Merge tag 'trace-seq-buf-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/roste...
[cascardo/linux.git] / drivers / soc / ti / knav_qmss_queue.c
1 /*
2  * Keystone Queue Manager subsystem driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Cyril Chemparathy <cyril@ti.com>
7  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/interrupt.h>
25 #include <linux/bitops.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/platform_device.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_device.h>
33 #include <linux/of_address.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/firmware.h>
36 #include <linux/debugfs.h>
37 #include <linux/seq_file.h>
38 #include <linux/string.h>
39 #include <linux/soc/ti/knav_qmss.h>
40
41 #include "knav_qmss.h"
42
43 static struct knav_device *kdev;
44 static DEFINE_MUTEX(knav_dev_lock);
45
46 /* Queue manager register indices in DTS */
47 #define KNAV_QUEUE_PEEK_REG_INDEX       0
48 #define KNAV_QUEUE_STATUS_REG_INDEX     1
49 #define KNAV_QUEUE_CONFIG_REG_INDEX     2
50 #define KNAV_QUEUE_REGION_REG_INDEX     3
51 #define KNAV_QUEUE_PUSH_REG_INDEX       4
52 #define KNAV_QUEUE_POP_REG_INDEX        5
53
54 /* PDSP register indices in DTS */
55 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
56 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
57 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
58 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
59
60 #define knav_queue_idx_to_inst(kdev, idx)                       \
61         (kdev->instances + (idx << kdev->inst_shift))
62
63 #define for_each_handle_rcu(qh, inst)                   \
64         list_for_each_entry_rcu(qh, &inst->handles, list)
65
66 #define for_each_instance(idx, inst, kdev)              \
67         for (idx = 0, inst = kdev->instances;           \
68              idx < (kdev)->num_queues_in_use;                   \
69              idx++, inst = knav_queue_idx_to_inst(kdev, idx))
70
71 /**
72  * knav_queue_notify: qmss queue notfier call
73  *
74  * @inst:               qmss queue instance like accumulator
75  */
76 void knav_queue_notify(struct knav_queue_inst *inst)
77 {
78         struct knav_queue *qh;
79
80         if (!inst)
81                 return;
82
83         rcu_read_lock();
84         for_each_handle_rcu(qh, inst) {
85                 if (atomic_read(&qh->notifier_enabled) <= 0)
86                         continue;
87                 if (WARN_ON(!qh->notifier_fn))
88                         continue;
89                 atomic_inc(&qh->stats.notifies);
90                 qh->notifier_fn(qh->notifier_fn_arg);
91         }
92         rcu_read_unlock();
93 }
94 EXPORT_SYMBOL_GPL(knav_queue_notify);
95
96 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
97 {
98         struct knav_queue_inst *inst = _instdata;
99
100         knav_queue_notify(inst);
101         return IRQ_HANDLED;
102 }
103
104 static int knav_queue_setup_irq(struct knav_range_info *range,
105                           struct knav_queue_inst *inst)
106 {
107         unsigned queue = inst->id - range->queue_base;
108         unsigned long cpu_map;
109         int ret = 0, irq;
110
111         if (range->flags & RANGE_HAS_IRQ) {
112                 irq = range->irqs[queue].irq;
113                 cpu_map = range->irqs[queue].cpu_map;
114                 ret = request_irq(irq, knav_queue_int_handler, 0,
115                                         inst->irq_name, inst);
116                 if (ret)
117                         return ret;
118                 disable_irq(irq);
119                 if (cpu_map) {
120                         ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
121                         if (ret) {
122                                 dev_warn(range->kdev->dev,
123                                          "Failed to set IRQ affinity\n");
124                                 return ret;
125                         }
126                 }
127         }
128         return ret;
129 }
130
131 static void knav_queue_free_irq(struct knav_queue_inst *inst)
132 {
133         struct knav_range_info *range = inst->range;
134         unsigned queue = inst->id - inst->range->queue_base;
135         int irq;
136
137         if (range->flags & RANGE_HAS_IRQ) {
138                 irq = range->irqs[queue].irq;
139                 irq_set_affinity_hint(irq, NULL);
140                 free_irq(irq, inst);
141         }
142 }
143
144 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
145 {
146         return !list_empty(&inst->handles);
147 }
148
149 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
150 {
151         return inst->range->flags & RANGE_RESERVED;
152 }
153
154 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
155 {
156         struct knav_queue *tmp;
157
158         rcu_read_lock();
159         for_each_handle_rcu(tmp, inst) {
160                 if (tmp->flags & KNAV_QUEUE_SHARED) {
161                         rcu_read_unlock();
162                         return true;
163                 }
164         }
165         rcu_read_unlock();
166         return false;
167 }
168
169 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
170                                                 unsigned type)
171 {
172         if ((type == KNAV_QUEUE_QPEND) &&
173             (inst->range->flags & RANGE_HAS_IRQ)) {
174                 return true;
175         } else if ((type == KNAV_QUEUE_ACC) &&
176                 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
177                 return true;
178         } else if ((type == KNAV_QUEUE_GP) &&
179                 !(inst->range->flags &
180                         (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
181                 return true;
182         }
183         return false;
184 }
185
186 static inline struct knav_queue_inst *
187 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
188 {
189         struct knav_queue_inst *inst;
190         int idx;
191
192         for_each_instance(idx, inst, kdev) {
193                 if (inst->id == id)
194                         return inst;
195         }
196         return NULL;
197 }
198
199 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
200 {
201         if (kdev->base_id <= id &&
202             kdev->base_id + kdev->num_queues > id) {
203                 id -= kdev->base_id;
204                 return knav_queue_match_id_to_inst(kdev, id);
205         }
206         return NULL;
207 }
208
209 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
210                                       const char *name, unsigned flags)
211 {
212         struct knav_queue *qh;
213         unsigned id;
214         int ret = 0;
215
216         qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
217         if (!qh)
218                 return ERR_PTR(-ENOMEM);
219
220         qh->flags = flags;
221         qh->inst = inst;
222         id = inst->id - inst->qmgr->start_queue;
223         qh->reg_push = &inst->qmgr->reg_push[id];
224         qh->reg_pop = &inst->qmgr->reg_pop[id];
225         qh->reg_peek = &inst->qmgr->reg_peek[id];
226
227         /* first opener? */
228         if (!knav_queue_is_busy(inst)) {
229                 struct knav_range_info *range = inst->range;
230
231                 inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
232                 if (range->ops && range->ops->open_queue)
233                         ret = range->ops->open_queue(range, inst, flags);
234
235                 if (ret) {
236                         devm_kfree(inst->kdev->dev, qh);
237                         return ERR_PTR(ret);
238                 }
239         }
240         list_add_tail_rcu(&qh->list, &inst->handles);
241         return qh;
242 }
243
244 static struct knav_queue *
245 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
246 {
247         struct knav_queue_inst *inst;
248         struct knav_queue *qh;
249
250         mutex_lock(&knav_dev_lock);
251
252         qh = ERR_PTR(-ENODEV);
253         inst = knav_queue_find_by_id(id);
254         if (!inst)
255                 goto unlock_ret;
256
257         qh = ERR_PTR(-EEXIST);
258         if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
259                 goto unlock_ret;
260
261         qh = ERR_PTR(-EBUSY);
