Merge tag 'nfs-for-3.11-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[cascardo/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
74 static bool acpi_scsi_bus_match(struct device *dev)
75 {
76         return dev->bus == &scsi_bus_type;
77 }
78
79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
80 {
81         bus->match = acpi_scsi_bus_match;
82         return register_acpi_bus_type(bus);
83 }
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
85
86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
87 {
88         unregister_acpi_bus_type(bus);
89 }
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
91 #endif
92
93 /*
94  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95  * not change behaviour from the previous unplug mechanism, experimentation
96  * may prove this needs changing.
97  */
98 #define SCSI_QUEUE_DELAY        3
99
100 /*
101  * Function:    scsi_unprep_request()
102  *
103  * Purpose:     Remove all preparation done for a request, including its
104  *              associated scsi_cmnd, so that it can be requeued.
105  *
106  * Arguments:   req     - request to unprepare
107  *
108  * Lock status: Assumed that no locks are held upon entry.
109  *
110  * Returns:     Nothing.
111  */
112 static void scsi_unprep_request(struct request *req)
113 {
114         struct scsi_cmnd *cmd = req->special;
115
116         blk_unprep_request(req);
117         req->special = NULL;
118
119         scsi_put_command(cmd);
120 }
121
122 /**
123  * __scsi_queue_insert - private queue insertion
124  * @cmd: The SCSI command being requeued
125  * @reason:  The reason for the requeue
126  * @unbusy: Whether the queue should be unbusied
127  *
128  * This is a private queue insertion.  The public interface
129  * scsi_queue_insert() always assumes the queue should be unbusied
130  * because it's always called before the completion.  This function is
131  * for a requeue after completion, which should only occur in this
132  * file.
133  */
134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
135 {
136         struct Scsi_Host *host = cmd->device->host;
137         struct scsi_device *device = cmd->device;
138         struct scsi_target *starget = scsi_target(device);
139         struct request_queue *q = device->request_queue;
140         unsigned long flags;
141
142         SCSI_LOG_MLQUEUE(1,
143                  printk("Inserting command %p into mlqueue\n", cmd));
144
145         /*
146          * Set the appropriate busy bit for the device/host.
147          *
148          * If the host/device isn't busy, assume that something actually
149          * completed, and that we should be able to queue a command now.
150          *
151          * Note that the prior mid-layer assumption that any host could
152          * always queue at least one command is now broken.  The mid-layer
153          * will implement a user specifiable stall (see
154          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155          * if a command is requeued with no other commands outstanding
156          * either for the device or for the host.
157          */
158         switch (reason) {
159         case SCSI_MLQUEUE_HOST_BUSY:
160                 host->host_blocked = host->max_host_blocked;
161                 break;
162         case SCSI_MLQUEUE_DEVICE_BUSY:
163         case SCSI_MLQUEUE_EH_RETRY:
164                 device->device_blocked = device->max_device_blocked;
165                 break;
166         case SCSI_MLQUEUE_TARGET_BUSY:
167                 starget->target_blocked = starget->max_target_blocked;
168                 break;
169         }
170
171         /*
172          * Decrement the counters, since these commands are no longer
173          * active on the host/device.
174          */
175         if (unbusy)
176                 scsi_device_unbusy(device);
177
178         /*
179          * Requeue this command.  It will go before all other commands
180          * that are already in the queue. Schedule requeue work under
181          * lock such that the kblockd_schedule_work() call happens
182          * before blk_cleanup_queue() finishes.
183          */
184         spin_lock_irqsave(q->queue_lock, flags);
185         blk_requeue_request(q, cmd->request);
186         kblockd_schedule_work(q, &device->requeue_work);
187         spin_unlock_irqrestore(q->queue_lock, flags);
188 }
189
190 /*
191  * Function:    scsi_queue_insert()
192  *
193  * Purpose:     Insert a command in the midlevel queue.
194  *
195  * Arguments:   cmd    - command that we are adding to queue.
196  *              reason - why we are inserting command to queue.
197  *
198  * Lock status: Assumed that lock is not held upon entry.
199  *
200  * Returns:     Nothing.
201  *
202  * Notes:       We do this for one of two cases.  Either the host is busy
203  *              and it cannot accept any more commands for the time being,
204  *              or the device returned QUEUE_FULL and can accept no more
205  *              commands.
206  * Notes:       This could be called either from an interrupt context or a
207  *              normal process context.
208  */
209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
210 {
211         __scsi_queue_insert(cmd, reason, 1);
212 }
213 /**
214  * scsi_execute - insert request and wait for the result
215  * @sdev:       scsi device
216  * @cmd:        scsi command
217  * @data_direction: data direction
218  * @buffer:     data buffer
219  * @bufflen:    len of buffer
220  * @sense:      optional sense buffer
221  * @timeout:    request timeout in seconds
222  * @retries:    number of times to retry request
223  * @flags:      or into request flags;
224  * @resid:      optional residual length
225  *
226  * returns the req->errors value which is the scsi_cmnd result
227  * field.
228  */
229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
230                  int data_direction, void *buffer, unsigned bufflen,
231                  unsigned char *sense, int timeout, int retries, int flags,
232                  int *resid)
233 {
234         struct request *req;
235         int write = (data_direction == DMA_TO_DEVICE);
236         int ret = DRIVER_ERROR << 24;
237
238         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
239         if (!req)
240                 return ret;
241
242         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
243                                         buffer, bufflen, __GFP_WAIT))
244                 goto out;
245
246         req->cmd_len = COMMAND_SIZE(cmd[0]);
247         memcpy(req->cmd, cmd, req->cmd_len);
248         req->sense = sense;
249         req->sense_len = 0;
250         req->retries = retries;
251         req->timeout = timeout;
252         req->cmd_type = REQ_TYPE_BLOCK_PC;
253         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
254
255         /*
256          * head injection *required* here otherwise quiesce won't work
257          */
258         blk_execute_rq(req->q, NULL, req, 1);
259
260         /*
261          * Some devices (USB mass-storage in particular) may transfer
262          * garbage data together with a residue indicating that the data
263          * is invalid.  Prevent the garbage from being misinterpreted
264          * and prevent security leaks by zeroing out the excess data.
265          */
266         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
267                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
268
269         if (resid)
270                 *resid = req->resid_len;
271         ret = req->errors;
272  out:
273         blk_put_request(req);
274
275         return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278
279 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
280                      int data_direction, void *buffer, unsigned bufflen,
281                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
282                      int *resid, int flags)
283 {
284         char *sense = NULL;
285         int result;
286         
287         if (sshdr) {
288                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289                 if (!sense)
290                         return DRIVER_ERROR << 24;
291         }
292         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
293                               sense, timeout, retries, flags, resid);
294         if (sshdr)
295                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
296
297         kfree(sense);
298         return result;
299 }
300 EXPORT_SYMBOL(scsi_execute_req_flags);
301
302 /*
303  * Function:    scsi_init_cmd_errh()
304  *
305  * Purpose:     Initialize cmd fields related to error handling.
306  *
307  * Arguments:   cmd     - command that is ready to be queued.
308  *
309  * Notes:       This function has the job of initializing a number of
310  *              fields related to error handling.   Typically this will
311  *              be called once for each command, as required.
312  */
313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 {
315         cmd->serial_number = 0;
316         scsi_set_resid(cmd, 0);
317         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
318         if (cmd->cmd_len == 0)
319                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
320 }
321
322 void scsi_device_unbusy(struct scsi_device *sdev)
323 {
324         struct Scsi_Host *shost = sdev->host;
325         struct scsi_target *starget = scsi_target(sdev);
326         unsigned long flags;
327
328         spin_lock_irqsave(shost->host_lock, flags);
329         shost->host_busy--;
330         starget->target_busy--;
331         if (unlikely(scsi_host_in_recovery(shost) &&
332                      (shost->host_failed || shost->host_eh_scheduled)))
333                 scsi_eh_wakeup(shost);
334         spin_unlock(shost->host_lock);
335         spin_lock(sdev->request_queue->queue_lock);
336         sdev->device_busy--;
337         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
338 }
339
340 /*
341  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
342  * and call blk_run_queue for all the scsi_devices on the target -
343  * including current_sdev first.
344  *
345  * Called with *no* scsi locks held.
346  */
347 static void scsi_single_lun_run(struct scsi_device *current_sdev)
348 {
349         struct Scsi_Host *shost = current_sdev->host;
350         struct scsi_device *sdev, *tmp;
351         struct scsi_target *starget = scsi_target(current_sdev);
352         unsigned long flags;
353
354         spin_lock_irqsave(shost->host_lock, flags);
355         starget->starget_sdev_user = NULL;
356         spin_unlock_irqrestore(shost->host_lock, flags);
357
358         /*
359          * Call blk_run_queue for all LUNs on the target, starting with
360          * current_sdev. We race with others (to set starget_sdev_user),
361          * but in most cases, we will be first. Ideally, each LU on the
362          * target would get some limited time or requests on the target.
363          */
364         blk_run_queue(current_sdev->request_queue);
365
366         spin_lock_irqsave(shost->host_lock, flags);
367         if (starget->starget_sdev_user)
368                 goto out;
369         list_for_each_entry_safe(sdev, tmp, &starget->devices,
370                         same_target_siblings) {
371                 if (sdev == current_sdev)
372                         continue;
373                 if (scsi_device_get(sdev))
374                         continue;
375
376                 spin_unlock_irqrestore(shost->host_lock, flags);
377                 blk_run_queue(sdev->request_queue);
378                 spin_lock_irqsave(shost->host_lock, flags);
379         
380                 scsi_device_put(sdev);
381         }
382  out:
383         spin_unlock_irqrestore(shost->host_lock, flags);
384 }
385
386 static inline int scsi_device_is_busy(struct scsi_device *sdev)
387 {
388         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
389                 return 1;
390
391         return 0;
392 }
393
394 static inline int scsi_target_is_busy(struct scsi_target *starget)
395 {
396         return ((starget->can_queue > 0 &&
397                  starget->target_busy >= starget->can_queue) ||
398                  starget->target_blocked);
399 }
400
401 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
404             shost->host_blocked || shost->host_self_blocked)
405                 return 1;
406
407         return 0;
408 }
409
410 /*
411  * Function:    scsi_run_queue()
412  *
413  * Purpose:     Select a proper request queue to serve next
414  *
415  * Arguments:   q       - last request's queue
416  *
417  * Returns:     Nothing
418  *
419  * Notes:       The previous command was completely finished, start
420  *              a new one if possible.
