Merge branch 'cec-defines' into for-linus
[cascardo/linux.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
62
63
64 #include "mpt3sas_base.h"
65
66 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
67
68
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70
71  /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH     30000
73 #define MAX_CHAIN_DEPTH         100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85
86 static int smp_affinity_enable = 1;
87 module_param(smp_affinity_enable, int, S_IRUGO);
88 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
89
90 static int max_msix_vectors = -1;
91 module_param(max_msix_vectors, int, 0);
92 MODULE_PARM_DESC(max_msix_vectors,
93         " max msix vectors");
94
95 static int mpt3sas_fwfault_debug;
96 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
97         " enable detection of firmware fault and halt firmware - (default=0)");
98
99 static int
100 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
101
102 /**
103  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
104  *
105  */
106 static int
107 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
108 {
109         int ret = param_set_int(val, kp);
110         struct MPT3SAS_ADAPTER *ioc;
111
112         if (ret)
113                 return ret;
114
115         /* global ioc spinlock to protect controller list on list operations */
116         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
117         spin_lock(&gioc_lock);
118         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
119                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
120         spin_unlock(&gioc_lock);
121         return 0;
122 }
123 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
124         param_get_int, &mpt3sas_fwfault_debug, 0644);
125
126 /**
127  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
128  * @arg: input argument, used to derive ioc
129  *
130  * Return 0 if controller is removed from pci subsystem.
131  * Return -1 for other case.
132  */
133 static int mpt3sas_remove_dead_ioc_func(void *arg)
134 {
135         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
136         struct pci_dev *pdev;
137
138         if ((ioc == NULL))
139                 return -1;
140
141         pdev = ioc->pdev;
142         if ((pdev == NULL))
143                 return -1;
144         pci_stop_and_remove_bus_device_locked(pdev);
145         return 0;
146 }
147
148 /**
149  * _base_fault_reset_work - workq handling ioc fault conditions
150  * @work: input argument, used to derive ioc
151  * Context: sleep.
152  *
153  * Return nothing.
154  */
155 static void
156 _base_fault_reset_work(struct work_struct *work)
157 {
158         struct MPT3SAS_ADAPTER *ioc =
159             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
160         unsigned long    flags;
161         u32 doorbell;
162         int rc;
163         struct task_struct *p;
164
165
166         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
167         if (ioc->shost_recovery || ioc->pci_error_recovery)
168                 goto rearm_timer;
169         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
170
171         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
172         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
173                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
174                     ioc->name);
175
176                 /* It may be possible that EEH recovery can resolve some of
177                  * pci bus failure issues rather removing the dead ioc function
178                  * by considering controller is in a non-operational state. So
179                  * here priority is given to the EEH recovery. If it doesn't
180                  * not resolve this issue, mpt3sas driver will consider this
181                  * controller to non-operational state and remove the dead ioc
182                  * function.
183                  */
184                 if (ioc->non_operational_loop++ < 5) {
185                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
186                                                          flags);
187                         goto rearm_timer;
188                 }
189
190                 /*
191                  * Call _scsih_flush_pending_cmds callback so that we flush all
192                  * pending commands back to OS. This call is required to aovid
193                  * deadlock at block layer. Dead IOC will fail to do diag reset,
194                  * and this call is safe since dead ioc will never return any
195                  * command back from HW.
196                  */
197                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
198                 /*
199                  * Set remove_host flag early since kernel thread will
200                  * take some time to execute.
201                  */
202                 ioc->remove_host = 1;
203                 /*Remove the Dead Host */
204                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
205                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
206                 if (IS_ERR(p))
207                         pr_err(MPT3SAS_FMT
208                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
209                         ioc->name, __func__);
210                 else
211                         pr_err(MPT3SAS_FMT
212                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
213                         ioc->name, __func__);
214                 return; /* don't rearm timer */
215         }
216
217         ioc->non_operational_loop = 0;
218
219         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
220                 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
221                     FORCE_BIG_HAMMER);
222                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223                     __func__, (rc == 0) ? "success" : "failed");
224                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226                         mpt3sas_base_fault_info(ioc, doorbell &
227                             MPI2_DOORBELL_DATA_MASK);
228                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229                     MPI2_IOC_STATE_OPERATIONAL)
230                         return; /* don't rearm timer */
231         }
232
233         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234  rearm_timer:
235         if (ioc->fault_reset_work_q)
236                 queue_delayed_work(ioc->fault_reset_work_q,
237                     &ioc->fault_reset_work,
238                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
240 }
241
242 /**
243  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244  * @ioc: per adapter object
245  * Context: sleep.
246  *
247  * Return nothing.
248  */
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
251 {
252         unsigned long    flags;
253
254         if (ioc->fault_reset_work_q)
255                 return;
256
257         /* initialize fault polling */
258
259         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260         snprintf(ioc->fault_reset_work_q_name,
261             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262             ioc->driver_name, ioc->id);
263         ioc->fault_reset_work_q =
264                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265         if (!ioc->fault_reset_work_q) {
266                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267                     ioc->name, __func__, __LINE__);
268                         return;
269         }
270         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271         if (ioc->fault_reset_work_q)
272                 queue_delayed_work(ioc->fault_reset_work_q,
273                     &ioc->fault_reset_work,
274                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
276 }
277
278 /**
279  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280  * @ioc: per adapter object
281  * Context: sleep.
282  *
283  * Return nothing.
284  */
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
287 {
288         unsigned long flags;
289         struct workqueue_struct *wq;
290
291         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292         wq = ioc->fault_reset_work_q;
293         ioc->fault_reset_work_q = NULL;
294         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295         if (wq) {
296                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297                         flush_workqueue(wq);
298                 destroy_workqueue(wq);
299         }
300 }
301
302 /**
303  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304  * @ioc: per adapter object
305  * @fault_code: fault code
306  *
307  * Return nothing.
308  */
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
311 {
312         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313             ioc->name, fault_code);
314 }
315
316 /**
317  * mpt3sas_halt_firmware - halt's mpt controller firmware
318  * @ioc: per adapter object
319  *
320  * For debugging timeout related issues.  Writing 0xCOFFEE00
321  * to the doorbell register will halt controller firmware. With
322  * the purpose to stop both driver and firmware, the enduser can
323  * obtain a ring buffer from controller UART.
324  */
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
327 {
328         u32 doorbell;
329
330         if (!ioc->fwfault_debug)
331                 return;
332
333         dump_stack();
334
335         doorbell = readl(&ioc->chip->Doorbell);
336         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337                 mpt3sas_base_fault_info(ioc , doorbell);
338         else {
339                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
340                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341                         ioc->name);
342         }
343
344         if (ioc->fwfault_debug == 2)
345                 for (;;)
346                         ;
347         else
348                 panic("panic in %s\n", __func__);
349 }
350
351 /**
352  * _base_sas_ioc_info - verbose translation of the ioc status
353  * @ioc: per adapter object
354  * @mpi_reply: reply mf payload returned from firmware
355  * @request_hdr: request mf
356  *
357  * Return nothing.
358  */
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361         MPI2RequestHeader_t *request_hdr)
362 {
363         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364             MPI2_IOCSTATUS_MASK;
365         char *desc = NULL;
366         u16 frame_sz;
367         char *func_str = NULL;
368
369         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373                 return;
374
375         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376                 return;
377
378         switch (ioc_status) {
379
380 /****************************************************************************
381 *  Common IOCStatus values for all replies
382 ****************************************************************************/
383
384         case MPI2_IOCSTATUS_INVALID_FUNCTION:
385                 desc = "invalid function";
386                 break;
387         case MPI2_IOCSTATUS_BUSY:
388                 desc = "busy";
389                 break;
390         case MPI2_IOCSTATUS_INVALID_SGL:
391                 desc = "invalid sgl";
392                 break;
393         case MPI2_IOCSTATUS_INTERNAL_ERROR:
394                 desc = "internal error";
395                 break;
396         case MPI2_IOCSTATUS_INVALID_VPID:
397                 desc = "invalid vpid";
398                 break;
399         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400                 desc = "insufficient resources";
401                 break;
402         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403                 desc = "insufficient power";
404                 break;
405         case MPI2_IOCSTATUS_INVALID_FIELD:
406                 desc = "invalid field";
407                 break;
408         case MPI2_IOCSTATUS_INVALID_STATE:
409                 desc = "invalid state";
410                 break;
411         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412                 desc = "op state not supported";
413                 break;
414
415 /****************************************************************************
416 *  Config IOCStatus values
417 ****************************************************************************/
418
419         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420                 desc = "config invalid action";
421                 break;
422         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423                 desc = "config invalid type";
424                 break;
425         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426                 desc = "config invalid page";
427                 break;
428         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429                 desc = "config invalid data";
430                 break;
431         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432                 desc = "config no defaults";
433                 break;
434         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435                 desc = "config cant commit";
436                 break;
437
438 /****************************************************************************
439 *  SCSI IO Reply
440 ****************************************************************************/
441
442         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454                 break;
455
456 /****************************************************************************
457 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
459
460         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461                 desc = "eedp guard error";
462                 break;
463         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464                 desc = "eedp ref tag error";
465                 break;
466         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467                 desc = "eedp app tag error";
468                 break;
469
470 /****************************************************************************
471 *  SCSI Target values
472 ****************************************************************************/
473
474         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475                 desc = "target invalid io index";
476                 break;
477         case MPI2_IOCSTATUS_TARGET_ABORTED:
478                 desc = "target aborted";
479                 break;
480         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481                 desc = "target no conn retryable";
482                 break;
483         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484                 desc = "target no connection";
485                 break;
486         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487                 desc = "target xfer count mismatch";
488                 break;
489         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490                 desc = "target data offset error";
491                 break;
492         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493                 desc = "target too much write data";
494                 break;
495         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496                 desc = "target iu too short";
497                 break;
498         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499                 desc = "target ack nak timeout";
500                 break;
501         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502                 desc = "target nak received";
503                 break;
504
505 /****************************************************************************
506 *  Serial Attached SCSI values
507 ****************************************************************************/
508
509         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510                 desc = "smp request failed";
511                 break;
512         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513                 desc = "smp data overrun";
514                 break;
515
516 /****************************************************************************
517 *  Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
519
520         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521                 desc = "diagnostic released";
522                 break;
523         default:
524                 break;
525         }
526
527         if (!desc)
528                 return;
529
530         switch (request_hdr->Function) {
531         case MPI2_FUNCTION_CONFIG:
532                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533                 func_str = "config_page";
534                 break;
535         case MPI2_FUNCTION_SCSI_TASK_MGMT:
536                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537                 func_str = "task_mgmt";
538                 break;
539         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541                 func_str = "sas_iounit_ctl";
542                 break;
543         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544                 frame_sz = sizeof(Mpi2SepRequest_t);
545                 func_str = "enclosure";
546                 break;
547         case MPI2_FUNCTION_IOC_INIT:
548                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
549                 func_str = "ioc_init";
550                 break;
551         case MPI2_FUNCTION_PORT_ENABLE:
552                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
553                 func_str = "port_enable";
554                 break;
555         case MPI2_FUNCTION_SMP_PASSTHROUGH:
556                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557                 func_str = "smp_passthru";
558                 break;
559         default:
560                 frame_sz = 32;
561                 func_str = "unknown";
562                 break;
563         }
564
565         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566                 ioc->name, desc, ioc_status, request_hdr, func_str);
567
568         _debug_dump_mf(request_hdr, frame_sz/4);
569 }
570
571 /**
572  * _base_display_event_data - verbose translation of firmware asyn events
573  * @ioc: per adapter object
574  * @mpi_reply: reply mf payload returned from firmware
575  *
576  * Return nothing.
577  */
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580         Mpi2EventNotificationReply_t *mpi_reply)
581 {
582         char *desc = NULL;
583         u16 event;
584
585         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586                 return;
587
588         event = le16_to_cpu(mpi_reply->Event);
589
590         switch (event) {
591         case MPI2_EVENT_LOG_DATA:
592                 desc = "Log Data";
593                 break;
594         case MPI2_EVENT_STATE_CHANGE:
595                 desc = "Status Change";
596                 break;
597         case MPI2_EVENT_HARD_RESET_RECEIVED:
598                 desc = "Hard Reset Received";
599                 break;
600         case MPI2_EVENT_EVENT_CHANGE:
601                 desc = "Event Change";
602                 break;
603         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604                 desc = "Device Status Change";
605                 break;
606         case MPI2_EVENT_IR_OPERATION_STATUS:
607                 if (!ioc->hide_ir_msg)
608                         desc = "IR Operation Status";
609                 break;
610         case MPI2_EVENT_SAS_DISCOVERY:
611         {
612                 Mpi2EventDataSasDiscovery_t *event_data =
613                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616                     "start" : "stop");
617                 if (event_data->DiscoveryStatus)
618                         pr_info("discovery_status(0x%08x)",
619                             le32_to_cpu(event_data->DiscoveryStatus));
620                         pr_info("\n");
621                 return;
622         }
623         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624                 desc = "SAS Broadcast Primitive";
625                 break;
626         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627                 desc = "SAS Init Device Status Change";
628                 break;
629         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630                 desc = "SAS Init Table Overflow";
631                 break;
632         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633                 desc = "SAS Topology Change List";
634                 break;
635         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636                 desc = "SAS Enclosure Device Status Change";
637                 break;
638         case MPI2_EVENT_IR_VOLUME:
639                 if (!ioc->hide_ir_msg)
640                         desc = "IR Volume";
641                 break;
642         case MPI2_EVENT_IR_PHYSICAL_DISK:
643                 if (!ioc->hide_ir_msg)
644                         desc = "IR Physical Disk";
645                 break;
646         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647                 if (!ioc->hide_ir_msg)
648                         desc = "IR Configuration Change List";
649                 break;
650         case MPI2_EVENT_LOG_ENTRY_ADDED:
651                 if (!ioc->hide_ir_msg)
652                         desc = "Log Entry Added";
653                 break;
654         case MPI2_EVENT_TEMP_THRESHOLD:
655                 desc = "Temperature Threshold";
656                 break;
657         }
658
659         if (!desc)
660                 return;
661
662         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
663 }
664
665 /**
666  * _base_sas_log_info - verbose translation of firmware log info
667  * @ioc: per adapter object
668  * @log_info: log info
669  *
670  * Return nothing.
671  */
672 static void
673 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
674 {
675         union loginfo_type {
676                 u32     loginfo;
677                 struct {
678                         u32     subcode:16;
679                         u32     code:8;
680                         u32     originator:4;
681                         u32     bus_type:4;
682                 } dw;
683         };
684         union loginfo_type sas_loginfo;
685         char *originator_str = NULL;
686
687         sas_loginfo.loginfo = log_info;
688         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
689                 return;
690
691         /* each nexus loss loginfo */
692         if (log_info == 0x31170000)
693                 return;
694
695         /* eat the loginfos associated with task aborts */
696         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
697             0x31140000 || log_info == 0x31130000))
698                 return;
699
700         switch (sas_loginfo.dw.originator) {
701         case 0:
702                 originator_str = "IOP";
703                 break;
704         case 1:
705                 originator_str = "PL";
706                 break;
707         case 2:
708                 if (!ioc->hide_ir_msg)
709                         originator_str = "IR";
710                 else
711                         originator_str = "WarpDrive";
712                 break;
713         }
714
715         pr_warn(MPT3SAS_FMT
716                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
717                 ioc->name, log_info,
718              originator_str, sas_loginfo.dw.code,
719              sas_loginfo.dw.subcode);
720 }
721
722 /**
723  * _base_display_reply_info -
724  * @ioc: per adapter object
725  * @smid: system request message index
726  * @msix_index: MSIX table index supplied by the OS
727  * @reply: reply message frame(lower 32bit addr)
728  *
729  * Return nothing.
730  */
731 static void
732 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
733         u32 reply)
734 {
735         MPI2DefaultReply_t *mpi_reply;
736         u16 ioc_status;
737         u32 loginfo = 0;
738
739         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
740         if (unlikely(!mpi_reply)) {
741                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
742                     ioc->name, __FILE__, __LINE__, __func__);
743                 return;
744         }
745         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
746
747         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
748             (ioc->logging_level & MPT_DEBUG_REPLY)) {
749                 _base_sas_ioc_info(ioc , mpi_reply,
750                    mpt3sas_base_get_msg_frame(ioc, smid));
751         }
752
753         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
754                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
755                 _base_sas_log_info(ioc, loginfo);
756         }
757
758         if (ioc_status || loginfo) {
759                 ioc_status &= MPI2_IOCSTATUS_MASK;
760                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
761         }
762 }
763
764 /**
765  * mpt3sas_base_done - base internal command completion routine
766  * @ioc: per adapter object
767  * @smid: system request message index
768  * @msix_index: MSIX table index supplied by the OS
769  * @reply: reply message frame(lower 32bit addr)
770  *
771  * Return 1 meaning mf should be freed from _base_interrupt
772  *        0 means the mf is freed from this function.
773  */
774 u8
775 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
776         u32 reply)
777 {
778         MPI2DefaultReply_t *mpi_reply;
779
780         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
781         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
782                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
783
784         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
785                 return 1;
786
787         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
788         if (mpi_reply) {
789                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
790                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
791         }
792         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
793
794         complete(&ioc->base_cmds.done);
795         return 1;
796 }
797
798 /**
799  * _base_async_event - main callback handler for firmware asyn events
800  * @ioc: per adapter object
801  * @msix_index: MSIX table index supplied by the OS
802  * @reply: reply message frame(lower 32bit addr)
803  *
804  * Return 1 meaning mf should be freed from _base_interrupt
805  *        0 means the mf is freed from this function.
806  */
807 static u8
808 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
809 {
810         Mpi2EventNotificationReply_t *mpi_reply;
811         Mpi2EventAckRequest_t *ack_request;
812         u16 smid;
813         struct _event_ack_list *delayed_event_ack;
814
815         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
816         if (!mpi_reply)
817                 return 1;
818         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
819                 return 1;
820
821         _base_display_event_data(ioc, mpi_reply);
822
823         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
824                 goto out;
825         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
826         if (!smid) {
827                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
828                                         GFP_ATOMIC);
829                 if (!delayed_event_ack)
830                         goto out;
831                 INIT_LIST_HEAD(&delayed_event_ack->list);
832                 delayed_event_ack->Event = mpi_reply->Event;
833                 delayed_event_ack->EventContext = mpi_reply->EventContext;
834                 list_add_tail(&delayed_event_ack->list,
835                                 &ioc->delayed_event_ack_list);
836                 dewtprintk(ioc, pr_info(MPT3SAS_FMT
837                                 "DELAYED: EVENT ACK: event (0x%04x)\n",
838                                 ioc->name, le16_to_cpu(mpi_reply->Event)));
839                 goto out;
840         }
841
842         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
843         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
844         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
845         ack_request->Event = mpi_reply->Event;
846         ack_request->EventContext = mpi_reply->EventContext;
847         ack_request->VF_ID = 0;  /* TODO */
848         ack_request->VP_ID = 0;
849         mpt3sas_base_put_smid_default(ioc, smid);
850
851  out:
852
853         /* scsih callback handler */
854         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
855
856         /* ctl callback handler */
857         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
858
859         return 1;
860 }
861
862 /**
863  * _base_get_cb_idx - obtain the callback index
864  * @ioc: per adapter object
865  * @smid: system request message index
866  *
867  * Return callback index.
