regulator: core: Fix regualtor_ena_gpio_free not to access pin after freeing
[cascardo/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33
34 #include <trace/events/scsi.h>
35
36 #include "scsi_priv.h"
37 #include "scsi_logging.h"
38
39
40 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
41 #define SG_MEMPOOL_SIZE         2
42
43 struct scsi_host_sg_pool {
44         size_t          size;
45         char            *name;
46         struct kmem_cache       *slab;
47         mempool_t       *pool;
48 };
49
50 #define SP(x) { x, "sgpool-" __stringify(x) }
51 #if (SCSI_MAX_SG_SEGMENTS < 32)
52 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
53 #endif
54 static struct scsi_host_sg_pool scsi_sg_pools[] = {
55         SP(8),
56         SP(16),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58         SP(32),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60         SP(64),
61 #if (SCSI_MAX_SG_SEGMENTS > 128)
62         SP(128),
63 #if (SCSI_MAX_SG_SEGMENTS > 256)
64 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 #endif
66 #endif
67 #endif
68 #endif
69         SP(SCSI_MAX_SG_SEGMENTS)
70 };
71 #undef SP
72
73 struct kmem_cache *scsi_sdb_cache;
74
75 /*
76  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
77  * not change behaviour from the previous unplug mechanism, experimentation
78  * may prove this needs changing.
79  */
80 #define SCSI_QUEUE_DELAY        3
81
82 static void
83 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
84 {
85         struct Scsi_Host *host = cmd->device->host;
86         struct scsi_device *device = cmd->device;
87         struct scsi_target *starget = scsi_target(device);
88
89         /*
90          * Set the appropriate busy bit for the device/host.
91          *
92          * If the host/device isn't busy, assume that something actually
93          * completed, and that we should be able to queue a command now.
94          *
95          * Note that the prior mid-layer assumption that any host could
96          * always queue at least one command is now broken.  The mid-layer
97          * will implement a user specifiable stall (see
98          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
99          * if a command is requeued with no other commands outstanding
100          * either for the device or for the host.
101          */
102         switch (reason) {
103         case SCSI_MLQUEUE_HOST_BUSY:
104                 atomic_set(&host->host_blocked, host->max_host_blocked);
105                 break;
106         case SCSI_MLQUEUE_DEVICE_BUSY:
107         case SCSI_MLQUEUE_EH_RETRY:
108                 atomic_set(&device->device_blocked,
109                            device->max_device_blocked);
110                 break;
111         case SCSI_MLQUEUE_TARGET_BUSY:
112                 atomic_set(&starget->target_blocked,
113                            starget->max_target_blocked);
114                 break;
115         }
116 }
117
118 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
119 {
120         struct scsi_device *sdev = cmd->device;
121         struct request_queue *q = cmd->request->q;
122
123         blk_mq_requeue_request(cmd->request);
124         blk_mq_kick_requeue_list(q);
125         put_device(&sdev->sdev_gendev);
126 }
127
128 /**
129  * __scsi_queue_insert - private queue insertion
130  * @cmd: The SCSI command being requeued
131  * @reason:  The reason for the requeue
132  * @unbusy: Whether the queue should be unbusied
133  *
134  * This is a private queue insertion.  The public interface
135  * scsi_queue_insert() always assumes the queue should be unbusied
136  * because it's always called before the completion.  This function is
137  * for a requeue after completion, which should only occur in this
138  * file.
139  */
140 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
141 {
142         struct scsi_device *device = cmd->device;
143         struct request_queue *q = device->request_queue;
144         unsigned long flags;
145
146         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147                 "Inserting command %p into mlqueue\n", cmd));
148
149         scsi_set_blocked(cmd, reason);
150
151         /*
152          * Decrement the counters, since these commands are no longer
153          * active on the host/device.
154          */
155         if (unbusy)
156                 scsi_device_unbusy(device);
157
158         /*
159          * Requeue this command.  It will go before all other commands
160          * that are already in the queue. Schedule requeue work under
161          * lock such that the kblockd_schedule_work() call happens
162          * before blk_cleanup_queue() finishes.
163          */
164         cmd->result = 0;
165         if (q->mq_ops) {
166                 scsi_mq_requeue_cmd(cmd);
167                 return;
168         }
169         spin_lock_irqsave(q->queue_lock, flags);
170         blk_requeue_request(q, cmd->request);
171         kblockd_schedule_work(&device->requeue_work);
172         spin_unlock_irqrestore(q->queue_lock, flags);
173 }
174
175 /*
176  * Function:    scsi_queue_insert()
177  *
178  * Purpose:     Insert a command in the midlevel queue.
179  *
180  * Arguments:   cmd    - command that we are adding to queue.
181  *              reason - why we are inserting command to queue.
182  *
183  * Lock status: Assumed that lock is not held upon entry.
184  *
185  * Returns:     Nothing.
186  *
187  * Notes:       We do this for one of two cases.  Either the host is busy
188  *              and it cannot accept any more commands for the time being,
189  *              or the device returned QUEUE_FULL and can accept no more
190  *              commands.
191  * Notes:       This could be called either from an interrupt context or a
192  *              normal process context.
193  */
194 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
195 {
196         __scsi_queue_insert(cmd, reason, 1);
197 }
198 /**
199  * scsi_execute - insert request and wait for the result
200  * @sdev:       scsi device
201  * @cmd:        scsi command
202  * @data_direction: data direction
203  * @buffer:     data buffer
204  * @bufflen:    len of buffer
205  * @sense:      optional sense buffer
206  * @timeout:    request timeout in seconds
207  * @retries:    number of times to retry request
208  * @flags:      or into request flags;
209  * @resid:      optional residual length
210  *
211  * returns the req->errors value which is the scsi_cmnd result
212  * field.
213  */
214 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215                  int data_direction, void *buffer, unsigned bufflen,
216                  unsigned char *sense, int timeout, int retries, u64 flags,
217                  int *resid)
218 {
219         struct request *req;
220         int write = (data_direction == DMA_TO_DEVICE);
221         int ret = DRIVER_ERROR << 24;
222
223         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
224         if (IS_ERR(req))
225                 return ret;
226         blk_rq_set_block_pc(req);
227
228         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
229                                         buffer, bufflen, __GFP_WAIT))
230                 goto out;
231
232         req->cmd_len = COMMAND_SIZE(cmd[0]);
233         memcpy(req->cmd, cmd, req->cmd_len);
234         req->sense = sense;
235         req->sense_len = 0;
236         req->retries = retries;
237         req->timeout = timeout;
238         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
239
240         /*
241          * head injection *required* here otherwise quiesce won't work
242          */
243         blk_execute_rq(req->q, NULL, req, 1);
244
245         /*
246          * Some devices (USB mass-storage in particular) may transfer
247          * garbage data together with a residue indicating that the data
248          * is invalid.  Prevent the garbage from being misinterpreted
249          * and prevent security leaks by zeroing out the excess data.
250          */
251         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
252                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
253
254         if (resid)
255                 *resid = req->resid_len;
256         ret = req->errors;
257  out:
258         blk_put_request(req);
259
260         return ret;
261 }
262 EXPORT_SYMBOL(scsi_execute);
263
264 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
265                      int data_direction, void *buffer, unsigned bufflen,
266                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
267                      int *resid, u64 flags)
268 {
269         char *sense = NULL;
270         int result;
271         
272         if (sshdr) {
273                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
274                 if (!sense)
275                         return DRIVER_ERROR << 24;
276         }
277         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
278                               sense, timeout, retries, flags, resid);
279         if (sshdr)
280                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
281
282         kfree(sense);
283         return result;
284 }
285 EXPORT_SYMBOL(scsi_execute_req_flags);
286
287 /*
288  * Function:    scsi_init_cmd_errh()
289  *
290  * Purpose:     Initialize cmd fields related to error handling.
291  *
292  * Arguments:   cmd     - command that is ready to be queued.
293  *
294  * Notes:       This function has the job of initializing a number of
295  *              fields related to error handling.   Typically this will
296  *              be called once for each command, as required.
297  */
298 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299 {
300         cmd->serial_number = 0;
301         scsi_set_resid(cmd, 0);
302         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
303         if (cmd->cmd_len == 0)
304                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
305 }
306
307 void scsi_device_unbusy(struct scsi_device *sdev)
308 {
309         struct Scsi_Host *shost = sdev->host;
310         struct scsi_target *starget = scsi_target(sdev);
311         unsigned long flags;
312
313         atomic_dec(&shost->host_busy);
314         if (starget->can_queue > 0)
315                 atomic_dec(&starget->target_busy);
316
317         if (unlikely(scsi_host_in_recovery(shost) &&
318                      (shost->host_failed || shost->host_eh_scheduled))) {
319                 spin_lock_irqsave(shost->host_lock, flags);
320                 scsi_eh_wakeup(shost);
321                 spin_unlock_irqrestore(shost->host_lock, flags);
322         }
323
324         atomic_dec(&sdev->device_busy);
325 }
326
327 static void scsi_kick_queue(struct request_queue *q)
328 {
329         if (q->mq_ops)
330                 blk_mq_start_hw_queues(q);
331         else
332                 blk_run_queue(q);
333 }
334
335 /*
336  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
337  * and call blk_run_queue for all the scsi_devices on the target -
338  * including current_sdev first.
339  *
340  * Called with *no* scsi locks held.
341  */
342 static void scsi_single_lun_run(struct scsi_device *current_sdev)
343 {
344         struct Scsi_Host *shost = current_sdev->host;
345         struct scsi_device *sdev, *tmp;
346         struct scsi_target *starget = scsi_target(current_sdev);
347         unsigned long flags;
348
349         spin_lock_irqsave(shost->host_lock, flags);
350         starget->starget_sdev_user = NULL;
351         spin_unlock_irqrestore(shost->host_lock, flags);
352
353         /*
354          * Call blk_run_queue for all LUNs on the target, starting with
355          * current_sdev. We race with others (to set starget_sdev_user),
356          * but in most cases, we will be first. Ideally, each LU on the
357          * target would get some limited time or requests on the target.
358          */
359         scsi_kick_queue(current_sdev->request_queue);
360
361         spin_lock_irqsave(shost->host_lock, flags);
362         if (starget->starget_sdev_user)
363                 goto out;
364         list_for_each_entry_safe(sdev, tmp, &starget->devices,
365                         same_target_siblings) {
366                 if (sdev == current_sdev)
367                         continue;
368                 if (scsi_device_get(sdev))
369                         continue;
370
371                 spin_unlock_irqrestore(shost->host_lock, flags);
372                 scsi_kick_queue(sdev->request_queue);
373                 spin_lock_irqsave(shost->host_lock, flags);
374         
375                 scsi_device_put(sdev);
376         }
377  out:
378         spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380
381 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
382 {
383         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
384                 return true;
385         if (atomic_read(&sdev->device_blocked) > 0)
386                 return true;
387         return false;
388 }
389
390 static inline bool scsi_target_is_busy(struct scsi_target *starget)
391 {
392         if (starget->can_queue > 0) {
393                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
394                         return true;
395                 if (atomic_read(&starget->target_blocked) > 0)
396                         return true;
397         }
398         return false;
399 }
400
401 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403         if (shost->can_queue > 0 &&
404             atomic_read(&shost->host_busy) >= shost->can_queue)
405                 return true;
406         if (atomic_read(&shost->host_blocked) > 0)
407                 return true;
408         if (shost->host_self_blocked)
409                 return true;
410         return false;
411 }
412
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415         LIST_HEAD(starved_list);
416         struct scsi_device *sdev;
417         unsigned long flags;
418
419         spin_lock_irqsave(shost->host_lock, flags);
420         list_splice_init(&shost->starved_list, &starved_list);
421
422         while (!list_empty(&starved_list)) {
423                 struct request_queue *slq;
424
425                 /*
426                  * As long as shost is accepting commands and we have
427                  * starved queues, call blk_run_queue. scsi_request_fn
428                  * drops the queue_lock and can add us back to the
429                  * starved_list.
