Merge remote-tracking branches 'spi/fix/qup' and 'spi/fix/topcliff-pch' into spi...
[cascardo/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY        3
77
78 /**
79  * __scsi_queue_insert - private queue insertion
80  * @cmd: The SCSI command being requeued
81  * @reason:  The reason for the requeue
82  * @unbusy: Whether the queue should be unbusied
83  *
84  * This is a private queue insertion.  The public interface
85  * scsi_queue_insert() always assumes the queue should be unbusied
86  * because it's always called before the completion.  This function is
87  * for a requeue after completion, which should only occur in this
88  * file.
89  */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92         struct Scsi_Host *host = cmd->device->host;
93         struct scsi_device *device = cmd->device;
94         struct scsi_target *starget = scsi_target(device);
95         struct request_queue *q = device->request_queue;
96         unsigned long flags;
97
98         SCSI_LOG_MLQUEUE(1,
99                  printk("Inserting command %p into mlqueue\n", cmd));
100
101         /*
102          * Set the appropriate busy bit for the device/host.
103          *
104          * If the host/device isn't busy, assume that something actually
105          * completed, and that we should be able to queue a command now.
106          *
107          * Note that the prior mid-layer assumption that any host could
108          * always queue at least one command is now broken.  The mid-layer
109          * will implement a user specifiable stall (see
110          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111          * if a command is requeued with no other commands outstanding
112          * either for the device or for the host.
113          */
114         switch (reason) {
115         case SCSI_MLQUEUE_HOST_BUSY:
116                 host->host_blocked = host->max_host_blocked;
117                 break;
118         case SCSI_MLQUEUE_DEVICE_BUSY:
119         case SCSI_MLQUEUE_EH_RETRY:
120                 device->device_blocked = device->max_device_blocked;
121                 break;
122         case SCSI_MLQUEUE_TARGET_BUSY:
123                 starget->target_blocked = starget->max_target_blocked;
124                 break;
125         }
126
127         /*
128          * Decrement the counters, since these commands are no longer
129          * active on the host/device.
130          */
131         if (unbusy)
132                 scsi_device_unbusy(device);
133
134         /*
135          * Requeue this command.  It will go before all other commands
136          * that are already in the queue. Schedule requeue work under
137          * lock such that the kblockd_schedule_work() call happens
138          * before blk_cleanup_queue() finishes.
139          */
140         cmd->result = 0;
141         spin_lock_irqsave(q->queue_lock, flags);
142         blk_requeue_request(q, cmd->request);
143         kblockd_schedule_work(q, &device->requeue_work);
144         spin_unlock_irqrestore(q->queue_lock, flags);
145 }
146
147 /*
148  * Function:    scsi_queue_insert()
149  *
150  * Purpose:     Insert a command in the midlevel queue.
151  *
152  * Arguments:   cmd    - command that we are adding to queue.
153  *              reason - why we are inserting command to queue.
154  *
155  * Lock status: Assumed that lock is not held upon entry.
156  *
157  * Returns:     Nothing.
158  *
159  * Notes:       We do this for one of two cases.  Either the host is busy
160  *              and it cannot accept any more commands for the time being,
161  *              or the device returned QUEUE_FULL and can accept no more
162  *              commands.
163  * Notes:       This could be called either from an interrupt context or a
164  *              normal process context.
165  */
166 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
167 {
168         __scsi_queue_insert(cmd, reason, 1);
169 }
170 /**
171  * scsi_execute - insert request and wait for the result
172  * @sdev:       scsi device
173  * @cmd:        scsi command
174  * @data_direction: data direction
175  * @buffer:     data buffer
176  * @bufflen:    len of buffer
177  * @sense:      optional sense buffer
178  * @timeout:    request timeout in seconds
179  * @retries:    number of times to retry request
180  * @flags:      or into request flags;
181  * @resid:      optional residual length
182  *
183  * returns the req->errors value which is the scsi_cmnd result
184  * field.
185  */
186 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
187                  int data_direction, void *buffer, unsigned bufflen,
188                  unsigned char *sense, int timeout, int retries, u64 flags,
189                  int *resid)
190 {
191         struct request *req;
192         int write = (data_direction == DMA_TO_DEVICE);
193         int ret = DRIVER_ERROR << 24;
194
195         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
196         if (!req)
197                 return ret;
198
199         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
200                                         buffer, bufflen, __GFP_WAIT))
201                 goto out;
202
203         req->cmd_len = COMMAND_SIZE(cmd[0]);
204         memcpy(req->cmd, cmd, req->cmd_len);
205         req->sense = sense;
206         req->sense_len = 0;
207         req->retries = retries;
208         req->timeout = timeout;
209         req->cmd_type = REQ_TYPE_BLOCK_PC;
210         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
211
212         /*
213          * head injection *required* here otherwise quiesce won't work
214          */
215         blk_execute_rq(req->q, NULL, req, 1);
216
217         /*
218          * Some devices (USB mass-storage in particular) may transfer
219          * garbage data together with a residue indicating that the data
220          * is invalid.  Prevent the garbage from being misinterpreted
221          * and prevent security leaks by zeroing out the excess data.
222          */
223         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
224                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
225
226         if (resid)
227                 *resid = req->resid_len;
228         ret = req->errors;
229  out:
230         blk_put_request(req);
231
232         return ret;
233 }
234 EXPORT_SYMBOL(scsi_execute);
235
236 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
237                      int data_direction, void *buffer, unsigned bufflen,
238                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
239                      int *resid, u64 flags)
240 {
241         char *sense = NULL;
242         int result;
243         
244         if (sshdr) {
245                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
246                 if (!sense)
247                         return DRIVER_ERROR << 24;
248         }
249         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
250                               sense, timeout, retries, flags, resid);
251         if (sshdr)
252                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
253
254         kfree(sense);
255         return result;
256 }
257 EXPORT_SYMBOL(scsi_execute_req_flags);
258
259 /*
260  * Function:    scsi_init_cmd_errh()
261  *
262  * Purpose:     Initialize cmd fields related to error handling.
263  *
264  * Arguments:   cmd     - command that is ready to be queued.
265  *
266  * Notes:       This function has the job of initializing a number of
267  *              fields related to error handling.   Typically this will
268  *              be called once for each command, as required.
269  */
270 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
271 {
272         cmd->serial_number = 0;
273         scsi_set_resid(cmd, 0);
274         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
275         if (cmd->cmd_len == 0)
276                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
277 }
278
279 void scsi_device_unbusy(struct scsi_device *sdev)
280 {
281         struct Scsi_Host *shost = sdev->host;
282         struct scsi_target *starget = scsi_target(sdev);
283         unsigned long flags;
284
285         spin_lock_irqsave(shost->host_lock, flags);
286         shost->host_busy--;
287         starget->target_busy--;
288         if (unlikely(scsi_host_in_recovery(shost) &&
289                      (shost->host_failed || shost->host_eh_scheduled)))
290                 scsi_eh_wakeup(shost);
291         spin_unlock(shost->host_lock);
292         spin_lock(sdev->request_queue->queue_lock);
293         sdev->device_busy--;
294         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
295 }
296
297 /*
298  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
299  * and call blk_run_queue for all the scsi_devices on the target -
300  * including current_sdev first.
301  *
302  * Called with *no* scsi locks held.
303  */
304 static void scsi_single_lun_run(struct scsi_device *current_sdev)
305 {
306         struct Scsi_Host *shost = current_sdev->host;
307         struct scsi_device *sdev, *tmp;
308         struct scsi_target *starget = scsi_target(current_sdev);
309         unsigned long flags;
310
311         spin_lock_irqsave(shost->host_lock, flags);
312         starget->starget_sdev_user = NULL;
313         spin_unlock_irqrestore(shost->host_lock, flags);
314
315         /*
316          * Call blk_run_queue for all LUNs on the target, starting with
317          * current_sdev. We race with others (to set starget_sdev_user),
318          * but in most cases, we will be first. Ideally, each LU on the
319          * target would get some limited time or requests on the target.
320          */
321         blk_run_queue(current_sdev->request_queue);
322
323         spin_lock_irqsave(shost->host_lock, flags);
324         if (starget->starget_sdev_user)
325                 goto out;
326         list_for_each_entry_safe(sdev, tmp, &starget->devices,
327                         same_target_siblings) {
328                 if (sdev == current_sdev)
329                         continue;
330                 if (scsi_device_get(sdev))
331                         continue;
332
333                 spin_unlock_irqrestore(shost->host_lock, flags);
334                 blk_run_queue(sdev->request_queue);
335                 spin_lock_irqsave(shost->host_lock, flags);
336         
337                 scsi_device_put(sdev);
338         }
339  out:
340         spin_unlock_irqrestore(shost->host_lock, flags);
341 }
342
343 static inline int scsi_device_is_busy(struct scsi_device *sdev)
344 {
345         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
346                 return 1;
347
348         return 0;
349 }
350
351 static inline int scsi_target_is_busy(struct scsi_target *starget)
352 {
353         return ((starget->can_queue > 0 &&
354                  starget->target_busy >= starget->can_queue) ||
355                  starget->target_blocked);
356 }
357
358 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
359 {
360         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
361             shost->host_blocked || shost->host_self_blocked)
362                 return 1;
363
364         return 0;
365 }
366
367 static void scsi_starved_list_run(struct Scsi_Host *shost)
368 {
369         LIST_HEAD(starved_list);
370         struct scsi_device *sdev;
371         unsigned long flags;
372
373         spin_lock_irqsave(shost->host_lock, flags);
374         list_splice_init(&shost->starved_list, &starved_list);
375
376         while (!list_empty(&starved_list)) {
377                 struct request_queue *slq;
378
379                 /*
380                  * As long as shost is accepting commands and we have
381                  * starved queues, call blk_run_queue. scsi_request_fn
382                  * drops the queue_lock and can add us back to the
383                  * starved_list.
384                  *
385                  * host_lock protects the starved_list and starved_entry.
386                  * scsi_request_fn must get the host_lock before checking
387                  * or modifying starved_list or starved_entry.