421  */
422 static void scsi_run_queue(struct request_queue *q)
423 {
424         struct scsi_device *sdev = q->queuedata;
425         struct Scsi_Host *shost;
426         LIST_HEAD(starved_list);
427         unsigned long flags;
428
429         shost = sdev->host;
430         if (scsi_target(sdev)->single_lun)
431                 scsi_single_lun_run(sdev);
432
433         spin_lock_irqsave(shost->host_lock, flags);
434         list_splice_init(&shost->starved_list, &starved_list);
435
436         while (!list_empty(&starved_list)) {
437                 /*
438                  * As long as shost is accepting commands and we have
439                  * starved queues, call blk_run_queue. scsi_request_fn
440                  * drops the queue_lock and can add us back to the
441                  * starved_list.
442                  *
443                  * host_lock protects the starved_list and starved_entry.
444                  * scsi_request_fn must get the host_lock before checking
445                  * or modifying starved_list or starved_entry.
446                  */
447                 if (scsi_host_is_busy(shost))
448                         break;
449
450                 sdev = list_entry(starved_list.next,
451                                   struct scsi_device, starved_entry);
452                 list_del_init(&sdev->starved_entry);
453                 if (scsi_target_is_busy(scsi_target(sdev))) {
454                         list_move_tail(&sdev->starved_entry,
455                                        &shost->starved_list);
456                         continue;
457                 }
458
459                 spin_unlock(shost->host_lock);
460                 spin_lock(sdev->request_queue->queue_lock);
461                 __blk_run_queue(sdev->request_queue);
462                 spin_unlock(sdev->request_queue->queue_lock);
463                 spin_lock(shost->host_lock);
464         }
465         /* put any unprocessed entries back */
466         list_splice(&starved_list, &shost->starved_list);
467         spin_unlock_irqrestore(shost->host_lock, flags);
468
469         blk_run_queue(q);
470 }
471
472 void scsi_requeue_run_queue(struct work_struct *work)
473 {
474         struct scsi_device *sdev;
475         struct request_queue *q;
476
477         sdev = container_of(work, struct scsi_device, requeue_work);
478         q = sdev->request_queue;
479         scsi_run_queue(q);
480 }
481
482 /*
483  * Function:    scsi_requeue_command()
484  *
485  * Purpose:     Handle post-processing of completed commands.
486  *
487  * Arguments:   q       - queue to operate on
488  *              cmd     - command that may need to be requeued.
489  *
490  * Returns:     Nothing
491  *
492  * Notes:       After command completion, there may be blocks left
493  *              over which weren't finished by the previous command
494  *              this can be for a number of reasons - the main one is
495  *              I/O errors in the middle of the request, in which case
496  *              we need to request the blocks that come after the bad
497  *              sector.
498  * Notes:       Upon return, cmd is a stale pointer.
499  */
500 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
501 {
502         struct scsi_device *sdev = cmd->device;
503         struct request *req = cmd->request;
504         unsigned long flags;
505
506         /*
507          * We need to hold a reference on the device to avoid the queue being
508          * killed after the unlock and before scsi_run_queue is invoked which
509          * may happen because scsi_unprep_request() puts the command which
510          * releases its reference on the device.
511          */
512         get_device(&sdev->sdev_gendev);
513
514         spin_lock_irqsave(q->queue_lock, flags);
515         scsi_unprep_request(req);
516         blk_requeue_request(q, req);
517         spin_unlock_irqrestore(q->queue_lock, flags);
518
519         scsi_run_queue(q);
520
521         put_device(&sdev->sdev_gendev);
522 }
523
524 void scsi_next_command(struct scsi_cmnd *cmd)
525 {
526         struct scsi_device *sdev = cmd->device;
527         struct request_queue *q = sdev->request_queue;
528
529         /* need to hold a reference on the device before we let go of the cmd */
530         get_device(&sdev->sdev_gendev);
531
532         scsi_put_command(cmd);
533         scsi_run_queue(q);
534
535         /* ok to remove device now */
536         put_device(&sdev->sdev_gendev);
537 }
538
539 void scsi_run_host_queues(struct Scsi_Host *shost)
540 {
541         struct scsi_device *sdev;
542
543         shost_for_each_device(sdev, shost)
544                 scsi_run_queue(sdev->request_queue);
545 }
546
547 static void __scsi_release_buffers(struct scsi_cmnd *, int);
548
549 /*
550  * Function:    scsi_end_request()
551  *
552  * Purpose:     Post-processing of completed commands (usually invoked at end
553  *              of upper level post-processing and scsi_io_completion).
554  *
555  * Arguments:   cmd      - command that is complete.
556  *              error    - 0 if I/O indicates success, < 0 for I/O error.
557  *              bytes    - number of bytes of completed I/O
558  *              requeue  - indicates whether we should requeue leftovers.
559  *
560  * Lock status: Assumed that lock is not held upon entry.
561  *
562  * Returns:     cmd if requeue required, NULL otherwise.
563  *
564  * Notes:       This is called for block device requests in order to
565  *              mark some number of sectors as complete.
566  * 
567  *              We are guaranteeing that the request queue will be goosed
568  *              at some point during this call.
569  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
570  */
571 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
572                                           int bytes, int requeue)
573 {
574         struct request_queue *q = cmd->device->request_queue;
575         struct request *req = cmd->request;
576
577         /*
578          * If there are blocks left over at the end, set up the command
579          * to queue the remainder of them.
580          */
581         if (blk_end_request(req, error, bytes)) {
582                 /* kill remainder if no retrys */
583                 if (error && scsi_noretry_cmd(cmd))
584                         blk_end_request_all(req, error);
585                 else {
586                         if (requeue) {
587                                 /*
588                                  * Bleah.  Leftovers again.  Stick the
589                                  * leftovers in the front of the
590                                  * queue, and goose the queue again.
591                                  */
592                                 scsi_release_buffers(cmd);
593                                 scsi_requeue_command(q, cmd);
594                                 cmd = NULL;
595                         }
596                         return cmd;
597                 }
598         }
599
600         /*
601          * This will goose the queue request function at the end, so we don't
602          * need to worry about launching another command.
603          */
604         __scsi_release_buffers(cmd, 0);
605         scsi_next_command(cmd);
606         return NULL;
607 }
608
609 static inline unsigned int scsi_sgtable_index(unsigned short nents)
610 {
611         unsigned int index;
612
613         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
614
615         if (nents <= 8)
616                 index = 0;
617         else
618                 index = get_count_order(nents) - 3;
619
620         return index;
621 }
622
623 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
624 {
625         struct scsi_host_sg_pool *sgp;
626
627         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
628         mempool_free(sgl, sgp->pool);
629 }
630
631 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
632 {
633         struct scsi_host_sg_pool *sgp;
634
635         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
636         return mempool_alloc(sgp->pool, gfp_mask);
637 }
638
639 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
640                               gfp_t gfp_mask)
641 {
642         int ret;
643
644         BUG_ON(!nents);
645
646         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
647                                gfp_mask, scsi_sg_alloc);
648         if (unlikely(ret))
649                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
650                                 scsi_sg_free);
651
652         return ret;
653 }
654
655 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
656 {
657         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
658 }
659
660 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
661 {
662
663         if (cmd->sdb.table.nents)
664                 scsi_free_sgtable(&cmd->sdb);
665
666         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
667
668         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
669                 struct scsi_data_buffer *bidi_sdb =
670                         cmd->request->next_rq->special;
671                 scsi_free_sgtable(bidi_sdb);
672                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
673                 cmd->request->next_rq->special = NULL;
674         }
675
676         if (scsi_prot_sg_count(cmd))
677                 scsi_free_sgtable(cmd->prot_sdb);
678 }
679
680 /*
681  * Function:    scsi_release_buffers()
682  *
683  * Purpose:     Completion processing for block device I/O requests.
684  *
685  * Arguments:   cmd     - command that we are bailing.
686  *
687  * Lock status: Assumed that no lock is held upon entry.
688  *
689  * Returns:     Nothing
690  *
691  * Notes:       In the event that an upper level driver rejects a
692  *              command, we must release resources allocated during
693  *              the __init_io() function.  Primarily this would involve
694  *              the scatter-gather table, and potentially any bounce
695  *              buffers.
696  */
697 void scsi_release_buffers(struct scsi_cmnd *cmd)
698 {
699         __scsi_release_buffers(cmd, 1);
700 }
701 EXPORT_SYMBOL(scsi_release_buffers);
702
703 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
704 {
705         int error = 0;
706
707         switch(host_byte(result)) {
708         case DID_TRANSPORT_FAILFAST:
709                 error = -ENOLINK;
710                 break;
711         case DID_TARGET_FAILURE:
712                 set_host_byte(cmd, DID_OK);
713                 error = -EREMOTEIO;
714                 break;
715         case DID_NEXUS_FAILURE:
716                 set_host_byte(cmd, DID_OK);
717                 error = -EBADE;
718                 break;
719         default:
720                 error = -EIO;
721                 break;
722         }
723
724         return error;
725 }
726
727 /*
728  * Function:    scsi_io_completion()
729  *
730  * Purpose:     Completion processing for block device I/O requests.
731  *
732  * Arguments:   cmd   - command that is finished.
733  *
734  * Lock status: Assumed that no lock is held upon entry.
735  *
736  * Returns:     Nothing
737  *
738  * Notes:       This function is matched in terms of capabilities to
739  *              the function that created the scatter-gather list.