430                  *
431                  * host_lock protects the starved_list and starved_entry.
432                  * scsi_request_fn must get the host_lock before checking
433                  * or modifying starved_list or starved_entry.
434                  */
435                 if (scsi_host_is_busy(shost))
436                         break;
437
438                 sdev = list_entry(starved_list.next,
439                                   struct scsi_device, starved_entry);
440                 list_del_init(&sdev->starved_entry);
441                 if (scsi_target_is_busy(scsi_target(sdev))) {
442                         list_move_tail(&sdev->starved_entry,
443                                        &shost->starved_list);
444                         continue;
445                 }
446
447                 /*
448                  * Once we drop the host lock, a racing scsi_remove_device()
449                  * call may remove the sdev from the starved list and destroy
450                  * it and the queue.  Mitigate by taking a reference to the
451                  * queue and never touching the sdev again after we drop the
452                  * host lock.  Note: if __scsi_remove_device() invokes
453                  * blk_cleanup_queue() before the queue is run from this
454                  * function then blk_run_queue() will return immediately since
455                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456                  */
457                 slq = sdev->request_queue;
458                 if (!blk_get_queue(slq))
459                         continue;
460                 spin_unlock_irqrestore(shost->host_lock, flags);
461
462                 scsi_kick_queue(slq);
463                 blk_put_queue(slq);
464
465                 spin_lock_irqsave(shost->host_lock, flags);
466         }
467         /* put any unprocessed entries back */
468         list_splice(&starved_list, &shost->starved_list);
469         spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471
472 /*
473  * Function:   scsi_run_queue()
474  *
475  * Purpose:    Select a proper request queue to serve next
476  *
477  * Arguments:  q       - last request's queue
478  *
479  * Returns:     Nothing
480  *
481  * Notes:      The previous command was completely finished, start
482  *             a new one if possible.
483  */
484 static void scsi_run_queue(struct request_queue *q)
485 {
486         struct scsi_device *sdev = q->queuedata;
487
488         if (scsi_target(sdev)->single_lun)
489                 scsi_single_lun_run(sdev);
490         if (!list_empty(&sdev->host->starved_list))
491                 scsi_starved_list_run(sdev->host);
492
493         if (q->mq_ops)
494                 blk_mq_start_stopped_hw_queues(q, false);
495         else
496                 blk_run_queue(q);
497 }
498
499 void scsi_requeue_run_queue(struct work_struct *work)
500 {
501         struct scsi_device *sdev;
502         struct request_queue *q;
503
504         sdev = container_of(work, struct scsi_device, requeue_work);
505         q = sdev->request_queue;
506         scsi_run_queue(q);
507 }
508
509 /*
510  * Function:    scsi_requeue_command()
511  *
512  * Purpose:     Handle post-processing of completed commands.
513  *
514  * Arguments:   q       - queue to operate on
515  *              cmd     - command that may need to be requeued.
516  *
517  * Returns:     Nothing
518  *
519  * Notes:       After command completion, there may be blocks left
520  *              over which weren't finished by the previous command
521  *              this can be for a number of reasons - the main one is
522  *              I/O errors in the middle of the request, in which case
523  *              we need to request the blocks that come after the bad
524  *              sector.
525  * Notes:       Upon return, cmd is a stale pointer.
526  */
527 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
528 {
529         struct scsi_device *sdev = cmd->device;
530         struct request *req = cmd->request;
531         unsigned long flags;
532
533         spin_lock_irqsave(q->queue_lock, flags);
534         blk_unprep_request(req);
535         req->special = NULL;
536         scsi_put_command(cmd);
537         blk_requeue_request(q, req);
538         spin_unlock_irqrestore(q->queue_lock, flags);
539
540         scsi_run_queue(q);
541
542         put_device(&sdev->sdev_gendev);
543 }
544
545 void scsi_next_command(struct scsi_cmnd *cmd)
546 {
547         struct scsi_device *sdev = cmd->device;
548         struct request_queue *q = sdev->request_queue;
549
550         scsi_put_command(cmd);
551         scsi_run_queue(q);
552
553         put_device(&sdev->sdev_gendev);
554 }
555
556 void scsi_run_host_queues(struct Scsi_Host *shost)
557 {
558         struct scsi_device *sdev;
559
560         shost_for_each_device(sdev, shost)
561                 scsi_run_queue(sdev->request_queue);
562 }
563
564 static inline unsigned int scsi_sgtable_index(unsigned short nents)
565 {
566         unsigned int index;
567
568         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
569
570         if (nents <= 8)
571                 index = 0;
572         else
573                 index = get_count_order(nents) - 3;
574
575         return index;
576 }
577
578 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
579 {
580         struct scsi_host_sg_pool *sgp;
581
582         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583         mempool_free(sgl, sgp->pool);
584 }
585
586 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
587 {
588         struct scsi_host_sg_pool *sgp;
589
590         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
591         return mempool_alloc(sgp->pool, gfp_mask);
592 }
593
594 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
595 {
596         if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
597                 return;
598         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
599 }
600
601 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
602                               gfp_t gfp_mask, bool mq)
603 {
604         struct scatterlist *first_chunk = NULL;
605         int ret;
606
607         BUG_ON(!nents);
608
609         if (mq) {
610                 if (nents <= SCSI_MAX_SG_SEGMENTS) {
611                         sdb->table.nents = nents;
612                         sg_init_table(sdb->table.sgl, sdb->table.nents);
613                         return 0;
614                 }
615                 first_chunk = sdb->table.sgl;
616         }
617
618         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619                                first_chunk, gfp_mask, scsi_sg_alloc);
620         if (unlikely(ret))
621                 scsi_free_sgtable(sdb, mq);
622         return ret;
623 }
624
625 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
626 {
627         if (cmd->request->cmd_type == REQ_TYPE_FS) {
628                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
629
630                 if (drv->uninit_command)
631                         drv->uninit_command(cmd);
632         }
633 }
634
635 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
636 {
637         if (cmd->sdb.table.nents)
638                 scsi_free_sgtable(&cmd->sdb, true);
639         if (cmd->request->next_rq && cmd->request->next_rq->special)
640                 scsi_free_sgtable(cmd->request->next_rq->special, true);
641         if (scsi_prot_sg_count(cmd))
642                 scsi_free_sgtable(cmd->prot_sdb, true);
643 }
644
645 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
646 {
647         struct scsi_device *sdev = cmd->device;
648         struct Scsi_Host *shost = sdev->host;
649         unsigned long flags;
650
651         scsi_mq_free_sgtables(cmd);
652         scsi_uninit_cmd(cmd);
653
654         if (shost->use_cmd_list) {
655                 BUG_ON(list_empty(&cmd->list));
656                 spin_lock_irqsave(&sdev->list_lock, flags);
657                 list_del_init(&cmd->list);
658                 spin_unlock_irqrestore(&sdev->list_lock, flags);
659         }
660 }
661
662 /*
663  * Function:    scsi_release_buffers()
664  *
665  * Purpose:     Free resources allocate for a scsi_command.
666  *
667  * Arguments:   cmd     - command that we are bailing.
668  *
669  * Lock status: Assumed that no lock is held upon entry.
670  *
671  * Returns:     Nothing
672  *
673  * Notes:       In the event that an upper level driver rejects a
674  *              command, we must release resources allocated during
675  *              the __init_io() function.  Primarily this would involve
676  *              the scatter-gather table.
677  */
678 static void scsi_release_buffers(struct scsi_cmnd *cmd)
679 {
680         if (cmd->sdb.table.nents)
681                 scsi_free_sgtable(&cmd->sdb, false);
682
683         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
684
685         if (scsi_prot_sg_count(cmd))
686                 scsi_free_sgtable(cmd->prot_sdb, false);
687 }
688
689 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
690 {
691         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
692
693         scsi_free_sgtable(bidi_sdb, false);
694         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
695         cmd->request->next_rq->special = NULL;
696 }
697
698 static bool scsi_end_request(struct request *req, int error,
699                 unsigned int bytes, unsigned int bidi_bytes)
700 {
701         struct scsi_cmnd *cmd = req->special;
702         struct scsi_device *sdev = cmd->device;
703         struct request_queue *q = sdev->request_queue;
704
705         if (blk_update_request(req, error, bytes))
706                 return true;
707
708         /* Bidi request must be completed as a whole */
709         if (unlikely(bidi_bytes) &&
710             blk_update_request(req->next_rq, error, bidi_bytes))
711                 return true;
712
713         if (blk_queue_add_random(q))
714                 add_disk_randomness(req->rq_disk);
715
716         if (req->mq_ctx) {
717                 /*
718                  * In the MQ case the command gets freed by __blk_mq_end_request,
719                  * so we have to do all cleanup that depends on it earlier.
720                  *
721                  * We also can't kick the queues from irq context, so we
722                  * will have to defer it to a workqueue.
723                  */
724                 scsi_mq_uninit_cmd(cmd);
725
726                 __blk_mq_end_request(req, error);
727
728                 if (scsi_target(sdev)->single_lun ||
729                     !list_empty(&sdev->host->starved_list))
730                         kblockd_schedule_work(&sdev->requeue_work);
731                 else
732                         blk_mq_start_stopped_hw_queues(q, true);
733
734                 put_device(&sdev->sdev_gendev);
735         } else {
736                 unsigned long flags;
737
738                 if (bidi_bytes)
739                         scsi_release_bidi_buffers(cmd);
740
741                 spin_lock_irqsave(q->queue_lock, flags);
742                 blk_finish_request(req, error);
743                 spin_unlock_irqrestore(q->queue_lock, flags);
744
745                 scsi_release_buffers(cmd);
746                 scsi_next_command(cmd);
747         }
748
749         return false;
750 }
751
752 /**
753  * __scsi_error_from_host_byte - translate SCSI error code into errno
754  * @cmd:        SCSI command (unused)
755  * @result:     scsi error code
756  *
757  * Translate SCSI error code into standard UNIX errno.
758  * Return values:
759  * -ENOLINK     temporary transport failure
760  * -EREMOTEIO   permanent target failure, do not retry
761  * -EBADE       permanent nexus failure, retry on other path
762  * -ENOSPC      No write space available
763  * -ENODATA     Medium error
764  * -EIO         unspecified I/O error
765  */
766 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
767 {
768         int error = 0;
769
770         switch(host_byte(result)) {
771         case DID_TRANSPORT_FAILFAST:
772                 error = -ENOLINK;
773                 break;
774         case DID_TARGET_FAILURE:
775                 set_host_byte(cmd, DID_OK);
776                 error = -EREMOTEIO;
777                 break;
778         case DID_NEXUS_FAILURE:
779                 set_host_byte(cmd, DID_OK);
780                 error = -EBADE;
781                 break;
782         case DID_ALLOC_FAILURE:
783                 set_host_byte(cmd, DID_OK);
784                 error = -ENOSPC;
785                 break;
786         case DID_MEDIUM_ERROR:
787                 set_host_byte(cmd, DID_OK);
788                 error = -ENODATA;
789                 break;
790         default:
791                 error = -EIO;
792                 break;
793         }
794
795         return error;
796 }
797
798 /*
799  * Function:    scsi_io_completion()
800  *
801  * Purpose:     Completion processing for block device I/O requests.
802  *
803  * Arguments:   cmd   - command that is finished.
804  *
805  * Lock status: Assumed that no lock is held upon entry.