388                  */
389                 if (scsi_host_is_busy(shost))
390                         break;
391
392                 sdev = list_entry(starved_list.next,
393                                   struct scsi_device, starved_entry);
394                 list_del_init(&sdev->starved_entry);
395                 if (scsi_target_is_busy(scsi_target(sdev))) {
396                         list_move_tail(&sdev->starved_entry,
397                                        &shost->starved_list);
398                         continue;
399                 }
400
401                 /*
402                  * Once we drop the host lock, a racing scsi_remove_device()
403                  * call may remove the sdev from the starved list and destroy
404                  * it and the queue.  Mitigate by taking a reference to the
405                  * queue and never touching the sdev again after we drop the
406                  * host lock.  Note: if __scsi_remove_device() invokes
407                  * blk_cleanup_queue() before the queue is run from this
408                  * function then blk_run_queue() will return immediately since
409                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
410                  */
411                 slq = sdev->request_queue;
412                 if (!blk_get_queue(slq))
413                         continue;
414                 spin_unlock_irqrestore(shost->host_lock, flags);
415
416                 blk_run_queue(slq);
417                 blk_put_queue(slq);
418
419                 spin_lock_irqsave(shost->host_lock, flags);
420         }
421         /* put any unprocessed entries back */
422         list_splice(&starved_list, &shost->starved_list);
423         spin_unlock_irqrestore(shost->host_lock, flags);
424 }
425
426 /*
427  * Function:   scsi_run_queue()
428  *
429  * Purpose:    Select a proper request queue to serve next
430  *
431  * Arguments:  q       - last request's queue
432  *
433  * Returns:     Nothing
434  *
435  * Notes:      The previous command was completely finished, start
436  *             a new one if possible.
437  */
438 static void scsi_run_queue(struct request_queue *q)
439 {
440         struct scsi_device *sdev = q->queuedata;
441
442         if (scsi_target(sdev)->single_lun)
443                 scsi_single_lun_run(sdev);
444         if (!list_empty(&sdev->host->starved_list))
445                 scsi_starved_list_run(sdev->host);
446
447         blk_run_queue(q);
448 }
449
450 void scsi_requeue_run_queue(struct work_struct *work)
451 {
452         struct scsi_device *sdev;
453         struct request_queue *q;
454
455         sdev = container_of(work, struct scsi_device, requeue_work);
456         q = sdev->request_queue;
457         scsi_run_queue(q);
458 }
459
460 /*
461  * Function:    scsi_requeue_command()
462  *
463  * Purpose:     Handle post-processing of completed commands.
464  *
465  * Arguments:   q       - queue to operate on
466  *              cmd     - command that may need to be requeued.
467  *
468  * Returns:     Nothing
469  *
470  * Notes:       After command completion, there may be blocks left
471  *              over which weren't finished by the previous command
472  *              this can be for a number of reasons - the main one is
473  *              I/O errors in the middle of the request, in which case
474  *              we need to request the blocks that come after the bad
475  *              sector.
476  * Notes:       Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480         struct scsi_device *sdev = cmd->device;
481         struct request *req = cmd->request;
482         unsigned long flags;
483
484         spin_lock_irqsave(q->queue_lock, flags);
485         blk_unprep_request(req);
486         req->special = NULL;
487         scsi_put_command(cmd);
488         blk_requeue_request(q, req);
489         spin_unlock_irqrestore(q->queue_lock, flags);
490
491         scsi_run_queue(q);
492
493         put_device(&sdev->sdev_gendev);
494 }
495
496 void scsi_next_command(struct scsi_cmnd *cmd)
497 {
498         struct scsi_device *sdev = cmd->device;
499         struct request_queue *q = sdev->request_queue;
500
501         scsi_put_command(cmd);
502         scsi_run_queue(q);
503
504         put_device(&sdev->sdev_gendev);
505 }
506
507 void scsi_run_host_queues(struct Scsi_Host *shost)
508 {
509         struct scsi_device *sdev;
510
511         shost_for_each_device(sdev, shost)
512                 scsi_run_queue(sdev->request_queue);
513 }
514
515 static void __scsi_release_buffers(struct scsi_cmnd *, int);
516
517 /*
518  * Function:    scsi_end_request()
519  *
520  * Purpose:     Post-processing of completed commands (usually invoked at end
521  *              of upper level post-processing and scsi_io_completion).
522  *
523  * Arguments:   cmd      - command that is complete.
524  *              error    - 0 if I/O indicates success, < 0 for I/O error.
525  *              bytes    - number of bytes of completed I/O
526  *              requeue  - indicates whether we should requeue leftovers.
527  *
528  * Lock status: Assumed that lock is not held upon entry.
529  *
530  * Returns:     cmd if requeue required, NULL otherwise.
531  *
532  * Notes:       This is called for block device requests in order to
533  *              mark some number of sectors as complete.
534  * 
535  *              We are guaranteeing that the request queue will be goosed
536  *              at some point during this call.
537  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
538  */
539 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
540                                           int bytes, int requeue)
541 {
542         struct request_queue *q = cmd->device->request_queue;
543         struct request *req = cmd->request;
544
545         /*
546          * If there are blocks left over at the end, set up the command
547          * to queue the remainder of them.
548          */
549         if (blk_end_request(req, error, bytes)) {
550                 /* kill remainder if no retrys */
551                 if (error && scsi_noretry_cmd(cmd))
552                         blk_end_request_all(req, error);
553                 else {
554                         if (requeue) {
555                                 /*
556                                  * Bleah.  Leftovers again.  Stick the
557                                  * leftovers in the front of the
558                                  * queue, and goose the queue again.
559                                  */
560                                 scsi_release_buffers(cmd);
561                                 scsi_requeue_command(q, cmd);
562                                 cmd = NULL;
563                         }
564                         return cmd;
565                 }
566         }
567
568         /*
569          * This will goose the queue request function at the end, so we don't
570          * need to worry about launching another command.
571          */
572         __scsi_release_buffers(cmd, 0);
573         scsi_next_command(cmd);
574         return NULL;
575 }
576
577 static inline unsigned int scsi_sgtable_index(unsigned short nents)
578 {
579         unsigned int index;
580
581         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
582
583         if (nents <= 8)
584                 index = 0;
585         else
586                 index = get_count_order(nents) - 3;
587
588         return index;
589 }
590
591 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
592 {
593         struct scsi_host_sg_pool *sgp;
594
595         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
596         mempool_free(sgl, sgp->pool);
597 }
598
599 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
600 {
601         struct scsi_host_sg_pool *sgp;
602
603         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
604         return mempool_alloc(sgp->pool, gfp_mask);
605 }
606
607 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
608                               gfp_t gfp_mask)
609 {
610         int ret;
611
612         BUG_ON(!nents);
613
614         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
615                                gfp_mask, scsi_sg_alloc);
616         if (unlikely(ret))
617                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
618                                 scsi_sg_free);
619
620         return ret;
621 }
622
623 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
624 {
625         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
626 }
627
628 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
629 {
630
631         if (cmd->sdb.table.nents)
632                 scsi_free_sgtable(&cmd->sdb);
633
634         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
635
636         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
637                 struct scsi_data_buffer *bidi_sdb =
638                         cmd->request->next_rq->special;
639                 scsi_free_sgtable(bidi_sdb);
640                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
641                 cmd->request->next_rq->special = NULL;
642         }
643
644         if (scsi_prot_sg_count(cmd))
645                 scsi_free_sgtable(cmd->prot_sdb);
646 }
647
648 /*
649  * Function:    scsi_release_buffers()
650  *
651  * Purpose:     Completion processing for block device I/O requests.
652  *
653  * Arguments:   cmd     - command that we are bailing.
654  *
655  * Lock status: Assumed that no lock is held upon entry.
656  *
657  * Returns:     Nothing
658  *
659  * Notes:       In the event that an upper level driver rejects a
660  *              command, we must release resources allocated during
661  *              the __init_io() function.  Primarily this would involve
662  *              the scatter-gather table, and potentially any bounce
663  *              buffers.
664  */
665 void scsi_release_buffers(struct scsi_cmnd *cmd)
666 {
667         __scsi_release_buffers(cmd, 1);
668 }
669 EXPORT_SYMBOL(scsi_release_buffers);
670
671 /**
672  * __scsi_error_from_host_byte - translate SCSI error code into errno
673  * @cmd:        SCSI command (unused)
674  * @result:     scsi error code
675  *
676  * Translate SCSI error code into standard UNIX errno.
677  * Return values:
678  * -ENOLINK     temporary transport failure
679  * -EREMOTEIO   permanent target failure, do not retry
680  * -EBADE       permanent nexus failure, retry on other path
681  * -ENOSPC      No write space available
682  * -ENODATA     Medium error
683  * -EIO         unspecified I/O error
684  */
685 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
686 {
687         int error = 0;
688
689         switch(host_byte(result)) {
690         case DID_TRANSPORT_FAILFAST:
691                 error = -ENOLINK;
692                 break;
693         case DID_TARGET_FAILURE:
694                 set_host_byte(cmd, DID_OK);
695                 error = -EREMOTEIO;
696                 break;
697         case DID_NEXUS_FAILURE:
698                 set_host_byte(cmd, DID_OK);
699                 error = -EBADE;
700                 break;
701         case DID_ALLOC_FAILURE:
702                 set_host_byte(cmd, DID_OK);
703                 error = -ENOSPC;
704                 break;
705         case DID_MEDIUM_ERROR:
706                 set_host_byte(cmd, DID_OK);
707                 error = -ENODATA;
708                 break;
709         default:
710                 error = -EIO;
711                 break;
712         }
713
714         return error;
715 }
716
717 /*
718  * Function:    scsi_io_completion()
719  *
720  * Purpose:     Completion processing for block device I/O requests.
721  *
722  * Arguments:   cmd   - command that is finished.
723  *
724  * Lock status: Assumed that no lock is held upon entry.
725  *
726  * Returns:     Nothing
727  *
728  * Notes:       This function is matched in terms of capabilities to
729  *              the function that created the scatter-gather list.