262         if ((flags & KNAV_QUEUE_SHARED) &&
263             (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
264                 goto unlock_ret;
265
266         qh = __knav_queue_open(inst, name, flags);
267
268 unlock_ret:
269         mutex_unlock(&knav_dev_lock);
270
271         return qh;
272 }
273
274 static struct knav_queue *knav_queue_open_by_type(const char *name,
275                                                 unsigned type, unsigned flags)
276 {
277         struct knav_queue_inst *inst;
278         struct knav_queue *qh = ERR_PTR(-EINVAL);
279         int idx;
280
281         mutex_lock(&knav_dev_lock);
282
283         for_each_instance(idx, inst, kdev) {
284                 if (knav_queue_is_reserved(inst))
285                         continue;
286                 if (!knav_queue_match_type(inst, type))
287                         continue;
288                 if (knav_queue_is_busy(inst))
289                         continue;
290                 qh = __knav_queue_open(inst, name, flags);
291                 goto unlock_ret;
292         }
293
294 unlock_ret:
295         mutex_unlock(&knav_dev_lock);
296         return qh;
297 }
298
299 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
300 {
301         struct knav_range_info *range = inst->range;
302
303         if (range->ops && range->ops->set_notify)
304                 range->ops->set_notify(range, inst, enabled);
305 }
306
307 static int knav_queue_enable_notifier(struct knav_queue *qh)
308 {
309         struct knav_queue_inst *inst = qh->inst;
310         bool first;
311
312         if (WARN_ON(!qh->notifier_fn))
313                 return -EINVAL;
314
315         /* Adjust the per handle notifier count */
316         first = (atomic_inc_return(&qh->notifier_enabled) == 1);
317         if (!first)
318                 return 0; /* nothing to do */
319
320         /* Now adjust the per instance notifier count */
321         first = (atomic_inc_return(&inst->num_notifiers) == 1);
322         if (first)
323                 knav_queue_set_notify(inst, true);
324
325         return 0;
326 }
327
328 static int knav_queue_disable_notifier(struct knav_queue *qh)
329 {
330         struct knav_queue_inst *inst = qh->inst;
331         bool last;
332
333         last = (atomic_dec_return(&qh->notifier_enabled) == 0);
334         if (!last)
335                 return 0; /* nothing to do */
336
337         last = (atomic_dec_return(&inst->num_notifiers) == 0);
338         if (last)
339                 knav_queue_set_notify(inst, false);
340
341         return 0;
342 }
343
344 static int knav_queue_set_notifier(struct knav_queue *qh,
345                                 struct knav_queue_notify_config *cfg)
346 {
347         knav_queue_notify_fn old_fn = qh->notifier_fn;
348
349         if (!cfg)
350                 return -EINVAL;
351
352         if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
353                 return -ENOTSUPP;
354
355         if (!cfg->fn && old_fn)
356                 knav_queue_disable_notifier(qh);
357
358         qh->notifier_fn = cfg->fn;
359         qh->notifier_fn_arg = cfg->fn_arg;
360
361         if (cfg->fn && !old_fn)
362                 knav_queue_enable_notifier(qh);
363
364         return 0;
365 }
366
367 static int knav_gp_set_notify(struct knav_range_info *range,
368                                struct knav_queue_inst *inst,
369                                bool enabled)
370 {
371         unsigned queue;
372
373         if (range->flags & RANGE_HAS_IRQ) {
374                 queue = inst->id - range->queue_base;
375                 if (enabled)
376                         enable_irq(range->irqs[queue].irq);
377                 else
378                         disable_irq_nosync(range->irqs[queue].irq);
379         }
380         return 0;
381 }
382
383 static int knav_gp_open_queue(struct knav_range_info *range,
384                                 struct knav_queue_inst *inst, unsigned flags)
385 {
386         return knav_queue_setup_irq(range, inst);
387 }
388
389 static int knav_gp_close_queue(struct knav_range_info *range,
390                                 struct knav_queue_inst *inst)
391 {
392         knav_queue_free_irq(inst);
393         return 0;
394 }
395
396 struct knav_range_ops knav_gp_range_ops = {
397         .set_notify     = knav_gp_set_notify,
398         .open_queue     = knav_gp_open_queue,
399         .close_queue    = knav_gp_close_queue,
400 };
401
402
403 static int knav_queue_get_count(void *qhandle)
404 {
405         struct knav_queue *qh = qhandle;
406         struct knav_queue_inst *inst = qh->inst;
407
408         return readl_relaxed(&qh->reg_peek[0].entry_count) +
409                 atomic_read(&inst->desc_count);
410 }
411
412 static void knav_queue_debug_show_instance(struct seq_file *s,
413                                         struct knav_queue_inst *inst)
414 {
415         struct knav_device *kdev = inst->kdev;
416         struct knav_queue *qh;
417
418         if (!knav_queue_is_busy(inst))
419                 return;
420
421         seq_printf(s, "\tqueue id %d (%s)\n",
422                    kdev->base_id + inst->id, inst->name);
423         for_each_handle_rcu(qh, inst) {
424                 seq_printf(s, "\t\thandle %p: ", qh);
425                 seq_printf(s, "pushes %8d, ",
426                            atomic_read(&qh->stats.pushes));
427                 seq_printf(s, "pops %8d, ",
428                            atomic_read(&qh->stats.pops));
429                 seq_printf(s, "count %8d, ",
430                            knav_queue_get_count(qh));
431                 seq_printf(s, "notifies %8d, ",
432                            atomic_read(&qh->stats.notifies));
433                 seq_printf(s, "push errors %8d, ",
434                            atomic_read(&qh->stats.push_errors));
435                 seq_printf(s, "pop errors %8d\n",
436                            atomic_read(&qh->stats.pop_errors));
437         }
438 }
439
440 static int knav_queue_debug_show(struct seq_file *s, void *v)
441 {
442         struct knav_queue_inst *inst;
443         int idx;
444
445         mutex_lock(&knav_dev_lock);
446         seq_printf(s, "%s: %u-%u\n",
447                    dev_name(kdev->dev), kdev->base_id,
448                    kdev->base_id + kdev->num_queues - 1);
449         for_each_instance(idx, inst, kdev)
450                 knav_queue_debug_show_instance(s, inst);
451         mutex_unlock(&knav_dev_lock);
452
453         return 0;
454 }
455
456 static int knav_queue_debug_open(struct inode *inode, struct file *file)
457 {
458         return single_open(file, knav_queue_debug_show, NULL);
459 }
460
461 static const struct file_operations knav_queue_debug_ops = {
462         .open           = knav_queue_debug_open,
463         .read           = seq_read,
464         .llseek         = seq_lseek,
465         .release        = single_release,
466 };
467
468 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
469                                         u32 flags)
470 {
471         unsigned long end;
472         u32 val = 0;
473
474         end = jiffies + msecs_to_jiffies(timeout);
475         while (time_after(end, jiffies)) {
476                 val = readl_relaxed(addr);
477                 if (flags)
478                         val &= flags;
479                 if (!val)
480                         break;
481                 cpu_relax();
482         }
483         return val ? -ETIMEDOUT : 0;
484 }
485
486
487 static int knav_queue_flush(struct knav_queue *qh)
488 {
489         struct knav_queue_inst *inst = qh->inst;
490         unsigned id = inst->id - inst->qmgr->start_queue;
491
492         atomic_set(&inst->desc_count, 0);
493         writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
494         return 0;
495 }
496
497 /**
498  * knav_queue_open()    - open a hardware queue
499  * @name                - name to give the queue handle
500  * @id                  - desired queue number if any or specifes the type
501  *                        of queue
502  * @flags               - the following flags are applicable to queues:
503  *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
504  *                           exclusive by default.