806  *
807  * Returns:     Nothing
808  *
809  * Notes:       We will finish off the specified number of sectors.  If we
810  *              are done, the command block will be released and the queue
811  *              function will be goosed.  If we are not done then we have to
812  *              figure out what to do next:
813  *
814  *              a) We can call scsi_requeue_command().  The request
815  *                 will be unprepared and put back on the queue.  Then
816  *                 a new command will be created for it.  This should
817  *                 be used if we made forward progress, or if we want
818  *                 to switch from READ(10) to READ(6) for example.
819  *
820  *              b) We can call __scsi_queue_insert().  The request will
821  *                 be put back on the queue and retried using the same
822  *                 command as before, possibly after a delay.
823  *
824  *              c) We can call scsi_end_request() with -EIO to fail
825  *                 the remainder of the request.
826  */
827 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
828 {
829         int result = cmd->result;
830         struct request_queue *q = cmd->device->request_queue;
831         struct request *req = cmd->request;
832         int error = 0;
833         struct scsi_sense_hdr sshdr;
834         int sense_valid = 0;
835         int sense_deferred = 0;
836         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
837               ACTION_DELAYED_RETRY} action;
838         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
839
840         if (result) {
841                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
842                 if (sense_valid)
843                         sense_deferred = scsi_sense_is_deferred(&sshdr);
844         }
845
846         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
847                 if (result) {
848                         if (sense_valid && req->sense) {
849                                 /*
850                                  * SG_IO wants current and deferred errors
851                                  */
852                                 int len = 8 + cmd->sense_buffer[7];
853
854                                 if (len > SCSI_SENSE_BUFFERSIZE)
855                                         len = SCSI_SENSE_BUFFERSIZE;
856                                 memcpy(req->sense, cmd->sense_buffer,  len);
857                                 req->sense_len = len;
858                         }
859                         if (!sense_deferred)
860                                 error = __scsi_error_from_host_byte(cmd, result);
861                 }
862                 /*
863                  * __scsi_error_from_host_byte may have reset the host_byte
864                  */
865                 req->errors = cmd->result;
866
867                 req->resid_len = scsi_get_resid(cmd);
868
869                 if (scsi_bidi_cmnd(cmd)) {
870                         /*
871                          * Bidi commands Must be complete as a whole,
872                          * both sides at once.
873                          */
874                         req->next_rq->resid_len = scsi_in(cmd)->resid;
875                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
876                                         blk_rq_bytes(req->next_rq)))
877                                 BUG();
878                         return;
879                 }
880         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
881                 /*
882                  * Certain non BLOCK_PC requests are commands that don't
883                  * actually transfer anything (FLUSH), so cannot use
884                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
885                  * This sets the error explicitly for the problem case.
886                  */
887                 error = __scsi_error_from_host_byte(cmd, result);
888         }
889
890         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
891         BUG_ON(blk_bidi_rq(req));
892
893         /*
894          * Next deal with any sectors which we were able to correctly
895          * handle.
896          */
897         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
898                 "%u sectors total, %d bytes done.\n",
899                 blk_rq_sectors(req), good_bytes));
900
901         /*
902          * Recovered errors need reporting, but they're always treated
903          * as success, so fiddle the result code here.  For BLOCK_PC
904          * we already took a copy of the original into rq->errors which
905          * is what gets returned to the user
906          */
907         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
908                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
909                  * print since caller wants ATA registers. Only occurs on
910                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
911                  */
912                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
913                         ;
914                 else if (!(req->cmd_flags & REQ_QUIET))
915                         scsi_print_sense("", cmd);
916                 result = 0;
917                 /* BLOCK_PC may have set error */
918                 error = 0;
919         }
920
921         /*
922          * If we finished all bytes in the request we are done now.
923          */
924         if (!scsi_end_request(req, error, good_bytes, 0))
925                 return;
926
927         /*
928          * Kill remainder if no retrys.
929          */
930         if (error && scsi_noretry_cmd(cmd)) {
931                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
932                         BUG();
933                 return;
934         }
935
936         /*
937          * If there had been no error, but we have leftover bytes in the
938          * requeues just queue the command up again.
939          */
940         if (result == 0)
941                 goto requeue;
942
943         error = __scsi_error_from_host_byte(cmd, result);
944
945         if (host_byte(result) == DID_RESET) {
946                 /* Third party bus reset or reset for error recovery
947                  * reasons.  Just retry the command and see what
948                  * happens.
949                  */
950                 action = ACTION_RETRY;
951         } else if (sense_valid && !sense_deferred) {
952                 switch (sshdr.sense_key) {
953                 case UNIT_ATTENTION:
954                         if (cmd->device->removable) {
955                                 /* Detected disc change.  Set a bit
956                                  * and quietly refuse further access.
957                                  */
958                                 cmd->device->changed = 1;
959                                 action = ACTION_FAIL;
960                         } else {
961                                 /* Must have been a power glitch, or a
962                                  * bus reset.  Could not have been a
963                                  * media change, so we just retry the
964                                  * command and see what happens.
965                                  */
966                                 action = ACTION_RETRY;
967                         }
968                         break;
969                 case ILLEGAL_REQUEST:
970                         /* If we had an ILLEGAL REQUEST returned, then
971                          * we may have performed an unsupported
972                          * command.  The only thing this should be
973                          * would be a ten byte read where only a six
974                          * byte read was supported.  Also, on a system
975                          * where READ CAPACITY failed, we may have
976                          * read past the end of the disk.
977                          */
978                         if ((cmd->device->use_10_for_rw &&
979                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
980                             (cmd->cmnd[0] == READ_10 ||
981                              cmd->cmnd[0] == WRITE_10)) {
982                                 /* This will issue a new 6-byte command. */
983                                 cmd->device->use_10_for_rw = 0;
984                                 action = ACTION_REPREP;
985                         } else if (sshdr.asc == 0x10) /* DIX */ {
986                                 action = ACTION_FAIL;
987                                 error = -EILSEQ;
988                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
989                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
990                                 action = ACTION_FAIL;
991                                 error = -EREMOTEIO;
992                         } else
993                                 action = ACTION_FAIL;
994                         break;
995                 case ABORTED_COMMAND:
996                         action = ACTION_FAIL;
997                         if (sshdr.asc == 0x10) /* DIF */
998                                 error = -EILSEQ;
999                         break;
1000                 case NOT_READY:
1001                         /* If the device is in the process of becoming
1002                          * ready, or has a temporary blockage, retry.
1003                          */
1004                         if (sshdr.asc == 0x04) {
1005                                 switch (sshdr.ascq) {
1006                                 case 0x01: /* becoming ready */
1007                                 case 0x04: /* format in progress */
1008                                 case 0x05: /* rebuild in progress */
1009                                 case 0x06: /* recalculation in progress */
1010                                 case 0x07: /* operation in progress */
1011                                 case 0x08: /* Long write in progress */
1012                                 case 0x09: /* self test in progress */
1013                                 case 0x14: /* space allocation in progress */
1014                                         action = ACTION_DELAYED_RETRY;
1015                                         break;
1016                                 default:
1017                                         action = ACTION_FAIL;
1018                                         break;
1019                                 }
1020                         } else
1021                                 action = ACTION_FAIL;
1022                         break;
1023                 case VOLUME_OVERFLOW:
1024                         /* See SSC3rXX or current. */
1025                         action = ACTION_FAIL;
1026                         break;
1027                 default:
1028                         action = ACTION_FAIL;
1029                         break;
1030                 }
1031         } else
1032                 action = ACTION_FAIL;
1033
1034         if (action != ACTION_FAIL &&
1035             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1036                 action = ACTION_FAIL;
1037
1038         switch (action) {
1039         case ACTION_FAIL:
1040                 /* Give up and fail the remainder of the request */
1041                 if (!(req->cmd_flags & REQ_QUIET)) {
1042                         scsi_print_result(cmd);
1043                         if (driver_byte(result) & DRIVER_SENSE)
1044                                 scsi_print_sense("", cmd);
1045                         scsi_print_command(cmd);
1046                 }
1047                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1048                         return;
1049                 /*FALLTHRU*/
1050         case ACTION_REPREP:
1051         requeue:
1052                 /* Unprep the request and put it back at the head of the queue.
1053                  * A new command will be prepared and issued.
1054                  */
1055                 if (q->mq_ops) {
1056                         cmd->request->cmd_flags &= ~REQ_DONTPREP;
1057                         scsi_mq_uninit_cmd(cmd);
1058                         scsi_mq_requeue_cmd(cmd);
1059                 } else {
1060                         scsi_release_buffers(cmd);
1061                         scsi_requeue_command(q, cmd);
1062                 }
1063                 break;
1064         case ACTION_RETRY:
1065                 /* Retry the same command immediately */
1066                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1067                 break;
1068         case ACTION_DELAYED_RETRY:
1069                 /* Retry the same command after a delay */
1070                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1071                 break;
1072         }
1073 }
1074
1075 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1076                              gfp_t gfp_mask)
1077 {
1078         int count;
1079
1080         /*
1081          * If sg table allocation fails, requeue request later.
1082          */
1083         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1084                                         gfp_mask, req->mq_ctx != NULL)))
1085                 return BLKPREP_DEFER;
1086
1087         /* 
1088          * Next, walk the list, and fill in the addresses and sizes of
1089          * each segment.
1090          */
1091         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1092         BUG_ON(count > sdb->table.nents);
1093         sdb->table.nents = count;
1094         sdb->length = blk_rq_bytes(req);
1095         return BLKPREP_OK;
1096 }
1097
1098 /*
1099  * Function:    scsi_init_io()
1100  *
1101  * Purpose:     SCSI I/O initialize function.
1102  *
1103  * Arguments:   cmd   - Command descriptor we wish to initialize
1104  *
1105  * Returns:     0 on success
1106  *              BLKPREP_DEFER if the failure is retryable
1107  *              BLKPREP_KILL if the failure is fatal
1108  */
1109 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1110 {
1111         struct scsi_device *sdev = cmd->device;
1112         struct request *rq = cmd->request;
1113         bool is_mq = (rq->mq_ctx != NULL);
1114         int error;
1115
1116         BUG_ON(!rq->nr_phys_segments);
1117
1118         error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1119         if (error)
1120                 goto err_exit;
1121
1122         if (blk_bidi_rq(rq)) {
1123                 if (!rq->q->mq_ops) {
1124                         struct scsi_data_buffer *bidi_sdb =
1125                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1126                         if (!bidi_sdb) {
1127                                 error = BLKPREP_DEFER;
1128                                 goto err_exit;
1129                         }
1130
1131                         rq->next_rq->special = bidi_sdb;
1132                 }
1133
1134                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1135                                           GFP_ATOMIC);
1136                 if (error)
1137                         goto err_exit;
1138         }
1139
1140         if (blk_integrity_rq(rq)) {
1141                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1142                 int ivecs, count;
1143
1144                 BUG_ON(prot_sdb == NULL);
1145                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1146
1147                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1148                         error = BLKPREP_DEFER;
1149                         goto err_exit;
1150                 }
1151
1152                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1153                                                 prot_sdb->table.sgl);
1154                 BUG_ON(unlikely(count > ivecs));
1155                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1156
1157                 cmd->prot_sdb = prot_sdb;
1158                 cmd->prot_sdb->table.nents = count;
1159         }
1160
1161         return BLKPREP_OK;
1162 err_exit:
1163         if (is_mq) {
1164                 scsi_mq_free_sgtables(cmd);
1165         } else {
1166                 scsi_release_buffers(cmd);
1167                 cmd->request->special = NULL;
1168                 scsi_put_command(cmd);
1169                 put_device(&sdev->sdev_gendev);
1170         }
1171         return error;
1172 }
1173 EXPORT_SYMBOL(scsi_init_io);
1174
1175 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1176                 struct request *req)
1177 {
1178         struct scsi_cmnd *cmd;
1179
1180         if (!req->special) {
1181                 /* Bail if we can't get a reference to the device */
1182                 if (!get_device(&sdev->sdev_gendev))
1183                         return NULL;
1184
1185                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1186                 if (unlikely(!cmd)) {
1187                         put_device(&sdev->sdev_gendev);
1188                         return NULL;
1189                 }
1190                 req->special = cmd;
1191         } else {
1192                 cmd = req->special;
1193         }
1194
1195         /* pull a tag out of the request if we have one */
1196         cmd->tag = req->tag;
1197         cmd->request = req;
1198
1199         cmd->cmnd = req->cmd;
1200         cmd->prot_op = SCSI_PROT_NORMAL;
1201
1202         return cmd;
1203 }
1204
1205 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1206 {
1207         struct scsi_cmnd *cmd = req->special;
1208
1209         /*
1210          * BLOCK_PC requests may transfer data, in which case they must
1211          * a bio attached to them.  Or they might contain a SCSI command
1212          * that does not transfer data, in which case they may optionally
1213          * submit a request without an attached bio.
