Merge remote-tracking branches 'asoc/topic/tlv', 'asoc/topic/tlv320aic23', 'asoc...
[cascardo/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY        3
77
78 /**
79  * __scsi_queue_insert - private queue insertion
80  * @cmd: The SCSI command being requeued
81  * @reason:  The reason for the requeue
82  * @unbusy: Whether the queue should be unbusied
83  *
84  * This is a private queue insertion.  The public interface
85  * scsi_queue_insert() always assumes the queue should be unbusied
86  * because it's always called before the completion.  This function is
87  * for a requeue after completion, which should only occur in this
88  * file.
89  */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92         struct Scsi_Host *host = cmd->device->host;
93         struct scsi_device *device = cmd->device;
94         struct scsi_target *starget = scsi_target(device);
95         struct request_queue *q = device->request_queue;
96         unsigned long flags;
97
98         SCSI_LOG_MLQUEUE(1,
99                  printk("Inserting command %p into mlqueue\n", cmd));
100
101         /*
102          * Set the appropriate busy bit for the device/host.
103          *
104          * If the host/device isn't busy, assume that something actually
105          * completed, and that we should be able to queue a command now.
106          *
107          * Note that the prior mid-layer assumption that any host could
108          * always queue at least one command is now broken.  The mid-layer
109          * will implement a user specifiable stall (see
110          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111          * if a command is requeued with no other commands outstanding
112          * either for the device or for the host.
113          */
114         switch (reason) {
115         case SCSI_MLQUEUE_HOST_BUSY:
116                 host->host_blocked = host->max_host_blocked;
117                 break;
118         case SCSI_MLQUEUE_DEVICE_BUSY:
119         case SCSI_MLQUEUE_EH_RETRY:
120                 device->device_blocked = device->max_device_blocked;
121                 break;
122         case SCSI_MLQUEUE_TARGET_BUSY:
123                 starget->target_blocked = starget->max_target_blocked;
124                 break;
125         }
126
127         /*
128          * Decrement the counters, since these commands are no longer
129          * active on the host/device.
130          */
131         if (unbusy)
132                 scsi_device_unbusy(device);
133
134         /*
135          * Requeue this command.  It will go before all other commands
136          * that are already in the queue. Schedule requeue work under
137          * lock such that the kblockd_schedule_work() call happens
138          * before blk_cleanup_queue() finishes.
139          */
140         cmd->result = 0;
141         spin_lock_irqsave(q->queue_lock, flags);
142         blk_requeue_request(q, cmd->request);
143         kblockd_schedule_work(&device->requeue_work);
144         spin_unlock_irqrestore(q->queue_lock, flags);
145 }
146
147 /*
148  * Function:    scsi_queue_insert()
149  *
150  * Purpose:     Insert a command in the midlevel queue.
151  *
152  * Arguments:   cmd    - command that we are adding to queue.
153  *              reason - why we are inserting command to queue.
154  *
155  * Lock status: Assumed that lock is not held upon entry.
156  *
157  * Returns:     Nothing.
158  *
159  * Notes:       We do this for one of two cases.  Either the host is busy
160  *              and it cannot accept any more commands for the time being,
161  *              or the device returned QUEUE_FULL and can accept no more
162  *              commands.
163  * Notes:       This could be called either from an interrupt context or a
164  *              normal process context.
165  */
166 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
167 {
168         __scsi_queue_insert(cmd, reason, 1);
169 }
170 /**
171  * scsi_execute - insert request and wait for the result
172  * @sdev:       scsi device
173  * @cmd:        scsi command
174  * @data_direction: data direction
175  * @buffer:     data buffer
176  * @bufflen:    len of buffer
177  * @sense:      optional sense buffer
178  * @timeout:    request timeout in seconds
179  * @retries:    number of times to retry request
180  * @flags:      or into request flags;
181  * @resid:      optional residual length
182  *
183  * returns the req->errors value which is the scsi_cmnd result
184  * field.
185  */
186 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
187                  int data_direction, void *buffer, unsigned bufflen,
188                  unsigned char *sense, int timeout, int retries, u64 flags,
189                  int *resid)
190 {
191         struct request *req;
192         int write = (data_direction == DMA_TO_DEVICE);
193         int ret = DRIVER_ERROR << 24;
194
195         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
196         if (!req)
197                 return ret;
198         blk_rq_set_block_pc(req);
199
200         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
201                                         buffer, bufflen, __GFP_WAIT))
202                 goto out;
203
204         req->cmd_len = COMMAND_SIZE(cmd[0]);
205         memcpy(req->cmd, cmd, req->cmd_len);
206         req->sense = sense;
207         req->sense_len = 0;
208         req->retries = retries;
209         req->timeout = timeout;
210         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
211
212         /*
213          * head injection *required* here otherwise quiesce won't work
214          */
215         blk_execute_rq(req->q, NULL, req, 1);
216
217         /*
218          * Some devices (USB mass-storage in particular) may transfer
219          * garbage data together with a residue indicating that the data
220          * is invalid.  Prevent the garbage from being misinterpreted
221          * and prevent security leaks by zeroing out the excess data.
222          */
223         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
224                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
225
226         if (resid)
227                 *resid = req->resid_len;
228         ret = req->errors;
229  out:
230         blk_put_request(req);
231
232         return ret;
233 }
234 EXPORT_SYMBOL(scsi_execute);
235
236 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
237                      int data_direction, void *buffer, unsigned bufflen,
238                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
239                      int *resid, u64 flags)
240 {
241         char *sense = NULL;
242         int result;
243         
244         if (sshdr) {
245                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
246                 if (!sense)
247                         return DRIVER_ERROR << 24;
248         }
249         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
250                               sense, timeout, retries, flags, resid);
251         if (sshdr)
252                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
253
254         kfree(sense);
255         return result;
256 }
257 EXPORT_SYMBOL(scsi_execute_req_flags);
258
259 /*
260  * Function:    scsi_init_cmd_errh()
261  *
262  * Purpose:     Initialize cmd fields related to error handling.
263  *
264  * Arguments:   cmd     - command that is ready to be queued.
265  *
266  * Notes:       This function has the job of initializing a number of
267  *              fields related to error handling.   Typically this will
268  *              be called once for each command, as required.
269  */
270 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
271 {
272         cmd->serial_number = 0;
273         scsi_set_resid(cmd, 0);
274         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
275         if (cmd->cmd_len == 0)
276                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
277 }
278
279 void scsi_device_unbusy(struct scsi_device *sdev)
280 {
281         struct Scsi_Host *shost = sdev->host;
282         struct scsi_target *starget = scsi_target(sdev);
283         unsigned long flags;
284
285         spin_lock_irqsave(shost->host_lock, flags);
286         shost->host_busy--;
287         starget->target_busy--;
288         if (unlikely(scsi_host_in_recovery(shost) &&
289                      (shost->host_failed || shost->host_eh_scheduled)))
290                 scsi_eh_wakeup(shost);
291         spin_unlock(shost->host_lock);
292         spin_lock(sdev->request_queue->queue_lock);
293         sdev->device_busy--;
294         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
295 }
296
297 /*
298  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
299  * and call blk_run_queue for all the scsi_devices on the target -
300  * including current_sdev first.
301  *
302  * Called with *no* scsi locks held.
303  */
304 static void scsi_single_lun_run(struct scsi_device *current_sdev)
305 {
306         struct Scsi_Host *shost = current_sdev->host;
307         struct scsi_device *sdev, *tmp;
308         struct scsi_target *starget = scsi_target(current_sdev);
309         unsigned long flags;
310
311         spin_lock_irqsave(shost->host_lock, flags);
312         starget->starget_sdev_user = NULL;
313         spin_unlock_irqrestore(shost->host_lock, flags);
314
315         /*
316          * Call blk_run_queue for all LUNs on the target, starting with
317          * current_sdev. We race with others (to set starget_sdev_user),
318          * but in most cases, we will be first. Ideally, each LU on the
319          * target would get some limited time or requests on the target.
320          */
321         blk_run_queue(current_sdev->request_queue);
322
323         spin_lock_irqsave(shost->host_lock, flags);
324         if (starget->starget_sdev_user)
325                 goto out;
326         list_for_each_entry_safe(sdev, tmp, &starget->devices,
327                         same_target_siblings) {
328                 if (sdev == current_sdev)
329                         continue;
330                 if (scsi_device_get(sdev))
331                         continue;
332
333                 spin_unlock_irqrestore(shost->host_lock, flags);
334                 blk_run_queue(sdev->request_queue);
335                 spin_lock_irqsave(shost->host_lock, flags);
336         
337                 scsi_device_put(sdev);
338         }
339  out:
340         spin_unlock_irqrestore(shost->host_lock, flags);
341 }
342
343 static inline int scsi_device_is_busy(struct scsi_device *sdev)
344 {
345         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
346                 return 1;
347
348         return 0;
349 }
350
351 static inline int scsi_target_is_busy(struct scsi_target *starget)
352 {
353         return ((starget->can_queue > 0 &&
354                  starget->target_busy >= starget->can_queue) ||
355                  starget->target_blocked);
356 }
357
358 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
359 {
360         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
361             shost->host_blocked || shost->host_self_blocked)
362                 return 1;
363
364         return 0;
365 }
366
367 static void scsi_starved_list_run(struct Scsi_Host *shost)
368 {
369         LIST_HEAD(starved_list);
370         struct scsi_device *sdev;
371         unsigned long flags;
372
373         spin_lock_irqsave(shost->host_lock, flags);
374         list_splice_init(&shost->starved_list, &starved_list);
375
376         while (!list_empty(&starved_list)) {
377                 struct request_queue *slq;
378
379                 /*
380                  * As long as shost is accepting commands and we have
381                  * starved queues, call blk_run_queue. scsi_request_fn
382                  * drops the queue_lock and can add us back to the
383                  * starved_list.