740  *              In other words, if there are no bounce buffers
741  *              (the normal case for most drivers), we don't need
742  *              the logic to deal with cleaning up afterwards.
743  *
744  *              We must call scsi_end_request().  This will finish off
745  *              the specified number of sectors.  If we are done, the
746  *              command block will be released and the queue function
747  *              will be goosed.  If we are not done then we have to
748  *              figure out what to do next:
749  *
750  *              a) We can call scsi_requeue_command().  The request
751  *                 will be unprepared and put back on the queue.  Then
752  *                 a new command will be created for it.  This should
753  *                 be used if we made forward progress, or if we want
754  *                 to switch from READ(10) to READ(6) for example.
755  *
756  *              b) We can call scsi_queue_insert().  The request will
757  *                 be put back on the queue and retried using the same
758  *                 command as before, possibly after a delay.
759  *
760  *              c) We can call blk_end_request() with -EIO to fail
761  *                 the remainder of the request.
762  */
763 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
764 {
765         int result = cmd->result;
766         struct request_queue *q = cmd->device->request_queue;
767         struct request *req = cmd->request;
768         int error = 0;
769         struct scsi_sense_hdr sshdr;
770         int sense_valid = 0;
771         int sense_deferred = 0;
772         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
773               ACTION_DELAYED_RETRY} action;
774         char *description = NULL;
775
776         if (result) {
777                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
778                 if (sense_valid)
779                         sense_deferred = scsi_sense_is_deferred(&sshdr);
780         }
781
782         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
783                 if (result) {
784                         if (sense_valid && req->sense) {
785                                 /*
786                                  * SG_IO wants current and deferred errors
787                                  */
788                                 int len = 8 + cmd->sense_buffer[7];
789
790                                 if (len > SCSI_SENSE_BUFFERSIZE)
791                                         len = SCSI_SENSE_BUFFERSIZE;
792                                 memcpy(req->sense, cmd->sense_buffer,  len);
793                                 req->sense_len = len;
794                         }
795                         if (!sense_deferred)
796                                 error = __scsi_error_from_host_byte(cmd, result);
797                 }
798                 /*
799                  * __scsi_error_from_host_byte may have reset the host_byte
800                  */
801                 req->errors = cmd->result;
802
803                 req->resid_len = scsi_get_resid(cmd);
804
805                 if (scsi_bidi_cmnd(cmd)) {
806                         /*
807                          * Bidi commands Must be complete as a whole,
808                          * both sides at once.
809                          */
810                         req->next_rq->resid_len = scsi_in(cmd)->resid;
811
812                         scsi_release_buffers(cmd);
813                         blk_end_request_all(req, 0);
814
815                         scsi_next_command(cmd);
816                         return;
817                 }
818         }
819
820         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
821         BUG_ON(blk_bidi_rq(req));
822
823         /*
824          * Next deal with any sectors which we were able to correctly
825          * handle.
826          */
827         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
828                                       "%d bytes done.\n",
829                                       blk_rq_sectors(req), good_bytes));
830
831         /*
832          * Recovered errors need reporting, but they're always treated
833          * as success, so fiddle the result code here.  For BLOCK_PC
834          * we already took a copy of the original into rq->errors which
835          * is what gets returned to the user
836          */
837         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
838                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
839                  * print since caller wants ATA registers. Only occurs on
840                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
841                  */
842                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
843                         ;
844                 else if (!(req->cmd_flags & REQ_QUIET))
845                         scsi_print_sense("", cmd);
846                 result = 0;
847                 /* BLOCK_PC may have set error */
848                 error = 0;
849         }
850
851         /*
852          * A number of bytes were successfully read.  If there
853          * are leftovers and there is some kind of error
854          * (result != 0), retry the rest.
855          */
856         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
857                 return;
858
859         error = __scsi_error_from_host_byte(cmd, result);
860
861         if (host_byte(result) == DID_RESET) {
862                 /* Third party bus reset or reset for error recovery
863                  * reasons.  Just retry the command and see what
864                  * happens.
865                  */
866                 action = ACTION_RETRY;
867         } else if (sense_valid && !sense_deferred) {
868                 switch (sshdr.sense_key) {
869                 case UNIT_ATTENTION:
870                         if (cmd->device->removable) {
871                                 /* Detected disc change.  Set a bit
872                                  * and quietly refuse further access.
873                                  */
874                                 cmd->device->changed = 1;
875                                 description = "Media Changed";
876                                 action = ACTION_FAIL;
877                         } else {
878                                 /* Must have been a power glitch, or a
879                                  * bus reset.  Could not have been a
880                                  * media change, so we just retry the
881                                  * command and see what happens.
882                                  */
883                                 action = ACTION_RETRY;
884                         }
885                         break;
886                 case ILLEGAL_REQUEST:
887                         /* If we had an ILLEGAL REQUEST returned, then
888                          * we may have performed an unsupported
889                          * command.  The only thing this should be
890                          * would be a ten byte read where only a six
891                          * byte read was supported.  Also, on a system
892                          * where READ CAPACITY failed, we may have
893                          * read past the end of the disk.
894                          */
895                         if ((cmd->device->use_10_for_rw &&
896                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
897                             (cmd->cmnd[0] == READ_10 ||
898                              cmd->cmnd[0] == WRITE_10)) {
899                                 /* This will issue a new 6-byte command. */
900                                 cmd->device->use_10_for_rw = 0;
901                                 action = ACTION_REPREP;
902                         } else if (sshdr.asc == 0x10) /* DIX */ {
903                                 description = "Host Data Integrity Failure";
904                                 action = ACTION_FAIL;
905                                 error = -EILSEQ;
906                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
907                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
908                                 switch (cmd->cmnd[0]) {
909                                 case UNMAP:
910                                         description = "Discard failure";
911                                         break;
912                                 case WRITE_SAME:
913                                 case WRITE_SAME_16:
914                                         if (cmd->cmnd[1] & 0x8)
915                                                 description = "Discard failure";
916                                         else
917                                                 description =
918                                                         "Write same failure";
919                                         break;
920                                 default:
921                                         description = "Invalid command failure";
922                                         break;
923                                 }
924                                 action = ACTION_FAIL;
925                                 error = -EREMOTEIO;
926                         } else
927                                 action = ACTION_FAIL;
928                         break;
929                 case ABORTED_COMMAND:
930                         action = ACTION_FAIL;
931                         if (sshdr.asc == 0x10) { /* DIF */
932                                 description = "Target Data Integrity Failure";
933                                 error = -EILSEQ;
934                         }
935                         break;
936                 case NOT_READY:
937                         /* If the device is in the process of becoming
938                          * ready, or has a temporary blockage, retry.
939                          */
940                         if (sshdr.asc == 0x04) {
941                                 switch (sshdr.ascq) {
942                                 case 0x01: /* becoming ready */
943                                 case 0x04: /* format in progress */
944                                 case 0x05: /* rebuild in progress */
945                                 case 0x06: /* recalculation in progress */
946                                 case 0x07: /* operation in progress */
947                                 case 0x08: /* Long write in progress */
948                                 case 0x09: /* self test in progress */
949                                 case 0x14: /* space allocation in progress */
950                                         action = ACTION_DELAYED_RETRY;
951                                         break;
952                                 default:
953                                         description = "Device not ready";
954                                         action = ACTION_FAIL;
955                                         break;
956                                 }
957                         } else {
958                                 description = "Device not ready";
959                                 action = ACTION_FAIL;
960                         }
961                         break;
962                 case VOLUME_OVERFLOW:
963                         /* See SSC3rXX or current. */
964                         action = ACTION_FAIL;
965                         break;
966                 default:
967                         description = "Unhandled sense code";
968                         action = ACTION_FAIL;
969                         break;
970                 }
971         } else {
972                 description = "Unhandled error code";
973                 action = ACTION_FAIL;
974         }
975
976         switch (action) {
977         case ACTION_FAIL:
978                 /* Give up and fail the remainder of the request */
979                 scsi_release_buffers(cmd);
980                 if (!(req->cmd_flags & REQ_QUIET)) {
981                         if (description)
982                                 scmd_printk(KERN_INFO, cmd, "%s\n",
983                                             description);
984                         scsi_print_result(cmd);
985                         if (driver_byte(result) & DRIVER_SENSE)
986                                 scsi_print_sense("", cmd);
987                         scsi_print_command(cmd);
988                 }
989                 if (blk_end_request_err(req, error))
990                         scsi_requeue_command(q, cmd);
991                 else
992                         scsi_next_command(cmd);
993                 break;
994         case ACTION_REPREP:
995                 /* Unprep the request and put it back at the head of the queue.
996                  * A new command will be prepared and issued.
997                  */
998                 scsi_release_buffers(cmd);
999                 scsi_requeue_command(q, cmd);
1000                 break;
1001         case ACTION_RETRY:
1002                 /* Retry the same command immediately */
1003                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1004                 break;
1005         case ACTION_DELAYED_RETRY:
1006                 /* Retry the same command after a delay */
1007                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1008                 break;
1009         }
1010 }
1011
1012 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1013                              gfp_t gfp_mask)
1014 {
1015         int count;
1016
1017         /*
1018          * If sg table allocation fails, requeue request later.
1019          */
1020         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1021                                         gfp_mask))) {
1022                 return BLKPREP_DEFER;
1023         }
1024
1025         req->buffer = NULL;
1026
1027         /* 
1028          * Next, walk the list, and fill in the addresses and sizes of
1029          * each segment.
1030          */
1031         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1032         BUG_ON(count > sdb->table.nents);
1033         sdb->table.nents = count;
1034         sdb->length = blk_rq_bytes(req);
1035         return BLKPREP_OK;
1036 }
1037
1038 /*
1039  * Function:    scsi_init_io()
1040  *
1041  * Purpose:     SCSI I/O initialize function.