730  *              In other words, if there are no bounce buffers
731  *              (the normal case for most drivers), we don't need
732  *              the logic to deal with cleaning up afterwards.
733  *
734  *              We must call scsi_end_request().  This will finish off
735  *              the specified number of sectors.  If we are done, the
736  *              command block will be released and the queue function
737  *              will be goosed.  If we are not done then we have to
738  *              figure out what to do next:
739  *
740  *              a) We can call scsi_requeue_command().  The request
741  *                 will be unprepared and put back on the queue.  Then
742  *                 a new command will be created for it.  This should
743  *                 be used if we made forward progress, or if we want
744  *                 to switch from READ(10) to READ(6) for example.
745  *
746  *              b) We can call scsi_queue_insert().  The request will
747  *                 be put back on the queue and retried using the same
748  *                 command as before, possibly after a delay.
749  *
750  *              c) We can call blk_end_request() with -EIO to fail
751  *                 the remainder of the request.
752  */
753 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
754 {
755         int result = cmd->result;
756         struct request_queue *q = cmd->device->request_queue;
757         struct request *req = cmd->request;
758         int error = 0;
759         struct scsi_sense_hdr sshdr;
760         int sense_valid = 0;
761         int sense_deferred = 0;
762         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
763               ACTION_DELAYED_RETRY} action;
764         char *description = NULL;
765         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
766
767         if (result) {
768                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
769                 if (sense_valid)
770                         sense_deferred = scsi_sense_is_deferred(&sshdr);
771         }
772
773         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
774                 if (result) {
775                         if (sense_valid && req->sense) {
776                                 /*
777                                  * SG_IO wants current and deferred errors
778                                  */
779                                 int len = 8 + cmd->sense_buffer[7];
780
781                                 if (len > SCSI_SENSE_BUFFERSIZE)
782                                         len = SCSI_SENSE_BUFFERSIZE;
783                                 memcpy(req->sense, cmd->sense_buffer,  len);
784                                 req->sense_len = len;
785                         }
786                         if (!sense_deferred)
787                                 error = __scsi_error_from_host_byte(cmd, result);
788                 }
789                 /*
790                  * __scsi_error_from_host_byte may have reset the host_byte
791                  */
792                 req->errors = cmd->result;
793
794                 req->resid_len = scsi_get_resid(cmd);
795
796                 if (scsi_bidi_cmnd(cmd)) {
797                         /*
798                          * Bidi commands Must be complete as a whole,
799                          * both sides at once.
800                          */
801                         req->next_rq->resid_len = scsi_in(cmd)->resid;
802
803                         scsi_release_buffers(cmd);
804                         blk_end_request_all(req, 0);
805
806                         scsi_next_command(cmd);
807                         return;
808                 }
809         }
810
811         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
812         BUG_ON(blk_bidi_rq(req));
813
814         /*
815          * Next deal with any sectors which we were able to correctly
816          * handle.
817          */
818         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
819                                       "%d bytes done.\n",
820                                       blk_rq_sectors(req), good_bytes));
821
822         /*
823          * Recovered errors need reporting, but they're always treated
824          * as success, so fiddle the result code here.  For BLOCK_PC
825          * we already took a copy of the original into rq->errors which
826          * is what gets returned to the user
827          */
828         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
829                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
830                  * print since caller wants ATA registers. Only occurs on
831                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
832                  */
833                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
834                         ;
835                 else if (!(req->cmd_flags & REQ_QUIET))
836                         scsi_print_sense("", cmd);
837                 result = 0;
838                 /* BLOCK_PC may have set error */
839                 error = 0;
840         }
841
842         /*
843          * A number of bytes were successfully read.  If there
844          * are leftovers and there is some kind of error
845          * (result != 0), retry the rest.
846          */
847         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
848                 return;
849
850         error = __scsi_error_from_host_byte(cmd, result);
851
852         if (host_byte(result) == DID_RESET) {
853                 /* Third party bus reset or reset for error recovery
854                  * reasons.  Just retry the command and see what
855                  * happens.
856                  */
857                 action = ACTION_RETRY;
858         } else if (sense_valid && !sense_deferred) {
859                 switch (sshdr.sense_key) {
860                 case UNIT_ATTENTION:
861                         if (cmd->device->removable) {
862                                 /* Detected disc change.  Set a bit
863                                  * and quietly refuse further access.
864                                  */
865                                 cmd->device->changed = 1;
866                                 description = "Media Changed";
867                                 action = ACTION_FAIL;
868                         } else {
869                                 /* Must have been a power glitch, or a
870                                  * bus reset.  Could not have been a
871                                  * media change, so we just retry the
872                                  * command and see what happens.
873                                  */
874                                 action = ACTION_RETRY;
875                         }
876                         break;
877                 case ILLEGAL_REQUEST:
878                         /* If we had an ILLEGAL REQUEST returned, then
879                          * we may have performed an unsupported
880                          * command.  The only thing this should be
881                          * would be a ten byte read where only a six
882                          * byte read was supported.  Also, on a system
883                          * where READ CAPACITY failed, we may have
884                          * read past the end of the disk.
885                          */
886                         if ((cmd->device->use_10_for_rw &&
887                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
888                             (cmd->cmnd[0] == READ_10 ||
889                              cmd->cmnd[0] == WRITE_10)) {
890                                 /* This will issue a new 6-byte command. */
891                                 cmd->device->use_10_for_rw = 0;
892                                 action = ACTION_REPREP;
893                         } else if (sshdr.asc == 0x10) /* DIX */ {
894                                 description = "Host Data Integrity Failure";
895                                 action = ACTION_FAIL;
896                                 error = -EILSEQ;
897                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
898                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
899                                 switch (cmd->cmnd[0]) {
900                                 case UNMAP:
901                                         description = "Discard failure";
902                                         break;
903                                 case WRITE_SAME:
904                                 case WRITE_SAME_16:
905                                         if (cmd->cmnd[1] & 0x8)
906                                                 description = "Discard failure";
907                                         else
908                                                 description =
909                                                         "Write same failure";
910                                         break;
911                                 default:
912                                         description = "Invalid command failure";
913                                         break;
914                                 }
915                                 action = ACTION_FAIL;
916                                 error = -EREMOTEIO;
917                         } else
918                                 action = ACTION_FAIL;
919                         break;
920                 case ABORTED_COMMAND:
921                         action = ACTION_FAIL;
922                         if (sshdr.asc == 0x10) { /* DIF */
923                                 description = "Target Data Integrity Failure";
924                                 error = -EILSEQ;
925                         }
926                         break;
927                 case NOT_READY:
928                         /* If the device is in the process of becoming
929                          * ready, or has a temporary blockage, retry.
930                          */
931                         if (sshdr.asc == 0x04) {
932                                 switch (sshdr.ascq) {
933                                 case 0x01: /* becoming ready */
934                                 case 0x04: /* format in progress */
935                                 case 0x05: /* rebuild in progress */
936                                 case 0x06: /* recalculation in progress */
937                                 case 0x07: /* operation in progress */
938                                 case 0x08: /* Long write in progress */
939                                 case 0x09: /* self test in progress */
940                                 case 0x14: /* space allocation in progress */
941                                         action = ACTION_DELAYED_RETRY;
942                                         break;
943                                 default:
944                                         description = "Device not ready";
945                                         action = ACTION_FAIL;
946                                         break;
947                                 }
948                         } else {
949                                 description = "Device not ready";
950                                 action = ACTION_FAIL;
951                         }
952                         break;
953                 case VOLUME_OVERFLOW:
954                         /* See SSC3rXX or current. */
955                         action = ACTION_FAIL;
956                         break;
957                 default:
958                         description = "Unhandled sense code";
959                         action = ACTION_FAIL;
960                         break;
961                 }
962         } else {
963                 description = "Unhandled error code";
964                 action = ACTION_FAIL;
965         }
966
967         if (action != ACTION_FAIL &&
968             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
969                 action = ACTION_FAIL;
970                 description = "Command timed out";
971         }
972
973         switch (action) {
974         case ACTION_FAIL:
975                 /* Give up and fail the remainder of the request */
976                 scsi_release_buffers(cmd);
977                 if (!(req->cmd_flags & REQ_QUIET)) {
978                         if (description)
979                                 scmd_printk(KERN_INFO, cmd, "%s\n",
980                                             description);
981                         scsi_print_result(cmd);
982                         if (driver_byte(result) & DRIVER_SENSE)
983                                 scsi_print_sense("", cmd);
984                         scsi_print_command(cmd);
985                 }
986                 if (blk_end_request_err(req, error))
987                         scsi_requeue_command(q, cmd);
988                 else
989                         scsi_next_command(cmd);
990                 break;
991         case ACTION_REPREP:
992                 /* Unprep the request and put it back at the head of the queue.
993                  * A new command will be prepared and issued.
994                  */
995                 scsi_release_buffers(cmd);
996                 scsi_requeue_command(q, cmd);
997                 break;
998         case ACTION_RETRY:
999                 /* Retry the same command immediately */
1000                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1001                 break;
1002         case ACTION_DELAYED_RETRY:
1003                 /* Retry the same command after a delay */
1004                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1005                 break;
1006         }
1007 }
1008
1009 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1010                              gfp_t gfp_mask)
1011 {
1012         int count;
1013
1014         /*
1015          * If sg table allocation fails, requeue request later.
1016          */
1017         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1018                                         gfp_mask))) {
1019                 return BLKPREP_DEFER;
1020         }
1021
1022         req->buffer = NULL;
1023
1024         /* 
1025          * Next, walk the list, and fill in the addresses and sizes of
1026          * each segment.
1027          */
1028         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1029         BUG_ON(count > sdb->table.nents);
1030         sdb->table.nents = count;
1031         sdb->length = blk_rq_bytes(req);
1032         return BLKPREP_OK;
1033 }
1034
1035 /*
1036  * Function:    scsi_init_io()
1037  *
1038  * Purpose:     SCSI I/O initialize function.