384                  *
385                  * host_lock protects the starved_list and starved_entry.
386                  * scsi_request_fn must get the host_lock before checking
387                  * or modifying starved_list or starved_entry.
388                  */
389                 if (scsi_host_is_busy(shost))
390                         break;
391
392                 sdev = list_entry(starved_list.next,
393                                   struct scsi_device, starved_entry);
394                 list_del_init(&sdev->starved_entry);
395                 if (scsi_target_is_busy(scsi_target(sdev))) {
396                         list_move_tail(&sdev->starved_entry,
397                                        &shost->starved_list);
398                         continue;
399                 }
400
401                 /*
402                  * Once we drop the host lock, a racing scsi_remove_device()
403                  * call may remove the sdev from the starved list and destroy
404                  * it and the queue.  Mitigate by taking a reference to the
405                  * queue and never touching the sdev again after we drop the
406                  * host lock.  Note: if __scsi_remove_device() invokes
407                  * blk_cleanup_queue() before the queue is run from this
408                  * function then blk_run_queue() will return immediately since
409                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
410                  */
411                 slq = sdev->request_queue;
412                 if (!blk_get_queue(slq))
413                         continue;
414                 spin_unlock_irqrestore(shost->host_lock, flags);
415
416                 blk_run_queue(slq);
417                 blk_put_queue(slq);
418
419                 spin_lock_irqsave(shost->host_lock, flags);
420         }
421         /* put any unprocessed entries back */
422         list_splice(&starved_list, &shost->starved_list);
423         spin_unlock_irqrestore(shost->host_lock, flags);
424 }
425
426 /*
427  * Function:   scsi_run_queue()
428  *
429  * Purpose:    Select a proper request queue to serve next
430  *
431  * Arguments:  q       - last request's queue
432  *
433  * Returns:     Nothing
434  *
435  * Notes:      The previous command was completely finished, start
436  *             a new one if possible.
437  */
438 static void scsi_run_queue(struct request_queue *q)
439 {
440         struct scsi_device *sdev = q->queuedata;
441
442         if (scsi_target(sdev)->single_lun)
443                 scsi_single_lun_run(sdev);
444         if (!list_empty(&sdev->host->starved_list))
445                 scsi_starved_list_run(sdev->host);
446
447         blk_run_queue(q);
448 }
449
450 void scsi_requeue_run_queue(struct work_struct *work)
451 {
452         struct scsi_device *sdev;
453         struct request_queue *q;
454
455         sdev = container_of(work, struct scsi_device, requeue_work);
456         q = sdev->request_queue;
457         scsi_run_queue(q);
458 }
459
460 /*
461  * Function:    scsi_requeue_command()
462  *
463  * Purpose:     Handle post-processing of completed commands.
464  *
465  * Arguments:   q       - queue to operate on
466  *              cmd     - command that may need to be requeued.
467  *
468  * Returns:     Nothing
469  *
470  * Notes:       After command completion, there may be blocks left
471  *              over which weren't finished by the previous command
472  *              this can be for a number of reasons - the main one is
473  *              I/O errors in the middle of the request, in which case
474  *              we need to request the blocks that come after the bad
475  *              sector.
476  * Notes:       Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480         struct scsi_device *sdev = cmd->device;
481         struct request *req = cmd->request;
482         unsigned long flags;
483
484         spin_lock_irqsave(q->queue_lock, flags);
485         blk_unprep_request(req);
486         req->special = NULL;
487         scsi_put_command(cmd);
488         blk_requeue_request(q, req);
489         spin_unlock_irqrestore(q->queue_lock, flags);
490
491         scsi_run_queue(q);
492
493         put_device(&sdev->sdev_gendev);
494 }
495
496 void scsi_next_command(struct scsi_cmnd *cmd)
497 {
498         struct scsi_device *sdev = cmd->device;
499         struct request_queue *q = sdev->request_queue;
500
501         scsi_put_command(cmd);
502         scsi_run_queue(q);
503
504         put_device(&sdev->sdev_gendev);
505 }
506
507 void scsi_run_host_queues(struct Scsi_Host *shost)
508 {
509         struct scsi_device *sdev;
510
511         shost_for_each_device(sdev, shost)
512                 scsi_run_queue(sdev->request_queue);
513 }
514
515 static inline unsigned int scsi_sgtable_index(unsigned short nents)
516 {
517         unsigned int index;
518
519         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
520
521         if (nents <= 8)
522                 index = 0;
523         else
524                 index = get_count_order(nents) - 3;
525
526         return index;
527 }
528
529 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
530 {
531         struct scsi_host_sg_pool *sgp;
532
533         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
534         mempool_free(sgl, sgp->pool);
535 }
536
537 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
538 {
539         struct scsi_host_sg_pool *sgp;
540
541         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
542         return mempool_alloc(sgp->pool, gfp_mask);
543 }
544
545 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
546                               gfp_t gfp_mask)
547 {
548         int ret;
549
550         BUG_ON(!nents);
551
552         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
553                                gfp_mask, scsi_sg_alloc);
554         if (unlikely(ret))
555                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
556                                 scsi_sg_free);
557
558         return ret;
559 }
560
561 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
562 {
563         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
564 }
565
566 /*
567  * Function:    scsi_release_buffers()
568  *
569  * Purpose:     Free resources allocate for a scsi_command.
570  *
571  * Arguments:   cmd     - command that we are bailing.
572  *
573  * Lock status: Assumed that no lock is held upon entry.
574  *
575  * Returns:     Nothing
576  *
577  * Notes:       In the event that an upper level driver rejects a
578  *              command, we must release resources allocated during
579  *              the __init_io() function.  Primarily this would involve
580  *              the scatter-gather table.
581  */
582 void scsi_release_buffers(struct scsi_cmnd *cmd)
583 {
584         if (cmd->sdb.table.nents)
585                 scsi_free_sgtable(&cmd->sdb);
586
587         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
588
589         if (scsi_prot_sg_count(cmd))
590                 scsi_free_sgtable(cmd->prot_sdb);
591 }
592 EXPORT_SYMBOL(scsi_release_buffers);
593
594 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
595 {
596         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
597
598         scsi_free_sgtable(bidi_sdb);
599         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
600         cmd->request->next_rq->special = NULL;
601 }
602
603 /**
604  * __scsi_error_from_host_byte - translate SCSI error code into errno
605  * @cmd:        SCSI command (unused)
606  * @result:     scsi error code
607  *
608  * Translate SCSI error code into standard UNIX errno.
609  * Return values:
610  * -ENOLINK     temporary transport failure
611  * -EREMOTEIO   permanent target failure, do not retry
612  * -EBADE       permanent nexus failure, retry on other path
613  * -ENOSPC      No write space available
614  * -ENODATA     Medium error
615  * -EIO         unspecified I/O error
616  */
617 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
618 {
619         int error = 0;
620
621         switch(host_byte(result)) {
622         case DID_TRANSPORT_FAILFAST:
623                 error = -ENOLINK;
624                 break;
625         case DID_TARGET_FAILURE:
626                 set_host_byte(cmd, DID_OK);
627                 error = -EREMOTEIO;
628                 break;
629         case DID_NEXUS_FAILURE:
630                 set_host_byte(cmd, DID_OK);
631                 error = -EBADE;
632                 break;
633         case DID_ALLOC_FAILURE:
634                 set_host_byte(cmd, DID_OK);
635                 error = -ENOSPC;
636                 break;
637         case DID_MEDIUM_ERROR:
638                 set_host_byte(cmd, DID_OK);
639                 error = -ENODATA;
640                 break;
641         default:
642                 error = -EIO;
643                 break;
644         }
645
646         return error;
647 }
648
649 /*
650  * Function:    scsi_io_completion()
651  *
652  * Purpose:     Completion processing for block device I/O requests.
653  *
654  * Arguments:   cmd   - command that is finished.
655  *
656  * Lock status: Assumed that no lock is held upon entry.
657  *
658  * Returns:     Nothing
659  *
660  * Notes:       We will finish off the specified number of sectors.  If we
661  *              are done, the command block will be released and the queue
662  *              function will be goosed.  If we are not done then we have to
663  *              figure out what to do next:
664  *
665  *              a) We can call scsi_requeue_command().  The request
666  *                 will be unprepared and put back on the queue.  Then
667  *                 a new command will be created for it.  This should
668  *                 be used if we made forward progress, or if we want
669  *                 to switch from READ(10) to READ(6) for example.
670  *
671  *              b) We can call __scsi_queue_insert().  The request will
672  *                 be put back on the queue and retried using the same
673  *                 command as before, possibly after a delay.
674  *
675  *              c) We can call blk_end_request() with -EIO to fail
676  *                 the remainder of the request.
677  */
678 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
679 {
680         int result = cmd->result;
681         struct request_queue *q = cmd->device->request_queue;
682         struct request *req = cmd->request;
683         int error = 0;
684         struct scsi_sense_hdr sshdr;
685         int sense_valid = 0;
686         int sense_deferred = 0;
687         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
688               ACTION_DELAYED_RETRY} action;
689         char *description = NULL;
690         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
691
692         if (result) {
693                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
694                 if (sense_valid)
695                         sense_deferred = scsi_sense_is_deferred(&sshdr);
696         }
697
698         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
699                 if (result) {
700                         if (sense_valid && req->sense) {
701                                 /*
702                                  * SG_IO wants current and deferred errors
703                                  */
704                                 int len = 8 + cmd->sense_buffer[7];
705
706                                 if (len > SCSI_SENSE_BUFFERSIZE)
707                                         len = SCSI_SENSE_BUFFERSIZE;
708                                 memcpy(req->sense, cmd->sense_buffer,  len);
709                                 req->sense_len = len;
710                         }
711                         if (!sense_deferred)
712                                 error = __scsi_error_from_host_byte(cmd, result);
713                 }
714                 /*
715                  * __scsi_error_from_host_byte may have reset the host_byte
716                  */
717                 req->errors = cmd->result;
718
719                 req->resid_len = scsi_get_resid(cmd);
720
721                 if (scsi_bidi_cmnd(cmd)) {
722                         /*
723                          * Bidi commands Must be complete as a whole,
724                          * both sides at once.