1042  *
1043  * Arguments:   cmd   - Command descriptor we wish to initialize
1044  *
1045  * Returns:     0 on success
1046  *              BLKPREP_DEFER if the failure is retryable
1047  *              BLKPREP_KILL if the failure is fatal
1048  */
1049 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1050 {
1051         struct request *rq = cmd->request;
1052
1053         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1054         if (error)
1055                 goto err_exit;
1056
1057         if (blk_bidi_rq(rq)) {
1058                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1059                         scsi_sdb_cache, GFP_ATOMIC);
1060                 if (!bidi_sdb) {
1061                         error = BLKPREP_DEFER;
1062                         goto err_exit;
1063                 }
1064
1065                 rq->next_rq->special = bidi_sdb;
1066                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1067                 if (error)
1068                         goto err_exit;
1069         }
1070
1071         if (blk_integrity_rq(rq)) {
1072                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1073                 int ivecs, count;
1074
1075                 BUG_ON(prot_sdb == NULL);
1076                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1077
1078                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1079                         error = BLKPREP_DEFER;
1080                         goto err_exit;
1081                 }
1082
1083                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1084                                                 prot_sdb->table.sgl);
1085                 BUG_ON(unlikely(count > ivecs));
1086                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1087
1088                 cmd->prot_sdb = prot_sdb;
1089                 cmd->prot_sdb->table.nents = count;
1090         }
1091
1092         return BLKPREP_OK ;
1093
1094 err_exit:
1095         scsi_release_buffers(cmd);
1096         cmd->request->special = NULL;
1097         scsi_put_command(cmd);
1098         return error;
1099 }
1100 EXPORT_SYMBOL(scsi_init_io);
1101
1102 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1103                 struct request *req)
1104 {
1105         struct scsi_cmnd *cmd;
1106
1107         if (!req->special) {
1108                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1109                 if (unlikely(!cmd))
1110                         return NULL;
1111                 req->special = cmd;
1112         } else {
1113                 cmd = req->special;
1114         }
1115
1116         /* pull a tag out of the request if we have one */
1117         cmd->tag = req->tag;
1118         cmd->request = req;
1119
1120         cmd->cmnd = req->cmd;
1121         cmd->prot_op = SCSI_PROT_NORMAL;
1122
1123         return cmd;
1124 }
1125
1126 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1127 {
1128         struct scsi_cmnd *cmd;
1129         int ret = scsi_prep_state_check(sdev, req);
1130
1131         if (ret != BLKPREP_OK)
1132                 return ret;
1133
1134         cmd = scsi_get_cmd_from_req(sdev, req);
1135         if (unlikely(!cmd))
1136                 return BLKPREP_DEFER;
1137
1138         /*
1139          * BLOCK_PC requests may transfer data, in which case they must
1140          * a bio attached to them.  Or they might contain a SCSI command
1141          * that does not transfer data, in which case they may optionally
1142          * submit a request without an attached bio.
1143          */
1144         if (req->bio) {
1145                 int ret;
1146
1147                 BUG_ON(!req->nr_phys_segments);
1148
1149                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1150                 if (unlikely(ret))
1151                         return ret;
1152         } else {
1153                 BUG_ON(blk_rq_bytes(req));
1154
1155                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1156                 req->buffer = NULL;
1157         }
1158
1159         cmd->cmd_len = req->cmd_len;
1160         if (!blk_rq_bytes(req))
1161                 cmd->sc_data_direction = DMA_NONE;
1162         else if (rq_data_dir(req) == WRITE)
1163                 cmd->sc_data_direction = DMA_TO_DEVICE;
1164         else
1165                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1166         
1167         cmd->transfersize = blk_rq_bytes(req);
1168         cmd->allowed = req->retries;
1169         return BLKPREP_OK;
1170 }
1171 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1172
1173 /*
1174  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1175  * from filesystems that still need to be translated to SCSI CDBs from
1176  * the ULD.
1177  */
1178 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1179 {
1180         struct scsi_cmnd *cmd;
1181         int ret = scsi_prep_state_check(sdev, req);
1182
1183         if (ret != BLKPREP_OK)
1184                 return ret;
1185
1186         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1187                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1188                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1189                 if (ret != BLKPREP_OK)
1190                         return ret;
1191         }
1192
1193         /*
1194          * Filesystem requests must transfer data.
1195          */
1196         BUG_ON(!req->nr_phys_segments);
1197
1198         cmd = scsi_get_cmd_from_req(sdev, req);
1199         if (unlikely(!cmd))
1200                 return BLKPREP_DEFER;
1201
1202         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1203         return scsi_init_io(cmd, GFP_ATOMIC);
1204 }
1205 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1206
1207 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1208 {
1209         int ret = BLKPREP_OK;
1210
1211         /*
1212          * If the device is not in running state we will reject some
1213          * or all commands.
1214          */
1215         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1216                 switch (sdev->sdev_state) {
1217                 case SDEV_OFFLINE:
1218                 case SDEV_TRANSPORT_OFFLINE:
1219                         /*
1220                          * If the device is offline we refuse to process any
1221                          * commands.  The device must be brought online
1222                          * before trying any recovery commands.
1223                          */
1224                         sdev_printk(KERN_ERR, sdev,
1225                                     "rejecting I/O to offline device\n");
1226                         ret = BLKPREP_KILL;
1227                         break;
1228                 case SDEV_DEL:
1229                         /*
1230                          * If the device is fully deleted, we refuse to
1231                          * process any commands as well.
1232                          */
1233                         sdev_printk(KERN_ERR, sdev,
1234                                     "rejecting I/O to dead device\n");
1235                         ret = BLKPREP_KILL;
1236                         break;
1237                 case SDEV_QUIESCE:
1238                 case SDEV_BLOCK:
1239                 case SDEV_CREATED_BLOCK:
1240                         /*
1241                          * If the devices is blocked we defer normal commands.
1242                          */
1243                         if (!(req->cmd_flags & REQ_PREEMPT))
1244                                 ret = BLKPREP_DEFER;
1245                         break;
1246                 default:
1247                         /*
1248                          * For any other not fully online state we only allow
1249                          * special commands.  In particular any user initiated
1250                          * command is not allowed.
1251                          */
1252                         if (!(req->cmd_flags & REQ_PREEMPT))
1253                                 ret = BLKPREP_KILL;
1254                         break;
1255                 }
1256         }
1257         return ret;
1258 }
1259 EXPORT_SYMBOL(scsi_prep_state_check);
1260
1261 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1262 {
1263         struct scsi_device *sdev = q->queuedata;
1264
1265         switch (ret) {
1266         case BLKPREP_KILL:
1267                 req->errors = DID_NO_CONNECT << 16;
1268                 /* release the command and kill it */
1269                 if (req->special) {
1270                         struct scsi_cmnd *cmd = req->special;
1271                         scsi_release_buffers(cmd);
1272                         scsi_put_command(cmd);
1273                         req->special = NULL;
1274                 }
1275                 break;
1276         case BLKPREP_DEFER:
1277                 /*
1278                  * If we defer, the blk_peek_request() returns NULL, but the
1279                  * queue must be restarted, so we schedule a callback to happen
1280                  * shortly.
1281                  */
1282                 if (sdev->device_busy == 0)
1283                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1284                 break;
1285         default:
1286                 req->cmd_flags |= REQ_DONTPREP;
1287         }
1288
1289         return ret;
1290 }
1291 EXPORT_SYMBOL(scsi_prep_return);
1292
1293 int scsi_prep_fn(struct request_queue *q, struct request *req)
1294 {
1295         struct scsi_device *sdev = q->queuedata;
1296         int ret = BLKPREP_KILL;
1297
1298         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1299                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1300         return scsi_prep_return(q, req, ret);
1301 }
1302 EXPORT_SYMBOL(scsi_prep_fn);
1303
1304 /*
1305  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1306  * return 0.
1307  *
1308  * Called with the queue_lock held.
1309  */
1310 static inline int scsi_dev_queue_ready(struct request_queue *q,
1311                                   struct scsi_device *sdev)
1312 {
1313         if (sdev->device_busy == 0 && sdev->device_blocked) {
1314                 /*
1315                  * unblock after device_blocked iterates to zero
1316                  */
1317                 if (--sdev->device_blocked == 0) {
1318                         SCSI_LOG_MLQUEUE(3,
1319                                    sdev_printk(KERN_INFO, sdev,
1320                                    "unblocking device at zero depth\n"));
1321                 } else {
1322                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1323                         return 0;
1324                 }
1325         }
1326         if (scsi_device_is_busy(sdev))
1327                 return 0;
1328
1329         return 1;
1330 }
1331
1332
1333 /*
1334  * scsi_target_queue_ready: checks if there we can send commands to target
1335  * @sdev: scsi device on starget to check.
1336  *
1337  * Called with the host lock held.
1338  */
1339 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1340                                            struct scsi_device *sdev)
1341 {
1342         struct scsi_target *starget = scsi_target(sdev);
1343
1344         if (starget->single_lun) {
1345                 if (starget->starget_sdev_user &&
1346                     starget->starget_sdev_user != sdev)
1347                         return 0;
1348                 starget->starget_sdev_user = sdev;
1349         }
1350
1351         if (starget->target_busy == 0 && starget->target_blocked) {
1352                 /*
1353                  * unblock after target_blocked iterates to zero
1354                  */
1355                 if (--starget->target_blocked == 0) {
1356                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1357                                          "unblocking target at zero depth\n"));
1358                 } else
1359                         return 0;
1360         }
1361
1362         if (scsi_target_is_busy(starget)) {
1363                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1364                 return 0;
1365         }
1366
1367         return 1;
1368 }
1369
1370 /*
1371  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1372  * return 0. We must end up running the queue again whenever 0 is
1373  * returned, else IO can hang.
1374  *
1375  * Called with host_lock held.
