u32 *current_group)
3543 {
3544         if (offload_to_mirror == 0)  {
3545                 /* use physical disk in the first mirrored group. */
3546                 *map_index %= map->data_disks_per_row;
3547                 return;
3548         }
3549         do {
3550                 /* determine mirror group that *map_index indicates */
3551                 *current_group = *map_index / map->data_disks_per_row;
3552                 if (offload_to_mirror == *current_group)
3553                         continue;
3554                 if (*current_group < (map->layout_map_count - 1)) {
3555                         /* select map index from next group */
3556                         *map_index += map->data_disks_per_row;
3557                         (*current_group)++;
3558                 } else {
3559                         /* select map index from first group */
3560                         *map_index %= map->data_disks_per_row;
3561                         *current_group = 0;
3562                 }
3563         } while (offload_to_mirror != *current_group);
3564 }
3565
3566 /*
3567  * Attempt to perform offload RAID mapping for a logical volume I/O.
3568  */
3569 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3570         struct CommandList *c)
3571 {
3572         struct scsi_cmnd *cmd = c->scsi_cmd;
3573         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3574         struct raid_map_data *map = &dev->raid_map;
3575         struct raid_map_disk_data *dd = &map->data[0];
3576         int is_write = 0;
3577         u32 map_index;
3578         u64 first_block, last_block;
3579         u32 block_cnt;
3580         u32 blocks_per_row;
3581         u64 first_row, last_row;
3582         u32 first_row_offset, last_row_offset;
3583         u32 first_column, last_column;
3584         u64 r0_first_row, r0_last_row;
3585         u32 r5or6_blocks_per_row;
3586         u64 r5or6_first_row, r5or6_last_row;
3587         u32 r5or6_first_row_offset, r5or6_last_row_offset;
3588         u32 r5or6_first_column, r5or6_last_column;
3589         u32 total_disks_per_row;
3590         u32 stripesize;
3591         u32 first_group, last_group, current_group;
3592         u32 map_row;
3593         u32 disk_handle;
3594         u64 disk_block;
3595         u32 disk_block_cnt;
3596         u8 cdb[16];
3597         u8 cdb_len;
3598 #if BITS_PER_LONG == 32
3599         u64 tmpdiv;
3600 #endif
3601         int offload_to_mirror;
3602
3603         BUG_ON(!(dev->offload_config && dev->offload_enabled));
3604
3605         /* check for valid opcode, get LBA and block count */
3606         switch (cmd->cmnd[0]) {
3607         case WRITE_6:
3608                 is_write = 1;
3609         case READ_6:
3610                 first_block =
3611                         (((u64) cmd->cmnd[2]) << 8) |
3612                         cmd->cmnd[3];
3613                 block_cnt = cmd->cmnd[4];
3614                 if (block_cnt == 0)
3615                         block_cnt = 256;
3616                 break;
3617         case WRITE_10:
3618                 is_write = 1;
3619         case READ_10:
3620                 first_block =
3621                         (((u64) cmd->cmnd[2]) << 24) |
3622                         (((u64) cmd->cmnd[3]) << 16) |
3623                         (((u64) cmd->cmnd[4]) << 8) |
3624                         cmd->cmnd[5];
3625                 block_cnt =
3626                         (((u32) cmd->cmnd[7]) << 8) |
3627                         cmd->cmnd[8];
3628                 break;
3629         case WRITE_12:
3630                 is_write = 1;
3631         case READ_12:
3632                 first_block =
3633                         (((u64) cmd->cmnd[2]) << 24) |
3634                         (((u64) cmd->cmnd[3]) << 16) |
3635                         (((u64) cmd->cmnd[4]) << 8) |
3636                         cmd->cmnd[5];
3637                 block_cnt =
3638                         (((u32) cmd->cmnd[6]) << 24) |
3639                         (((u32) cmd->cmnd[7]) << 16) |
3640                         (((u32) cmd->cmnd[8]) << 8) |
3641                 cmd->cmnd[9];
3642                 break;
3643         case WRITE_16:
3644                 is_write = 1;
3645         case READ_16:
3646                 first_block =
3647                         (((u64) cmd->cmnd[2]) << 56) |
3648                         (((u64) cmd->cmnd[3]) << 48) |
3649                         (((u64) cmd->cmnd[4]) << 40) |
3650                         (((u64) cmd->cmnd[5]) << 32) |
3651                         (((u64) cmd->cmnd[6]) << 24) |
3652                         (((u64) cmd->cmnd[7]) << 16) |
3653                         (((u64) cmd->cmnd[8]) << 8) |
3654                         cmd->cmnd[9];
3655                 block_cnt =
3656                         (((u32) cmd->cmnd[10]) << 24) |
3657                         (((u32) cmd->cmnd[11]) << 16) |
3658                         (((u32) cmd->cmnd[12]) << 8) |
3659                         cmd->cmnd[13];
3660                 break;
3661         default:
3662                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3663         }
3664         last_block = first_block + block_cnt - 1;
3665
3666         /* check for write to non-RAID-0 */
3667         if (is_write && dev->raid_level != 0)
3668                 return IO_ACCEL_INELIGIBLE;
3669
3670         /* check for invalid block or wraparound */
3671         if (last_block >= map->volume_blk_cnt || last_block < first_block)
3672                 return IO_ACCEL_INELIGIBLE;
3673
3674         /* calculate stripe information for the request */
3675         blocks_per_row = map->data_disks_per_row * map->strip_size;
3676 #if BITS_PER_LONG == 32
3677         tmpdiv = first_block;
3678         (void) do_div(tmpdiv, blocks_per_row);
3679         first_row = tmpdiv;
3680         tmpdiv = last_block;
3681         (void) do_div(tmpdiv, blocks_per_row);
3682         last_row = tmpdiv;
3683         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3684         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3685         tmpdiv = first_row_offset;
3686         (void) do_div(tmpdiv,  map->strip_size);
3687         first_column = tmpdiv;
3688         tmpdiv = last_row_offset;
3689         (void) do_div(tmpdiv, map->strip_size);
3690         last_column = tmpdiv;
3691 #else
3692         first_row = first_block / blocks_per_row;
3693         last_row = last_block / blocks_per_row;
3694         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3695         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3696         first_column = first_row_offset / map->strip_size;
3697         last_column = last_row_offset / map->strip_size;
3698 #endif
3699
3700         /* if this isn't a single row/column then give to the controller */
3701         if ((first_row != last_row) || (first_column != last_column))
3702                 return IO_ACCEL_INELIGIBLE;
3703
3704         /* proceeding with driver mapping */
3705         total_disks_per_row = map->data_disks_per_row +
3706                                 map->metadata_disks_per_row;
3707         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3708                                 map->row_cnt;
3709         map_index = (map_row * total_disks_per_row) + first_column;
3710
3711         switch (dev->raid_level) {
3712         case HPSA_RAID_0:
3713                 break; /* nothing special to do */
3714         case HPSA_RAID_1:
3715                 /* Handles load balance across RAID 1 members.
3716                  * (2-drive R1 and R10 with even # of drives.)
3717                  * Appropriate for SSDs, not optimal for HDDs
3718                  */
3719                 BUG_ON(map->layout_map_count != 2);
3720                 if (dev->offload_to_mirror)
3721                         map_index += map->data_disks_per_row;
3722                 dev->offload_to_mirror = !dev->offload_to_mirror;
3723                 break;
3724         case HPSA_RAID_ADM:
3725                 /* Handles N-way mirrors  (R1-ADM)
3726                  * and R10 with # of drives divisible by 3.)
3727                  */
3728                 BUG_ON(map->layout_map_count != 3);
3729
3730                 offload_to_mirror = dev->offload_to_mirror;
3731                 raid_map_helper(map, offload_to_mirror,
3732                                 &map_index, &current_group);
3733                 /* set mirror group to use next time */
3734                 offload_to_mirror =
3735                         (offload_to_mirror >= map->layout_map_count - 1)
3736                         ? 0 : offload_to_mirror + 1;
3737                 dev->offload_to_mirror = offload_to_mirror;
3738                 /* Avoid direct use of dev->offload_to_mirror within this
3739                  * function since multiple threads might simultaneously
3740                  * increment it beyond the range of dev->layout_map_count -1.
3741                  */
3742                 break;
3743         case HPSA_RAID_5:
3744         case HPSA_RAID_6:
3745                 if (map->layout_map_count <= 1)
3746                         break;
3747
3748                 /* Verify first and last block are in same RAID group */
3749                 r5or6_blocks_per_row =
3750                         map->strip_size * map->data_disks_per_row;
3751                 BUG_ON(r5or6_blocks_per_row == 0);
3752                 stripesize = r5or6_blocks_per_row * map->layout_map_count;
3753 #if BITS_PER_LONG == 32
3754                 tmpdiv = first_block;
3755                 first_group = do_div(tmpdiv, stripesize);
3756                 tmpdiv = first_group;
3757                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3758                 first_group = tmpdiv;
3759                 tmpdiv = last_block;
3760                 last_group = do_div(tmpdiv, stripesize);
3761                 tmpdiv = last_group;
3762                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3763                 last_group = tmpdiv;
3764 #else
3765                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3766                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3767 #endif
3768                 if (first_group != last_group)
3769                         return IO_ACCEL_INELIGIBLE;
3770
3771                 /* Verify request is in a single row of RAID 5/6 */
3772 #if BITS_PER_LONG == 32
3773                 tmpdiv = first_block;
3774                 (void) do_div(tmpdiv, stripesize);
3775                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3776                 tmpdiv = last_block;
3777                 (void) do_div(tmpdiv, stripesize);
3778                 r5or6_last_row = r0_last_row = tmpdiv;
3779 #else
3780                 first_row = r5or6_first_row = r0_first_row =
3781                                                 first_block / stripesize;
3782                 r5or6_last_row = r0_last_row = last_block / stripesize;
3783 #endif
3784                 if (r5or6_first_row != r5or6_last_row)
3785                         return IO_ACCEL_INELIGIBLE;
3786
3787
3788                 /* Verify request is in a single column */
3789 #if BITS_PER_LONG == 32
3790                 tmpdiv = first_block;
3791                 first_row_offset = do_div(tmpdiv, stripesize);
3792                 tmpdiv = first_row_offset;
3793                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3794                 r5or6_first_row_offset = first_row_offset;
3795                 tmpdiv = last_block;
3796                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3797                 tmpdiv = r5or6_last_row_offset;
3798                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3799                 tmpdiv = r5or6_first_row_offset;
3800                 (void) do_div(tmpdiv, map->strip_size);
3801                 first_column = r5or6_first_column = tmpdiv;
3802                 tmpdiv = r5or6_last_row_offset;
3803                 (void) do_div(tmpdiv, map->strip_size);
3804                 r5or6_last_column = tmpdiv;
3805 #else
3806                 first_row_offset = r5or6_first_row_offset =
3807                         (u32)((first_block % stripesize) %
3808                                                 r5or6_blocks_per_row);
3809
3810                 r5or6_last_row_offset =
3811                         (u32)((last_block % stripesize) %
3812                                                 r5or6_blocks_per_row);
3813
3814                 first_column = r5or6_first_column =
3815                         r5or6_first_row_offset / map->strip_size;
3816                 r5or6_last_column =
3817                         r5or6_last_row_offset / map->strip_size;
3818 #endif
3819                 if (r5or6_first_column != r5or6_last_column)
3820                         return IO_ACCEL_INELIGIBLE;
3821
3822                 /* Request is eligible */
3823                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3824                         map->row_cnt;
3825
3826                 map_index = (first_group *
3827                         (map->row_cnt * total_disks_per_row)) +
3828                         (map_row * total_disks_per_row) + first_column;
3829                 break;
3830         default:
3831                 return IO_ACCEL_INELIGIBLE;
3832         }
3833
3834         disk_handle = dd[map_index].ioaccel_handle;
3835         disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
3836                         (first_row_offset - (first_column * map->strip_size));
3837         disk_block_cnt = block_cnt;
3838
3839         /* handle differing logical/physical block sizes */
3840         if (map->phys_blk_shift) {
3841                 disk_block <<= map->phys_blk_shift;
3842                 disk_block_cnt <<= map->phys_blk_shift;
3843         }
3844         BUG_ON(disk_block_cnt > 0xffff);
3845
3846         /* build the new CDB for the physical disk I/O */
3847         if (disk_block > 0xffffffff) {
3848                 cdb[0] = is_write ? WRITE_16 : READ_16;
3849                 cdb[1] = 0;
3850                 cdb[2] = (u8) (disk_block >> 56);
3851                 cdb[3] = (u8) (disk_block >> 48);
3852                 cdb[4] = (u8) (disk_block >> 40);
3853                 cdb[5] = (u8) (disk_block >> 32);
3854                 cdb[6] = (u8) (disk_block >> 24);
3855                 cdb[7] = (u8) (disk_block >> 16);
3856                 cdb[8] = (u8) (disk_block >> 8);
3857                 cdb[9] = (u8) (disk_block);
3858                 cdb[10] = (u8) (disk_block_cnt >> 24);
3859                 cdb[11] = (u8) (disk_block_cnt >> 16);
3860                 cdb[12] = (u8) (disk_block_cnt >> 8);
3861                 cdb[13] = (u8) (disk_block_cnt);
3862                 cdb[14] = 0;
3863                 cdb[15] = 0;
3864                 cdb_len = 16;
3865         } else {
3866                 cdb[0] = is_write ? WRITE_10 : READ_10;
3867                 cdb[1] = 0;
3868                 cdb[2] = (u8) (disk_block >> 24);
3869                 cdb[3] = (u8) (disk_block >> 16);
3870                 cdb[4] = (u8) (disk_block >> 8);
3871                 cdb[5] = (u8) (disk_block);
3872                 cdb[6] = 0;
3873                 cdb[7] = (u8) (disk_block_cnt >> 8);
3874                 cdb[8] = (u8) (disk_block_cnt);
3875                 cdb[9] = 0;
3876                 cdb_len = 10;
3877         }
3878         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3879                                                 dev->scsi3addr);
3880 }
3881
3882 /*
3883  * Running in struct Scsi_Host->host_lock less mode using LLD internal
3884  * struct ctlr_info *h->lock w/ spin_lock_irqsave() protection.
3885  */
3886 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
3887 {
3888         struct ctlr_info *h;
3889         struct hpsa_scsi_dev_t *dev;
3890         unsigned char scsi3addr[8];
3891         struct CommandList *c;
3892         int rc = 0;
3893
3894         /* Get the ptr to our adapter structure out of cmd->host. */
3895         h = sdev_to_hba(cmd->device);
3896         dev = cmd->device->hostdata;
3897         if (!dev) {
3898                 cmd->result = DID_NO_CONNECT << 16;
3899                 cmd->scsi_done(cmd);
3900                 return 0;
3901         }
3902         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3903
3904         if (unlikely(lockup_detected(h))) {
3905                 cmd->result = DID_ERROR << 16;
3906                 cmd->scsi_done(cmd);
3907                 return 0;
3908         }
3909         c = cmd_alloc(h);
3910         if (c == NULL) {                        /* trouble... */
3911                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3912                 return SCSI_MLQUEUE_HOST_BUSY;
3913         }
3914
3915         /* Fill in the command list header */
3916         /* save c in case we have to abort it  */
3917         cmd->host_scribble = (unsigned char *) c;
3918
3919         c->cmd_type = CMD_SCSI;
3920         c->scsi_cmd = cmd;
3921
3922         /* Call alternate submit routine for I/O accelerated commands.
3923          * Retries always go down the normal I/O path.
3924          */
3925         if (likely(cmd->retries == 0 &&
3926                 cmd->request->cmd_type == REQ_TYPE_FS &&
3927                 h->acciopath_status)) {
3928                 if (dev->offload_enabled) {
3929                         rc = hpsa_scsi_ioaccel_raid_map(h, c);
3930                         if (rc == 0)
3931                                 return 0; /* Sent on ioaccel path */
3932                         if (rc < 0) {   /* scsi_dma_map failed. */
3933                                 cmd_free(h, c);
3934                                 return SCSI_MLQUEUE_HOST_BUSY;
3935                         }
3936                 } else if (dev->ioaccel_handle) {
3937                         rc = hpsa_scsi_ioaccel_direct_map(h, c);
3938                         if (rc == 0)
3939                                 return 0; /* Sent on direct map path */
3940                         if (rc < 0) {   /* scsi_dma_map failed. */
3941                                 cmd_free(h, c);
3942                                 return SCSI_MLQUEUE_HOST_BUSY;
3943                         }
3944                 }
3945         }
3946
3947         c->Header.ReplyQueue = 0;  /* unused in simple mode */
3948         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3949         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3950                                         DIRECT_LOOKUP_BIT);
3951
3952         /* Fill in the request block... */
3953
3954         c->Request.Timeout = 0;
3955         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3956         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3957         c->Request.CDBLen = cmd->cmd_len;
3958         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
3959         switch (cmd->sc_data_direction) {
3960         case DMA_TO_DEVICE:
3961                 c->Request.type_attr_dir =
3962                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
3963                 break;
3964         case DMA_FROM_DEVICE:
3965                 c->Request.type_attr_dir =
3966                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
3967                 break;
3968         case DMA_NONE:
3969                 c->Request.type_attr_dir =
3970                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
3971                 break;
3972         case DMA_BIDIRECTIONAL:
3973                 /* This can happen if a buggy application does a scsi passthru
3974                  * and sets both inlen and outlen to non-zero. ( see
3975                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
3976                  */
3977
3978                 c->Request.type_attr_dir =
3979                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
3980                 /* This is technically wrong, and hpsa controllers should
3981                  * reject it with CMD_INVALID, which is the most correct
3982                  * response, but non-fibre backends appear to let it
3983                  * slide by, and give the same results as if this field
3984                  * were set correctly.  Either way is acceptable for
3985                  * our purposes here.