868  */
869 static u8
870 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
871 {
872         int i;
873         u8 cb_idx;
874
875         if (smid < ioc->hi_priority_smid) {
876                 i = smid - 1;
877                 cb_idx = ioc->scsi_lookup[i].cb_idx;
878         } else if (smid < ioc->internal_smid) {
879                 i = smid - ioc->hi_priority_smid;
880                 cb_idx = ioc->hpr_lookup[i].cb_idx;
881         } else if (smid <= ioc->hba_queue_depth) {
882                 i = smid - ioc->internal_smid;
883                 cb_idx = ioc->internal_lookup[i].cb_idx;
884         } else
885                 cb_idx = 0xFF;
886         return cb_idx;
887 }
888
889 /**
890  * _base_mask_interrupts - disable interrupts
891  * @ioc: per adapter object
892  *
893  * Disabling ResetIRQ, Reply and Doorbell Interrupts
894  *
895  * Return nothing.
896  */
897 static void
898 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
899 {
900         u32 him_register;
901
902         ioc->mask_interrupts = 1;
903         him_register = readl(&ioc->chip->HostInterruptMask);
904         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
905         writel(him_register, &ioc->chip->HostInterruptMask);
906         readl(&ioc->chip->HostInterruptMask);
907 }
908
909 /**
910  * _base_unmask_interrupts - enable interrupts
911  * @ioc: per adapter object
912  *
913  * Enabling only Reply Interrupts
914  *
915  * Return nothing.
916  */
917 static void
918 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
919 {
920         u32 him_register;
921
922         him_register = readl(&ioc->chip->HostInterruptMask);
923         him_register &= ~MPI2_HIM_RIM;
924         writel(him_register, &ioc->chip->HostInterruptMask);
925         ioc->mask_interrupts = 0;
926 }
927
928 union reply_descriptor {
929         u64 word;
930         struct {
931                 u32 low;
932                 u32 high;
933         } u;
934 };
935
936 /**
937  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
938  * @irq: irq number (not used)
939  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
940  * @r: pt_regs pointer (not used)
941  *
942  * Return IRQ_HANDLE if processed, else IRQ_NONE.
943  */
944 static irqreturn_t
945 _base_interrupt(int irq, void *bus_id)
946 {
947         struct adapter_reply_queue *reply_q = bus_id;
948         union reply_descriptor rd;
949         u32 completed_cmds;
950         u8 request_desript_type;
951         u16 smid;
952         u8 cb_idx;
953         u32 reply;
954         u8 msix_index = reply_q->msix_index;
955         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
956         Mpi2ReplyDescriptorsUnion_t *rpf;
957         u8 rc;
958
959         if (ioc->mask_interrupts)
960                 return IRQ_NONE;
961
962         if (!atomic_add_unless(&reply_q->busy, 1, 1))
963                 return IRQ_NONE;
964
965         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
966         request_desript_type = rpf->Default.ReplyFlags
967              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
968         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
969                 atomic_dec(&reply_q->busy);
970                 return IRQ_NONE;
971         }
972
973         completed_cmds = 0;
974         cb_idx = 0xFF;
975         do {
976                 rd.word = le64_to_cpu(rpf->Words);
977                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
978                         goto out;
979                 reply = 0;
980                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
981                 if (request_desript_type ==
982                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
983                     request_desript_type ==
984                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
985                         cb_idx = _base_get_cb_idx(ioc, smid);
986                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
987                             (likely(mpt_callbacks[cb_idx] != NULL))) {
988                                 rc = mpt_callbacks[cb_idx](ioc, smid,
989                                     msix_index, 0);
990                                 if (rc)
991                                         mpt3sas_base_free_smid(ioc, smid);
992                         }
993                 } else if (request_desript_type ==
994                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
995                         reply = le32_to_cpu(
996                             rpf->AddressReply.ReplyFrameAddress);
997                         if (reply > ioc->reply_dma_max_address ||
998                             reply < ioc->reply_dma_min_address)
999                                 reply = 0;
1000                         if (smid) {
1001                                 cb_idx = _base_get_cb_idx(ioc, smid);
1002                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1003                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1004                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1005                                             msix_index, reply);
1006                                         if (reply)
1007                                                 _base_display_reply_info(ioc,
1008                                                     smid, msix_index, reply);
1009                                         if (rc)
1010                                                 mpt3sas_base_free_smid(ioc,
1011                                                     smid);
1012                                 }
1013                         } else {
1014                                 _base_async_event(ioc, msix_index, reply);
1015                         }
1016
1017                         /* reply free queue handling */
1018                         if (reply) {
1019                                 ioc->reply_free_host_index =
1020                                     (ioc->reply_free_host_index ==
1021                                     (ioc->reply_free_queue_depth - 1)) ?
1022                                     0 : ioc->reply_free_host_index + 1;
1023                                 ioc->reply_free[ioc->reply_free_host_index] =
1024                                     cpu_to_le32(reply);
1025                                 wmb();
1026                                 writel(ioc->reply_free_host_index,
1027                                     &ioc->chip->ReplyFreeHostIndex);
1028                         }
1029                 }
1030
1031                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1032                 reply_q->reply_post_host_index =
1033                     (reply_q->reply_post_host_index ==
1034                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1035                     reply_q->reply_post_host_index + 1;
1036                 request_desript_type =
1037                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1038                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1039                 completed_cmds++;
1040                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1041                         goto out;
1042                 if (!reply_q->reply_post_host_index)
1043                         rpf = reply_q->reply_post_free;
1044                 else
1045                         rpf++;
1046         } while (1);
1047
1048  out:
1049
1050         if (!completed_cmds) {
1051                 atomic_dec(&reply_q->busy);
1052                 return IRQ_NONE;
1053         }
1054
1055         wmb();
1056         if (ioc->is_warpdrive) {
1057                 writel(reply_q->reply_post_host_index,
1058                 ioc->reply_post_host_index[msix_index]);
1059                 atomic_dec(&reply_q->busy);
1060                 return IRQ_HANDLED;
1061         }
1062
1063         /* Update Reply Post Host Index.
1064          * For those HBA's which support combined reply queue feature
1065          * 1. Get the correct Supplemental Reply Post Host Index Register.
1066          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1067          *    Index Register address bank i.e replyPostRegisterIndex[],
1068          * 2. Then update this register with new reply host index value
1069          *    in ReplyPostIndex field and the MSIxIndex field with
1070          *    msix_index value reduced to a value between 0 and 7,
1071          *    using a modulo 8 operation. Since each Supplemental Reply Post
1072          *    Host Index Register supports 8 MSI-X vectors.
1073          *
1074          * For other HBA's just update the Reply Post Host Index register with
1075          * new reply host index value in ReplyPostIndex Field and msix_index
1076          * value in MSIxIndex field.
1077          */
1078         if (ioc->msix96_vector)
1079                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1080                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1081                         ioc->replyPostRegisterIndex[msix_index/8]);
1082         else
1083                 writel(reply_q->reply_post_host_index | (msix_index <<
1084                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1085                         &ioc->chip->ReplyPostHostIndex);
1086         atomic_dec(&reply_q->busy);
1087         return IRQ_HANDLED;
1088 }
1089
1090 /**
1091  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1092  * @ioc: per adapter object
1093  *
1094  */
1095 static inline int
1096 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1097 {
1098         return (ioc->facts.IOCCapabilities &
1099             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1100 }
1101
1102 /**
1103  * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1104  * @ioc: per adapter object
1105  * Context: ISR conext
1106  *
1107  * Called when a Task Management request has completed. We want
1108  * to flush the other reply queues so all the outstanding IO has been
1109  * completed back to OS before we process the TM completetion.
1110  *
1111  * Return nothing.
1112  */
1113 void
1114 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1115 {
1116         struct adapter_reply_queue *reply_q;
1117
1118         /* If MSIX capability is turned off
1119          * then multi-queues are not enabled
1120          */
1121         if (!_base_is_controller_msix_enabled(ioc))
1122                 return;
1123
1124         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1125                 if (ioc->shost_recovery)
1126                         return;
1127                 /* TMs are on msix_index == 0 */
1128                 if (reply_q->msix_index == 0)
1129                         continue;
1130                 _base_interrupt(reply_q->vector, (void *)reply_q);
1131         }
1132 }
1133
1134 /**
1135  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1136  * @cb_idx: callback index
1137  *
1138  * Return nothing.
1139  */
1140 void
1141 mpt3sas_base_release_callback_handler(u8 cb_idx)
1142 {
1143         mpt_callbacks[cb_idx] = NULL;
1144 }
1145
1146 /**
1147  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1148  * @cb_func: callback function
1149  *
1150  * Returns cb_func.
1151  */
1152 u8
1153 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1154 {
1155         u8 cb_idx;
1156
1157         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1158                 if (mpt_callbacks[cb_idx] == NULL)
1159                         break;
1160
1161         mpt_callbacks[cb_idx] = cb_func;
1162         return cb_idx;
1163 }
1164
1165 /**
1166  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1167  *
1168  * Return nothing.
1169  */
1170 void
1171 mpt3sas_base_initialize_callback_handler(void)
1172 {
1173         u8 cb_idx;
1174
1175         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1176                 mpt3sas_base_release_callback_handler(cb_idx);
1177 }
1178
1179
1180 /**
1181  * _base_build_zero_len_sge - build zero length sg entry
1182  * @ioc: per adapter object
1183  * @paddr: virtual address for SGE
1184  *
1185  * Create a zero length scatter gather entry to insure the IOCs hardware has
1186  * something to use if the target device goes brain dead and tries
1187  * to send data even when none is asked for.
1188  *
1189  * Return nothing.
1190  */
1191 static void
1192 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1193 {
1194         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1195             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1196             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1197             MPI2_SGE_FLAGS_SHIFT);
1198         ioc->base_add_sg_single(paddr, flags_length, -1);
1199 }
1200
1201 /**
1202  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1203  * @paddr: virtual address for SGE
1204  * @flags_length: SGE flags and data transfer length
1205  * @dma_addr: Physical address
1206  *
1207  * Return nothing.
1208  */
1209 static void
1210 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1211 {
1212         Mpi2SGESimple32_t *sgel = paddr;
1213
1214         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1215             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1216         sgel->FlagsLength = cpu_to_le32(flags_length);
1217         sgel->Address = cpu_to_le32(dma_addr);
1218 }
1219
1220
1221 /**
1222  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1223  * @paddr: virtual address for SGE
1224  * @flags_length: SGE flags and data transfer length
1225  * @dma_addr: Physical address
1226  *
1227  * Return nothing.
1228  */
1229 static void
1230 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1231 {
1232         Mpi2SGESimple64_t *sgel = paddr;
1233
1234         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1235             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1236         sgel->FlagsLength = cpu_to_le32(flags_length);
1237         sgel->Address = cpu_to_le64(dma_addr);
1238 }
1239
1240 /**
1241  * _base_get_chain_buffer_tracker - obtain chain tracker
1242  * @ioc: per adapter object
1243  * @smid: smid associated to an IO request
1244  *
1245  * Returns chain tracker(from ioc->free_chain_list)
1246  */
1247 static struct chain_tracker *
1248 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1249 {
1250         struct chain_tracker *chain_req;
1251         unsigned long flags;
1252
1253         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1254         if (list_empty(&ioc->free_chain_list)) {
1255                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1256                 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1257                         "chain buffers not available\n", ioc->name));
1258                 return NULL;
1259         }
1260         chain_req = list_entry(ioc->free_chain_list.next,
1261             struct chain_tracker, tracker_list);
1262         list_del_init(&chain_req->tracker_list);
1263         list_add_tail(&chain_req->tracker_list,
1264             &ioc->scsi_lookup[smid - 1].chain_list);
1265         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1266         return chain_req;
1267 }
1268
1269
1270 /**
1271  * _base_build_sg - build generic sg
1272  * @ioc: per adapter object
1273  * @psge: virtual address for SGE
1274  * @data_out_dma: physical address for WRITES
1275  * @data_out_sz: data xfer size for WRITES
1276  * @data_in_dma: physical address for READS
1277  * @data_in_sz: data xfer size for READS
1278  *
1279  * Return nothing.
1280  */
1281 static void
1282 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1283         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1284         size_t data_in_sz)
1285 {
1286         u32 sgl_flags;
1287
1288         if (!data_out_sz && !data_in_sz) {
1289                 _base_build_zero_len_sge(ioc, psge);
1290                 return;
1291         }
1292
1293         if (data_out_sz && data_in_sz) {
1294                 /* WRITE sgel first */
1295                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1296                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1297                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1298                 ioc->base_add_sg_single(psge, sgl_flags |
1299                     data_out_sz, data_out_dma);
1300
1301                 /* incr sgel */
1302                 psge += ioc->sge_size;
1303
1304                 /* READ sgel last */
1305                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1306                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1307                     MPI2_SGE_FLAGS_END_OF_LIST);
1308                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1309                 ioc->base_add_sg_single(psge, sgl_flags |
1310                     data_in_sz, data_in_dma);
1311         } else if (data_out_sz) /* WRITE */ {
1312                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1313                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1314                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1315                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1316                 ioc->base_add_sg_single(psge, sgl_flags |
1317                     data_out_sz, data_out_dma);
1318         } else if (data_in_sz) /* READ */ {
1319                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1320                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1321                     MPI2_SGE_FLAGS_END_OF_LIST);
1322                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1323                 ioc->base_add_sg_single(psge, sgl_flags |
1324                     data_in_sz, data_in_dma);
1325         }
1326 }
1327
1328 /* IEEE format sgls */
1329
1330 /**
1331  * _base_add_sg_single_ieee - add sg element for IEEE format
1332  * @paddr: virtual address for SGE
1333  * @flags: SGE flags
1334  * @chain_offset: number of 128 byte elements from start of segment
1335  * @length: data transfer length
1336  * @dma_addr: Physical address
1337  *
1338  * Return nothing.
1339  */
1340 static void
1341 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1342         dma_addr_t dma_addr)
1343 {
1344         Mpi25IeeeSgeChain64_t *sgel = paddr;
1345
1346         sgel->Flags = flags;
1347         sgel->NextChainOffset = chain_offset;
1348         sgel->Length = cpu_to_le32(length);
1349         sgel->Address = cpu_to_le64(dma_addr);
1350 }
1351
1352 /**
1353  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1354  * @ioc: per adapter object
1355  * @paddr: virtual address for SGE
1356  *
1357  * Create a zero length scatter gather entry to insure the IOCs hardware has
1358  * something to use if the target device goes brain dead and tries
1359  * to send data even when none is asked for.
1360  *
1361  * Return nothing.
1362  */
1363 static void
1364 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1365 {
1366         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1367                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1368                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1369
1370         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1371 }
1372
1373 /**
1374  * _base_build_sg_scmd - main sg creation routine
1375  * @ioc: per adapter object
1376  * @scmd: scsi command
1377  * @smid: system request message index
1378  * Context: none.
1379  *
1380  * The main routine that builds scatter gather table from a given
1381  * scsi request sent via the .queuecommand main handler.
1382  *
1383  * Returns 0 success, anything else error
1384  */
1385 static int
1386 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1387                 struct scsi_cmnd *scmd, u16 smid)
1388 {
1389         Mpi2SCSIIORequest_t *mpi_request;
1390         dma_addr_t chain_dma;
1391         struct scatterlist *sg_scmd;
1392         void *sg_local, *chain;
1393         u32 chain_offset;
1394         u32 chain_length;
1395         u32 chain_flags;
1396         int sges_left;
1397         u32 sges_in_segment;
1398         u32 sgl_flags;
1399         u32 sgl_flags_last_element;
1400         u32 sgl_flags_end_buffer;
1401         struct chain_tracker *chain_req;
1402
1403         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1404
1405         /* init scatter gather flags */
1406         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1407         if (scmd->sc_data_direction == DMA_TO_DEVICE)
1408                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1409         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1410             << MPI2_SGE_FLAGS_SHIFT;
1411         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1412             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1413             << MPI2_SGE_FLAGS_SHIFT;
1414         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1415
1416         sg_scmd = scsi_sglist(scmd);
1417         sges_left = scsi_dma_map(scmd);
1418         if (sges_left < 0) {
1419                 sdev_printk(KERN_ERR, scmd->device,
1420                  "pci_map_sg failed: request for %d bytes!\n",
1421                  scsi_bufflen(scmd));
1422                 return -ENOMEM;
1423         }
1424
1425         sg_local = &mpi_request->SGL;
1426         sges_in_segment = ioc->max_sges_in_main_message;
1427         if (sges_left <= sges_in_segment)
1428                 goto fill_in_last_segment;
1429
1430         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1431             (sges_in_segment * ioc->sge_size))/4;
1432
1433         /* fill in main message segment when there is a chain following */
1434         while (sges_in_segment) {
1435                 if (sges_in_segment == 1)
1436                         ioc->base_add_sg_single(sg_local,
1437                             sgl_flags_last_element | sg_dma_len(sg_scmd),
1438                             sg_dma_address(sg_scmd));
1439                 else
1440                         ioc->base_add_sg_single(sg_local, sgl_flags |
1441                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1442                 sg_scmd = sg_next(sg_scmd);
1443                 sg_local += ioc->sge_size;
1444                 sges_left--;
1445                 sges_in_segment--;
1446         }
1447
1448         /* initializing the chain flags and pointers */
1449         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1450         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1451         if (!chain_req)
1452                 return -1;
1453         chain = chain_req->chain_buffer;
1454         chain_dma = chain_req->chain_buffer_dma;
1455         do {
1456                 sges_in_segment = (sges_left <=
1457                     ioc->max_sges_in_chain_message) ? sges_left :
1458                     ioc->max_sges_in_chain_message;
1459                 chain_offset = (sges_left == sges_in_segment) ?
1460                     0 : (sges_in_segment * ioc->sge_size)/4;
1461                 chain_length = sges_in_segment * ioc->sge_size;
1462                 if (chain_offset) {
1463                         chain_offset = chain_offset <<
1464                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
1465                         chain_length += ioc->sge_size;
1466                 }
1467                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1468                     chain_length, chain_dma);
1469                 sg_local = chain;
1470                 if (!chain_offset)
1471                         goto fill_in_last_segment;
1472
1473                 /* fill in chain segments */
1474                 while (sges_in_segment) {
1475                         if (sges_in_segment == 1)
1476                                 ioc->base_add_sg_single(sg_local,
1477                                     sgl_flags_last_element |
1478                                     sg_dma_len(sg_scmd),
1479                                     sg_dma_address(sg_scmd));
1480                         else
1481                                 ioc->base_add_sg_single(sg_local, sgl_flags |
1482                                     sg_dma_len(sg_scmd),
1483                                     sg_dma_address(sg_scmd));
1484                         sg_scmd = sg_next(sg_scmd);
1485                         sg_local += ioc->sge_size;
1486                         sges_left--;
1487                         sges_in_segment--;
1488                 }
1489
1490                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1491                 if (!chain_req)
1492                         return -1;
1493                 chain = chain_req->chain_buffer;
1494                 chain_dma = chain_req->chain_buffer_dma;
1495         } while (1);
1496
1497
1498  fill_in_last_segment:
1499
1500         /* fill the last segment */
1501         while (sges_left) {
1502                 if (sges_left == 1)
1503                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1504                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1505                 else
1506                         ioc->base_add_sg_single(sg_local, sgl_flags |
1507                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1508                 sg_scmd = sg_next(sg_scmd);
1509                 sg_local += ioc->sge_size;
1510                 sges_left--;
1511         }
1512
1513         return 0;
1514 }
1515
1516 /**
1517  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1518  * @ioc: per adapter object
1519  * @scmd: scsi command
1520  * @smid: system request message index
1521  * Context: none.
1522  *
1523  * The main routine that builds scatter gather table from a given
1524  * scsi request sent via the .queuecommand main handler.
