Merge branch 'linus' into timers/urgent
[cascardo/linux.git] / drivers / spi / spi-atmel.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/spi/spi.h>
22 #include <linux/slab.h>
23 #include <linux/platform_data/atmel.h>
24 #include <linux/platform_data/dma-atmel.h>
25 #include <linux/of.h>
26
27 #include <linux/io.h>
28 #include <linux/gpio.h>
29
30 /* SPI register offsets */
31 #define SPI_CR                                  0x0000
32 #define SPI_MR                                  0x0004
33 #define SPI_RDR                                 0x0008
34 #define SPI_TDR                                 0x000c
35 #define SPI_SR                                  0x0010
36 #define SPI_IER                                 0x0014
37 #define SPI_IDR                                 0x0018
38 #define SPI_IMR                                 0x001c
39 #define SPI_CSR0                                0x0030
40 #define SPI_CSR1                                0x0034
41 #define SPI_CSR2                                0x0038
42 #define SPI_CSR3                                0x003c
43 #define SPI_VERSION                             0x00fc
44 #define SPI_RPR                                 0x0100
45 #define SPI_RCR                                 0x0104
46 #define SPI_TPR                                 0x0108
47 #define SPI_TCR                                 0x010c
48 #define SPI_RNPR                                0x0110
49 #define SPI_RNCR                                0x0114
50 #define SPI_TNPR                                0x0118
51 #define SPI_TNCR                                0x011c
52 #define SPI_PTCR                                0x0120
53 #define SPI_PTSR                                0x0124
54
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET                        0
57 #define SPI_SPIEN_SIZE                          1
58 #define SPI_SPIDIS_OFFSET                       1
59 #define SPI_SPIDIS_SIZE                         1
60 #define SPI_SWRST_OFFSET                        7
61 #define SPI_SWRST_SIZE                          1
62 #define SPI_LASTXFER_OFFSET                     24
63 #define SPI_LASTXFER_SIZE                       1
64
65 /* Bitfields in MR */
66 #define SPI_MSTR_OFFSET                         0
67 #define SPI_MSTR_SIZE                           1
68 #define SPI_PS_OFFSET                           1
69 #define SPI_PS_SIZE                             1
70 #define SPI_PCSDEC_OFFSET                       2
71 #define SPI_PCSDEC_SIZE                         1
72 #define SPI_FDIV_OFFSET                         3
73 #define SPI_FDIV_SIZE                           1
74 #define SPI_MODFDIS_OFFSET                      4
75 #define SPI_MODFDIS_SIZE                        1
76 #define SPI_WDRBT_OFFSET                        5
77 #define SPI_WDRBT_SIZE                          1
78 #define SPI_LLB_OFFSET                          7
79 #define SPI_LLB_SIZE                            1
80 #define SPI_PCS_OFFSET                          16
81 #define SPI_PCS_SIZE                            4
82 #define SPI_DLYBCS_OFFSET                       24
83 #define SPI_DLYBCS_SIZE                         8
84
85 /* Bitfields in RDR */
86 #define SPI_RD_OFFSET                           0
87 #define SPI_RD_SIZE                             16
88
89 /* Bitfields in TDR */
90 #define SPI_TD_OFFSET                           0
91 #define SPI_TD_SIZE                             16
92
93 /* Bitfields in SR */
94 #define SPI_RDRF_OFFSET                         0
95 #define SPI_RDRF_SIZE                           1
96 #define SPI_TDRE_OFFSET                         1
97 #define SPI_TDRE_SIZE                           1
98 #define SPI_MODF_OFFSET                         2
99 #define SPI_MODF_SIZE                           1
100 #define SPI_OVRES_OFFSET                        3
101 #define SPI_OVRES_SIZE                          1
102 #define SPI_ENDRX_OFFSET                        4
103 #define SPI_ENDRX_SIZE                          1
104 #define SPI_ENDTX_OFFSET                        5
105 #define SPI_ENDTX_SIZE                          1
106 #define SPI_RXBUFF_OFFSET                       6
107 #define SPI_RXBUFF_SIZE                         1
108 #define SPI_TXBUFE_OFFSET                       7
109 #define SPI_TXBUFE_SIZE                         1
110 #define SPI_NSSR_OFFSET                         8
111 #define SPI_NSSR_SIZE                           1
112 #define SPI_TXEMPTY_OFFSET                      9
113 #define SPI_TXEMPTY_SIZE                        1
114 #define SPI_SPIENS_OFFSET                       16
115 #define SPI_SPIENS_SIZE                         1
116
117 /* Bitfields in CSR0 */
118 #define SPI_CPOL_OFFSET                         0
119 #define SPI_CPOL_SIZE                           1
120 #define SPI_NCPHA_OFFSET                        1
121 #define SPI_NCPHA_SIZE                          1
122 #define SPI_CSAAT_OFFSET                        3
123 #define SPI_CSAAT_SIZE                          1
124 #define SPI_BITS_OFFSET                         4
125 #define SPI_BITS_SIZE                           4
126 #define SPI_SCBR_OFFSET                         8
127 #define SPI_SCBR_SIZE                           8
128 #define SPI_DLYBS_OFFSET                        16
129 #define SPI_DLYBS_SIZE                          8
130 #define SPI_DLYBCT_OFFSET                       24
131 #define SPI_DLYBCT_SIZE                         8
132
133 /* Bitfields in RCR */
134 #define SPI_RXCTR_OFFSET                        0