1376  */
1377 static inline int scsi_host_queue_ready(struct request_queue *q,
1378                                    struct Scsi_Host *shost,
1379                                    struct scsi_device *sdev)
1380 {
1381         if (scsi_host_in_recovery(shost))
1382                 return 0;
1383         if (shost->host_busy == 0 && shost->host_blocked) {
1384                 /*
1385                  * unblock after host_blocked iterates to zero
1386                  */
1387                 if (--shost->host_blocked == 0) {
1388                         SCSI_LOG_MLQUEUE(3,
1389                                 printk("scsi%d unblocking host at zero depth\n",
1390                                         shost->host_no));
1391                 } else {
1392                         return 0;
1393                 }
1394         }
1395         if (scsi_host_is_busy(shost)) {
1396                 if (list_empty(&sdev->starved_entry))
1397                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1398                 return 0;
1399         }
1400
1401         /* We're OK to process the command, so we can't be starved */
1402         if (!list_empty(&sdev->starved_entry))
1403                 list_del_init(&sdev->starved_entry);
1404
1405         return 1;
1406 }
1407
1408 /*
1409  * Busy state exporting function for request stacking drivers.
1410  *
1411  * For efficiency, no lock is taken to check the busy state of
1412  * shost/starget/sdev, since the returned value is not guaranteed and
1413  * may be changed after request stacking drivers call the function,
1414  * regardless of taking lock or not.
1415  *
1416  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1417  * needs to return 'not busy'. Otherwise, request stacking drivers
1418  * may hold requests forever.
1419  */
1420 static int scsi_lld_busy(struct request_queue *q)
1421 {
1422         struct scsi_device *sdev = q->queuedata;
1423         struct Scsi_Host *shost;
1424
1425         if (blk_queue_dying(q))
1426                 return 0;
1427
1428         shost = sdev->host;
1429
1430         /*
1431          * Ignore host/starget busy state.
1432          * Since block layer does not have a concept of fairness across
1433          * multiple queues, congestion of host/starget needs to be handled
1434          * in SCSI layer.
1435          */
1436         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1437                 return 1;
1438
1439         return 0;
1440 }
1441
1442 /*
1443  * Kill a request for a dead device
1444  */
1445 static void scsi_kill_request(struct request *req, struct request_queue *q)
1446 {
1447         struct scsi_cmnd *cmd = req->special;
1448         struct scsi_device *sdev;
1449         struct scsi_target *starget;
1450         struct Scsi_Host *shost;
1451
1452         blk_start_request(req);
1453
1454         scmd_printk(KERN_INFO, cmd, "killing request\n");
1455
1456         sdev = cmd->device;
1457         starget = scsi_target(sdev);
1458         shost = sdev->host;
1459         scsi_init_cmd_errh(cmd);
1460         cmd->result = DID_NO_CONNECT << 16;
1461         atomic_inc(&cmd->device->iorequest_cnt);
1462
1463         /*
1464          * SCSI request completion path will do scsi_device_unbusy(),
1465          * bump busy counts.  To bump the counters, we need to dance
1466          * with the locks as normal issue path does.
1467          */
1468         sdev->device_busy++;
1469         spin_unlock(sdev->request_queue->queue_lock);
1470         spin_lock(shost->host_lock);
1471         shost->host_busy++;
1472         starget->target_busy++;
1473         spin_unlock(shost->host_lock);
1474         spin_lock(sdev->request_queue->queue_lock);
1475
1476         blk_complete_request(req);
1477 }
1478
1479 static void scsi_softirq_done(struct request *rq)
1480 {
1481         struct scsi_cmnd *cmd = rq->special;
1482         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1483         int disposition;
1484
1485         INIT_LIST_HEAD(&cmd->eh_entry);
1486
1487         atomic_inc(&cmd->device->iodone_cnt);
1488         if (cmd->result)
1489                 atomic_inc(&cmd->device->ioerr_cnt);
1490
1491         disposition = scsi_decide_disposition(cmd);
1492         if (disposition != SUCCESS &&
1493             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1494                 sdev_printk(KERN_ERR, cmd->device,
1495                             "timing out command, waited %lus\n",
1496                             wait_for/HZ);
1497                 disposition = SUCCESS;
1498         }
1499                         
1500         scsi_log_completion(cmd, disposition);
1501
1502         switch (disposition) {
1503                 case SUCCESS:
1504                         scsi_finish_command(cmd);
1505                         break;
1506                 case NEEDS_RETRY:
1507                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1508                         break;
1509                 case ADD_TO_MLQUEUE:
1510                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1511                         break;
1512                 default:
1513                         if (!scsi_eh_scmd_add(cmd, 0))
1514                                 scsi_finish_command(cmd);
1515         }
1516 }
1517
1518 /*
1519  * Function:    scsi_request_fn()
1520  *
1521  * Purpose:     Main strategy routine for SCSI.
1522  *
1523  * Arguments:   q       - Pointer to actual queue.
1524  *
1525  * Returns:     Nothing
1526  *
1527  * Lock status: IO request lock assumed to be held when called.
1528  */
1529 static void scsi_request_fn(struct request_queue *q)
1530 {
1531         struct scsi_device *sdev = q->queuedata;
1532         struct Scsi_Host *shost;
1533         struct scsi_cmnd *cmd;
1534         struct request *req;
1535
1536         if(!get_device(&sdev->sdev_gendev))
1537                 /* We must be tearing the block queue down already */
1538                 return;
1539
1540         /*
1541          * To start with, we keep looping until the queue is empty, or until
1542          * the host is no longer able to accept any more requests.
1543          */
1544         shost = sdev->host;
1545         for (;;) {
1546                 int rtn;
1547                 /*
1548                  * get next queueable request.  We do this early to make sure
1549                  * that the request is fully prepared even if we cannot 
1550                  * accept it.
1551                  */
1552                 req = blk_peek_request(q);
1553                 if (!req || !scsi_dev_queue_ready(q, sdev))
1554                         break;
1555
1556                 if (unlikely(!scsi_device_online(sdev))) {
1557                         sdev_printk(KERN_ERR, sdev,
1558                                     "rejecting I/O to offline device\n");
1559                         scsi_kill_request(req, q);
1560                         continue;
1561                 }
1562
1563
1564                 /*
1565                  * Remove the request from the request list.
1566                  */
1567                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1568                         blk_start_request(req);
1569                 sdev->device_busy++;
1570
1571                 spin_unlock(q->queue_lock);
1572                 cmd = req->special;
1573                 if (unlikely(cmd == NULL)) {
1574                         printk(KERN_CRIT "impossible request in %s.\n"
1575                                          "please mail a stack trace to "
1576                                          "linux-scsi@vger.kernel.org\n",
1577                                          __func__);
1578                         blk_dump_rq_flags(req, "foo");
1579                         BUG();
1580                 }
1581                 spin_lock(shost->host_lock);
1582
1583                 /*
1584                  * We hit this when the driver is using a host wide
1585                  * tag map. For device level tag maps the queue_depth check
1586                  * in the device ready fn would prevent us from trying
1587                  * to allocate a tag. Since the map is a shared host resource
1588                  * we add the dev to the starved list so it eventually gets
1589                  * a run when a tag is freed.
1590                  */
1591                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1592                         if (list_empty(&sdev->starved_entry))
1593                                 list_add_tail(&sdev->starved_entry,
1594                                               &shost->starved_list);
1595                         goto not_ready;
1596                 }
1597
1598                 if (!scsi_target_queue_ready(shost, sdev))
1599                         goto not_ready;
1600
1601                 if (!scsi_host_queue_ready(q, shost, sdev))
1602                         goto not_ready;
1603
1604                 scsi_target(sdev)->target_busy++;
1605                 shost->host_busy++;
1606
1607                 /*
1608                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1609                  *              take the lock again.
1610                  */
1611                 spin_unlock_irq(shost->host_lock);
1612
1613                 /*
1614                  * Finally, initialize any error handling parameters, and set up
1615                  * the timers for timeouts.
1616                  */
1617                 scsi_init_cmd_errh(cmd);
1618
1619                 /*
1620                  * Dispatch the command to the low-level driver.
1621                  */
1622                 rtn = scsi_dispatch_cmd(cmd);
1623                 spin_lock_irq(q->queue_lock);
1624                 if (rtn)
1625                         goto out_delay;
1626         }
1627
1628         goto out;
1629
1630  not_ready:
1631         spin_unlock_irq(shost->host_lock);
1632
1633         /*
1634          * lock q, handle tag, requeue req, and decrement device_busy. We
1635          * must return with queue_lock held.
1636          *
1637          * Decrementing device_busy without checking it is OK, as all such
1638          * cases (host limits or settings) should run the queue at some
1639          * later time.
1640          */
1641         spin_lock_irq(q->queue_lock);
1642         blk_requeue_request(q, req);
1643         sdev->device_busy--;
1644 out_delay:
1645         if (sdev->device_busy == 0)
1646                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1647 out:
1648         /* must be careful here...if we trigger the ->remove() function
1649          * we cannot be holding the q lock */
1650         spin_unlock_irq(q->queue_lock);
1651         put_device(&sdev->sdev_gendev);
1652         spin_lock_irq(q->queue_lock);
1653 }
1654
1655 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1656 {
1657         struct device *host_dev;
1658         u64 bounce_limit = 0xffffffff;
1659
1660         if (shost->unchecked_isa_dma)
1661                 return BLK_BOUNCE_ISA;
1662         /*
1663          * Platforms with virtual-DMA translation
1664          * hardware have no practical limit.