3986                  */
3987
3988                 break;
3989
3990         default:
3991                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3992                         cmd->sc_data_direction);
3993                 BUG();
3994                 break;
3995         }
3996
3997         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
3998                 cmd_free(h, c);
3999                 return SCSI_MLQUEUE_HOST_BUSY;
4000         }
4001         enqueue_cmd_and_start_io(h, c);
4002         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4003         return 0;
4004 }
4005
4006 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4007 {
4008         unsigned long flags;
4009
4010         /*
4011          * Don't let rescans be initiated on a controller known
4012          * to be locked up.  If the controller locks up *during*
4013          * a rescan, that thread is probably hosed, but at least
4014          * we can prevent new rescan threads from piling up on a
4015          * locked up controller.
4016          */
4017         if (unlikely(lockup_detected(h))) {
4018                 spin_lock_irqsave(&h->scan_lock, flags);
4019                 h->scan_finished = 1;
4020                 wake_up_all(&h->scan_wait_queue);
4021                 spin_unlock_irqrestore(&h->scan_lock, flags);
4022                 return 1;
4023         }
4024         return 0;
4025 }
4026
4027 static void hpsa_scan_start(struct Scsi_Host *sh)
4028 {
4029         struct ctlr_info *h = shost_to_hba(sh);
4030         unsigned long flags;
4031
4032         if (do_not_scan_if_controller_locked_up(h))
4033                 return;
4034
4035         /* wait until any scan already in progress is finished. */
4036         while (1) {
4037                 spin_lock_irqsave(&h->scan_lock, flags);
4038                 if (h->scan_finished)
4039                         break;
4040                 spin_unlock_irqrestore(&h->scan_lock, flags);
4041                 wait_event(h->scan_wait_queue, h->scan_finished);
4042                 /* Note: We don't need to worry about a race between this
4043                  * thread and driver unload because the midlayer will
4044                  * have incremented the reference count, so unload won't
4045                  * happen if we're in here.
4046                  */
4047         }
4048         h->scan_finished = 0; /* mark scan as in progress */
4049         spin_unlock_irqrestore(&h->scan_lock, flags);
4050
4051         if (do_not_scan_if_controller_locked_up(h))
4052                 return;
4053
4054         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4055
4056         spin_lock_irqsave(&h->scan_lock, flags);
4057         h->scan_finished = 1; /* mark scan as finished. */
4058         wake_up_all(&h->scan_wait_queue);
4059         spin_unlock_irqrestore(&h->scan_lock, flags);
4060 }
4061
4062 static int hpsa_scan_finished(struct Scsi_Host *sh,
4063         unsigned long elapsed_time)
4064 {
4065         struct ctlr_info *h = shost_to_hba(sh);
4066         unsigned long flags;
4067         int finished;
4068
4069         spin_lock_irqsave(&h->scan_lock, flags);
4070         finished = h->scan_finished;
4071         spin_unlock_irqrestore(&h->scan_lock, flags);
4072         return finished;
4073 }
4074
4075 static void hpsa_unregister_scsi(struct ctlr_info *h)
4076 {
4077         /* we are being forcibly unloaded, and may not refuse. */
4078         scsi_remove_host(h->scsi_host);
4079         scsi_host_put(h->scsi_host);
4080         h->scsi_host = NULL;
4081 }
4082
4083 static int hpsa_register_scsi(struct ctlr_info *h)
4084 {
4085         struct Scsi_Host *sh;
4086         int error;
4087
4088         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4089         if (sh == NULL)
4090                 goto fail;
4091
4092         sh->io_port = 0;
4093         sh->n_io_port = 0;
4094         sh->this_id = -1;
4095         sh->max_channel = 3;
4096         sh->max_cmd_len = MAX_COMMAND_SIZE;
4097         sh->max_lun = HPSA_MAX_LUN;
4098         sh->max_id = HPSA_MAX_LUN;
4099         sh->can_queue = h->nr_cmds;
4100         if (h->hba_mode_enabled)
4101                 sh->cmd_per_lun = 7;
4102         else
4103                 sh->cmd_per_lun = h->nr_cmds;
4104         sh->sg_tablesize = h->maxsgentries;
4105         h->scsi_host = sh;
4106         sh->hostdata[0] = (unsigned long) h;
4107         sh->irq = h->intr[h->intr_mode];
4108         sh->unique_id = sh->irq;
4109         error = scsi_add_host(sh, &h->pdev->dev);
4110         if (error)
4111                 goto fail_host_put;
4112         scsi_scan_host(sh);
4113         return 0;
4114
4115  fail_host_put:
4116         dev_err(&h->pdev->dev, "%s: scsi_add_host"
4117                 " failed for controller %d\n", __func__, h->ctlr);
4118         scsi_host_put(sh);
4119         return error;
4120  fail:
4121         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4122                 " failed for controller %d\n", __func__, h->ctlr);
4123         return -ENOMEM;
4124 }
4125
4126 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4127         unsigned char lunaddr[])
4128 {
4129         int rc;
4130         int count = 0;
4131         int waittime = 1; /* seconds */
4132         struct CommandList *c;
4133
4134         c = cmd_special_alloc(h);
4135         if (!c) {
4136                 dev_warn(&h->pdev->dev, "out of memory in "
4137                         "wait_for_device_to_become_ready.\n");
4138                 return IO_ERROR;
4139         }
4140
4141         /* Send test unit ready until device ready, or give up. */
4142         while (count < HPSA_TUR_RETRY_LIMIT) {
4143
4144                 /* Wait for a bit.  do this first, because if we send
4145                  * the TUR right away, the reset will just abort it.
4146                  */
4147                 msleep(1000 * waittime);
4148                 count++;
4149                 rc = 0; /* Device ready. */
4150
4151                 /* Increase wait time with each try, up to a point. */
4152                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4153                         waittime = waittime * 2;
4154
4155                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4156                 (void) fill_cmd(c, TEST_UNIT_READY, h,
4157                                 NULL, 0, 0, lunaddr, TYPE_CMD);
4158                 hpsa_scsi_do_simple_cmd_core(h, c);
4159                 /* no unmap needed here because no data xfer. */
4160
4161                 if (c->err_info->CommandStatus == CMD_SUCCESS)
4162                         break;
4163
4164                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4165                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4166                         (c->err_info->SenseInfo[2] == NO_SENSE ||
4167                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4168                         break;
4169
4170                 dev_warn(&h->pdev->dev, "waiting %d secs "
4171                         "for device to become ready.\n", waittime);
4172                 rc = 1; /* device not ready. */
4173         }
4174
4175         if (rc)
4176                 dev_warn(&h->pdev->dev, "giving up on device.\n");
4177         else
4178                 dev_warn(&h->pdev->dev, "device is ready.\n");
4179
4180         cmd_special_free(h, c);
4181         return rc;
4182 }
4183
4184 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4185  * complaining.  Doing a host- or bus-reset can't do anything good here.
4186  */
4187 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4188 {
4189         int rc;
4190         struct ctlr_info *h;
4191         struct hpsa_scsi_dev_t *dev;
4192
4193         /* find the controller to which the command to be aborted was sent */
4194         h = sdev_to_hba(scsicmd->device);
4195         if (h == NULL) /* paranoia */
4196                 return FAILED;
4197         dev = scsicmd->device->hostdata;
4198         if (!dev) {
4199                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4200                         "device lookup failed.\n");
4201                 return FAILED;
4202         }
4203         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4204                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4205         /* send a reset to the SCSI LUN which the command was sent to */
4206         rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4207         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4208                 return SUCCESS;
4209
4210         dev_warn(&h->pdev->dev, "resetting device failed.\n");
4211         return FAILED;
4212 }
4213
4214 static void swizzle_abort_tag(u8 *tag)
4215 {
4216         u8 original_tag[8];
4217
4218         memcpy(original_tag, tag, 8);
4219         tag[0] = original_tag[3];
4220         tag[1] = original_tag[2];
4221         tag[2] = original_tag[1];
4222         tag[3] = original_tag[0];
4223         tag[4] = original_tag[7];
4224         tag[5] = original_tag[6];
4225         tag[6] = original_tag[5];
4226         tag[7] = original_tag[4];
4227 }
4228
4229 static void hpsa_get_tag(struct ctlr_info *h,
4230         struct CommandList *c, u32 *taglower, u32 *tagupper)
4231 {
4232         if (c->cmd_type == CMD_IOACCEL1) {
4233                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4234                         &h->ioaccel_cmd_pool[c->cmdindex];
4235                 *tagupper = (u32) (cm1->tag >> 32);
4236                 *taglower = (u32) (cm1->tag & 0x0ffffffffULL);
4237                 return;
4238         }
4239         if (c->cmd_type == CMD_IOACCEL2) {
4240                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4241                         &h->ioaccel2_cmd_pool[c->cmdindex];
4242                 /* upper tag not used in ioaccel2 mode */
4243                 memset(tagupper, 0, sizeof(*tagupper));
4244                 *taglower = cm2->Tag;
4245                 return;
4246         }
4247         *tagupper = (u32) (c->Header.tag >> 32);
4248         *taglower = (u32) (c->Header.tag & 0x0ffffffffULL);
4249 }
4250
4251 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4252         struct CommandList *abort, int swizzle)
4253 {
4254         int rc = IO_OK;
4255         struct CommandList *c;
4256         struct ErrorInfo *ei;
4257         u32 tagupper, taglower;
4258
4259         c = cmd_special_alloc(h);
4260         if (c == NULL) {        /* trouble... */
4261                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4262                 return -ENOMEM;
4263         }
4264
4265         /* fill_cmd can't fail here, no buffer to map */
4266         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4267                 0, 0, scsi3addr, TYPE_MSG);
4268         if (swizzle)
4269                 swizzle_abort_tag(&c->Request.CDB[4]);
4270         hpsa_scsi_do_simple_cmd_core(h, c);
4271         hpsa_get_tag(h, abort, &taglower, &tagupper);
4272         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4273                 __func__, tagupper, taglower);
4274         /* no unmap needed here because no data xfer. */
4275
4276         ei = c->err_info;
4277         switch (ei->CommandStatus) {
4278         case CMD_SUCCESS:
4279                 break;
4280         case CMD_UNABORTABLE: /* Very common, don't make noise. */
4281                 rc = -1;
4282                 break;
4283         default:
4284                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4285                         __func__, tagupper, taglower);
4286                 hpsa_scsi_interpret_error(h, c);
4287                 rc = -1;
4288                 break;
4289         }
4290         cmd_special_free(h, c);
4291         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4292                 __func__, tagupper, taglower);
4293         return rc;
4294 }
4295
4296 /*
4297  * hpsa_find_cmd_in_queue
4298  *
4299  * Used to determine whether a command (find) is still present
4300  * in queue_head.   Optionally excludes the last element of queue_head.
4301  *
4302  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
4303  * not yet been submitted, and so can be aborted by the driver without
4304  * sending an abort to the hardware.
4305  *
4306  * Returns pointer to command if found in queue, NULL otherwise.
4307  */
4308 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4309                         struct scsi_cmnd *find, struct list_head *queue_head)
4310 {
4311         unsigned long flags;
4312         struct CommandList *c = NULL;   /* ptr into cmpQ */
4313
4314         if (!find)
4315                 return NULL;
4316         spin_lock_irqsave(&h->lock, flags);
4317         list_for_each_entry(c, queue_head, list) {
4318                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4319                         continue;
4320                 if (c->scsi_cmd == find) {
4321                         spin_unlock_irqrestore(&h->lock, flags);
4322                         return c;
4323                 }
4324         }
4325         spin_unlock_irqrestore(&h->lock, flags);
4326         return NULL;
4327 }
4328
4329 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4330                                         u8 *tag, struct list_head *queue_head)
4331 {
4332         unsigned long flags;
4333         struct CommandList *c;
4334
4335         spin_lock_irqsave(&h->lock, flags);
4336         list_for_each_entry(c, queue_head, list) {
4337                 if (memcmp(&c->Header.tag, tag, 8) != 0)
4338                         continue;
4339                 spin_unlock_irqrestore(&h->lock, flags);
4340                 return c;
4341         }
4342         spin_unlock_irqrestore(&h->lock, flags);
4343         return NULL;
4344 }
4345
4346 /* ioaccel2 path firmware cannot handle abort task requests.
4347  * Change abort requests to physical target reset, and send to the
4348  * address of the physical disk used for the ioaccel 2 command.
4349  * Return 0 on success (IO_OK)
4350  *       -1 on failure
4351  */
4352
4353 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4354         unsigned char *scsi3addr, struct CommandList *abort)
4355 {
4356         int rc = IO_OK;
4357         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4358         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4359         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4360         unsigned char *psa = &phys_scsi3addr[0];
4361
4362         /* Get a pointer to the hpsa logical device. */
4363         scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4364         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4365         if (dev == NULL) {
4366                 dev_warn(&h->pdev->dev,
4367                         "Cannot abort: no device pointer for command.\n");
4368                         return -1; /* not abortable */
4369         }
4370
4371         if (h->raid_offload_debug > 0)
4372                 dev_info(&h->pdev->dev,
4373                         "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4374                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4375                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4376                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4377
4378         if (!dev->offload_enabled) {
4379                 dev_warn(&h->pdev->dev,
4380                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4381                 return -1; /* not abortable */
4382         }
4383
4384         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4385         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4386                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4387                 return -1; /* not abortable */
4388         }
4389
4390         /* send the reset */
4391         if (h->raid_offload_debug > 0)
4392                 dev_info(&h->pdev->dev,
4393                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4394                         psa[0], psa[1], psa[2], psa[3],
4395                         psa[4], psa[5], psa[6], psa[7]);
4396         rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4397         if (rc != 0) {
4398                 dev_warn(&h->pdev->dev,
4399                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4400                         psa[0], psa[1], psa[2], psa[3],
4401                         psa[4], psa[5], psa[6], psa[7]);
4402                 return rc; /* failed to reset */
4403         }
4404
4405         /* wait for device to recover */
4406         if (wait_for_device_to_become_ready(h, psa) != 0) {
4407                 dev_warn(&h->pdev->dev,
4408                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4409                         psa[0], psa[1], psa[2], psa[3],
4410                         psa[4], psa[5], psa[6], psa[7]);
4411                 return -1;  /* failed to recover */
4412         }
4413
4414         /* device recovered */
4415         dev_info(&h->pdev->dev,
4416                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4417                 psa[0], psa[1], psa[2], psa[3],
4418                 psa[4], psa[5], psa[6], psa[7]);
4419
4420         return rc; /* success */
4421 }
4422
4423 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4424  * tell which kind we're dealing with, so we send the abort both ways.  There
4425  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4426  * way we construct our tags but we check anyway in case the assumptions which
4427  * make this true someday become false.
4428  */
4429 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4430         unsigned char *scsi3addr, struct CommandList *abort)
4431 {
4432         u8 swizzled_tag[8];
4433         struct CommandList *c;
4434         int rc = 0, rc2 = 0;
4435
4436         /* ioccelerator mode 2 commands should be aborted via the
4437          * accelerated path, since RAID path is unaware of these commands,
4438          * but underlying firmware can't handle abort TMF.
4439          * Change abort to physical device reset.
4440          */
4441         if (abort->cmd_type == CMD_IOACCEL2)
4442                 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4443
4444         /* we do not expect to find the swizzled tag in our queue, but
4445          * check anyway just to be sure the assumptions which make this
4446          * the case haven't become wrong.
4447          */
4448         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4449         swizzle_abort_tag(swizzled_tag);
4450         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4451         if (c != NULL) {
4452                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4453                 return hpsa_send_abort(h, scsi3addr, abort, 0);
4454         }
4455         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4456
4457         /* if the command is still in our queue, we can't conclude that it was
4458          * aborted (it might have just completed normally) but in any case
4459          * we don't need to try to abort it another way.
4460          */
4461         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4462         if (c)
4463                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4464         return rc && rc2;
4465 }
4466
4467 /* Send an abort for the specified command.
4468  *      If the device and controller support it,
4469  *              send a task abort request.
4470  */
4471 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4472 {
4473
4474         int i, rc;
4475         struct ctlr_info *h;
4476         struct hpsa_scsi_dev_t *dev;
4477         struct CommandList *abort; /* pointer to command to be aborted */
4478         struct CommandList *found;
4479         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
4480         char msg[256];          /* For debug messaging. */
4481         int ml = 0;
4482         u32 tagupper, taglower;
4483
4484         /* Find the controller of the command to be aborted */
4485         h = sdev_to_hba(sc->device);
4486         if (WARN(h == NULL,
4487                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4488                 return FAILED;
4489
4490         /* Check that controller supports some kind of task abort */
4491         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4492                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4493                 return FAILED;
4494
4495         memset(msg, 0, sizeof(msg));
4496         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4497                 h->scsi_host->host_no, sc->device->channel,
4498                 sc->device->id, sc->device->lun);
4499
4500         /* Find the device of the command to be aborted */
4501         dev = sc->device->hostdata;
4502         if (!dev) {
4503                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4504                                 msg);
4505                 return FAILED;
4506         }
4507
4508         /* Get SCSI command to be aborted */
4509         abort = (struct CommandList *) sc->host_scribble;
4510         if (abort == NULL) {
4511                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4512                                 msg);
4513                 return FAILED;
4514         }
4515         hpsa_get_tag(h, abort, &taglower, &tagupper);
4516         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4517         as  = (struct scsi_cmnd *) abort->scsi_cmd;
4518         if (as != NULL)
4519                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4520                         as->cmnd[0], as->serial_number);
4521         dev_dbg(&h->pdev->dev, "%s\n", msg);
4522         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4523                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4524
4525         /* Search reqQ to See if command is queued but not submitted,
4526          * if so, complete the command with aborted status and remove
4527          * it from the reqQ.