135 #define SPI_RXCTR_SIZE                          16
136
137 /* Bitfields in TCR */
138 #define SPI_TXCTR_OFFSET                        0
139 #define SPI_TXCTR_SIZE                          16
140
141 /* Bitfields in RNCR */
142 #define SPI_RXNCR_OFFSET                        0
143 #define SPI_RXNCR_SIZE                          16
144
145 /* Bitfields in TNCR */
146 #define SPI_TXNCR_OFFSET                        0
147 #define SPI_TXNCR_SIZE                          16
148
149 /* Bitfields in PTCR */
150 #define SPI_RXTEN_OFFSET                        0
151 #define SPI_RXTEN_SIZE                          1
152 #define SPI_RXTDIS_OFFSET                       1
153 #define SPI_RXTDIS_SIZE                         1
154 #define SPI_TXTEN_OFFSET                        8
155 #define SPI_TXTEN_SIZE                          1
156 #define SPI_TXTDIS_OFFSET                       9
157 #define SPI_TXTDIS_SIZE                         1
158
159 /* Constants for BITS */
160 #define SPI_BITS_8_BPT                          0
161 #define SPI_BITS_9_BPT                          1
162 #define SPI_BITS_10_BPT                         2
163 #define SPI_BITS_11_BPT                         3
164 #define SPI_BITS_12_BPT                         4
165 #define SPI_BITS_13_BPT                         5
166 #define SPI_BITS_14_BPT                         6
167 #define SPI_BITS_15_BPT                         7
168 #define SPI_BITS_16_BPT                         8
169
170 /* Bit manipulation macros */
171 #define SPI_BIT(name) \
172         (1 << SPI_##name##_OFFSET)
173 #define SPI_BF(name,value) \
174         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175 #define SPI_BFEXT(name,value) \
176         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177 #define SPI_BFINS(name,value,old) \
178         ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179           | SPI_BF(name,value))
180
181 /* Register access macros */
182 #define spi_readl(port,reg) \
183         __raw_readl((port)->regs + SPI_##reg)
184 #define spi_writel(port,reg,value) \
185         __raw_writel((value), (port)->regs + SPI_##reg)
186
187 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188  * cache operations; better heuristics consider wordsize and bitrate.
189  */
190 #define DMA_MIN_BYTES   16
191
192 struct atmel_spi_dma {
193         struct dma_chan                 *chan_rx;
194         struct dma_chan                 *chan_tx;
195         struct scatterlist              sgrx;
196         struct scatterlist              sgtx;
197         struct dma_async_tx_descriptor  *data_desc_rx;
198         struct dma_async_tx_descriptor  *data_desc_tx;
199
200         struct at_dma_slave     dma_slave;
201 };
202
203 struct atmel_spi_caps {
204         bool    is_spi2;
205         bool    has_wdrbt;
206         bool    has_dma_support;
207 };
208
209 /*
210  * The core SPI transfer engine just talks to a register bank to set up
211  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
212  * framework provides the base clock, subdivided for each spi_device.
213  */
214 struct atmel_spi {
215         spinlock_t              lock;
216         unsigned long           flags;
217
218         phys_addr_t             phybase;
219         void __iomem            *regs;
220         int                     irq;
221         struct clk              *clk;
222         struct platform_device  *pdev;
223         struct spi_device       *stay;
224
225         u8                      stopping;
226         struct list_head        queue;
227         struct tasklet_struct   tasklet;
228         struct spi_transfer     *current_transfer;
229         unsigned long           current_remaining_bytes;
230         struct spi_transfer     *next_transfer;
231         unsigned long           next_remaining_bytes;
232         int                     done_status;
233
234         /* scratch buffer */
235         void                    *buffer;
236         dma_addr_t              buffer_dma;
237
238         struct atmel_spi_caps   caps;
239
240         bool                    use_dma;
241         bool                    use_pdc;
242         /* dmaengine data */
243         struct atmel_spi_dma    dma;
244 };
245
246 /* Controller-specific per-slave state */
247 struct atmel_spi_device {
248         unsigned int            npcs_pin;
249         u32                     csr;
250 };
251
252 #define BUFFER_SIZE             PAGE_SIZE
253 #define INVALID_DMA_ADDRESS     0xffffffff
254
255 /*
256  * Version 2 of the SPI controller has
257  *  - CR.LASTXFER
258  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
259  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
260  *  - SPI_CSRx.CSAAT
261  *  - SPI_CSRx.SBCR allows faster clocking
262  */
263 static bool atmel_spi_is_v2(struct atmel_spi *as)
264 {
265         return as->caps.is_spi2;
266 }
267
268 /*
269  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
270  * they assume that spi slave device state will not change on deselect, so
271  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
272  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
273  * controllers have CSAAT and friends.
274  *
275  * Since the CSAAT functionality is a bit weird on newer controllers as
276  * well, we use GPIO to control nCSx pins on all controllers, updating
277  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
278  * support active-high chipselects despite the controller's belief that
279  * only active-low devices/systems exists.