1665          */
1666         if (!PCI_DMA_BUS_IS_PHYS)
1667                 return BLK_BOUNCE_ANY;
1668
1669         host_dev = scsi_get_device(shost);
1670         if (host_dev && host_dev->dma_mask)
1671                 bounce_limit = *host_dev->dma_mask;
1672
1673         return bounce_limit;
1674 }
1675 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1676
1677 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1678                                          request_fn_proc *request_fn)
1679 {
1680         struct request_queue *q;
1681         struct device *dev = shost->dma_dev;
1682
1683         q = blk_init_queue(request_fn, NULL);
1684         if (!q)
1685                 return NULL;
1686
1687         /*
1688          * this limit is imposed by hardware restrictions
1689          */
1690         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1691                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1692
1693         if (scsi_host_prot_dma(shost)) {
1694                 shost->sg_prot_tablesize =
1695                         min_not_zero(shost->sg_prot_tablesize,
1696                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1697                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1698                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1699         }
1700
1701         blk_queue_max_hw_sectors(q, shost->max_sectors);
1702         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1703         blk_queue_segment_boundary(q, shost->dma_boundary);
1704         dma_set_seg_boundary(dev, shost->dma_boundary);
1705
1706         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1707
1708         if (!shost->use_clustering)
1709                 q->limits.cluster = 0;
1710
1711         /*
1712          * set a reasonable default alignment on word boundaries: the
1713          * host and device may alter it using
1714          * blk_queue_update_dma_alignment() later.
1715          */
1716         blk_queue_dma_alignment(q, 0x03);
1717
1718         return q;
1719 }
1720 EXPORT_SYMBOL(__scsi_alloc_queue);
1721
1722 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1723 {
1724         struct request_queue *q;
1725
1726         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1727         if (!q)
1728                 return NULL;
1729
1730         blk_queue_prep_rq(q, scsi_prep_fn);
1731         blk_queue_softirq_done(q, scsi_softirq_done);
1732         blk_queue_rq_timed_out(q, scsi_times_out);
1733         blk_queue_lld_busy(q, scsi_lld_busy);
1734         return q;
1735 }
1736
1737 /*
1738  * Function:    scsi_block_requests()
1739  *
1740  * Purpose:     Utility function used by low-level drivers to prevent further
1741  *              commands from being queued to the device.
1742  *
1743  * Arguments:   shost       - Host in question
1744  *
1745  * Returns:     Nothing
1746  *
1747  * Lock status: No locks are assumed held.
1748  *
1749  * Notes:       There is no timer nor any other means by which the requests
1750  *              get unblocked other than the low-level driver calling
1751  *              scsi_unblock_requests().
1752  */
1753 void scsi_block_requests(struct Scsi_Host *shost)
1754 {
1755         shost->host_self_blocked = 1;
1756 }
1757 EXPORT_SYMBOL(scsi_block_requests);
1758
1759 /*
1760  * Function:    scsi_unblock_requests()
1761  *
1762  * Purpose:     Utility function used by low-level drivers to allow further
1763  *              commands from being queued to the device.
1764  *
1765  * Arguments:   shost       - Host in question
1766  *
1767  * Returns:     Nothing
1768  *
1769  * Lock status: No locks are assumed held.
1770  *
1771  * Notes:       There is no timer nor any other means by which the requests
1772  *              get unblocked other than the low-level driver calling
1773  *              scsi_unblock_requests().
1774  *
1775  *              This is done as an API function so that changes to the
1776  *              internals of the scsi mid-layer won't require wholesale
1777  *              changes to drivers that use this feature.
1778  */
1779 void scsi_unblock_requests(struct Scsi_Host *shost)
1780 {
1781         shost->host_self_blocked = 0;
1782         scsi_run_host_queues(shost);
1783 }
1784 EXPORT_SYMBOL(scsi_unblock_requests);
1785
1786 int __init scsi_init_queue(void)
1787 {
1788         int i;
1789
1790         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1791                                            sizeof(struct scsi_data_buffer),
1792                                            0, 0, NULL);
1793         if (!scsi_sdb_cache) {
1794                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1795                 return -ENOMEM;
1796         }
1797
1798         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1799                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1800                 int size = sgp->size * sizeof(struct scatterlist);
1801
1802                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1803                                 SLAB_HWCACHE_ALIGN, NULL);
1804                 if (!sgp->slab) {
1805                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1806                                         sgp->name);
1807                         goto cleanup_sdb;
1808                 }
1809
1810                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1811                                                      sgp->slab);
1812                 if (!sgp->pool) {
1813                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1814                                         sgp->name);
1815                         goto cleanup_sdb;
1816                 }
1817         }
1818
1819         return 0;
1820
1821 cleanup_sdb:
1822         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1823                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1824                 if (sgp->pool)
1825                         mempool_destroy(sgp->pool);
1826                 if (sgp->slab)
1827                         kmem_cache_destroy(sgp->slab);
1828         }
1829         kmem_cache_destroy(scsi_sdb_cache);
1830
1831         return -ENOMEM;
1832 }
1833
1834 void scsi_exit_queue(void)
1835 {
1836         int i;
1837
1838         kmem_cache_destroy(scsi_sdb_cache);
1839
1840         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1841                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1842                 mempool_destroy(sgp->pool);
1843                 kmem_cache_destroy(sgp->slab);
1844         }
1845 }
1846
1847 /**
1848  *      scsi_mode_select - issue a mode select
1849  *      @sdev:  SCSI device to be queried
1850  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1851  *      @sp:    Save page bit (0 == don't save, 1 == save)
1852  *      @modepage: mode page being requested
1853  *      @buffer: request buffer (may not be smaller than eight bytes)
1854  *      @len:   length of request buffer.
1855  *      @timeout: command timeout
1856  *      @retries: number of retries before failing
1857  *      @data: returns a structure abstracting the mode header data
1858  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1859  *              must be SCSI_SENSE_BUFFERSIZE big.
1860  *
1861  *      Returns zero if successful; negative error number or scsi
1862  *      status on error
1863  *
1864  */
1865 int
1866 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1867                  unsigned char *buffer, int len, int timeout, int retries,
1868                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1869 {
1870         unsigned char cmd[10];
1871         unsigned char *real_buffer;
1872         int ret;
1873
1874         memset(cmd, 0, sizeof(cmd));
1875         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1876
1877         if (sdev->use_10_for_ms) {
1878                 if (len > 65535)
1879                         return -EINVAL;
1880                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1881                 if (!real_buffer)
1882                         return -ENOMEM;
1883                 memcpy(real_buffer + 8, buffer, len);
1884                 len += 8;
1885                 real_buffer[0] = 0;
1886                 real_buffer[1] = 0;
1887                 real_buffer[2] = data->medium_type;
1888                 real_buffer[3] = data->device_specific;
1889                 real_buffer[4] = data->longlba ? 0x01 : 0;
1890                 real_buffer[5] = 0;
1891                 real_buffer[6] = data->block_descriptor_length >> 8;
1892                 real_buffer[7] = data->block_descriptor_length;
1893
1894                 cmd[0] = MODE_SELECT_10;
1895                 cmd[7] = len >> 8;
1896                 cmd[8] = len;
1897         } else {
1898                 if (len > 255 || data->block_descriptor_length > 255 ||
1899                     data->longlba)
1900                         return -EINVAL;
1901
1902                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1903                 if (!real_buffer)
1904                         return -ENOMEM;
1905                 memcpy(real_buffer + 4, buffer, len);
1906                 len += 4;
1907                 real_buffer[0] = 0;
1908                 real_buffer[1] = data->medium_type;
1909                 real_buffer[2] = data->device_specific;
1910                 real_buffer[3] = data->block_descriptor_length;
1911                 
1912
1913                 cmd[0] = MODE_SELECT;
1914                 cmd[4] = len;
1915         }
1916
1917         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1918                                sshdr, timeout, retries, NULL);
1919         kfree(real_buffer);
1920         return ret;
1921 }
1922 EXPORT_SYMBOL_GPL(scsi_mode_select);
1923
1924 /**
1925  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1926  *      @sdev:  SCSI device to be queried
1927  *      @dbd:   set if mode sense will allow block descriptors to be returned
1928  *      @modepage: mode page being requested
1929  *      @buffer: request buffer (may not be smaller than eight bytes)
1930  *      @len:   length of request buffer.
1931  *      @timeout: command timeout
1932  *      @retries: number of retries before failing
1933  *      @data: returns a structure abstracting the mode header data
1934  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1935  *              must be SCSI_SENSE_BUFFERSIZE big.
1936  *
1937  *      Returns zero if unsuccessful, or the header offset (either 4
1938  *      or 8 depending on whether a six or ten byte command was
1939  *      issued) if successful.
1940  */
1941 int
1942 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1943                   unsigned char *buffer, int len, int timeout, int retries,
1944                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1945 {
1946         unsigned char cmd[12];
1947         int use_10_for_ms;
1948         int header_length;
1949         int result;
1950         struct scsi_sense_hdr my_sshdr;
1951
1952         memset(data, 0, sizeof(*data));
1953         memset(&cmd[0], 0, 12);
1954         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1955         cmd[2] = modepage;
1956
1957         /* caller might not be interested in sense, but we need it */
1958         if (!sshdr)
1959                 sshdr = &my_sshdr;
1960
1961  retry:
1962         use_10_for_ms = sdev->use_10_for_ms;
1963
1964         if (use_10_for_ms) {
1965                 if (len < 8)
1966                         len = 8;
1967
1968                 cmd[0] = MODE_SENSE_10;
1969                 cmd[8] = len;
1970                 header_length = 8;
1971         } else {
1972                 if (len < 4)
1973                         len = 4;
1974
1975                 cmd[0] = MODE_SENSE;
1976                 cmd[4] = len;
1977                 header_length = 4;
1978         }
1979
1980         memset(buffer, 0, len);
1981
1982         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1983                                   sshdr, timeout, retries, NULL);
1984
1985         /* This code looks awful: what it's doing is making sure an
1986          * ILLEGAL REQUEST sense return identifies the actual command
1987          * byte as the problem.  MODE_SENSE commands can return
1988          * ILLEGAL REQUEST if the code page isn't supported */
1989
1990         if (use_10_for_ms && !scsi_status_is_good(result) &&
1991             (driver_byte(result) & DRIVER_SENSE)) {
1992                 if (scsi_sense_valid(sshdr)) {
1993                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1994                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1995                                 /* 
1996                                  * Invalid command operation code
1997                                  */
1998                                 sdev->use_10_for_ms = 0;
1999                                 goto retry;
2000                         }
2001                 }
2002         }
2003
2004         if(scsi_status_is_good(result)) {
2005                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2006                              (modepage == 6 || modepage == 8))) {
2007                         /* Initio breakage? */
2008                         header_length = 0;
2009                         data->length = 13;
2010                         data->medium_type = 0;
2011                         data->device_specific = 0;
2012                         data->longlba = 0;
2013                         data->block_descriptor_length = 0;
2014                 } else if(use_10_for_ms) {
2015                         data->length = buffer[0]*256 + buffer[1] + 2;
2016                         data->medium_type = buffer[2];
2017                         data->device_specific = buffer[3];
2018                         data->longlba = buffer[4] & 0x01;
2019                         data->block_descriptor_length = buffer[6]*256
2020                                 + buffer[7];
2021                 } else {
2022                         data->length = buffer[0] + 1;
2023                         data->medium_type = buffer[1];
2024                         data->device_specific = buffer[2];
2025                         data->block_descriptor_length = buffer[3];
2026                 }
2027                 data->header_length = header_length;
2028         }
2029
2030         return result;
2031 }
2032 EXPORT_SYMBOL(scsi_mode_sense);
2033
2034 /**
2035  *      scsi_test_unit_ready - test if unit is ready
2036  *      @sdev:  scsi device to change the state of.