4528          */
4529         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4530         if (found) {
4531                 found->err_info->CommandStatus = CMD_ABORTED;
4532                 finish_cmd(found);
4533                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4534                                 msg);
4535                 return SUCCESS;
4536         }
4537
4538         /* not in reqQ, if also not in cmpQ, must have already completed */
4539         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4540         if (!found)  {
4541                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4542                                 msg);
4543                 return SUCCESS;
4544         }
4545
4546         /*
4547          * Command is in flight, or possibly already completed
4548          * by the firmware (but not to the scsi mid layer) but we can't
4549          * distinguish which.  Send the abort down.
4550          */
4551         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4552         if (rc != 0) {
4553                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4554                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4555                         h->scsi_host->host_no,
4556                         dev->bus, dev->target, dev->lun);
4557                 return FAILED;
4558         }
4559         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4560
4561         /* If the abort(s) above completed and actually aborted the
4562          * command, then the command to be aborted should already be
4563          * completed.  If not, wait around a bit more to see if they
4564          * manage to complete normally.
4565          */
4566 #define ABORT_COMPLETE_WAIT_SECS 30
4567         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4568                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4569                 if (!found)
4570                         return SUCCESS;
4571                 msleep(100);
4572         }
4573         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4574                 msg, ABORT_COMPLETE_WAIT_SECS);
4575         return FAILED;
4576 }
4577
4578
4579 /*
4580  * For operations that cannot sleep, a command block is allocated at init,
4581  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4582  * which ones are free or in use.  Lock must be held when calling this.
4583  * cmd_free() is the complement.
4584  */
4585 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4586 {
4587         struct CommandList *c;
4588         int i;
4589         union u64bit temp64;
4590         dma_addr_t cmd_dma_handle, err_dma_handle;
4591         int loopcount;
4592
4593         /* There is some *extremely* small but non-zero chance that that
4594          * multiple threads could get in here, and one thread could
4595          * be scanning through the list of bits looking for a free
4596          * one, but the free ones are always behind him, and other
4597          * threads sneak in behind him and eat them before he can
4598          * get to them, so that while there is always a free one, a
4599          * very unlucky thread might be starved anyway, never able to
4600          * beat the other threads.  In reality, this happens so
4601          * infrequently as to be indistinguishable from never.
4602          */
4603
4604         loopcount = 0;
4605         do {
4606                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4607                 if (i == h->nr_cmds)
4608                         i = 0;
4609                 loopcount++;
4610         } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
4611                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 &&
4612                 loopcount < 10);
4613
4614         /* Thread got starved?  We do not expect this to ever happen. */
4615         if (loopcount >= 10)
4616                 return NULL;
4617
4618         c = h->cmd_pool + i;
4619         memset(c, 0, sizeof(*c));
4620         cmd_dma_handle = h->cmd_pool_dhandle
4621             + i * sizeof(*c);
4622         c->err_info = h->errinfo_pool + i;
4623         memset(c->err_info, 0, sizeof(*c->err_info));
4624         err_dma_handle = h->errinfo_pool_dhandle
4625             + i * sizeof(*c->err_info);
4626
4627         c->cmdindex = i;
4628
4629         INIT_LIST_HEAD(&c->list);
4630         c->busaddr = (u32) cmd_dma_handle;
4631         temp64.val = (u64) err_dma_handle;
4632         c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4633         c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4634
4635         c->h = h;
4636         return c;
4637 }
4638
4639 /* For operations that can wait for kmalloc to possibly sleep,
4640  * this routine can be called. Lock need not be held to call
4641  * cmd_special_alloc. cmd_special_free() is the complement.
4642  */
4643 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4644 {
4645         struct CommandList *c;
4646         dma_addr_t cmd_dma_handle, err_dma_handle;
4647
4648         c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4649         if (c == NULL)
4650                 return NULL;
4651
4652         c->cmd_type = CMD_SCSI;
4653         c->cmdindex = -1;
4654
4655         c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info),
4656                                             &err_dma_handle);
4657
4658         if (c->err_info == NULL) {
4659                 pci_free_consistent(h->pdev,
4660                         sizeof(*c), c, cmd_dma_handle);
4661                 return NULL;
4662         }
4663
4664         INIT_LIST_HEAD(&c->list);
4665         c->busaddr = (u32) cmd_dma_handle;
4666         c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4667         c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4668
4669         c->h = h;
4670         return c;
4671 }
4672
4673 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4674 {
4675         int i;
4676
4677         i = c - h->cmd_pool;
4678         clear_bit(i & (BITS_PER_LONG - 1),
4679                   h->cmd_pool_bits + (i / BITS_PER_LONG));
4680 }
4681
4682 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4683 {
4684         pci_free_consistent(h->pdev, sizeof(*c->err_info),
4685                             c->err_info,
4686                             (dma_addr_t) le64_to_cpu(c->ErrDesc.Addr));
4687         pci_free_consistent(h->pdev, sizeof(*c),
4688                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4689 }
4690
4691 #ifdef CONFIG_COMPAT
4692
4693 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4694         void __user *arg)
4695 {
4696         IOCTL32_Command_struct __user *arg32 =
4697             (IOCTL32_Command_struct __user *) arg;
4698         IOCTL_Command_struct arg64;
4699         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4700         int err;
4701         u32 cp;
4702
4703         memset(&arg64, 0, sizeof(arg64));
4704         err = 0;
4705         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4706                            sizeof(arg64.LUN_info));
4707         err |= copy_from_user(&arg64.Request, &arg32->Request,
4708                            sizeof(arg64.Request));
4709         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4710                            sizeof(arg64.error_info));
4711         err |= get_user(arg64.buf_size, &arg32->buf_size);
4712         err |= get_user(cp, &arg32->buf);
4713         arg64.buf = compat_ptr(cp);
4714         err |= copy_to_user(p, &arg64, sizeof(arg64));
4715
4716         if (err)
4717                 return -EFAULT;
4718
4719         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4720         if (err)
4721                 return err;
4722         err |= copy_in_user(&arg32->error_info, &p->error_info,
4723                          sizeof(arg32->error_info));
4724         if (err)
4725                 return -EFAULT;
4726         return err;
4727 }
4728
4729 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4730         int cmd, void __user *arg)
4731 {
4732         BIG_IOCTL32_Command_struct __user *arg32 =
4733             (BIG_IOCTL32_Command_struct __user *) arg;
4734         BIG_IOCTL_Command_struct arg64;
4735         BIG_IOCTL_Command_struct __user *p =
4736             compat_alloc_user_space(sizeof(arg64));
4737         int err;
4738         u32 cp;
4739
4740         memset(&arg64, 0, sizeof(arg64));
4741         err = 0;
4742         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4743                            sizeof(arg64.LUN_info));
4744         err |= copy_from_user(&arg64.Request, &arg32->Request,
4745                            sizeof(arg64.Request));
4746         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4747                            sizeof(arg64.error_info));
4748         err |= get_user(arg64.buf_size, &arg32->buf_size);
4749         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4750         err |= get_user(cp, &arg32->buf);
4751         arg64.buf = compat_ptr(cp);
4752         err |= copy_to_user(p, &arg64, sizeof(arg64));
4753
4754         if (err)
4755                 return -EFAULT;
4756
4757         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4758         if (err)
4759                 return err;
4760         err |= copy_in_user(&arg32->error_info, &p->error_info,
4761                          sizeof(arg32->error_info));
4762         if (err)
4763                 return -EFAULT;
4764         return err;
4765 }
4766
4767 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4768 {
4769         switch (cmd) {
4770         case CCISS_GETPCIINFO:
4771         case CCISS_GETINTINFO:
4772         case CCISS_SETINTINFO:
4773         case CCISS_GETNODENAME:
4774         case CCISS_SETNODENAME:
4775         case CCISS_GETHEARTBEAT:
4776         case CCISS_GETBUSTYPES:
4777         case CCISS_GETFIRMVER:
4778         case CCISS_GETDRIVVER:
4779         case CCISS_REVALIDVOLS:
4780         case CCISS_DEREGDISK:
4781         case CCISS_REGNEWDISK:
4782         case CCISS_REGNEWD:
4783         case CCISS_RESCANDISK:
4784         case CCISS_GETLUNINFO:
4785                 return hpsa_ioctl(dev, cmd, arg);
4786
4787         case CCISS_PASSTHRU32:
4788                 return hpsa_ioctl32_passthru(dev, cmd, arg);
4789         case CCISS_BIG_PASSTHRU32:
4790                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4791
4792         default:
4793                 return -ENOIOCTLCMD;
4794         }
4795 }
4796 #endif
4797
4798 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4799 {
4800         struct hpsa_pci_info pciinfo;
4801
4802         if (!argp)
4803                 return -EINVAL;
4804         pciinfo.domain = pci_domain_nr(h->pdev->bus);
4805         pciinfo.bus = h->pdev->bus->number;
4806         pciinfo.dev_fn = h->pdev->devfn;
4807         pciinfo.board_id = h->board_id;
4808         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4809                 return -EFAULT;
4810         return 0;
4811 }
4812
4813 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4814 {
4815         DriverVer_type DriverVer;
4816         unsigned char vmaj, vmin, vsubmin;
4817         int rc;
4818
4819         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4820                 &vmaj, &vmin, &vsubmin);
4821         if (rc != 3) {
4822                 dev_info(&h->pdev->dev, "driver version string '%s' "
4823                         "unrecognized.", HPSA_DRIVER_VERSION);
4824                 vmaj = 0;
4825                 vmin = 0;
4826                 vsubmin = 0;
4827         }
4828         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4829         if (!argp)
4830                 return -EINVAL;
4831         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4832                 return -EFAULT;
4833         return 0;
4834 }
4835
4836 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4837 {
4838         IOCTL_Command_struct iocommand;
4839         struct CommandList *c;
4840         char *buff = NULL;
4841         u64 temp64;
4842         int rc = 0;
4843
4844         if (!argp)
4845                 return -EINVAL;
4846         if (!capable(CAP_SYS_RAWIO))
4847                 return -EPERM;
4848         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4849                 return -EFAULT;
4850         if ((iocommand.buf_size < 1) &&
4851             (iocommand.Request.Type.Direction != XFER_NONE)) {
4852                 return -EINVAL;
4853         }
4854         if (iocommand.buf_size > 0) {
4855                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4856                 if (buff == NULL)
4857                         return -EFAULT;
4858                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
4859                         /* Copy the data into the buffer we created */
4860                         if (copy_from_user(buff, iocommand.buf,
4861                                 iocommand.buf_size)) {
4862                                 rc = -EFAULT;
4863                                 goto out_kfree;
4864                         }
4865                 } else {
4866                         memset(buff, 0, iocommand.buf_size);
4867                 }
4868         }
4869         c = cmd_special_alloc(h);
4870         if (c == NULL) {
4871                 rc = -ENOMEM;
4872                 goto out_kfree;
4873         }
4874         /* Fill in the command type */
4875         c->cmd_type = CMD_IOCTL_PEND;
4876         /* Fill in Command Header */
4877         c->Header.ReplyQueue = 0; /* unused in simple mode */
4878         if (iocommand.buf_size > 0) {   /* buffer to fill */
4879                 c->Header.SGList = 1;
4880                 c->Header.SGTotal = cpu_to_le16(1);
4881         } else  { /* no buffers to fill */
4882                 c->Header.SGList = 0;
4883                 c->Header.SGTotal = cpu_to_le16(0);
4884         }
4885         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4886         /* use the kernel address the cmd block for tag */
4887         c->Header.tag = c->busaddr;
4888
4889         /* Fill in Request block */
4890         memcpy(&c->Request, &iocommand.Request,
4891                 sizeof(c->Request));
4892
4893         /* Fill in the scatter gather information */
4894         if (iocommand.buf_size > 0) {
4895                 temp64 = pci_map_single(h->pdev, buff,
4896                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4897                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4898                         c->SG[0].Addr = cpu_to_le64(0);
4899                         c->SG[0].Len = cpu_to_le32(0);
4900                         rc = -ENOMEM;
4901                         goto out;
4902                 }
4903                 c->SG[0].Addr = cpu_to_le64(temp64);
4904                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4905                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4906         }
4907         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4908         if (iocommand.buf_size > 0)
4909                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4910         check_ioctl_unit_attention(h, c);
4911
4912         /* Copy the error information out */
4913         memcpy(&iocommand.error_info, c->err_info,
4914                 sizeof(iocommand.error_info));
4915         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4916                 rc = -EFAULT;
4917                 goto out;
4918         }
4919         if ((iocommand.Request.Type.Direction & XFER_READ) &&
4920                 iocommand.buf_size > 0) {
4921                 /* Copy the data out of the buffer we created */
4922                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4923                         rc = -EFAULT;
4924                         goto out;
4925                 }
4926         }
4927 out:
4928         cmd_special_free(h, c);
4929 out_kfree:
4930         kfree(buff);
4931         return rc;
4932 }
4933
4934 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4935 {
4936         BIG_IOCTL_Command_struct *ioc;
4937         struct CommandList *c;
4938         unsigned char **buff = NULL;
4939         int *buff_size = NULL;
4940         u64 temp64;
4941         BYTE sg_used = 0;
4942         int status = 0;
4943         int i;
4944         u32 left;
4945         u32 sz;
4946         BYTE __user *data_ptr;
4947
4948         if (!argp)
4949                 return -EINVAL;
4950         if (!capable(CAP_SYS_RAWIO))
4951                 return -EPERM;
4952         ioc = (BIG_IOCTL_Command_struct *)
4953             kmalloc(sizeof(*ioc), GFP_KERNEL);
4954         if (!ioc) {
4955                 status = -ENOMEM;
4956                 goto cleanup1;
4957         }
4958         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4959                 status = -EFAULT;
4960                 goto cleanup1;
4961         }
4962         if ((ioc->buf_size < 1) &&
4963             (ioc->Request.Type.Direction != XFER_NONE)) {
4964                 status = -EINVAL;
4965                 goto cleanup1;
4966         }
4967         /* Check kmalloc limits  using all SGs */
4968         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4969                 status = -EINVAL;
4970                 goto cleanup1;
4971         }
4972         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
4973                 status = -EINVAL;
4974                 goto cleanup1;
4975         }
4976         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
4977         if (!buff) {
4978                 status = -ENOMEM;
4979                 goto cleanup1;
4980         }
4981         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
4982         if (!buff_size) {
4983                 status = -ENOMEM;
4984                 goto cleanup1;
4985         }
4986         left = ioc->buf_size;
4987         data_ptr = ioc->buf;
4988         while (left) {
4989                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
4990                 buff_size[sg_used] = sz;
4991                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
4992                 if (buff[sg_used] == NULL) {
4993                         status = -ENOMEM;
4994                         goto cleanup1;
4995                 }
4996                 if (ioc->Request.Type.Direction & XFER_WRITE) {
4997                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
4998                                 status = -EFAULT;
4999                                 goto cleanup1;
5000                         }
5001                 } else
5002                         memset(buff[sg_used], 0, sz);
5003                 left -= sz;
5004                 data_ptr += sz;
5005                 sg_used++;
5006         }
5007         c = cmd_special_alloc(h);
5008         if (c == NULL) {
5009                 status = -ENOMEM;
5010                 goto cleanup1;
5011         }
5012         c->cmd_type = CMD_IOCTL_PEND;
5013         c->Header.ReplyQueue = 0;
5014         c->Header.SGList = (u8) sg_used;
5015         c->Header.SGTotal = cpu_to_le16(sg_used);
5016         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5017         c->Header.tag = c->busaddr;
5018         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5019         if (ioc->buf_size > 0) {
5020                 int i;
5021                 for (i = 0; i < sg_used; i++) {
5022                         temp64 = pci_map_single(h->pdev, buff[i],
5023                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
5024                         if (dma_mapping_error(&h->pdev->dev,
5025                                                         (dma_addr_t) temp64)) {
5026                                 c->SG[i].Addr = cpu_to_le64(0);
5027                                 c->SG[i].Len = cpu_to_le32(0);
5028                                 hpsa_pci_unmap(h->pdev, c, i,
5029                                         PCI_DMA_BIDIRECTIONAL);
5030                                 status = -ENOMEM;
5031                                 goto cleanup0;
5032                         }
5033                         c->SG[i].Addr = cpu_to_le64(temp64);
5034                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
5035                         c->SG[i].Ext = cpu_to_le32(0);
5036                 }
5037                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5038         }
5039         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5040         if (sg_used)
5041                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5042         check_ioctl_unit_attention(h, c);
5043         /* Copy the error information out */
5044         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5045         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5046                 status = -EFAULT;
5047                 goto cleanup0;
5048         }
5049         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5050                 /* Copy the data out of the buffer we created */
5051                 BYTE __user *ptr = ioc->buf;
5052                 for (i = 0; i < sg_used; i++) {
5053                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
5054                                 status = -EFAULT;
5055                                 goto cleanup0;
5056                         }
5057                         ptr += buff_size[i];
5058                 }
5059         }
5060         status = 0;
5061 cleanup0:
5062         cmd_special_free(h, c);
5063 cleanup1:
5064         if (buff) {
5065                 for (i = 0; i < sg_used; i++)
5066                         kfree(buff[i]);
5067                 kfree(buff);
5068         }
5069         kfree(buff_size);
5070         kfree(ioc);
5071         return status;
5072 }
5073
5074 static void check_ioctl_unit_attention(struct ctlr_info *h,
5075         struct CommandList *c)
5076 {
5077         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5078                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5079                 (void) check_for_unit_attention(h, c);
5080 }
5081
5082 static int increment_passthru_count(struct ctlr_info *h)
5083 {
5084         unsigned long flags;
5085
5086         spin_lock_irqsave(&h->passthru_count_lock, flags);
5087         if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5088                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5089                 return -1;
5090         }
5091         h->passthru_count++;
5092         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5093         return 0;
5094 }
5095
5096 static void decrement_passthru_count(struct ctlr_info *h)
5097 {
5098         unsigned long flags;
5099
5100         spin_lock_irqsave(&h->passthru_count_lock, flags);
5101         if (h->passthru_count <= 0) {
5102                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5103                 /* not expecting to get here. */
5104                 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5105                 return;
5106         }
5107         h->passthru_count--;
5108         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5109 }
5110
5111 /*
5112  * ioctl
5113  */
5114 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5115 {
5116         struct ctlr_info *h;
5117         void __user *argp = (void __user *)arg;
5118         int rc;
5119
5120         h = sdev_to_hba(dev);
5121
5122         switch (cmd) {
5123         case CCISS_DEREGDISK:
5124         case CCISS_REGNEWDISK:
5125         case CCISS_REGNEWD:
5126                 hpsa_scan_start(h->scsi_host);
5127                 return 0;
5128         case CCISS_GETPCIINFO:
5129                 return hpsa_getpciinfo_ioctl(h, argp);
5130         case CCISS_GETDRIVVER:
5131                 return hpsa_getdrivver_ioctl(h, argp);
5132         case CCISS_PASSTHRU:
5133                 if (increment_passthru_count(h))
5134                         return -EAGAIN;
5135                 rc = hpsa_passthru_ioctl(h, argp);
5136                 decrement_passthru_count(h);
5137                 return rc;
5138         case CCISS_BIG_PASSTHRU:
5139                 if (increment_passthru_count(h))
5140                         return -EAGAIN;
5141                 rc = hpsa_big_passthru_ioctl(h, argp);
5142                 decrement_passthru_count(h);
5143                 return rc;
5144         default:
5145                 return -ENOTTY;
5146         }
5147 }
5148
5149 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5150                                 u8 reset_type)
5151 {
5152         struct CommandList *c;
5153
5154         c = cmd_alloc(h);
5155         if (!c)
5156                 return -ENOMEM;
5157         /* fill_cmd can't fail here, no data buffer to map */
5158         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5159                 RAID_CTLR_LUNID, TYPE_MSG);
5160         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5161         c->waiting = NULL;
5162         enqueue_cmd_and_start_io(h, c);
5163         /* Don't wait for completion, the reset won't complete.  Don't free
5164          * the command either.  This is the last command we will send before
5165          * re-initializing everything, so it doesn't matter and won't leak.