1214          */
1215         if (req->bio) {
1216                 int ret = scsi_init_io(cmd, GFP_ATOMIC);
1217                 if (unlikely(ret))
1218                         return ret;
1219         } else {
1220                 BUG_ON(blk_rq_bytes(req));
1221
1222                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1223         }
1224
1225         cmd->cmd_len = req->cmd_len;
1226         cmd->transfersize = blk_rq_bytes(req);
1227         cmd->allowed = req->retries;
1228         return BLKPREP_OK;
1229 }
1230
1231 /*
1232  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1233  * that still need to be translated to SCSI CDBs from the ULD.
1234  */
1235 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1236 {
1237         struct scsi_cmnd *cmd = req->special;
1238
1239         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1240                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1241                 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1242                 if (ret != BLKPREP_OK)
1243                         return ret;
1244         }
1245
1246         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1247         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1248 }
1249
1250 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1251 {
1252         struct scsi_cmnd *cmd = req->special;
1253
1254         if (!blk_rq_bytes(req))
1255                 cmd->sc_data_direction = DMA_NONE;
1256         else if (rq_data_dir(req) == WRITE)
1257                 cmd->sc_data_direction = DMA_TO_DEVICE;
1258         else
1259                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1260
1261         switch (req->cmd_type) {
1262         case REQ_TYPE_FS:
1263                 return scsi_setup_fs_cmnd(sdev, req);
1264         case REQ_TYPE_BLOCK_PC:
1265                 return scsi_setup_blk_pc_cmnd(sdev, req);
1266         default:
1267                 return BLKPREP_KILL;
1268         }
1269 }
1270
1271 static int
1272 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1273 {
1274         int ret = BLKPREP_OK;
1275
1276         /*
1277          * If the device is not in running state we will reject some
1278          * or all commands.
1279          */
1280         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1281                 switch (sdev->sdev_state) {
1282                 case SDEV_OFFLINE:
1283                 case SDEV_TRANSPORT_OFFLINE:
1284                         /*
1285                          * If the device is offline we refuse to process any
1286                          * commands.  The device must be brought online
1287                          * before trying any recovery commands.
1288                          */
1289                         sdev_printk(KERN_ERR, sdev,
1290                                     "rejecting I/O to offline device\n");
1291                         ret = BLKPREP_KILL;
1292                         break;
1293                 case SDEV_DEL:
1294                         /*
1295                          * If the device is fully deleted, we refuse to
1296                          * process any commands as well.
1297                          */
1298                         sdev_printk(KERN_ERR, sdev,
1299                                     "rejecting I/O to dead device\n");
1300                         ret = BLKPREP_KILL;
1301                         break;
1302                 case SDEV_QUIESCE:
1303                 case SDEV_BLOCK:
1304                 case SDEV_CREATED_BLOCK:
1305                         /*
1306                          * If the devices is blocked we defer normal commands.
1307                          */
1308                         if (!(req->cmd_flags & REQ_PREEMPT))
1309                                 ret = BLKPREP_DEFER;
1310                         break;
1311                 default:
1312                         /*
1313                          * For any other not fully online state we only allow
1314                          * special commands.  In particular any user initiated
1315                          * command is not allowed.
1316                          */
1317                         if (!(req->cmd_flags & REQ_PREEMPT))
1318                                 ret = BLKPREP_KILL;
1319                         break;
1320                 }
1321         }
1322         return ret;
1323 }
1324
1325 static int
1326 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1327 {
1328         struct scsi_device *sdev = q->queuedata;
1329
1330         switch (ret) {
1331         case BLKPREP_KILL:
1332                 req->errors = DID_NO_CONNECT << 16;
1333                 /* release the command and kill it */
1334                 if (req->special) {
1335                         struct scsi_cmnd *cmd = req->special;
1336                         scsi_release_buffers(cmd);
1337                         scsi_put_command(cmd);
1338                         put_device(&sdev->sdev_gendev);
1339                         req->special = NULL;
1340                 }
1341                 break;
1342         case BLKPREP_DEFER:
1343                 /*
1344                  * If we defer, the blk_peek_request() returns NULL, but the
1345                  * queue must be restarted, so we schedule a callback to happen
1346                  * shortly.
1347                  */
1348                 if (atomic_read(&sdev->device_busy) == 0)
1349                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1350                 break;
1351         default:
1352                 req->cmd_flags |= REQ_DONTPREP;
1353         }
1354
1355         return ret;
1356 }
1357
1358 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1359 {
1360         struct scsi_device *sdev = q->queuedata;
1361         struct scsi_cmnd *cmd;
1362         int ret;
1363
1364         ret = scsi_prep_state_check(sdev, req);
1365         if (ret != BLKPREP_OK)
1366                 goto out;
1367
1368         cmd = scsi_get_cmd_from_req(sdev, req);
1369         if (unlikely(!cmd)) {
1370                 ret = BLKPREP_DEFER;
1371                 goto out;
1372         }
1373
1374         ret = scsi_setup_cmnd(sdev, req);
1375 out:
1376         return scsi_prep_return(q, req, ret);
1377 }
1378
1379 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1380 {
1381         scsi_uninit_cmd(req->special);
1382 }
1383
1384 /*
1385  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1386  * return 0.
1387  *
1388  * Called with the queue_lock held.
1389  */
1390 static inline int scsi_dev_queue_ready(struct request_queue *q,
1391                                   struct scsi_device *sdev)
1392 {
1393         unsigned int busy;
1394
1395         busy = atomic_inc_return(&sdev->device_busy) - 1;
1396         if (atomic_read(&sdev->device_blocked)) {
1397                 if (busy)
1398                         goto out_dec;
1399
1400                 /*
1401                  * unblock after device_blocked iterates to zero
1402                  */
1403                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1404                         /*
1405                          * For the MQ case we take care of this in the caller.
1406                          */
1407                         if (!q->mq_ops)
1408                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1409                         goto out_dec;
1410                 }
1411                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1412                                    "unblocking device at zero depth\n"));
1413         }
1414
1415         if (busy >= sdev->queue_depth)
1416                 goto out_dec;
1417
1418         return 1;
1419 out_dec:
1420         atomic_dec(&sdev->device_busy);
1421         return 0;
1422 }
1423
1424 /*
1425  * scsi_target_queue_ready: checks if there we can send commands to target
1426  * @sdev: scsi device on starget to check.
1427  */
1428 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1429                                            struct scsi_device *sdev)
1430 {
1431         struct scsi_target *starget = scsi_target(sdev);
1432         unsigned int busy;
1433
1434         if (starget->single_lun) {
1435                 spin_lock_irq(shost->host_lock);
1436                 if (starget->starget_sdev_user &&
1437                     starget->starget_sdev_user != sdev) {
1438                         spin_unlock_irq(shost->host_lock);
1439                         return 0;
1440                 }
1441                 starget->starget_sdev_user = sdev;
1442                 spin_unlock_irq(shost->host_lock);
1443         }
1444
1445         if (starget->can_queue <= 0)
1446                 return 1;
1447
1448         busy = atomic_inc_return(&starget->target_busy) - 1;
1449         if (atomic_read(&starget->target_blocked) > 0) {
1450                 if (busy)
1451                         goto starved;
1452
1453                 /*
1454                  * unblock after target_blocked iterates to zero
1455                  */
1456                 if (atomic_dec_return(&starget->target_blocked) > 0)
1457                         goto out_dec;
1458
1459                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1460                                  "unblocking target at zero depth\n"));
1461         }
1462
1463         if (busy >= starget->can_queue)
1464                 goto starved;
1465
1466         return 1;
1467
1468 starved:
1469         spin_lock_irq(shost->host_lock);
1470         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1471         spin_unlock_irq(shost->host_lock);
1472 out_dec:
1473         if (starget->can_queue > 0)
1474                 atomic_dec(&starget->target_busy);
1475         return 0;
1476 }
1477
1478 /*
1479  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1480  * return 0. We must end up running the queue again whenever 0 is
1481  * returned, else IO can hang.
1482  */
1483 static inline int scsi_host_queue_ready(struct request_queue *q,
1484                                    struct Scsi_Host *shost,
1485                                    struct scsi_device *sdev)
1486 {
1487         unsigned int busy;
1488
1489         if (scsi_host_in_recovery(shost))
1490                 return 0;
1491
1492         busy = atomic_inc_return(&shost->host_busy) - 1;
1493         if (atomic_read(&shost->host_blocked) > 0) {
1494                 if (busy)
1495                         goto starved;
1496
1497                 /*
1498                  * unblock after host_blocked iterates to zero
1499                  */
1500                 if (atomic_dec_return(&shost->host_blocked) > 0)
1501                         goto out_dec;
1502
1503                 SCSI_LOG_MLQUEUE(3,
1504                         shost_printk(KERN_INFO, shost,
1505                                      "unblocking host at zero depth\n"));
1506         }
1507
1508         if (shost->can_queue > 0 && busy >= shost->can_queue)
1509                 goto starved;
1510         if (shost->host_self_blocked)
1511                 goto starved;
1512
1513         /* We're OK to process the command, so we can't be starved */
1514         if (!list_empty(&sdev->starved_entry)) {
1515                 spin_lock_irq(shost->host_lock);
1516                 if (!list_empty(&sdev->starved_entry))
1517                         list_del_init(&sdev->starved_entry);
1518                 spin_unlock_irq(shost->host_lock);
1519         }
1520
1521         return 1;
1522
1523 starved:
1524         spin_lock_irq(shost->host_lock);
1525         if (list_empty(&sdev->starved_entry))
1526                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1527         spin_unlock_irq(shost->host_lock);
1528 out_dec:
1529         atomic_dec(&shost->host_busy);
1530         return 0;
1531 }
1532
1533 /*
1534  * Busy state exporting function for request stacking drivers.
1535  *
1536  * For efficiency, no lock is taken to check the busy state of
1537  * shost/starget/sdev, since the returned value is not guaranteed and
1538  * may be changed after request stacking drivers call the function,
1539  * regardless of taking lock or not.
1540  *
1541  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1542  * needs to return 'not busy'. Otherwise, request stacking drivers
1543  * may hold requests forever.
1544  */
1545 static int scsi_lld_busy(struct request_queue *q)
1546 {
1547         struct scsi_device *sdev = q->queuedata;
1548         struct Scsi_Host *shost;
1549
1550         if (blk_queue_dying(q))
1551                 return 0;
1552
1553         shost = sdev->host;
1554
1555         /*
1556          * Ignore host/starget busy state.