1525  *
1526  * Returns 0 success, anything else error
1527  */
1528 static int
1529 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1530         struct scsi_cmnd *scmd, u16 smid)
1531 {
1532         Mpi2SCSIIORequest_t *mpi_request;
1533         dma_addr_t chain_dma;
1534         struct scatterlist *sg_scmd;
1535         void *sg_local, *chain;
1536         u32 chain_offset;
1537         u32 chain_length;
1538         int sges_left;
1539         u32 sges_in_segment;
1540         u8 simple_sgl_flags;
1541         u8 simple_sgl_flags_last;
1542         u8 chain_sgl_flags;
1543         struct chain_tracker *chain_req;
1544
1545         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1546
1547         /* init scatter gather flags */
1548         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1549             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1550         simple_sgl_flags_last = simple_sgl_flags |
1551             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1552         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1553             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1554
1555         sg_scmd = scsi_sglist(scmd);
1556         sges_left = scsi_dma_map(scmd);
1557         if (sges_left < 0) {
1558                 sdev_printk(KERN_ERR, scmd->device,
1559                         "pci_map_sg failed: request for %d bytes!\n",
1560                         scsi_bufflen(scmd));
1561                 return -ENOMEM;
1562         }
1563
1564         sg_local = &mpi_request->SGL;
1565         sges_in_segment = (ioc->request_sz -
1566             offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1567         if (sges_left <= sges_in_segment)
1568                 goto fill_in_last_segment;
1569
1570         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1571             (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1572
1573         /* fill in main message segment when there is a chain following */
1574         while (sges_in_segment > 1) {
1575                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1576                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1577                 sg_scmd = sg_next(sg_scmd);
1578                 sg_local += ioc->sge_size_ieee;
1579                 sges_left--;
1580                 sges_in_segment--;
1581         }
1582
1583         /* initializing the pointers */
1584         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1585         if (!chain_req)
1586                 return -1;
1587         chain = chain_req->chain_buffer;
1588         chain_dma = chain_req->chain_buffer_dma;
1589         do {
1590                 sges_in_segment = (sges_left <=
1591                     ioc->max_sges_in_chain_message) ? sges_left :
1592                     ioc->max_sges_in_chain_message;
1593                 chain_offset = (sges_left == sges_in_segment) ?
1594                     0 : sges_in_segment;
1595                 chain_length = sges_in_segment * ioc->sge_size_ieee;
1596                 if (chain_offset)
1597                         chain_length += ioc->sge_size_ieee;
1598                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1599                     chain_offset, chain_length, chain_dma);
1600
1601                 sg_local = chain;
1602                 if (!chain_offset)
1603                         goto fill_in_last_segment;
1604
1605                 /* fill in chain segments */
1606                 while (sges_in_segment) {
1607                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1608                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1609                         sg_scmd = sg_next(sg_scmd);
1610                         sg_local += ioc->sge_size_ieee;
1611                         sges_left--;
1612                         sges_in_segment--;
1613                 }
1614
1615                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1616                 if (!chain_req)
1617                         return -1;
1618                 chain = chain_req->chain_buffer;
1619                 chain_dma = chain_req->chain_buffer_dma;
1620         } while (1);
1621
1622
1623  fill_in_last_segment:
1624
1625         /* fill the last segment */
1626         while (sges_left > 0) {
1627                 if (sges_left == 1)
1628                         _base_add_sg_single_ieee(sg_local,
1629                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1630                             sg_dma_address(sg_scmd));
1631                 else
1632                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1633                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1634                 sg_scmd = sg_next(sg_scmd);
1635                 sg_local += ioc->sge_size_ieee;
1636                 sges_left--;
1637         }
1638
1639         return 0;
1640 }
1641
1642 /**
1643  * _base_build_sg_ieee - build generic sg for IEEE format
1644  * @ioc: per adapter object
1645  * @psge: virtual address for SGE
1646  * @data_out_dma: physical address for WRITES
1647  * @data_out_sz: data xfer size for WRITES
1648  * @data_in_dma: physical address for READS
1649  * @data_in_sz: data xfer size for READS
1650  *
1651  * Return nothing.
1652  */
1653 static void
1654 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1655         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1656         size_t data_in_sz)
1657 {
1658         u8 sgl_flags;
1659
1660         if (!data_out_sz && !data_in_sz) {
1661                 _base_build_zero_len_sge_ieee(ioc, psge);
1662                 return;
1663         }
1664
1665         if (data_out_sz && data_in_sz) {
1666                 /* WRITE sgel first */
1667                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1668                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1669                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1670                     data_out_dma);
1671
1672                 /* incr sgel */
1673                 psge += ioc->sge_size_ieee;
1674
1675                 /* READ sgel last */
1676                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1677                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1678                     data_in_dma);
1679         } else if (data_out_sz) /* WRITE */ {
1680                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1681                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1682                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1683                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1684                     data_out_dma);
1685         } else if (data_in_sz) /* READ */ {
1686                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1687                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1688                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1689                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1690                     data_in_dma);
1691         }
1692 }
1693
1694 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1695
1696 /**
1697  * _base_config_dma_addressing - set dma addressing
1698  * @ioc: per adapter object
1699  * @pdev: PCI device struct
1700  *
1701  * Returns 0 for success, non-zero for failure.
1702  */
1703 static int
1704 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1705 {
1706         struct sysinfo s;
1707         u64 consistent_dma_mask;
1708
1709         if (ioc->dma_mask)
1710                 consistent_dma_mask = DMA_BIT_MASK(64);
1711         else
1712                 consistent_dma_mask = DMA_BIT_MASK(32);
1713
1714         if (sizeof(dma_addr_t) > 4) {
1715                 const uint64_t required_mask =
1716                     dma_get_required_mask(&pdev->dev);
1717                 if ((required_mask > DMA_BIT_MASK(32)) &&
1718                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1719                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1720                         ioc->base_add_sg_single = &_base_add_sg_single_64;
1721                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1722                         ioc->dma_mask = 64;
1723                         goto out;
1724                 }
1725         }
1726
1727         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1728             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1729                 ioc->base_add_sg_single = &_base_add_sg_single_32;
1730                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1731                 ioc->dma_mask = 32;
1732         } else
1733                 return -ENODEV;
1734
1735  out:
1736         si_meminfo(&s);
1737         pr_info(MPT3SAS_FMT
1738                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1739                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1740
1741         return 0;
1742 }
1743
1744 static int
1745 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1746                                       struct pci_dev *pdev)
1747 {
1748         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1749                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1750                         return -ENODEV;
1751         }
1752         return 0;
1753 }
1754
1755 /**
1756  * _base_check_enable_msix - checks MSIX capabable.
1757  * @ioc: per adapter object
1758  *
1759  * Check to see if card is capable of MSIX, and set number
1760  * of available msix vectors
1761  */
1762 static int
1763 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1764 {
1765         int base;
1766         u16 message_control;
1767
1768         /* Check whether controller SAS2008 B0 controller,
1769          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1770          */
1771         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1772             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1773                 return -EINVAL;
1774         }
1775
1776         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1777         if (!base) {
1778                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1779                         ioc->name));
1780                 return -EINVAL;
1781         }
1782
1783         /* get msix vector count */
1784         /* NUMA_IO not supported for older controllers */
1785         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1786             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1787             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1788             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1789             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1790             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1791             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1792                 ioc->msix_vector_count = 1;
1793         else {
1794                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1795                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1796         }
1797         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1798                 "msix is supported, vector_count(%d)\n",
1799                 ioc->name, ioc->msix_vector_count));
1800         return 0;
1801 }
1802
1803 /**
1804  * _base_free_irq - free irq
1805  * @ioc: per adapter object
1806  *
1807  * Freeing respective reply_queue from the list.
1808  */
1809 static void
1810 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1811 {
1812         struct adapter_reply_queue *reply_q, *next;
1813
1814         if (list_empty(&ioc->reply_queue_list))
1815                 return;
1816
1817         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1818                 list_del(&reply_q->list);
1819                 if (smp_affinity_enable) {
1820                         irq_set_affinity_hint(reply_q->vector, NULL);
1821                         free_cpumask_var(reply_q->affinity_hint);
1822                 }
1823                 free_irq(reply_q->vector, reply_q);
1824                 kfree(reply_q);
1825         }
1826 }
1827
1828 /**
1829  * _base_request_irq - request irq
1830  * @ioc: per adapter object
1831  * @index: msix index into vector table
1832  * @vector: irq vector
1833  *
1834  * Inserting respective reply_queue into the list.
1835  */
1836 static int
1837 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1838 {
1839         struct adapter_reply_queue *reply_q;
1840         int r;
1841
1842         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1843         if (!reply_q) {
1844                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1845                     ioc->name, (int)sizeof(struct adapter_reply_queue));
1846                 return -ENOMEM;
1847         }
1848         reply_q->ioc = ioc;
1849         reply_q->msix_index = index;
1850         reply_q->vector = vector;
1851
1852         if (smp_affinity_enable) {
1853                 if (!zalloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) {
1854                         kfree(reply_q);
1855                         return -ENOMEM;
1856                 }
1857         }
1858
1859         atomic_set(&reply_q->busy, 0);
1860         if (ioc->msix_enable)
1861                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1862                     ioc->driver_name, ioc->id, index);
1863         else
1864                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1865                     ioc->driver_name, ioc->id);
1866         r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1867             reply_q);
1868         if (r) {
1869                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1870                     reply_q->name, vector);
1871                 free_cpumask_var(reply_q->affinity_hint);
1872                 kfree(reply_q);
1873                 return -EBUSY;
1874         }
1875
1876         INIT_LIST_HEAD(&reply_q->list);
1877         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1878         return 0;
1879 }
1880
1881 /**
1882  * _base_assign_reply_queues - assigning msix index for each cpu
1883  * @ioc: per adapter object
1884  *
1885  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1886  *
1887  * It would nice if we could call irq_set_affinity, however it is not
1888  * an exported symbol
1889  */
1890 static void
1891 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1892 {
1893         unsigned int cpu, nr_cpus, nr_msix, index = 0;
1894         struct adapter_reply_queue *reply_q;
1895
1896         if (!_base_is_controller_msix_enabled(ioc))
1897                 return;
1898
1899         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1900
1901         nr_cpus = num_online_cpus();
1902         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1903                                                ioc->facts.MaxMSIxVectors);
1904         if (!nr_msix)
1905                 return;
1906
1907         cpu = cpumask_first(cpu_online_mask);
1908
1909         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1910
1911                 unsigned int i, group = nr_cpus / nr_msix;
1912
1913                 if (cpu >= nr_cpus)
1914                         break;
1915
1916                 if (index < nr_cpus % nr_msix)
1917                         group++;
1918
1919                 for (i = 0 ; i < group ; i++) {
1920                         ioc->cpu_msix_table[cpu] = index;
1921                         if (smp_affinity_enable)
1922                                 cpumask_or(reply_q->affinity_hint,
1923                                    reply_q->affinity_hint, get_cpu_mask(cpu));
1924                         cpu = cpumask_next(cpu, cpu_online_mask);
1925                 }
1926                 if (smp_affinity_enable)
1927                         if (irq_set_affinity_hint(reply_q->vector,
1928                                            reply_q->affinity_hint))
1929                                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1930                                  "Err setting affinity hint to irq vector %d\n",
1931                                  ioc->name, reply_q->vector));
1932                 index++;
1933         }
1934 }
1935
1936 /**
1937  * _base_disable_msix - disables msix
1938  * @ioc: per adapter object
1939  *
1940  */
1941 static void
1942 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1943 {
1944         if (!ioc->msix_enable)
1945                 return;
1946         pci_disable_msix(ioc->pdev);
1947         ioc->msix_enable = 0;
1948 }
1949
1950 /**
1951  * _base_enable_msix - enables msix, failback to io_apic
1952  * @ioc: per adapter object
1953  *
1954  */
1955 static int
1956 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1957 {
1958         struct msix_entry *entries, *a;
1959         int r;
1960         int i;
1961         u8 try_msix = 0;
1962
1963         if (msix_disable == -1 || msix_disable == 0)
1964                 try_msix = 1;
1965
1966         if (!try_msix)
1967                 goto try_ioapic;
1968
1969         if (_base_check_enable_msix(ioc) != 0)
1970                 goto try_ioapic;
1971
1972         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1973             ioc->msix_vector_count);
1974
1975         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1976           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1977           ioc->cpu_count, max_msix_vectors);
1978
1979         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1980                 max_msix_vectors = 8;
1981
1982         if (max_msix_vectors > 0) {
1983                 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1984                         ioc->reply_queue_count);
1985                 ioc->msix_vector_count = ioc->reply_queue_count;
1986         } else if (max_msix_vectors == 0)
1987                 goto try_ioapic;
1988
1989         if (ioc->msix_vector_count < ioc->cpu_count)
1990                 smp_affinity_enable = 0;
1991
1992         entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1993             GFP_KERNEL);
1994         if (!entries) {
1995                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1996                         "kcalloc failed @ at %s:%d/%s() !!!\n",
1997                         ioc->name, __FILE__, __LINE__, __func__));
1998                 goto try_ioapic;
1999         }
2000
2001         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
2002                 a->entry = i;
2003
2004         r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
2005         if (r) {
2006                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2007                         "pci_enable_msix_exact failed (r=%d) !!!\n",
2008                         ioc->name, r));
2009                 kfree(entries);
2010                 goto try_ioapic;
2011         }
2012
2013         ioc->msix_enable = 1;
2014         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
2015                 r = _base_request_irq(ioc, i, a->vector);
2016                 if (r) {
2017                         _base_free_irq(ioc);
2018                         _base_disable_msix(ioc);
2019                         kfree(entries);
2020                         goto try_ioapic;
2021                 }
2022         }
2023
2024         kfree(entries);
2025         return 0;
2026
2027 /* failback to io_apic interrupt routing */
2028  try_ioapic:
2029
2030         ioc->reply_queue_count = 1;
2031         r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2032
2033         return r;
2034 }
2035
2036 /**
2037  * mpt3sas_base_unmap_resources - free controller resources
2038  * @ioc: per adapter object
2039  */
2040 void
2041 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2042 {
2043         struct pci_dev *pdev = ioc->pdev;
2044
2045         dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2046                 ioc->name, __func__));
2047
2048         _base_free_irq(ioc);
2049         _base_disable_msix(ioc);
2050
2051         if (ioc->msix96_vector) {
2052                 kfree(ioc->replyPostRegisterIndex);
2053                 ioc->replyPostRegisterIndex = NULL;
2054         }
2055
2056         if (ioc->chip_phys) {
2057                 iounmap(ioc->chip);
2058                 ioc->chip_phys = 0;
2059         }
2060
2061         if (pci_is_enabled(pdev)) {
2062                 pci_release_selected_regions(ioc->pdev, ioc->bars);
2063                 pci_disable_pcie_error_reporting(pdev);
2064                 pci_disable_device(pdev);
2065         }
2066 }
2067
2068 /**
2069  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2070  * @ioc: per adapter object
2071  *
2072  * Returns 0 for success, non-zero for failure.
2073  */
2074 int
2075 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2076 {
2077         struct pci_dev *pdev = ioc->pdev;
2078         u32 memap_sz;
2079         u32 pio_sz;
2080         int i, r = 0;
2081         u64 pio_chip = 0;
2082         u64 chip_phys = 0;
2083         struct adapter_reply_queue *reply_q;
2084
2085         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2086             ioc->name, __func__));
2087
2088         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2089         if (pci_enable_device_mem(pdev)) {
2090                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2091                         ioc->name);
2092                 ioc->bars = 0;
2093                 return -ENODEV;
2094         }
2095
2096
2097         if (pci_request_selected_regions(pdev, ioc->bars,
2098             ioc->driver_name)) {
2099                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2100                         ioc->name);
2101                 ioc->bars = 0;
2102                 r = -ENODEV;
2103                 goto out_fail;
2104         }
2105
2106 /* AER (Advanced Error Reporting) hooks */
2107         pci_enable_pcie_error_reporting(pdev);
2108
2109         pci_set_master(pdev);
2110
2111
2112         if (_base_config_dma_addressing(ioc, pdev) != 0) {
2113                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2114                     ioc->name, pci_name(pdev));
2115                 r = -ENODEV;
2116                 goto out_fail;
2117         }
2118
2119         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2120              (!memap_sz || !pio_sz); i++) {
2121                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2122                         if (pio_sz)
2123                                 continue;
2124                         pio_chip = (u64)pci_resource_start(pdev, i);
2125                         pio_sz = pci_resource_len(pdev, i);
2126                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2127                         if (memap_sz)
2128                                 continue;
2129                         ioc->chip_phys = pci_resource_start(pdev, i);
2130                         chip_phys = (u64)ioc->chip_phys;
2131                         memap_sz = pci_resource_len(pdev, i);
2132                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2133                 }
2134         }
2135
2136         if (ioc->chip == NULL) {
2137                 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2138                         " or resource not found\n", ioc->name);
2139                 r = -EINVAL;
2140                 goto out_fail;
2141         }
2142
2143         _base_mask_interrupts(ioc);
2144
2145         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
2146         if (r)
2147                 goto out_fail;
2148
2149         if (!ioc->rdpq_array_enable_assigned) {
2150                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2151                 ioc->rdpq_array_enable_assigned = 1;
2152         }
2153
2154         r = _base_enable_msix(ioc);
2155         if (r)
2156                 goto out_fail;
2157
2158         /* Use the Combined reply queue feature only for SAS3 C0 & higher
2159          * revision HBAs and also only when reply queue count is greater than 8
2160          */
2161         if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2162                 /* Determine the Supplemental Reply Post Host Index Registers
2163                  * Addresse. Supplemental Reply Post Host Index Registers
2164                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2165                  * each register is at offset bytes of
2166                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2167                  */
2168                 ioc->replyPostRegisterIndex = kcalloc(
2169                      MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2170                      sizeof(resource_size_t *), GFP_KERNEL);
2171                 if (!ioc->replyPostRegisterIndex) {
2172                         dfailprintk(ioc, printk(MPT3SAS_FMT
2173                         "allocation for reply Post Register Index failed!!!\n",
2174                                                                    ioc->name));
2175                         r = -ENOMEM;
2176                         goto out_fail;
2177                 }
2178
2179                 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2180                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2181                              ((u8 *)&ioc->chip->Doorbell +
2182                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2183                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2184                 }
2185         } else
2186                 ioc->msix96_vector = 0;
2187
2188         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2189                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2190                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2191                     "IO-APIC enabled"), reply_q->vector);
2192
2193         pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2194             ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2195         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2196             ioc->name, (unsigned long long)pio_chip, pio_sz);
2197
2198         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2199         pci_save_state(pdev);
2200         return 0;
2201
2202  out_fail:
2203         mpt3sas_base_unmap_resources(ioc);
2204         return r;
2205 }
2206
2207 /**
2208  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2209  * @ioc: per adapter object
2210  * @smid: system request message index(smid zero is invalid)
2211  *
2212  * Returns virt pointer to message frame.
2213  */
2214 void *
2215 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2216 {
2217         return (void *)(ioc->request + (smid * ioc->request_sz));
2218 }
2219
2220 /**
2221  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2222  * @ioc: per adapter object
2223  * @smid: system request message index
2224  *
2225  * Returns virt pointer to sense buffer.
2226  */
2227 void *
2228 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2229 {
2230         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2231 }
2232
2233 /**
2234  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2235  * @ioc: per adapter object
2236  * @smid: system request message index
2237  *
2238  * Returns phys pointer to the low 32bit address of the sense buffer.
2239  */
2240 __le32
2241 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2242 {
2243         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2244             SCSI_SENSE_BUFFERSIZE));
2245 }
2246
2247 /**
2248  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2249  * @ioc: per adapter object
2250  * @phys_addr: lower 32 physical addr of the reply
2251  *
2252  * Converts 32bit lower physical addr into a virt address.