280  *
281  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
282  * right when driven with GPIO.  ("Mode Fault does not allow more than one
283  * Master on Chip Select 0.")  No workaround exists for that ... so for
284  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
285  * and (c) will trigger that first erratum in some cases.
286  */
287
288 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
289 {
290         struct atmel_spi_device *asd = spi->controller_state;
291         unsigned active = spi->mode & SPI_CS_HIGH;
292         u32 mr;
293
294         if (atmel_spi_is_v2(as)) {
295                 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
296                 /* For the low SPI version, there is a issue that PDC transfer
297                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
298                  */
299                 spi_writel(as, CSR0, asd->csr);
300                 if (as->caps.has_wdrbt) {
301                         spi_writel(as, MR,
302                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
303                                         | SPI_BIT(WDRBT)
304                                         | SPI_BIT(MODFDIS)
305                                         | SPI_BIT(MSTR));
306                 } else {
307                         spi_writel(as, MR,
308                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
309                                         | SPI_BIT(MODFDIS)
310                                         | SPI_BIT(MSTR));
311                 }
312
313                 mr = spi_readl(as, MR);
314                 gpio_set_value(asd->npcs_pin, active);
315         } else {
316                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
317                 int i;
318                 u32 csr;
319
320                 /* Make sure clock polarity is correct */
321                 for (i = 0; i < spi->master->num_chipselect; i++) {
322                         csr = spi_readl(as, CSR0 + 4 * i);
323                         if ((csr ^ cpol) & SPI_BIT(CPOL))
324                                 spi_writel(as, CSR0 + 4 * i,
325                                                 csr ^ SPI_BIT(CPOL));
326                 }
327
328                 mr = spi_readl(as, MR);
329                 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
330                 if (spi->chip_select != 0)
331                         gpio_set_value(asd->npcs_pin, active);
332                 spi_writel(as, MR, mr);
333         }
334
335         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
336                         asd->npcs_pin, active ? " (high)" : "",
337                         mr);
338 }
339
340 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
341 {
342         struct atmel_spi_device *asd = spi->controller_state;
343         unsigned active = spi->mode & SPI_CS_HIGH;
344         u32 mr;
345
346         /* only deactivate *this* device; sometimes transfers to
347          * another device may be active when this routine is called.
348          */
349         mr = spi_readl(as, MR);
350         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
351                 mr = SPI_BFINS(PCS, 0xf, mr);
352                 spi_writel(as, MR, mr);
353         }
354
355         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
356                         asd->npcs_pin, active ? " (low)" : "",
357                         mr);
358
359         if (atmel_spi_is_v2(as) || spi->chip_select != 0)
360                 gpio_set_value(asd->npcs_pin, !active);
361 }
362
363 static void atmel_spi_lock(struct atmel_spi *as)
364 {
365         spin_lock_irqsave(&as->lock, as->flags);
366 }
367
368 static void atmel_spi_unlock(struct atmel_spi *as)
369 {
370         spin_unlock_irqrestore(&as->lock, as->flags);
371 }
372
373 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
374                                 struct spi_transfer *xfer)
375 {
376         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
377 }
378
379 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
380                                         struct spi_transfer *xfer)
381 {
382         return msg->transfers.prev == &xfer->transfer_list;
383 }
384
385 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
386 {
387         return xfer->delay_usecs == 0 && !xfer->cs_change;
388 }
389
390 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
391                                 struct dma_slave_config *slave_config,
392                                 u8 bits_per_word)
393 {
394         int err = 0;
395
396         if (bits_per_word > 8) {
397                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
398                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
399         } else {
400                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
401                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
402         }
403
404         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
405         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
406         slave_config->src_maxburst = 1;
407         slave_config->dst_maxburst = 1;
408         slave_config->device_fc = false;
409
410         slave_config->direction = DMA_MEM_TO_DEV;
411         if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
412                 dev_err(&as->pdev->dev,
413                         "failed to configure tx dma channel\n");
414                 err = -EINVAL;
415         }
416
417         slave_config->direction = DMA_DEV_TO_MEM;
418         if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
419                 dev_err(&as->pdev->dev,
420                         "failed to configure rx dma channel\n");
421                 err = -EINVAL;
422         }
423
424         return err;
425 }
426
427 static bool filter(struct dma_chan *chan, void *pdata)
428 {
429         struct atmel_spi_dma *sl_pdata = pdata;
430         struct at_dma_slave *sl;
431
432         if (!sl_pdata)
433                 return false;
434
435         sl = &sl_pdata->dma_slave;
436         if (sl->dma_dev == chan->device->dev) {
437                 chan->private = sl;
438                 return true;
439         } else {
440                 return false;
441         }
442 }
443
444 static int atmel_spi_configure_dma(struct atmel_spi *as)
445 {
446         struct dma_slave_config slave_config;
447         struct device *dev = &as->pdev->dev;
448         int err;
449
450         dma_cap_mask_t mask;
451         dma_cap_zero(mask);
452         dma_cap_set(DMA_SLAVE, mask);
453