505  *                           Subsequent attempts to open a shared queue should
506  *                           also have this flag.
507  *
508  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
509  * to check the returned value for error codes.
510  */
511 void *knav_queue_open(const char *name, unsigned id,
512                                         unsigned flags)
513 {
514         struct knav_queue *qh = ERR_PTR(-EINVAL);
515
516         switch (id) {
517         case KNAV_QUEUE_QPEND:
518         case KNAV_QUEUE_ACC:
519         case KNAV_QUEUE_GP:
520                 qh = knav_queue_open_by_type(name, id, flags);
521                 break;
522
523         default:
524                 qh = knav_queue_open_by_id(name, id, flags);
525                 break;
526         }
527         return qh;
528 }
529 EXPORT_SYMBOL_GPL(knav_queue_open);
530
531 /**
532  * knav_queue_close()   - close a hardware queue handle
533  * @qh                  - handle to close
534  */
535 void knav_queue_close(void *qhandle)
536 {
537         struct knav_queue *qh = qhandle;
538         struct knav_queue_inst *inst = qh->inst;
539
540         while (atomic_read(&qh->notifier_enabled) > 0)
541                 knav_queue_disable_notifier(qh);
542
543         mutex_lock(&knav_dev_lock);
544         list_del_rcu(&qh->list);
545         mutex_unlock(&knav_dev_lock);
546         synchronize_rcu();
547         if (!knav_queue_is_busy(inst)) {
548                 struct knav_range_info *range = inst->range;
549
550                 if (range->ops && range->ops->close_queue)
551                         range->ops->close_queue(range, inst);
552         }
553         devm_kfree(inst->kdev->dev, qh);
554 }
555 EXPORT_SYMBOL_GPL(knav_queue_close);
556
557 /**
558  * knav_queue_device_control()  - Perform control operations on a queue
559  * @qh                          - queue handle
560  * @cmd                         - control commands
561  * @arg                         - command argument
562  *
563  * Returns 0 on success, errno otherwise.
564  */
565 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
566                                 unsigned long arg)
567 {
568         struct knav_queue *qh = qhandle;
569         struct knav_queue_notify_config *cfg;
570         int ret;
571
572         switch ((int)cmd) {
573         case KNAV_QUEUE_GET_ID:
574                 ret = qh->inst->kdev->base_id + qh->inst->id;
575                 break;
576
577         case KNAV_QUEUE_FLUSH:
578                 ret = knav_queue_flush(qh);
579                 break;
580
581         case KNAV_QUEUE_SET_NOTIFIER:
582                 cfg = (void *)arg;
583                 ret = knav_queue_set_notifier(qh, cfg);
584                 break;
585
586         case KNAV_QUEUE_ENABLE_NOTIFY:
587                 ret = knav_queue_enable_notifier(qh);
588                 break;
589
590         case KNAV_QUEUE_DISABLE_NOTIFY:
591                 ret = knav_queue_disable_notifier(qh);
592                 break;
593
594         case KNAV_QUEUE_GET_COUNT:
595                 ret = knav_queue_get_count(qh);
596                 break;
597
598         default:
599                 ret = -ENOTSUPP;
600                 break;
601         }
602         return ret;
603 }
604 EXPORT_SYMBOL_GPL(knav_queue_device_control);
605
606
607
608 /**
609  * knav_queue_push()    - push data (or descriptor) to the tail of a queue
610  * @qh                  - hardware queue handle
611  * @data                - data to push
612  * @size                - size of data to push
613  * @flags               - can be used to pass additional information
614  *
615  * Returns 0 on success, errno otherwise.
616  */
617 int knav_queue_push(void *qhandle, dma_addr_t dma,
618                                         unsigned size, unsigned flags)
619 {
620         struct knav_queue *qh = qhandle;
621         u32 val;
622
623         val = (u32)dma | ((size / 16) - 1);
624         writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
625
626         atomic_inc(&qh->stats.pushes);
627         return 0;
628 }
629
630 /**
631  * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
632  * @qh                  - hardware queue handle
633  * @size                - (optional) size of the data pop'ed.
634  *
635  * Returns a DMA address on success, 0 on failure.
636  */
637 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
638 {
639         struct knav_queue *qh = qhandle;
640         struct knav_queue_inst *inst = qh->inst;
641         dma_addr_t dma;
642         u32 val, idx;
643
644         /* are we accumulated? */
645         if (inst->descs) {
646                 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
647                         atomic_inc(&inst->desc_count);
648                         return 0;
649                 }
650                 idx  = atomic_inc_return(&inst->desc_head);
651                 idx &= ACC_DESCS_MASK;
652                 val = inst->descs[idx];
653         } else {
654                 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
655                 if (unlikely(!val))
656                         return 0;
657         }
658
659         dma = val & DESC_PTR_MASK;
660         if (size)
661                 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
662
663         atomic_inc(&qh->stats.pops);
664         return dma;
665 }
666
667 /* carve out descriptors and push into queue */
668 static void kdesc_fill_pool(struct knav_pool *pool)
669 {
670         struct knav_region *region;
671         int i;
672
673         region = pool->region;
674         pool->desc_size = region->desc_size;
675         for (i = 0; i < pool->num_desc; i++) {
676                 int index = pool->region_offset + i;
677                 dma_addr_t dma_addr;
678                 unsigned dma_size;
679                 dma_addr = region->dma_start + (region->desc_size * index);
680                 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
681                 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
682                                            DMA_TO_DEVICE);
683                 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
684         }
685 }
686
687 /* pop out descriptors and close the queue */
688 static void kdesc_empty_pool(struct knav_pool *pool)
689 {
690         dma_addr_t dma;
691         unsigned size;
692         void *desc;
693         int i;
694
695         if (!pool->queue)
696                 return;
697
698         for (i = 0;; i++) {
699                 dma = knav_queue_pop(pool->queue, &size);
700                 if (!dma)
701                         break;
702                 desc = knav_pool_desc_dma_to_virt(pool, dma);
703                 if (!desc) {
704                         dev_dbg(pool->kdev->dev,
705                                 "couldn't unmap desc, continuing\n");
706                         continue;
707                 }
708         }
709         WARN_ON(i != pool->num_desc);
710         knav_queue_close(pool->queue);
711 }
712
713
714 /* Get the DMA address of a descriptor */
715 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
716 {
717         struct knav_pool *pool = ph;
718         return pool->region->dma_start + (virt - pool->region->virt_start);
719 }
720
721 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
722 {
723         struct knav_pool *pool = ph;
724         return pool->region->virt_start + (dma - pool->region->dma_start);
725 }
726
727 /**
728  * knav_pool_create()   - Create a pool of descriptors
729  * @name                - name to give the pool handle
730  * @num_desc            - numbers of descriptors in the pool
731  * @region_id           - QMSS region id from which the descriptors are to be
732  *                        allocated.