2253  */
2254 void *
2255 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2256 {
2257         if (!phys_addr)
2258                 return NULL;
2259         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2260 }
2261
2262 static inline u8
2263 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2264 {
2265         return ioc->cpu_msix_table[raw_smp_processor_id()];
2266 }
2267
2268 /**
2269  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2270  * @ioc: per adapter object
2271  * @cb_idx: callback index
2272  *
2273  * Returns smid (zero is invalid)
2274  */
2275 u16
2276 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2277 {
2278         unsigned long flags;
2279         struct request_tracker *request;
2280         u16 smid;
2281
2282         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2283         if (list_empty(&ioc->internal_free_list)) {
2284                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2285                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2286                     ioc->name, __func__);
2287                 return 0;
2288         }
2289
2290         request = list_entry(ioc->internal_free_list.next,
2291             struct request_tracker, tracker_list);
2292         request->cb_idx = cb_idx;
2293         smid = request->smid;
2294         list_del(&request->tracker_list);
2295         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2296         return smid;
2297 }
2298
2299 /**
2300  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2301  * @ioc: per adapter object
2302  * @cb_idx: callback index
2303  * @scmd: pointer to scsi command object
2304  *
2305  * Returns smid (zero is invalid)
2306  */
2307 u16
2308 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2309         struct scsi_cmnd *scmd)
2310 {
2311         unsigned long flags;
2312         struct scsiio_tracker *request;
2313         u16 smid;
2314
2315         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2316         if (list_empty(&ioc->free_list)) {
2317                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2318                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2319                     ioc->name, __func__);
2320                 return 0;
2321         }
2322
2323         request = list_entry(ioc->free_list.next,
2324             struct scsiio_tracker, tracker_list);
2325         request->scmd = scmd;
2326         request->cb_idx = cb_idx;
2327         smid = request->smid;
2328         request->msix_io = _base_get_msix_index(ioc);
2329         list_del(&request->tracker_list);
2330         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2331         return smid;
2332 }
2333
2334 /**
2335  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2336  * @ioc: per adapter object
2337  * @cb_idx: callback index
2338  *
2339  * Returns smid (zero is invalid)
2340  */
2341 u16
2342 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2343 {
2344         unsigned long flags;
2345         struct request_tracker *request;
2346         u16 smid;
2347
2348         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2349         if (list_empty(&ioc->hpr_free_list)) {
2350                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2351                 return 0;
2352         }
2353
2354         request = list_entry(ioc->hpr_free_list.next,
2355             struct request_tracker, tracker_list);
2356         request->cb_idx = cb_idx;
2357         smid = request->smid;
2358         list_del(&request->tracker_list);
2359         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2360         return smid;
2361 }
2362
2363 /**
2364  * mpt3sas_base_free_smid - put smid back on free_list
2365  * @ioc: per adapter object
2366  * @smid: system request message index
2367  *
2368  * Return nothing.
2369  */
2370 void
2371 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2372 {
2373         unsigned long flags;
2374         int i;
2375         struct chain_tracker *chain_req, *next;
2376
2377         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2378         if (smid < ioc->hi_priority_smid) {
2379                 /* scsiio queue */
2380                 i = smid - 1;
2381                 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2382                         list_for_each_entry_safe(chain_req, next,
2383                             &ioc->scsi_lookup[i].chain_list, tracker_list) {
2384                                 list_del_init(&chain_req->tracker_list);
2385                                 list_add(&chain_req->tracker_list,
2386                                     &ioc->free_chain_list);
2387                         }
2388                 }
2389                 ioc->scsi_lookup[i].cb_idx = 0xFF;
2390                 ioc->scsi_lookup[i].scmd = NULL;
2391                 ioc->scsi_lookup[i].direct_io = 0;
2392                 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2393                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2394
2395                 /*
2396                  * See _wait_for_commands_to_complete() call with regards
2397                  * to this code.
2398                  */
2399                 if (ioc->shost_recovery && ioc->pending_io_count) {
2400                         if (ioc->pending_io_count == 1)
2401                                 wake_up(&ioc->reset_wq);
2402                         ioc->pending_io_count--;
2403                 }
2404                 return;
2405         } else if (smid < ioc->internal_smid) {
2406                 /* hi-priority */
2407                 i = smid - ioc->hi_priority_smid;
2408                 ioc->hpr_lookup[i].cb_idx = 0xFF;
2409                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2410         } else if (smid <= ioc->hba_queue_depth) {
2411                 /* internal queue */
2412                 i = smid - ioc->internal_smid;
2413                 ioc->internal_lookup[i].cb_idx = 0xFF;
2414                 list_add(&ioc->internal_lookup[i].tracker_list,
2415                     &ioc->internal_free_list);
2416         }
2417         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2418 }
2419
2420 /**
2421  * _base_writeq - 64 bit write to MMIO
2422  * @ioc: per adapter object
2423  * @b: data payload
2424  * @addr: address in MMIO space
2425  * @writeq_lock: spin lock
2426  *
2427  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2428  * care of 32 bit environment where its not quarenteed to send the entire word
2429  * in one transfer.
2430  */
2431 #if defined(writeq) && defined(CONFIG_64BIT)
2432 static inline void
2433 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2434 {
2435         writeq(cpu_to_le64(b), addr);
2436 }
2437 #else
2438 static inline void
2439 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2440 {
2441         unsigned long flags;
2442         __u64 data_out = cpu_to_le64(b);
2443
2444         spin_lock_irqsave(writeq_lock, flags);
2445         writel((u32)(data_out), addr);
2446         writel((u32)(data_out >> 32), (addr + 4));
2447         spin_unlock_irqrestore(writeq_lock, flags);
2448 }
2449 #endif
2450
2451 /**
2452  * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2453  * @ioc: per adapter object
2454  * @smid: system request message index
2455  * @handle: device handle
2456  *
2457  * Return nothing.
2458  */
2459 void
2460 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2461 {
2462         Mpi2RequestDescriptorUnion_t descriptor;
2463         u64 *request = (u64 *)&descriptor;
2464
2465
2466         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2467         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2468         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2469         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2470         descriptor.SCSIIO.LMID = 0;
2471         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2472             &ioc->scsi_lookup_lock);
2473 }
2474
2475 /**
2476  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2477  * @ioc: per adapter object
2478  * @smid: system request message index
2479  * @handle: device handle
2480  *
2481  * Return nothing.
2482  */
2483 void
2484 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2485         u16 handle)
2486 {
2487         Mpi2RequestDescriptorUnion_t descriptor;
2488         u64 *request = (u64 *)&descriptor;
2489
2490         descriptor.SCSIIO.RequestFlags =
2491             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2492         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2493         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2494         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2495         descriptor.SCSIIO.LMID = 0;
2496         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2497             &ioc->scsi_lookup_lock);
2498 }
2499
2500 /**
2501  * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2502  * @ioc: per adapter object
2503  * @smid: system request message index
2504  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2505  * Return nothing.
2506  */
2507 void
2508 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2509         u16 msix_task)
2510 {
2511         Mpi2RequestDescriptorUnion_t descriptor;
2512         u64 *request = (u64 *)&descriptor;
2513
2514         descriptor.HighPriority.RequestFlags =
2515             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2516         descriptor.HighPriority.MSIxIndex =  msix_task;
2517         descriptor.HighPriority.SMID = cpu_to_le16(smid);
2518         descriptor.HighPriority.LMID = 0;
2519         descriptor.HighPriority.Reserved1 = 0;
2520         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2521             &ioc->scsi_lookup_lock);
2522 }
2523
2524 /**
2525  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2526  * @ioc: per adapter object
2527  * @smid: system request message index
2528  *
2529  * Return nothing.
2530  */
2531 void
2532 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2533 {
2534         Mpi2RequestDescriptorUnion_t descriptor;
2535         u64 *request = (u64 *)&descriptor;
2536
2537         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2538         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2539         descriptor.Default.SMID = cpu_to_le16(smid);
2540         descriptor.Default.LMID = 0;
2541         descriptor.Default.DescriptorTypeDependent = 0;
2542         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2543             &ioc->scsi_lookup_lock);
2544 }
2545
2546 /**
2547  * _base_display_OEMs_branding - Display branding string
2548  * @ioc: per adapter object
2549  *
2550  * Return nothing.
2551  */
2552 static void
2553 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2554 {
2555         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2556                 return;
2557
2558         switch (ioc->pdev->subsystem_vendor) {
2559         case PCI_VENDOR_ID_INTEL:
2560                 switch (ioc->pdev->device) {
2561                 case MPI2_MFGPAGE_DEVID_SAS2008:
2562                         switch (ioc->pdev->subsystem_device) {
2563                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
2564                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2565                                     MPT2SAS_INTEL_RMS2LL080_BRANDING);
2566                                 break;
2567                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
2568                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2569                                     MPT2SAS_INTEL_RMS2LL040_BRANDING);
2570                                 break;
2571                         case MPT2SAS_INTEL_SSD910_SSDID:
2572                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2573                                     MPT2SAS_INTEL_SSD910_BRANDING);
2574                                 break;
2575                         default:
2576                                 pr_info(MPT3SAS_FMT
2577                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2578                                  ioc->name, ioc->pdev->subsystem_device);
2579                                 break;
2580                         }
2581                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2582                         switch (ioc->pdev->subsystem_device) {
2583                         case MPT2SAS_INTEL_RS25GB008_SSDID:
2584                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2585                                     MPT2SAS_INTEL_RS25GB008_BRANDING);
2586                                 break;
2587                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
2588                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2589                                     MPT2SAS_INTEL_RMS25JB080_BRANDING);
2590                                 break;
2591                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
2592                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2593                                     MPT2SAS_INTEL_RMS25JB040_BRANDING);
2594                                 break;
2595                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
2596                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2597                                     MPT2SAS_INTEL_RMS25KB080_BRANDING);
2598                                 break;
2599                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
2600                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2601                                     MPT2SAS_INTEL_RMS25KB040_BRANDING);
2602                                 break;
2603                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
2604                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2605                                     MPT2SAS_INTEL_RMS25LB040_BRANDING);
2606                                 break;
2607                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
2608                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2609                                     MPT2SAS_INTEL_RMS25LB080_BRANDING);
2610                                 break;
2611                         default:
2612                                 pr_info(MPT3SAS_FMT
2613                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2614                                  ioc->name, ioc->pdev->subsystem_device);
2615                                 break;
2616                         }
2617                 case MPI25_MFGPAGE_DEVID_SAS3008:
2618                         switch (ioc->pdev->subsystem_device) {
2619                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
2620                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2621                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
2622                                 break;
2623
2624                         case MPT3SAS_INTEL_RS3GC008_SSDID:
2625                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2626                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
2627                                 break;
2628                         case MPT3SAS_INTEL_RS3FC044_SSDID:
2629                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2630                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
2631                                 break;
2632                         case MPT3SAS_INTEL_RS3UC080_SSDID:
2633                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2634                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
2635                                 break;
2636                         default:
2637                                 pr_info(MPT3SAS_FMT
2638                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2639                                  ioc->name, ioc->pdev->subsystem_device);
2640                                 break;
2641                         }
2642                         break;
2643                 default:
2644                         pr_info(MPT3SAS_FMT
2645                          "Intel(R) Controller: Subsystem ID: 0x%X\n",
2646                          ioc->name, ioc->pdev->subsystem_device);
2647                         break;
2648                 }
2649                 break;
2650         case PCI_VENDOR_ID_DELL:
2651                 switch (ioc->pdev->device) {
2652                 case MPI2_MFGPAGE_DEVID_SAS2008:
2653                         switch (ioc->pdev->subsystem_device) {
2654                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2655                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2656                                  MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2657                                 break;
2658                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2659                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2660                                  MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2661                                 break;
2662                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2663                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2664                                  MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2665                                 break;
2666                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2667                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2668                                  MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2669                                 break;
2670                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2671                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2672                                  MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2673                                 break;
2674                         case MPT2SAS_DELL_PERC_H200_SSDID:
2675                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2676                                  MPT2SAS_DELL_PERC_H200_BRANDING);
2677                                 break;
2678                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2679                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2680                                  MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2681                                 break;
2682                         default:
2683                                 pr_info(MPT3SAS_FMT
2684                                    "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2685                                    ioc->name, ioc->pdev->subsystem_device);
2686                                 break;
2687                         }
2688                         break;
2689                 case MPI25_MFGPAGE_DEVID_SAS3008:
2690                         switch (ioc->pdev->subsystem_device) {
2691                         case MPT3SAS_DELL_12G_HBA_SSDID:
2692                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2693                                         MPT3SAS_DELL_12G_HBA_BRANDING);
2694                                 break;
2695                         default:
2696                                 pr_info(MPT3SAS_FMT
2697                                    "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2698                                    ioc->name, ioc->pdev->subsystem_device);
2699                                 break;
2700                         }
2701                         break;
2702                 default:
2703                         pr_info(MPT3SAS_FMT
2704                            "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2705                            ioc->pdev->subsystem_device);
2706                         break;
2707                 }
2708                 break;
2709         case PCI_VENDOR_ID_CISCO:
2710                 switch (ioc->pdev->device) {
2711                 case MPI25_MFGPAGE_DEVID_SAS3008:
2712                         switch (ioc->pdev->subsystem_device) {
2713                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2714                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2715                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2716                                 break;
2717                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2718                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2719                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2720                                 break;
2721                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2722                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2723                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2724                                 break;
2725                         default:
2726                                 pr_info(MPT3SAS_FMT
2727                                   "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2728                                   ioc->name, ioc->pdev->subsystem_device);
2729                                 break;
2730                         }
2731                         break;
2732                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2733                         switch (ioc->pdev->subsystem_device) {
2734                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2735                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2736                                 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2737                                 break;
2738                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2739                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2740                                 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2741                                 );
2742                                 break;
2743                         default:
2744                                 pr_info(MPT3SAS_FMT
2745                                  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2746                                  ioc->name, ioc->pdev->subsystem_device);
2747                                 break;
2748                         }
2749                         break;
2750                 default:
2751                         pr_info(MPT3SAS_FMT
2752                            "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2753                            ioc->name, ioc->pdev->subsystem_device);
2754                         break;
2755                 }
2756                 break;
2757         case MPT2SAS_HP_3PAR_SSVID:
2758                 switch (ioc->pdev->device) {
2759                 case MPI2_MFGPAGE_DEVID_SAS2004:
2760                         switch (ioc->pdev->subsystem_device) {
2761                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2762                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2763                                     MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2764                                 break;
2765                         default:
2766                                 pr_info(MPT3SAS_FMT
2767                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2768                                    ioc->name, ioc->pdev->subsystem_device);
2769                                 break;
2770                         }
2771                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2772                         switch (ioc->pdev->subsystem_device) {
2773                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2774                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2775                                     MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2776                                 break;
2777                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2778                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2779                                     MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2780                                 break;
2781                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2782                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2783                                  MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2784                                 break;
2785                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2786                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2787                                     MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2788                                 break;
2789                         default:
2790                                 pr_info(MPT3SAS_FMT
2791                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2792                                    ioc->name, ioc->pdev->subsystem_device);
2793                                 break;
2794                         }
2795                 default:
2796                         pr_info(MPT3SAS_FMT
2797                            "HP SAS HBA: Subsystem ID: 0x%X\n",
2798                            ioc->name, ioc->pdev->subsystem_device);
2799                         break;
2800                 }
2801         default:
2802                 break;
2803         }
2804 }
2805
2806 /**
2807  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2808  * @ioc: per adapter object
2809  *
2810  * Return nothing.
2811  */
2812 static void
2813 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2814 {
2815         int i = 0;
2816         char desc[16];
2817         u32 iounit_pg1_flags;
2818         u32 bios_version;
2819
2820         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2821         strncpy(desc, ioc->manu_pg0.ChipName, 16);
2822         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2823            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2824             ioc->name, desc,
2825            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2826            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2827            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2828            ioc->facts.FWVersion.Word & 0x000000FF,
2829            ioc->pdev->revision,
2830            (bios_version & 0xFF000000) >> 24,
2831            (bios_version & 0x00FF0000) >> 16,
2832            (bios_version & 0x0000FF00) >> 8,
2833             bios_version & 0x000000FF);
2834
2835         _base_display_OEMs_branding(ioc);
2836
2837         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2838
2839         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2840                 pr_info("Initiator");
2841                 i++;
2842         }
2843
2844         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2845                 pr_info("%sTarget", i ? "," : "");
2846                 i++;
2847         }
2848
2849         i = 0;
2850         pr_info("), ");
2851         pr_info("Capabilities=(");
2852
2853         if (!ioc->hide_ir_msg) {
2854                 if (ioc->facts.IOCCapabilities &
2855                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2856                         pr_info("Raid");
2857                         i++;
2858                 }
2859         }
2860
2861         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2862                 pr_info("%sTLR", i ? "," : "");
2863                 i++;
2864         }
2865
2866         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2867                 pr_info("%sMulticast", i ? "," : "");
2868                 i++;
2869         }
2870
2871         if (ioc->facts.IOCCapabilities &
2872             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2873                 pr_info("%sBIDI Target", i ? "," : "");
2874                 i++;
2875         }
2876
2877         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2878                 pr_info("%sEEDP", i ? "," : "");
2879                 i++;
2880         }
2881
2882         if (ioc->facts.IOCCapabilities &
2883             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2884                 pr_info("%sSnapshot Buffer", i ? "," : "");
2885                 i++;
2886         }
2887
2888         if (ioc->facts.IOCCapabilities &
2889             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2890                 pr_info("%sDiag Trace Buffer", i ? "," : "");
2891                 i++;
2892         }
2893
2894         if (ioc->facts.IOCCapabilities &
2895             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2896                 pr_info("%sDiag Extended Buffer", i ? "," : "");
2897                 i++;
2898         }
2899
2900         if (ioc->facts.IOCCapabilities &
2901             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2902                 pr_info("%sTask Set Full", i ? "," : "");
2903                 i++;
2904         }
2905
2906         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2907         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2908                 pr_info("%sNCQ", i ? "," : "");
2909                 i++;
2910         }
2911
2912         pr_info(")\n");
2913 }
2914
2915 /**
2916  * mpt3sas_base_update_missing_delay - change the missing delay timers
2917  * @ioc: per adapter object
2918  * @device_missing_delay: amount of time till device is reported missing
2919  * @io_missing_delay: interval IO is returned when there is a missing device
2920  *
2921  * Return nothing.
2922  *
2923  * Passed on the command line, this function will modify the device missing
2924  * delay, as well as the io missing delay. This should be called at driver
2925  * load time.