454         as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
455                                                            &as->dma,
456                                                            dev, "tx");
457         if (!as->dma.chan_tx) {
458                 dev_err(dev,
459                         "DMA TX channel not available, SPI unable to use DMA\n");
460                 err = -EBUSY;
461                 goto error;
462         }
463
464         as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
465                                                            &as->dma,
466                                                            dev, "rx");
467
468         if (!as->dma.chan_rx) {
469                 dev_err(dev,
470                         "DMA RX channel not available, SPI unable to use DMA\n");
471                 err = -EBUSY;
472                 goto error;
473         }
474
475         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
476         if (err)
477                 goto error;
478
479         dev_info(&as->pdev->dev,
480                         "Using %s (tx) and %s (rx) for DMA transfers\n",
481                         dma_chan_name(as->dma.chan_tx),
482                         dma_chan_name(as->dma.chan_rx));
483         return 0;
484 error:
485         if (as->dma.chan_rx)
486                 dma_release_channel(as->dma.chan_rx);
487         if (as->dma.chan_tx)
488                 dma_release_channel(as->dma.chan_tx);
489         return err;
490 }
491
492 static void atmel_spi_stop_dma(struct atmel_spi *as)
493 {
494         if (as->dma.chan_rx)
495                 as->dma.chan_rx->device->device_control(as->dma.chan_rx,
496                                                         DMA_TERMINATE_ALL, 0);
497         if (as->dma.chan_tx)
498                 as->dma.chan_tx->device->device_control(as->dma.chan_tx,
499                                                         DMA_TERMINATE_ALL, 0);
500 }
501
502 static void atmel_spi_release_dma(struct atmel_spi *as)
503 {
504         if (as->dma.chan_rx)
505                 dma_release_channel(as->dma.chan_rx);
506         if (as->dma.chan_tx)
507                 dma_release_channel(as->dma.chan_tx);
508 }
509
510 /* This function is called by the DMA driver from tasklet context */
511 static void dma_callback(void *data)
512 {
513         struct spi_master       *master = data;
514         struct atmel_spi        *as = spi_master_get_devdata(master);
515
516         /* trigger SPI tasklet */
517         tasklet_schedule(&as->tasklet);
518 }
519
520 /*
521  * Next transfer using PIO.
522  * lock is held, spi tasklet is blocked
523  */
524 static void atmel_spi_next_xfer_pio(struct spi_master *master,
525                                 struct spi_transfer *xfer)
526 {
527         struct atmel_spi        *as = spi_master_get_devdata(master);
528
529         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
530
531         as->current_remaining_bytes = xfer->len;
532
533         /* Make sure data is not remaining in RDR */
534         spi_readl(as, RDR);
535         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
536                 spi_readl(as, RDR);
537                 cpu_relax();
538         }
539
540         if (xfer->tx_buf)
541                 if (xfer->bits_per_word > 8)
542                         spi_writel(as, TDR, *(u16 *)(xfer->tx_buf));
543                 else
544                         spi_writel(as, TDR, *(u8 *)(xfer->tx_buf));
545         else
546                 spi_writel(as, TDR, 0);
547
548         dev_dbg(master->dev.parent,
549                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
550                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
551                 xfer->bits_per_word);
552
553         /* Enable relevant interrupts */
554         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
555 }
556
557 /*
558  * Submit next transfer for DMA.
559  * lock is held, spi tasklet is blocked
560  */
561 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
562                                 struct spi_transfer *xfer,
563                                 u32 *plen)
564 {
565         struct atmel_spi        *as = spi_master_get_devdata(master);
566         struct dma_chan         *rxchan = as->dma.chan_rx;
567         struct dma_chan         *txchan = as->dma.chan_tx;
568         struct dma_async_tx_descriptor *rxdesc;
569         struct dma_async_tx_descriptor *txdesc;
570         struct dma_slave_config slave_config;
571         dma_cookie_t            cookie;
572         u32     len = *plen;
573
574         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
575
576         /* Check that the channels are available */
577         if (!rxchan || !txchan)
578                 return -ENODEV;
579
580         /* release lock for DMA operations */
581         atmel_spi_unlock(as);
582
583         /* prepare the RX dma transfer */
584         sg_init_table(&as->dma.sgrx, 1);
585         if (xfer->rx_buf) {
586                 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
587         } else {
588                 as->dma.sgrx.dma_address = as->buffer_dma;
589                 if (len > BUFFER_SIZE)
590                         len = BUFFER_SIZE;
591         }
592
593         /* prepare the TX dma transfer */
594         sg_init_table(&as->dma.sgtx, 1);
595         if (xfer->tx_buf) {
596                 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
597         } else {
598                 as->dma.sgtx.dma_address = as->buffer_dma;
599                 if (len > BUFFER_SIZE)
600                         len = BUFFER_SIZE;
601                 memset(as->buffer, 0, len);
602         }
603
604         sg_dma_len(&as->dma.sgtx) = len;
605         sg_dma_len(&as->dma.sgrx) = len;
606
607         *plen = len;
608
609         if (atmel_spi_dma_slave_config(as, &slave_config, 8))
610                 goto err_exit;
611
612         /* Send both scatterlists */
613         rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
614                                         &as->dma.sgrx,
615                                         1,
616                                         DMA_FROM_DEVICE,
617                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
618                                         NULL);
619         if (!rxdesc)
620                 goto err_dma;
621
622         txdesc = txchan->device->device_prep_slave_sg(txchan,
623                                         &as->dma.sgtx,
624                                         1,
625                                         DMA_TO_DEVICE,