1557          * Since block layer does not have a concept of fairness across
1558          * multiple queues, congestion of host/starget needs to be handled
1559          * in SCSI layer.
1560          */
1561         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1562                 return 1;
1563
1564         return 0;
1565 }
1566
1567 /*
1568  * Kill a request for a dead device
1569  */
1570 static void scsi_kill_request(struct request *req, struct request_queue *q)
1571 {
1572         struct scsi_cmnd *cmd = req->special;
1573         struct scsi_device *sdev;
1574         struct scsi_target *starget;
1575         struct Scsi_Host *shost;
1576
1577         blk_start_request(req);
1578
1579         scmd_printk(KERN_INFO, cmd, "killing request\n");
1580
1581         sdev = cmd->device;
1582         starget = scsi_target(sdev);
1583         shost = sdev->host;
1584         scsi_init_cmd_errh(cmd);
1585         cmd->result = DID_NO_CONNECT << 16;
1586         atomic_inc(&cmd->device->iorequest_cnt);
1587
1588         /*
1589          * SCSI request completion path will do scsi_device_unbusy(),
1590          * bump busy counts.  To bump the counters, we need to dance
1591          * with the locks as normal issue path does.
1592          */
1593         atomic_inc(&sdev->device_busy);
1594         atomic_inc(&shost->host_busy);
1595         if (starget->can_queue > 0)
1596                 atomic_inc(&starget->target_busy);
1597
1598         blk_complete_request(req);
1599 }
1600
1601 static void scsi_softirq_done(struct request *rq)
1602 {
1603         struct scsi_cmnd *cmd = rq->special;
1604         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1605         int disposition;
1606
1607         INIT_LIST_HEAD(&cmd->eh_entry);
1608
1609         atomic_inc(&cmd->device->iodone_cnt);
1610         if (cmd->result)
1611                 atomic_inc(&cmd->device->ioerr_cnt);
1612
1613         disposition = scsi_decide_disposition(cmd);
1614         if (disposition != SUCCESS &&
1615             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1616                 sdev_printk(KERN_ERR, cmd->device,
1617                             "timing out command, waited %lus\n",
1618                             wait_for/HZ);
1619                 disposition = SUCCESS;
1620         }
1621
1622         scsi_log_completion(cmd, disposition);
1623
1624         switch (disposition) {
1625                 case SUCCESS:
1626                         scsi_finish_command(cmd);
1627                         break;
1628                 case NEEDS_RETRY:
1629                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1630                         break;
1631                 case ADD_TO_MLQUEUE:
1632                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1633                         break;
1634                 default:
1635                         if (!scsi_eh_scmd_add(cmd, 0))
1636                                 scsi_finish_command(cmd);
1637         }
1638 }
1639
1640 /**
1641  * scsi_done - Invoke completion on finished SCSI command.
1642  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1643  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1644  *
1645  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1646  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1647  * calls blk_complete_request() for further processing.
1648  *
1649  * This function is interrupt context safe.
1650  */
1651 static void scsi_done(struct scsi_cmnd *cmd)
1652 {
1653         trace_scsi_dispatch_cmd_done(cmd);
1654         blk_complete_request(cmd->request);
1655 }
1656
1657 /*
1658  * Function:    scsi_request_fn()
1659  *
1660  * Purpose:     Main strategy routine for SCSI.
1661  *
1662  * Arguments:   q       - Pointer to actual queue.
1663  *
1664  * Returns:     Nothing
1665  *
1666  * Lock status: IO request lock assumed to be held when called.
1667  */
1668 static void scsi_request_fn(struct request_queue *q)
1669         __releases(q->queue_lock)
1670         __acquires(q->queue_lock)
1671 {
1672         struct scsi_device *sdev = q->queuedata;
1673         struct Scsi_Host *shost;
1674         struct scsi_cmnd *cmd;
1675         struct request *req;
1676
1677         /*
1678          * To start with, we keep looping until the queue is empty, or until
1679          * the host is no longer able to accept any more requests.
1680          */
1681         shost = sdev->host;
1682         for (;;) {
1683                 int rtn;
1684                 /*
1685                  * get next queueable request.  We do this early to make sure
1686                  * that the request is fully prepared even if we cannot
1687                  * accept it.
1688                  */
1689                 req = blk_peek_request(q);
1690                 if (!req)
1691                         break;
1692
1693                 if (unlikely(!scsi_device_online(sdev))) {
1694                         sdev_printk(KERN_ERR, sdev,
1695                                     "rejecting I/O to offline device\n");
1696                         scsi_kill_request(req, q);
1697                         continue;
1698                 }
1699
1700                 if (!scsi_dev_queue_ready(q, sdev))
1701                         break;
1702
1703                 /*
1704                  * Remove the request from the request list.
1705                  */
1706                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1707                         blk_start_request(req);
1708
1709                 spin_unlock_irq(q->queue_lock);
1710                 cmd = req->special;
1711                 if (unlikely(cmd == NULL)) {
1712                         printk(KERN_CRIT "impossible request in %s.\n"
1713                                          "please mail a stack trace to "
1714                                          "linux-scsi@vger.kernel.org\n",
1715                                          __func__);
1716                         blk_dump_rq_flags(req, "foo");
1717                         BUG();
1718                 }
1719
1720                 /*
1721                  * We hit this when the driver is using a host wide
1722                  * tag map. For device level tag maps the queue_depth check
1723                  * in the device ready fn would prevent us from trying
1724                  * to allocate a tag. Since the map is a shared host resource
1725                  * we add the dev to the starved list so it eventually gets
1726                  * a run when a tag is freed.
1727                  */
1728                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1729                         spin_lock_irq(shost->host_lock);
1730                         if (list_empty(&sdev->starved_entry))
1731                                 list_add_tail(&sdev->starved_entry,
1732                                               &shost->starved_list);
1733                         spin_unlock_irq(shost->host_lock);
1734                         goto not_ready;
1735                 }
1736
1737                 if (!scsi_target_queue_ready(shost, sdev))
1738                         goto not_ready;
1739
1740                 if (!scsi_host_queue_ready(q, shost, sdev))
1741                         goto host_not_ready;
1742
1743                 /*
1744                  * Finally, initialize any error handling parameters, and set up
1745                  * the timers for timeouts.
1746                  */
1747                 scsi_init_cmd_errh(cmd);
1748
1749                 /*
1750                  * Dispatch the command to the low-level driver.
1751                  */
1752                 cmd->scsi_done = scsi_done;
1753                 rtn = scsi_dispatch_cmd(cmd);
1754                 if (rtn) {
1755                         scsi_queue_insert(cmd, rtn);
1756                         spin_lock_irq(q->queue_lock);
1757                         goto out_delay;
1758                 }
1759                 spin_lock_irq(q->queue_lock);
1760         }
1761
1762         return;
1763
1764  host_not_ready:
1765         if (scsi_target(sdev)->can_queue > 0)
1766                 atomic_dec(&scsi_target(sdev)->target_busy);
1767  not_ready:
1768         /*
1769          * lock q, handle tag, requeue req, and decrement device_busy. We
1770          * must return with queue_lock held.
1771          *
1772          * Decrementing device_busy without checking it is OK, as all such
1773          * cases (host limits or settings) should run the queue at some
1774          * later time.
1775          */
1776         spin_lock_irq(q->queue_lock);
1777         blk_requeue_request(q, req);
1778         atomic_dec(&sdev->device_busy);
1779 out_delay:
1780         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1781                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1782 }
1783
1784 static inline int prep_to_mq(int ret)
1785 {
1786         switch (ret) {
1787         case BLKPREP_OK:
1788                 return 0;
1789         case BLKPREP_DEFER:
1790                 return BLK_MQ_RQ_QUEUE_BUSY;
1791         default:
1792                 return BLK_MQ_RQ_QUEUE_ERROR;
1793         }
1794 }
1795
1796 static int scsi_mq_prep_fn(struct request *req)
1797 {
1798         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1799         struct scsi_device *sdev = req->q->queuedata;
1800         struct Scsi_Host *shost = sdev->host;
1801         unsigned char *sense_buf = cmd->sense_buffer;
1802         struct scatterlist *sg;
1803
1804         memset(cmd, 0, sizeof(struct scsi_cmnd));
1805
1806         req->special = cmd;
1807
1808         cmd->request = req;
1809         cmd->device = sdev;
1810         cmd->sense_buffer = sense_buf;
1811
1812         cmd->tag = req->tag;
1813
1814         cmd->cmnd = req->cmd;
1815         cmd->prot_op = SCSI_PROT_NORMAL;
1816
1817         INIT_LIST_HEAD(&cmd->list);
1818         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1819         cmd->jiffies_at_alloc = jiffies;
1820
1821         if (shost->use_cmd_list) {
1822                 spin_lock_irq(&sdev->list_lock);
1823                 list_add_tail(&cmd->list, &sdev->cmd_list);
1824                 spin_unlock_irq(&sdev->list_lock);
1825         }
1826
1827         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1828         cmd->sdb.table.sgl = sg;
1829
1830         if (scsi_host_get_prot(shost)) {
1831                 cmd->prot_sdb = (void *)sg +
1832                         shost->sg_tablesize * sizeof(struct scatterlist);
1833                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1834
1835                 cmd->prot_sdb->table.sgl =
1836                         (struct scatterlist *)(cmd->prot_sdb + 1);
1837         }
1838
1839         if (blk_bidi_rq(req)) {
1840                 struct request *next_rq = req->next_rq;
1841                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1842
1843                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1844                 bidi_sdb->table.sgl =
1845                         (struct scatterlist *)(bidi_sdb + 1);
1846
1847                 next_rq->special = bidi_sdb;
1848         }
1849
1850         blk_mq_start_request(req);
1851
1852         return scsi_setup_cmnd(sdev, req);
1853 }
1854
1855 static void scsi_mq_done(struct scsi_cmnd *cmd)
1856 {
1857         trace_scsi_dispatch_cmd_done(cmd);
1858         blk_mq_complete_request(cmd->request);
1859 }
1860
1861 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req,
1862                 bool last)
1863 {
1864         struct request_queue *q = req->q;
1865         struct scsi_device *sdev = q->queuedata;
1866         struct Scsi_Host *shost = sdev->host;
1867         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1868         int ret;
1869         int reason;
1870
1871         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1872         if (ret)
1873                 goto out;
1874
1875         ret = BLK_MQ_RQ_QUEUE_BUSY;
1876         if (!get_device(&sdev->sdev_gendev))
1877                 goto out;
1878
1879         if (!scsi_dev_queue_ready(q, sdev))
1880                 goto out_put_device;
1881         if (!scsi_target_queue_ready(shost, sdev))
1882                 goto out_dec_device_busy;
1883         if (!scsi_host_queue_ready(q, shost, sdev))
1884                 goto out_dec_target_busy;
1885
1886
1887         if (!(req->cmd_flags & REQ_DONTPREP)) {
1888                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1889                 if (ret)
1890                         goto out_dec_host_busy;
1891                 req->cmd_flags |= REQ_DONTPREP;
1892         } else {
1893                 blk_mq_start_request(req);
1894         }
1895
1896         scsi_init_cmd_errh(cmd);
1897         cmd->scsi_done = scsi_mq_done;
1898
1899         reason = scsi_dispatch_cmd(cmd);
1900         if (reason) {
1901                 scsi_set_blocked(cmd, reason);
1902                 ret = BLK_MQ_RQ_QUEUE_BUSY;
1903                 goto out_dec_host_busy;
1904         }
1905
1906         return BLK_MQ_RQ_QUEUE_OK;
1907
1908 out_dec_host_busy:
1909         atomic_dec(&shost->host_busy);
1910 out_dec_target_busy:
1911         if (scsi_target(sdev)->can_queue > 0)
1912                 atomic_dec(&scsi_target(sdev)->target_busy);
1913 out_dec_device_busy:
1914         atomic_dec(&sdev->device_busy);
1915 out_put_device:
1916         put_device(&sdev->sdev_gendev);
1917 out:
1918         switch (ret) {
1919         case BLK_MQ_RQ_QUEUE_BUSY:
1920                 blk_mq_stop_hw_queue(hctx);
1921                 if (atomic_read(&sdev->device_busy) == 0 &&
1922                     !scsi_device_blocked(sdev))
1923                         blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1924                 break;
1925         case BLK_MQ_RQ_QUEUE_ERROR:
1926                 /*
1927                  * Make sure to release all allocated ressources when
1928                  * we hit an error, as we will never see this command
1929                  * again.