725                          */
726                         req->next_rq->resid_len = scsi_in(cmd)->resid;
727
728                         scsi_release_buffers(cmd);
729                         scsi_release_bidi_buffers(cmd);
730
731                         blk_end_request_all(req, 0);
732
733                         scsi_next_command(cmd);
734                         return;
735                 }
736         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
737                 /*
738                  * Certain non BLOCK_PC requests are commands that don't
739                  * actually transfer anything (FLUSH), so cannot use
740                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
741                  * This sets the error explicitly for the problem case.
742                  */
743                 error = __scsi_error_from_host_byte(cmd, result);
744         }
745
746         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
747         BUG_ON(blk_bidi_rq(req));
748
749         /*
750          * Next deal with any sectors which we were able to correctly
751          * handle.
752          */
753         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
754                                       "%d bytes done.\n",
755                                       blk_rq_sectors(req), good_bytes));
756
757         /*
758          * Recovered errors need reporting, but they're always treated
759          * as success, so fiddle the result code here.  For BLOCK_PC
760          * we already took a copy of the original into rq->errors which
761          * is what gets returned to the user
762          */
763         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
764                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
765                  * print since caller wants ATA registers. Only occurs on
766                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
767                  */
768                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
769                         ;
770                 else if (!(req->cmd_flags & REQ_QUIET))
771                         scsi_print_sense("", cmd);
772                 result = 0;
773                 /* BLOCK_PC may have set error */
774                 error = 0;
775         }
776
777         /*
778          * If we finished all bytes in the request we are done now.
779          */
780         if (!blk_end_request(req, error, good_bytes))
781                 goto next_command;
782
783         /*
784          * Kill remainder if no retrys.
785          */
786         if (error && scsi_noretry_cmd(cmd)) {
787                 blk_end_request_all(req, error);
788                 goto next_command;
789         }
790
791         /*
792          * If there had been no error, but we have leftover bytes in the
793          * requeues just queue the command up again.
794          */
795         if (result == 0)
796                 goto requeue;
797
798         error = __scsi_error_from_host_byte(cmd, result);
799
800         if (host_byte(result) == DID_RESET) {
801                 /* Third party bus reset or reset for error recovery
802                  * reasons.  Just retry the command and see what
803                  * happens.
804                  */
805                 action = ACTION_RETRY;
806         } else if (sense_valid && !sense_deferred) {
807                 switch (sshdr.sense_key) {
808                 case UNIT_ATTENTION:
809                         if (cmd->device->removable) {
810                                 /* Detected disc change.  Set a bit
811                                  * and quietly refuse further access.
812                                  */
813                                 cmd->device->changed = 1;
814                                 description = "Media Changed";
815                                 action = ACTION_FAIL;
816                         } else {
817                                 /* Must have been a power glitch, or a
818                                  * bus reset.  Could not have been a
819                                  * media change, so we just retry the
820                                  * command and see what happens.
821                                  */
822                                 action = ACTION_RETRY;
823                         }
824                         break;
825                 case ILLEGAL_REQUEST:
826                         /* If we had an ILLEGAL REQUEST returned, then
827                          * we may have performed an unsupported
828                          * command.  The only thing this should be
829                          * would be a ten byte read where only a six
830                          * byte read was supported.  Also, on a system
831                          * where READ CAPACITY failed, we may have
832                          * read past the end of the disk.
833                          */
834                         if ((cmd->device->use_10_for_rw &&
835                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
836                             (cmd->cmnd[0] == READ_10 ||
837                              cmd->cmnd[0] == WRITE_10)) {
838                                 /* This will issue a new 6-byte command. */
839                                 cmd->device->use_10_for_rw = 0;
840                                 action = ACTION_REPREP;
841                         } else if (sshdr.asc == 0x10) /* DIX */ {
842                                 description = "Host Data Integrity Failure";
843                                 action = ACTION_FAIL;
844                                 error = -EILSEQ;
845                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
846                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
847                                 switch (cmd->cmnd[0]) {
848                                 case UNMAP:
849                                         description = "Discard failure";
850                                         break;
851                                 case WRITE_SAME:
852                                 case WRITE_SAME_16:
853                                         if (cmd->cmnd[1] & 0x8)
854                                                 description = "Discard failure";
855                                         else
856                                                 description =
857                                                         "Write same failure";
858                                         break;
859                                 default:
860                                         description = "Invalid command failure";
861                                         break;
862                                 }
863                                 action = ACTION_FAIL;
864                                 error = -EREMOTEIO;
865                         } else
866                                 action = ACTION_FAIL;
867                         break;
868                 case ABORTED_COMMAND:
869                         action = ACTION_FAIL;
870                         if (sshdr.asc == 0x10) { /* DIF */
871                                 description = "Target Data Integrity Failure";
872                                 error = -EILSEQ;
873                         }
874                         break;
875                 case NOT_READY:
876                         /* If the device is in the process of becoming
877                          * ready, or has a temporary blockage, retry.
878                          */
879                         if (sshdr.asc == 0x04) {
880                                 switch (sshdr.ascq) {
881                                 case 0x01: /* becoming ready */
882                                 case 0x04: /* format in progress */
883                                 case 0x05: /* rebuild in progress */
884                                 case 0x06: /* recalculation in progress */
885                                 case 0x07: /* operation in progress */
886                                 case 0x08: /* Long write in progress */
887                                 case 0x09: /* self test in progress */
888                                 case 0x14: /* space allocation in progress */
889                                         action = ACTION_DELAYED_RETRY;
890                                         break;
891                                 default:
892                                         description = "Device not ready";
893                                         action = ACTION_FAIL;
894                                         break;
895                                 }
896                         } else {
897                                 description = "Device not ready";
898                                 action = ACTION_FAIL;
899                         }
900                         break;
901                 case VOLUME_OVERFLOW:
902                         /* See SSC3rXX or current. */
903                         action = ACTION_FAIL;
904                         break;
905                 default:
906                         description = "Unhandled sense code";
907                         action = ACTION_FAIL;
908                         break;
909                 }
910         } else {
911                 description = "Unhandled error code";
912                 action = ACTION_FAIL;
913         }
914
915         if (action != ACTION_FAIL &&
916             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
917                 action = ACTION_FAIL;
918                 description = "Command timed out";
919         }
920
921         switch (action) {
922         case ACTION_FAIL:
923                 /* Give up and fail the remainder of the request */
924                 if (!(req->cmd_flags & REQ_QUIET)) {
925                         if (description)
926                                 scmd_printk(KERN_INFO, cmd, "%s\n",
927                                             description);
928                         scsi_print_result(cmd);
929                         if (driver_byte(result) & DRIVER_SENSE)
930                                 scsi_print_sense("", cmd);
931                         scsi_print_command(cmd);
932                 }
933                 if (!blk_end_request_err(req, error))
934                         goto next_command;
935                 /*FALLTHRU*/
936         case ACTION_REPREP:
937         requeue:
938                 /* Unprep the request and put it back at the head of the queue.
939                  * A new command will be prepared and issued.
940                  */
941                 scsi_release_buffers(cmd);
942                 scsi_requeue_command(q, cmd);
943                 break;
944         case ACTION_RETRY:
945                 /* Retry the same command immediately */
946                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
947                 break;
948         case ACTION_DELAYED_RETRY:
949                 /* Retry the same command after a delay */
950                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
951                 break;
952         }
953         return;
954
955 next_command:
956         scsi_release_buffers(cmd);
957         scsi_next_command(cmd);
958 }
959
960 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
961                              gfp_t gfp_mask)
962 {
963         int count;
964
965         /*
966          * If sg table allocation fails, requeue request later.
967          */
968         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
969                                         gfp_mask))) {
970                 return BLKPREP_DEFER;
971         }
972
973         /* 
974          * Next, walk the list, and fill in the addresses and sizes of
975          * each segment.
976          */
977         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
978         BUG_ON(count > sdb->table.nents);
979         sdb->table.nents = count;
980         sdb->length = blk_rq_bytes(req);
981         return BLKPREP_OK;
982 }
983
984 /*
985  * Function:    scsi_init_io()
986  *
987  * Purpose:     SCSI I/O initialize function.