733  *
734  * Returns a pool handle on success.
735  * Use IS_ERR_OR_NULL() to identify error values on return.
736  */
737 void *knav_pool_create(const char *name,
738                                         int num_desc, int region_id)
739 {
740         struct knav_region *reg_itr, *region = NULL;
741         struct knav_pool *pool, *pi;
742         struct list_head *node;
743         unsigned last_offset;
744         bool slot_found;
745         int ret;
746
747         if (!kdev->dev)
748                 return ERR_PTR(-ENODEV);
749
750         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
751         if (!pool) {
752                 dev_err(kdev->dev, "out of memory allocating pool\n");
753                 return ERR_PTR(-ENOMEM);
754         }
755
756         for_each_region(kdev, reg_itr) {
757                 if (reg_itr->id != region_id)
758                         continue;
759                 region = reg_itr;
760                 break;
761         }
762
763         if (!region) {
764                 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
765                 ret = -EINVAL;
766                 goto err;
767         }
768
769         pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
770         if (IS_ERR_OR_NULL(pool->queue)) {
771                 dev_err(kdev->dev,
772                         "failed to open queue for pool(%s), error %ld\n",
773                         name, PTR_ERR(pool->queue));
774                 ret = PTR_ERR(pool->queue);
775                 goto err;
776         }
777
778         pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
779         pool->kdev = kdev;
780         pool->dev = kdev->dev;
781
782         mutex_lock(&knav_dev_lock);
783
784         if (num_desc > (region->num_desc - region->used_desc)) {
785                 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
786                         region_id, name);
787                 ret = -ENOMEM;
788                 goto err_unlock;
789         }
790
791         /* Region maintains a sorted (by region offset) list of pools
792          * use the first free slot which is large enough to accomodate
793          * the request
794          */
795         last_offset = 0;
796         slot_found = false;
797         node = &region->pools;
798         list_for_each_entry(pi, &region->pools, region_inst) {
799                 if ((pi->region_offset - last_offset) >= num_desc) {
800                         slot_found = true;
801                         break;
802                 }
803                 last_offset = pi->region_offset + pi->num_desc;
804         }
805         node = &pi->region_inst;
806
807         if (slot_found) {
808                 pool->region = region;
809                 pool->num_desc = num_desc;
810                 pool->region_offset = last_offset;
811                 region->used_desc += num_desc;
812                 list_add_tail(&pool->list, &kdev->pools);
813                 list_add_tail(&pool->region_inst, node);
814         } else {
815                 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
816                         name, region_id);
817                 ret = -ENOMEM;
818                 goto err_unlock;
819         }
820
821         mutex_unlock(&knav_dev_lock);
822         kdesc_fill_pool(pool);
823         return pool;
824
825 err_unlock:
826         mutex_unlock(&knav_dev_lock);
827 err:
828         kfree(pool->name);
829         devm_kfree(kdev->dev, pool);
830         return ERR_PTR(ret);
831 }
832 EXPORT_SYMBOL_GPL(knav_pool_create);
833
834 /**
835  * knav_pool_destroy()  - Free a pool of descriptors
836  * @pool                - pool handle
837  */
838 void knav_pool_destroy(void *ph)
839 {
840         struct knav_pool *pool = ph;
841
842         if (!pool)
843                 return;
844
845         if (!pool->region)
846                 return;
847
848         kdesc_empty_pool(pool);
849         mutex_lock(&knav_dev_lock);
850
851         pool->region->used_desc -= pool->num_desc;
852         list_del(&pool->region_inst);
853         list_del(&pool->list);
854
855         mutex_unlock(&knav_dev_lock);
856         kfree(pool->name);
857         devm_kfree(kdev->dev, pool);
858 }
859 EXPORT_SYMBOL_GPL(knav_pool_destroy);
860
861
862 /**
863  * knav_pool_desc_get() - Get a descriptor from the pool
864  * @pool                        - pool handle
865  *
866  * Returns descriptor from the pool.
867  */
868 void *knav_pool_desc_get(void *ph)
869 {
870         struct knav_pool *pool = ph;
871         dma_addr_t dma;
872         unsigned size;
873         void *data;
874
875         dma = knav_queue_pop(pool->queue, &size);
876         if (unlikely(!dma))
877                 return ERR_PTR(-ENOMEM);
878         data = knav_pool_desc_dma_to_virt(pool, dma);
879         return data;
880 }
881
882 /**
883  * knav_pool_desc_put() - return a descriptor to the pool
884  * @pool                        - pool handle
885  */
886 void knav_pool_desc_put(void *ph, void *desc)
887 {
888         struct knav_pool *pool = ph;
889         dma_addr_t dma;
890         dma = knav_pool_desc_virt_to_dma(pool, desc);
891         knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
892 }
893
894 /**
895  * knav_pool_desc_map() - Map descriptor for DMA transfer
896  * @pool                        - pool handle
897  * @desc                        - address of descriptor to map
898  * @size                        - size of descriptor to map
899  * @dma                         - DMA address return pointer
900  * @dma_sz                      - adjusted return pointer
901  *
902  * Returns 0 on success, errno otherwise.
903  */
904 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
905                                         dma_addr_t *dma, unsigned *dma_sz)
906 {
907         struct knav_pool *pool = ph;
908         *dma = knav_pool_desc_virt_to_dma(pool, desc);
909         size = min(size, pool->region->desc_size);
910         size = ALIGN(size, SMP_CACHE_BYTES);
911         *dma_sz = size;
912         dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
913
914         /* Ensure the descriptor reaches to the memory */
915         __iowmb();
916
917         return 0;
918 }
919
920 /**
921  * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
922  * @pool                        - pool handle
923  * @dma                         - DMA address of descriptor to unmap
924  * @dma_sz                      - size of descriptor to unmap
925  *
926  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
927  * error values on return.
928  */
929 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
930 {
931         struct knav_pool *pool = ph;
932         unsigned desc_sz;
933         void *desc;
934
935         desc_sz = min(dma_sz, pool->region->desc_size);
936         desc = knav_pool_desc_dma_to_virt(pool, dma);
937         dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
938         prefetch(desc);
939         return desc;
940 }
941
942 /**
943  * knav_pool_count()    - Get the number of descriptors in pool.
944  * @pool                - pool handle
945  * Returns number of elements in the pool.