2926  */
2927 void
2928 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2929         u16 device_missing_delay, u8 io_missing_delay)
2930 {
2931         u16 dmd, dmd_new, dmd_orignal;
2932         u8 io_missing_delay_original;
2933         u16 sz;
2934         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2935         Mpi2ConfigReply_t mpi_reply;
2936         u8 num_phys = 0;
2937         u16 ioc_status;
2938
2939         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2940         if (!num_phys)
2941                 return;
2942
2943         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2944             sizeof(Mpi2SasIOUnit1PhyData_t));
2945         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2946         if (!sas_iounit_pg1) {
2947                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2948                     ioc->name, __FILE__, __LINE__, __func__);
2949                 goto out;
2950         }
2951         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2952             sas_iounit_pg1, sz))) {
2953                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2954                     ioc->name, __FILE__, __LINE__, __func__);
2955                 goto out;
2956         }
2957         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2958             MPI2_IOCSTATUS_MASK;
2959         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2960                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2961                     ioc->name, __FILE__, __LINE__, __func__);
2962                 goto out;
2963         }
2964
2965         /* device missing delay */
2966         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2967         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2968                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2969         else
2970                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2971         dmd_orignal = dmd;
2972         if (device_missing_delay > 0x7F) {
2973                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2974                     device_missing_delay;
2975                 dmd = dmd / 16;
2976                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2977         } else
2978                 dmd = device_missing_delay;
2979         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2980
2981         /* io missing delay */
2982         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2983         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2984
2985         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2986             sz)) {
2987                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2988                         dmd_new = (dmd &
2989                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2990                 else
2991                         dmd_new =
2992                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2993                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2994                         ioc->name, dmd_orignal, dmd_new);
2995                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2996                         ioc->name, io_missing_delay_original,
2997                     io_missing_delay);
2998                 ioc->device_missing_delay = dmd_new;
2999                 ioc->io_missing_delay = io_missing_delay;
3000         }
3001
3002 out:
3003         kfree(sas_iounit_pg1);
3004 }
3005 /**
3006  * _base_static_config_pages - static start of day config pages
3007  * @ioc: per adapter object
3008  *
3009  * Return nothing.
3010  */
3011 static void
3012 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3013 {
3014         Mpi2ConfigReply_t mpi_reply;
3015         u32 iounit_pg1_flags;
3016
3017         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3018         if (ioc->ir_firmware)
3019                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3020                     &ioc->manu_pg10);
3021
3022         /*
3023          * Ensure correct T10 PI operation if vendor left EEDPTagMode
3024          * flag unset in NVDATA.
3025          */
3026         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3027         if (ioc->manu_pg11.EEDPTagMode == 0) {
3028                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3029                     ioc->name);
3030                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3031                 ioc->manu_pg11.EEDPTagMode |= 0x1;
3032                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3033                     &ioc->manu_pg11);
3034         }
3035
3036         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3037         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3038         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3039         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3040         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3041         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3042         _base_display_ioc_capabilities(ioc);
3043
3044         /*
3045          * Enable task_set_full handling in iounit_pg1 when the
3046          * facts capabilities indicate that its supported.
3047          */
3048         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3049         if ((ioc->facts.IOCCapabilities &
3050             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3051                 iounit_pg1_flags &=
3052                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3053         else
3054                 iounit_pg1_flags |=
3055                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3056         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3057         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3058
3059         if (ioc->iounit_pg8.NumSensors)
3060                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3061 }
3062
3063 /**
3064  * _base_release_memory_pools - release memory
3065  * @ioc: per adapter object
3066  *
3067  * Free memory allocated from _base_allocate_memory_pools.
3068  *
3069  * Return nothing.
3070  */
3071 static void
3072 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3073 {
3074         int i = 0;
3075         struct reply_post_struct *rps;
3076
3077         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3078             __func__));
3079
3080         if (ioc->request) {
3081                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3082                     ioc->request,  ioc->request_dma);
3083                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3084                         "request_pool(0x%p): free\n",
3085                         ioc->name, ioc->request));
3086                 ioc->request = NULL;
3087         }
3088
3089         if (ioc->sense) {
3090                 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3091                 if (ioc->sense_dma_pool)
3092                         pci_pool_destroy(ioc->sense_dma_pool);
3093                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3094                         "sense_pool(0x%p): free\n",
3095                         ioc->name, ioc->sense));
3096                 ioc->sense = NULL;
3097         }
3098
3099         if (ioc->reply) {
3100                 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3101                 if (ioc->reply_dma_pool)
3102                         pci_pool_destroy(ioc->reply_dma_pool);
3103                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3104                         "reply_pool(0x%p): free\n",
3105                         ioc->name, ioc->reply));
3106                 ioc->reply = NULL;
3107         }
3108
3109         if (ioc->reply_free) {
3110                 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3111                     ioc->reply_free_dma);
3112                 if (ioc->reply_free_dma_pool)
3113                         pci_pool_destroy(ioc->reply_free_dma_pool);
3114                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3115                         "reply_free_pool(0x%p): free\n",
3116                         ioc->name, ioc->reply_free));
3117                 ioc->reply_free = NULL;
3118         }
3119
3120         if (ioc->reply_post) {
3121                 do {
3122                         rps = &ioc->reply_post[i];
3123                         if (rps->reply_post_free) {
3124                                 pci_pool_free(
3125                                     ioc->reply_post_free_dma_pool,
3126                                     rps->reply_post_free,
3127                                     rps->reply_post_free_dma);
3128                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3129                                     "reply_post_free_pool(0x%p): free\n",
3130                                     ioc->name, rps->reply_post_free));
3131                                 rps->reply_post_free = NULL;
3132                         }
3133                 } while (ioc->rdpq_array_enable &&
3134                            (++i < ioc->reply_queue_count));
3135
3136                 if (ioc->reply_post_free_dma_pool)
3137                         pci_pool_destroy(ioc->reply_post_free_dma_pool);
3138                 kfree(ioc->reply_post);
3139         }
3140
3141         if (ioc->config_page) {
3142                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3143                     "config_page(0x%p): free\n", ioc->name,
3144                     ioc->config_page));
3145                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3146                     ioc->config_page, ioc->config_page_dma);
3147         }
3148
3149         if (ioc->scsi_lookup) {
3150                 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3151                 ioc->scsi_lookup = NULL;
3152         }
3153         kfree(ioc->hpr_lookup);
3154         kfree(ioc->internal_lookup);
3155         if (ioc->chain_lookup) {
3156                 for (i = 0; i < ioc->chain_depth; i++) {
3157                         if (ioc->chain_lookup[i].chain_buffer)
3158                                 pci_pool_free(ioc->chain_dma_pool,
3159                                     ioc->chain_lookup[i].chain_buffer,
3160                                     ioc->chain_lookup[i].chain_buffer_dma);
3161                 }
3162                 if (ioc->chain_dma_pool)
3163                         pci_pool_destroy(ioc->chain_dma_pool);
3164                 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3165                 ioc->chain_lookup = NULL;
3166         }
3167 }
3168
3169 /**
3170  * _base_allocate_memory_pools - allocate start of day memory pools
3171  * @ioc: per adapter object
3172  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3173  *
3174  * Returns 0 success, anything else error
3175  */
3176 static int
3177 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc,  int sleep_flag)
3178 {
3179         struct mpt3sas_facts *facts;
3180         u16 max_sge_elements;
3181         u16 chains_needed_per_io;
3182         u32 sz, total_sz, reply_post_free_sz;
3183         u32 retry_sz;
3184         u16 max_request_credit;
3185         unsigned short sg_tablesize;
3186         u16 sge_size;
3187         int i;
3188
3189         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3190             __func__));
3191
3192
3193         retry_sz = 0;
3194         facts = &ioc->facts;
3195
3196         /* command line tunables for max sgl entries */
3197         if (max_sgl_entries != -1)
3198                 sg_tablesize = max_sgl_entries;
3199         else {
3200                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3201                         sg_tablesize = MPT2SAS_SG_DEPTH;
3202                 else
3203                         sg_tablesize = MPT3SAS_SG_DEPTH;
3204         }
3205
3206         if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3207                 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3208         else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3209                 sg_tablesize = min_t(unsigned short, sg_tablesize,
3210                                       SCSI_MAX_SG_CHAIN_SEGMENTS);
3211                 pr_warn(MPT3SAS_FMT
3212                  "sg_tablesize(%u) is bigger than kernel"
3213                  " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
3214                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3215         }
3216         ioc->shost->sg_tablesize = sg_tablesize;
3217
3218         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3219                 (facts->RequestCredit / 4));
3220         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3221                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3222                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
3223                         pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3224                             Credits, it has just %d number of credits\n",
3225                             ioc->name, facts->RequestCredit);
3226                         return -ENOMEM;
3227                 }
3228                 ioc->internal_depth = 10;
3229         }
3230
3231         ioc->hi_priority_depth = ioc->internal_depth - (5);
3232         /* command line tunables  for max controller queue depth */
3233         if (max_queue_depth != -1 && max_queue_depth != 0) {
3234                 max_request_credit = min_t(u16, max_queue_depth +
3235                         ioc->internal_depth, facts->RequestCredit);
3236                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3237                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3238         } else
3239                 max_request_credit = min_t(u16, facts->RequestCredit,
3240                     MAX_HBA_QUEUE_DEPTH);
3241
3242         /* Firmware maintains additional facts->HighPriorityCredit number of
3243          * credits for HiPriprity Request messages, so hba queue depth will be
3244          * sum of max_request_credit and high priority queue depth.
3245          */
3246         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3247
3248         /* request frame size */
3249         ioc->request_sz = facts->IOCRequestFrameSize * 4;
3250
3251         /* reply frame size */
3252         ioc->reply_sz = facts->ReplyFrameSize * 4;
3253
3254         /* chain segment size */
3255         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3256                 if (facts->IOCMaxChainSegmentSize)
3257                         ioc->chain_segment_sz =
3258                                         facts->IOCMaxChainSegmentSize *
3259                                         MAX_CHAIN_ELEMT_SZ;
3260                 else
3261                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3262                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3263                                                     MAX_CHAIN_ELEMT_SZ;
3264         } else
3265                 ioc->chain_segment_sz = ioc->request_sz;
3266
3267         /* calculate the max scatter element size */
3268         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3269
3270  retry_allocation:
3271         total_sz = 0;
3272         /* calculate number of sg elements left over in the 1st frame */
3273         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3274             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3275         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3276
3277         /* now do the same for a chain buffer */
3278         max_sge_elements = ioc->chain_segment_sz - sge_size;
3279         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3280
3281         /*
3282          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3283          */
3284         chains_needed_per_io = ((ioc->shost->sg_tablesize -
3285            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3286             + 1;
3287         if (chains_needed_per_io > facts->MaxChainDepth) {
3288                 chains_needed_per_io = facts->MaxChainDepth;
3289                 ioc->shost->sg_tablesize = min_t(u16,
3290                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3291                 * chains_needed_per_io), ioc->shost->sg_tablesize);
3292         }
3293         ioc->chains_needed_per_io = chains_needed_per_io;
3294
3295         /* reply free queue sizing - taking into account for 64 FW events */
3296         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3297
3298         /* calculate reply descriptor post queue depth */
3299         ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3300                                 ioc->reply_free_queue_depth +  1 ;
3301         /* align the reply post queue on the next 16 count boundary */
3302         if (ioc->reply_post_queue_depth % 16)
3303                 ioc->reply_post_queue_depth += 16 -
3304                 (ioc->reply_post_queue_depth % 16);
3305
3306         if (ioc->reply_post_queue_depth >
3307             facts->MaxReplyDescriptorPostQueueDepth) {
3308                 ioc->reply_post_queue_depth =
3309                                 facts->MaxReplyDescriptorPostQueueDepth -
3310                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
3311                 ioc->hba_queue_depth =
3312                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3313                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3314         }
3315
3316         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3317             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3318             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3319             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3320             ioc->chains_needed_per_io));
3321
3322         /* reply post queue, 16 byte align */
3323         reply_post_free_sz = ioc->reply_post_queue_depth *
3324             sizeof(Mpi2DefaultReplyDescriptor_t);
3325
3326         sz = reply_post_free_sz;
3327         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3328                 sz *= ioc->reply_queue_count;
3329
3330         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3331             (ioc->reply_queue_count):1,
3332             sizeof(struct reply_post_struct), GFP_KERNEL);
3333
3334         if (!ioc->reply_post) {
3335                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3336                         ioc->name);
3337                 goto out;
3338         }
3339         ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3340             ioc->pdev, sz, 16, 0);
3341         if (!ioc->reply_post_free_dma_pool) {
3342                 pr_err(MPT3SAS_FMT
3343                  "reply_post_free pool: pci_pool_create failed\n",
3344                  ioc->name);
3345                 goto out;
3346         }
3347         i = 0;
3348         do {
3349                 ioc->reply_post[i].reply_post_free =
3350                     pci_pool_alloc(ioc->reply_post_free_dma_pool,
3351                     GFP_KERNEL,
3352                     &ioc->reply_post[i].reply_post_free_dma);
3353                 if (!ioc->reply_post[i].reply_post_free) {
3354                         pr_err(MPT3SAS_FMT
3355                         "reply_post_free pool: pci_pool_alloc failed\n",
3356                         ioc->name);
3357                         goto out;
3358                 }
3359                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3360                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3361                     "reply post free pool (0x%p): depth(%d),"
3362                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
3363                     ioc->reply_post[i].reply_post_free,
3364                     ioc->reply_post_queue_depth, 8, sz/1024));
3365                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3366                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
3367                     (unsigned long long)
3368                     ioc->reply_post[i].reply_post_free_dma));
3369                 total_sz += sz;
3370         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3371
3372         if (ioc->dma_mask == 64) {
3373                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3374                         pr_warn(MPT3SAS_FMT
3375                             "no suitable consistent DMA mask for %s\n",
3376                             ioc->name, pci_name(ioc->pdev));
3377                         goto out;
3378                 }
3379         }
3380
3381         ioc->scsiio_depth = ioc->hba_queue_depth -
3382             ioc->hi_priority_depth - ioc->internal_depth;
3383
3384         /* set the scsi host can_queue depth
3385          * with some internal commands that could be outstanding
3386          */
3387         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3388         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3389                 "scsi host: can_queue depth (%d)\n",
3390                 ioc->name, ioc->shost->can_queue));
3391
3392
3393         /* contiguous pool for request and chains, 16 byte align, one extra "
3394          * "frame for smid=0
3395          */
3396         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3397         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3398
3399         /* hi-priority queue */
3400         sz += (ioc->hi_priority_depth * ioc->request_sz);
3401
3402         /* internal queue */
3403         sz += (ioc->internal_depth * ioc->request_sz);
3404
3405         ioc->request_dma_sz = sz;
3406         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3407         if (!ioc->request) {
3408                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3409                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3410                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3411                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3412                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3413                         goto out;
3414                 retry_sz = 64;
3415                 ioc->hba_queue_depth -= retry_sz;
3416                 _base_release_memory_pools(ioc);
3417                 goto retry_allocation;
3418         }
3419
3420         if (retry_sz)
3421                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3422                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3423                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3424                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3425
3426         /* hi-priority queue */
3427         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3428             ioc->request_sz);
3429         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3430             ioc->request_sz);
3431
3432         /* internal queue */
3433         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3434             ioc->request_sz);
3435         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3436             ioc->request_sz);
3437
3438         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3439                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3440                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3441             (ioc->hba_queue_depth * ioc->request_sz)/1024));
3442
3443         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3444             ioc->name, (unsigned long long) ioc->request_dma));
3445         total_sz += sz;
3446
3447         sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3448         ioc->scsi_lookup_pages = get_order(sz);
3449         ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3450             GFP_KERNEL, ioc->scsi_lookup_pages);
3451         if (!ioc->scsi_lookup) {
3452                 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3453                         ioc->name, (int)sz);
3454                 goto out;
3455         }
3456
3457         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3458                 ioc->name, ioc->request, ioc->scsiio_depth));
3459
3460         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3461         sz = ioc->chain_depth * sizeof(struct chain_tracker);
3462         ioc->chain_pages = get_order(sz);
3463         ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3464             GFP_KERNEL, ioc->chain_pages);
3465         if (!ioc->chain_lookup) {
3466                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3467                         ioc->name);
3468                 goto out;
3469         }
3470         ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3471             ioc->chain_segment_sz, 16, 0);
3472         if (!ioc->chain_dma_pool) {
3473                 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3474                         ioc->name);
3475                 goto out;
3476         }
3477         for (i = 0; i < ioc->chain_depth; i++) {
3478                 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3479                     ioc->chain_dma_pool , GFP_KERNEL,
3480                     &ioc->chain_lookup[i].chain_buffer_dma);
3481                 if (!ioc->chain_lookup[i].chain_buffer) {
3482                         ioc->chain_depth = i;
3483                         goto chain_done;
3484                 }
3485                 total_sz += ioc->chain_segment_sz;
3486         }
3487  chain_done:
3488         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3489                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3490                 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3491                 ((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
3492
3493         /* initialize hi-priority queue smid's */
3494         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3495             sizeof(struct request_tracker), GFP_KERNEL);
3496         if (!ioc->hpr_lookup) {
3497                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3498                     ioc->name);
3499                 goto out;
3500         }
3501         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3502         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3503                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3504                 ioc->name, ioc->hi_priority,
3505             ioc->hi_priority_depth, ioc->hi_priority_smid));
3506
3507         /* initialize internal queue smid's */
3508         ioc->internal_lookup = kcalloc(ioc->internal_depth,
3509             sizeof(struct request_tracker), GFP_KERNEL);
3510         if (!ioc->internal_lookup) {
3511                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3512                     ioc->name);
3513                 goto out;
3514         }
3515         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3516         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3517                 "internal(0x%p): depth(%d), start smid(%d)\n",
3518                 ioc->name, ioc->internal,
3519             ioc->internal_depth, ioc->internal_smid));
3520
3521         /* sense buffers, 4 byte align */
3522         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3523         ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3524             0);
3525         if (!ioc->sense_dma_pool) {
3526                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3527                     ioc->name);
3528                 goto out;
3529         }
3530         ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3531             &ioc->sense_dma);
3532         if (!ioc->sense) {
3533                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3534                     ioc->name);
3535                 goto out;
3536         }
3537         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3538             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3539             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3540             SCSI_SENSE_BUFFERSIZE, sz/1024));
3541         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3542             ioc->name, (unsigned long long)ioc->sense_dma));
3543         total_sz += sz;
3544
3545         /* reply pool, 4 byte align */
3546         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3547         ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3548             0);
3549         if (!ioc->reply_dma_pool) {
3550                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3551                     ioc->name);
3552                 goto out;
3553         }
3554         ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3555             &ioc->reply_dma);
3556         if (!ioc->reply) {
3557                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3558                     ioc->name);
3559                 goto out;
3560         }
3561         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3562         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3563         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3564                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3565                 ioc->name, ioc->reply,
3566             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3567         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3568             ioc->name, (unsigned long long)ioc->reply_dma));
3569         total_sz += sz;
3570
3571         /* reply free queue, 16 byte align */
3572         sz = ioc->reply_free_queue_depth * 4;
3573         ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3574             ioc->pdev, sz, 16, 0);
3575         if (!ioc->reply_free_dma_pool) {
3576                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3577                         ioc->name);
3578                 goto out;
3579         }
3580         ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3581             &ioc->reply_free_dma);
3582         if (!ioc->reply_free) {
3583                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3584                         ioc->name);
3585                 goto out;
3586         }
3587         memset(ioc->reply_free, 0, sz);
3588         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3589             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3590             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3591         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3592                 "reply_free_dma (0x%llx)\n",
3593                 ioc->name, (unsigned long long)ioc->reply_free_dma));
3594         total_sz += sz;
3595
3596         ioc->config_page_sz = 512;
3597         ioc->config_page = pci_alloc_consistent(ioc->pdev,
3598             ioc->config_page_sz, &ioc->config_page_dma);
3599         if (!ioc->config_page) {
3600                 pr_err(MPT3SAS_FMT
3601                         "config page: pci_pool_alloc failed\n",
3602                         ioc->name);
3603                 goto out;
3604         }
3605         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3606                 "config page(0x%p): size(%d)\n",
3607                 ioc->name, ioc->config_page, ioc->config_page_sz));
3608         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3609                 ioc->name, (unsigned long long)ioc->config_page_dma));
3610         total_sz += ioc->config_page_sz;
3611
3612         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3613             ioc->name, total_sz/1024);
3614         pr_info(MPT3SAS_FMT
3615                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3616             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3617         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3618             ioc->name, ioc->shost->sg_tablesize);
3619         return 0;
3620
3621  out:
3622         return -ENOMEM;
3623 }
3624
3625 /**
3626  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3627  * @ioc: Pointer to MPT_ADAPTER structure
3628  * @cooked: Request raw or cooked IOC state
3629  *
3630  * Returns all IOC Doorbell register bits if cooked==0, else just the
3631  * Doorbell bits in MPI_IOC_STATE_MASK.