988  *
989  * Arguments:   cmd   - Command descriptor we wish to initialize
990  *
991  * Returns:     0 on success
992  *              BLKPREP_DEFER if the failure is retryable
993  *              BLKPREP_KILL if the failure is fatal
994  */
995 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
996 {
997         struct scsi_device *sdev = cmd->device;
998         struct request *rq = cmd->request;
999
1000         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1001         if (error)
1002                 goto err_exit;
1003
1004         if (blk_bidi_rq(rq)) {
1005                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1006                         scsi_sdb_cache, GFP_ATOMIC);
1007                 if (!bidi_sdb) {
1008                         error = BLKPREP_DEFER;
1009                         goto err_exit;
1010                 }
1011
1012                 rq->next_rq->special = bidi_sdb;
1013                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1014                 if (error)
1015                         goto err_exit;
1016         }
1017
1018         if (blk_integrity_rq(rq)) {
1019                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1020                 int ivecs, count;
1021
1022                 BUG_ON(prot_sdb == NULL);
1023                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1024
1025                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1026                         error = BLKPREP_DEFER;
1027                         goto err_exit;
1028                 }
1029
1030                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1031                                                 prot_sdb->table.sgl);
1032                 BUG_ON(unlikely(count > ivecs));
1033                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1034
1035                 cmd->prot_sdb = prot_sdb;
1036                 cmd->prot_sdb->table.nents = count;
1037         }
1038
1039         return BLKPREP_OK ;
1040
1041 err_exit:
1042         scsi_release_buffers(cmd);
1043         cmd->request->special = NULL;
1044         scsi_put_command(cmd);
1045         put_device(&sdev->sdev_gendev);
1046         return error;
1047 }
1048 EXPORT_SYMBOL(scsi_init_io);
1049
1050 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1051                 struct request *req)
1052 {
1053         struct scsi_cmnd *cmd;
1054
1055         if (!req->special) {
1056                 /* Bail if we can't get a reference to the device */
1057                 if (!get_device(&sdev->sdev_gendev))
1058                         return NULL;
1059
1060                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1061                 if (unlikely(!cmd)) {
1062                         put_device(&sdev->sdev_gendev);
1063                         return NULL;
1064                 }
1065                 req->special = cmd;
1066         } else {
1067                 cmd = req->special;
1068         }
1069
1070         /* pull a tag out of the request if we have one */
1071         cmd->tag = req->tag;
1072         cmd->request = req;
1073
1074         cmd->cmnd = req->cmd;
1075         cmd->prot_op = SCSI_PROT_NORMAL;
1076
1077         return cmd;
1078 }
1079
1080 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1081 {
1082         struct scsi_cmnd *cmd = req->special;
1083
1084         /*
1085          * BLOCK_PC requests may transfer data, in which case they must
1086          * a bio attached to them.  Or they might contain a SCSI command
1087          * that does not transfer data, in which case they may optionally
1088          * submit a request without an attached bio.
1089          */
1090         if (req->bio) {
1091                 int ret;
1092
1093                 BUG_ON(!req->nr_phys_segments);
1094
1095                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1096                 if (unlikely(ret))
1097                         return ret;
1098         } else {
1099                 BUG_ON(blk_rq_bytes(req));
1100
1101                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1102         }
1103
1104         cmd->cmd_len = req->cmd_len;
1105         if (!blk_rq_bytes(req))
1106                 cmd->sc_data_direction = DMA_NONE;
1107         else if (rq_data_dir(req) == WRITE)
1108                 cmd->sc_data_direction = DMA_TO_DEVICE;
1109         else
1110                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1111         
1112         cmd->transfersize = blk_rq_bytes(req);
1113         cmd->allowed = req->retries;
1114         return BLKPREP_OK;
1115 }
1116 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1117
1118 /*
1119  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1120  * from filesystems that still need to be translated to SCSI CDBs from
1121  * the ULD.
1122  */
1123 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1124 {
1125         struct scsi_cmnd *cmd = req->special;
1126
1127         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1128                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1129                 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1130                 if (ret != BLKPREP_OK)
1131                         return ret;
1132         }
1133
1134         /*
1135          * Filesystem requests must transfer data.
1136          */
1137         BUG_ON(!req->nr_phys_segments);
1138
1139         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1140         return scsi_init_io(cmd, GFP_ATOMIC);
1141 }
1142 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1143
1144 static int
1145 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1146 {
1147         int ret = BLKPREP_OK;
1148
1149         /*
1150          * If the device is not in running state we will reject some
1151          * or all commands.
1152          */
1153         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1154                 switch (sdev->sdev_state) {
1155                 case SDEV_OFFLINE:
1156                 case SDEV_TRANSPORT_OFFLINE:
1157                         /*
1158                          * If the device is offline we refuse to process any
1159                          * commands.  The device must be brought online
1160                          * before trying any recovery commands.
1161                          */
1162                         sdev_printk(KERN_ERR, sdev,
1163                                     "rejecting I/O to offline device\n");
1164                         ret = BLKPREP_KILL;
1165                         break;
1166                 case SDEV_DEL:
1167                         /*
1168                          * If the device is fully deleted, we refuse to
1169                          * process any commands as well.
1170                          */
1171                         sdev_printk(KERN_ERR, sdev,
1172                                     "rejecting I/O to dead device\n");
1173                         ret = BLKPREP_KILL;
1174                         break;
1175                 case SDEV_QUIESCE:
1176                 case SDEV_BLOCK:
1177                 case SDEV_CREATED_BLOCK:
1178                         /*
1179                          * If the devices is blocked we defer normal commands.
1180                          */
1181                         if (!(req->cmd_flags & REQ_PREEMPT))
1182                                 ret = BLKPREP_DEFER;
1183                         break;
1184                 default:
1185                         /*
1186                          * For any other not fully online state we only allow
1187                          * special commands.  In particular any user initiated
1188                          * command is not allowed.
1189                          */
1190                         if (!(req->cmd_flags & REQ_PREEMPT))
1191                                 ret = BLKPREP_KILL;
1192                         break;
1193                 }
1194         }
1195         return ret;
1196 }
1197
1198 static int
1199 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1200 {
1201         struct scsi_device *sdev = q->queuedata;
1202
1203         switch (ret) {
1204         case BLKPREP_KILL:
1205                 req->errors = DID_NO_CONNECT << 16;
1206                 /* release the command and kill it */
1207                 if (req->special) {
1208                         struct scsi_cmnd *cmd = req->special;
1209                         scsi_release_buffers(cmd);
1210                         scsi_put_command(cmd);
1211                         put_device(&sdev->sdev_gendev);
1212                         req->special = NULL;
1213                 }
1214                 break;
1215         case BLKPREP_DEFER:
1216                 /*
1217                  * If we defer, the blk_peek_request() returns NULL, but the
1218                  * queue must be restarted, so we schedule a callback to happen
1219                  * shortly.
1220                  */
1221                 if (sdev->device_busy == 0)
1222                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1223                 break;
1224         default:
1225                 req->cmd_flags |= REQ_DONTPREP;
1226         }
1227
1228         return ret;
1229 }
1230
1231 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1232 {
1233         struct scsi_device *sdev = q->queuedata;
1234         struct scsi_cmnd *cmd;
1235         int ret;
1236
1237         ret = scsi_prep_state_check(sdev, req);
1238         if (ret != BLKPREP_OK)
1239                 goto out;
1240
1241         cmd = scsi_get_cmd_from_req(sdev, req);
1242         if (unlikely(!cmd)) {
1243                 ret = BLKPREP_DEFER;
1244                 goto out;
1245         }
1246
1247         if (req->cmd_type == REQ_TYPE_FS)
1248                 ret = scsi_cmd_to_driver(cmd)->init_command(cmd);
1249         else if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1250                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1251         else
1252                 ret = BLKPREP_KILL;
1253
1254 out:
1255         return scsi_prep_return(q, req, ret);
1256 }
1257
1258 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1259 {
1260         if (req->cmd_type == REQ_TYPE_FS) {
1261                 struct scsi_cmnd *cmd = req->special;
1262                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
1263
1264                 if (drv->uninit_command)
1265                         drv->uninit_command(cmd);
1266         }
1267 }
1268
1269 /*
1270  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1271  * return 0.
1272  *
1273  * Called with the queue_lock held.
1274  */
1275 static inline int scsi_dev_queue_ready(struct request_queue *q,
1276                                   struct scsi_device *sdev)
1277 {
1278         if (sdev->device_busy == 0 && sdev->device_blocked) {
1279                 /*
1280                  * unblock after device_blocked iterates to zero
1281                  */
1282                 if (--sdev->device_blocked == 0) {
1283                         SCSI_LOG_MLQUEUE(3,
1284                                    sdev_printk(KERN_INFO, sdev,
1285                                    "unblocking device at zero depth\n"));
1286                 } else {
1287                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1288                         return 0;
1289                 }
1290         }
1291         if (scsi_device_is_busy(sdev))
1292                 return 0;
1293
1294         return 1;
1295 }
1296
1297
1298 /*
1299  * scsi_target_queue_ready: checks if there we can send commands to target
1300  * @sdev: scsi device on starget to check.
1301  *
1302  * Called with the host lock held.
1303  */
1304 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1305                                            struct scsi_device *sdev)
1306 {
1307         struct scsi_target *starget = scsi_target(sdev);
1308
1309         if (starget->single_lun) {
1310                 if (starget->starget_sdev_user &&
1311                     starget->starget_sdev_user != sdev)
1312                         return 0;
1313                 starget->starget_sdev_user = sdev;
1314         }
1315
1316         if (starget->target_busy == 0 && starget->target_blocked) {
1317                 /*
1318                  * unblock after target_blocked iterates to zero
1319                  */
1320                 if (--starget->target_blocked == 0) {
1321                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1322                                          "unblocking target at zero depth\n"));
1323                 } else
1324                         return 0;
1325         }
1326
1327         if (scsi_target_is_busy(starget)) {
1328                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1329                 return 0;
1330         }
1331
1332         return 1;
1333 }
1334
1335 /*
1336  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1337  * return 0. We must end up running the queue again whenever 0 is
1338  * returned, else IO can hang.
1339  *
1340  * Called with host_lock held.
1341  */
1342 static inline int scsi_host_queue_ready(struct request_queue *q,
1343                                    struct Scsi_Host *shost,
1344                                    struct scsi_device *sdev)
1345 {
1346         if (scsi_host_in_recovery(shost))
1347                 return 0;
1348         if (shost->host_busy == 0 && shost->host_blocked) {
1349                 /*
1350                  * unblock after host_blocked iterates to zero
1351                  */
1352                 if (--shost->host_blocked == 0) {
1353                         SCSI_LOG_MLQUEUE(3,
1354                                 printk("scsi%d unblocking host at zero depth\n",
1355                                         shost->host_no));
1356                 } else {
1357                         return 0;
1358                 }
1359         }
1360         if (scsi_host_is_busy(shost)) {
1361                 if (list_empty(&sdev->starved_entry))
1362                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1363                 return 0;
1364         }
1365
1366         /* We're OK to process the command, so we can't be starved */
1367         if (!list_empty(&sdev->starved_entry))
1368                 list_del_init(&sdev->starved_entry);
1369
1370         return 1;
1371 }
1372
1373 /*
1374  * Busy state exporting function for request stacking drivers.