626                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
627                                         NULL);
628         if (!txdesc)
629                 goto err_dma;
630
631         dev_dbg(master->dev.parent,
632                 "  start dma xfer %p: len %u tx %p/%08x rx %p/%08x\n",
633                 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
634                 xfer->rx_buf, xfer->rx_dma);
635
636         /* Enable relevant interrupts */
637         spi_writel(as, IER, SPI_BIT(OVRES));
638
639         /* Put the callback on the RX transfer only, that should finish last */
640         rxdesc->callback = dma_callback;
641         rxdesc->callback_param = master;
642
643         /* Submit and fire RX and TX with TX last so we're ready to read! */
644         cookie = rxdesc->tx_submit(rxdesc);
645         if (dma_submit_error(cookie))
646                 goto err_dma;
647         cookie = txdesc->tx_submit(txdesc);
648         if (dma_submit_error(cookie))
649                 goto err_dma;
650         rxchan->device->device_issue_pending(rxchan);
651         txchan->device->device_issue_pending(txchan);
652
653         /* take back lock */
654         atmel_spi_lock(as);
655         return 0;
656
657 err_dma:
658         spi_writel(as, IDR, SPI_BIT(OVRES));
659         atmel_spi_stop_dma(as);
660 err_exit:
661         atmel_spi_lock(as);
662         return -ENOMEM;
663 }
664
665 static void atmel_spi_next_xfer_data(struct spi_master *master,
666                                 struct spi_transfer *xfer,
667                                 dma_addr_t *tx_dma,
668                                 dma_addr_t *rx_dma,
669                                 u32 *plen)
670 {
671         struct atmel_spi        *as = spi_master_get_devdata(master);
672         u32                     len = *plen;
673
674         /* use scratch buffer only when rx or tx data is unspecified */
675         if (xfer->rx_buf)
676                 *rx_dma = xfer->rx_dma + xfer->len - *plen;
677         else {
678                 *rx_dma = as->buffer_dma;
679                 if (len > BUFFER_SIZE)
680                         len = BUFFER_SIZE;
681         }
682
683         if (xfer->tx_buf)
684                 *tx_dma = xfer->tx_dma + xfer->len - *plen;
685         else {
686                 *tx_dma = as->buffer_dma;
687                 if (len > BUFFER_SIZE)
688                         len = BUFFER_SIZE;
689                 memset(as->buffer, 0, len);
690                 dma_sync_single_for_device(&as->pdev->dev,
691                                 as->buffer_dma, len, DMA_TO_DEVICE);
692         }
693
694         *plen = len;
695 }
696
697 /*
698  * Submit next transfer for PDC.
699  * lock is held, spi irq is blocked
700  */
701 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
702                                 struct spi_message *msg)
703 {
704         struct atmel_spi        *as = spi_master_get_devdata(master);
705         struct spi_transfer     *xfer;
706         u32                     len, remaining;
707         u32                     ieval;
708         dma_addr_t              tx_dma, rx_dma;
709
710         if (!as->current_transfer)
711                 xfer = list_entry(msg->transfers.next,
712                                 struct spi_transfer, transfer_list);
713         else if (!as->next_transfer)
714                 xfer = list_entry(as->current_transfer->transfer_list.next,
715                                 struct spi_transfer, transfer_list);
716         else
717                 xfer = NULL;
718
719         if (xfer) {
720                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
721
722                 len = xfer->len;
723                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
724                 remaining = xfer->len - len;
725
726                 spi_writel(as, RPR, rx_dma);
727                 spi_writel(as, TPR, tx_dma);
728
729                 if (msg->spi->bits_per_word > 8)
730                         len >>= 1;
731                 spi_writel(as, RCR, len);
732                 spi_writel(as, TCR, len);
733
734                 dev_dbg(&msg->spi->dev,
735                         "  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
736                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
737                         xfer->rx_buf, xfer->rx_dma);
738         } else {
739                 xfer = as->next_transfer;
740                 remaining = as->next_remaining_bytes;
741         }
742
743         as->current_transfer = xfer;
744         as->current_remaining_bytes = remaining;
745
746         if (remaining > 0)
747                 len = remaining;
748         else if (!atmel_spi_xfer_is_last(msg, xfer)
749                         && atmel_spi_xfer_can_be_chained(xfer)) {
750                 xfer = list_entry(xfer->transfer_list.next,
751                                 struct spi_transfer, transfer_list);
752                 len = xfer->len;
753         } else
754                 xfer = NULL;
755
756         as->next_transfer = xfer;
757
758         if (xfer) {
759                 u32     total;
760
761                 total = len;
762                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
763                 as->next_remaining_bytes = total - len;
764
765                 spi_writel(as, RNPR, rx_dma);
766                 spi_writel(as, TNPR, tx_dma);
767
768                 if (msg->spi->bits_per_word > 8)
769                         len >>= 1;
770                 spi_writel(as, RNCR, len);
771                 spi_writel(as, TNCR, len);
772
773                 dev_dbg(&msg->spi->dev,
774                         "  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
775                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
776                         xfer->rx_buf, xfer->rx_dma);
777                 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
778         } else {
779                 spi_writel(as, RNCR, 0);
780                 spi_writel(as, TNCR, 0);
781                 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
782         }
783
784         /* REVISIT: We're waiting for ENDRX before we start the next
785          * transfer because we need to handle some difficult timing
786          * issues otherwise. If we wait for ENDTX in one transfer and
787          * then starts waiting for ENDRX in the next, it's difficult
788          * to tell the difference between the ENDRX interrupt we're
789          * actually waiting for and the ENDRX interrupt of the
790          * previous transfer.