1039  *
1040  * Arguments:   cmd   - Command descriptor we wish to initialize
1041  *
1042  * Returns:     0 on success
1043  *              BLKPREP_DEFER if the failure is retryable
1044  *              BLKPREP_KILL if the failure is fatal
1045  */
1046 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1047 {
1048         struct scsi_device *sdev = cmd->device;
1049         struct request *rq = cmd->request;
1050
1051         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1052         if (error)
1053                 goto err_exit;
1054
1055         if (blk_bidi_rq(rq)) {
1056                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1057                         scsi_sdb_cache, GFP_ATOMIC);
1058                 if (!bidi_sdb) {
1059                         error = BLKPREP_DEFER;
1060                         goto err_exit;
1061                 }
1062
1063                 rq->next_rq->special = bidi_sdb;
1064                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1065                 if (error)
1066                         goto err_exit;
1067         }
1068
1069         if (blk_integrity_rq(rq)) {
1070                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1071                 int ivecs, count;
1072
1073                 BUG_ON(prot_sdb == NULL);
1074                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1075
1076                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1077                         error = BLKPREP_DEFER;
1078                         goto err_exit;
1079                 }
1080
1081                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1082                                                 prot_sdb->table.sgl);
1083                 BUG_ON(unlikely(count > ivecs));
1084                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1085
1086                 cmd->prot_sdb = prot_sdb;
1087                 cmd->prot_sdb->table.nents = count;
1088         }
1089
1090         return BLKPREP_OK ;
1091
1092 err_exit:
1093         scsi_release_buffers(cmd);
1094         cmd->request->special = NULL;
1095         scsi_put_command(cmd);
1096         put_device(&sdev->sdev_gendev);
1097         return error;
1098 }
1099 EXPORT_SYMBOL(scsi_init_io);
1100
1101 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1102                 struct request *req)
1103 {
1104         struct scsi_cmnd *cmd;
1105
1106         if (!req->special) {
1107                 /* Bail if we can't get a reference to the device */
1108                 if (!get_device(&sdev->sdev_gendev))
1109                         return NULL;
1110
1111                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1112                 if (unlikely(!cmd)) {
1113                         put_device(&sdev->sdev_gendev);
1114                         return NULL;
1115                 }
1116                 req->special = cmd;
1117         } else {
1118                 cmd = req->special;
1119         }
1120
1121         /* pull a tag out of the request if we have one */
1122         cmd->tag = req->tag;
1123         cmd->request = req;
1124
1125         cmd->cmnd = req->cmd;
1126         cmd->prot_op = SCSI_PROT_NORMAL;
1127
1128         return cmd;
1129 }
1130
1131 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1132 {
1133         struct scsi_cmnd *cmd;
1134         int ret = scsi_prep_state_check(sdev, req);
1135
1136         if (ret != BLKPREP_OK)
1137                 return ret;
1138
1139         cmd = scsi_get_cmd_from_req(sdev, req);
1140         if (unlikely(!cmd))
1141                 return BLKPREP_DEFER;
1142
1143         /*
1144          * BLOCK_PC requests may transfer data, in which case they must
1145          * a bio attached to them.  Or they might contain a SCSI command
1146          * that does not transfer data, in which case they may optionally
1147          * submit a request without an attached bio.
1148          */
1149         if (req->bio) {
1150                 int ret;
1151
1152                 BUG_ON(!req->nr_phys_segments);
1153
1154                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1155                 if (unlikely(ret))
1156                         return ret;
1157         } else {
1158                 BUG_ON(blk_rq_bytes(req));
1159
1160                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1161                 req->buffer = NULL;
1162         }
1163
1164         cmd->cmd_len = req->cmd_len;
1165         if (!blk_rq_bytes(req))
1166                 cmd->sc_data_direction = DMA_NONE;
1167         else if (rq_data_dir(req) == WRITE)
1168                 cmd->sc_data_direction = DMA_TO_DEVICE;
1169         else
1170                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1171         
1172         cmd->transfersize = blk_rq_bytes(req);
1173         cmd->allowed = req->retries;
1174         return BLKPREP_OK;
1175 }
1176 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1177
1178 /*
1179  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1180  * from filesystems that still need to be translated to SCSI CDBs from
1181  * the ULD.
1182  */
1183 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1184 {
1185         struct scsi_cmnd *cmd;
1186         int ret = scsi_prep_state_check(sdev, req);
1187
1188         if (ret != BLKPREP_OK)
1189                 return ret;
1190
1191         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1192                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1193                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1194                 if (ret != BLKPREP_OK)
1195                         return ret;
1196         }
1197
1198         /*
1199          * Filesystem requests must transfer data.
1200          */
1201         BUG_ON(!req->nr_phys_segments);
1202
1203         cmd = scsi_get_cmd_from_req(sdev, req);
1204         if (unlikely(!cmd))
1205                 return BLKPREP_DEFER;
1206
1207         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1208         return scsi_init_io(cmd, GFP_ATOMIC);
1209 }
1210 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1211
1212 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1213 {
1214         int ret = BLKPREP_OK;
1215
1216         /*
1217          * If the device is not in running state we will reject some
1218          * or all commands.
1219          */
1220         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1221                 switch (sdev->sdev_state) {
1222                 case SDEV_OFFLINE:
1223                 case SDEV_TRANSPORT_OFFLINE:
1224                         /*
1225                          * If the device is offline we refuse to process any
1226                          * commands.  The device must be brought online
1227                          * before trying any recovery commands.
1228                          */
1229                         sdev_printk(KERN_ERR, sdev,
1230                                     "rejecting I/O to offline device\n");
1231                         ret = BLKPREP_KILL;
1232                         break;
1233                 case SDEV_DEL:
1234                         /*
1235                          * If the device is fully deleted, we refuse to
1236                          * process any commands as well.
1237                          */
1238                         sdev_printk(KERN_ERR, sdev,
1239                                     "rejecting I/O to dead device\n");
1240                         ret = BLKPREP_KILL;
1241                         break;
1242                 case SDEV_QUIESCE:
1243                 case SDEV_BLOCK:
1244                 case SDEV_CREATED_BLOCK:
1245                         /*
1246                          * If the devices is blocked we defer normal commands.
1247                          */
1248                         if (!(req->cmd_flags & REQ_PREEMPT))
1249                                 ret = BLKPREP_DEFER;
1250                         break;
1251                 default:
1252                         /*
1253                          * For any other not fully online state we only allow
1254                          * special commands.  In particular any user initiated
1255                          * command is not allowed.
1256                          */
1257                         if (!(req->cmd_flags & REQ_PREEMPT))
1258                                 ret = BLKPREP_KILL;
1259                         break;
1260                 }
1261         }
1262         return ret;
1263 }
1264 EXPORT_SYMBOL(scsi_prep_state_check);
1265
1266 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1267 {
1268         struct scsi_device *sdev = q->queuedata;
1269
1270         switch (ret) {
1271         case BLKPREP_KILL:
1272                 req->errors = DID_NO_CONNECT << 16;
1273                 /* release the command and kill it */
1274                 if (req->special) {
1275                         struct scsi_cmnd *cmd = req->special;
1276                         scsi_release_buffers(cmd);
1277                         scsi_put_command(cmd);
1278                         put_device(&sdev->sdev_gendev);
1279                         req->special = NULL;
1280                 }
1281                 break;
1282         case BLKPREP_DEFER:
1283                 /*
1284                  * If we defer, the blk_peek_request() returns NULL, but the
1285                  * queue must be restarted, so we schedule a callback to happen
1286                  * shortly.
1287                  */
1288                 if (sdev->device_busy == 0)
1289                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1290                 break;
1291         default:
1292                 req->cmd_flags |= REQ_DONTPREP;
1293         }
1294
1295         return ret;
1296 }
1297 EXPORT_SYMBOL(scsi_prep_return);
1298
1299 int scsi_prep_fn(struct request_queue *q, struct request *req)
1300 {
1301         struct scsi_device *sdev = q->queuedata;
1302         int ret = BLKPREP_KILL;
1303
1304         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1305                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1306         return scsi_prep_return(q, req, ret);
1307 }
1308 EXPORT_SYMBOL(scsi_prep_fn);
1309
1310 /*
1311  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1312  * return 0.
1313  *
1314  * Called with the queue_lock held.
1315  */
1316 static inline int scsi_dev_queue_ready(struct request_queue *q,
1317                                   struct scsi_device *sdev)
1318 {
1319         if (sdev->device_busy == 0 && sdev->device_blocked) {
1320                 /*
1321                  * unblock after device_blocked iterates to zero
1322                  */
1323                 if (--sdev->device_blocked == 0) {
1324                         SCSI_LOG_MLQUEUE(3,
1325                                    sdev_printk(KERN_INFO, sdev,
1326                                    "unblocking device at zero depth\n"));
1327                 } else {
1328                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1329                         return 0;
1330                 }
1331         }
1332         if (scsi_device_is_busy(sdev))
1333                 return 0;
1334
1335         return 1;
1336 }
1337
1338
1339 /*
1340  * scsi_target_queue_ready: checks if there we can send commands to target
1341  * @sdev: scsi device on starget to check.
1342  *
1343  * Called with the host lock held.
1344  */
1345 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1346                                            struct scsi_device *sdev)
1347 {
1348         struct scsi_target *starget = scsi_target(sdev);
1349
1350         if (starget->single_lun) {
1351                 if (starget->starget_sdev_user &&
1352                     starget->starget_sdev_user != sdev)
1353                         return 0;
1354                 starget->starget_sdev_user = sdev;
1355         }
1356
1357         if (starget->target_busy == 0 && starget->target_blocked) {
1358                 /*
1359                  * unblock after target_blocked iterates to zero
1360                  */
1361                 if (--starget->target_blocked == 0) {
1362                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1363                                          "unblocking target at zero depth\n"));
1364                 } else
1365                         return 0;
1366         }
1367
1368         if (scsi_target_is_busy(starget)) {
1369                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1370                 return 0;
1371         }
1372
1373         return 1;
1374 }
1375
1376 /*
1377  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1378  * return 0. We must end up running the queue again whenever 0 is
1379  * returned, else IO can hang.