946  */
947 int knav_pool_count(void *ph)
948 {
949         struct knav_pool *pool = ph;
950         return knav_queue_get_count(pool->queue);
951 }
952
953 static void knav_queue_setup_region(struct knav_device *kdev,
954                                         struct knav_region *region)
955 {
956         unsigned hw_num_desc, hw_desc_size, size;
957         struct knav_reg_region __iomem  *regs;
958         struct knav_qmgr_info *qmgr;
959         struct knav_pool *pool;
960         int id = region->id;
961         struct page *page;
962
963         /* unused region? */
964         if (!region->num_desc) {
965                 dev_warn(kdev->dev, "unused region %s\n", region->name);
966                 return;
967         }
968
969         /* get hardware descriptor value */
970         hw_num_desc = ilog2(region->num_desc - 1) + 1;
971
972         /* did we force fit ourselves into nothingness? */
973         if (region->num_desc < 32) {
974                 region->num_desc = 0;
975                 dev_warn(kdev->dev, "too few descriptors in region %s\n",
976                          region->name);
977                 return;
978         }
979
980         size = region->num_desc * region->desc_size;
981         region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
982                                                 GFP_DMA32);
983         if (!region->virt_start) {
984                 region->num_desc = 0;
985                 dev_err(kdev->dev, "memory alloc failed for region %s\n",
986                         region->name);
987                 return;
988         }
989         region->virt_end = region->virt_start + size;
990         page = virt_to_page(region->virt_start);
991
992         region->dma_start = dma_map_page(kdev->dev, page, 0, size,
993                                          DMA_BIDIRECTIONAL);
994         if (dma_mapping_error(kdev->dev, region->dma_start)) {
995                 dev_err(kdev->dev, "dma map failed for region %s\n",
996                         region->name);
997                 goto fail;
998         }
999         region->dma_end = region->dma_start + size;
1000
1001         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1002         if (!pool) {
1003                 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1004                 goto fail;
1005         }
1006         pool->num_desc = 0;
1007         pool->region_offset = region->num_desc;
1008         list_add(&pool->region_inst, &region->pools);
1009
1010         dev_dbg(kdev->dev,
1011                 "region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
1012                 region->name, id, region->desc_size, region->num_desc,
1013                 region->link_index, region->dma_start, region->dma_end,
1014                 region->virt_start, region->virt_end);
1015
1016         hw_desc_size = (region->desc_size / 16) - 1;
1017         hw_num_desc -= 5;
1018
1019         for_each_qmgr(kdev, qmgr) {
1020                 regs = qmgr->reg_region + id;
1021                 writel_relaxed(region->dma_start, &regs->base);
1022                 writel_relaxed(region->link_index, &regs->start_index);
1023                 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1024                                &regs->size_count);
1025         }
1026         return;
1027
1028 fail:
1029         if (region->dma_start)
1030                 dma_unmap_page(kdev->dev, region->dma_start, size,
1031                                 DMA_BIDIRECTIONAL);
1032         if (region->virt_start)
1033                 free_pages_exact(region->virt_start, size);
1034         region->num_desc = 0;
1035         return;
1036 }
1037
1038 static const char *knav_queue_find_name(struct device_node *node)
1039 {
1040         const char *name;
1041
1042         if (of_property_read_string(node, "label", &name) < 0)
1043                 name = node->name;
1044         if (!name)
1045                 name = "unknown";
1046         return name;
1047 }
1048
1049 static int knav_queue_setup_regions(struct knav_device *kdev,
1050                                         struct device_node *regions)
1051 {
1052         struct device *dev = kdev->dev;
1053         struct knav_region *region;
1054         struct device_node *child;
1055         u32 temp[2];
1056         int ret;
1057
1058         for_each_child_of_node(regions, child) {
1059                 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1060                 if (!region) {
1061                         dev_err(dev, "out of memory allocating region\n");
1062                         return -ENOMEM;
1063                 }
1064
1065                 region->name = knav_queue_find_name(child);
1066                 of_property_read_u32(child, "id", &region->id);
1067                 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1068                 if (!ret) {
1069                         region->num_desc  = temp[0];
1070                         region->desc_size = temp[1];
1071                 } else {
1072                         dev_err(dev, "invalid region info %s\n", region->name);
1073                         devm_kfree(dev, region);
1074                         continue;
1075                 }
1076
1077                 if (!of_get_property(child, "link-index", NULL)) {
1078                         dev_err(dev, "No link info for %s\n", region->name);
1079                         devm_kfree(dev, region);
1080                         continue;
1081                 }
1082                 ret = of_property_read_u32(child, "link-index",
1083                                            &region->link_index);
1084                 if (ret) {
1085                         dev_err(dev, "link index not found for %s\n",
1086                                 region->name);
1087                         devm_kfree(dev, region);
1088                         continue;
1089                 }
1090
1091                 INIT_LIST_HEAD(&region->pools);
1092                 list_add_tail(&region->list, &kdev->regions);
1093         }
1094         if (list_empty(&kdev->regions)) {
1095                 dev_err(dev, "no valid region information found\n");
1096                 return -ENODEV;
1097         }
1098
1099         /* Next, we run through the regions and set things up */
1100         for_each_region(kdev, region)
1101                 knav_queue_setup_region(kdev, region);
1102
1103         return 0;
1104 }
1105
1106 static int knav_get_link_ram(struct knav_device *kdev,
1107                                        const char *name,
1108                                        struct knav_link_ram_block *block)
1109 {
1110         struct platform_device *pdev = to_platform_device(kdev->dev);
1111         struct device_node *node = pdev->dev.of_node;
1112         u32 temp[2];
1113
1114         /*
1115          * Note: link ram resources are specified in "entry" sized units. In
1116          * reality, although entries are ~40bits in hardware, we treat them as
1117          * 64-bit entities here.
1118          *
1119          * For example, to specify the internal link ram for Keystone-I class
1120          * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1121          *
1122          * This gets a bit weird when other link rams are used.  For example,
1123          * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1124          * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1125          * which accounts for 64-bits per entry, for 16K entries.