3632  */
3633 u32
3634 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3635 {
3636         u32 s, sc;
3637
3638         s = readl(&ioc->chip->Doorbell);
3639         sc = s & MPI2_IOC_STATE_MASK;
3640         return cooked ? sc : s;
3641 }
3642
3643 /**
3644  * _base_wait_on_iocstate - waiting on a particular ioc state
3645  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3646  * @timeout: timeout in second
3647  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3648  *
3649  * Returns 0 for success, non-zero for failure.
3650  */
3651 static int
3652 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3653         int sleep_flag)
3654 {
3655         u32 count, cntdn;
3656         u32 current_state;
3657
3658         count = 0;
3659         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3660         do {
3661                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3662                 if (current_state == ioc_state)
3663                         return 0;
3664                 if (count && current_state == MPI2_IOC_STATE_FAULT)
3665                         break;
3666                 if (sleep_flag == CAN_SLEEP)
3667                         usleep_range(1000, 1500);
3668                 else
3669                         udelay(500);
3670                 count++;
3671         } while (--cntdn);
3672
3673         return current_state;
3674 }
3675
3676 /**
3677  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3678  * a write to the doorbell)
3679  * @ioc: per adapter object
3680  * @timeout: timeout in second
3681  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3682  *
3683  * Returns 0 for success, non-zero for failure.
3684  *
3685  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3686  */
3687 static int
3688 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3689
3690 static int
3691 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3692         int sleep_flag)
3693 {
3694         u32 cntdn, count;
3695         u32 int_status;
3696
3697         count = 0;
3698         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3699         do {
3700                 int_status = readl(&ioc->chip->HostInterruptStatus);
3701                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3702                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3703                                 "%s: successful count(%d), timeout(%d)\n",
3704                                 ioc->name, __func__, count, timeout));
3705                         return 0;
3706                 }
3707                 if (sleep_flag == CAN_SLEEP)
3708                         usleep_range(1000, 1500);
3709                 else
3710                         udelay(500);
3711                 count++;
3712         } while (--cntdn);
3713
3714         pr_err(MPT3SAS_FMT
3715                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3716                 ioc->name, __func__, count, int_status);
3717         return -EFAULT;
3718 }
3719
3720 /**
3721  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3722  * @ioc: per adapter object
3723  * @timeout: timeout in second
3724  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3725  *
3726  * Returns 0 for success, non-zero for failure.
3727  *
3728  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3729  * doorbell.
3730  */
3731 static int
3732 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3733         int sleep_flag)
3734 {
3735         u32 cntdn, count;
3736         u32 int_status;
3737         u32 doorbell;
3738
3739         count = 0;
3740         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3741         do {
3742                 int_status = readl(&ioc->chip->HostInterruptStatus);
3743                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3744                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3745                                 "%s: successful count(%d), timeout(%d)\n",
3746                                 ioc->name, __func__, count, timeout));
3747                         return 0;
3748                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3749                         doorbell = readl(&ioc->chip->Doorbell);
3750                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
3751                             MPI2_IOC_STATE_FAULT) {
3752                                 mpt3sas_base_fault_info(ioc , doorbell);
3753                                 return -EFAULT;
3754                         }
3755                 } else if (int_status == 0xFFFFFFFF)
3756                         goto out;
3757
3758                 if (sleep_flag == CAN_SLEEP)
3759                         usleep_range(1000, 1500);
3760                 else
3761                         udelay(500);
3762                 count++;
3763         } while (--cntdn);
3764
3765  out:
3766         pr_err(MPT3SAS_FMT
3767          "%s: failed due to timeout count(%d), int_status(%x)!\n",
3768          ioc->name, __func__, count, int_status);
3769         return -EFAULT;
3770 }
3771
3772 /**
3773  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3774  * @ioc: per adapter object
3775  * @timeout: timeout in second
3776  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3777  *
3778  * Returns 0 for success, non-zero for failure.
3779  *
3780  */
3781 static int
3782 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3783         int sleep_flag)
3784 {
3785         u32 cntdn, count;
3786         u32 doorbell_reg;
3787
3788         count = 0;
3789         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3790         do {
3791                 doorbell_reg = readl(&ioc->chip->Doorbell);
3792                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3793                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3794                                 "%s: successful count(%d), timeout(%d)\n",
3795                                 ioc->name, __func__, count, timeout));
3796                         return 0;
3797                 }
3798                 if (sleep_flag == CAN_SLEEP)
3799                         usleep_range(1000, 1500);
3800                 else
3801                         udelay(500);
3802                 count++;
3803         } while (--cntdn);
3804
3805         pr_err(MPT3SAS_FMT
3806                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3807                 ioc->name, __func__, count, doorbell_reg);
3808         return -EFAULT;
3809 }
3810
3811 /**
3812  * _base_send_ioc_reset - send doorbell reset
3813  * @ioc: per adapter object
3814  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3815  * @timeout: timeout in second
3816  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3817  *
3818  * Returns 0 for success, non-zero for failure.
3819  */
3820 static int
3821 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3822         int sleep_flag)
3823 {
3824         u32 ioc_state;
3825         int r = 0;
3826
3827         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3828                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3829                     ioc->name, __func__);
3830                 return -EFAULT;
3831         }
3832
3833         if (!(ioc->facts.IOCCapabilities &
3834            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3835                 return -EFAULT;
3836
3837         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3838
3839         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3840             &ioc->chip->Doorbell);
3841         if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3842                 r = -EFAULT;
3843                 goto out;
3844         }
3845         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3846             timeout, sleep_flag);
3847         if (ioc_state) {
3848                 pr_err(MPT3SAS_FMT
3849                         "%s: failed going to ready state (ioc_state=0x%x)\n",
3850                         ioc->name, __func__, ioc_state);
3851                 r = -EFAULT;
3852                 goto out;
3853         }
3854  out:
3855         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3856             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3857         return r;
3858 }
3859
3860 /**
3861  * _base_handshake_req_reply_wait - send request thru doorbell interface
3862  * @ioc: per adapter object
3863  * @request_bytes: request length
3864  * @request: pointer having request payload
3865  * @reply_bytes: reply length
3866  * @reply: pointer to reply payload
3867  * @timeout: timeout in second
3868  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3869  *
3870  * Returns 0 for success, non-zero for failure.
3871  */
3872 static int
3873 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3874         u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3875 {
3876         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3877         int i;
3878         u8 failed;
3879         u16 dummy;
3880         __le32 *mfp;
3881
3882         /* make sure doorbell is not in use */
3883         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3884                 pr_err(MPT3SAS_FMT
3885                         "doorbell is in use (line=%d)\n",
3886                         ioc->name, __LINE__);
3887                 return -EFAULT;
3888         }
3889
3890         /* clear pending doorbell interrupts from previous state changes */
3891         if (readl(&ioc->chip->HostInterruptStatus) &
3892             MPI2_HIS_IOC2SYS_DB_STATUS)
3893                 writel(0, &ioc->chip->HostInterruptStatus);
3894
3895         /* send message to ioc */
3896         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3897             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3898             &ioc->chip->Doorbell);
3899
3900         if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3901                 pr_err(MPT3SAS_FMT
3902                         "doorbell handshake int failed (line=%d)\n",
3903                         ioc->name, __LINE__);
3904                 return -EFAULT;
3905         }
3906         writel(0, &ioc->chip->HostInterruptStatus);
3907
3908         if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3909                 pr_err(MPT3SAS_FMT
3910                         "doorbell handshake ack failed (line=%d)\n",
3911                         ioc->name, __LINE__);
3912                 return -EFAULT;
3913         }
3914
3915         /* send message 32-bits at a time */
3916         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3917                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3918                 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3919                         failed = 1;
3920         }
3921
3922         if (failed) {
3923                 pr_err(MPT3SAS_FMT
3924                         "doorbell handshake sending request failed (line=%d)\n",
3925                         ioc->name, __LINE__);
3926                 return -EFAULT;
3927         }
3928
3929         /* now wait for the reply */
3930         if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3931                 pr_err(MPT3SAS_FMT
3932                         "doorbell handshake int failed (line=%d)\n",
3933                         ioc->name, __LINE__);
3934                 return -EFAULT;
3935         }
3936
3937         /* read the first two 16-bits, it gives the total length of the reply */
3938         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3939             & MPI2_DOORBELL_DATA_MASK);
3940         writel(0, &ioc->chip->HostInterruptStatus);
3941         if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3942                 pr_err(MPT3SAS_FMT
3943                         "doorbell handshake int failed (line=%d)\n",
3944                         ioc->name, __LINE__);
3945                 return -EFAULT;
3946         }
3947         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3948             & MPI2_DOORBELL_DATA_MASK);
3949         writel(0, &ioc->chip->HostInterruptStatus);
3950
3951         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3952                 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3953                         pr_err(MPT3SAS_FMT
3954                                 "doorbell handshake int failed (line=%d)\n",
3955                                 ioc->name, __LINE__);
3956                         return -EFAULT;
3957                 }
3958                 if (i >=  reply_bytes/2) /* overflow case */
3959                         dummy = readl(&ioc->chip->Doorbell);
3960                 else
3961                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3962                             & MPI2_DOORBELL_DATA_MASK);
3963                 writel(0, &ioc->chip->HostInterruptStatus);
3964         }
3965
3966         _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3967         if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3968                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3969                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3970         }
3971         writel(0, &ioc->chip->HostInterruptStatus);
3972
3973         if (ioc->logging_level & MPT_DEBUG_INIT) {
3974                 mfp = (__le32 *)reply;
3975                 pr_info("\toffset:data\n");
3976                 for (i = 0; i < reply_bytes/4; i++)
3977                         pr_info("\t[0x%02x]:%08x\n", i*4,
3978                             le32_to_cpu(mfp[i]));
3979         }
3980         return 0;
3981 }
3982
3983 /**
3984  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3985  * @ioc: per adapter object
3986  * @mpi_reply: the reply payload from FW
3987  * @mpi_request: the request payload sent to FW
3988  *
3989  * The SAS IO Unit Control Request message allows the host to perform low-level
3990  * operations, such as resets on the PHYs of the IO Unit, also allows the host
3991  * to obtain the IOC assigned device handles for a device if it has other
3992  * identifying information about the device, in addition allows the host to
3993  * remove IOC resources associated with the device.
3994  *
3995  * Returns 0 for success, non-zero for failure.
3996  */
3997 int
3998 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3999         Mpi2SasIoUnitControlReply_t *mpi_reply,
4000         Mpi2SasIoUnitControlRequest_t *mpi_request)
4001 {
4002         u16 smid;
4003         u32 ioc_state;
4004         unsigned long timeleft;
4005         bool issue_reset = false;
4006         int rc;
4007         void *request;
4008         u16 wait_state_count;
4009
4010         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4011             __func__));
4012
4013         mutex_lock(&ioc->base_cmds.mutex);
4014
4015         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4016                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4017                     ioc->name, __func__);
4018                 rc = -EAGAIN;
4019                 goto out;
4020         }
4021
4022         wait_state_count = 0;
4023         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4024         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4025                 if (wait_state_count++ == 10) {
4026                         pr_err(MPT3SAS_FMT
4027                             "%s: failed due to ioc not operational\n",
4028                             ioc->name, __func__);
4029                         rc = -EFAULT;
4030                         goto out;
4031                 }
4032                 ssleep(1);
4033                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4034                 pr_info(MPT3SAS_FMT
4035                         "%s: waiting for operational state(count=%d)\n",
4036                         ioc->name, __func__, wait_state_count);
4037         }
4038
4039         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4040         if (!smid) {
4041                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4042                     ioc->name, __func__);
4043                 rc = -EAGAIN;
4044                 goto out;
4045         }
4046
4047         rc = 0;
4048         ioc->base_cmds.status = MPT3_CMD_PENDING;
4049         request = mpt3sas_base_get_msg_frame(ioc, smid);
4050         ioc->base_cmds.smid = smid;
4051         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4052         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4053             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4054                 ioc->ioc_link_reset_in_progress = 1;
4055         init_completion(&ioc->base_cmds.done);
4056         mpt3sas_base_put_smid_default(ioc, smid);
4057         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4058             msecs_to_jiffies(10000));
4059         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4060             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4061             ioc->ioc_link_reset_in_progress)
4062                 ioc->ioc_link_reset_in_progress = 0;
4063         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4064                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4065                     ioc->name, __func__);
4066                 _debug_dump_mf(mpi_request,
4067                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4068                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4069                         issue_reset = true;
4070                 goto issue_host_reset;
4071         }
4072         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4073                 memcpy(mpi_reply, ioc->base_cmds.reply,
4074                     sizeof(Mpi2SasIoUnitControlReply_t));
4075         else
4076                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4077         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4078         goto out;
4079
4080  issue_host_reset:
4081         if (issue_reset)
4082                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4083                     FORCE_BIG_HAMMER);
4084         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4085         rc = -EFAULT;
4086  out:
4087         mutex_unlock(&ioc->base_cmds.mutex);
4088         return rc;
4089 }
4090
4091 /**
4092  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4093  * @ioc: per adapter object
4094  * @mpi_reply: the reply payload from FW
4095  * @mpi_request: the request payload sent to FW
4096  *
4097  * The SCSI Enclosure Processor request message causes the IOC to
4098  * communicate with SES devices to control LED status signals.
4099  *
4100  * Returns 0 for success, non-zero for failure.
4101  */
4102 int
4103 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4104         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4105 {
4106         u16 smid;
4107         u32 ioc_state;
4108         unsigned long timeleft;
4109         bool issue_reset = false;
4110         int rc;
4111         void *request;
4112         u16 wait_state_count;
4113
4114         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4115             __func__));
4116
4117         mutex_lock(&ioc->base_cmds.mutex);
4118
4119         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4120                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4121                     ioc->name, __func__);
4122                 rc = -EAGAIN;
4123                 goto out;
4124         }
4125
4126         wait_state_count = 0;
4127         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4128         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4129                 if (wait_state_count++ == 10) {
4130                         pr_err(MPT3SAS_FMT
4131                             "%s: failed due to ioc not operational\n",
4132                             ioc->name, __func__);
4133                         rc = -EFAULT;
4134                         goto out;
4135                 }
4136                 ssleep(1);
4137                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4138                 pr_info(MPT3SAS_FMT
4139                         "%s: waiting for operational state(count=%d)\n",
4140                         ioc->name,
4141                     __func__, wait_state_count);
4142         }
4143
4144         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4145         if (!smid) {
4146                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4147                     ioc->name, __func__);
4148                 rc = -EAGAIN;
4149                 goto out;
4150         }
4151
4152         rc = 0;
4153         ioc->base_cmds.status = MPT3_CMD_PENDING;
4154         request = mpt3sas_base_get_msg_frame(ioc, smid);
4155         ioc->base_cmds.smid = smid;
4156         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4157         init_completion(&ioc->base_cmds.done);
4158         mpt3sas_base_put_smid_default(ioc, smid);
4159         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4160             msecs_to_jiffies(10000));
4161         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4162                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4163                     ioc->name, __func__);
4164                 _debug_dump_mf(mpi_request,
4165                     sizeof(Mpi2SepRequest_t)/4);
4166                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4167                         issue_reset = false;
4168                 goto issue_host_reset;
4169         }
4170         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4171                 memcpy(mpi_reply, ioc->base_cmds.reply,
4172                     sizeof(Mpi2SepReply_t));
4173         else
4174                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4175         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4176         goto out;
4177
4178  issue_host_reset:
4179         if (issue_reset)
4180                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4181                     FORCE_BIG_HAMMER);
4182         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4183         rc = -EFAULT;
4184  out:
4185         mutex_unlock(&ioc->base_cmds.mutex);
4186         return rc;
4187 }
4188
4189 /**
4190  * _base_get_port_facts - obtain port facts reply and save in ioc
4191  * @ioc: per adapter object
4192  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4193  *
4194  * Returns 0 for success, non-zero for failure.
4195  */
4196 static int
4197 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
4198 {
4199         Mpi2PortFactsRequest_t mpi_request;
4200         Mpi2PortFactsReply_t mpi_reply;
4201         struct mpt3sas_port_facts *pfacts;
4202         int mpi_reply_sz, mpi_request_sz, r;
4203
4204         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4205             __func__));
4206
4207         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4208         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4209         memset(&mpi_request, 0, mpi_request_sz);
4210         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4211         mpi_request.PortNumber = port;
4212         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4213             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4214
4215         if (r != 0) {
4216                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4217                     ioc->name, __func__, r);
4218                 return r;
4219         }
4220
4221         pfacts = &ioc->pfacts[port];
4222         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4223         pfacts->PortNumber = mpi_reply.PortNumber;
4224         pfacts->VP_ID = mpi_reply.VP_ID;
4225         pfacts->VF_ID = mpi_reply.VF_ID;
4226         pfacts->MaxPostedCmdBuffers =
4227             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4228
4229         return 0;
4230 }
4231
4232 /**
4233  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4234  * @ioc: per adapter object
4235  * @timeout:
4236  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4237  *
4238  * Returns 0 for success, non-zero for failure.
4239  */
4240 static int
4241 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
4242         int sleep_flag)
4243 {
4244         u32 ioc_state;
4245         int rc;
4246
4247         dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4248             __func__));
4249
4250         if (ioc->pci_error_recovery) {
4251                 dfailprintk(ioc, printk(MPT3SAS_FMT
4252                     "%s: host in pci error recovery\n", ioc->name, __func__));
4253                 return -EFAULT;
4254         }
4255
4256         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4257         dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4258             ioc->name, __func__, ioc_state));
4259
4260         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4261             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4262                 return 0;
4263
4264         if (ioc_state & MPI2_DOORBELL_USED) {
4265                 dhsprintk(ioc, printk(MPT3SAS_FMT
4266                     "unexpected doorbell active!\n", ioc->name));
4267                 goto issue_diag_reset;
4268         }
4269
4270         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4271                 mpt3sas_base_fault_info(ioc, ioc_state &
4272                     MPI2_DOORBELL_DATA_MASK);
4273                 goto issue_diag_reset;
4274         }
4275
4276         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
4277             timeout, sleep_flag);
4278         if (ioc_state) {
4279                 dfailprintk(ioc, printk(MPT3SAS_FMT
4280                     "%s: failed going to ready state (ioc_state=0x%x)\n",
4281                     ioc->name, __func__, ioc_state));
4282                 return -EFAULT;
4283         }
4284
4285  issue_diag_reset:
4286         rc = _base_diag_reset(ioc, sleep_flag);
4287         return rc;
4288 }
4289
4290 /**
4291  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4292  * @ioc: per adapter object
4293  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4294  *
4295  * Returns 0 for success, non-zero for failure.