1380  *
1381  * Called with host_lock held.
1382  */
1383 static inline int scsi_host_queue_ready(struct request_queue *q,
1384                                    struct Scsi_Host *shost,
1385                                    struct scsi_device *sdev)
1386 {
1387         if (scsi_host_in_recovery(shost))
1388                 return 0;
1389         if (shost->host_busy == 0 && shost->host_blocked) {
1390                 /*
1391                  * unblock after host_blocked iterates to zero
1392                  */
1393                 if (--shost->host_blocked == 0) {
1394                         SCSI_LOG_MLQUEUE(3,
1395                                 printk("scsi%d unblocking host at zero depth\n",
1396                                         shost->host_no));
1397                 } else {
1398                         return 0;
1399                 }
1400         }
1401         if (scsi_host_is_busy(shost)) {
1402                 if (list_empty(&sdev->starved_entry))
1403                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1404                 return 0;
1405         }
1406
1407         /* We're OK to process the command, so we can't be starved */
1408         if (!list_empty(&sdev->starved_entry))
1409                 list_del_init(&sdev->starved_entry);
1410
1411         return 1;
1412 }
1413
1414 /*
1415  * Busy state exporting function for request stacking drivers.
1416  *
1417  * For efficiency, no lock is taken to check the busy state of
1418  * shost/starget/sdev, since the returned value is not guaranteed and
1419  * may be changed after request stacking drivers call the function,
1420  * regardless of taking lock or not.
1421  *
1422  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1423  * needs to return 'not busy'. Otherwise, request stacking drivers
1424  * may hold requests forever.
1425  */
1426 static int scsi_lld_busy(struct request_queue *q)
1427 {
1428         struct scsi_device *sdev = q->queuedata;
1429         struct Scsi_Host *shost;
1430
1431         if (blk_queue_dying(q))
1432                 return 0;
1433
1434         shost = sdev->host;
1435
1436         /*
1437          * Ignore host/starget busy state.
1438          * Since block layer does not have a concept of fairness across
1439          * multiple queues, congestion of host/starget needs to be handled
1440          * in SCSI layer.
1441          */
1442         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1443                 return 1;
1444
1445         return 0;
1446 }
1447
1448 /*
1449  * Kill a request for a dead device
1450  */
1451 static void scsi_kill_request(struct request *req, struct request_queue *q)
1452 {
1453         struct scsi_cmnd *cmd = req->special;
1454         struct scsi_device *sdev;
1455         struct scsi_target *starget;
1456         struct Scsi_Host *shost;
1457
1458         blk_start_request(req);
1459
1460         scmd_printk(KERN_INFO, cmd, "killing request\n");
1461
1462         sdev = cmd->device;
1463         starget = scsi_target(sdev);
1464         shost = sdev->host;
1465         scsi_init_cmd_errh(cmd);
1466         cmd->result = DID_NO_CONNECT << 16;
1467         atomic_inc(&cmd->device->iorequest_cnt);
1468
1469         /*
1470          * SCSI request completion path will do scsi_device_unbusy(),
1471          * bump busy counts.  To bump the counters, we need to dance
1472          * with the locks as normal issue path does.
1473          */
1474         sdev->device_busy++;
1475         spin_unlock(sdev->request_queue->queue_lock);
1476         spin_lock(shost->host_lock);
1477         shost->host_busy++;
1478         starget->target_busy++;
1479         spin_unlock(shost->host_lock);
1480         spin_lock(sdev->request_queue->queue_lock);
1481
1482         blk_complete_request(req);
1483 }
1484
1485 static void scsi_softirq_done(struct request *rq)
1486 {
1487         struct scsi_cmnd *cmd = rq->special;
1488         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1489         int disposition;
1490
1491         INIT_LIST_HEAD(&cmd->eh_entry);
1492
1493         atomic_inc(&cmd->device->iodone_cnt);
1494         if (cmd->result)
1495                 atomic_inc(&cmd->device->ioerr_cnt);
1496
1497         disposition = scsi_decide_disposition(cmd);
1498         if (disposition != SUCCESS &&
1499             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1500                 sdev_printk(KERN_ERR, cmd->device,
1501                             "timing out command, waited %lus\n",
1502                             wait_for/HZ);
1503                 disposition = SUCCESS;
1504         }
1505                         
1506         scsi_log_completion(cmd, disposition);
1507
1508         switch (disposition) {
1509                 case SUCCESS:
1510                         scsi_finish_command(cmd);
1511                         break;
1512                 case NEEDS_RETRY:
1513                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1514                         break;
1515                 case ADD_TO_MLQUEUE:
1516                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1517                         break;
1518                 default:
1519                         if (!scsi_eh_scmd_add(cmd, 0))
1520                                 scsi_finish_command(cmd);
1521         }
1522 }
1523
1524 /*
1525  * Function:    scsi_request_fn()
1526  *
1527  * Purpose:     Main strategy routine for SCSI.
1528  *
1529  * Arguments:   q       - Pointer to actual queue.
1530  *
1531  * Returns:     Nothing
1532  *
1533  * Lock status: IO request lock assumed to be held when called.
1534  */
1535 static void scsi_request_fn(struct request_queue *q)
1536         __releases(q->queue_lock)
1537         __acquires(q->queue_lock)
1538 {
1539         struct scsi_device *sdev = q->queuedata;
1540         struct Scsi_Host *shost;
1541         struct scsi_cmnd *cmd;
1542         struct request *req;
1543
1544         /*
1545          * To start with, we keep looping until the queue is empty, or until
1546          * the host is no longer able to accept any more requests.
1547          */
1548         shost = sdev->host;
1549         for (;;) {
1550                 int rtn;
1551                 /*
1552                  * get next queueable request.  We do this early to make sure
1553                  * that the request is fully prepared even if we cannot 
1554                  * accept it.
1555                  */
1556                 req = blk_peek_request(q);
1557                 if (!req || !scsi_dev_queue_ready(q, sdev))
1558                         break;
1559
1560                 if (unlikely(!scsi_device_online(sdev))) {
1561                         sdev_printk(KERN_ERR, sdev,
1562                                     "rejecting I/O to offline device\n");
1563                         scsi_kill_request(req, q);
1564                         continue;
1565                 }
1566
1567
1568                 /*
1569                  * Remove the request from the request list.
1570                  */
1571                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1572                         blk_start_request(req);
1573                 sdev->device_busy++;
1574
1575                 spin_unlock(q->queue_lock);
1576                 cmd = req->special;
1577                 if (unlikely(cmd == NULL)) {
1578                         printk(KERN_CRIT "impossible request in %s.\n"
1579                                          "please mail a stack trace to "
1580                                          "linux-scsi@vger.kernel.org\n",
1581                                          __func__);
1582                         blk_dump_rq_flags(req, "foo");
1583                         BUG();
1584                 }
1585                 spin_lock(shost->host_lock);
1586
1587                 /*
1588                  * We hit this when the driver is using a host wide
1589                  * tag map. For device level tag maps the queue_depth check
1590                  * in the device ready fn would prevent us from trying
1591                  * to allocate a tag. Since the map is a shared host resource
1592                  * we add the dev to the starved list so it eventually gets
1593                  * a run when a tag is freed.
1594                  */
1595                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1596                         if (list_empty(&sdev->starved_entry))
1597                                 list_add_tail(&sdev->starved_entry,
1598                                               &shost->starved_list);
1599                         goto not_ready;
1600                 }
1601
1602                 if (!scsi_target_queue_ready(shost, sdev))
1603                         goto not_ready;
1604
1605                 if (!scsi_host_queue_ready(q, shost, sdev))
1606                         goto not_ready;
1607
1608                 scsi_target(sdev)->target_busy++;
1609                 shost->host_busy++;
1610
1611                 /*
1612                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1613                  *              take the lock again.
1614                  */
1615                 spin_unlock_irq(shost->host_lock);
1616
1617                 /*
1618                  * Finally, initialize any error handling parameters, and set up
1619                  * the timers for timeouts.
1620                  */
1621                 scsi_init_cmd_errh(cmd);
1622
1623                 /*
1624                  * Dispatch the command to the low-level driver.
1625                  */
1626                 rtn = scsi_dispatch_cmd(cmd);
1627                 spin_lock_irq(q->queue_lock);
1628                 if (rtn)
1629                         goto out_delay;
1630         }
1631
1632         return;
1633
1634  not_ready:
1635         spin_unlock_irq(shost->host_lock);
1636
1637         /*
1638          * lock q, handle tag, requeue req, and decrement device_busy. We
1639          * must return with queue_lock held.
1640          *
1641          * Decrementing device_busy without checking it is OK, as all such
1642          * cases (host limits or settings) should run the queue at some
1643          * later time.
1644          */
1645         spin_lock_irq(q->queue_lock);
1646         blk_requeue_request(q, req);
1647         sdev->device_busy--;
1648 out_delay:
1649         if (sdev->device_busy == 0)
1650                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1651 }
1652
1653 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1654 {
1655         struct device *host_dev;
1656         u64 bounce_limit = 0xffffffff;
1657
1658         if (shost->unchecked_isa_dma)
1659                 return BLK_BOUNCE_ISA;
1660         /*
1661          * Platforms with virtual-DMA translation
1662          * hardware have no practical limit.
1663          */
1664         if (!PCI_DMA_BUS_IS_PHYS)
1665                 return BLK_BOUNCE_ANY;
1666
1667         host_dev = scsi_get_device(shost);
1668         if (host_dev && host_dev->dma_mask)
1669                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1670
1671         return bounce_limit;
1672 }
1673 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1674
1675 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1676                                          request_fn_proc *request_fn)
1677 {
1678         struct request_queue *q;
1679         struct device *dev = shost->dma_dev;
1680
1681         q = blk_init_queue(request_fn, NULL);
1682         if (!q)
1683                 return NULL;
1684
1685         /*
1686          * this limit is imposed by hardware restrictions
1687          */
1688         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1689                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1690
1691         if (scsi_host_prot_dma(shost)) {
1692                 shost->sg_prot_tablesize =
1693                         min_not_zero(shost->sg_prot_tablesize,
1694                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1695                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1696                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1697         }
1698
1699         blk_queue_max_hw_sectors(q, shost->max_sectors);
1700         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1701         blk_queue_segment_boundary(q, shost->dma_boundary);
1702         dma_set_seg_boundary(dev, shost->dma_boundary);
1703
1704         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1705
1706         if (!shost->use_clustering)
1707                 q->limits.cluster = 0;
1708
1709         /*
1710          * set a reasonable default alignment on word boundaries: the
1711          * host and device may alter it using
1712          * blk_queue_update_dma_alignment() later.