1126          */
1127         if (!of_property_read_u32_array(node, name , temp, 2)) {
1128                 if (temp[0]) {
1129                         /*
1130                          * queue_base specified => using internal or onchip
1131                          * link ram WARNING - we do not "reserve" this block
1132                          */
1133                         block->phys = (dma_addr_t)temp[0];
1134                         block->virt = NULL;
1135                         block->size = temp[1];
1136                 } else {
1137                         block->size = temp[1];
1138                         /* queue_base not specific => allocate requested size */
1139                         block->virt = dmam_alloc_coherent(kdev->dev,
1140                                                   8 * block->size, &block->phys,
1141                                                   GFP_KERNEL);
1142                         if (!block->virt) {
1143                                 dev_err(kdev->dev, "failed to alloc linkram\n");
1144                                 return -ENOMEM;
1145                         }
1146                 }
1147         } else {
1148                 return -ENODEV;
1149         }
1150         return 0;
1151 }
1152
1153 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1154 {
1155         struct knav_link_ram_block *block;
1156         struct knav_qmgr_info *qmgr;
1157
1158         for_each_qmgr(kdev, qmgr) {
1159                 block = &kdev->link_rams[0];
1160                 dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
1161                         block->phys, block->virt, block->size);
1162                 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
1163                 writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1164
1165                 block++;
1166                 if (!block->size)
1167                         return 0;
1168
1169                 dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
1170                         block->phys, block->virt, block->size);
1171                 writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
1172         }
1173
1174         return 0;
1175 }
1176
1177 static int knav_setup_queue_range(struct knav_device *kdev,
1178                                         struct device_node *node)
1179 {
1180         struct device *dev = kdev->dev;
1181         struct knav_range_info *range;
1182         struct knav_qmgr_info *qmgr;
1183         u32 temp[2], start, end, id, index;
1184         int ret, i;
1185
1186         range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1187         if (!range) {
1188                 dev_err(dev, "out of memory allocating range\n");
1189                 return -ENOMEM;
1190         }
1191
1192         range->kdev = kdev;
1193         range->name = knav_queue_find_name(node);
1194         ret = of_property_read_u32_array(node, "qrange", temp, 2);
1195         if (!ret) {
1196                 range->queue_base = temp[0] - kdev->base_id;
1197                 range->num_queues = temp[1];
1198         } else {
1199                 dev_err(dev, "invalid queue range %s\n", range->name);
1200                 devm_kfree(dev, range);
1201                 return -EINVAL;
1202         }
1203
1204         for (i = 0; i < RANGE_MAX_IRQS; i++) {
1205                 struct of_phandle_args oirq;
1206
1207                 if (of_irq_parse_one(node, i, &oirq))
1208                         break;
1209
1210                 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1211                 if (range->irqs[i].irq == IRQ_NONE)
1212                         break;
1213
1214                 range->num_irqs++;
1215
1216                 if (oirq.args_count == 3)
1217                         range->irqs[i].cpu_map =
1218                                 (oirq.args[2] & 0x0000ff00) >> 8;
1219         }
1220
1221         range->num_irqs = min(range->num_irqs, range->num_queues);
1222         if (range->num_irqs)
1223                 range->flags |= RANGE_HAS_IRQ;
1224
1225         if (of_get_property(node, "qalloc-by-id", NULL))
1226                 range->flags |= RANGE_RESERVED;
1227
1228         if (of_get_property(node, "accumulator", NULL)) {
1229                 ret = knav_init_acc_range(kdev, node, range);
1230                 if (ret < 0) {
1231                         devm_kfree(dev, range);
1232                         return ret;
1233                 }
1234         } else {
1235                 range->ops = &knav_gp_range_ops;
1236         }
1237
1238         /* set threshold to 1, and flush out the queues */
1239         for_each_qmgr(kdev, qmgr) {
1240                 start = max(qmgr->start_queue, range->queue_base);
1241                 end   = min(qmgr->start_queue + qmgr->num_queues,
1242                             range->queue_base + range->num_queues);
1243                 for (id = start; id < end; id++) {
1244                         index = id - qmgr->start_queue;
1245                         writel_relaxed(THRESH_GTE | 1,
1246                                        &qmgr->reg_peek[index].ptr_size_thresh);
1247                         writel_relaxed(0,
1248                                        &qmgr->reg_push[index].ptr_size_thresh);
1249                 }
1250         }
1251
1252         list_add_tail(&range->list, &kdev->queue_ranges);
1253         dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1254                 range->name, range->queue_base,
1255                 range->queue_base + range->num_queues - 1,
1256                 range->num_irqs,
1257                 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1258                 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1259                 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1260         kdev->num_queues_in_use += range->num_queues;
1261         return 0;
1262 }
1263
1264 static int knav_setup_queue_pools(struct knav_device *kdev,
1265                                    struct device_node *queue_pools)
1266 {
1267         struct device_node *type, *range;
1268         int ret;
1269
1270         for_each_child_of_node(queue_pools, type) {
1271                 for_each_child_of_node(type, range) {
1272                         ret = knav_setup_queue_range(kdev, range);
1273                         /* return value ignored, we init the rest... */
1274                 }
1275         }
1276
1277         /* ... and barf if they all failed! */
1278         if (list_empty(&kdev->queue_ranges)) {
1279                 dev_err(kdev->dev, "no valid queue range found\n");
1280                 return -ENODEV;
1281         }
1282         return 0;
1283 }
1284
1285 static void knav_free_queue_range(struct knav_device *kdev,
1286                                   struct knav_range_info *range)
1287 {
1288         if (range->ops && range->ops->free_range)
1289                 range->ops->free_range(range);
1290         list_del(&range->list);
1291         devm_kfree(kdev->dev, range);
1292 }
1293
1294 static void knav_free_queue_ranges(struct knav_device *kdev)
1295 {
1296         struct knav_range_info *range;
1297
1298         for (;;) {
1299                 range = first_queue_range(kdev);
1300                 if (!range)
1301                         break;
1302                 knav_free_queue_range(kdev, range);
1303         }
1304 }
1305
1306 static void knav_queue_free_regions(struct knav_device *kdev)
1307 {
1308         struct knav_region *region;
1309         struct knav_pool *pool, *tmp;
1310         unsigned size;
1311
1312         for (;;) {
1313                 region = first_region(kdev);
1314                 if (!region)
1315                         break;
1316                 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1317                         knav_pool_destroy(pool);
1318
1319                 size = region->virt_end - region->virt_start;
1320                 if (size)
1321                         free_pages_exact(region->virt_start, size);
1322                 list_del(&region->list);
1323                 devm_kfree(kdev->dev, region);
1324         }
1325 }
1326
1327 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1328                                         struct device_node *node, int index)
1329 {
1330         struct resource res;
1331         void __iomem *regs;
1332         int ret;
1333
1334         ret = of_address_to_resource(node, index, &res);
1335         if (ret) {
1336                 dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1337                         node->name, index);
1338                 return ERR_PTR(ret);
1339         }
1340
1341         regs = devm_ioremap_resource(kdev->dev, &res);
1342         if (IS_ERR(regs))
1343                 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1344                         index, node->name);
1345         return regs;
1346 }
1347
1348 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1349                                         struct device_node *qmgrs)
1350 {
1351         struct device *dev = kdev->dev;
1352         struct knav_qmgr_info *qmgr;
1353         struct device_node *child;
1354         u32 temp[2];
1355         int ret;
1356
1357         for_each_child_of_node(qmgrs, child) {
1358                 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1359                 if (!qmgr) {
1360                         dev_err(dev, "out of memory allocating qmgr\n");
1361                         return -ENOMEM;
1362                 }
1363
1364                 ret = of_property_read_u32_array(child, "managed-queues",
1365                                                  temp, 2);
1366                 if (!ret) {
1367                         qmgr->start_queue = temp[0];
1368                         qmgr->num_queues = temp[1];
1369                 } else {
1370                         dev_err(dev, "invalid qmgr queue range\n");
1371                         devm_kfree(dev, qmgr);
1372                         continue;
1373                 }
1374
1375                 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1376                          qmgr->start_queue, qmgr->num_queues);
1377
1378                 qmgr->reg_peek =
1379                         knav_queue_map_reg(kdev, child,
1380                                            KNAV_QUEUE_PEEK_REG_INDEX);
1381                 qmgr->reg_status =
1382                         knav_queue_map_reg(kdev, child,
1383                                            KNAV_QUEUE_STATUS_REG_INDEX);
1384                 qmgr->reg_config =
1385                         knav_queue_map_reg(kdev, child,
1386                                            KNAV_QUEUE_CONFIG_REG_INDEX);
1387                 qmgr->reg_region =