791          *
792          * It should be doable, though. Just not now...
793          */
794         spi_writel(as, IER, ieval);
795         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
796 }
797
798 /*
799  * Choose way to submit next transfer and start it.
800  * lock is held, spi tasklet is blocked
801  */
802 static void atmel_spi_dma_next_xfer(struct spi_master *master,
803                                 struct spi_message *msg)
804 {
805         struct atmel_spi        *as = spi_master_get_devdata(master);
806         struct spi_transfer     *xfer;
807         u32     remaining, len;
808
809         remaining = as->current_remaining_bytes;
810         if (remaining) {
811                 xfer = as->current_transfer;
812                 len = remaining;
813         } else {
814                 if (!as->current_transfer)
815                         xfer = list_entry(msg->transfers.next,
816                                 struct spi_transfer, transfer_list);
817                 else
818                         xfer = list_entry(
819                                 as->current_transfer->transfer_list.next,
820                                         struct spi_transfer, transfer_list);
821
822                 as->current_transfer = xfer;
823                 len = xfer->len;
824         }
825
826         if (atmel_spi_use_dma(as, xfer)) {
827                 u32 total = len;
828                 if (!atmel_spi_next_xfer_dma_submit(master, xfer, &len)) {
829                         as->current_remaining_bytes = total - len;
830                         return;
831                 } else {
832                         dev_err(&msg->spi->dev, "unable to use DMA, fallback to PIO\n");
833                 }
834         }
835
836         /* use PIO if error appened using DMA */
837         atmel_spi_next_xfer_pio(master, xfer);
838 }
839
840 static void atmel_spi_next_message(struct spi_master *master)
841 {
842         struct atmel_spi        *as = spi_master_get_devdata(master);
843         struct spi_message      *msg;
844         struct spi_device       *spi;
845
846         BUG_ON(as->current_transfer);
847
848         msg = list_entry(as->queue.next, struct spi_message, queue);
849         spi = msg->spi;
850
851         dev_dbg(master->dev.parent, "start message %p for %s\n",
852                         msg, dev_name(&spi->dev));
853
854         /* select chip if it's not still active */
855         if (as->stay) {
856                 if (as->stay != spi) {
857                         cs_deactivate(as, as->stay);
858                         cs_activate(as, spi);
859                 }
860                 as->stay = NULL;
861         } else
862                 cs_activate(as, spi);
863
864         if (as->use_pdc)
865                 atmel_spi_pdc_next_xfer(master, msg);
866         else
867                 atmel_spi_dma_next_xfer(master, msg);
868 }
869
870 /*
871  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
872  *  - The buffer is either valid for CPU access, else NULL
873  *  - If the buffer is valid, so is its DMA address
874  *
875  * This driver manages the dma address unless message->is_dma_mapped.
876  */
877 static int
878 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
879 {
880         struct device   *dev = &as->pdev->dev;
881
882         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
883         if (xfer->tx_buf) {
884                 /* tx_buf is a const void* where we need a void * for the dma
885                  * mapping */
886                 void *nonconst_tx = (void *)xfer->tx_buf;
887
888                 xfer->tx_dma = dma_map_single(dev,
889                                 nonconst_tx, xfer->len,
890                                 DMA_TO_DEVICE);
891                 if (dma_mapping_error(dev, xfer->tx_dma))
892                         return -ENOMEM;
893         }
894         if (xfer->rx_buf) {
895                 xfer->rx_dma = dma_map_single(dev,
896                                 xfer->rx_buf, xfer->len,
897                                 DMA_FROM_DEVICE);
898                 if (dma_mapping_error(dev, xfer->rx_dma)) {
899                         if (xfer->tx_buf)
900                                 dma_unmap_single(dev,
901                                                 xfer->tx_dma, xfer->len,
902                                                 DMA_TO_DEVICE);
903                         return -ENOMEM;
904                 }
905         }
906         return 0;
907 }
908
909 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
910                                      struct spi_transfer *xfer)
911 {
912         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
913                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
914                                  xfer->len, DMA_TO_DEVICE);
915         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
916                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
917                                  xfer->len, DMA_FROM_DEVICE);
918 }
919
920 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
921 {
922         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
923 }
924
925 static void
926 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
927                 struct spi_message *msg, int stay)
928 {
929         if (!stay || as->done_status < 0)
930                 cs_deactivate(as, msg->spi);
931         else
932                 as->stay = msg->spi;
933
934         list_del(&msg->queue);
935         msg->status = as->done_status;
936
937         dev_dbg(master->dev.parent,
938                 "xfer complete: %u bytes transferred\n",
939                 msg->actual_length);
940
941         atmel_spi_unlock(as);
942         msg->complete(msg->context);
943         atmel_spi_lock(as);
944
945         as->current_transfer = NULL;
946         as->next_transfer = NULL;
947         as->done_status = 0;
948
949         /* continue if needed */
950         if (list_empty(&as->queue) || as->stopping) {
951                 if (as->use_pdc)
952                         atmel_spi_disable_pdc_transfer(as);
953         } else {
954                 atmel_spi_next_message(master);
955         }
956 }
957
958 /* Called from IRQ
959  * lock is held
960  *
961  * Must update "current_remaining_bytes" to keep track of data
962  * to transfer.