1713          */
1714         blk_queue_dma_alignment(q, 0x03);
1715
1716         return q;
1717 }
1718 EXPORT_SYMBOL(__scsi_alloc_queue);
1719
1720 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1721 {
1722         struct request_queue *q;
1723
1724         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1725         if (!q)
1726                 return NULL;
1727
1728         blk_queue_prep_rq(q, scsi_prep_fn);
1729         blk_queue_softirq_done(q, scsi_softirq_done);
1730         blk_queue_rq_timed_out(q, scsi_times_out);
1731         blk_queue_lld_busy(q, scsi_lld_busy);
1732         return q;
1733 }
1734
1735 /*
1736  * Function:    scsi_block_requests()
1737  *
1738  * Purpose:     Utility function used by low-level drivers to prevent further
1739  *              commands from being queued to the device.
1740  *
1741  * Arguments:   shost       - Host in question
1742  *
1743  * Returns:     Nothing
1744  *
1745  * Lock status: No locks are assumed held.
1746  *
1747  * Notes:       There is no timer nor any other means by which the requests
1748  *              get unblocked other than the low-level driver calling
1749  *              scsi_unblock_requests().
1750  */
1751 void scsi_block_requests(struct Scsi_Host *shost)
1752 {
1753         shost->host_self_blocked = 1;
1754 }
1755 EXPORT_SYMBOL(scsi_block_requests);
1756
1757 /*
1758  * Function:    scsi_unblock_requests()
1759  *
1760  * Purpose:     Utility function used by low-level drivers to allow further
1761  *              commands from being queued to the device.
1762  *
1763  * Arguments:   shost       - Host in question
1764  *
1765  * Returns:     Nothing
1766  *
1767  * Lock status: No locks are assumed held.
1768  *
1769  * Notes:       There is no timer nor any other means by which the requests
1770  *              get unblocked other than the low-level driver calling
1771  *              scsi_unblock_requests().
1772  *
1773  *              This is done as an API function so that changes to the
1774  *              internals of the scsi mid-layer won't require wholesale
1775  *              changes to drivers that use this feature.
1776  */
1777 void scsi_unblock_requests(struct Scsi_Host *shost)
1778 {
1779         shost->host_self_blocked = 0;
1780         scsi_run_host_queues(shost);
1781 }
1782 EXPORT_SYMBOL(scsi_unblock_requests);
1783
1784 int __init scsi_init_queue(void)
1785 {
1786         int i;
1787
1788         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1789                                            sizeof(struct scsi_data_buffer),
1790                                            0, 0, NULL);
1791         if (!scsi_sdb_cache) {
1792                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1793                 return -ENOMEM;
1794         }
1795
1796         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1797                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1798                 int size = sgp->size * sizeof(struct scatterlist);
1799
1800                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1801                                 SLAB_HWCACHE_ALIGN, NULL);
1802                 if (!sgp->slab) {
1803                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1804                                         sgp->name);
1805                         goto cleanup_sdb;
1806                 }
1807
1808                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1809                                                      sgp->slab);
1810                 if (!sgp->pool) {
1811                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1812                                         sgp->name);
1813                         goto cleanup_sdb;
1814                 }
1815         }
1816
1817         return 0;
1818
1819 cleanup_sdb:
1820         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1821                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1822                 if (sgp->pool)
1823                         mempool_destroy(sgp->pool);
1824                 if (sgp->slab)
1825                         kmem_cache_destroy(sgp->slab);
1826         }
1827         kmem_cache_destroy(scsi_sdb_cache);
1828
1829         return -ENOMEM;
1830 }
1831
1832 void scsi_exit_queue(void)
1833 {
1834         int i;
1835
1836         kmem_cache_destroy(scsi_sdb_cache);
1837
1838         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1839                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1840                 mempool_destroy(sgp->pool);
1841                 kmem_cache_destroy(sgp->slab);
1842         }
1843 }
1844
1845 /**
1846  *      scsi_mode_select - issue a mode select
1847  *      @sdev:  SCSI device to be queried
1848  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1849  *      @sp:    Save page bit (0 == don't save, 1 == save)
1850  *      @modepage: mode page being requested
1851  *      @buffer: request buffer (may not be smaller than eight bytes)
1852  *      @len:   length of request buffer.
1853  *      @timeout: command timeout
1854  *      @retries: number of retries before failing
1855  *      @data: returns a structure abstracting the mode header data
1856  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1857  *              must be SCSI_SENSE_BUFFERSIZE big.
1858  *
1859  *      Returns zero if successful; negative error number or scsi
1860  *      status on error
1861  *
1862  */
1863 int
1864 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1865                  unsigned char *buffer, int len, int timeout, int retries,
1866                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1867 {
1868         unsigned char cmd[10];
1869         unsigned char *real_buffer;
1870         int ret;
1871
1872         memset(cmd, 0, sizeof(cmd));
1873         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1874
1875         if (sdev->use_10_for_ms) {
1876                 if (len > 65535)
1877                         return -EINVAL;
1878                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1879                 if (!real_buffer)
1880                         return -ENOMEM;
1881                 memcpy(real_buffer + 8, buffer, len);
1882                 len += 8;
1883                 real_buffer[0] = 0;
1884                 real_buffer[1] = 0;
1885                 real_buffer[2] = data->medium_type;
1886                 real_buffer[3] = data->device_specific;
1887                 real_buffer[4] = data->longlba ? 0x01 : 0;
1888                 real_buffer[5] = 0;
1889                 real_buffer[6] = data->block_descriptor_length >> 8;
1890                 real_buffer[7] = data->block_descriptor_length;
1891
1892                 cmd[0] = MODE_SELECT_10;
1893                 cmd[7] = len >> 8;
1894                 cmd[8] = len;
1895         } else {
1896                 if (len > 255 || data->block_descriptor_length > 255 ||
1897                     data->longlba)
1898                         return -EINVAL;
1899
1900                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1901                 if (!real_buffer)
1902                         return -ENOMEM;
1903                 memcpy(real_buffer + 4, buffer, len);
1904                 len += 4;
1905                 real_buffer[0] = 0;
1906                 real_buffer[1] = data->medium_type;
1907                 real_buffer[2] = data->device_specific;
1908                 real_buffer[3] = data->block_descriptor_length;
1909                 
1910
1911                 cmd[0] = MODE_SELECT;
1912                 cmd[4] = len;
1913         }
1914
1915         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1916                                sshdr, timeout, retries, NULL);
1917         kfree(real_buffer);
1918         return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(scsi_mode_select);
1921
1922 /**
1923  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1924  *      @sdev:  SCSI device to be queried
1925  *      @dbd:   set if mode sense will allow block descriptors to be returned
1926  *      @modepage: mode page being requested
1927  *      @buffer: request buffer (may not be smaller than eight bytes)
1928  *      @len:   length of request buffer.
1929  *      @timeout: command timeout
1930  *      @retries: number of retries before failing
1931  *      @data: returns a structure abstracting the mode header data
1932  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1933  *              must be SCSI_SENSE_BUFFERSIZE big.
1934  *
1935  *      Returns zero if unsuccessful, or the header offset (either 4
1936  *      or 8 depending on whether a six or ten byte command was
1937  *      issued) if successful.
1938  */
1939 int
1940 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1941                   unsigned char *buffer, int len, int timeout, int retries,
1942                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1943 {
1944         unsigned char cmd[12];
1945         int use_10_for_ms;
1946         int header_length;
1947         int result;
1948         struct scsi_sense_hdr my_sshdr;
1949
1950         memset(data, 0, sizeof(*data));
1951         memset(&cmd[0], 0, 12);
1952         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1953         cmd[2] = modepage;
1954
1955         /* caller might not be interested in sense, but we need it */
1956         if (!sshdr)
1957                 sshdr = &my_sshdr;
1958
1959  retry:
1960         use_10_for_ms = sdev->use_10_for_ms;
1961
1962         if (use_10_for_ms) {
1963                 if (len < 8)
1964                         len = 8;
1965
1966                 cmd[0] = MODE_SENSE_10;
1967                 cmd[8] = len;
1968                 header_length = 8;
1969         } else {
1970                 if (len < 4)
1971                         len = 4;
1972
1973                 cmd[0] = MODE_SENSE;
1974                 cmd[4] = len;
1975                 header_length = 4;
1976         }
1977
1978         memset(buffer, 0, len);
1979
1980         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1981                                   sshdr, timeout, retries, NULL);
1982
1983         /* This code looks awful: what it's doing is making sure an
1984          * ILLEGAL REQUEST sense return identifies the actual command
1985          * byte as the problem.  MODE_SENSE commands can return
1986          * ILLEGAL REQUEST if the code page isn't supported */
1987
1988         if (use_10_for_ms && !scsi_status_is_good(result) &&
1989             (driver_byte(result) & DRIVER_SENSE)) {
1990                 if (scsi_sense_valid(sshdr)) {
1991                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1992                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1993                                 /* 
1994                                  * Invalid command operation code
1995                                  */
1996                                 sdev->use_10_for_ms = 0;
1997                                 goto retry;
1998                         }
1999                 }
2000         }
2001
2002         if(scsi_status_is_good(result)) {
2003                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2004                              (modepage == 6 || modepage == 8))) {
2005                         /* Initio breakage? */
2006                         header_length = 0;
2007                         data->length = 13;
2008                         data->medium_type = 0;
2009                         data->device_specific = 0;
2010                         data->longlba = 0;
2011                         data->block_descriptor_length = 0;
2012                 } else if(use_10_for_ms) {
2013                         data->length = buffer[0]*256 + buffer[1] + 2;
2014                         data->medium_type = buffer[2];
2015                         data->device_specific = buffer[3];
2016                         data->longlba = buffer[4] & 0x01;
2017                         data->block_descriptor_length = buffer[6]*256
2018                                 + buffer[7];
2019                 } else {
2020                         data->length = buffer[0] + 1;
2021                         data->medium_type = buffer[1];
2022                         data->device_specific = buffer[2];
2023                         data->block_descriptor_length = buffer[3];
2024                 }
2025                 data->header_length = header_length;
2026         }
2027
2028         return result;
2029 }
2030 EXPORT_SYMBOL(scsi_mode_sense);
2031
2032 /**
2033  *      scsi_test_unit_ready - test if unit is ready
2034  *      @sdev:  scsi device to change the state of.