1388                         knav_queue_map_reg(kdev, child,
1389                                            KNAV_QUEUE_REGION_REG_INDEX);
1390                 qmgr->reg_push =
1391                         knav_queue_map_reg(kdev, child,
1392                                            KNAV_QUEUE_PUSH_REG_INDEX);
1393                 qmgr->reg_pop =
1394                         knav_queue_map_reg(kdev, child,
1395                                            KNAV_QUEUE_POP_REG_INDEX);
1396
1397                 if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1398                     IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1399                     IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1400                         dev_err(dev, "failed to map qmgr regs\n");
1401                         if (!IS_ERR(qmgr->reg_peek))
1402                                 devm_iounmap(dev, qmgr->reg_peek);
1403                         if (!IS_ERR(qmgr->reg_status))
1404                                 devm_iounmap(dev, qmgr->reg_status);
1405                         if (!IS_ERR(qmgr->reg_config))
1406                                 devm_iounmap(dev, qmgr->reg_config);
1407                         if (!IS_ERR(qmgr->reg_region))
1408                                 devm_iounmap(dev, qmgr->reg_region);
1409                         if (!IS_ERR(qmgr->reg_push))
1410                                 devm_iounmap(dev, qmgr->reg_push);
1411                         if (!IS_ERR(qmgr->reg_pop))
1412                                 devm_iounmap(dev, qmgr->reg_pop);
1413                         devm_kfree(dev, qmgr);
1414                         continue;
1415                 }
1416
1417                 list_add_tail(&qmgr->list, &kdev->qmgrs);
1418                 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1419                          qmgr->start_queue, qmgr->num_queues,
1420                          qmgr->reg_peek, qmgr->reg_status,
1421                          qmgr->reg_config, qmgr->reg_region,
1422                          qmgr->reg_push, qmgr->reg_pop);
1423         }
1424         return 0;
1425 }
1426
1427 static int knav_queue_init_pdsps(struct knav_device *kdev,
1428                                         struct device_node *pdsps)
1429 {
1430         struct device *dev = kdev->dev;
1431         struct knav_pdsp_info *pdsp;
1432         struct device_node *child;
1433         int ret;
1434
1435         for_each_child_of_node(pdsps, child) {
1436                 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1437                 if (!pdsp) {
1438                         dev_err(dev, "out of memory allocating pdsp\n");
1439                         return -ENOMEM;
1440                 }
1441                 pdsp->name = knav_queue_find_name(child);
1442                 ret = of_property_read_string(child, "firmware",
1443                                               &pdsp->firmware);
1444                 if (ret < 0 || !pdsp->firmware) {
1445                         dev_err(dev, "unknown firmware for pdsp %s\n",
1446                                 pdsp->name);
1447                         devm_kfree(dev, pdsp);
1448                         continue;
1449                 }
1450                 dev_dbg(dev, "pdsp name %s fw name :%s\n", pdsp->name,
1451                         pdsp->firmware);
1452
1453                 pdsp->iram =
1454                         knav_queue_map_reg(kdev, child,
1455                                            KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1456                 pdsp->regs =
1457                         knav_queue_map_reg(kdev, child,
1458                                            KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1459                 pdsp->intd =
1460                         knav_queue_map_reg(kdev, child,
1461                                            KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1462                 pdsp->command =
1463                         knav_queue_map_reg(kdev, child,
1464                                            KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1465
1466                 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1467                     IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1468                         dev_err(dev, "failed to map pdsp %s regs\n",
1469                                 pdsp->name);
1470                         if (!IS_ERR(pdsp->command))
1471                                 devm_iounmap(dev, pdsp->command);
1472                         if (!IS_ERR(pdsp->iram))
1473                                 devm_iounmap(dev, pdsp->iram);
1474                         if (!IS_ERR(pdsp->regs))
1475                                 devm_iounmap(dev, pdsp->regs);
1476                         if (!IS_ERR(pdsp->intd))
1477                                 devm_iounmap(dev, pdsp->intd);
1478                         devm_kfree(dev, pdsp);
1479                         continue;
1480                 }
1481                 of_property_read_u32(child, "id", &pdsp->id);
1482                 list_add_tail(&pdsp->list, &kdev->pdsps);
1483                 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p, firmware %s\n",
1484                         pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1485                         pdsp->intd, pdsp->firmware);
1486         }
1487         return 0;
1488 }
1489
1490 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1491                           struct knav_pdsp_info *pdsp)
1492 {
1493         u32 val, timeout = 1000;
1494         int ret;
1495
1496         val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1497         writel_relaxed(val, &pdsp->regs->control);
1498         ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1499                                         PDSP_CTRL_RUNNING);
1500         if (ret < 0) {
1501                 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1502                 return ret;
1503         }
1504         return 0;
1505 }
1506
1507 static int knav_queue_load_pdsp(struct knav_device *kdev,
1508                           struct knav_pdsp_info *pdsp)
1509 {
1510         int i, ret, fwlen;
1511         const struct firmware *fw;
1512         u32 *fwdata;
1513
1514         ret = request_firmware(&fw, pdsp->firmware, kdev->dev);
1515         if (ret) {
1516                 dev_err(kdev->dev, "failed to get firmware %s for pdsp %s\n",
1517                         pdsp->firmware, pdsp->name);
1518                 return ret;
1519         }
1520         writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1521         /* download the firmware */
1522         fwdata = (u32 *)fw->data;
1523         fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1524         for (i = 0; i < fwlen; i++)
1525                 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1526
1527         release_firmware(fw);
1528         return 0;
1529 }
1530
1531 static int knav_queue_start_pdsp(struct knav_device *kdev,
1532                            struct knav_pdsp_info *pdsp)
1533 {
1534         u32 val, timeout = 1000;
1535         int ret;
1536
1537         /* write a command for sync */
1538         writel_relaxed(0xffffffff, pdsp->command);
1539         while (readl_relaxed(pdsp->command) != 0xffffffff)
1540                 cpu_relax();
1541
1542         /* soft reset the PDSP */
1543         val  = readl_relaxed(&pdsp->regs->control);
1544         val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1545         writel_relaxed(val, &pdsp->regs->control);
1546
1547         /* enable pdsp */
1548         val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1549         writel_relaxed(val, &pdsp->regs->control);
1550
1551         /* wait for command register to clear */
1552         ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1553         if (ret < 0) {
1554                 dev_err(kdev->dev,
1555                         "timed out on pdsp %s command register wait\n",
1556                         pdsp->name);
1557                 return ret;
1558         }
1559         return 0;
1560 }
1561
1562 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1563 {
1564         struct knav_pdsp_info *pdsp;
1565
1566         /* disable all pdsps */
1567         for_each_pdsp(kdev, pdsp)
1568                 knav_queue_stop_pdsp(kdev, pdsp);
1569 }
1570
1571 static int knav_queue_start_pdsps(struct knav_device *kdev)
1572 {
1573         struct knav_pdsp_info *pdsp;
1574         int ret;
1575
1576         knav_queue_stop_pdsps(kdev);
1577         /* now load them all */
1578         for_each_pdsp(kdev, pdsp) {
1579                 ret = knav_queue_load_pdsp(kdev, pdsp);
1580                 if (ret < 0)
1581                         return ret;
1582         }
1583
1584         for_each_pdsp(kdev, pdsp) {
1585                 ret = knav_queue_start_pdsp(kdev, pdsp);
1586                 WARN_ON(ret);
1587         }
1588         return 0;
1589 }
1590
1591 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1592 {
1593         struct knav_qmgr_info *qmgr;
1594
1595         for_each_qmgr(kdev, qmgr) {
1596                 if ((id >= qmgr->start_queue) &&
1597                     (id < qmgr->start_queue + qmgr->num_queues))
1598                         return qmgr;
1599         }
1600         return NULL;
1601 }
1602
1603 static int knav_queue_init_queue(struct knav_device *kdev,
1604                                         struct knav_range_info *range,
1605                                         struct knav_queue_inst *inst,
1606                                         unsigned id)
1607 {
1608         char irq_name[KNAV_NAME_SIZE];
1609         inst->qmgr = knav_find_qmgr(id);
1610         if (!inst->qmgr)
1611                 return -1;
1612
1613         INIT_LIST_HEAD(&inst->handles);
1614         inst->kdev = kdev;
1615         inst->range = range;
1616         inst->irq_num = -1;
1617         inst->id = id;
1618         scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1619         inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1620
1621         if (range->ops && range->ops->init_queue)
1622                 return range->ops->init_queue(range, inst);
1623         else
1624                 return 0;
1625 }
1626
1627 static int knav_queue_init_queues(struct knav_device *kdev)
1628 {
1629         struct knav_range_info *range;
1630         int size, id, base_idx;
1631         int idx = 0, ret = 0;
1632
1633         /* how much do we need for instance data? */
1634         size = sizeof(struct knav_queue_inst);
1635
1636         /* round this up to a power of 2, keep the index to instance
1637          * arithmetic fast.