963  */
964 static void
965 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
966 {
967         u8              *txp;
968         u8              *rxp;
969         u16             *txp16;
970         u16             *rxp16;
971         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
972
973         if (xfer->rx_buf) {
974                 if (xfer->bits_per_word > 8) {
975                         rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
976                         *rxp16 = spi_readl(as, RDR);
977                 } else {
978                         rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
979                         *rxp = spi_readl(as, RDR);
980                 }
981         } else {
982                 spi_readl(as, RDR);
983         }
984         if (xfer->bits_per_word > 8) {
985                 as->current_remaining_bytes -= 2;
986                 if (as->current_remaining_bytes < 0)
987                         as->current_remaining_bytes = 0;
988         } else {
989                 as->current_remaining_bytes--;
990         }
991
992         if (as->current_remaining_bytes) {
993                 if (xfer->tx_buf) {
994                         if (xfer->bits_per_word > 8) {
995                                 txp16 = (u16 *)(((u8 *)xfer->tx_buf)
996                                                         + xfer_pos + 2);
997                                 spi_writel(as, TDR, *txp16);
998                         } else {
999                                 txp = ((u8 *)xfer->tx_buf) + xfer_pos + 1;
1000                                 spi_writel(as, TDR, *txp);
1001                         }
1002                 } else {
1003                         spi_writel(as, TDR, 0);
1004                 }
1005         }
1006 }
1007
1008 /* Tasklet
1009  * Called from DMA callback + pio transfer and overrun IRQ.
1010  */
1011 static void atmel_spi_tasklet_func(unsigned long data)
1012 {
1013         struct spi_master       *master = (struct spi_master *)data;
1014         struct atmel_spi        *as = spi_master_get_devdata(master);
1015         struct spi_message      *msg;
1016         struct spi_transfer     *xfer;
1017
1018         dev_vdbg(master->dev.parent, "atmel_spi_tasklet_func\n");
1019
1020         atmel_spi_lock(as);
1021
1022         xfer = as->current_transfer;
1023
1024         if (xfer == NULL)
1025                 /* already been there */
1026                 goto tasklet_out;
1027
1028         msg = list_entry(as->queue.next, struct spi_message, queue);
1029
1030         if (as->current_remaining_bytes == 0) {
1031                 if (as->done_status < 0) {
1032                         /* error happened (overrun) */
1033                         if (atmel_spi_use_dma(as, xfer))
1034                                 atmel_spi_stop_dma(as);
1035                 } else {
1036                         /* only update length if no error */
1037                         msg->actual_length += xfer->len;
1038                 }
1039
1040                 if (atmel_spi_use_dma(as, xfer))
1041                         if (!msg->is_dma_mapped)
1042                                 atmel_spi_dma_unmap_xfer(master, xfer);
1043
1044                 if (xfer->delay_usecs)
1045                         udelay(xfer->delay_usecs);
1046
1047                 if (atmel_spi_xfer_is_last(msg, xfer) || as->done_status < 0) {
1048                         /* report completed (or erroneous) message */
1049                         atmel_spi_msg_done(master, as, msg, xfer->cs_change);
1050                 } else {
1051                         if (xfer->cs_change) {
1052                                 cs_deactivate(as, msg->spi);
1053                                 udelay(1);
1054                                 cs_activate(as, msg->spi);
1055                         }
1056
1057                         /*
1058                          * Not done yet. Submit the next transfer.
1059                          *
1060                          * FIXME handle protocol options for xfer
1061                          */
1062                         atmel_spi_dma_next_xfer(master, msg);
1063                 }
1064         } else {
1065                 /*
1066                  * Keep going, we still have data to send in
1067                  * the current transfer.
1068                  */
1069                 atmel_spi_dma_next_xfer(master, msg);
1070         }
1071
1072 tasklet_out:
1073         atmel_spi_unlock(as);
1074 }
1075
1076 /* Interrupt
1077  *
1078  * No need for locking in this Interrupt handler: done_status is the
1079  * only information modified. What we need is the update of this field
1080  * before tasklet runs. This is ensured by using barrier.
1081  */
1082 static irqreturn_t
1083 atmel_spi_pio_interrupt(int irq, void *dev_id)
1084 {
1085         struct spi_master       *master = dev_id;
1086         struct atmel_spi        *as = spi_master_get_devdata(master);
1087         u32                     status, pending, imr;
1088         struct spi_transfer     *xfer;
1089         int                     ret = IRQ_NONE;
1090
1091         imr = spi_readl(as, IMR);
1092         status = spi_readl(as, SR);
1093         pending = status & imr;
1094
1095         if (pending & SPI_BIT(OVRES)) {
1096                 ret = IRQ_HANDLED;
1097                 spi_writel(as, IDR, SPI_BIT(OVRES));
1098                 dev_warn(master->dev.parent, "overrun\n");
1099
1100                 /*
1101                  * When we get an overrun, we disregard the current
1102                  * transfer. Data will not be copied back from any
1103                  * bounce buffer and msg->actual_len will not be
1104                  * updated with the last xfer.