1930                  */
1931                 if (req->cmd_flags & REQ_DONTPREP)
1932                         scsi_mq_uninit_cmd(cmd);
1933                 break;
1934         default:
1935                 break;
1936         }
1937         return ret;
1938 }
1939
1940 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1941                 bool reserved)
1942 {
1943         if (reserved)
1944                 return BLK_EH_RESET_TIMER;
1945         return scsi_times_out(req);
1946 }
1947
1948 static int scsi_init_request(void *data, struct request *rq,
1949                 unsigned int hctx_idx, unsigned int request_idx,
1950                 unsigned int numa_node)
1951 {
1952         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1953
1954         cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1955                         numa_node);
1956         if (!cmd->sense_buffer)
1957                 return -ENOMEM;
1958         return 0;
1959 }
1960
1961 static void scsi_exit_request(void *data, struct request *rq,
1962                 unsigned int hctx_idx, unsigned int request_idx)
1963 {
1964         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1965
1966         kfree(cmd->sense_buffer);
1967 }
1968
1969 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1970 {
1971         struct device *host_dev;
1972         u64 bounce_limit = 0xffffffff;
1973
1974         if (shost->unchecked_isa_dma)
1975                 return BLK_BOUNCE_ISA;
1976         /*
1977          * Platforms with virtual-DMA translation
1978          * hardware have no practical limit.
1979          */
1980         if (!PCI_DMA_BUS_IS_PHYS)
1981                 return BLK_BOUNCE_ANY;
1982
1983         host_dev = scsi_get_device(shost);
1984         if (host_dev && host_dev->dma_mask)
1985                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1986
1987         return bounce_limit;
1988 }
1989
1990 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1991 {
1992         struct device *dev = shost->dma_dev;
1993
1994         /*
1995          * this limit is imposed by hardware restrictions
1996          */
1997         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1998                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1999
2000         if (scsi_host_prot_dma(shost)) {
2001                 shost->sg_prot_tablesize =
2002                         min_not_zero(shost->sg_prot_tablesize,
2003                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2004                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2005                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2006         }
2007
2008         blk_queue_max_hw_sectors(q, shost->max_sectors);
2009         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2010         blk_queue_segment_boundary(q, shost->dma_boundary);
2011         dma_set_seg_boundary(dev, shost->dma_boundary);
2012
2013         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2014
2015         if (!shost->use_clustering)
2016                 q->limits.cluster = 0;
2017
2018         /*
2019          * set a reasonable default alignment on word boundaries: the
2020          * host and device may alter it using
2021          * blk_queue_update_dma_alignment() later.
2022          */
2023         blk_queue_dma_alignment(q, 0x03);
2024 }
2025
2026 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2027                                          request_fn_proc *request_fn)
2028 {
2029         struct request_queue *q;
2030
2031         q = blk_init_queue(request_fn, NULL);
2032         if (!q)
2033                 return NULL;
2034         __scsi_init_queue(shost, q);
2035         return q;
2036 }
2037 EXPORT_SYMBOL(__scsi_alloc_queue);
2038
2039 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2040 {
2041         struct request_queue *q;
2042
2043         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2044         if (!q)
2045                 return NULL;
2046
2047         blk_queue_prep_rq(q, scsi_prep_fn);
2048         blk_queue_unprep_rq(q, scsi_unprep_fn);
2049         blk_queue_softirq_done(q, scsi_softirq_done);
2050         blk_queue_rq_timed_out(q, scsi_times_out);
2051         blk_queue_lld_busy(q, scsi_lld_busy);
2052         return q;
2053 }
2054
2055 static struct blk_mq_ops scsi_mq_ops = {
2056         .map_queue      = blk_mq_map_queue,
2057         .queue_rq       = scsi_queue_rq,
2058         .complete       = scsi_softirq_done,
2059         .timeout        = scsi_timeout,
2060         .init_request   = scsi_init_request,
2061         .exit_request   = scsi_exit_request,
2062 };
2063
2064 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2065 {
2066         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2067         if (IS_ERR(sdev->request_queue))
2068                 return NULL;
2069
2070         sdev->request_queue->queuedata = sdev;
2071         __scsi_init_queue(sdev->host, sdev->request_queue);
2072         return sdev->request_queue;
2073 }
2074
2075 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2076 {
2077         unsigned int cmd_size, sgl_size, tbl_size;
2078
2079         tbl_size = shost->sg_tablesize;
2080         if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2081                 tbl_size = SCSI_MAX_SG_SEGMENTS;
2082         sgl_size = tbl_size * sizeof(struct scatterlist);
2083         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2084         if (scsi_host_get_prot(shost))
2085                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2086
2087         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2088         shost->tag_set.ops = &scsi_mq_ops;
2089         shost->tag_set.nr_hw_queues = 1;
2090         shost->tag_set.queue_depth = shost->can_queue;
2091         shost->tag_set.cmd_size = cmd_size;
2092         shost->tag_set.numa_node = NUMA_NO_NODE;
2093         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2094         shost->tag_set.driver_data = shost;
2095
2096         return blk_mq_alloc_tag_set(&shost->tag_set);
2097 }
2098
2099 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2100 {
2101         blk_mq_free_tag_set(&shost->tag_set);
2102 }
2103
2104 /*
2105  * Function:    scsi_block_requests()
2106  *
2107  * Purpose:     Utility function used by low-level drivers to prevent further
2108  *              commands from being queued to the device.
2109  *
2110  * Arguments:   shost       - Host in question
2111  *
2112  * Returns:     Nothing
2113  *
2114  * Lock status: No locks are assumed held.
2115  *
2116  * Notes:       There is no timer nor any other means by which the requests
2117  *              get unblocked other than the low-level driver calling
2118  *              scsi_unblock_requests().
2119  */
2120 void scsi_block_requests(struct Scsi_Host *shost)
2121 {
2122         shost->host_self_blocked = 1;
2123 }
2124 EXPORT_SYMBOL(scsi_block_requests);
2125
2126 /*
2127  * Function:    scsi_unblock_requests()
2128  *
2129  * Purpose:     Utility function used by low-level drivers to allow further
2130  *              commands from being queued to the device.
2131  *
2132  * Arguments:   shost       - Host in question
2133  *
2134  * Returns:     Nothing
2135  *
2136  * Lock status: No locks are assumed held.
2137  *
2138  * Notes:       There is no timer nor any other means by which the requests
2139  *              get unblocked other than the low-level driver calling
2140  *              scsi_unblock_requests().
2141  *
2142  *              This is done as an API function so that changes to the
2143  *              internals of the scsi mid-layer won't require wholesale
2144  *              changes to drivers that use this feature.
2145  */
2146 void scsi_unblock_requests(struct Scsi_Host *shost)
2147 {
2148         shost->host_self_blocked = 0;
2149         scsi_run_host_queues(shost);
2150 }
2151 EXPORT_SYMBOL(scsi_unblock_requests);
2152
2153 int __init scsi_init_queue(void)
2154 {
2155         int i;
2156
2157         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2158                                            sizeof(struct scsi_data_buffer),
2159                                            0, 0, NULL);
2160         if (!scsi_sdb_cache) {
2161                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2162                 return -ENOMEM;
2163         }
2164
2165         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2166                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2167                 int size = sgp->size * sizeof(struct scatterlist);
2168
2169                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2170                                 SLAB_HWCACHE_ALIGN, NULL);
2171                 if (!sgp->slab) {
2172                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2173                                         sgp->name);
2174                         goto cleanup_sdb;
2175                 }
2176
2177                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2178                                                      sgp->slab);
2179                 if (!sgp->pool) {
2180                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2181                                         sgp->name);
2182                         goto cleanup_sdb;
2183                 }
2184         }
2185
2186         return 0;
2187
2188 cleanup_sdb:
2189         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2190                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2191                 if (sgp->pool)
2192                         mempool_destroy(sgp->pool);
2193                 if (sgp->slab)
2194                         kmem_cache_destroy(sgp->slab);
2195         }
2196         kmem_cache_destroy(scsi_sdb_cache);
2197
2198         return -ENOMEM;
2199 }
2200
2201 void scsi_exit_queue(void)
2202 {
2203         int i;
2204
2205         kmem_cache_destroy(scsi_sdb_cache);
2206
2207         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2208                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2209                 mempool_destroy(sgp->pool);
2210                 kmem_cache_destroy(sgp->slab);
2211         }
2212 }
2213
2214 /**
2215  *      scsi_mode_select - issue a mode select
2216  *      @sdev:  SCSI device to be queried
2217  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2218  *      @sp:    Save page bit (0 == don't save, 1 == save)
2219  *      @modepage: mode page being requested
2220  *      @buffer: request buffer (may not be smaller than eight bytes)
2221  *      @len:   length of request buffer.
2222  *      @timeout: command timeout
2223  *      @retries: number of retries before failing
2224  *      @data: returns a structure abstracting the mode header data
2225  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2226  *              must be SCSI_SENSE_BUFFERSIZE big.
2227  *
2228  *      Returns zero if successful; negative error number or scsi
2229  *      status on error
2230  *
2231  */
2232 int
2233 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2234                  unsigned char *buffer, int len, int timeout, int retries,
2235                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2236 {
2237         unsigned char cmd[10];
2238         unsigned char *real_buffer;
2239         int ret;
2240
2241         memset(cmd, 0, sizeof(cmd));
2242         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2243
2244         if (sdev->use_10_for_ms) {
2245                 if (len > 65535)
2246                         return -EINVAL;
2247                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2248                 if (!real_buffer)
2249                         return -ENOMEM;
2250                 memcpy(real_buffer + 8, buffer, len);
2251                 len += 8;
2252                 real_buffer[0] = 0;
2253                 real_buffer[1] = 0;
2254                 real_buffer[2] = data->medium_type;
2255                 real_buffer[3] = data->device_specific;
2256                 real_buffer[4] = data->longlba ? 0x01 : 0;
2257                 real_buffer[5] = 0;
2258                 real_buffer[6] = data->block_descriptor_length >> 8;
2259                 real_buffer[7] = data->block_descriptor_length;
2260
2261                 cmd[0] = MODE_SELECT_10;
2262                 cmd[7] = len >> 8;
2263                 cmd[8] = len;
2264         } else {
2265                 if (len > 255 || data->block_descriptor_length > 255 ||
2266                     data->longlba)
2267                         return -EINVAL;
2268
2269                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2270                 if (!real_buffer)
2271                         return -ENOMEM;
2272                 memcpy(real_buffer + 4, buffer, len);
2273                 len += 4;
2274                 real_buffer[0] = 0;
2275                 real_buffer[1] = data->medium_type;
2276                 real_buffer[2] = data->device_specific;
2277                 real_buffer[3] = data->block_descriptor_length;
2278                 
2279
2280                 cmd[0] = MODE_SELECT;
2281                 cmd[4] = len;
2282         }
2283
2284         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2285                                sshdr, timeout, retries, NULL);
2286         kfree(real_buffer);
2287         return ret;
2288 }
2289 EXPORT_SYMBOL_GPL(scsi_mode_select);
2290
2291 /**
2292  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2293  *      @sdev:  SCSI device to be queried
2294  *      @dbd:   set if mode sense will allow block descriptors to be returned
2295  *      @modepage: mode page being requested
2296  *      @buffer: request buffer (may not be smaller than eight bytes)
2297  *      @len:   length of request buffer.