1638          * */
1639         kdev->inst_shift = order_base_2(size);
1640         size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1641         kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1642         if (!kdev->instances)
1643                 return -ENOMEM;
1644
1645         for_each_queue_range(kdev, range) {
1646                 if (range->ops && range->ops->init_range)
1647                         range->ops->init_range(range);
1648                 base_idx = idx;
1649                 for (id = range->queue_base;
1650                      id < range->queue_base + range->num_queues; id++, idx++) {
1651                         ret = knav_queue_init_queue(kdev, range,
1652                                         knav_queue_idx_to_inst(kdev, idx), id);
1653                         if (ret < 0)
1654                                 return ret;
1655                 }
1656                 range->queue_base_inst =
1657                         knav_queue_idx_to_inst(kdev, base_idx);
1658         }
1659         return 0;
1660 }
1661
1662 static int knav_queue_probe(struct platform_device *pdev)
1663 {
1664         struct device_node *node = pdev->dev.of_node;
1665         struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1666         struct device *dev = &pdev->dev;
1667         u32 temp[2];
1668         int ret;
1669
1670         if (!node) {
1671                 dev_err(dev, "device tree info unavailable\n");
1672                 return -ENODEV;
1673         }
1674
1675         kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1676         if (!kdev) {
1677                 dev_err(dev, "memory allocation failed\n");
1678                 return -ENOMEM;
1679         }
1680
1681         platform_set_drvdata(pdev, kdev);
1682         kdev->dev = dev;
1683         INIT_LIST_HEAD(&kdev->queue_ranges);
1684         INIT_LIST_HEAD(&kdev->qmgrs);
1685         INIT_LIST_HEAD(&kdev->pools);
1686         INIT_LIST_HEAD(&kdev->regions);
1687         INIT_LIST_HEAD(&kdev->pdsps);
1688
1689         pm_runtime_enable(&pdev->dev);
1690         ret = pm_runtime_get_sync(&pdev->dev);
1691         if (ret < 0) {
1692                 dev_err(dev, "Failed to enable QMSS\n");
1693                 return ret;
1694         }
1695
1696         if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1697                 dev_err(dev, "queue-range not specified\n");
1698                 ret = -ENODEV;
1699                 goto err;
1700         }
1701         kdev->base_id    = temp[0];
1702         kdev->num_queues = temp[1];
1703
1704         /* Initialize queue managers using device tree configuration */
1705         qmgrs =  of_get_child_by_name(node, "qmgrs");
1706         if (!qmgrs) {
1707                 dev_err(dev, "queue manager info not specified\n");
1708                 ret = -ENODEV;
1709                 goto err;
1710         }
1711         ret = knav_queue_init_qmgrs(kdev, qmgrs);
1712         of_node_put(qmgrs);
1713         if (ret)
1714                 goto err;
1715
1716         /* get pdsp configuration values from device tree */
1717         pdsps =  of_get_child_by_name(node, "pdsps");
1718         if (pdsps) {
1719                 ret = knav_queue_init_pdsps(kdev, pdsps);
1720                 if (ret)
1721                         goto err;
1722
1723                 ret = knav_queue_start_pdsps(kdev);
1724                 if (ret)
1725                         goto err;
1726         }
1727         of_node_put(pdsps);
1728
1729         /* get usable queue range values from device tree */
1730         queue_pools = of_get_child_by_name(node, "queue-pools");
1731         if (!queue_pools) {
1732                 dev_err(dev, "queue-pools not specified\n");
1733                 ret = -ENODEV;
1734                 goto err;
1735         }
1736         ret = knav_setup_queue_pools(kdev, queue_pools);
1737         of_node_put(queue_pools);
1738         if (ret)
1739                 goto err;
1740
1741         ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1742         if (ret) {
1743                 dev_err(kdev->dev, "could not setup linking ram\n");
1744                 goto err;
1745         }
1746
1747         ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1748         if (ret) {
1749                 /*
1750                  * nothing really, we have one linking ram already, so we just
1751                  * live within our means
1752                  */
1753         }
1754
1755         ret = knav_queue_setup_link_ram(kdev);
1756         if (ret)
1757                 goto err;
1758
1759         regions =  of_get_child_by_name(node, "descriptor-regions");
1760         if (!regions) {
1761                 dev_err(dev, "descriptor-regions not specified\n");
1762                 goto err;
1763         }
1764         ret = knav_queue_setup_regions(kdev, regions);
1765         of_node_put(regions);
1766         if (ret)
1767                 goto err;
1768
1769         ret = knav_queue_init_queues(kdev);
1770         if (ret < 0) {
1771                 dev_err(dev, "hwqueue initialization failed\n");
1772                 goto err;
1773         }
1774
1775         debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1776                             &knav_queue_debug_ops);
1777         return 0;
1778
1779 err:
1780         knav_queue_stop_pdsps(kdev);
1781         knav_queue_free_regions(kdev);
1782         knav_free_queue_ranges(kdev);
1783         pm_runtime_put_sync(&pdev->dev);
1784         pm_runtime_disable(&pdev->dev);
1785         return ret;
1786 }
1787
1788 static int knav_queue_remove(struct platform_device *pdev)
1789 {
1790         /* TODO: Free resources */
1791         pm_runtime_put_sync(&pdev->dev);
1792         pm_runtime_disable(&pdev->dev);
1793         return 0;
1794 }
1795
1796 /* Match table for of_platform binding */
1797 static struct of_device_id keystone_qmss_of_match[] = {
1798         { .compatible = "ti,keystone-navigator-qmss", },
1799         {},
1800 };
1801 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1802
1803 static struct platform_driver keystone_qmss_driver = {
1804         .probe          = knav_queue_probe,
1805         .remove         = knav_queue_remove,
1806         .driver         = {
1807                 .name   = "keystone-navigator-qmss",
1808                 .owner  = THIS_MODULE,
1809                 .of_match_table = keystone_qmss_of_match,
1810         },
1811 };
1812 module_platform_driver(keystone_qmss_driver);
1813
1814 MODULE_LICENSE("GPL v2");
1815 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1816 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1817 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");