1375  *
1376  * For efficiency, no lock is taken to check the busy state of
1377  * shost/starget/sdev, since the returned value is not guaranteed and
1378  * may be changed after request stacking drivers call the function,
1379  * regardless of taking lock or not.
1380  *
1381  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1382  * needs to return 'not busy'. Otherwise, request stacking drivers
1383  * may hold requests forever.
1384  */
1385 static int scsi_lld_busy(struct request_queue *q)
1386 {
1387         struct scsi_device *sdev = q->queuedata;
1388         struct Scsi_Host *shost;
1389
1390         if (blk_queue_dying(q))
1391                 return 0;
1392
1393         shost = sdev->host;
1394
1395         /*
1396          * Ignore host/starget busy state.
1397          * Since block layer does not have a concept of fairness across
1398          * multiple queues, congestion of host/starget needs to be handled
1399          * in SCSI layer.
1400          */
1401         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1402                 return 1;
1403
1404         return 0;
1405 }
1406
1407 /*
1408  * Kill a request for a dead device
1409  */
1410 static void scsi_kill_request(struct request *req, struct request_queue *q)
1411 {
1412         struct scsi_cmnd *cmd = req->special;
1413         struct scsi_device *sdev;
1414         struct scsi_target *starget;
1415         struct Scsi_Host *shost;
1416
1417         blk_start_request(req);
1418
1419         scmd_printk(KERN_INFO, cmd, "killing request\n");
1420
1421         sdev = cmd->device;
1422         starget = scsi_target(sdev);
1423         shost = sdev->host;
1424         scsi_init_cmd_errh(cmd);
1425         cmd->result = DID_NO_CONNECT << 16;
1426         atomic_inc(&cmd->device->iorequest_cnt);
1427
1428         /*
1429          * SCSI request completion path will do scsi_device_unbusy(),
1430          * bump busy counts.  To bump the counters, we need to dance
1431          * with the locks as normal issue path does.
1432          */
1433         sdev->device_busy++;
1434         spin_unlock(sdev->request_queue->queue_lock);
1435         spin_lock(shost->host_lock);
1436         shost->host_busy++;
1437         starget->target_busy++;
1438         spin_unlock(shost->host_lock);
1439         spin_lock(sdev->request_queue->queue_lock);
1440
1441         blk_complete_request(req);
1442 }
1443
1444 static void scsi_softirq_done(struct request *rq)
1445 {
1446         struct scsi_cmnd *cmd = rq->special;
1447         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1448         int disposition;
1449
1450         INIT_LIST_HEAD(&cmd->eh_entry);
1451
1452         atomic_inc(&cmd->device->iodone_cnt);
1453         if (cmd->result)
1454                 atomic_inc(&cmd->device->ioerr_cnt);
1455
1456         disposition = scsi_decide_disposition(cmd);
1457         if (disposition != SUCCESS &&
1458             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1459                 sdev_printk(KERN_ERR, cmd->device,
1460                             "timing out command, waited %lus\n",
1461                             wait_for/HZ);
1462                 disposition = SUCCESS;
1463         }
1464                         
1465         scsi_log_completion(cmd, disposition);
1466
1467         switch (disposition) {
1468                 case SUCCESS:
1469                         scsi_finish_command(cmd);
1470                         break;
1471                 case NEEDS_RETRY:
1472                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1473                         break;
1474                 case ADD_TO_MLQUEUE:
1475                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1476                         break;
1477                 default:
1478                         if (!scsi_eh_scmd_add(cmd, 0))
1479                                 scsi_finish_command(cmd);
1480         }
1481 }
1482
1483 /*
1484  * Function:    scsi_request_fn()
1485  *
1486  * Purpose:     Main strategy routine for SCSI.
1487  *
1488  * Arguments:   q       - Pointer to actual queue.
1489  *
1490  * Returns:     Nothing
1491  *
1492  * Lock status: IO request lock assumed to be held when called.
1493  */
1494 static void scsi_request_fn(struct request_queue *q)
1495         __releases(q->queue_lock)
1496         __acquires(q->queue_lock)
1497 {
1498         struct scsi_device *sdev = q->queuedata;
1499         struct Scsi_Host *shost;
1500         struct scsi_cmnd *cmd;
1501         struct request *req;
1502
1503         /*
1504          * To start with, we keep looping until the queue is empty, or until
1505          * the host is no longer able to accept any more requests.
1506          */
1507         shost = sdev->host;
1508         for (;;) {
1509                 int rtn;
1510                 /*
1511                  * get next queueable request.  We do this early to make sure
1512                  * that the request is fully prepared even if we cannot 
1513                  * accept it.
1514                  */
1515                 req = blk_peek_request(q);
1516                 if (!req || !scsi_dev_queue_ready(q, sdev))
1517                         break;
1518
1519                 if (unlikely(!scsi_device_online(sdev))) {
1520                         sdev_printk(KERN_ERR, sdev,
1521                                     "rejecting I/O to offline device\n");
1522                         scsi_kill_request(req, q);
1523                         continue;
1524                 }
1525
1526
1527                 /*
1528                  * Remove the request from the request list.
1529                  */
1530                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1531                         blk_start_request(req);
1532                 sdev->device_busy++;
1533
1534                 spin_unlock(q->queue_lock);
1535                 cmd = req->special;
1536                 if (unlikely(cmd == NULL)) {
1537                         printk(KERN_CRIT "impossible request in %s.\n"
1538                                          "please mail a stack trace to "
1539                                          "linux-scsi@vger.kernel.org\n",
1540                                          __func__);
1541                         blk_dump_rq_flags(req, "foo");
1542                         BUG();
1543                 }
1544                 spin_lock(shost->host_lock);
1545
1546                 /*
1547                  * We hit this when the driver is using a host wide
1548                  * tag map. For device level tag maps the queue_depth check
1549                  * in the device ready fn would prevent us from trying
1550                  * to allocate a tag. Since the map is a shared host resource
1551                  * we add the dev to the starved list so it eventually gets
1552                  * a run when a tag is freed.
1553                  */
1554                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1555                         if (list_empty(&sdev->starved_entry))
1556                                 list_add_tail(&sdev->starved_entry,
1557                                               &shost->starved_list);
1558                         goto not_ready;
1559                 }
1560
1561                 if (!scsi_target_queue_ready(shost, sdev))
1562                         goto not_ready;
1563
1564                 if (!scsi_host_queue_ready(q, shost, sdev))
1565                         goto not_ready;
1566
1567                 scsi_target(sdev)->target_busy++;
1568                 shost->host_busy++;
1569
1570                 /*
1571                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1572                  *              take the lock again.
1573                  */
1574                 spin_unlock_irq(shost->host_lock);
1575
1576                 /*
1577                  * Finally, initialize any error handling parameters, and set up
1578                  * the timers for timeouts.
1579                  */
1580                 scsi_init_cmd_errh(cmd);
1581
1582                 /*
1583                  * Dispatch the command to the low-level driver.
1584                  */
1585                 rtn = scsi_dispatch_cmd(cmd);
1586                 spin_lock_irq(q->queue_lock);
1587                 if (rtn)
1588                         goto out_delay;
1589         }
1590
1591         return;
1592
1593  not_ready:
1594         spin_unlock_irq(shost->host_lock);
1595
1596         /*
1597          * lock q, handle tag, requeue req, and decrement device_busy. We
1598          * must return with queue_lock held.
1599          *
1600          * Decrementing device_busy without checking it is OK, as all such
1601          * cases (host limits or settings) should run the queue at some
1602          * later time.
1603          */
1604         spin_lock_irq(q->queue_lock);
1605         blk_requeue_request(q, req);
1606         sdev->device_busy--;
1607 out_delay:
1608         if (sdev->device_busy == 0)
1609                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1610 }
1611
1612 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1613 {
1614         struct device *host_dev;
1615         u64 bounce_limit = 0xffffffff;
1616
1617         if (shost->unchecked_isa_dma)
1618                 return BLK_BOUNCE_ISA;
1619         /*
1620          * Platforms with virtual-DMA translation
1621          * hardware have no practical limit.
1622          */
1623         if (!PCI_DMA_BUS_IS_PHYS)
1624                 return BLK_BOUNCE_ANY;
1625
1626         host_dev = scsi_get_device(shost);
1627         if (host_dev && host_dev->dma_mask)
1628                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1629
1630         return bounce_limit;
1631 }
1632 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1633
1634 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1635                                          request_fn_proc *request_fn)
1636 {
1637         struct request_queue *q;
1638         struct device *dev = shost->dma_dev;
1639
1640         q = blk_init_queue(request_fn, NULL);
1641         if (!q)
1642                 return NULL;
1643
1644         /*
1645          * this limit is imposed by hardware restrictions
1646          */
1647         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1648                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1649
1650         if (scsi_host_prot_dma(shost)) {
1651                 shost->sg_prot_tablesize =
1652                         min_not_zero(shost->sg_prot_tablesize,
1653                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1654                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1655                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1656         }
1657
1658         blk_queue_max_hw_sectors(q, shost->max_sectors);
1659         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1660         blk_queue_segment_boundary(q, shost->dma_boundary);
1661         dma_set_seg_boundary(dev, shost->dma_boundary);
1662
1663         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1664
1665         if (!shost->use_clustering)
1666                 q->limits.cluster = 0;
1667
1668         /*
1669          * set a reasonable default alignment on word boundaries: the
1670          * host and device may alter it using
1671          * blk_queue_update_dma_alignment() later.