4296  */
4297 static int
4298 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4299 {
4300         Mpi2IOCFactsRequest_t mpi_request;
4301         Mpi2IOCFactsReply_t mpi_reply;
4302         struct mpt3sas_facts *facts;
4303         int mpi_reply_sz, mpi_request_sz, r;
4304
4305         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4306             __func__));
4307
4308         r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
4309         if (r) {
4310                 dfailprintk(ioc, printk(MPT3SAS_FMT
4311                     "%s: failed getting to correct state\n",
4312                     ioc->name, __func__));
4313                 return r;
4314         }
4315         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4316         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4317         memset(&mpi_request, 0, mpi_request_sz);
4318         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4319         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4320             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4321
4322         if (r != 0) {
4323                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4324                     ioc->name, __func__, r);
4325                 return r;
4326         }
4327
4328         facts = &ioc->facts;
4329         memset(facts, 0, sizeof(struct mpt3sas_facts));
4330         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4331         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4332         facts->VP_ID = mpi_reply.VP_ID;
4333         facts->VF_ID = mpi_reply.VF_ID;
4334         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4335         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4336         facts->WhoInit = mpi_reply.WhoInit;
4337         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4338         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4339         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4340         facts->MaxReplyDescriptorPostQueueDepth =
4341             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4342         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4343         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4344         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4345                 ioc->ir_firmware = 1;
4346         if ((facts->IOCCapabilities &
4347               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4348                 ioc->rdpq_array_capable = 1;
4349         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4350         facts->IOCRequestFrameSize =
4351             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4352         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4353                 facts->IOCMaxChainSegmentSize =
4354                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4355         }
4356         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4357         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4358         ioc->shost->max_id = -1;
4359         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4360         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4361         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4362         facts->HighPriorityCredit =
4363             le16_to_cpu(mpi_reply.HighPriorityCredit);
4364         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4365         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4366
4367         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4368                 "hba queue depth(%d), max chains per io(%d)\n",
4369                 ioc->name, facts->RequestCredit,
4370             facts->MaxChainDepth));
4371         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4372                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4373             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4374         return 0;
4375 }
4376
4377 /**
4378  * _base_send_ioc_init - send ioc_init to firmware
4379  * @ioc: per adapter object
4380  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4381  *
4382  * Returns 0 for success, non-zero for failure.
4383  */
4384 static int
4385 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4386 {
4387         Mpi2IOCInitRequest_t mpi_request;
4388         Mpi2IOCInitReply_t mpi_reply;
4389         int i, r = 0;
4390         struct timeval current_time;
4391         u16 ioc_status;
4392         u32 reply_post_free_array_sz = 0;
4393         Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4394         dma_addr_t reply_post_free_array_dma;
4395
4396         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4397             __func__));
4398
4399         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4400         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4401         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4402         mpi_request.VF_ID = 0; /* TODO */
4403         mpi_request.VP_ID = 0;
4404         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4405         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4406
4407         if (_base_is_controller_msix_enabled(ioc))
4408                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4409         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4410         mpi_request.ReplyDescriptorPostQueueDepth =
4411             cpu_to_le16(ioc->reply_post_queue_depth);
4412         mpi_request.ReplyFreeQueueDepth =
4413             cpu_to_le16(ioc->reply_free_queue_depth);
4414
4415         mpi_request.SenseBufferAddressHigh =
4416             cpu_to_le32((u64)ioc->sense_dma >> 32);
4417         mpi_request.SystemReplyAddressHigh =
4418             cpu_to_le32((u64)ioc->reply_dma >> 32);
4419         mpi_request.SystemRequestFrameBaseAddress =
4420             cpu_to_le64((u64)ioc->request_dma);
4421         mpi_request.ReplyFreeQueueAddress =
4422             cpu_to_le64((u64)ioc->reply_free_dma);
4423
4424         if (ioc->rdpq_array_enable) {
4425                 reply_post_free_array_sz = ioc->reply_queue_count *
4426                     sizeof(Mpi2IOCInitRDPQArrayEntry);
4427                 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4428                         reply_post_free_array_sz, &reply_post_free_array_dma);
4429                 if (!reply_post_free_array) {
4430                         pr_err(MPT3SAS_FMT
4431                         "reply_post_free_array: pci_alloc_consistent failed\n",
4432                         ioc->name);
4433                         r = -ENOMEM;
4434                         goto out;
4435                 }
4436                 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4437                 for (i = 0; i < ioc->reply_queue_count; i++)
4438                         reply_post_free_array[i].RDPQBaseAddress =
4439                             cpu_to_le64(
4440                                 (u64)ioc->reply_post[i].reply_post_free_dma);
4441                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4442                 mpi_request.ReplyDescriptorPostQueueAddress =
4443                     cpu_to_le64((u64)reply_post_free_array_dma);
4444         } else {
4445                 mpi_request.ReplyDescriptorPostQueueAddress =
4446                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4447         }
4448
4449         /* This time stamp specifies number of milliseconds
4450          * since epoch ~ midnight January 1, 1970.
4451          */
4452         do_gettimeofday(&current_time);
4453         mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
4454             (current_time.tv_usec / 1000));
4455
4456         if (ioc->logging_level & MPT_DEBUG_INIT) {
4457                 __le32 *mfp;
4458                 int i;
4459
4460                 mfp = (__le32 *)&mpi_request;
4461                 pr_info("\toffset:data\n");
4462                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4463                         pr_info("\t[0x%02x]:%08x\n", i*4,
4464                             le32_to_cpu(mfp[i]));
4465         }
4466
4467         r = _base_handshake_req_reply_wait(ioc,
4468             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4469             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4470             sleep_flag);
4471
4472         if (r != 0) {
4473                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4474                     ioc->name, __func__, r);
4475                 goto out;
4476         }
4477
4478         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4479         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4480             mpi_reply.IOCLogInfo) {
4481                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4482                 r = -EIO;
4483         }
4484
4485 out:
4486         if (reply_post_free_array)
4487                 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4488                                     reply_post_free_array,
4489                                     reply_post_free_array_dma);
4490         return r;
4491 }
4492
4493 /**
4494  * mpt3sas_port_enable_done - command completion routine for port enable
4495  * @ioc: per adapter object
4496  * @smid: system request message index
4497  * @msix_index: MSIX table index supplied by the OS
4498  * @reply: reply message frame(lower 32bit addr)
4499  *
4500  * Return 1 meaning mf should be freed from _base_interrupt
4501  *        0 means the mf is freed from this function.
4502  */
4503 u8
4504 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4505         u32 reply)
4506 {
4507         MPI2DefaultReply_t *mpi_reply;
4508         u16 ioc_status;
4509
4510         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4511                 return 1;
4512
4513         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4514         if (!mpi_reply)
4515                 return 1;
4516
4517         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4518                 return 1;
4519
4520         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4521         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4522         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4523         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4524         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4525         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4526                 ioc->port_enable_failed = 1;
4527
4528         if (ioc->is_driver_loading) {
4529                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4530                         mpt3sas_port_enable_complete(ioc);
4531                         return 1;
4532                 } else {
4533                         ioc->start_scan_failed = ioc_status;
4534                         ioc->start_scan = 0;
4535                         return 1;
4536                 }
4537         }
4538         complete(&ioc->port_enable_cmds.done);
4539         return 1;
4540 }
4541
4542 /**
4543  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4544  * @ioc: per adapter object
4545  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4546  *
4547  * Returns 0 for success, non-zero for failure.
4548  */
4549 static int
4550 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4551 {
4552         Mpi2PortEnableRequest_t *mpi_request;
4553         Mpi2PortEnableReply_t *mpi_reply;
4554         unsigned long timeleft;
4555         int r = 0;
4556         u16 smid;
4557         u16 ioc_status;
4558
4559         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4560
4561         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4562                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4563                     ioc->name, __func__);
4564                 return -EAGAIN;
4565         }
4566
4567         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4568         if (!smid) {
4569                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4570                     ioc->name, __func__);
4571                 return -EAGAIN;
4572         }
4573
4574         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4575         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4576         ioc->port_enable_cmds.smid = smid;
4577         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4578         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4579
4580         init_completion(&ioc->port_enable_cmds.done);
4581         mpt3sas_base_put_smid_default(ioc, smid);
4582         timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4583             300*HZ);
4584         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4585                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4586                     ioc->name, __func__);
4587                 _debug_dump_mf(mpi_request,
4588                     sizeof(Mpi2PortEnableRequest_t)/4);
4589                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4590                         r = -EFAULT;
4591                 else
4592                         r = -ETIME;
4593                 goto out;
4594         }
4595
4596         mpi_reply = ioc->port_enable_cmds.reply;
4597         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4598         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4599                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4600                     ioc->name, __func__, ioc_status);
4601                 r = -EFAULT;
4602                 goto out;
4603         }
4604
4605  out:
4606         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4607         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4608             "SUCCESS" : "FAILED"));
4609         return r;
4610 }
4611
4612 /**
4613  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4614  * @ioc: per adapter object
4615  *
4616  * Returns 0 for success, non-zero for failure.
4617  */
4618 int
4619 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4620 {
4621         Mpi2PortEnableRequest_t *mpi_request;
4622         u16 smid;
4623
4624         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4625
4626         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4627                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4628                     ioc->name, __func__);
4629                 return -EAGAIN;
4630         }
4631
4632         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4633         if (!smid) {
4634                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4635                     ioc->name, __func__);
4636                 return -EAGAIN;
4637         }
4638
4639         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4640         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4641         ioc->port_enable_cmds.smid = smid;
4642         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4643         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4644
4645         mpt3sas_base_put_smid_default(ioc, smid);
4646         return 0;
4647 }
4648
4649 /**
4650  * _base_determine_wait_on_discovery - desposition
4651  * @ioc: per adapter object
4652  *
4653  * Decide whether to wait on discovery to complete. Used to either
4654  * locate boot device, or report volumes ahead of physical devices.
4655  *
4656  * Returns 1 for wait, 0 for don't wait
4657  */
4658 static int
4659 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4660 {
4661         /* We wait for discovery to complete if IR firmware is loaded.
4662          * The sas topology events arrive before PD events, so we need time to
4663          * turn on the bit in ioc->pd_handles to indicate PD
4664          * Also, it maybe required to report Volumes ahead of physical
4665          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4666          */
4667         if (ioc->ir_firmware)
4668                 return 1;
4669
4670         /* if no Bios, then we don't need to wait */
4671         if (!ioc->bios_pg3.BiosVersion)
4672                 return 0;
4673
4674         /* Bios is present, then we drop down here.
4675          *
4676          * If there any entries in the Bios Page 2, then we wait
4677          * for discovery to complete.
4678          */
4679
4680         /* Current Boot Device */
4681         if ((ioc->bios_pg2.CurrentBootDeviceForm &
4682             MPI2_BIOSPAGE2_FORM_MASK) ==
4683             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4684         /* Request Boot Device */
4685            (ioc->bios_pg2.ReqBootDeviceForm &
4686             MPI2_BIOSPAGE2_FORM_MASK) ==
4687             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4688         /* Alternate Request Boot Device */
4689            (ioc->bios_pg2.ReqAltBootDeviceForm &
4690             MPI2_BIOSPAGE2_FORM_MASK) ==
4691             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4692                 return 0;
4693
4694         return 1;
4695 }
4696
4697 /**
4698  * _base_unmask_events - turn on notification for this event
4699  * @ioc: per adapter object
4700  * @event: firmware event
4701  *
4702  * The mask is stored in ioc->event_masks.
4703  */
4704 static void
4705 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4706 {
4707         u32 desired_event;
4708
4709         if (event >= 128)
4710                 return;
4711
4712         desired_event = (1 << (event % 32));
4713
4714         if (event < 32)
4715                 ioc->event_masks[0] &= ~desired_event;
4716         else if (event < 64)
4717                 ioc->event_masks[1] &= ~desired_event;
4718         else if (event < 96)
4719                 ioc->event_masks[2] &= ~desired_event;
4720         else if (event < 128)
4721                 ioc->event_masks[3] &= ~desired_event;
4722 }
4723
4724 /**
4725  * _base_event_notification - send event notification
4726  * @ioc: per adapter object
4727  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4728  *
4729  * Returns 0 for success, non-zero for failure.
4730  */
4731 static int
4732 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4733 {
4734         Mpi2EventNotificationRequest_t *mpi_request;
4735         unsigned long timeleft;
4736         u16 smid;
4737         int r = 0;
4738         int i;
4739
4740         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4741             __func__));
4742
4743         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4744                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4745                     ioc->name, __func__);
4746                 return -EAGAIN;
4747         }
4748
4749         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4750         if (!smid) {
4751                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4752                     ioc->name, __func__);
4753                 return -EAGAIN;
4754         }
4755         ioc->base_cmds.status = MPT3_CMD_PENDING;
4756         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4757         ioc->base_cmds.smid = smid;
4758         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4759         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4760         mpi_request->VF_ID = 0; /* TODO */
4761         mpi_request->VP_ID = 0;
4762         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4763                 mpi_request->EventMasks[i] =
4764                     cpu_to_le32(ioc->event_masks[i]);
4765         init_completion(&ioc->base_cmds.done);
4766         mpt3sas_base_put_smid_default(ioc, smid);
4767         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4768         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4769                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4770                     ioc->name, __func__);
4771                 _debug_dump_mf(mpi_request,
4772                     sizeof(Mpi2EventNotificationRequest_t)/4);
4773                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4774                         r = -EFAULT;
4775                 else
4776                         r = -ETIME;
4777         } else
4778                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4779                     ioc->name, __func__));
4780         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4781         return r;
4782 }
4783
4784 /**
4785  * mpt3sas_base_validate_event_type - validating event types
4786  * @ioc: per adapter object
4787  * @event: firmware event
4788  *
4789  * This will turn on firmware event notification when application
4790  * ask for that event. We don't mask events that are already enabled.
4791  */
4792 void
4793 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4794 {
4795         int i, j;
4796         u32 event_mask, desired_event;
4797         u8 send_update_to_fw;
4798
4799         for (i = 0, send_update_to_fw = 0; i <
4800             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4801                 event_mask = ~event_type[i];
4802                 desired_event = 1;
4803                 for (j = 0; j < 32; j++) {
4804                         if (!(event_mask & desired_event) &&
4805                             (ioc->event_masks[i] & desired_event)) {
4806                                 ioc->event_masks[i] &= ~desired_event;
4807                                 send_update_to_fw = 1;
4808                         }
4809                         desired_event = (desired_event << 1);
4810                 }
4811         }
4812
4813         if (!send_update_to_fw)
4814                 return;
4815
4816         mutex_lock(&ioc->base_cmds.mutex);
4817         _base_event_notification(ioc, CAN_SLEEP);
4818         mutex_unlock(&ioc->base_cmds.mutex);
4819 }
4820
4821 /**
4822  * _base_diag_reset - the "big hammer" start of day reset
4823  * @ioc: per adapter object
4824  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4825  *
4826  * Returns 0 for success, non-zero for failure.
4827  */
4828 static int
4829 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4830 {
4831         u32 host_diagnostic;
4832         u32 ioc_state;
4833         u32 count;
4834         u32 hcb_size;
4835
4836         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4837
4838         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4839             ioc->name));
4840
4841         count = 0;
4842         do {
4843                 /* Write magic sequence to WriteSequence register
4844                  * Loop until in diagnostic mode
4845                  */
4846                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4847                         "write magic sequence\n", ioc->name));
4848                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4849                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4850                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4851                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4852                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4853                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4854                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4855
4856                 /* wait 100 msec */
4857                 if (sleep_flag == CAN_SLEEP)
4858                         msleep(100);
4859                 else
4860                         mdelay(100);
4861
4862                 if (count++ > 20)
4863                         goto out;
4864
4865                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4866                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4867                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4868                     ioc->name, count, host_diagnostic));
4869
4870         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4871
4872         hcb_size = readl(&ioc->chip->HCBSize);
4873
4874         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4875             ioc->name));
4876         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4877              &ioc->chip->HostDiagnostic);
4878
4879         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4880         if (sleep_flag == CAN_SLEEP)
4881                 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4882         else
4883                 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4884
4885         /* Approximately 300 second max wait */
4886         for (count = 0; count < (300000000 /
4887                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4888
4889                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4890
4891                 if (host_diagnostic == 0xFFFFFFFF)
4892                         goto out;
4893                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4894                         break;
4895
4896                 /* Wait to pass the second read delay window */
4897                 if (sleep_flag == CAN_SLEEP)
4898                         msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4899                                                                 / 1000);
4900                 else
4901                         mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4902                                                                 / 1000);
4903         }
4904
4905         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4906
4907                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4908                 "restart the adapter assuming the HCB Address points to good F/W\n",
4909                     ioc->name));
4910                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4911                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4912                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4913
4914                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4915                     "re-enable the HCDW\n", ioc->name));
4916                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4917                     &ioc->chip->HCBSize);
4918         }
4919
4920         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4921             ioc->name));
4922         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4923             &ioc->chip->HostDiagnostic);
4924
4925         drsprintk(ioc, pr_info(MPT3SAS_FMT
4926                 "disable writes to the diagnostic register\n", ioc->name));
4927         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4928
4929         drsprintk(ioc, pr_info(MPT3SAS_FMT
4930                 "Wait for FW to go to the READY state\n", ioc->name));
4931         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4932             sleep_flag);
4933         if (ioc_state) {
4934                 pr_err(MPT3SAS_FMT
4935                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4936                         ioc->name, __func__, ioc_state);
4937                 goto out;
4938         }
4939
4940         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4941         return 0;
4942
4943  out:
4944         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4945         return -EFAULT;
4946 }
4947
4948 /**
4949  * _base_make_ioc_ready - put controller in READY state
4950  * @ioc: per adapter object
4951  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4952  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4953  *
4954  * Returns 0 for success, non-zero for failure.
4955  */
4956 static int
4957 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4958         enum reset_type type)
4959 {
4960         u32 ioc_state;
4961         int rc;
4962         int count;
4963
4964         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4965             __func__));
4966
4967         if (ioc->pci_error_recovery)
4968                 return 0;
4969
4970         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4971         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4972             ioc->name, __func__, ioc_state));
4973
4974         /* if in RESET state, it should move to READY state shortly */
4975         count = 0;
4976         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4977                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4978                     MPI2_IOC_STATE_READY) {
4979                         if (count++ == 10) {
4980                                 pr_err(MPT3SAS_FMT
4981                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4982                                     ioc->name, __func__, ioc_state);
4983                                 return -EFAULT;
4984                         }
4985                         if (sleep_flag == CAN_SLEEP)
4986                                 ssleep(1);
4987                         else
4988                                 mdelay(1000);
4989                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4990                 }
4991         }
4992
4993         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4994                 return 0;
4995
4996         if (ioc_state & MPI2_DOORBELL_USED) {
4997                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4998                         "unexpected doorbell active!\n",
4999                         ioc->name));
5000                 goto issue_diag_reset;
5001         }
5002
5003         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5004                 mpt3sas_base_fault_info(ioc, ioc_state &
5005                     MPI2_DOORBELL_DATA_MASK);
5006                 goto issue_diag_reset;
5007         }
5008
5009         if (type == FORCE_BIG_HAMMER)
5010                 goto issue_diag_reset;
5011
5012         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5013                 if (!(_base_send_ioc_reset(ioc,
5014                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
5015                         return 0;
5016         }
5017
5018  issue_diag_reset:
5019         rc = _base_diag_reset(ioc, CAN_SLEEP);
5020         return rc;
5021 }
5022
5023 /**
5024  * _base_make_ioc_operational - put controller in OPERATIONAL state
5025  * @ioc: per adapter object
5026  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5027  *
5028  * Returns 0 for success, non-zero for failure.