2037  *      @timeout: command timeout
2038  *      @retries: number of retries before failing
2039  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2040  *              returning sense. Make sure that this is cleared before passing
2041  *              in.
2042  *
2043  *      Returns zero if unsuccessful or an error if TUR failed.  For
2044  *      removable media, UNIT_ATTENTION sets ->changed flag.
2045  **/
2046 int
2047 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2048                      struct scsi_sense_hdr *sshdr_external)
2049 {
2050         char cmd[] = {
2051                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2052         };
2053         struct scsi_sense_hdr *sshdr;
2054         int result;
2055
2056         if (!sshdr_external)
2057                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2058         else
2059                 sshdr = sshdr_external;
2060
2061         /* try to eat the UNIT_ATTENTION if there are enough retries */
2062         do {
2063                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2064                                           timeout, retries, NULL);
2065                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2066                     sshdr->sense_key == UNIT_ATTENTION)
2067                         sdev->changed = 1;
2068         } while (scsi_sense_valid(sshdr) &&
2069                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2070
2071         if (!sshdr_external)
2072                 kfree(sshdr);
2073         return result;
2074 }
2075 EXPORT_SYMBOL(scsi_test_unit_ready);
2076
2077 /**
2078  *      scsi_device_set_state - Take the given device through the device state model.
2079  *      @sdev:  scsi device to change the state of.
2080  *      @state: state to change to.
2081  *
2082  *      Returns zero if unsuccessful or an error if the requested 
2083  *      transition is illegal.
2084  */
2085 int
2086 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2087 {
2088         enum scsi_device_state oldstate = sdev->sdev_state;
2089
2090         if (state == oldstate)
2091                 return 0;
2092
2093         switch (state) {
2094         case SDEV_CREATED:
2095                 switch (oldstate) {
2096                 case SDEV_CREATED_BLOCK:
2097                         break;
2098                 default:
2099                         goto illegal;
2100                 }
2101                 break;
2102                         
2103         case SDEV_RUNNING:
2104                 switch (oldstate) {
2105                 case SDEV_CREATED:
2106                 case SDEV_OFFLINE:
2107                 case SDEV_TRANSPORT_OFFLINE:
2108                 case SDEV_QUIESCE:
2109                 case SDEV_BLOCK:
2110                         break;
2111                 default:
2112                         goto illegal;
2113                 }
2114                 break;
2115
2116         case SDEV_QUIESCE:
2117                 switch (oldstate) {
2118                 case SDEV_RUNNING:
2119                 case SDEV_OFFLINE:
2120                 case SDEV_TRANSPORT_OFFLINE:
2121                         break;
2122                 default:
2123                         goto illegal;
2124                 }
2125                 break;
2126
2127         case SDEV_OFFLINE:
2128         case SDEV_TRANSPORT_OFFLINE:
2129                 switch (oldstate) {
2130                 case SDEV_CREATED:
2131                 case SDEV_RUNNING:
2132                 case SDEV_QUIESCE:
2133                 case SDEV_BLOCK:
2134                         break;
2135                 default:
2136                         goto illegal;
2137                 }
2138                 break;
2139
2140         case SDEV_BLOCK:
2141                 switch (oldstate) {
2142                 case SDEV_RUNNING:
2143                 case SDEV_CREATED_BLOCK:
2144                         break;
2145                 default:
2146                         goto illegal;
2147                 }
2148                 break;
2149
2150         case SDEV_CREATED_BLOCK:
2151                 switch (oldstate) {
2152                 case SDEV_CREATED:
2153                         break;
2154                 default:
2155                         goto illegal;
2156                 }
2157                 break;
2158
2159         case SDEV_CANCEL:
2160                 switch (oldstate) {
2161                 case SDEV_CREATED:
2162                 case SDEV_RUNNING:
2163                 case SDEV_QUIESCE:
2164                 case SDEV_OFFLINE:
2165                 case SDEV_TRANSPORT_OFFLINE:
2166                 case SDEV_BLOCK:
2167                         break;
2168                 default:
2169                         goto illegal;
2170                 }
2171                 break;
2172
2173         case SDEV_DEL:
2174                 switch (oldstate) {
2175                 case SDEV_CREATED:
2176                 case SDEV_RUNNING:
2177                 case SDEV_OFFLINE:
2178                 case SDEV_TRANSPORT_OFFLINE:
2179                 case SDEV_CANCEL:
2180                         break;
2181                 default:
2182                         goto illegal;
2183                 }
2184                 break;
2185
2186         }
2187         sdev->sdev_state = state;
2188         return 0;
2189
2190  illegal:
2191         SCSI_LOG_ERROR_RECOVERY(1, 
2192                                 sdev_printk(KERN_ERR, sdev,
2193                                             "Illegal state transition %s->%s\n",
2194                                             scsi_device_state_name(oldstate),
2195                                             scsi_device_state_name(state))
2196                                 );
2197         return -EINVAL;
2198 }
2199 EXPORT_SYMBOL(scsi_device_set_state);
2200
2201 /**
2202  *      sdev_evt_emit - emit a single SCSI device uevent
2203  *      @sdev: associated SCSI device
2204  *      @evt: event to emit
2205  *
2206  *      Send a single uevent (scsi_event) to the associated scsi_device.
2207  */
2208 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2209 {
2210         int idx = 0;
2211         char *envp[3];
2212
2213         switch (evt->evt_type) {
2214         case SDEV_EVT_MEDIA_CHANGE:
2215                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2216                 break;
2217
2218         default:
2219                 /* do nothing */
2220                 break;
2221         }
2222
2223         envp[idx++] = NULL;
2224
2225         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2226 }
2227
2228 /**
2229  *      sdev_evt_thread - send a uevent for each scsi event
2230  *      @work: work struct for scsi_device
2231  *
2232  *      Dispatch queued events to their associated scsi_device kobjects
2233  *      as uevents.
2234  */
2235 void scsi_evt_thread(struct work_struct *work)
2236 {
2237         struct scsi_device *sdev;
2238         LIST_HEAD(event_list);
2239
2240         sdev = container_of(work, struct scsi_device, event_work);
2241
2242         while (1) {
2243                 struct scsi_event *evt;
2244                 struct list_head *this, *tmp;
2245                 unsigned long flags;
2246
2247                 spin_lock_irqsave(&sdev->list_lock, flags);
2248                 list_splice_init(&sdev->event_list, &event_list);
2249                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2250
2251                 if (list_empty(&event_list))
2252                         break;
2253
2254                 list_for_each_safe(this, tmp, &event_list) {
2255                         evt = list_entry(this, struct scsi_event, node);
2256                         list_del(&evt->node);
2257                         scsi_evt_emit(sdev, evt);
2258                         kfree(evt);
2259                 }
2260         }
2261 }
2262
2263 /**
2264  *      sdev_evt_send - send asserted event to uevent thread
2265  *      @sdev: scsi_device event occurred on
2266  *      @evt: event to send
2267  *
2268  *      Assert scsi device event asynchronously.
2269  */
2270 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2271 {
2272         unsigned long flags;
2273
2274 #if 0
2275         /* FIXME: currently this check eliminates all media change events
2276          * for polled devices.  Need to update to discriminate between AN
2277          * and polled events */
2278         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2279                 kfree(evt);
2280                 return;
2281         }
2282 #endif
2283
2284         spin_lock_irqsave(&sdev->list_lock, flags);
2285         list_add_tail(&evt->node, &sdev->event_list);
2286         schedule_work(&sdev->event_work);
2287         spin_unlock_irqrestore(&sdev->list_lock, flags);
2288 }
2289 EXPORT_SYMBOL_GPL(sdev_evt_send);
2290
2291 /**
2292  *      sdev_evt_alloc - allocate a new scsi event
2293  *      @evt_type: type of event to allocate
2294  *      @gfpflags: GFP flags for allocation
2295  *
2296  *      Allocates and returns a new scsi_event.
2297  */
2298 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2299                                   gfp_t gfpflags)
2300 {
2301         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2302         if (!evt)
2303                 return NULL;
2304
2305         evt->evt_type = evt_type;
2306         INIT_LIST_HEAD(&evt->node);
2307
2308         /* evt_type-specific initialization, if any */
2309         switch (evt_type) {
2310         case SDEV_EVT_MEDIA_CHANGE:
2311         default:
2312                 /* do nothing */
2313                 break;
2314         }
2315
2316         return evt;
2317 }
2318 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2319
2320 /**
2321  *      sdev_evt_send_simple - send asserted event to uevent thread
2322  *      @sdev: scsi_device event occurred on
2323  *      @evt_type: type of event to send
2324  *      @gfpflags: GFP flags for allocation
2325  *
2326  *      Assert scsi device event asynchronously, given an event type.