2298  *      @timeout: command timeout
2299  *      @retries: number of retries before failing
2300  *      @data: returns a structure abstracting the mode header data
2301  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2302  *              must be SCSI_SENSE_BUFFERSIZE big.
2303  *
2304  *      Returns zero if unsuccessful, or the header offset (either 4
2305  *      or 8 depending on whether a six or ten byte command was
2306  *      issued) if successful.
2307  */
2308 int
2309 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2310                   unsigned char *buffer, int len, int timeout, int retries,
2311                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2312 {
2313         unsigned char cmd[12];
2314         int use_10_for_ms;
2315         int header_length;
2316         int result;
2317         struct scsi_sense_hdr my_sshdr;
2318
2319         memset(data, 0, sizeof(*data));
2320         memset(&cmd[0], 0, 12);
2321         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2322         cmd[2] = modepage;
2323
2324         /* caller might not be interested in sense, but we need it */
2325         if (!sshdr)
2326                 sshdr = &my_sshdr;
2327
2328  retry:
2329         use_10_for_ms = sdev->use_10_for_ms;
2330
2331         if (use_10_for_ms) {
2332                 if (len < 8)
2333                         len = 8;
2334
2335                 cmd[0] = MODE_SENSE_10;
2336                 cmd[8] = len;
2337                 header_length = 8;
2338         } else {
2339                 if (len < 4)
2340                         len = 4;
2341
2342                 cmd[0] = MODE_SENSE;
2343                 cmd[4] = len;
2344                 header_length = 4;
2345         }
2346
2347         memset(buffer, 0, len);
2348
2349         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2350                                   sshdr, timeout, retries, NULL);
2351
2352         /* This code looks awful: what it's doing is making sure an
2353          * ILLEGAL REQUEST sense return identifies the actual command
2354          * byte as the problem.  MODE_SENSE commands can return
2355          * ILLEGAL REQUEST if the code page isn't supported */
2356
2357         if (use_10_for_ms && !scsi_status_is_good(result) &&
2358             (driver_byte(result) & DRIVER_SENSE)) {
2359                 if (scsi_sense_valid(sshdr)) {
2360                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2361                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2362                                 /* 
2363                                  * Invalid command operation code
2364                                  */
2365                                 sdev->use_10_for_ms = 0;
2366                                 goto retry;
2367                         }
2368                 }
2369         }
2370
2371         if(scsi_status_is_good(result)) {
2372                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2373                              (modepage == 6 || modepage == 8))) {
2374                         /* Initio breakage? */
2375                         header_length = 0;
2376                         data->length = 13;
2377                         data->medium_type = 0;
2378                         data->device_specific = 0;
2379                         data->longlba = 0;
2380                         data->block_descriptor_length = 0;
2381                 } else if(use_10_for_ms) {
2382                         data->length = buffer[0]*256 + buffer[1] + 2;
2383                         data->medium_type = buffer[2];
2384                         data->device_specific = buffer[3];
2385                         data->longlba = buffer[4] & 0x01;
2386                         data->block_descriptor_length = buffer[6]*256
2387                                 + buffer[7];
2388                 } else {
2389                         data->length = buffer[0] + 1;
2390                         data->medium_type = buffer[1];
2391                         data->device_specific = buffer[2];
2392                         data->block_descriptor_length = buffer[3];
2393                 }
2394                 data->header_length = header_length;
2395         }
2396
2397         return result;
2398 }
2399 EXPORT_SYMBOL(scsi_mode_sense);
2400
2401 /**
2402  *      scsi_test_unit_ready - test if unit is ready
2403  *      @sdev:  scsi device to change the state of.
2404  *      @timeout: command timeout
2405  *      @retries: number of retries before failing
2406  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2407  *              returning sense. Make sure that this is cleared before passing
2408  *              in.
2409  *
2410  *      Returns zero if unsuccessful or an error if TUR failed.  For
2411  *      removable media, UNIT_ATTENTION sets ->changed flag.
2412  **/
2413 int
2414 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2415                      struct scsi_sense_hdr *sshdr_external)
2416 {
2417         char cmd[] = {
2418                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2419         };
2420         struct scsi_sense_hdr *sshdr;
2421         int result;
2422
2423         if (!sshdr_external)
2424                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2425         else
2426                 sshdr = sshdr_external;
2427
2428         /* try to eat the UNIT_ATTENTION if there are enough retries */
2429         do {
2430                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2431                                           timeout, retries, NULL);
2432                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2433                     sshdr->sense_key == UNIT_ATTENTION)
2434                         sdev->changed = 1;
2435         } while (scsi_sense_valid(sshdr) &&
2436                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2437
2438         if (!sshdr_external)
2439                 kfree(sshdr);
2440         return result;
2441 }
2442 EXPORT_SYMBOL(scsi_test_unit_ready);
2443
2444 /**
2445  *      scsi_device_set_state - Take the given device through the device state model.
2446  *      @sdev:  scsi device to change the state of.
2447  *      @state: state to change to.
2448  *
2449  *      Returns zero if unsuccessful or an error if the requested 
2450  *      transition is illegal.
2451  */
2452 int
2453 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2454 {
2455         enum scsi_device_state oldstate = sdev->sdev_state;
2456
2457         if (state == oldstate)
2458                 return 0;
2459
2460         switch (state) {
2461         case SDEV_CREATED:
2462                 switch (oldstate) {
2463                 case SDEV_CREATED_BLOCK:
2464                         break;
2465                 default:
2466                         goto illegal;
2467                 }
2468                 break;
2469                         
2470         case SDEV_RUNNING:
2471                 switch (oldstate) {
2472                 case SDEV_CREATED:
2473                 case SDEV_OFFLINE:
2474                 case SDEV_TRANSPORT_OFFLINE:
2475                 case SDEV_QUIESCE:
2476                 case SDEV_BLOCK:
2477                         break;
2478                 default:
2479                         goto illegal;
2480                 }
2481                 break;
2482
2483         case SDEV_QUIESCE:
2484                 switch (oldstate) {
2485                 case SDEV_RUNNING:
2486                 case SDEV_OFFLINE:
2487                 case SDEV_TRANSPORT_OFFLINE:
2488                         break;
2489                 default:
2490                         goto illegal;
2491                 }
2492                 break;
2493
2494         case SDEV_OFFLINE:
2495         case SDEV_TRANSPORT_OFFLINE:
2496                 switch (oldstate) {
2497                 case SDEV_CREATED:
2498                 case SDEV_RUNNING:
2499                 case SDEV_QUIESCE:
2500                 case SDEV_BLOCK:
2501                         break;
2502                 default:
2503                         goto illegal;
2504                 }
2505                 break;
2506
2507         case SDEV_BLOCK:
2508                 switch (oldstate) {
2509                 case SDEV_RUNNING:
2510                 case SDEV_CREATED_BLOCK:
2511                         break;
2512                 default:
2513                         goto illegal;
2514                 }
2515                 break;
2516
2517         case SDEV_CREATED_BLOCK:
2518                 switch (oldstate) {
2519                 case SDEV_CREATED:
2520                         break;
2521                 default:
2522                         goto illegal;
2523                 }
2524                 break;
2525
2526         case SDEV_CANCEL:
2527                 switch (oldstate) {
2528                 case SDEV_CREATED:
2529                 case SDEV_RUNNING:
2530                 case SDEV_QUIESCE:
2531                 case SDEV_OFFLINE:
2532                 case SDEV_TRANSPORT_OFFLINE:
2533                 case SDEV_BLOCK:
2534                         break;
2535                 default:
2536                         goto illegal;
2537                 }
2538                 break;
2539
2540         case SDEV_DEL:
2541                 switch (oldstate) {
2542                 case SDEV_CREATED:
2543                 case SDEV_RUNNING:
2544                 case SDEV_OFFLINE:
2545                 case SDEV_TRANSPORT_OFFLINE:
2546                 case SDEV_CANCEL:
2547                 case SDEV_CREATED_BLOCK:
2548                         break;
2549                 default:
2550                         goto illegal;
2551                 }
2552                 break;
2553
2554         }
2555         sdev->sdev_state = state;
2556         return 0;
2557
2558  illegal:
2559         SCSI_LOG_ERROR_RECOVERY(1,
2560                                 sdev_printk(KERN_ERR, sdev,
2561                                             "Illegal state transition %s->%s",
2562                                             scsi_device_state_name(oldstate),
2563                                             scsi_device_state_name(state))
2564                                 );
2565         return -EINVAL;
2566 }
2567 EXPORT_SYMBOL(scsi_device_set_state);
2568
2569 /**
2570  *      sdev_evt_emit - emit a single SCSI device uevent
2571  *      @sdev: associated SCSI device
2572  *      @evt: event to emit
2573  *
2574  *      Send a single uevent (scsi_event) to the associated scsi_device.
2575  */
2576 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2577 {
2578         int idx = 0;
2579         char *envp[3];
2580
2581         switch (evt->evt_type) {
2582         case SDEV_EVT_MEDIA_CHANGE:
2583                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2584                 break;
2585         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2586                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2587                 break;
2588         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2589                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2590                 break;
2591         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2592                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2593                 break;
2594         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2595                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2596                 break;
2597         case SDEV_EVT_LUN_CHANGE_REPORTED:
2598                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2599                 break;
2600         default:
2601                 /* do nothing */
2602                 break;
2603         }
2604
2605         envp[idx++] = NULL;
2606
2607         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2608 }
2609
2610 /**
2611  *      sdev_evt_thread - send a uevent for each scsi event
2612  *      @work: work struct for scsi_device
2613  *
2614  *      Dispatch queued events to their associated scsi_device kobjects
2615  *      as uevents.
2616  */
2617 void scsi_evt_thread(struct work_struct *work)
2618 {
2619         struct scsi_device *sdev;
2620         enum scsi_device_event evt_type;
2621         LIST_HEAD(event_list);
2622
2623         sdev = container_of(work, struct scsi_device, event_work);
2624
2625         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2626                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2627                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2628
2629         while (1) {
2630                 struct scsi_event *evt;
2631                 struct list_head *this, *tmp;
2632                 unsigned long flags;
2633
2634                 spin_lock_irqsave(&sdev->list_lock, flags);
2635                 list_splice_init(&sdev->event_list, &event_list);
2636                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2637
2638                 if (list_empty(&event_list))
2639                         break;
2640
2641                 list_for_each_safe(this, tmp, &event_list) {
2642                         evt = list_entry(this, struct scsi_event, node);
2643                         list_del(&evt->node);
2644                         scsi_evt_emit(sdev, evt);
2645                         kfree(evt);
2646                 }
2647         }
2648 }
2649
2650 /**
2651  *      sdev_evt_send - send asserted event to uevent thread
2652  *      @sdev: scsi_device event occurred on
2653  *      @evt: event to send
2654  *
2655  *      Assert scsi device event asynchronously.