5166          */
5167         return 0;
5168 }
5169
5170 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5171         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5172         int cmd_type)
5173 {
5174         int pci_dir = XFER_NONE;
5175         struct CommandList *a; /* for commands to be aborted */
5176         u32 tupper, tlower;
5177
5178         c->cmd_type = CMD_IOCTL_PEND;
5179         c->Header.ReplyQueue = 0;
5180         if (buff != NULL && size > 0) {
5181                 c->Header.SGList = 1;
5182                 c->Header.SGTotal = cpu_to_le16(1);
5183         } else {
5184                 c->Header.SGList = 0;
5185                 c->Header.SGTotal = cpu_to_le16(0);
5186         }
5187         c->Header.tag = c->busaddr;
5188         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5189
5190         if (cmd_type == TYPE_CMD) {
5191                 switch (cmd) {
5192                 case HPSA_INQUIRY:
5193                         /* are we trying to read a vital product page */
5194                         if (page_code & VPD_PAGE) {
5195                                 c->Request.CDB[1] = 0x01;
5196                                 c->Request.CDB[2] = (page_code & 0xff);
5197                         }
5198                         c->Request.CDBLen = 6;
5199                         c->Request.type_attr_dir =
5200                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5201                         c->Request.Timeout = 0;
5202                         c->Request.CDB[0] = HPSA_INQUIRY;
5203                         c->Request.CDB[4] = size & 0xFF;
5204                         break;
5205                 case HPSA_REPORT_LOG:
5206                 case HPSA_REPORT_PHYS:
5207                         /* Talking to controller so It's a physical command
5208                            mode = 00 target = 0.  Nothing to write.
5209                          */
5210                         c->Request.CDBLen = 12;
5211                         c->Request.type_attr_dir =
5212                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5213                         c->Request.Timeout = 0;
5214                         c->Request.CDB[0] = cmd;
5215                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5216                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5217                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5218                         c->Request.CDB[9] = size & 0xFF;
5219                         break;
5220                 case HPSA_CACHE_FLUSH:
5221                         c->Request.CDBLen = 12;
5222                         c->Request.type_attr_dir =
5223                                         TYPE_ATTR_DIR(cmd_type,
5224                                                 ATTR_SIMPLE, XFER_WRITE);
5225                         c->Request.Timeout = 0;
5226                         c->Request.CDB[0] = BMIC_WRITE;
5227                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5228                         c->Request.CDB[7] = (size >> 8) & 0xFF;
5229                         c->Request.CDB[8] = size & 0xFF;
5230                         break;
5231                 case TEST_UNIT_READY:
5232                         c->Request.CDBLen = 6;
5233                         c->Request.type_attr_dir =
5234                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5235                         c->Request.Timeout = 0;
5236                         break;
5237                 case HPSA_GET_RAID_MAP:
5238                         c->Request.CDBLen = 12;
5239                         c->Request.type_attr_dir =
5240                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5241                         c->Request.Timeout = 0;
5242                         c->Request.CDB[0] = HPSA_CISS_READ;
5243                         c->Request.CDB[1] = cmd;
5244                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5245                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5246                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5247                         c->Request.CDB[9] = size & 0xFF;
5248                         break;
5249                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5250                         c->Request.CDBLen = 10;
5251                         c->Request.type_attr_dir =
5252                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5253                         c->Request.Timeout = 0;
5254                         c->Request.CDB[0] = BMIC_READ;
5255                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5256                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5257                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5258                         break;
5259                 default:
5260                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5261                         BUG();
5262                         return -1;
5263                 }
5264         } else if (cmd_type == TYPE_MSG) {
5265                 switch (cmd) {
5266
5267                 case  HPSA_DEVICE_RESET_MSG:
5268                         c->Request.CDBLen = 16;
5269                         c->Request.type_attr_dir =
5270                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5271                         c->Request.Timeout = 0; /* Don't time out */
5272                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5273                         c->Request.CDB[0] =  cmd;
5274                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5275                         /* If bytes 4-7 are zero, it means reset the */
5276                         /* LunID device */
5277                         c->Request.CDB[4] = 0x00;
5278                         c->Request.CDB[5] = 0x00;
5279                         c->Request.CDB[6] = 0x00;
5280                         c->Request.CDB[7] = 0x00;
5281                         break;
5282                 case  HPSA_ABORT_MSG:
5283                         a = buff;       /* point to command to be aborted */
5284                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%016llx using request Tag:0x%016llx",
5285                                 a->Header.tag, c->Header.tag);
5286                         tlower = (u32) (a->Header.tag >> 32);
5287                         tupper = (u32) (a->Header.tag & 0x0ffffffffULL);
5288                         c->Request.CDBLen = 16;
5289                         c->Request.type_attr_dir =
5290                                         TYPE_ATTR_DIR(cmd_type,
5291                                                 ATTR_SIMPLE, XFER_WRITE);
5292                         c->Request.Timeout = 0; /* Don't time out */
5293                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5294                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5295                         c->Request.CDB[2] = 0x00; /* reserved */
5296                         c->Request.CDB[3] = 0x00; /* reserved */
5297                         /* Tag to abort goes in CDB[4]-CDB[11] */
5298                         c->Request.CDB[4] = tlower & 0xFF;
5299                         c->Request.CDB[5] = (tlower >> 8) & 0xFF;
5300                         c->Request.CDB[6] = (tlower >> 16) & 0xFF;
5301                         c->Request.CDB[7] = (tlower >> 24) & 0xFF;
5302                         c->Request.CDB[8] = tupper & 0xFF;
5303                         c->Request.CDB[9] = (tupper >> 8) & 0xFF;
5304                         c->Request.CDB[10] = (tupper >> 16) & 0xFF;
5305                         c->Request.CDB[11] = (tupper >> 24) & 0xFF;
5306                         c->Request.CDB[12] = 0x00; /* reserved */
5307                         c->Request.CDB[13] = 0x00; /* reserved */
5308                         c->Request.CDB[14] = 0x00; /* reserved */
5309                         c->Request.CDB[15] = 0x00; /* reserved */
5310                 break;
5311                 default:
5312                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
5313                                 cmd);
5314                         BUG();
5315                 }
5316         } else {
5317                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5318                 BUG();
5319         }
5320
5321         switch (GET_DIR(c->Request.type_attr_dir)) {
5322         case XFER_READ:
5323                 pci_dir = PCI_DMA_FROMDEVICE;
5324                 break;
5325         case XFER_WRITE:
5326                 pci_dir = PCI_DMA_TODEVICE;
5327                 break;
5328         case XFER_NONE:
5329                 pci_dir = PCI_DMA_NONE;
5330                 break;
5331         default:
5332                 pci_dir = PCI_DMA_BIDIRECTIONAL;
5333         }
5334         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5335                 return -1;
5336         return 0;
5337 }
5338
5339 /*
5340  * Map (physical) PCI mem into (virtual) kernel space
5341  */
5342 static void __iomem *remap_pci_mem(ulong base, ulong size)
5343 {
5344         ulong page_base = ((ulong) base) & PAGE_MASK;
5345         ulong page_offs = ((ulong) base) - page_base;
5346         void __iomem *page_remapped = ioremap_nocache(page_base,
5347                 page_offs + size);
5348
5349         return page_remapped ? (page_remapped + page_offs) : NULL;
5350 }
5351
5352 /* Takes cmds off the submission queue and sends them to the hardware,
5353  * then puts them on the queue of cmds waiting for completion.
5354  * Assumes h->lock is held
5355  */
5356 static void start_io(struct ctlr_info *h, unsigned long *flags)
5357 {
5358         struct CommandList *c;
5359
5360         while (!list_empty(&h->reqQ)) {
5361                 c = list_entry(h->reqQ.next, struct CommandList, list);
5362                 /* can't do anything if fifo is full */
5363                 if ((h->access.fifo_full(h))) {
5364                         h->fifo_recently_full = 1;
5365                         dev_warn(&h->pdev->dev, "fifo full\n");
5366                         break;
5367                 }
5368                 h->fifo_recently_full = 0;
5369
5370                 /* Get the first entry from the Request Q */
5371                 removeQ(c);
5372                 h->Qdepth--;
5373
5374                 /* Put job onto the completed Q */
5375                 addQ(&h->cmpQ, c);
5376                 atomic_inc(&h->commands_outstanding);
5377                 spin_unlock_irqrestore(&h->lock, *flags);
5378                 /* Tell the controller execute command */
5379                 h->access.submit_command(h, c);
5380                 spin_lock_irqsave(&h->lock, *flags);
5381         }
5382 }
5383
5384 static void lock_and_start_io(struct ctlr_info *h)
5385 {
5386         unsigned long flags;
5387
5388         spin_lock_irqsave(&h->lock, flags);
5389         start_io(h, &flags);
5390         spin_unlock_irqrestore(&h->lock, flags);
5391 }
5392
5393 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5394 {
5395         return h->access.command_completed(h, q);
5396 }
5397
5398 static inline bool interrupt_pending(struct ctlr_info *h)
5399 {
5400         return h->access.intr_pending(h);
5401 }
5402
5403 static inline long interrupt_not_for_us(struct ctlr_info *h)
5404 {
5405         return (h->access.intr_pending(h) == 0) ||
5406                 (h->interrupts_enabled == 0);
5407 }
5408
5409 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5410         u32 raw_tag)
5411 {
5412         if (unlikely(tag_index >= h->nr_cmds)) {
5413                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5414                 return 1;
5415         }
5416         return 0;
5417 }
5418
5419 static inline void finish_cmd(struct CommandList *c)
5420 {
5421         unsigned long flags;
5422         int io_may_be_stalled = 0;
5423         struct ctlr_info *h = c->h;
5424         int count;
5425
5426         spin_lock_irqsave(&h->lock, flags);
5427         removeQ(c);
5428
5429         /*
5430          * Check for possibly stalled i/o.
5431          *
5432          * If a fifo_full condition is encountered, requests will back up
5433          * in h->reqQ.  This queue is only emptied out by start_io which is
5434          * only called when a new i/o request comes in.  If no i/o's are
5435          * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
5436          * start_io from here if we detect such a danger.
5437          *
5438          * Normally, we shouldn't hit this case, but pounding on the
5439          * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
5440          * commands_outstanding is low.  We want to avoid calling
5441          * start_io from in here as much as possible, and esp. don't
5442          * want to get in a cycle where we call start_io every time
5443          * through here.
5444          */
5445         count = atomic_read(&h->commands_outstanding);
5446         spin_unlock_irqrestore(&h->lock, flags);
5447         if (unlikely(h->fifo_recently_full) && count < 5)
5448                 io_may_be_stalled = 1;
5449
5450         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5451         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5452                         || c->cmd_type == CMD_IOACCEL2))
5453                 complete_scsi_command(c);
5454         else if (c->cmd_type == CMD_IOCTL_PEND)
5455                 complete(c->waiting);
5456         if (unlikely(io_may_be_stalled))
5457                 lock_and_start_io(h);
5458 }
5459
5460 static inline u32 hpsa_tag_contains_index(u32 tag)
5461 {
5462         return tag & DIRECT_LOOKUP_BIT;
5463 }
5464
5465 static inline u32 hpsa_tag_to_index(u32 tag)
5466 {
5467         return tag >> DIRECT_LOOKUP_SHIFT;
5468 }
5469
5470
5471 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5472 {
5473 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5474 #define HPSA_SIMPLE_ERROR_BITS 0x03
5475         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5476                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5477         return tag & ~HPSA_PERF_ERROR_BITS;
5478 }
5479
5480 /* process completion of an indexed ("direct lookup") command */
5481 static inline void process_indexed_cmd(struct ctlr_info *h,
5482         u32 raw_tag)
5483 {
5484         u32 tag_index;
5485         struct CommandList *c;
5486
5487         tag_index = hpsa_tag_to_index(raw_tag);
5488         if (!bad_tag(h, tag_index, raw_tag)) {
5489                 c = h->cmd_pool + tag_index;
5490                 finish_cmd(c);
5491         }
5492 }
5493
5494 /* process completion of a non-indexed command */
5495 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5496         u32 raw_tag)
5497 {
5498         u32 tag;
5499         struct CommandList *c = NULL;
5500         unsigned long flags;
5501
5502         tag = hpsa_tag_discard_error_bits(h, raw_tag);
5503         spin_lock_irqsave(&h->lock, flags);
5504         list_for_each_entry(c, &h->cmpQ, list) {
5505                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5506                         spin_unlock_irqrestore(&h->lock, flags);
5507                         finish_cmd(c);
5508                         return;
5509                 }
5510         }
5511         spin_unlock_irqrestore(&h->lock, flags);
5512         bad_tag(h, h->nr_cmds + 1, raw_tag);
5513 }
5514
5515 /* Some controllers, like p400, will give us one interrupt
5516  * after a soft reset, even if we turned interrupts off.
5517  * Only need to check for this in the hpsa_xxx_discard_completions
5518  * functions.
5519  */
5520 static int ignore_bogus_interrupt(struct ctlr_info *h)
5521 {
5522         if (likely(!reset_devices))
5523                 return 0;
5524
5525         if (likely(h->interrupts_enabled))
5526                 return 0;
5527
5528         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5529                 "(known firmware bug.)  Ignoring.\n");
5530
5531         return 1;
5532 }
5533
5534 /*
5535  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5536  * Relies on (h-q[x] == x) being true for x such that
5537  * 0 <= x < MAX_REPLY_QUEUES.