2035  *      @timeout: command timeout
2036  *      @retries: number of retries before failing
2037  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2038  *              returning sense. Make sure that this is cleared before passing
2039  *              in.
2040  *
2041  *      Returns zero if unsuccessful or an error if TUR failed.  For
2042  *      removable media, UNIT_ATTENTION sets ->changed flag.
2043  **/
2044 int
2045 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2046                      struct scsi_sense_hdr *sshdr_external)
2047 {
2048         char cmd[] = {
2049                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2050         };
2051         struct scsi_sense_hdr *sshdr;
2052         int result;
2053
2054         if (!sshdr_external)
2055                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2056         else
2057                 sshdr = sshdr_external;
2058
2059         /* try to eat the UNIT_ATTENTION if there are enough retries */
2060         do {
2061                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2062                                           timeout, retries, NULL);
2063                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2064                     sshdr->sense_key == UNIT_ATTENTION)
2065                         sdev->changed = 1;
2066         } while (scsi_sense_valid(sshdr) &&
2067                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2068
2069         if (!sshdr_external)
2070                 kfree(sshdr);
2071         return result;
2072 }
2073 EXPORT_SYMBOL(scsi_test_unit_ready);
2074
2075 /**
2076  *      scsi_device_set_state - Take the given device through the device state model.
2077  *      @sdev:  scsi device to change the state of.
2078  *      @state: state to change to.
2079  *
2080  *      Returns zero if unsuccessful or an error if the requested 
2081  *      transition is illegal.
2082  */
2083 int
2084 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2085 {
2086         enum scsi_device_state oldstate = sdev->sdev_state;
2087
2088         if (state == oldstate)
2089                 return 0;
2090
2091         switch (state) {
2092         case SDEV_CREATED:
2093                 switch (oldstate) {
2094                 case SDEV_CREATED_BLOCK:
2095                         break;
2096                 default:
2097                         goto illegal;
2098                 }
2099                 break;
2100                         
2101         case SDEV_RUNNING:
2102                 switch (oldstate) {
2103                 case SDEV_CREATED:
2104                 case SDEV_OFFLINE:
2105                 case SDEV_TRANSPORT_OFFLINE:
2106                 case SDEV_QUIESCE:
2107                 case SDEV_BLOCK:
2108                         break;
2109                 default:
2110                         goto illegal;
2111                 }
2112                 break;
2113
2114         case SDEV_QUIESCE:
2115                 switch (oldstate) {
2116                 case SDEV_RUNNING:
2117                 case SDEV_OFFLINE:
2118                 case SDEV_TRANSPORT_OFFLINE:
2119                         break;
2120                 default:
2121                         goto illegal;
2122                 }
2123                 break;
2124
2125         case SDEV_OFFLINE:
2126         case SDEV_TRANSPORT_OFFLINE:
2127                 switch (oldstate) {
2128                 case SDEV_CREATED:
2129                 case SDEV_RUNNING:
2130                 case SDEV_QUIESCE:
2131                 case SDEV_BLOCK:
2132                         break;
2133                 default:
2134                         goto illegal;
2135                 }
2136                 break;
2137
2138         case SDEV_BLOCK:
2139                 switch (oldstate) {
2140                 case SDEV_RUNNING:
2141                 case SDEV_CREATED_BLOCK:
2142                         break;
2143                 default:
2144                         goto illegal;
2145                 }
2146                 break;
2147
2148         case SDEV_CREATED_BLOCK:
2149                 switch (oldstate) {
2150                 case SDEV_CREATED:
2151                         break;
2152                 default:
2153                         goto illegal;
2154                 }
2155                 break;
2156
2157         case SDEV_CANCEL:
2158                 switch (oldstate) {
2159                 case SDEV_CREATED:
2160                 case SDEV_RUNNING:
2161                 case SDEV_QUIESCE:
2162                 case SDEV_OFFLINE:
2163                 case SDEV_TRANSPORT_OFFLINE:
2164                 case SDEV_BLOCK:
2165                         break;
2166                 default:
2167                         goto illegal;
2168                 }
2169                 break;
2170
2171         case SDEV_DEL:
2172                 switch (oldstate) {
2173                 case SDEV_CREATED:
2174                 case SDEV_RUNNING:
2175                 case SDEV_OFFLINE:
2176                 case SDEV_TRANSPORT_OFFLINE:
2177                 case SDEV_CANCEL:
2178                 case SDEV_CREATED_BLOCK:
2179                         break;
2180                 default:
2181                         goto illegal;
2182                 }
2183                 break;
2184
2185         }
2186         sdev->sdev_state = state;
2187         return 0;
2188
2189  illegal:
2190         SCSI_LOG_ERROR_RECOVERY(1, 
2191                                 sdev_printk(KERN_ERR, sdev,
2192                                             "Illegal state transition %s->%s\n",
2193                                             scsi_device_state_name(oldstate),
2194                                             scsi_device_state_name(state))
2195                                 );
2196         return -EINVAL;
2197 }
2198 EXPORT_SYMBOL(scsi_device_set_state);
2199
2200 /**
2201  *      sdev_evt_emit - emit a single SCSI device uevent
2202  *      @sdev: associated SCSI device
2203  *      @evt: event to emit
2204  *
2205  *      Send a single uevent (scsi_event) to the associated scsi_device.
2206  */
2207 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2208 {
2209         int idx = 0;
2210         char *envp[3];
2211
2212         switch (evt->evt_type) {
2213         case SDEV_EVT_MEDIA_CHANGE:
2214                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2215                 break;
2216         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2217                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2218                 break;
2219         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2220                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2221                 break;
2222         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2223                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2224                 break;
2225         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2226                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2227                 break;
2228         case SDEV_EVT_LUN_CHANGE_REPORTED:
2229                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2230                 break;
2231         default:
2232                 /* do nothing */
2233                 break;
2234         }
2235
2236         envp[idx++] = NULL;
2237
2238         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2239 }
2240
2241 /**
2242  *      sdev_evt_thread - send a uevent for each scsi event
2243  *      @work: work struct for scsi_device
2244  *
2245  *      Dispatch queued events to their associated scsi_device kobjects
2246  *      as uevents.
2247  */
2248 void scsi_evt_thread(struct work_struct *work)
2249 {
2250         struct scsi_device *sdev;
2251         enum scsi_device_event evt_type;
2252         LIST_HEAD(event_list);
2253
2254         sdev = container_of(work, struct scsi_device, event_work);
2255
2256         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2257                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2258                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2259
2260         while (1) {
2261                 struct scsi_event *evt;
2262                 struct list_head *this, *tmp;
2263                 unsigned long flags;
2264
2265                 spin_lock_irqsave(&sdev->list_lock, flags);
2266                 list_splice_init(&sdev->event_list, &event_list);
2267                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2268
2269                 if (list_empty(&event_list))
2270                         break;
2271
2272                 list_for_each_safe(this, tmp, &event_list) {
2273                         evt = list_entry(this, struct scsi_event, node);
2274                         list_del(&evt->node);
2275                         scsi_evt_emit(sdev, evt);
2276                         kfree(evt);
2277                 }
2278         }
2279 }
2280
2281 /**
2282  *      sdev_evt_send - send asserted event to uevent thread
2283  *      @sdev: scsi_device event occurred on
2284  *      @evt: event to send
2285  *
2286  *      Assert scsi device event asynchronously.
2287  */
2288 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2289 {
2290         unsigned long flags;
2291
2292 #if 0
2293         /* FIXME: currently this check eliminates all media change events
2294          * for polled devices.  Need to update to discriminate between AN
2295          * and polled events */
2296         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2297                 kfree(evt);
2298                 return;
2299         }
2300 #endif
2301
2302         spin_lock_irqsave(&sdev->list_lock, flags);
2303         list_add_tail(&evt->node, &sdev->event_list);
2304         schedule_work(&sdev->event_work);
2305         spin_unlock_irqrestore(&sdev->list_lock, flags);
2306 }
2307 EXPORT_SYMBOL_GPL(sdev_evt_send);
2308
2309 /**
2310  *      sdev_evt_alloc - allocate a new scsi event
2311  *      @evt_type: type of event to allocate
2312  *      @gfpflags: GFP flags for allocation
2313  *
2314  *      Allocates and returns a new scsi_event.
2315  */
2316 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2317                                   gfp_t gfpflags)
2318 {
2319         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2320         if (!evt)
2321                 return NULL;
2322
2323         evt->evt_type = evt_type;
2324         INIT_LIST_HEAD(&evt->node);
2325
2326         /* evt_type-specific initialization, if any */
2327         switch (evt_type) {
2328         case SDEV_EVT_MEDIA_CHANGE:
2329         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2330         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2331         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2332         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2333         case SDEV_EVT_LUN_CHANGE_REPORTED:
2334         default:
2335                 /* do nothing */
2336                 break;
2337         }
2338
2339         return evt;
2340 }
2341 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2342
2343 /**
2344  *      sdev_evt_send_simple - send asserted event to uevent thread
2345  *      @sdev: scsi_device event occurred on
2346  *      @evt_type: type of event to send
2347  *      @gfpflags: GFP flags for allocation
2348  *
2349  *      Assert scsi device event asynchronously, given an event type.