2656  */
2657 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2658 {
2659         unsigned long flags;
2660
2661 #if 0
2662         /* FIXME: currently this check eliminates all media change events
2663          * for polled devices.  Need to update to discriminate between AN
2664          * and polled events */
2665         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2666                 kfree(evt);
2667                 return;
2668         }
2669 #endif
2670
2671         spin_lock_irqsave(&sdev->list_lock, flags);
2672         list_add_tail(&evt->node, &sdev->event_list);
2673         schedule_work(&sdev->event_work);
2674         spin_unlock_irqrestore(&sdev->list_lock, flags);
2675 }
2676 EXPORT_SYMBOL_GPL(sdev_evt_send);
2677
2678 /**
2679  *      sdev_evt_alloc - allocate a new scsi event
2680  *      @evt_type: type of event to allocate
2681  *      @gfpflags: GFP flags for allocation
2682  *
2683  *      Allocates and returns a new scsi_event.
2684  */
2685 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2686                                   gfp_t gfpflags)
2687 {
2688         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2689         if (!evt)
2690                 return NULL;
2691
2692         evt->evt_type = evt_type;
2693         INIT_LIST_HEAD(&evt->node);
2694
2695         /* evt_type-specific initialization, if any */
2696         switch (evt_type) {
2697         case SDEV_EVT_MEDIA_CHANGE:
2698         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2699         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2700         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2701         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2702         case SDEV_EVT_LUN_CHANGE_REPORTED:
2703         default:
2704                 /* do nothing */
2705                 break;
2706         }
2707
2708         return evt;
2709 }
2710 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2711
2712 /**
2713  *      sdev_evt_send_simple - send asserted event to uevent thread
2714  *      @sdev: scsi_device event occurred on
2715  *      @evt_type: type of event to send
2716  *      @gfpflags: GFP flags for allocation
2717  *
2718  *      Assert scsi device event asynchronously, given an event type.
2719  */
2720 void sdev_evt_send_simple(struct scsi_device *sdev,
2721                           enum scsi_device_event evt_type, gfp_t gfpflags)
2722 {
2723         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2724         if (!evt) {
2725                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2726                             evt_type);
2727                 return;
2728         }
2729
2730         sdev_evt_send(sdev, evt);
2731 }
2732 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2733
2734 /**
2735  *      scsi_device_quiesce - Block user issued commands.
2736  *      @sdev:  scsi device to quiesce.
2737  *
2738  *      This works by trying to transition to the SDEV_QUIESCE state
2739  *      (which must be a legal transition).  When the device is in this
2740  *      state, only special requests will be accepted, all others will
2741  *      be deferred.  Since special requests may also be requeued requests,
2742  *      a successful return doesn't guarantee the device will be 
2743  *      totally quiescent.
2744  *
2745  *      Must be called with user context, may sleep.
2746  *
2747  *      Returns zero if unsuccessful or an error if not.
2748  */
2749 int
2750 scsi_device_quiesce(struct scsi_device *sdev)
2751 {
2752         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2753         if (err)
2754                 return err;
2755
2756         scsi_run_queue(sdev->request_queue);
2757         while (atomic_read(&sdev->device_busy)) {
2758                 msleep_interruptible(200);
2759                 scsi_run_queue(sdev->request_queue);
2760         }
2761         return 0;
2762 }
2763 EXPORT_SYMBOL(scsi_device_quiesce);
2764
2765 /**
2766  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2767  *      @sdev:  scsi device to resume.
2768  *
2769  *      Moves the device from quiesced back to running and restarts the
2770  *      queues.
2771  *
2772  *      Must be called with user context, may sleep.
2773  */
2774 void scsi_device_resume(struct scsi_device *sdev)
2775 {
2776         /* check if the device state was mutated prior to resume, and if
2777          * so assume the state is being managed elsewhere (for example
2778          * device deleted during suspend)
2779          */
2780         if (sdev->sdev_state != SDEV_QUIESCE ||
2781             scsi_device_set_state(sdev, SDEV_RUNNING))
2782                 return;
2783         scsi_run_queue(sdev->request_queue);
2784 }
2785 EXPORT_SYMBOL(scsi_device_resume);
2786
2787 static void
2788 device_quiesce_fn(struct scsi_device *sdev, void *data)
2789 {
2790         scsi_device_quiesce(sdev);
2791 }
2792
2793 void
2794 scsi_target_quiesce(struct scsi_target *starget)
2795 {
2796         starget_for_each_device(starget, NULL, device_quiesce_fn);
2797 }
2798 EXPORT_SYMBOL(scsi_target_quiesce);
2799
2800 static void
2801 device_resume_fn(struct scsi_device *sdev, void *data)
2802 {
2803         scsi_device_resume(sdev);
2804 }
2805
2806 void
2807 scsi_target_resume(struct scsi_target *starget)
2808 {
2809         starget_for_each_device(starget, NULL, device_resume_fn);
2810 }
2811 EXPORT_SYMBOL(scsi_target_resume);
2812
2813 /**
2814  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2815  * @sdev:       device to block
2816  *
2817  * Block request made by scsi lld's to temporarily stop all
2818  * scsi commands on the specified device.  Called from interrupt
2819  * or normal process context.
2820  *
2821  * Returns zero if successful or error if not
2822  *
2823  * Notes:       
2824  *      This routine transitions the device to the SDEV_BLOCK state
2825  *      (which must be a legal transition).  When the device is in this
2826  *      state, all commands are deferred until the scsi lld reenables
2827  *      the device with scsi_device_unblock or device_block_tmo fires.
2828  */
2829 int
2830 scsi_internal_device_block(struct scsi_device *sdev)
2831 {
2832         struct request_queue *q = sdev->request_queue;
2833         unsigned long flags;
2834         int err = 0;
2835
2836         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2837         if (err) {
2838                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2839
2840                 if (err)
2841                         return err;
2842         }
2843
2844         /* 
2845          * The device has transitioned to SDEV_BLOCK.  Stop the
2846          * block layer from calling the midlayer with this device's
2847          * request queue. 
2848          */
2849         if (q->mq_ops) {
2850                 blk_mq_stop_hw_queues(q);
2851         } else {
2852                 spin_lock_irqsave(q->queue_lock, flags);
2853                 blk_stop_queue(q);
2854                 spin_unlock_irqrestore(q->queue_lock, flags);
2855         }
2856
2857         return 0;
2858 }
2859 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2860  
2861 /**
2862  * scsi_internal_device_unblock - resume a device after a block request
2863  * @sdev:       device to resume
2864  * @new_state:  state to set devices to after unblocking
2865  *
2866  * Called by scsi lld's or the midlayer to restart the device queue
2867  * for the previously suspended scsi device.  Called from interrupt or
2868  * normal process context.
2869  *
2870  * Returns zero if successful or error if not.
2871  *
2872  * Notes:       
2873  *      This routine transitions the device to the SDEV_RUNNING state
2874  *      or to one of the offline states (which must be a legal transition)
2875  *      allowing the midlayer to goose the queue for this device.
2876  */
2877 int
2878 scsi_internal_device_unblock(struct scsi_device *sdev,
2879                              enum scsi_device_state new_state)
2880 {
2881         struct request_queue *q = sdev->request_queue; 
2882         unsigned long flags;
2883
2884         /*
2885          * Try to transition the scsi device to SDEV_RUNNING or one of the
2886          * offlined states and goose the device queue if successful.
2887          */
2888         if ((sdev->sdev_state == SDEV_BLOCK) ||
2889             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2890                 sdev->sdev_state = new_state;
2891         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2892                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2893                     new_state == SDEV_OFFLINE)
2894                         sdev->sdev_state = new_state;
2895                 else
2896                         sdev->sdev_state = SDEV_CREATED;
2897         } else if (sdev->sdev_state != SDEV_CANCEL &&
2898                  sdev->sdev_state != SDEV_OFFLINE)
2899                 return -EINVAL;
2900
2901         if (q->mq_ops) {
2902                 blk_mq_start_stopped_hw_queues(q, false);
2903         } else {
2904                 spin_lock_irqsave(q->queue_lock, flags);
2905                 blk_start_queue(q);
2906                 spin_unlock_irqrestore(q->queue_lock, flags);
2907         }
2908
2909         return 0;
2910 }
2911 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2912
2913 static void
2914 device_block(struct scsi_device *sdev, void *data)
2915 {
2916         scsi_internal_device_block(sdev);
2917 }
2918
2919 static int
2920 target_block(struct device *dev, void *data)
2921 {
2922         if (scsi_is_target_device(dev))
2923                 starget_for_each_device(to_scsi_target(dev), NULL,
2924                                         device_block);
2925         return 0;
2926 }
2927
2928 void
2929 scsi_target_block(struct device *dev)
2930 {
2931         if (scsi_is_target_device(dev))
2932                 starget_for_each_device(to_scsi_target(dev), NULL,
2933                                         device_block);
2934         else
2935                 device_for_each_child(dev, NULL, target_block);
2936 }
2937 EXPORT_SYMBOL_GPL(scsi_target_block);
2938
2939 static void
2940 device_unblock(struct scsi_device *sdev, void *data)
2941 {
2942         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2943 }
2944
2945 static int
2946 target_unblock(struct device *dev, void *data)
2947 {
2948         if (scsi_is_target_device(dev))
2949                 starget_for_each_device(to_scsi_target(dev), data,
2950                                         device_unblock);
2951         return 0;
2952 }
2953
2954 void
2955 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2956 {
2957         if (scsi_is_target_device(dev))
2958                 starget_for_each_device(to_scsi_target(dev), &new_state,
2959                                         device_unblock);
2960         else
2961                 device_for_each_child(dev, &new_state, target_unblock);
2962 }
2963 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2964
2965 /**
2966  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2967  * @sgl:        scatter-gather list
2968  * @sg_count:   number of segments in sg
2969  * @offset:     offset in bytes into sg, on return offset into the mapped area
2970  * @len:        bytes to map, on return number of bytes mapped
2971  *
2972  * Returns virtual address of the start of the mapped page
2973  */
2974 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2975                           size_t *offset, size_t *len)
2976 {
2977         int i;
2978         size_t sg_len = 0, len_complete = 0;
2979         struct scatterlist *sg;
2980         struct page *page;
2981
2982         WARN_ON(!irqs_disabled());
2983
2984         for_each_sg(sgl, sg, sg_count, i) {
2985                 len_complete = sg_len; /* Complete sg-entries */
2986                 sg_len += sg->length;
2987                 if (sg_len > *offset)
2988                         break;
2989         }
2990
2991         if (unlikely(i == sg_count)) {
2992                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2993                         "elements %d\n",
2994                        __func__, sg_len, *offset, sg_count);
2995                 WARN_ON(1);
2996                 return NULL;
2997         }
2998
2999         /* Offset starting from the beginning of first page in this sg-entry */
3000         *offset = *offset - len_complete + sg->offset;
3001
3002         /* Assumption: contiguous pages can be accessed as "page + i" */
3003         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3004         *offset &= ~PAGE_MASK;
3005
3006         /* Bytes in this sg-entry from *offset to the end of the page */
3007         sg_len = PAGE_SIZE - *offset;
3008         if (*len > sg_len)
3009                 *len = sg_len;
3010
3011         return kmap_atomic(page);
3012 }
3013 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3014
3015 /**
3016  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3017  * @virt:       virtual address to be unmapped
3018  */
3019 void scsi_kunmap_atomic_sg(void *virt)
3020 {
3021         kunmap_atomic(virt);
3022 }
3023 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3024
3025 void sdev_disable_disk_events(struct scsi_device *sdev)
3026 {
3027         atomic_inc(&sdev->disk_events_disable_depth);
3028 }
3029 EXPORT_SYMBOL(sdev_disable_disk_events);
3030
3031 void sdev_enable_disk_events(struct scsi_device *sdev)
3032 {
3033         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3034                 return;
3035         atomic_dec(&sdev->disk_events_disable_depth);
3036 }
3037 EXPORT_SYMBOL(sdev_enable_disk_events);