5538  */
5539 static struct ctlr_info *queue_to_hba(u8 *queue)
5540 {
5541         return container_of((queue - *queue), struct ctlr_info, q[0]);
5542 }
5543
5544 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5545 {
5546         struct ctlr_info *h = queue_to_hba(queue);
5547         u8 q = *(u8 *) queue;
5548         u32 raw_tag;
5549
5550         if (ignore_bogus_interrupt(h))
5551                 return IRQ_NONE;
5552
5553         if (interrupt_not_for_us(h))
5554                 return IRQ_NONE;
5555         h->last_intr_timestamp = get_jiffies_64();
5556         while (interrupt_pending(h)) {
5557                 raw_tag = get_next_completion(h, q);
5558                 while (raw_tag != FIFO_EMPTY)
5559                         raw_tag = next_command(h, q);
5560         }
5561         return IRQ_HANDLED;
5562 }
5563
5564 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5565 {
5566         struct ctlr_info *h = queue_to_hba(queue);
5567         u32 raw_tag;
5568         u8 q = *(u8 *) queue;
5569
5570         if (ignore_bogus_interrupt(h))
5571                 return IRQ_NONE;
5572
5573         h->last_intr_timestamp = get_jiffies_64();
5574         raw_tag = get_next_completion(h, q);
5575         while (raw_tag != FIFO_EMPTY)
5576                 raw_tag = next_command(h, q);
5577         return IRQ_HANDLED;
5578 }
5579
5580 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5581 {
5582         struct ctlr_info *h = queue_to_hba((u8 *) queue);
5583         u32 raw_tag;
5584         u8 q = *(u8 *) queue;
5585
5586         if (interrupt_not_for_us(h))
5587                 return IRQ_NONE;
5588         h->last_intr_timestamp = get_jiffies_64();
5589         while (interrupt_pending(h)) {
5590                 raw_tag = get_next_completion(h, q);
5591                 while (raw_tag != FIFO_EMPTY) {
5592                         if (likely(hpsa_tag_contains_index(raw_tag)))
5593                                 process_indexed_cmd(h, raw_tag);
5594                         else
5595                                 process_nonindexed_cmd(h, raw_tag);
5596                         raw_tag = next_command(h, q);
5597                 }
5598         }
5599         return IRQ_HANDLED;
5600 }
5601
5602 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5603 {
5604         struct ctlr_info *h = queue_to_hba(queue);
5605         u32 raw_tag;
5606         u8 q = *(u8 *) queue;
5607
5608         h->last_intr_timestamp = get_jiffies_64();
5609         raw_tag = get_next_completion(h, q);
5610         while (raw_tag != FIFO_EMPTY) {
5611                 if (likely(hpsa_tag_contains_index(raw_tag)))
5612                         process_indexed_cmd(h, raw_tag);
5613                 else
5614                         process_nonindexed_cmd(h, raw_tag);
5615                 raw_tag = next_command(h, q);
5616         }
5617         return IRQ_HANDLED;
5618 }
5619
5620 /* Send a message CDB to the firmware. Careful, this only works
5621  * in simple mode, not performant mode due to the tag lookup.
5622  * We only ever use this immediately after a controller reset.
5623  */
5624 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5625                         unsigned char type)
5626 {
5627         struct Command {
5628                 struct CommandListHeader CommandHeader;
5629                 struct RequestBlock Request;
5630                 struct ErrDescriptor ErrorDescriptor;
5631         };
5632         struct Command *cmd;
5633         static const size_t cmd_sz = sizeof(*cmd) +
5634                                         sizeof(cmd->ErrorDescriptor);
5635         dma_addr_t paddr64;
5636         uint32_t paddr32, tag;
5637         void __iomem *vaddr;
5638         int i, err;
5639
5640         vaddr = pci_ioremap_bar(pdev, 0);
5641         if (vaddr == NULL)
5642                 return -ENOMEM;
5643
5644         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5645          * CCISS commands, so they must be allocated from the lower 4GiB of
5646          * memory.
5647          */
5648         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5649         if (err) {
5650                 iounmap(vaddr);
5651                 return -ENOMEM;
5652         }
5653
5654         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5655         if (cmd == NULL) {
5656                 iounmap(vaddr);
5657                 return -ENOMEM;
5658         }
5659
5660         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
5661          * although there's no guarantee, we assume that the address is at
5662          * least 4-byte aligned (most likely, it's page-aligned).
5663          */
5664         paddr32 = paddr64;
5665
5666         cmd->CommandHeader.ReplyQueue = 0;
5667         cmd->CommandHeader.SGList = 0;
5668         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5669         cmd->CommandHeader.tag = paddr32;
5670         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5671
5672         cmd->Request.CDBLen = 16;
5673         cmd->Request.type_attr_dir =
5674                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5675         cmd->Request.Timeout = 0; /* Don't time out */
5676         cmd->Request.CDB[0] = opcode;
5677         cmd->Request.CDB[1] = type;
5678         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5679         cmd->ErrorDescriptor.Addr =
5680                         cpu_to_le64((paddr32 + sizeof(*cmd)));
5681         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5682
5683         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
5684
5685         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5686                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5687                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5688                         break;
5689                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5690         }
5691
5692         iounmap(vaddr);
5693
5694         /* we leak the DMA buffer here ... no choice since the controller could
5695          *  still complete the command.
5696          */
5697         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5698                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5699                         opcode, type);
5700                 return -ETIMEDOUT;
5701         }
5702
5703         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5704
5705         if (tag & HPSA_ERROR_BIT) {
5706                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5707                         opcode, type);
5708                 return -EIO;
5709         }
5710
5711         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5712                 opcode, type);
5713         return 0;
5714 }
5715
5716 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5717
5718 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5719         void __iomem *vaddr, u32 use_doorbell)
5720 {
5721         u16 pmcsr;
5722         int pos;
5723
5724         if (use_doorbell) {
5725                 /* For everything after the P600, the PCI power state method
5726                  * of resetting the controller doesn't work, so we have this
5727                  * other way using the doorbell register.
5728                  */
5729                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5730                 writel(use_doorbell, vaddr + SA5_DOORBELL);
5731
5732                 /* PMC hardware guys tell us we need a 10 second delay after
5733                  * doorbell reset and before any attempt to talk to the board
5734                  * at all to ensure that this actually works and doesn't fall
5735                  * over in some weird corner cases.
5736                  */
5737                 msleep(10000);
5738         } else { /* Try to do it the PCI power state way */
5739
5740                 /* Quoting from the Open CISS Specification: "The Power
5741                  * Management Control/Status Register (CSR) controls the power
5742                  * state of the device.  The normal operating state is D0,
5743                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5744                  * the controller, place the interface device in D3 then to D0,
5745                  * this causes a secondary PCI reset which will reset the
5746                  * controller." */
5747
5748                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
5749                 if (pos == 0) {
5750                         dev_err(&pdev->dev,
5751                                 "hpsa_reset_controller: "
5752                                 "PCI PM not supported\n");
5753                         return -ENODEV;
5754                 }
5755                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5756                 /* enter the D3hot power management state */
5757                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
5758                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5759                 pmcsr |= PCI_D3hot;
5760                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5761
5762                 msleep(500);
5763
5764                 /* enter the D0 power management state */
5765                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5766                 pmcsr |= PCI_D0;
5767                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5768
5769                 /*
5770                  * The P600 requires a small delay when changing states.
5771                  * Otherwise we may think the board did not reset and we bail.
5772                  * This for kdump only and is particular to the P600.
5773                  */
5774                 msleep(500);
5775         }
5776         return 0;
5777 }
5778
5779 static void init_driver_version(char *driver_version, int len)
5780 {
5781         memset(driver_version, 0, len);
5782         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5783 }
5784
5785 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5786 {
5787         char *driver_version;
5788         int i, size = sizeof(cfgtable->driver_version);
5789
5790         driver_version = kmalloc(size, GFP_KERNEL);
5791         if (!driver_version)
5792                 return -ENOMEM;
5793
5794         init_driver_version(driver_version, size);
5795         for (i = 0; i < size; i++)
5796                 writeb(driver_version[i], &cfgtable->driver_version[i]);
5797         kfree(driver_version);
5798         return 0;
5799 }
5800
5801 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5802                                           unsigned char *driver_ver)
5803 {
5804         int i;
5805
5806         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5807                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5808 }
5809
5810 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5811 {
5812
5813         char *driver_ver, *old_driver_ver;
5814         int rc, size = sizeof(cfgtable->driver_version);
5815
5816         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5817         if (!old_driver_ver)
5818                 return -ENOMEM;
5819         driver_ver = old_driver_ver + size;
5820
5821         /* After a reset, the 32 bytes of "driver version" in the cfgtable
5822          * should have been changed, otherwise we know the reset failed.
5823          */
5824         init_driver_version(old_driver_ver, size);
5825         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5826         rc = !memcmp(driver_ver, old_driver_ver, size);
5827         kfree(old_driver_ver);
5828         return rc;
5829 }
5830 /* This does a hard reset of the controller using PCI power management
5831  * states or the using the doorbell register.
5832  */
5833 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5834 {
5835         u64 cfg_offset;
5836         u32 cfg_base_addr;
5837         u64 cfg_base_addr_index;
5838         void __iomem *vaddr;
5839         unsigned long paddr;
5840         u32 misc_fw_support;
5841         int rc;
5842         struct CfgTable __iomem *cfgtable;
5843         u32 use_doorbell;
5844         u32 board_id;
5845         u16 command_register;
5846
5847         /* For controllers as old as the P600, this is very nearly
5848          * the same thing as
5849          *
5850          * pci_save_state(pci_dev);
5851          * pci_set_power_state(pci_dev, PCI_D3hot);
5852          * pci_set_power_state(pci_dev, PCI_D0);
5853          * pci_restore_state(pci_dev);
5854          *
5855          * For controllers newer than the P600, the pci power state
5856          * method of resetting doesn't work so we have another way
5857          * using the doorbell register.
5858          */
5859
5860         rc = hpsa_lookup_board_id(pdev, &board_id);
5861         if (rc < 0 || !ctlr_is_resettable(board_id)) {
5862                 dev_warn(&pdev->dev, "Not resetting device.\n");
5863                 return -ENODEV;
5864         }
5865
5866         /* if controller is soft- but not hard resettable... */
5867         if (!ctlr_is_hard_resettable(board_id))
5868                 return -ENOTSUPP; /* try soft reset later. */
5869
5870         /* Save the PCI command register */
5871         pci_read_config_word(pdev, 4, &command_register);
5872         pci_save_state(pdev);
5873
5874         /* find the first memory BAR, so we can find the cfg table */
5875         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5876         if (rc)
5877                 return rc;
5878         vaddr = remap_pci_mem(paddr, 0x250);
5879         if (!vaddr)
5880                 return -ENOMEM;
5881
5882         /* find cfgtable in order to check if reset via doorbell is supported */
5883         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5884                                         &cfg_base_addr_index, &cfg_offset);
5885         if (rc)
5886                 goto unmap_vaddr;
5887         cfgtable = remap_pci_mem(pci_resource_start(pdev,
5888                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5889         if (!cfgtable) {
5890                 rc = -ENOMEM;
5891                 goto unmap_vaddr;
5892         }
5893         rc = write_driver_ver_to_cfgtable(cfgtable);
5894         if (rc)
5895                 goto unmap_vaddr;
5896
5897         /* If reset via doorbell register is supported, use that.
5898          * There are two such methods.  Favor the newest method.
5899          */
5900         misc_fw_support = readl(&cfgtable->misc_fw_support);
5901         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5902         if (use_doorbell) {
5903                 use_doorbell = DOORBELL_CTLR_RESET2;
5904         } else {
5905                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5906                 if (use_doorbell) {
5907                         dev_warn(&pdev->dev, "Soft reset not supported. "
5908                                 "Firmware update is required.\n");
5909                         rc = -ENOTSUPP; /* try soft reset */
5910                         goto unmap_cfgtable;
5911                 }
5912         }
5913
5914         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5915         if (rc)
5916                 goto unmap_cfgtable;
5917
5918         pci_restore_state(pdev);
5919         pci_write_config_word(pdev, 4, command_register);
5920
5921         /* Some devices (notably the HP Smart Array 5i Controller)
5922            need a little pause here */
5923         msleep(HPSA_POST_RESET_PAUSE_MSECS);
5924
5925         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5926         if (rc) {
5927                 dev_warn(&pdev->dev,
5928                         "failed waiting for board to become ready "
5929                         "after hard reset\n");
5930                 goto unmap_cfgtable;
5931         }
5932
5933         rc = controller_reset_failed(vaddr);
5934         if (rc < 0)
5935                 goto unmap_cfgtable;
5936         if (rc) {
5937                 dev_warn(&pdev->dev, "Unable to successfully reset "
5938                         "controller. Will try soft reset.\n");
5939                 rc = -ENOTSUPP;
5940         } else {
5941                 dev_info(&pdev->dev, "board ready after hard reset.\n");
5942         }
5943
5944 unmap_cfgtable:
5945         iounmap(cfgtable);
5946
5947 unmap_vaddr:
5948         iounmap(vaddr);
5949         return rc;
5950 }
5951
5952 /*
5953  *  We cannot read the structure directly, for portability we must use
5954  *   the io functions.
5955  *   This is for debug only.
5956  */
5957 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5958 {
5959 #ifdef HPSA_DEBUG
5960         int i;
5961         char temp_name[17];
5962
5963         dev_info(dev, "Controller Configuration information\n");
5964         dev_info(dev, "------------------------------------\n");
5965         for (i = 0; i < 4; i++)
5966                 temp_name[i] = readb(&(tb->Signature[i]));
5967         temp_name[4] = '\0';
5968         dev_info(dev, "   Signature = %s\n", temp_name);
5969         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
5970         dev_info(dev, "   Transport methods supported = 0x%x\n",
5971                readl(&(tb->TransportSupport)));
5972         dev_info(dev, "   Transport methods active = 0x%x\n",
5973                readl(&(tb->TransportActive)));
5974         dev_info(dev, "   Requested transport Method = 0x%x\n",
5975                readl(&(tb->HostWrite.TransportRequest)));
5976         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
5977                readl(&(tb->HostWrite.CoalIntDelay)));
5978         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
5979                readl(&(tb->HostWrite.CoalIntCount)));
5980         dev_info(dev, "   Max outstanding commands = 0x%d\n",
5981                readl(&(tb->CmdsOutMax)));
5982         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5983         for (i = 0; i < 16; i++)
5984                 temp_name[i] = readb(&(tb->ServerName[i]));
5985         temp_name[16] = '\0';
5986         dev_info(dev, "   Server Name = %s\n", temp_name);
5987         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
5988                 readl(&(tb->HeartBeat)));
5989 #endif                          /* HPSA_DEBUG */
5990 }
5991
5992 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5993 {
5994         int i, offset, mem_type, bar_type;
5995
5996         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
5997                 return 0;
5998         offset = 0;
5999         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6000                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6001                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6002                         offset += 4;
6003                 else {
6004                         mem_type = pci_resource_flags(pdev, i) &
6005                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6006                         switch (mem_type) {
6007                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
6008                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6009                                 offset += 4;    /* 32 bit */
6010                                 break;
6011                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
6012                                 offset += 8;
6013                                 break;
6014                         default:        /* reserved in PCI 2.2 */
6015                                 dev_warn(&pdev->dev,
6016                                        "base address is invalid\n");
6017                                 return -1;
6018                                 break;
6019                         }
6020                 }
6021                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6022                         return i + 1;
6023         }
6024         return -1;
6025 }
6026
6027 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6028  * controllers that are capable. If not, we use IO-APIC mode.