5029  */
5030 static int
5031 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5032 {
5033         int r, i, index;
5034         unsigned long   flags;
5035         u32 reply_address;
5036         u16 smid;
5037         struct _tr_list *delayed_tr, *delayed_tr_next;
5038         struct _sc_list *delayed_sc, *delayed_sc_next;
5039         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5040         u8 hide_flag;
5041         struct adapter_reply_queue *reply_q;
5042         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5043
5044         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5045             __func__));
5046
5047         /* clean the delayed target reset list */
5048         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5049             &ioc->delayed_tr_list, list) {
5050                 list_del(&delayed_tr->list);
5051                 kfree(delayed_tr);
5052         }
5053
5054
5055         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5056             &ioc->delayed_tr_volume_list, list) {
5057                 list_del(&delayed_tr->list);
5058                 kfree(delayed_tr);
5059         }
5060
5061         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5062             &ioc->delayed_sc_list, list) {
5063                 list_del(&delayed_sc->list);
5064                 kfree(delayed_sc);
5065         }
5066
5067         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5068             &ioc->delayed_event_ack_list, list) {
5069                 list_del(&delayed_event_ack->list);
5070                 kfree(delayed_event_ack);
5071         }
5072
5073         /* initialize the scsi lookup free list */
5074         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5075         INIT_LIST_HEAD(&ioc->free_list);
5076         smid = 1;
5077         for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5078                 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5079                 ioc->scsi_lookup[i].cb_idx = 0xFF;
5080                 ioc->scsi_lookup[i].smid = smid;
5081                 ioc->scsi_lookup[i].scmd = NULL;
5082                 ioc->scsi_lookup[i].direct_io = 0;
5083                 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5084                     &ioc->free_list);
5085         }
5086
5087         /* hi-priority queue */
5088         INIT_LIST_HEAD(&ioc->hpr_free_list);
5089         smid = ioc->hi_priority_smid;
5090         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5091                 ioc->hpr_lookup[i].cb_idx = 0xFF;
5092                 ioc->hpr_lookup[i].smid = smid;
5093                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5094                     &ioc->hpr_free_list);
5095         }
5096
5097         /* internal queue */
5098         INIT_LIST_HEAD(&ioc->internal_free_list);
5099         smid = ioc->internal_smid;
5100         for (i = 0; i < ioc->internal_depth; i++, smid++) {
5101                 ioc->internal_lookup[i].cb_idx = 0xFF;
5102                 ioc->internal_lookup[i].smid = smid;
5103                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5104                     &ioc->internal_free_list);
5105         }
5106
5107         /* chain pool */
5108         INIT_LIST_HEAD(&ioc->free_chain_list);
5109         for (i = 0; i < ioc->chain_depth; i++)
5110                 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5111                     &ioc->free_chain_list);
5112
5113         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5114
5115         /* initialize Reply Free Queue */
5116         for (i = 0, reply_address = (u32)ioc->reply_dma ;
5117             i < ioc->reply_free_queue_depth ; i++, reply_address +=
5118             ioc->reply_sz)
5119                 ioc->reply_free[i] = cpu_to_le32(reply_address);
5120
5121         /* initialize reply queues */
5122         if (ioc->is_driver_loading)
5123                 _base_assign_reply_queues(ioc);
5124
5125         /* initialize Reply Post Free Queue */
5126         index = 0;
5127         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5128         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5129                 /*
5130                  * If RDPQ is enabled, switch to the next allocation.
5131                  * Otherwise advance within the contiguous region.
5132                  */
5133                 if (ioc->rdpq_array_enable) {
5134                         reply_q->reply_post_free =
5135                                 ioc->reply_post[index++].reply_post_free;
5136                 } else {
5137                         reply_q->reply_post_free = reply_post_free_contig;
5138                         reply_post_free_contig += ioc->reply_post_queue_depth;
5139                 }
5140
5141                 reply_q->reply_post_host_index = 0;
5142                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5143                         reply_q->reply_post_free[i].Words =
5144                             cpu_to_le64(ULLONG_MAX);
5145                 if (!_base_is_controller_msix_enabled(ioc))
5146                         goto skip_init_reply_post_free_queue;
5147         }
5148  skip_init_reply_post_free_queue:
5149
5150         r = _base_send_ioc_init(ioc, sleep_flag);
5151         if (r)
5152                 return r;
5153
5154         /* initialize reply free host index */
5155         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5156         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5157
5158         /* initialize reply post host index */
5159         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5160                 if (ioc->msix96_vector)
5161                         writel((reply_q->msix_index & 7)<<
5162                            MPI2_RPHI_MSIX_INDEX_SHIFT,
5163                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5164                 else
5165                         writel(reply_q->msix_index <<
5166                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
5167                                 &ioc->chip->ReplyPostHostIndex);
5168
5169                 if (!_base_is_controller_msix_enabled(ioc))
5170                         goto skip_init_reply_post_host_index;
5171         }
5172
5173  skip_init_reply_post_host_index:
5174
5175         _base_unmask_interrupts(ioc);
5176         r = _base_event_notification(ioc, sleep_flag);
5177         if (r)
5178                 return r;
5179
5180         if (sleep_flag == CAN_SLEEP)
5181                 _base_static_config_pages(ioc);
5182
5183
5184         if (ioc->is_driver_loading) {
5185
5186                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5187                     == 0x80) {
5188                         hide_flag = (u8) (
5189                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5190                             MFG_PAGE10_HIDE_SSDS_MASK);
5191                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5192                                 ioc->mfg_pg10_hide_flag = hide_flag;
5193                 }
5194
5195                 ioc->wait_for_discovery_to_complete =
5196                     _base_determine_wait_on_discovery(ioc);
5197
5198                 return r; /* scan_start and scan_finished support */
5199         }
5200
5201         r = _base_send_port_enable(ioc, sleep_flag);
5202         if (r)
5203                 return r;
5204
5205         return r;
5206 }
5207
5208 /**
5209  * mpt3sas_base_free_resources - free resources controller resources
5210  * @ioc: per adapter object
5211  *
5212  * Return nothing.
5213  */
5214 void
5215 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5216 {
5217         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5218             __func__));
5219
5220         /* synchronizing freeing resource with pci_access_mutex lock */
5221         mutex_lock(&ioc->pci_access_mutex);
5222         if (ioc->chip_phys && ioc->chip) {
5223                 _base_mask_interrupts(ioc);
5224                 ioc->shost_recovery = 1;
5225                 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5226                 ioc->shost_recovery = 0;
5227         }
5228
5229         mpt3sas_base_unmap_resources(ioc);
5230         mutex_unlock(&ioc->pci_access_mutex);
5231         return;
5232 }
5233
5234 /**
5235  * mpt3sas_base_attach - attach controller instance
5236  * @ioc: per adapter object
5237  *
5238  * Returns 0 for success, non-zero for failure.
5239  */
5240 int
5241 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5242 {
5243         int r, i;
5244         int cpu_id, last_cpu_id = 0;
5245
5246         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5247             __func__));
5248
5249         /* setup cpu_msix_table */
5250         ioc->cpu_count = num_online_cpus();
5251         for_each_online_cpu(cpu_id)
5252                 last_cpu_id = cpu_id;
5253         ioc->cpu_msix_table_sz = last_cpu_id + 1;
5254         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5255         ioc->reply_queue_count = 1;
5256         if (!ioc->cpu_msix_table) {
5257                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5258                         "allocation for cpu_msix_table failed!!!\n",
5259                         ioc->name));
5260                 r = -ENOMEM;
5261                 goto out_free_resources;
5262         }
5263
5264         if (ioc->is_warpdrive) {
5265                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5266                     sizeof(resource_size_t *), GFP_KERNEL);
5267                 if (!ioc->reply_post_host_index) {
5268                         dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5269                                 "for cpu_msix_table failed!!!\n", ioc->name));
5270                         r = -ENOMEM;
5271                         goto out_free_resources;
5272                 }
5273         }
5274
5275         ioc->rdpq_array_enable_assigned = 0;
5276         ioc->dma_mask = 0;
5277         r = mpt3sas_base_map_resources(ioc);
5278         if (r)
5279                 goto out_free_resources;
5280
5281         if (ioc->is_warpdrive) {
5282                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
5283                     &ioc->chip->ReplyPostHostIndex;
5284
5285                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
5286                         ioc->reply_post_host_index[i] =
5287                         (resource_size_t __iomem *)
5288                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
5289                         * 4)));
5290         }
5291
5292         pci_set_drvdata(ioc->pdev, ioc->shost);
5293         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5294         if (r)
5295                 goto out_free_resources;
5296
5297         switch (ioc->hba_mpi_version_belonged) {
5298         case MPI2_VERSION:
5299                 ioc->build_sg_scmd = &_base_build_sg_scmd;
5300                 ioc->build_sg = &_base_build_sg;
5301                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5302                 break;
5303         case MPI25_VERSION:
5304         case MPI26_VERSION:
5305                 /*
5306                  * In SAS3.0,
5307                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5308                  * Target Status - all require the IEEE formated scatter gather
5309                  * elements.
5310                  */
5311                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5312                 ioc->build_sg = &_base_build_sg_ieee;
5313                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5314                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5315                 break;
5316         }
5317
5318         /*
5319          * These function pointers for other requests that don't
5320          * the require IEEE scatter gather elements.
5321          *
5322          * For example Configuration Pages and SAS IOUNIT Control don't.
5323          */
5324         ioc->build_sg_mpi = &_base_build_sg;
5325         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5326
5327         r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5328         if (r)
5329                 goto out_free_resources;
5330
5331         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5332             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5333         if (!ioc->pfacts) {
5334                 r = -ENOMEM;
5335                 goto out_free_resources;
5336         }
5337
5338         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5339                 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
5340                 if (r)
5341                         goto out_free_resources;
5342         }
5343
5344         r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
5345         if (r)
5346                 goto out_free_resources;
5347
5348         init_waitqueue_head(&ioc->reset_wq);
5349
5350         /* allocate memory pd handle bitmask list */
5351         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5352         if (ioc->facts.MaxDevHandle % 8)
5353                 ioc->pd_handles_sz++;
5354         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5355             GFP_KERNEL);
5356         if (!ioc->pd_handles) {
5357                 r = -ENOMEM;
5358                 goto out_free_resources;
5359         }
5360         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5361             GFP_KERNEL);
5362         if (!ioc->blocking_handles) {
5363                 r = -ENOMEM;
5364                 goto out_free_resources;
5365         }
5366
5367         ioc->fwfault_debug = mpt3sas_fwfault_debug;
5368
5369         /* base internal command bits */
5370         mutex_init(&ioc->base_cmds.mutex);
5371         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5372         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5373
5374         /* port_enable command bits */
5375         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5376         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5377
5378         /* transport internal command bits */
5379         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5380         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5381         mutex_init(&ioc->transport_cmds.mutex);
5382
5383         /* scsih internal command bits */
5384         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5385         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5386         mutex_init(&ioc->scsih_cmds.mutex);
5387
5388         /* task management internal command bits */
5389         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5390         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5391         mutex_init(&ioc->tm_cmds.mutex);
5392
5393         /* config page internal command bits */
5394         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5395         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5396         mutex_init(&ioc->config_cmds.mutex);
5397
5398         /* ctl module internal command bits */
5399         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5400         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5401         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5402         mutex_init(&ioc->ctl_cmds.mutex);
5403
5404         if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5405             !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5406             !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5407             !ioc->ctl_cmds.sense) {
5408                 r = -ENOMEM;
5409                 goto out_free_resources;
5410         }
5411
5412         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5413                 ioc->event_masks[i] = -1;
5414
5415         /* here we enable the events we care about */
5416         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5417         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5418         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5419         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5420         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5421         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5422         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5423         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5424         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5425         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5426         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5427
5428         r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5429         if (r)
5430                 goto out_free_resources;
5431
5432         ioc->non_operational_loop = 0;
5433         return 0;
5434
5435  out_free_resources:
5436
5437         ioc->remove_host = 1;
5438
5439         mpt3sas_base_free_resources(ioc);
5440         _base_release_memory_pools(ioc);
5441         pci_set_drvdata(ioc->pdev, NULL);
5442         kfree(ioc->cpu_msix_table);
5443         if (ioc->is_warpdrive)
5444                 kfree(ioc->reply_post_host_index);
5445         kfree(ioc->pd_handles);
5446         kfree(ioc->blocking_handles);
5447         kfree(ioc->tm_cmds.reply);
5448         kfree(ioc->transport_cmds.reply);
5449         kfree(ioc->scsih_cmds.reply);
5450         kfree(ioc->config_cmds.reply);
5451         kfree(ioc->base_cmds.reply);
5452         kfree(ioc->port_enable_cmds.reply);
5453         kfree(ioc->ctl_cmds.reply);
5454         kfree(ioc->ctl_cmds.sense);
5455         kfree(ioc->pfacts);
5456         ioc->ctl_cmds.reply = NULL;
5457         ioc->base_cmds.reply = NULL;
5458         ioc->tm_cmds.reply = NULL;
5459         ioc->scsih_cmds.reply = NULL;
5460         ioc->transport_cmds.reply = NULL;
5461         ioc->config_cmds.reply = NULL;
5462         ioc->pfacts = NULL;
5463         return r;
5464 }
5465
5466
5467 /**
5468  * mpt3sas_base_detach - remove controller instance
5469  * @ioc: per adapter object
5470  *
5471  * Return nothing.
5472  */
5473 void
5474 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5475 {
5476         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5477             __func__));
5478
5479         mpt3sas_base_stop_watchdog(ioc);
5480         mpt3sas_base_free_resources(ioc);
5481         _base_release_memory_pools(ioc);
5482         pci_set_drvdata(ioc->pdev, NULL);
5483         kfree(ioc->cpu_msix_table);
5484         if (ioc->is_warpdrive)
5485                 kfree(ioc->reply_post_host_index);
5486         kfree(ioc->pd_handles);
5487         kfree(ioc->blocking_handles);
5488         kfree(ioc->pfacts);
5489         kfree(ioc->ctl_cmds.reply);
5490         kfree(ioc->ctl_cmds.sense);
5491         kfree(ioc->base_cmds.reply);
5492         kfree(ioc->port_enable_cmds.reply);
5493         kfree(ioc->tm_cmds.reply);
5494         kfree(ioc->transport_cmds.reply);
5495         kfree(ioc->scsih_cmds.reply);
5496         kfree(ioc->config_cmds.reply);
5497 }
5498
5499 /**
5500  * _base_reset_handler - reset callback handler (for base)
5501  * @ioc: per adapter object
5502  * @reset_phase: phase
5503  *
5504  * The handler for doing any required cleanup or initialization.
5505  *
5506  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5507  * MPT3_IOC_DONE_RESET
5508  *
5509  * Return nothing.
5510  */
5511 static void
5512 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5513 {
5514         mpt3sas_scsih_reset_handler(ioc, reset_phase);
5515         mpt3sas_ctl_reset_handler(ioc, reset_phase);
5516         switch (reset_phase) {
5517         case MPT3_IOC_PRE_RESET:
5518                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5519                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5520                 break;
5521         case MPT3_IOC_AFTER_RESET:
5522                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5523                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5524                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5525                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
5526                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5527                         complete(&ioc->transport_cmds.done);
5528                 }
5529                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5530                         ioc->base_cmds.status |= MPT3_CMD_RESET;
5531                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5532                         complete(&ioc->base_cmds.done);
5533                 }
5534                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5535                         ioc->port_enable_failed = 1;
5536                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5537                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5538                         if (ioc->is_driver_loading) {
5539                                 ioc->start_scan_failed =
5540                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
5541                                 ioc->start_scan = 0;
5542                                 ioc->port_enable_cmds.status =
5543                                     MPT3_CMD_NOT_USED;
5544                         } else
5545                                 complete(&ioc->port_enable_cmds.done);
5546                 }
5547                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5548                         ioc->config_cmds.status |= MPT3_CMD_RESET;
5549                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5550                         ioc->config_cmds.smid = USHRT_MAX;
5551                         complete(&ioc->config_cmds.done);
5552                 }
5553                 break;
5554         case MPT3_IOC_DONE_RESET:
5555                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5556                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5557                 break;
5558         }
5559 }
5560
5561 /**
5562  * _wait_for_commands_to_complete - reset controller
5563  * @ioc: Pointer to MPT_ADAPTER structure
5564  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5565  *
5566  * This function waiting(3s) for all pending commands to complete
5567  * prior to putting controller in reset.
5568  */
5569 static void
5570 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5571 {
5572         u32 ioc_state;
5573         unsigned long flags;
5574         u16 i;
5575
5576         ioc->pending_io_count = 0;
5577         if (sleep_flag != CAN_SLEEP)
5578                 return;
5579
5580         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5581         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5582                 return;
5583
5584         /* pending command count */
5585         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5586         for (i = 0; i < ioc->scsiio_depth; i++)
5587                 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5588                         ioc->pending_io_count++;
5589         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5590
5591         if (!ioc->pending_io_count)
5592                 return;
5593
5594         /* wait for pending commands to complete */
5595         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5596 }
5597
5598 /**
5599  * mpt3sas_base_hard_reset_handler - reset controller
5600  * @ioc: Pointer to MPT_ADAPTER structure
5601  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5602  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5603  *
5604  * Returns 0 for success, non-zero for failure.
5605  */
5606 int
5607 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5608         enum reset_type type)
5609 {
5610         int r;
5611         unsigned long flags;
5612         u32 ioc_state;
5613         u8 is_fault = 0, is_trigger = 0;
5614
5615         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5616             __func__));
5617
5618         if (ioc->pci_error_recovery) {
5619                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5620                     ioc->name, __func__);
5621                 r = 0;
5622                 goto out_unlocked;
5623         }
5624
5625         if (mpt3sas_fwfault_debug)
5626                 mpt3sas_halt_firmware(ioc);
5627
5628         /* TODO - What we really should be doing is pulling
5629          * out all the code associated with NO_SLEEP; its never used.
5630          * That is legacy code from mpt fusion driver, ported over.
5631          * I will leave this BUG_ON here for now till its been resolved.
5632          */
5633         BUG_ON(sleep_flag == NO_SLEEP);
5634
5635         /* wait for an active reset in progress to complete */
5636         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5637                 do {
5638                         ssleep(1);
5639                 } while (ioc->shost_recovery == 1);
5640                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5641                     __func__));
5642                 return ioc->ioc_reset_in_progress_status;
5643         }
5644
5645         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5646         ioc->shost_recovery = 1;
5647         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5648
5649         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5650             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5651             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5652             MPT3_DIAG_BUFFER_IS_RELEASED))) {
5653                 is_trigger = 1;
5654                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5655                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5656                         is_fault = 1;
5657         }
5658         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5659         _wait_for_commands_to_complete(ioc, sleep_flag);
5660         _base_mask_interrupts(ioc);
5661         r = _base_make_ioc_ready(ioc, sleep_flag, type);
5662         if (r)
5663                 goto out;
5664         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5665
5666         /* If this hard reset is called while port enable is active, then
5667          * there is no reason to call make_ioc_operational
5668          */
5669         if (ioc->is_driver_loading && ioc->port_enable_failed) {
5670                 ioc->remove_host = 1;
5671                 r = -EFAULT;
5672                 goto out;
5673         }
5674         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5675         if (r)
5676                 goto out;
5677
5678         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5679                 panic("%s: Issue occurred with flashing controller firmware."
5680                       "Please reboot the system and ensure that the correct"
5681                       " firmware version is running\n", ioc->name);
5682
5683         r = _base_make_ioc_operational(ioc, sleep_flag);
5684         if (!r)
5685                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5686
5687  out:
5688         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5689             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5690
5691         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5692         ioc->ioc_reset_in_progress_status = r;
5693         ioc->shost_recovery = 0;
5694         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5695         ioc->ioc_reset_count++;
5696         mutex_unlock(&ioc->reset_in_progress_mutex);
5697
5698  out_unlocked:
5699         if ((r == 0) && is_trigger) {
5700                 if (is_fault)
5701                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5702                 else
5703                         mpt3sas_trigger_master(ioc,
5704                             MASTER_TRIGGER_ADAPTER_RESET);
5705         }
5706         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5707             __func__));
5708         return r;
5709 }