2327  */
2328 void sdev_evt_send_simple(struct scsi_device *sdev,
2329                           enum scsi_device_event evt_type, gfp_t gfpflags)
2330 {
2331         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2332         if (!evt) {
2333                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2334                             evt_type);
2335                 return;
2336         }
2337
2338         sdev_evt_send(sdev, evt);
2339 }
2340 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2341
2342 /**
2343  *      scsi_device_quiesce - Block user issued commands.
2344  *      @sdev:  scsi device to quiesce.
2345  *
2346  *      This works by trying to transition to the SDEV_QUIESCE state
2347  *      (which must be a legal transition).  When the device is in this
2348  *      state, only special requests will be accepted, all others will
2349  *      be deferred.  Since special requests may also be requeued requests,
2350  *      a successful return doesn't guarantee the device will be 
2351  *      totally quiescent.
2352  *
2353  *      Must be called with user context, may sleep.
2354  *
2355  *      Returns zero if unsuccessful or an error if not.
2356  */
2357 int
2358 scsi_device_quiesce(struct scsi_device *sdev)
2359 {
2360         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2361         if (err)
2362                 return err;
2363
2364         scsi_run_queue(sdev->request_queue);
2365         while (sdev->device_busy) {
2366                 msleep_interruptible(200);
2367                 scsi_run_queue(sdev->request_queue);
2368         }
2369         return 0;
2370 }
2371 EXPORT_SYMBOL(scsi_device_quiesce);
2372
2373 /**
2374  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2375  *      @sdev:  scsi device to resume.
2376  *
2377  *      Moves the device from quiesced back to running and restarts the
2378  *      queues.
2379  *
2380  *      Must be called with user context, may sleep.
2381  */
2382 void scsi_device_resume(struct scsi_device *sdev)
2383 {
2384         /* check if the device state was mutated prior to resume, and if
2385          * so assume the state is being managed elsewhere (for example
2386          * device deleted during suspend)
2387          */
2388         if (sdev->sdev_state != SDEV_QUIESCE ||
2389             scsi_device_set_state(sdev, SDEV_RUNNING))
2390                 return;
2391         scsi_run_queue(sdev->request_queue);
2392 }
2393 EXPORT_SYMBOL(scsi_device_resume);
2394
2395 static void
2396 device_quiesce_fn(struct scsi_device *sdev, void *data)
2397 {
2398         scsi_device_quiesce(sdev);
2399 }
2400
2401 void
2402 scsi_target_quiesce(struct scsi_target *starget)
2403 {
2404         starget_for_each_device(starget, NULL, device_quiesce_fn);
2405 }
2406 EXPORT_SYMBOL(scsi_target_quiesce);
2407
2408 static void
2409 device_resume_fn(struct scsi_device *sdev, void *data)
2410 {
2411         scsi_device_resume(sdev);
2412 }
2413
2414 void
2415 scsi_target_resume(struct scsi_target *starget)
2416 {
2417         starget_for_each_device(starget, NULL, device_resume_fn);
2418 }
2419 EXPORT_SYMBOL(scsi_target_resume);
2420
2421 /**
2422  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2423  * @sdev:       device to block
2424  *
2425  * Block request made by scsi lld's to temporarily stop all
2426  * scsi commands on the specified device.  Called from interrupt
2427  * or normal process context.
2428  *
2429  * Returns zero if successful or error if not
2430  *
2431  * Notes:       
2432  *      This routine transitions the device to the SDEV_BLOCK state
2433  *      (which must be a legal transition).  When the device is in this
2434  *      state, all commands are deferred until the scsi lld reenables
2435  *      the device with scsi_device_unblock or device_block_tmo fires.
2436  */
2437 int
2438 scsi_internal_device_block(struct scsi_device *sdev)
2439 {
2440         struct request_queue *q = sdev->request_queue;
2441         unsigned long flags;
2442         int err = 0;
2443
2444         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2445         if (err) {
2446                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2447
2448                 if (err)
2449                         return err;
2450         }
2451
2452         /* 
2453          * The device has transitioned to SDEV_BLOCK.  Stop the
2454          * block layer from calling the midlayer with this device's
2455          * request queue. 
2456          */
2457         spin_lock_irqsave(q->queue_lock, flags);
2458         blk_stop_queue(q);
2459         spin_unlock_irqrestore(q->queue_lock, flags);
2460
2461         return 0;
2462 }
2463 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2464  
2465 /**
2466  * scsi_internal_device_unblock - resume a device after a block request
2467  * @sdev:       device to resume
2468  * @new_state:  state to set devices to after unblocking
2469  *
2470  * Called by scsi lld's or the midlayer to restart the device queue
2471  * for the previously suspended scsi device.  Called from interrupt or
2472  * normal process context.
2473  *
2474  * Returns zero if successful or error if not.
2475  *
2476  * Notes:       
2477  *      This routine transitions the device to the SDEV_RUNNING state
2478  *      or to one of the offline states (which must be a legal transition)
2479  *      allowing the midlayer to goose the queue for this device.
2480  */
2481 int
2482 scsi_internal_device_unblock(struct scsi_device *sdev,
2483                              enum scsi_device_state new_state)
2484 {
2485         struct request_queue *q = sdev->request_queue; 
2486         unsigned long flags;
2487
2488         /*
2489          * Try to transition the scsi device to SDEV_RUNNING or one of the
2490          * offlined states and goose the device queue if successful.
2491          */
2492         if ((sdev->sdev_state == SDEV_BLOCK) ||
2493             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2494                 sdev->sdev_state = new_state;
2495         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2496                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2497                     new_state == SDEV_OFFLINE)
2498                         sdev->sdev_state = new_state;
2499                 else
2500                         sdev->sdev_state = SDEV_CREATED;
2501         } else if (sdev->sdev_state != SDEV_CANCEL &&
2502                  sdev->sdev_state != SDEV_OFFLINE)
2503                 return -EINVAL;
2504
2505         spin_lock_irqsave(q->queue_lock, flags);
2506         blk_start_queue(q);
2507         spin_unlock_irqrestore(q->queue_lock, flags);
2508
2509         return 0;
2510 }
2511 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2512
2513 static void
2514 device_block(struct scsi_device *sdev, void *data)
2515 {
2516         scsi_internal_device_block(sdev);
2517 }
2518
2519 static int
2520 target_block(struct device *dev, void *data)
2521 {
2522         if (scsi_is_target_device(dev))
2523                 starget_for_each_device(to_scsi_target(dev), NULL,
2524                                         device_block);
2525         return 0;
2526 }
2527
2528 void
2529 scsi_target_block(struct device *dev)
2530 {
2531         if (scsi_is_target_device(dev))
2532                 starget_for_each_device(to_scsi_target(dev), NULL,
2533                                         device_block);
2534         else
2535                 device_for_each_child(dev, NULL, target_block);
2536 }
2537 EXPORT_SYMBOL_GPL(scsi_target_block);
2538
2539 static void
2540 device_unblock(struct scsi_device *sdev, void *data)
2541 {
2542         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2543 }
2544
2545 static int
2546 target_unblock(struct device *dev, void *data)
2547 {
2548         if (scsi_is_target_device(dev))
2549                 starget_for_each_device(to_scsi_target(dev), data,
2550                                         device_unblock);
2551         return 0;
2552 }
2553
2554 void
2555 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2556 {
2557         if (scsi_is_target_device(dev))
2558                 starget_for_each_device(to_scsi_target(dev), &new_state,
2559                                         device_unblock);
2560         else
2561                 device_for_each_child(dev, &new_state, target_unblock);
2562 }
2563 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2564
2565 /**
2566  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2567  * @sgl:        scatter-gather list
2568  * @sg_count:   number of segments in sg
2569  * @offset:     offset in bytes into sg, on return offset into the mapped area
2570  * @len:        bytes to map, on return number of bytes mapped
2571  *
2572  * Returns virtual address of the start of the mapped page
2573  */
2574 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2575                           size_t *offset, size_t *len)
2576 {
2577         int i;
2578         size_t sg_len = 0, len_complete = 0;
2579         struct scatterlist *sg;
2580         struct page *page;
2581
2582         WARN_ON(!irqs_disabled());
2583
2584         for_each_sg(sgl, sg, sg_count, i) {
2585                 len_complete = sg_len; /* Complete sg-entries */
2586                 sg_len += sg->length;
2587                 if (sg_len > *offset)
2588                         break;
2589         }
2590
2591         if (unlikely(i == sg_count)) {
2592                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2593                         "elements %d\n",
2594                        __func__, sg_len, *offset, sg_count);
2595                 WARN_ON(1);
2596                 return NULL;
2597         }
2598
2599         /* Offset starting from the beginning of first page in this sg-entry */
2600         *offset = *offset - len_complete + sg->offset;
2601
2602         /* Assumption: contiguous pages can be accessed as "page + i" */
2603         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2604         *offset &= ~PAGE_MASK;
2605
2606         /* Bytes in this sg-entry from *offset to the end of the page */
2607         sg_len = PAGE_SIZE - *offset;
2608         if (*len > sg_len)
2609                 *len = sg_len;
2610
2611         return kmap_atomic(page);
2612 }
2613 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2614
2615 /**
2616  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2617  * @virt:       virtual address to be unmapped
2618  */
2619 void scsi_kunmap_atomic_sg(void *virt)
2620 {
2621         kunmap_atomic(virt);
2622 }
2623 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2624
2625 void sdev_disable_disk_events(struct scsi_device *sdev)
2626 {
2627         atomic_inc(&sdev->disk_events_disable_depth);
2628 }
2629 EXPORT_SYMBOL(sdev_disable_disk_events);
2630
2631 void sdev_enable_disk_events(struct scsi_device *sdev)
2632 {
2633         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2634                 return;
2635         atomic_dec(&sdev->disk_events_disable_depth);
2636 }
2637 EXPORT_SYMBOL(sdev_enable_disk_events);