6029  */
6030
6031 static void hpsa_interrupt_mode(struct ctlr_info *h)
6032 {
6033 #ifdef CONFIG_PCI_MSI
6034         int err, i;
6035         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6036
6037         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6038                 hpsa_msix_entries[i].vector = 0;
6039                 hpsa_msix_entries[i].entry = i;
6040         }
6041
6042         /* Some boards advertise MSI but don't really support it */
6043         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6044             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6045                 goto default_int_mode;
6046         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6047                 dev_info(&h->pdev->dev, "MSIX\n");
6048                 h->msix_vector = MAX_REPLY_QUEUES;
6049                 if (h->msix_vector > num_online_cpus())
6050                         h->msix_vector = num_online_cpus();
6051                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6052                                             1, h->msix_vector);
6053                 if (err < 0) {
6054                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6055                         h->msix_vector = 0;
6056                         goto single_msi_mode;
6057                 } else if (err < h->msix_vector) {
6058                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6059                                "available\n", err);
6060                 }
6061                 h->msix_vector = err;
6062                 for (i = 0; i < h->msix_vector; i++)
6063                         h->intr[i] = hpsa_msix_entries[i].vector;
6064                 return;
6065         }
6066 single_msi_mode:
6067         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6068                 dev_info(&h->pdev->dev, "MSI\n");
6069                 if (!pci_enable_msi(h->pdev))
6070                         h->msi_vector = 1;
6071                 else
6072                         dev_warn(&h->pdev->dev, "MSI init failed\n");
6073         }
6074 default_int_mode:
6075 #endif                          /* CONFIG_PCI_MSI */
6076         /* if we get here we're going to use the default interrupt mode */
6077         h->intr[h->intr_mode] = h->pdev->irq;
6078 }
6079
6080 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6081 {
6082         int i;
6083         u32 subsystem_vendor_id, subsystem_device_id;
6084
6085         subsystem_vendor_id = pdev->subsystem_vendor;
6086         subsystem_device_id = pdev->subsystem_device;
6087         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6088                     subsystem_vendor_id;
6089
6090         for (i = 0; i < ARRAY_SIZE(products); i++)
6091                 if (*board_id == products[i].board_id)
6092                         return i;
6093
6094         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6095                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6096                 !hpsa_allow_any) {
6097                 dev_warn(&pdev->dev, "unrecognized board ID: "
6098                         "0x%08x, ignoring.\n", *board_id);
6099                         return -ENODEV;
6100         }
6101         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6102 }
6103
6104 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6105                                     unsigned long *memory_bar)
6106 {
6107         int i;
6108
6109         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6110                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6111                         /* addressing mode bits already removed */
6112                         *memory_bar = pci_resource_start(pdev, i);
6113                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6114                                 *memory_bar);
6115                         return 0;
6116                 }
6117         dev_warn(&pdev->dev, "no memory BAR found\n");
6118         return -ENODEV;
6119 }
6120
6121 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6122                                      int wait_for_ready)
6123 {
6124         int i, iterations;
6125         u32 scratchpad;
6126         if (wait_for_ready)
6127                 iterations = HPSA_BOARD_READY_ITERATIONS;
6128         else
6129                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6130
6131         for (i = 0; i < iterations; i++) {
6132                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6133                 if (wait_for_ready) {
6134                         if (scratchpad == HPSA_FIRMWARE_READY)
6135                                 return 0;
6136                 } else {
6137                         if (scratchpad != HPSA_FIRMWARE_READY)
6138                                 return 0;
6139                 }
6140                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6141         }
6142         dev_warn(&pdev->dev, "board not ready, timed out.\n");
6143         return -ENODEV;
6144 }
6145
6146 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6147                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6148                                u64 *cfg_offset)
6149 {
6150         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6151         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6152         *cfg_base_addr &= (u32) 0x0000ffff;
6153         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6154         if (*cfg_base_addr_index == -1) {
6155                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6156                 return -ENODEV;
6157         }
6158         return 0;
6159 }
6160
6161 static int hpsa_find_cfgtables(struct ctlr_info *h)
6162 {
6163         u64 cfg_offset;
6164         u32 cfg_base_addr;
6165         u64 cfg_base_addr_index;
6166         u32 trans_offset;
6167         int rc;
6168
6169         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6170                 &cfg_base_addr_index, &cfg_offset);
6171         if (rc)
6172                 return rc;
6173         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6174                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6175         if (!h->cfgtable)
6176                 return -ENOMEM;
6177         rc = write_driver_ver_to_cfgtable(h->cfgtable);
6178         if (rc)
6179                 return rc;
6180         /* Find performant mode table. */
6181         trans_offset = readl(&h->cfgtable->TransMethodOffset);
6182         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6183                                 cfg_base_addr_index)+cfg_offset+trans_offset,
6184                                 sizeof(*h->transtable));
6185         if (!h->transtable)
6186                 return -ENOMEM;
6187         return 0;
6188 }
6189
6190 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6191 {
6192         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6193
6194         /* Limit commands in memory limited kdump scenario. */
6195         if (reset_devices && h->max_commands > 32)
6196                 h->max_commands = 32;
6197
6198         if (h->max_commands < 16) {
6199                 dev_warn(&h->pdev->dev, "Controller reports "
6200                         "max supported commands of %d, an obvious lie. "
6201                         "Using 16.  Ensure that firmware is up to date.\n",
6202                         h->max_commands);
6203                 h->max_commands = 16;
6204         }
6205 }
6206
6207 /* Interrogate the hardware for some limits:
6208  * max commands, max SG elements without chaining, and with chaining,
6209  * SG chain block size, etc.
6210  */
6211 static void hpsa_find_board_params(struct ctlr_info *h)
6212 {
6213         hpsa_get_max_perf_mode_cmds(h);
6214         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6215         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6216         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6217         /*
6218          * Limit in-command s/g elements to 32 save dma'able memory.
6219          * Howvever spec says if 0, use 31
6220          */
6221         h->max_cmd_sg_entries = 31;
6222         if (h->maxsgentries > 512) {
6223                 h->max_cmd_sg_entries = 32;
6224                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6225                 h->maxsgentries--; /* save one for chain pointer */
6226         } else {
6227                 h->chainsize = 0;
6228                 h->maxsgentries = 31; /* default to traditional values */
6229         }
6230
6231         /* Find out what task management functions are supported and cache */
6232         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6233         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6234                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6235         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6236                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6237 }
6238
6239 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6240 {
6241         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6242                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6243                 return false;
6244         }
6245         return true;
6246 }
6247
6248 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6249 {
6250         u32 driver_support;
6251
6252         driver_support = readl(&(h->cfgtable->driver_support));
6253         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6254 #ifdef CONFIG_X86
6255         driver_support |= ENABLE_SCSI_PREFETCH;
6256 #endif
6257         driver_support |= ENABLE_UNIT_ATTN;
6258         writel(driver_support, &(h->cfgtable->driver_support));
6259 }
6260
6261 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6262  * in a prefetch beyond physical memory.
6263  */
6264 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6265 {
6266         u32 dma_prefetch;
6267
6268         if (h->board_id != 0x3225103C)
6269                 return;
6270         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6271         dma_prefetch |= 0x8000;
6272         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6273 }
6274
6275 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6276 {
6277         int i;
6278         u32 doorbell_value;
6279         unsigned long flags;
6280         /* wait until the clear_event_notify bit 6 is cleared by controller. */
6281         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6282                 spin_lock_irqsave(&h->lock, flags);
6283                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6284                 spin_unlock_irqrestore(&h->lock, flags);
6285                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6286                         break;
6287                 /* delay and try again */
6288                 msleep(20);
6289         }
6290 }
6291
6292 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6293 {
6294         int i;
6295         u32 doorbell_value;
6296         unsigned long flags;
6297
6298         /* under certain very rare conditions, this can take awhile.
6299          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6300          * as we enter this code.)
6301          */
6302         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6303                 spin_lock_irqsave(&h->lock, flags);
6304                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6305                 spin_unlock_irqrestore(&h->lock, flags);
6306                 if (!(doorbell_value & CFGTBL_ChangeReq))
6307                         break;
6308                 /* delay and try again */
6309                 usleep_range(10000, 20000);
6310         }
6311 }
6312
6313 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6314 {
6315         u32 trans_support;
6316
6317         trans_support = readl(&(h->cfgtable->TransportSupport));
6318         if (!(trans_support & SIMPLE_MODE))
6319                 return -ENOTSUPP;
6320
6321         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6322
6323         /* Update the field, and then ring the doorbell */
6324         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6325         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6326         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6327         hpsa_wait_for_mode_change_ack(h);
6328         print_cfg_table(&h->pdev->dev, h->cfgtable);
6329         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6330                 goto error;
6331         h->transMethod = CFGTBL_Trans_Simple;
6332         return 0;
6333 error:
6334         dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6335         return -ENODEV;
6336 }
6337
6338 static int hpsa_pci_init(struct ctlr_info *h)
6339 {
6340         int prod_index, err;
6341
6342         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6343         if (prod_index < 0)
6344                 return -ENODEV;
6345         h->product_name = products[prod_index].product_name;
6346         h->access = *(products[prod_index].access);
6347
6348         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6349                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6350
6351         err = pci_enable_device(h->pdev);
6352         if (err) {
6353                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6354                 return err;
6355         }
6356
6357         err = pci_request_regions(h->pdev, HPSA);
6358         if (err) {
6359                 dev_err(&h->pdev->dev,
6360                         "cannot obtain PCI resources, aborting\n");
6361                 return err;
6362         }
6363
6364         pci_set_master(h->pdev);
6365
6366         hpsa_interrupt_mode(h);
6367         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6368         if (err)
6369                 goto err_out_free_res;
6370         h->vaddr = remap_pci_mem(h->paddr, 0x250);
6371         if (!h->vaddr) {
6372                 err = -ENOMEM;
6373                 goto err_out_free_res;
6374         }
6375         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6376         if (err)
6377                 goto err_out_free_res;
6378         err = hpsa_find_cfgtables(h);
6379         if (err)
6380                 goto err_out_free_res;
6381         hpsa_find_board_params(h);
6382
6383         if (!hpsa_CISS_signature_present(h)) {
6384                 err = -ENODEV;
6385                 goto err_out_free_res;
6386         }
6387         hpsa_set_driver_support_bits(h);
6388         hpsa_p600_dma_prefetch_quirk(h);
6389         err = hpsa_enter_simple_mode(h);
6390         if (err)
6391                 goto err_out_free_res;
6392         return 0;
6393
6394 err_out_free_res:
6395         if (h->transtable)
6396                 iounmap(h->transtable);
6397         if (h->cfgtable)
6398                 iounmap(h->cfgtable);
6399         if (h->vaddr)
6400                 iounmap(h->vaddr);
6401         pci_disable_device(h->pdev);
6402         pci_release_regions(h->pdev);
6403         return err;
6404 }
6405
6406 static void hpsa_hba_inquiry(struct ctlr_info *h)
6407 {
6408         int rc;
6409
6410 #define HBA_INQUIRY_BYTE_COUNT 64
6411         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6412         if (!h->hba_inquiry_data)
6413                 return;
6414         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6415                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6416         if (rc != 0) {
6417                 kfree(h->hba_inquiry_data);
6418                 h->hba_inquiry_data = NULL;
6419         }
6420 }
6421
6422 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6423 {
6424         int rc, i;
6425
6426         if (!reset_devices)
6427                 return 0;
6428
6429         /* kdump kernel is loading, we don't know in which state is
6430          * the pci interface. The dev->enable_cnt is equal zero
6431          * so we call enable+disable, wait a while and switch it on.
6432          */
6433         rc = pci_enable_device(pdev);
6434         if (rc) {
6435                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6436                 return -ENODEV;
6437         }
6438         pci_disable_device(pdev);
6439         msleep(260);                    /* a randomly chosen number */
6440         rc = pci_enable_device(pdev);
6441         if (rc) {
6442                 dev_warn(&pdev->dev, "failed to enable device.\n");
6443                 return -ENODEV;
6444         }
6445
6446         pci_set_master(pdev);
6447
6448         /* Reset the controller with a PCI power-cycle or via doorbell */
6449         rc = hpsa_kdump_hard_reset_controller(pdev);
6450
6451         /* -ENOTSUPP here means we cannot reset the controller
6452          * but it's already (and still) up and running in
6453          * "performant mode".  Or, it might be 640x, which can't reset
6454          * due to concerns about shared bbwc between 6402/6404 pair.
6455          */
6456         if (rc) {
6457                 if (rc != -ENOTSUPP) /* just try to do the kdump anyhow. */
6458                         rc = -ENODEV;
6459                 goto out_disable;
6460         }
6461
6462         /* Now try to get the controller to respond to a no-op */
6463         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6464         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6465                 if (hpsa_noop(pdev) == 0)
6466                         break;
6467                 else
6468                         dev_warn(&pdev->dev, "no-op failed%s\n",
6469                                         (i < 11 ? "; re-trying" : ""));
6470         }
6471
6472 out_disable:
6473
6474         pci_disable_device(pdev);
6475         return rc;
6476 }
6477
6478 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6479 {
6480         h->cmd_pool_bits = kzalloc(
6481                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6482                 sizeof(unsigned long), GFP_KERNEL);
6483         h->cmd_pool = pci_alloc_consistent(h->pdev,
6484                     h->nr_cmds * sizeof(*h->cmd_pool),
6485                     &(h->cmd_pool_dhandle));
6486         h->errinfo_pool = pci_alloc_consistent(h->pdev,
6487                     h->nr_cmds * sizeof(*h->errinfo_pool),
6488                     &(h->errinfo_pool_dhandle));
6489         if ((h->cmd_pool_bits == NULL)
6490             || (h->cmd_pool == NULL)
6491             || (h->errinfo_pool == NULL)) {
6492                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6493                 return -ENOMEM;
6494         }
6495         return 0;
6496 }
6497
6498 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6499 {
6500         kfree(h->cmd_pool_bits);
6501         if (h->cmd_pool)
6502                 pci_free_consistent(h->pdev,
6503                             h->nr_cmds * sizeof(struct CommandList),
6504                             h->cmd_pool, h->cmd_pool_dhandle);
6505         if (h->ioaccel2_cmd_pool)
6506                 pci_free_consistent(h->pdev,
6507                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6508                         h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6509         if (h->errinfo_pool)
6510                 pci_free_consistent(h->pdev,
6511                             h->nr_cmds * sizeof(struct ErrorInfo),
6512                             h->errinfo_pool,
6513                             h->errinfo_pool_dhandle);
6514         if (h->ioaccel_cmd_pool)
6515                 pci_free_consistent(h->pdev,
6516                         h->nr_cmds * sizeof(struct io_accel1_cmd),
6517                         h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6518 }
6519
6520 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6521 {
6522         int i, cpu, rc;
6523
6524         cpu = cpumask_first(cpu_online_mask);
6525         for (i = 0; i < h->msix_vector; i++) {
6526                 rc = irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6527                 cpu = cpumask_next(cpu, cpu_online_mask);
6528         }
6529 }
6530
6531 static int hpsa_request_irq(struct ctlr_info *h,
6532         irqreturn_t (*msixhandler)(int, void *),
6533         irqreturn_t (*intxhandler)(int, void *))
6534 {
6535         int rc, i;
6536
6537         /*
6538          * initialize h->q[x] = x so that interrupt handlers know which
6539          * queue to process.
6540          */
6541         for (i = 0; i < MAX_REPLY_QUEUES; i++)
6542                 h->q[i] = (u8) i;
6543
6544         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6545                 /* If performant mode and MSI-X, use multiple reply queues */
6546                 for (i = 0; i < h->msix_vector; i++)
6547                         rc = request_irq(h->intr[i], msixhandler,
6548                                         0, h->devname,
6549                                         &h->q[i]);
6550                 hpsa_irq_affinity_hints(h);
6551         } else {
6552                 /* Use single reply pool */
6553                 if (h->msix_vector > 0 || h->msi_vector) {
6554                         rc = request_irq(h->intr[h->intr_mode],
6555                                 msixhandler, 0, h->devname,
6556                                 &h->q[h->intr_mode]);
6557                 } else {
6558                         rc = request_irq(h->intr[h->intr_mode],
6559                                 intxhandler, IRQF_SHARED, h->devname,
6560                                 &h->q[h->intr_mode]);
6561                 }
6562         }
6563         if (rc) {
6564                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6565                        h->intr[h->intr_mode], h->devname);
6566                 return -ENODEV;
6567         }
6568         return 0;
6569 }
6570
6571 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6572 {
6573         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6574                 HPSA_RESET_TYPE_CONTROLLER)) {
6575                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6576                 return -EIO;
6577         }
6578
6579         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6580         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6581                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6582                 return -1;
6583         }
6584
6585         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6586         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6587                 dev_warn(&h->pdev->dev, "Board failed to become ready "
6588                         "after soft reset.\n");
6589                 return -1;
6590         }
6591
6592         return 0;
6593 }
6594
6595 static void free_irqs(struct ctlr_info *h)
6596 {
6597         int i;
6598
6599         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6600                 /* Single reply queue, only one irq to free */
6601                 i = h->intr_mode;
6602                 irq_set_affinity_hint(h->intr[i], NULL);
6603                 free_irq(h->intr[i], &h->q[i]);
6604                 return;
6605         }
6606
6607         for (i = 0; i < h->msix_vector; i++) {
6608                 irq_set_affinity_hint(h->intr[i], NULL);
6609                 free_irq(h->intr[i], &h->q[i]);
6610         }
6611 }
6612
6613 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6614 {
6615         free_irqs(h);
6616 #ifdef CONFIG_PCI_MSI
6617         if (h->msix_vector) {
6618                 if (h->pdev->msix_enabled)
6619                         pci_disable_msix(h->pdev);
6620         } else if (h->msi_vector) {
6621                 if (h->pdev->msi_enabled)
6622                         pci_disable_msi(h->pdev);
6623         }
6624 #endif /* CONFIG_PCI_MSI */
6625 }
6626
6627 static void hpsa_free_reply_queues(struct ctlr_info *h)
6628 {
6629         int i;
6630
6631         for (i = 0; i < h->nreply_queues; i++) {
6632                 if (!h->reply_queue[i].head)
6633                         continue;
6634                 pci_free_consistent(h->pdev, h->reply_queue_size,
6635                         h->reply_queue[i].head, h->reply_queue[i].busaddr);
6636                 h->reply_queue[i].head = NULL;
6637                 h->reply_queue[i].busaddr = 0;
6638         }
6639 }
6640
6641 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6642 {
6643         hpsa_free_irqs_and_disable_msix(h);
6644         hpsa_free_sg_chain_blocks(h);
6645         hpsa_free_cmd_pool(h);
6646         kfree(h->ioaccel1_blockFetchTable);
6647         kfree(h->blockFetchTable);
6648         hpsa_free_reply_queues(h);
6649         if (h->vaddr)
6650                 iounmap(h->vaddr);
6651         if (h->transtable)
6652                 iounmap(h->transtable);
6653         if (h->cfgtable)
6654                 iounmap(h->cfgtable);
6655         pci_disable_device(h->pdev);
6656         pci_release_regions(h->pdev);
6657         kfree(h);
6658 }
6659
6660 /* Called when controller lockup detected. */
6661 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6662 {
6663         struct CommandList *c = NULL;
6664
6665         assert_spin_locked(&h->lock);
6666         /* Mark all outstanding commands as failed and complete them. */
6667         while (!list_empty(list)) {
6668                 c = list_entry(list->next, struct CommandList, list);
6669                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6670                 finish_cmd(c);
6671         }
6672 }
6673
6674 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6675 {
6676         int i, cpu;
6677
6678         cpu = cpumask_first(cpu_online_mask);
6679         for (i = 0; i < num_online_cpus(); i++) {
6680                 u32 *lockup_detected;
6681                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6682                 *lockup_detected = value;
6683                 cpu = cpumask_next(cpu, cpu_online_mask);
6684         }
6685         wmb(); /* be sure the per-cpu variables are out to memory */
6686 }
6687
6688 static void controller_lockup_detected(struct ctlr_info *h)
6689 {
6690         unsigned long flags;
6691         u32 lockup_detected;
6692
6693         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6694         spin_lock_irqsave(&h->lock, flags);
6695         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6696         if (!lockup_detected) {
6697                 /* no heartbeat, but controller gave us a zero. */
6698                 dev_warn(&h->pdev->dev,
6699                         "lockup detected but scratchpad register is zero\n");
6700                 lockup_detected = 0xffffffff;
6701         }
6702         set_lockup_detected_for_all_cpus(h, lockup_detected);
6703         spin_unlock_irqrestore(&h->lock, flags);
6704         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6705                         lockup_detected);
6706         pci_disable_device(h->pdev);
6707         spin_lock_irqsave(&h->lock, flags);
6708         fail_all_cmds_on_list(h, &h->cmpQ);
6709         fail_all_cmds_on_list(h, &h->reqQ);
6710         spin_unlock_irqrestore(&h->lock, flags);
6711 }
6712
6713 static void detect_controller_lockup(struct ctlr_info *h)
6714 {
6715         u64 now;
6716         u32 heartbeat;
6717         unsigned long flags;
6718
6719         now = get_jiffies_64();
6720         /* If we've received an interrupt recently, we're ok. */
6721         if (time_after64(h->last_intr_timestamp +
6722                                 (h->heartbeat_sample_interval), now))
6723                 return;
6724
6725         /*
6726          * If we've already checked the heartbeat recently, we're ok.