1672          */
1673         blk_queue_dma_alignment(q, 0x03);
1674
1675         return q;
1676 }
1677 EXPORT_SYMBOL(__scsi_alloc_queue);
1678
1679 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1680 {
1681         struct request_queue *q;
1682
1683         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1684         if (!q)
1685                 return NULL;
1686
1687         blk_queue_prep_rq(q, scsi_prep_fn);
1688         blk_queue_unprep_rq(q, scsi_unprep_fn);
1689         blk_queue_softirq_done(q, scsi_softirq_done);
1690         blk_queue_rq_timed_out(q, scsi_times_out);
1691         blk_queue_lld_busy(q, scsi_lld_busy);
1692         return q;
1693 }
1694
1695 /*
1696  * Function:    scsi_block_requests()
1697  *
1698  * Purpose:     Utility function used by low-level drivers to prevent further
1699  *              commands from being queued to the device.
1700  *
1701  * Arguments:   shost       - Host in question
1702  *
1703  * Returns:     Nothing
1704  *
1705  * Lock status: No locks are assumed held.
1706  *
1707  * Notes:       There is no timer nor any other means by which the requests
1708  *              get unblocked other than the low-level driver calling
1709  *              scsi_unblock_requests().
1710  */
1711 void scsi_block_requests(struct Scsi_Host *shost)
1712 {
1713         shost->host_self_blocked = 1;
1714 }
1715 EXPORT_SYMBOL(scsi_block_requests);
1716
1717 /*
1718  * Function:    scsi_unblock_requests()
1719  *
1720  * Purpose:     Utility function used by low-level drivers to allow further
1721  *              commands from being queued to the device.
1722  *
1723  * Arguments:   shost       - Host in question
1724  *
1725  * Returns:     Nothing
1726  *
1727  * Lock status: No locks are assumed held.
1728  *
1729  * Notes:       There is no timer nor any other means by which the requests
1730  *              get unblocked other than the low-level driver calling
1731  *              scsi_unblock_requests().
1732  *
1733  *              This is done as an API function so that changes to the
1734  *              internals of the scsi mid-layer won't require wholesale
1735  *              changes to drivers that use this feature.
1736  */
1737 void scsi_unblock_requests(struct Scsi_Host *shost)
1738 {
1739         shost->host_self_blocked = 0;
1740         scsi_run_host_queues(shost);
1741 }
1742 EXPORT_SYMBOL(scsi_unblock_requests);
1743
1744 int __init scsi_init_queue(void)
1745 {
1746         int i;
1747
1748         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1749                                            sizeof(struct scsi_data_buffer),
1750                                            0, 0, NULL);
1751         if (!scsi_sdb_cache) {
1752                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1753                 return -ENOMEM;
1754         }
1755
1756         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1757                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1758                 int size = sgp->size * sizeof(struct scatterlist);
1759
1760                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1761                                 SLAB_HWCACHE_ALIGN, NULL);
1762                 if (!sgp->slab) {
1763                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1764                                         sgp->name);
1765                         goto cleanup_sdb;
1766                 }
1767
1768                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1769                                                      sgp->slab);
1770                 if (!sgp->pool) {
1771                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1772                                         sgp->name);
1773                         goto cleanup_sdb;
1774                 }
1775         }
1776
1777         return 0;
1778
1779 cleanup_sdb:
1780         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1781                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1782                 if (sgp->pool)
1783                         mempool_destroy(sgp->pool);
1784                 if (sgp->slab)
1785                         kmem_cache_destroy(sgp->slab);
1786         }
1787         kmem_cache_destroy(scsi_sdb_cache);
1788
1789         return -ENOMEM;
1790 }
1791
1792 void scsi_exit_queue(void)
1793 {
1794         int i;
1795
1796         kmem_cache_destroy(scsi_sdb_cache);
1797
1798         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1799                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1800                 mempool_destroy(sgp->pool);
1801                 kmem_cache_destroy(sgp->slab);
1802         }
1803 }
1804
1805 /**
1806  *      scsi_mode_select - issue a mode select
1807  *      @sdev:  SCSI device to be queried
1808  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1809  *      @sp:    Save page bit (0 == don't save, 1 == save)
1810  *      @modepage: mode page being requested
1811  *      @buffer: request buffer (may not be smaller than eight bytes)
1812  *      @len:   length of request buffer.
1813  *      @timeout: command timeout
1814  *      @retries: number of retries before failing
1815  *      @data: returns a structure abstracting the mode header data
1816  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1817  *              must be SCSI_SENSE_BUFFERSIZE big.
1818  *
1819  *      Returns zero if successful; negative error number or scsi
1820  *      status on error
1821  *
1822  */
1823 int
1824 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1825                  unsigned char *buffer, int len, int timeout, int retries,
1826                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1827 {
1828         unsigned char cmd[10];
1829         unsigned char *real_buffer;
1830         int ret;
1831
1832         memset(cmd, 0, sizeof(cmd));
1833         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1834
1835         if (sdev->use_10_for_ms) {
1836                 if (len > 65535)
1837                         return -EINVAL;
1838                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1839                 if (!real_buffer)
1840                         return -ENOMEM;
1841                 memcpy(real_buffer + 8, buffer, len);
1842                 len += 8;
1843                 real_buffer[0] = 0;
1844                 real_buffer[1] = 0;
1845                 real_buffer[2] = data->medium_type;
1846                 real_buffer[3] = data->device_specific;
1847                 real_buffer[4] = data->longlba ? 0x01 : 0;
1848                 real_buffer[5] = 0;
1849                 real_buffer[6] = data->block_descriptor_length >> 8;
1850                 real_buffer[7] = data->block_descriptor_length;
1851
1852                 cmd[0] = MODE_SELECT_10;
1853                 cmd[7] = len >> 8;
1854                 cmd[8] = len;
1855         } else {
1856                 if (len > 255 || data->block_descriptor_length > 255 ||
1857                     data->longlba)
1858                         return -EINVAL;
1859
1860                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1861                 if (!real_buffer)
1862                         return -ENOMEM;
1863                 memcpy(real_buffer + 4, buffer, len);
1864                 len += 4;
1865                 real_buffer[0] = 0;
1866                 real_buffer[1] = data->medium_type;
1867                 real_buffer[2] = data->device_specific;
1868                 real_buffer[3] = data->block_descriptor_length;
1869                 
1870
1871                 cmd[0] = MODE_SELECT;
1872                 cmd[4] = len;
1873         }
1874
1875         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1876                                sshdr, timeout, retries, NULL);
1877         kfree(real_buffer);
1878         return ret;
1879 }
1880 EXPORT_SYMBOL_GPL(scsi_mode_select);
1881
1882 /**
1883  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1884  *      @sdev:  SCSI device to be queried
1885  *      @dbd:   set if mode sense will allow block descriptors to be returned
1886  *      @modepage: mode page being requested
1887  *      @buffer: request buffer (may not be smaller than eight bytes)
1888  *      @len:   length of request buffer.
1889  *      @timeout: command timeout
1890  *      @retries: number of retries before failing
1891  *      @data: returns a structure abstracting the mode header data
1892  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1893  *              must be SCSI_SENSE_BUFFERSIZE big.
1894  *
1895  *      Returns zero if unsuccessful, or the header offset (either 4
1896  *      or 8 depending on whether a six or ten byte command was
1897  *      issued) if successful.
1898  */
1899 int
1900 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1901                   unsigned char *buffer, int len, int timeout, int retries,
1902                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1903 {
1904         unsigned char cmd[12];
1905         int use_10_for_ms;
1906         int header_length;
1907         int result;
1908         struct scsi_sense_hdr my_sshdr;
1909
1910         memset(data, 0, sizeof(*data));
1911         memset(&cmd[0], 0, 12);
1912         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1913         cmd[2] = modepage;
1914
1915         /* caller might not be interested in sense, but we need it */
1916         if (!sshdr)
1917                 sshdr = &my_sshdr;
1918
1919  retry:
1920         use_10_for_ms = sdev->use_10_for_ms;
1921
1922         if (use_10_for_ms) {
1923                 if (len < 8)
1924                         len = 8;
1925
1926                 cmd[0] = MODE_SENSE_10;
1927                 cmd[8] = len;
1928                 header_length = 8;
1929         } else {
1930                 if (len < 4)
1931                         len = 4;
1932
1933                 cmd[0] = MODE_SENSE;
1934                 cmd[4] = len;
1935                 header_length = 4;
1936         }
1937
1938         memset(buffer, 0, len);
1939
1940         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1941                                   sshdr, timeout, retries, NULL);
1942
1943         /* This code looks awful: what it's doing is making sure an
1944          * ILLEGAL REQUEST sense return identifies the actual command
1945          * byte as the problem.  MODE_SENSE commands can return
1946          * ILLEGAL REQUEST if the code page isn't supported */
1947
1948         if (use_10_for_ms && !scsi_status_is_good(result) &&
1949             (driver_byte(result) & DRIVER_SENSE)) {
1950                 if (scsi_sense_valid(sshdr)) {
1951                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1952                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1953                                 /* 
1954                                  * Invalid command operation code
1955                                  */
1956                                 sdev->use_10_for_ms = 0;
1957                                 goto retry;
1958                         }
1959                 }
1960         }
1961
1962         if(scsi_status_is_good(result)) {
1963                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1964                              (modepage == 6 || modepage == 8))) {
1965                         /* Initio breakage? */
1966                         header_length = 0;
1967                         data->length = 13;
1968                         data->medium_type = 0;
1969                         data->device_specific = 0;
1970                         data->longlba = 0;
1971                         data->block_descriptor_length = 0;
1972                 } else if(use_10_for_ms) {
1973                         data->length = buffer[0]*256 + buffer[1] + 2;
1974                         data->medium_type = buffer[2];
1975                         data->device_specific = buffer[3];
1976                         data->longlba = buffer[4] & 0x01;
1977                         data->block_descriptor_length = buffer[6]*256
1978                                 + buffer[7];
1979                 } else {
1980                         data->length = buffer[0] + 1;
1981                         data->medium_type = buffer[1];
1982                         data->device_specific = buffer[2];
1983                         data->block_descriptor_length = buffer[3];
1984                 }
1985                 data->header_length = header_length;
1986         }
1987
1988         return result;
1989 }
1990 EXPORT_SYMBOL(scsi_mode_sense);
1991
1992 /**
1993  *      scsi_test_unit_ready - test if unit is ready
1994  *      @sdev:  scsi device to change the state of.