2350  */
2351 void sdev_evt_send_simple(struct scsi_device *sdev,
2352                           enum scsi_device_event evt_type, gfp_t gfpflags)
2353 {
2354         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2355         if (!evt) {
2356                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2357                             evt_type);
2358                 return;
2359         }
2360
2361         sdev_evt_send(sdev, evt);
2362 }
2363 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2364
2365 /**
2366  *      scsi_device_quiesce - Block user issued commands.
2367  *      @sdev:  scsi device to quiesce.
2368  *
2369  *      This works by trying to transition to the SDEV_QUIESCE state
2370  *      (which must be a legal transition).  When the device is in this
2371  *      state, only special requests will be accepted, all others will
2372  *      be deferred.  Since special requests may also be requeued requests,
2373  *      a successful return doesn't guarantee the device will be 
2374  *      totally quiescent.
2375  *
2376  *      Must be called with user context, may sleep.
2377  *
2378  *      Returns zero if unsuccessful or an error if not.
2379  */
2380 int
2381 scsi_device_quiesce(struct scsi_device *sdev)
2382 {
2383         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2384         if (err)
2385                 return err;
2386
2387         scsi_run_queue(sdev->request_queue);
2388         while (sdev->device_busy) {
2389                 msleep_interruptible(200);
2390                 scsi_run_queue(sdev->request_queue);
2391         }
2392         return 0;
2393 }
2394 EXPORT_SYMBOL(scsi_device_quiesce);
2395
2396 /**
2397  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2398  *      @sdev:  scsi device to resume.
2399  *
2400  *      Moves the device from quiesced back to running and restarts the
2401  *      queues.
2402  *
2403  *      Must be called with user context, may sleep.
2404  */
2405 void scsi_device_resume(struct scsi_device *sdev)
2406 {
2407         /* check if the device state was mutated prior to resume, and if
2408          * so assume the state is being managed elsewhere (for example
2409          * device deleted during suspend)
2410          */
2411         if (sdev->sdev_state != SDEV_QUIESCE ||
2412             scsi_device_set_state(sdev, SDEV_RUNNING))
2413                 return;
2414         scsi_run_queue(sdev->request_queue);
2415 }
2416 EXPORT_SYMBOL(scsi_device_resume);
2417
2418 static void
2419 device_quiesce_fn(struct scsi_device *sdev, void *data)
2420 {
2421         scsi_device_quiesce(sdev);
2422 }
2423
2424 void
2425 scsi_target_quiesce(struct scsi_target *starget)
2426 {
2427         starget_for_each_device(starget, NULL, device_quiesce_fn);
2428 }
2429 EXPORT_SYMBOL(scsi_target_quiesce);
2430
2431 static void
2432 device_resume_fn(struct scsi_device *sdev, void *data)
2433 {
2434         scsi_device_resume(sdev);
2435 }
2436
2437 void
2438 scsi_target_resume(struct scsi_target *starget)
2439 {
2440         starget_for_each_device(starget, NULL, device_resume_fn);
2441 }
2442 EXPORT_SYMBOL(scsi_target_resume);
2443
2444 /**
2445  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2446  * @sdev:       device to block
2447  *
2448  * Block request made by scsi lld's to temporarily stop all
2449  * scsi commands on the specified device.  Called from interrupt
2450  * or normal process context.
2451  *
2452  * Returns zero if successful or error if not
2453  *
2454  * Notes:       
2455  *      This routine transitions the device to the SDEV_BLOCK state
2456  *      (which must be a legal transition).  When the device is in this
2457  *      state, all commands are deferred until the scsi lld reenables
2458  *      the device with scsi_device_unblock or device_block_tmo fires.
2459  */
2460 int
2461 scsi_internal_device_block(struct scsi_device *sdev)
2462 {
2463         struct request_queue *q = sdev->request_queue;
2464         unsigned long flags;
2465         int err = 0;
2466
2467         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2468         if (err) {
2469                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2470
2471                 if (err)
2472                         return err;
2473         }
2474
2475         /* 
2476          * The device has transitioned to SDEV_BLOCK.  Stop the
2477          * block layer from calling the midlayer with this device's
2478          * request queue. 
2479          */
2480         spin_lock_irqsave(q->queue_lock, flags);
2481         blk_stop_queue(q);
2482         spin_unlock_irqrestore(q->queue_lock, flags);
2483
2484         return 0;
2485 }
2486 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2487  
2488 /**
2489  * scsi_internal_device_unblock - resume a device after a block request
2490  * @sdev:       device to resume
2491  * @new_state:  state to set devices to after unblocking
2492  *
2493  * Called by scsi lld's or the midlayer to restart the device queue
2494  * for the previously suspended scsi device.  Called from interrupt or
2495  * normal process context.
2496  *
2497  * Returns zero if successful or error if not.
2498  *
2499  * Notes:       
2500  *      This routine transitions the device to the SDEV_RUNNING state
2501  *      or to one of the offline states (which must be a legal transition)
2502  *      allowing the midlayer to goose the queue for this device.
2503  */
2504 int
2505 scsi_internal_device_unblock(struct scsi_device *sdev,
2506                              enum scsi_device_state new_state)
2507 {
2508         struct request_queue *q = sdev->request_queue; 
2509         unsigned long flags;
2510
2511         /*
2512          * Try to transition the scsi device to SDEV_RUNNING or one of the
2513          * offlined states and goose the device queue if successful.
2514          */
2515         if ((sdev->sdev_state == SDEV_BLOCK) ||
2516             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2517                 sdev->sdev_state = new_state;
2518         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2519                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2520                     new_state == SDEV_OFFLINE)
2521                         sdev->sdev_state = new_state;
2522                 else
2523                         sdev->sdev_state = SDEV_CREATED;
2524         } else if (sdev->sdev_state != SDEV_CANCEL &&
2525                  sdev->sdev_state != SDEV_OFFLINE)
2526                 return -EINVAL;
2527
2528         spin_lock_irqsave(q->queue_lock, flags);
2529         blk_start_queue(q);
2530         spin_unlock_irqrestore(q->queue_lock, flags);
2531
2532         return 0;
2533 }
2534 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2535
2536 static void
2537 device_block(struct scsi_device *sdev, void *data)
2538 {
2539         scsi_internal_device_block(sdev);
2540 }
2541
2542 static int
2543 target_block(struct device *dev, void *data)
2544 {
2545         if (scsi_is_target_device(dev))
2546                 starget_for_each_device(to_scsi_target(dev), NULL,
2547                                         device_block);
2548         return 0;
2549 }
2550
2551 void
2552 scsi_target_block(struct device *dev)
2553 {
2554         if (scsi_is_target_device(dev))
2555                 starget_for_each_device(to_scsi_target(dev), NULL,
2556                                         device_block);
2557         else
2558                 device_for_each_child(dev, NULL, target_block);
2559 }
2560 EXPORT_SYMBOL_GPL(scsi_target_block);
2561
2562 static void
2563 device_unblock(struct scsi_device *sdev, void *data)
2564 {
2565         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2566 }
2567
2568 static int
2569 target_unblock(struct device *dev, void *data)
2570 {
2571         if (scsi_is_target_device(dev))
2572                 starget_for_each_device(to_scsi_target(dev), data,
2573                                         device_unblock);
2574         return 0;
2575 }
2576
2577 void
2578 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2579 {
2580         if (scsi_is_target_device(dev))
2581                 starget_for_each_device(to_scsi_target(dev), &new_state,
2582                                         device_unblock);
2583         else
2584                 device_for_each_child(dev, &new_state, target_unblock);
2585 }
2586 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2587
2588 /**
2589  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2590  * @sgl:        scatter-gather list
2591  * @sg_count:   number of segments in sg
2592  * @offset:     offset in bytes into sg, on return offset into the mapped area
2593  * @len:        bytes to map, on return number of bytes mapped
2594  *
2595  * Returns virtual address of the start of the mapped page
2596  */
2597 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2598                           size_t *offset, size_t *len)
2599 {
2600         int i;
2601         size_t sg_len = 0, len_complete = 0;
2602         struct scatterlist *sg;
2603         struct page *page;
2604
2605         WARN_ON(!irqs_disabled());
2606
2607         for_each_sg(sgl, sg, sg_count, i) {
2608                 len_complete = sg_len; /* Complete sg-entries */
2609                 sg_len += sg->length;
2610                 if (sg_len > *offset)
2611                         break;
2612         }
2613
2614         if (unlikely(i == sg_count)) {
2615                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2616                         "elements %d\n",
2617                        __func__, sg_len, *offset, sg_count);
2618                 WARN_ON(1);
2619                 return NULL;
2620         }
2621
2622         /* Offset starting from the beginning of first page in this sg-entry */
2623         *offset = *offset - len_complete + sg->offset;
2624
2625         /* Assumption: contiguous pages can be accessed as "page + i" */
2626         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2627         *offset &= ~PAGE_MASK;
2628
2629         /* Bytes in this sg-entry from *offset to the end of the page */
2630         sg_len = PAGE_SIZE - *offset;
2631         if (*len > sg_len)
2632                 *len = sg_len;
2633
2634         return kmap_atomic(page);
2635 }
2636 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2637
2638 /**
2639  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2640  * @virt:       virtual address to be unmapped
2641  */
2642 void scsi_kunmap_atomic_sg(void *virt)
2643 {
2644         kunmap_atomic(virt);
2645 }
2646 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2647
2648 void sdev_disable_disk_events(struct scsi_device *sdev)
2649 {
2650         atomic_inc(&sdev->disk_events_disable_depth);
2651 }
2652 EXPORT_SYMBOL(sdev_disable_disk_events);
2653
2654 void sdev_enable_disk_events(struct scsi_device *sdev)
2655 {
2656         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2657                 return;
2658         atomic_dec(&sdev->disk_events_disable_depth);
2659 }
2660 EXPORT_SYMBOL(sdev_enable_disk_events);