6727          * This could happen if someone sends us a signal. We
6728          * otherwise don't care about signals in this thread.
6729          */
6730         if (time_after64(h->last_heartbeat_timestamp +
6731                                 (h->heartbeat_sample_interval), now))
6732                 return;
6733
6734         /* If heartbeat has not changed since we last looked, we're not ok. */
6735         spin_lock_irqsave(&h->lock, flags);
6736         heartbeat = readl(&h->cfgtable->HeartBeat);
6737         spin_unlock_irqrestore(&h->lock, flags);
6738         if (h->last_heartbeat == heartbeat) {
6739                 controller_lockup_detected(h);
6740                 return;
6741         }
6742
6743         /* We're ok. */
6744         h->last_heartbeat = heartbeat;
6745         h->last_heartbeat_timestamp = now;
6746 }
6747
6748 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6749 {
6750         int i;
6751         char *event_type;
6752
6753         /* Clear the driver-requested rescan flag */
6754         h->drv_req_rescan = 0;
6755
6756         /* Ask the controller to clear the events we're handling. */
6757         if ((h->transMethod & (CFGTBL_Trans_io_accel1
6758                         | CFGTBL_Trans_io_accel2)) &&
6759                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6760                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6761
6762                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6763                         event_type = "state change";
6764                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6765                         event_type = "configuration change";
6766                 /* Stop sending new RAID offload reqs via the IO accelerator */
6767                 scsi_block_requests(h->scsi_host);
6768                 for (i = 0; i < h->ndevices; i++)
6769                         h->dev[i]->offload_enabled = 0;
6770                 hpsa_drain_accel_commands(h);
6771                 /* Set 'accelerator path config change' bit */
6772                 dev_warn(&h->pdev->dev,
6773                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6774                         h->events, event_type);
6775                 writel(h->events, &(h->cfgtable->clear_event_notify));
6776                 /* Set the "clear event notify field update" bit 6 */
6777                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6778                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6779                 hpsa_wait_for_clear_event_notify_ack(h);
6780                 scsi_unblock_requests(h->scsi_host);
6781         } else {
6782                 /* Acknowledge controller notification events. */
6783                 writel(h->events, &(h->cfgtable->clear_event_notify));
6784                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6785                 hpsa_wait_for_clear_event_notify_ack(h);
6786 #if 0
6787                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6788                 hpsa_wait_for_mode_change_ack(h);
6789 #endif
6790         }
6791         return;
6792 }
6793
6794 /* Check a register on the controller to see if there are configuration
6795  * changes (added/changed/removed logical drives, etc.) which mean that
6796  * we should rescan the controller for devices.
6797  * Also check flag for driver-initiated rescan.
6798  */
6799 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6800 {
6801         if (h->drv_req_rescan)
6802                 return 1;
6803
6804         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6805                 return 0;
6806
6807         h->events = readl(&(h->cfgtable->event_notify));
6808         return h->events & RESCAN_REQUIRED_EVENT_BITS;
6809 }
6810
6811 /*
6812  * Check if any of the offline devices have become ready
6813  */
6814 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6815 {
6816         unsigned long flags;
6817         struct offline_device_entry *d;
6818         struct list_head *this, *tmp;
6819
6820         spin_lock_irqsave(&h->offline_device_lock, flags);
6821         list_for_each_safe(this, tmp, &h->offline_device_list) {
6822                 d = list_entry(this, struct offline_device_entry,
6823                                 offline_list);
6824                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6825                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
6826                         spin_lock_irqsave(&h->offline_device_lock, flags);
6827                         list_del(&d->offline_list);
6828                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
6829                         return 1;
6830                 }
6831                 spin_lock_irqsave(&h->offline_device_lock, flags);
6832         }
6833         spin_unlock_irqrestore(&h->offline_device_lock, flags);
6834         return 0;
6835 }
6836
6837
6838 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6839 {
6840         unsigned long flags;
6841         struct ctlr_info *h = container_of(to_delayed_work(work),
6842                                         struct ctlr_info, monitor_ctlr_work);
6843         detect_controller_lockup(h);
6844         if (lockup_detected(h))
6845                 return;
6846
6847         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6848                 scsi_host_get(h->scsi_host);
6849                 h->drv_req_rescan = 0;
6850                 hpsa_ack_ctlr_events(h);
6851                 hpsa_scan_start(h->scsi_host);
6852                 scsi_host_put(h->scsi_host);
6853         }
6854
6855         spin_lock_irqsave(&h->lock, flags);
6856         if (h->remove_in_progress) {
6857                 spin_unlock_irqrestore(&h->lock, flags);
6858                 return;
6859         }
6860         schedule_delayed_work(&h->monitor_ctlr_work,
6861                                 h->heartbeat_sample_interval);
6862         spin_unlock_irqrestore(&h->lock, flags);
6863 }
6864
6865 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6866 {
6867         int dac, rc;
6868         struct ctlr_info *h;
6869         int try_soft_reset = 0;
6870         unsigned long flags;
6871
6872         if (number_of_controllers == 0)
6873                 printk(KERN_INFO DRIVER_NAME "\n");
6874
6875         rc = hpsa_init_reset_devices(pdev);
6876         if (rc) {
6877                 if (rc != -ENOTSUPP)
6878                         return rc;
6879                 /* If the reset fails in a particular way (it has no way to do
6880                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
6881                  * a soft reset once we get the controller configured up to the
6882                  * point that it can accept a command.
6883                  */
6884                 try_soft_reset = 1;
6885                 rc = 0;
6886         }
6887
6888 reinit_after_soft_reset:
6889
6890         /* Command structures must be aligned on a 32-byte boundary because
6891          * the 5 lower bits of the address are used by the hardware. and by
6892          * the driver.  See comments in hpsa.h for more info.
6893          */
6894         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6895         h = kzalloc(sizeof(*h), GFP_KERNEL);
6896         if (!h)
6897                 return -ENOMEM;
6898
6899         h->pdev = pdev;
6900         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6901         INIT_LIST_HEAD(&h->cmpQ);
6902         INIT_LIST_HEAD(&h->reqQ);
6903         INIT_LIST_HEAD(&h->offline_device_list);
6904         spin_lock_init(&h->lock);
6905         spin_lock_init(&h->offline_device_lock);
6906         spin_lock_init(&h->scan_lock);
6907         spin_lock_init(&h->passthru_count_lock);
6908
6909         /* Allocate and clear per-cpu variable lockup_detected */
6910         h->lockup_detected = alloc_percpu(u32);
6911         if (!h->lockup_detected) {
6912                 rc = -ENOMEM;
6913                 goto clean1;
6914         }
6915         set_lockup_detected_for_all_cpus(h, 0);
6916
6917         rc = hpsa_pci_init(h);
6918         if (rc != 0)
6919                 goto clean1;
6920
6921         sprintf(h->devname, HPSA "%d", number_of_controllers);
6922         h->ctlr = number_of_controllers;
6923         number_of_controllers++;
6924
6925         /* configure PCI DMA stuff */
6926         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6927         if (rc == 0) {
6928                 dac = 1;
6929         } else {
6930                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6931                 if (rc == 0) {
6932                         dac = 0;
6933                 } else {
6934                         dev_err(&pdev->dev, "no suitable DMA available\n");
6935                         goto clean1;
6936                 }
6937         }
6938
6939         /* make sure the board interrupts are off */
6940         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6941
6942         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6943                 goto clean2;
6944         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6945                h->devname, pdev->device,
6946                h->intr[h->intr_mode], dac ? "" : " not");
6947         if (hpsa_allocate_cmd_pool(h))
6948                 goto clean4;
6949         if (hpsa_allocate_sg_chain_blocks(h))
6950                 goto clean4;
6951         init_waitqueue_head(&h->scan_wait_queue);
6952         h->scan_finished = 1; /* no scan currently in progress */
6953
6954         pci_set_drvdata(pdev, h);
6955         h->ndevices = 0;
6956         h->hba_mode_enabled = 0;
6957         h->scsi_host = NULL;
6958         spin_lock_init(&h->devlock);
6959         hpsa_put_ctlr_into_performant_mode(h);
6960
6961         /* At this point, the controller is ready to take commands.
6962          * Now, if reset_devices and the hard reset didn't work, try
6963          * the soft reset and see if that works.
6964          */
6965         if (try_soft_reset) {
6966
6967                 /* This is kind of gross.  We may or may not get a completion
6968                  * from the soft reset command, and if we do, then the value
6969                  * from the fifo may or may not be valid.  So, we wait 10 secs
6970                  * after the reset throwing away any completions we get during
6971                  * that time.  Unregister the interrupt handler and register
6972                  * fake ones to scoop up any residual completions.
6973                  */
6974                 spin_lock_irqsave(&h->lock, flags);
6975                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6976                 spin_unlock_irqrestore(&h->lock, flags);
6977                 free_irqs(h);
6978                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
6979                                         hpsa_intx_discard_completions);
6980                 if (rc) {
6981                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
6982                                 "soft reset.\n");
6983                         goto clean4;
6984                 }
6985
6986                 rc = hpsa_kdump_soft_reset(h);
6987                 if (rc)
6988                         /* Neither hard nor soft reset worked, we're hosed. */
6989                         goto clean4;
6990
6991                 dev_info(&h->pdev->dev, "Board READY.\n");
6992                 dev_info(&h->pdev->dev,
6993                         "Waiting for stale completions to drain.\n");
6994                 h->access.set_intr_mask(h, HPSA_INTR_ON);
6995                 msleep(10000);
6996                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6997
6998                 rc = controller_reset_failed(h->cfgtable);
6999                 if (rc)
7000                         dev_info(&h->pdev->dev,
7001                                 "Soft reset appears to have failed.\n");
7002
7003                 /* since the controller's reset, we have to go back and re-init
7004                  * everything.  Easiest to just forget what we've done and do it
7005                  * all over again.
7006                  */
7007                 hpsa_undo_allocations_after_kdump_soft_reset(h);
7008                 try_soft_reset = 0;
7009                 if (rc)
7010                         /* don't go to clean4, we already unallocated */
7011                         return -ENODEV;
7012
7013                 goto reinit_after_soft_reset;
7014         }
7015
7016                 /* Enable Accelerated IO path at driver layer */
7017                 h->acciopath_status = 1;
7018
7019         h->drv_req_rescan = 0;
7020
7021         /* Turn the interrupts on so we can service requests */
7022         h->access.set_intr_mask(h, HPSA_INTR_ON);
7023
7024         hpsa_hba_inquiry(h);
7025         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
7026
7027         /* Monitor the controller for firmware lockups */
7028         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7029         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7030         schedule_delayed_work(&h->monitor_ctlr_work,
7031                                 h->heartbeat_sample_interval);
7032         return 0;
7033
7034 clean4:
7035         hpsa_free_sg_chain_blocks(h);
7036         hpsa_free_cmd_pool(h);
7037         free_irqs(h);
7038 clean2:
7039 clean1:
7040         if (h->lockup_detected)
7041                 free_percpu(h->lockup_detected);
7042         kfree(h);
7043         return rc;
7044 }
7045
7046 static void hpsa_flush_cache(struct ctlr_info *h)
7047 {
7048         char *flush_buf;
7049         struct CommandList *c;
7050
7051         /* Don't bother trying to flush the cache if locked up */
7052         if (unlikely(lockup_detected(h)))
7053                 return;
7054         flush_buf = kzalloc(4, GFP_KERNEL);
7055         if (!flush_buf)
7056                 return;
7057
7058         c = cmd_special_alloc(h);
7059         if (!c) {
7060                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7061                 goto out_of_memory;
7062         }
7063         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7064                 RAID_CTLR_LUNID, TYPE_CMD)) {
7065                 goto out;
7066         }
7067         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7068         if (c->err_info->CommandStatus != 0)
7069 out:
7070                 dev_warn(&h->pdev->dev,
7071                         "error flushing cache on controller\n");
7072         cmd_special_free(h, c);
7073 out_of_memory:
7074         kfree(flush_buf);
7075 }
7076
7077 static void hpsa_shutdown(struct pci_dev *pdev)
7078 {
7079         struct ctlr_info *h;
7080
7081         h = pci_get_drvdata(pdev);
7082         /* Turn board interrupts off  and send the flush cache command
7083          * sendcmd will turn off interrupt, and send the flush...
7084          * To write all data in the battery backed cache to disks
7085          */
7086         hpsa_flush_cache(h);
7087         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7088         hpsa_free_irqs_and_disable_msix(h);
7089 }
7090
7091 static void hpsa_free_device_info(struct ctlr_info *h)
7092 {
7093         int i;
7094
7095         for (i = 0; i < h->ndevices; i++)
7096                 kfree(h->dev[i]);
7097 }
7098
7099 static void hpsa_remove_one(struct pci_dev *pdev)
7100 {
7101         struct ctlr_info *h;
7102         unsigned long flags;
7103
7104         if (pci_get_drvdata(pdev) == NULL) {
7105                 dev_err(&pdev->dev, "unable to remove device\n");
7106                 return;
7107         }
7108         h = pci_get_drvdata(pdev);
7109
7110         /* Get rid of any controller monitoring work items */
7111         spin_lock_irqsave(&h->lock, flags);
7112         h->remove_in_progress = 1;
7113         cancel_delayed_work(&h->monitor_ctlr_work);
7114         spin_unlock_irqrestore(&h->lock, flags);
7115
7116         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
7117         hpsa_shutdown(pdev);
7118         iounmap(h->vaddr);
7119         iounmap(h->transtable);
7120         iounmap(h->cfgtable);
7121         hpsa_free_device_info(h);
7122         hpsa_free_sg_chain_blocks(h);
7123         pci_free_consistent(h->pdev,
7124                 h->nr_cmds * sizeof(struct CommandList),
7125                 h->cmd_pool, h->cmd_pool_dhandle);
7126         pci_free_consistent(h->pdev,
7127                 h->nr_cmds * sizeof(struct ErrorInfo),
7128                 h->errinfo_pool, h->errinfo_pool_dhandle);
7129         hpsa_free_reply_queues(h);
7130         kfree(h->cmd_pool_bits);
7131         kfree(h->blockFetchTable);
7132         kfree(h->ioaccel1_blockFetchTable);
7133         kfree(h->ioaccel2_blockFetchTable);
7134         kfree(h->hba_inquiry_data);
7135         pci_disable_device(pdev);
7136         pci_release_regions(pdev);
7137         free_percpu(h->lockup_detected);
7138         kfree(h);
7139 }
7140
7141 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7142         __attribute__((unused)) pm_message_t state)
7143 {
7144         return -ENOSYS;
7145 }
7146
7147 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7148 {
7149         return -ENOSYS;
7150 }
7151
7152 static struct pci_driver hpsa_pci_driver = {
7153         .name = HPSA,
7154         .probe = hpsa_init_one,
7155         .remove = hpsa_remove_one,
7156         .id_table = hpsa_pci_device_id, /* id_table */
7157         .shutdown = hpsa_shutdown,
7158         .suspend = hpsa_suspend,
7159         .resume = hpsa_resume,
7160 };
7161
7162 /* Fill in bucket_map[], given nsgs (the max number of
7163  * scatter gather elements supported) and bucket[],
7164  * which is an array of 8 integers.  The bucket[] array
7165  * contains 8 different DMA transfer sizes (in 16
7166  * byte increments) which the controller uses to fetch
7167  * commands.  This function fills in bucket_map[], which
7168  * maps a given number of scatter gather elements to one of
7169  * the 8 DMA transfer sizes.  The point of it is to allow the
7170  * controller to only do as much DMA as needed to fetch the
7171  * command, with the DMA transfer size encoded in the lower
7172  * bits of the command address.