1995  *      @timeout: command timeout
1996  *      @retries: number of retries before failing
1997  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1998  *              returning sense. Make sure that this is cleared before passing
1999  *              in.
2000  *
2001  *      Returns zero if unsuccessful or an error if TUR failed.  For
2002  *      removable media, UNIT_ATTENTION sets ->changed flag.
2003  **/
2004 int
2005 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2006                      struct scsi_sense_hdr *sshdr_external)
2007 {
2008         char cmd[] = {
2009                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2010         };
2011         struct scsi_sense_hdr *sshdr;
2012         int result;
2013
2014         if (!sshdr_external)
2015                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2016         else
2017                 sshdr = sshdr_external;
2018
2019         /* try to eat the UNIT_ATTENTION if there are enough retries */
2020         do {
2021                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2022                                           timeout, retries, NULL);
2023                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2024                     sshdr->sense_key == UNIT_ATTENTION)
2025                         sdev->changed = 1;
2026         } while (scsi_sense_valid(sshdr) &&
2027                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2028
2029         if (!sshdr_external)
2030                 kfree(sshdr);
2031         return result;
2032 }
2033 EXPORT_SYMBOL(scsi_test_unit_ready);
2034
2035 /**
2036  *      scsi_device_set_state - Take the given device through the device state model.
2037  *      @sdev:  scsi device to change the state of.
2038  *      @state: state to change to.
2039  *
2040  *      Returns zero if unsuccessful or an error if the requested 
2041  *      transition is illegal.
2042  */
2043 int
2044 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2045 {
2046         enum scsi_device_state oldstate = sdev->sdev_state;
2047
2048         if (state == oldstate)
2049                 return 0;
2050
2051         switch (state) {
2052         case SDEV_CREATED:
2053                 switch (oldstate) {
2054                 case SDEV_CREATED_BLOCK:
2055                         break;
2056                 default:
2057                         goto illegal;
2058                 }
2059                 break;
2060                         
2061         case SDEV_RUNNING:
2062                 switch (oldstate) {
2063                 case SDEV_CREATED:
2064                 case SDEV_OFFLINE:
2065                 case SDEV_TRANSPORT_OFFLINE:
2066                 case SDEV_QUIESCE:
2067                 case SDEV_BLOCK:
2068                         break;
2069                 default:
2070                         goto illegal;
2071                 }
2072                 break;
2073
2074         case SDEV_QUIESCE:
2075                 switch (oldstate) {
2076                 case SDEV_RUNNING:
2077                 case SDEV_OFFLINE:
2078                 case SDEV_TRANSPORT_OFFLINE:
2079                         break;
2080                 default:
2081                         goto illegal;
2082                 }
2083                 break;
2084
2085         case SDEV_OFFLINE:
2086         case SDEV_TRANSPORT_OFFLINE:
2087                 switch (oldstate) {
2088                 case SDEV_CREATED:
2089                 case SDEV_RUNNING:
2090                 case SDEV_QUIESCE:
2091                 case SDEV_BLOCK:
2092                         break;
2093                 default:
2094                         goto illegal;
2095                 }
2096                 break;
2097
2098         case SDEV_BLOCK:
2099                 switch (oldstate) {
2100                 case SDEV_RUNNING:
2101                 case SDEV_CREATED_BLOCK:
2102                         break;
2103                 default:
2104                         goto illegal;
2105                 }
2106                 break;
2107
2108         case SDEV_CREATED_BLOCK:
2109                 switch (oldstate) {
2110                 case SDEV_CREATED:
2111                         break;
2112                 default:
2113                         goto illegal;
2114                 }
2115                 break;
2116
2117         case SDEV_CANCEL:
2118                 switch (oldstate) {
2119                 case SDEV_CREATED:
2120                 case SDEV_RUNNING:
2121                 case SDEV_QUIESCE:
2122                 case SDEV_OFFLINE:
2123                 case SDEV_TRANSPORT_OFFLINE:
2124                 case SDEV_BLOCK:
2125                         break;
2126                 default:
2127                         goto illegal;
2128                 }
2129                 break;
2130
2131         case SDEV_DEL:
2132                 switch (oldstate) {
2133                 case SDEV_CREATED:
2134                 case SDEV_RUNNING:
2135                 case SDEV_OFFLINE:
2136                 case SDEV_TRANSPORT_OFFLINE:
2137                 case SDEV_CANCEL:
2138                 case SDEV_CREATED_BLOCK:
2139                         break;
2140                 default:
2141                         goto illegal;
2142                 }
2143                 break;
2144
2145         }
2146         sdev->sdev_state = state;
2147         return 0;
2148
2149  illegal:
2150         SCSI_LOG_ERROR_RECOVERY(1, 
2151                                 sdev_printk(KERN_ERR, sdev,
2152                                             "Illegal state transition %s->%s\n",
2153                                             scsi_device_state_name(oldstate),
2154                                             scsi_device_state_name(state))
2155                                 );
2156         return -EINVAL;
2157 }
2158 EXPORT_SYMBOL(scsi_device_set_state);
2159
2160 /**
2161  *      sdev_evt_emit - emit a single SCSI device uevent
2162  *      @sdev: associated SCSI device
2163  *      @evt: event to emit
2164  *
2165  *      Send a single uevent (scsi_event) to the associated scsi_device.
2166  */
2167 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2168 {
2169         int idx = 0;
2170         char *envp[3];
2171
2172         switch (evt->evt_type) {
2173         case SDEV_EVT_MEDIA_CHANGE:
2174                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2175                 break;
2176         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2177                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2178                 break;
2179         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2180                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2181                 break;
2182         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2183                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2184                 break;
2185         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2186                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2187                 break;
2188         case SDEV_EVT_LUN_CHANGE_REPORTED:
2189                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2190                 break;
2191         default:
2192                 /* do nothing */
2193                 break;
2194         }
2195
2196         envp[idx++] = NULL;
2197
2198         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2199 }
2200
2201 /**
2202  *      sdev_evt_thread - send a uevent for each scsi event
2203  *      @work: work struct for scsi_device
2204  *
2205  *      Dispatch queued events to their associated scsi_device kobjects
2206  *      as uevents.
2207  */
2208 void scsi_evt_thread(struct work_struct *work)
2209 {
2210         struct scsi_device *sdev;
2211         enum scsi_device_event evt_type;
2212         LIST_HEAD(event_list);
2213
2214         sdev = container_of(work, struct scsi_device, event_work);
2215
2216         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2217                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2218                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2219
2220         while (1) {
2221                 struct scsi_event *evt;
2222                 struct list_head *this, *tmp;
2223                 unsigned long flags;
2224
2225                 spin_lock_irqsave(&sdev->list_lock, flags);
2226                 list_splice_init(&sdev->event_list, &event_list);
2227                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2228
2229                 if (list_empty(&event_list))
2230                         break;
2231
2232                 list_for_each_safe(this, tmp, &event_list) {
2233                         evt = list_entry(this, struct scsi_event, node);
2234                         list_del(&evt->node);
2235                         scsi_evt_emit(sdev, evt);
2236                         kfree(evt);
2237                 }
2238         }
2239 }
2240
2241 /**
2242  *      sdev_evt_send - send asserted event to uevent thread
2243  *      @sdev: scsi_device event occurred on
2244  *      @evt: event to send
2245  *
2246  *      Assert scsi device event asynchronously.
2247  */
2248 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2249 {
2250         unsigned long flags;
2251
2252 #if 0
2253         /* FIXME: currently this check eliminates all media change events
2254          * for polled devices.  Need to update to discriminate between AN
2255          * and polled events */
2256         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2257                 kfree(evt);
2258                 return;
2259         }
2260 #endif
2261
2262         spin_lock_irqsave(&sdev->list_lock, flags);
2263         list_add_tail(&evt->node, &sdev->event_list);
2264         schedule_work(&sdev->event_work);
2265         spin_unlock_irqrestore(&sdev->list_lock, flags);
2266 }
2267 EXPORT_SYMBOL_GPL(sdev_evt_send);
2268
2269 /**
2270  *      sdev_evt_alloc - allocate a new scsi event
2271  *      @evt_type: type of event to allocate
2272  *      @gfpflags: GFP flags for allocation
2273  *
2274  *      Allocates and returns a new scsi_event.
2275  */
2276 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2277                                   gfp_t gfpflags)
2278 {
2279         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2280         if (!evt)
2281                 return NULL;
2282
2283         evt->evt_type = evt_type;
2284         INIT_LIST_HEAD(&evt->node);
2285
2286         /* evt_type-specific initialization, if any */
2287         switch (evt_type) {
2288         case SDEV_EVT_MEDIA_CHANGE:
2289         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2290         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2291         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2292         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2293         case SDEV_EVT_LUN_CHANGE_REPORTED:
2294         default:
2295                 /* do nothing */
2296                 break;
2297         }
2298
2299         return evt;
2300 }
2301 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2302
2303 /**
2304  *      sdev_evt_send_simple - send asserted event to uevent thread
2305  *      @sdev: scsi_device event occurred on
2306  *      @evt_type: type of event to send
2307  *      @gfpflags: GFP flags for allocation
2308  *
2309  *      Assert scsi device event asynchronously, given an event type.
2310  */
2311 void sdev_evt_send_simple(struct scsi_device *sdev,
2312                           enum scsi_device_event evt_type, gfp_t gfpflags)
2313 {
2314         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2315         if (!evt) {
2316                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2317                             evt_type);
2318                 return;
2319         }
2320
2321         sdev_evt_send(sdev, evt);
2322 }
2323 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2324
2325 /**
2326  *      scsi_device_quiesce - Block user issued commands.
2327  *      @sdev:  scsi device to quiesce.
2328  *
2329  *      This works by trying to transition to the SDEV_QUIESCE state
2330  *      (which must be a legal transition).  When the device is in this
2331  *      state, only special requests will be accepted, all others will
2332  *      be deferred.  Since special requests may also be requeued requests,
2333  *      a successful return doesn't guarantee the device will be 
2334  *      totally quiescent.
2335  *
2336  *      Must be called with user context, may sleep.
2337  *
2338  *      Returns zero if unsuccessful or an error if not.
2339  */
2340 int
2341 scsi_device_quiesce(struct scsi_device *sdev)
2342 {
2343         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2344         if (err)
2345                 return err;
2346
2347         scsi_run_queue(sdev->request_queue);
2348         while (sdev->device_busy) {
2349                 msleep_interruptible(200);
2350                 scsi_run_queue(sdev->request_queue);
2351         }
2352         return 0;
2353 }
2354 EXPORT_SYMBOL(scsi_device_quiesce);
2355
2356 /**
2357  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2358  *      @sdev:  scsi device to resume.
2359  *
2360  *      Moves the device from quiesced back to running and restarts the
2361  *      queues.
2362  *
2363  *      Must be called with user context, may sleep.
2364  */
2365 void scsi_device_resume(struct scsi_device *sdev)
2366 {
2367         /* check if the device state was mutated prior to resume, and if
2368          * so assume the state is being managed elsewhere (for example
2369          * device deleted during suspend)
2370          */
2371         if (sdev->sdev_state != SDEV_QUIESCE ||
2372             scsi_device_set_state(sdev, SDEV_RUNNING))
2373                 return;
2374         scsi_run_queue(sdev->request_queue);
2375 }
2376 EXPORT_SYMBOL(scsi_device_resume);
2377
2378 static void
2379 device_quiesce_fn(struct scsi_device *sdev, void *data)
2380 {
2381         scsi_device_quiesce(sdev);
2382 }
2383
2384 void
2385 scsi_target_quiesce(struct scsi_target *starget)
2386 {
2387         starget_for_each_device(starget, NULL, device_quiesce_fn);
2388 }
2389 EXPORT_SYMBOL(scsi_target_quiesce);
2390
2391 static void
2392 device_resume_fn(struct scsi_device *sdev, void *data)
2393 {
2394         scsi_device_resume(sdev);
2395 }
2396
2397 void
2398 scsi_target_resume(struct scsi_target *starget)
2399 {
2400         starget_for_each_device(starget, NULL, device_resume_fn);
2401 }
2402 EXPORT_SYMBOL(scsi_target_resume);
2403
2404 /**
2405  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2406  * @sdev:       device to block
2407  *
2408  * Block request made by scsi lld's to temporarily stop all
2409  * scsi commands on the specified device.  Called from interrupt
2410  * or normal process context.
2411  *
2412  * Returns zero if successful or error if not
2413  *
2414  * Notes:       
2415  *      This routine transitions the device to the SDEV_BLOCK state
2416  *      (which must be a legal transition).  When the device is in this
2417  *      state, all commands are deferred until the scsi lld reenables
2418  *      the device with scsi_device_unblock or device_block_tmo fires.
2419  */
2420 int
2421 scsi_internal_device_block(struct scsi_device *sdev)
2422 {
2423         struct request_queue *q = sdev->request_queue;
2424         unsigned long flags;
2425         int err = 0;
2426
2427         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2428         if (err) {
2429                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2430
2431                 if (err)
2432                         return err;
2433         }
2434
2435         /* 
2436          * The device has transitioned to SDEV_BLOCK.  Stop the
2437          * block layer from calling the midlayer with this device's
2438          * request queue. 
2439          */
2440         spin_lock_irqsave(q->queue_lock, flags);
2441         blk_stop_queue(q);
2442         spin_unlock_irqrestore(q->queue_lock, flags);
2443
2444         return 0;
2445 }
2446 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2447  
2448 /**
2449  * scsi_internal_device_unblock - resume a device after a block request
2450  * @sdev:       device to resume
2451  * @new_state:  state to set devices to after unblocking
2452  *
2453  * Called by scsi lld's or the midlayer to restart the device queue
2454  * for the previously suspended scsi device.  Called from interrupt or
2455  * normal process context.
2456  *
2457  * Returns zero if successful or error if not.
2458  *
2459  * Notes:       
2460  *      This routine transitions the device to the SDEV_RUNNING state
2461  *      or to one of the offline states (which must be a legal transition)
2462  *      allowing the midlayer to goose the queue for this device.
2463  */
2464 int
2465 scsi_internal_device_unblock(struct scsi_device *sdev,
2466                              enum scsi_device_state new_state)
2467 {
2468         struct request_queue *q = sdev->request_queue; 
2469         unsigned long flags;
2470
2471         /*
2472          * Try to transition the scsi device to SDEV_RUNNING or one of the
2473          * offlined states and goose the device queue if successful.
2474          */
2475         if ((sdev->sdev_state == SDEV_BLOCK) ||
2476             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2477                 sdev->sdev_state = new_state;
2478         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2479                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2480                     new_state == SDEV_OFFLINE)
2481                         sdev->sdev_state = new_state;
2482                 else
2483                         sdev->sdev_state = SDEV_CREATED;
2484         } else if (sdev->sdev_state != SDEV_CANCEL &&
2485                  sdev->sdev_state != SDEV_OFFLINE)
2486                 return -EINVAL;
2487
2488         spin_lock_irqsave(q->queue_lock, flags);
2489         blk_start_queue(q);
2490         spin_unlock_irqrestore(q->queue_lock, flags);
2491
2492         return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2495
2496 static void
2497 device_block(struct scsi_device *sdev, void *data)
2498 {
2499         scsi_internal_device_block(sdev);
2500 }
2501
2502 static int
2503 target_block(struct device *dev, void *data)
2504 {
2505         if (scsi_is_target_device(dev))
2506                 starget_for_each_device(to_scsi_target(dev), NULL,
2507                                         device_block);
2508         return 0;
2509 }
2510
2511 void
2512 scsi_target_block(struct device *dev)
2513 {
2514         if (scsi_is_target_device(dev))
2515                 starget_for_each_device(to_scsi_target(dev), NULL,
2516                                         device_block);
2517         else
2518                 device_for_each_child(dev, NULL, target_block);
2519 }
2520 EXPORT_SYMBOL_GPL(scsi_target_block);
2521
2522 static void
2523 device_unblock(struct scsi_device *sdev, void *data)
2524 {
2525         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2526 }
2527
2528 static int
2529 target_unblock(struct device *dev, void *data)
2530 {
2531         if (scsi_is_target_device(dev))
2532                 starget_for_each_device(to_scsi_target(dev), data,
2533                                         device_unblock);
2534         return 0;
2535 }
2536
2537 void
2538 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2539 {
2540         if (scsi_is_target_device(dev))
2541                 starget_for_each_device(to_scsi_target(dev), &new_state,
2542                                         device_unblock);
2543         else
2544                 device_for_each_child(dev, &new_state, target_unblock);
2545 }
2546 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2547
2548 /**
2549  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2550  * @sgl:        scatter-gather list
2551  * @sg_count:   number of segments in sg
2552  * @offset:     offset in bytes into sg, on return offset into the mapped area
2553  * @len:        bytes to map, on return number of bytes mapped
2554  *
2555  * Returns virtual address of the start of the mapped page
2556  */
2557 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2558                           size_t *offset, size_t *len)
2559 {
2560         int i;
2561         size_t sg_len = 0, len_complete = 0;
2562         struct scatterlist *sg;
2563         struct page *page;
2564
2565         WARN_ON(!irqs_disabled());
2566
2567         for_each_sg(sgl, sg, sg_count, i) {
2568                 len_complete = sg_len; /* Complete sg-entries */
2569                 sg_len += sg->length;
2570                 if (sg_len > *offset)
2571                         break;
2572         }
2573
2574         if (unlikely(i == sg_count)) {
2575                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2576                         "elements %d\n",
2577                        __func__, sg_len, *offset, sg_count);
2578                 WARN_ON(1);
2579                 return NULL;
2580         }
2581
2582         /* Offset starting from the beginning of first page in this sg-entry */
2583         *offset = *offset - len_complete + sg->offset;
2584
2585         /* Assumption: contiguous pages can be accessed as "page + i" */
2586         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2587         *offset &= ~PAGE_MASK;
2588
2589         /* Bytes in this sg-entry from *offset to the end of the page */
2590         sg_len = PAGE_SIZE - *offset;
2591         if (*len > sg_len)
2592                 *len = sg_len;
2593
2594         return kmap_atomic(page);
2595 }
2596 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2597
2598 /**
2599  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2600  * @virt:       virtual address to be unmapped
2601  */
2602 void scsi_kunmap_atomic_sg(void *virt)
2603 {
2604         kunmap_atomic(virt);
2605 }
2606 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2607
2608 void sdev_disable_disk_events(struct scsi_device *sdev)
2609 {
2610         atomic_inc(&sdev->disk_events_disable_depth);
2611 }
2612 EXPORT_SYMBOL(sdev_disable_disk_events);
2613
2614 void sdev_enable_disk_events(struct scsi_device *sdev)
2615 {
2616         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2617                 return;
2618         atomic_dec(&sdev->disk_events_disable_depth);
2619 }
2620 EXPORT_SYMBOL(sdev_enable_disk_events);