7173  */
7174 static void  calc_bucket_map(int bucket[], int num_buckets,
7175         int nsgs, int min_blocks, int *bucket_map)
7176 {
7177         int i, j, b, size;
7178
7179         /* Note, bucket_map must have nsgs+1 entries. */
7180         for (i = 0; i <= nsgs; i++) {
7181                 /* Compute size of a command with i SG entries */
7182                 size = i + min_blocks;
7183                 b = num_buckets; /* Assume the biggest bucket */
7184                 /* Find the bucket that is just big enough */
7185                 for (j = 0; j < num_buckets; j++) {
7186                         if (bucket[j] >= size) {
7187                                 b = j;
7188                                 break;
7189                         }
7190                 }
7191                 /* for a command with i SG entries, use bucket b. */
7192                 bucket_map[i] = b;
7193         }
7194 }
7195
7196 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7197 {
7198         int i;
7199         unsigned long register_value;
7200         unsigned long transMethod = CFGTBL_Trans_Performant |
7201                         (trans_support & CFGTBL_Trans_use_short_tags) |
7202                                 CFGTBL_Trans_enable_directed_msix |
7203                         (trans_support & (CFGTBL_Trans_io_accel1 |
7204                                 CFGTBL_Trans_io_accel2));
7205         struct access_method access = SA5_performant_access;
7206
7207         /* This is a bit complicated.  There are 8 registers on
7208          * the controller which we write to to tell it 8 different
7209          * sizes of commands which there may be.  It's a way of
7210          * reducing the DMA done to fetch each command.  Encoded into
7211          * each command's tag are 3 bits which communicate to the controller
7212          * which of the eight sizes that command fits within.  The size of
7213          * each command depends on how many scatter gather entries there are.
7214          * Each SG entry requires 16 bytes.  The eight registers are programmed
7215          * with the number of 16-byte blocks a command of that size requires.
7216          * The smallest command possible requires 5 such 16 byte blocks.
7217          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7218          * blocks.  Note, this only extends to the SG entries contained
7219          * within the command block, and does not extend to chained blocks
7220          * of SG elements.   bft[] contains the eight values we write to
7221          * the registers.  They are not evenly distributed, but have more
7222          * sizes for small commands, and fewer sizes for larger commands.
7223          */
7224         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7225 #define MIN_IOACCEL2_BFT_ENTRY 5
7226 #define HPSA_IOACCEL2_HEADER_SZ 4
7227         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7228                         13, 14, 15, 16, 17, 18, 19,
7229                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7230         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7231         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7232         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7233                                  16 * MIN_IOACCEL2_BFT_ENTRY);
7234         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7235         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7236         /*  5 = 1 s/g entry or 4k
7237          *  6 = 2 s/g entry or 8k
7238          *  8 = 4 s/g entry or 16k
7239          * 10 = 6 s/g entry or 24k
7240          */
7241
7242         /* If the controller supports either ioaccel method then
7243          * we can also use the RAID stack submit path that does not
7244          * perform the superfluous readl() after each command submission.
7245          */
7246         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7247                 access = SA5_performant_access_no_read;
7248
7249         /* Controller spec: zero out this buffer. */
7250         for (i = 0; i < h->nreply_queues; i++)
7251                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7252
7253         bft[7] = SG_ENTRIES_IN_CMD + 4;
7254         calc_bucket_map(bft, ARRAY_SIZE(bft),
7255                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7256         for (i = 0; i < 8; i++)
7257                 writel(bft[i], &h->transtable->BlockFetch[i]);
7258
7259         /* size of controller ring buffer */
7260         writel(h->max_commands, &h->transtable->RepQSize);
7261         writel(h->nreply_queues, &h->transtable->RepQCount);
7262         writel(0, &h->transtable->RepQCtrAddrLow32);
7263         writel(0, &h->transtable->RepQCtrAddrHigh32);
7264
7265         for (i = 0; i < h->nreply_queues; i++) {
7266                 writel(0, &h->transtable->RepQAddr[i].upper);
7267                 writel(h->reply_queue[i].busaddr,
7268                         &h->transtable->RepQAddr[i].lower);
7269         }
7270
7271         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7272         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7273         /*
7274          * enable outbound interrupt coalescing in accelerator mode;
7275          */
7276         if (trans_support & CFGTBL_Trans_io_accel1) {
7277                 access = SA5_ioaccel_mode1_access;
7278                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7279                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7280         } else {
7281                 if (trans_support & CFGTBL_Trans_io_accel2) {
7282                         access = SA5_ioaccel_mode2_access;
7283                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7284                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7285                 }
7286         }
7287         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7288         hpsa_wait_for_mode_change_ack(h);
7289         register_value = readl(&(h->cfgtable->TransportActive));
7290         if (!(register_value & CFGTBL_Trans_Performant)) {
7291                 dev_warn(&h->pdev->dev, "unable to get board into"
7292                                         " performant mode\n");
7293                 return;
7294         }
7295         /* Change the access methods to the performant access methods */
7296         h->access = access;
7297         h->transMethod = transMethod;
7298
7299         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7300                 (trans_support & CFGTBL_Trans_io_accel2)))
7301                 return;
7302
7303         if (trans_support & CFGTBL_Trans_io_accel1) {
7304                 /* Set up I/O accelerator mode */
7305                 for (i = 0; i < h->nreply_queues; i++) {
7306                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7307                         h->reply_queue[i].current_entry =
7308                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7309                 }
7310                 bft[7] = h->ioaccel_maxsg + 8;
7311                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7312                                 h->ioaccel1_blockFetchTable);
7313
7314                 /* initialize all reply queue entries to unused */
7315                 for (i = 0; i < h->nreply_queues; i++)
7316                         memset(h->reply_queue[i].head,
7317                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7318                                 h->reply_queue_size);
7319
7320                 /* set all the constant fields in the accelerator command
7321                  * frames once at init time to save CPU cycles later.
7322                  */
7323                 for (i = 0; i < h->nr_cmds; i++) {
7324                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7325
7326                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
7327                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
7328                                         (i * sizeof(struct ErrorInfo)));
7329                         cp->err_info_len = sizeof(struct ErrorInfo);
7330                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
7331                         cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
7332                         cp->timeout_sec = 0;
7333                         cp->ReplyQueue = 0;
7334                         cp->tag =
7335                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) |
7336                                                 DIRECT_LOOKUP_BIT);
7337                         cp->host_addr =
7338                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7339                                         (i * sizeof(struct io_accel1_cmd)));
7340                 }
7341         } else if (trans_support & CFGTBL_Trans_io_accel2) {
7342                 u64 cfg_offset, cfg_base_addr_index;
7343                 u32 bft2_offset, cfg_base_addr;
7344                 int rc;
7345
7346                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7347                         &cfg_base_addr_index, &cfg_offset);
7348                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7349                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7350                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7351                                 4, h->ioaccel2_blockFetchTable);
7352                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7353                 BUILD_BUG_ON(offsetof(struct CfgTable,
7354                                 io_accel_request_size_offset) != 0xb8);
7355                 h->ioaccel2_bft2_regs =
7356                         remap_pci_mem(pci_resource_start(h->pdev,
7357                                         cfg_base_addr_index) +
7358                                         cfg_offset + bft2_offset,
7359                                         ARRAY_SIZE(bft2) *
7360                                         sizeof(*h->ioaccel2_bft2_regs));
7361                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7362                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7363         }
7364         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7365         hpsa_wait_for_mode_change_ack(h);
7366 }
7367
7368 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7369 {
7370         h->ioaccel_maxsg =
7371                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7372         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7373                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7374
7375         /* Command structures must be aligned on a 128-byte boundary
7376          * because the 7 lower bits of the address are used by the
7377          * hardware.
7378          */
7379         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7380                         IOACCEL1_COMMANDLIST_ALIGNMENT);
7381         h->ioaccel_cmd_pool =
7382                 pci_alloc_consistent(h->pdev,
7383                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7384                         &(h->ioaccel_cmd_pool_dhandle));
7385
7386         h->ioaccel1_blockFetchTable =
7387                 kmalloc(((h->ioaccel_maxsg + 1) *
7388                                 sizeof(u32)), GFP_KERNEL);
7389
7390         if ((h->ioaccel_cmd_pool == NULL) ||
7391                 (h->ioaccel1_blockFetchTable == NULL))
7392                 goto clean_up;
7393
7394         memset(h->ioaccel_cmd_pool, 0,
7395                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7396         return 0;
7397
7398 clean_up:
7399         if (h->ioaccel_cmd_pool)
7400                 pci_free_consistent(h->pdev,
7401                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7402                         h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7403         kfree(h->ioaccel1_blockFetchTable);
7404         return 1;
7405 }
7406
7407 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7408 {
7409         /* Allocate ioaccel2 mode command blocks and block fetch table */
7410
7411         h->ioaccel_maxsg =
7412                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7413         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7414                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7415
7416         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7417                         IOACCEL2_COMMANDLIST_ALIGNMENT);
7418         h->ioaccel2_cmd_pool =
7419                 pci_alloc_consistent(h->pdev,
7420                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7421                         &(h->ioaccel2_cmd_pool_dhandle));
7422
7423         h->ioaccel2_blockFetchTable =
7424                 kmalloc(((h->ioaccel_maxsg + 1) *
7425                                 sizeof(u32)), GFP_KERNEL);
7426
7427         if ((h->ioaccel2_cmd_pool == NULL) ||
7428                 (h->ioaccel2_blockFetchTable == NULL))
7429                 goto clean_up;
7430
7431         memset(h->ioaccel2_cmd_pool, 0,
7432                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7433         return 0;
7434
7435 clean_up:
7436         if (h->ioaccel2_cmd_pool)
7437                 pci_free_consistent(h->pdev,
7438                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7439                         h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7440         kfree(h->ioaccel2_blockFetchTable);
7441         return 1;
7442 }
7443
7444 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7445 {
7446         u32 trans_support;
7447         unsigned long transMethod = CFGTBL_Trans_Performant |
7448                                         CFGTBL_Trans_use_short_tags;
7449         int i;
7450
7451         if (hpsa_simple_mode)
7452                 return;
7453
7454         trans_support = readl(&(h->cfgtable->TransportSupport));
7455         if (!(trans_support & PERFORMANT_MODE))
7456                 return;
7457
7458         /* Check for I/O accelerator mode support */
7459         if (trans_support & CFGTBL_Trans_io_accel1) {
7460                 transMethod |= CFGTBL_Trans_io_accel1 |
7461                                 CFGTBL_Trans_enable_directed_msix;
7462                 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7463                         goto clean_up;
7464         } else {
7465                 if (trans_support & CFGTBL_Trans_io_accel2) {
7466                                 transMethod |= CFGTBL_Trans_io_accel2 |
7467                                 CFGTBL_Trans_enable_directed_msix;
7468                 if (ioaccel2_alloc_cmds_and_bft(h))
7469                         goto clean_up;
7470                 }
7471         }
7472
7473         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7474         hpsa_get_max_perf_mode_cmds(h);
7475         /* Performant mode ring buffer and supporting data structures */
7476         h->reply_queue_size = h->max_commands * sizeof(u64);
7477
7478         for (i = 0; i < h->nreply_queues; i++) {
7479                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7480                                                 h->reply_queue_size,
7481                                                 &(h->reply_queue[i].busaddr));
7482                 if (!h->reply_queue[i].head)
7483                         goto clean_up;
7484                 h->reply_queue[i].size = h->max_commands;
7485                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7486                 h->reply_queue[i].current_entry = 0;
7487         }
7488
7489         /* Need a block fetch table for performant mode */
7490         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7491                                 sizeof(u32)), GFP_KERNEL);
7492         if (!h->blockFetchTable)
7493                 goto clean_up;
7494
7495         hpsa_enter_performant_mode(h, trans_support);
7496         return;
7497
7498 clean_up:
7499         hpsa_free_reply_queues(h);
7500         kfree(h->blockFetchTable);
7501 }
7502
7503 static int is_accelerated_cmd(struct CommandList *c)
7504 {
7505         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7506 }
7507
7508 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7509 {
7510         struct CommandList *c = NULL;
7511         unsigned long flags;
7512         int accel_cmds_out;
7513
7514         do { /* wait for all outstanding commands to drain out */
7515                 accel_cmds_out = 0;
7516                 spin_lock_irqsave(&h->lock, flags);
7517                 list_for_each_entry(c, &h->cmpQ, list)
7518                         accel_cmds_out += is_accelerated_cmd(c);
7519                 list_for_each_entry(c, &h->reqQ, list)
7520                         accel_cmds_out += is_accelerated_cmd(c);
7521                 spin_unlock_irqrestore(&h->lock, flags);
7522                 if (accel_cmds_out <= 0)
7523                         break;
7524                 msleep(100);
7525         } while (1);
7526 }
7527
7528 /*
7529  *  This is it.  Register the PCI driver information for the cards we control
7530  *  the OS will call our registered routines when it finds one of our cards.
7531  */
7532 static int __init hpsa_init(void)
7533 {
7534         return pci_register_driver(&hpsa_pci_driver);
7535 }
7536
7537 static void __exit hpsa_cleanup(void)
7538 {
7539         pci_unregister_driver(&hpsa_pci_driver);
7540 }
7541
7542 static void __attribute__((unused)) verify_offsets(void)
7543 {
7544 #define VERIFY_OFFSET(member, offset) \
7545         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7546
7547         VERIFY_OFFSET(structure_size, 0);
7548         VERIFY_OFFSET(volume_blk_size, 4);
7549         VERIFY_OFFSET(volume_blk_cnt, 8);
7550         VERIFY_OFFSET(phys_blk_shift, 16);
7551         VERIFY_OFFSET(parity_rotation_shift, 17);
7552         VERIFY_OFFSET(strip_size, 18);
7553         VERIFY_OFFSET(disk_starting_blk, 20);
7554         VERIFY_OFFSET(disk_blk_cnt, 28);
7555         VERIFY_OFFSET(data_disks_per_row, 36);
7556         VERIFY_OFFSET(metadata_disks_per_row, 38);
7557         VERIFY_OFFSET(row_cnt, 40);
7558         VERIFY_OFFSET(layout_map_count, 42);
7559         VERIFY_OFFSET(flags, 44);
7560         VERIFY_OFFSET(dekindex, 46);
7561         /* VERIFY_OFFSET(reserved, 48 */
7562         VERIFY_OFFSET(data, 64);
7563
7564 #undef VERIFY_OFFSET
7565
7566 #define VERIFY_OFFSET(member, offset) \
7567         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7568
7569         VERIFY_OFFSET(IU_type, 0);
7570         VERIFY_OFFSET(direction, 1);
7571         VERIFY_OFFSET(reply_queue, 2);
7572         /* VERIFY_OFFSET(reserved1, 3);  */
7573         VERIFY_OFFSET(scsi_nexus, 4);
7574         VERIFY_OFFSET(Tag, 8);
7575         VERIFY_OFFSET(cdb, 16);
7576         VERIFY_OFFSET(cciss_lun, 32);
7577         VERIFY_OFFSET(data_len, 40);
7578         VERIFY_OFFSET(cmd_priority_task_attr, 44);
7579         VERIFY_OFFSET(sg_count, 45);
7580         /* VERIFY_OFFSET(reserved3 */
7581         VERIFY_OFFSET(err_ptr, 48);
7582         VERIFY_OFFSET(err_len, 56);
7583         /* VERIFY_OFFSET(reserved4  */
7584         VERIFY_OFFSET(sg, 64);
7585
7586 #undef VERIFY_OFFSET
7587
7588 #define VERIFY_OFFSET(member, offset) \
7589         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7590
7591         VERIFY_OFFSET(dev_handle, 0x00);
7592         VERIFY_OFFSET(reserved1, 0x02);
7593         VERIFY_OFFSET(function, 0x03);
7594         VERIFY_OFFSET(reserved2, 0x04);
7595         VERIFY_OFFSET(err_info, 0x0C);
7596         VERIFY_OFFSET(reserved3, 0x10);
7597         VERIFY_OFFSET(err_info_len, 0x12);
7598         VERIFY_OFFSET(reserved4, 0x13);
7599         VERIFY_OFFSET(sgl_offset, 0x14);
7600         VERIFY_OFFSET(reserved5, 0x15);
7601         VERIFY_OFFSET(transfer_len, 0x1C);
7602         VERIFY_OFFSET(reserved6, 0x20);
7603         VERIFY_OFFSET(io_flags, 0x24);
7604         VERIFY_OFFSET(reserved7, 0x26);
7605         VERIFY_OFFSET(LUN, 0x34);
7606         VERIFY_OFFSET(control, 0x3C);
7607         VERIFY_OFFSET(CDB, 0x40);
7608         VERIFY_OFFSET(reserved8, 0x50);
7609         VERIFY_OFFSET(host_context_flags, 0x60);
7610         VERIFY_OFFSET(timeout_sec, 0x62);
7611         VERIFY_OFFSET(ReplyQueue, 0x64);
7612         VERIFY_OFFSET(reserved9, 0x65);
7613         VERIFY_OFFSET(tag, 0x68);
7614         VERIFY_OFFSET(host_addr, 0x70);
7615         VERIFY_OFFSET(CISS_LUN, 0x78);
7616         VERIFY_OFFSET(SG, 0x78 + 8);
7617 #undef VERIFY_OFFSET
7618 }
7619
7620 module_init(hpsa_init);
7621 module_exit(hpsa_cleanup);