1105                  *
1106                  * We will also not process any remaning transfers in
1107                  * the message.
1108                  *
1109                  * All actions are done in tasklet with done_status indication
1110                  */
1111                 as->done_status = -EIO;
1112                 smp_wmb();
1113
1114                 /* Clear any overrun happening while cleaning up */
1115                 spi_readl(as, SR);
1116
1117                 tasklet_schedule(&as->tasklet);
1118
1119         } else if (pending & SPI_BIT(RDRF)) {
1120                 atmel_spi_lock(as);
1121
1122                 if (as->current_remaining_bytes) {
1123                         ret = IRQ_HANDLED;
1124                         xfer = as->current_transfer;
1125                         atmel_spi_pump_pio_data(as, xfer);
1126                         if (!as->current_remaining_bytes) {
1127                                 /* no more data to xfer, kick tasklet */
1128                                 spi_writel(as, IDR, pending);
1129                                 tasklet_schedule(&as->tasklet);
1130                         }
1131                 }
1132
1133                 atmel_spi_unlock(as);
1134         } else {
1135                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1136                 ret = IRQ_HANDLED;
1137                 spi_writel(as, IDR, pending);
1138         }
1139
1140         return ret;
1141 }
1142
1143 static irqreturn_t
1144 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1145 {
1146         struct spi_master       *master = dev_id;
1147         struct atmel_spi        *as = spi_master_get_devdata(master);
1148         struct spi_message      *msg;
1149         struct spi_transfer     *xfer;
1150         u32                     status, pending, imr;
1151         int                     ret = IRQ_NONE;
1152
1153         atmel_spi_lock(as);
1154
1155         xfer = as->current_transfer;
1156         msg = list_entry(as->queue.next, struct spi_message, queue);
1157
1158         imr = spi_readl(as, IMR);
1159         status = spi_readl(as, SR);
1160         pending = status & imr;
1161
1162         if (pending & SPI_BIT(OVRES)) {
1163                 int timeout;
1164
1165                 ret = IRQ_HANDLED;
1166
1167                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1168                                      | SPI_BIT(OVRES)));
1169
1170                 /*
1171                  * When we get an overrun, we disregard the current
1172                  * transfer. Data will not be copied back from any
1173                  * bounce buffer and msg->actual_len will not be
1174                  * updated with the last xfer.
1175                  *
1176                  * We will also not process any remaning transfers in
1177                  * the message.
1178                  *
1179                  * First, stop the transfer and unmap the DMA buffers.
1180                  */
1181                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1182                 if (!msg->is_dma_mapped)
1183                         atmel_spi_dma_unmap_xfer(master, xfer);
1184
1185                 /* REVISIT: udelay in irq is unfriendly */
1186                 if (xfer->delay_usecs)
1187                         udelay(xfer->delay_usecs);
1188
1189                 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
1190                          spi_readl(as, TCR), spi_readl(as, RCR));
1191
1192                 /*
1193                  * Clean up DMA registers and make sure the data
1194                  * registers are empty.
1195                  */
1196                 spi_writel(as, RNCR, 0);
1197                 spi_writel(as, TNCR, 0);
1198                 spi_writel(as, RCR, 0);
1199                 spi_writel(as, TCR, 0);
1200                 for (timeout = 1000; timeout; timeout--)
1201                         if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1202                                 break;
1203                 if (!timeout)
1204                         dev_warn(master->dev.parent,
1205                                  "timeout waiting for TXEMPTY");
1206                 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1207                         spi_readl(as, RDR);
1208
1209                 /* Clear any overrun happening while cleaning up */
1210                 spi_readl(as, SR);
1211
1212                 as->done_status = -EIO;
1213                 atmel_spi_msg_done(master, as, msg, 0);
1214         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1215                 ret = IRQ_HANDLED;
1216
1217                 spi_writel(as, IDR, pending);
1218
1219                 if (as->current_remaining_bytes == 0) {
1220                         msg->actual_length += xfer->len;
1221
1222                         if (!msg->is_dma_mapped)
1223                                 atmel_spi_dma_unmap_xfer(master, xfer);
1224
1225                         /* REVISIT: udelay in irq is unfriendly */
1226                         if (xfer->delay_usecs)
1227                                 udelay(xfer->delay_usecs);
1228
1229                         if (atmel_spi_xfer_is_last(msg, xfer)) {
1230                                 /* report completed message */
1231                                 atmel_spi_msg_done(master, as, msg,
1232                                                 xfer->cs_change);
1233                         } else {
1234                                 if (xfer->cs_change) {
1235                                         cs_deactivate(as, msg->spi);
1236                                         udelay(1);
1237                                         cs_activate(as, msg->spi);
1238                                 }
1239
1240                                 /*
1241                                  * Not done yet. Submit the next transfer.
1242                                  *
1243                                  * FIXME handle protocol options for xfer
1244                                  */
1245                                 atmel_spi_pdc_next_xfer(master, msg);
1246                         }
1247                 } else {
1248                         /*
1249                          * Keep going, we still have data to send in
1250                          * the current transfer.
1251                          */
1252                         atmel_spi_pdc_next_xfer(master, msg);
1253                 }
1254         }
1255
1256         atmel_spi_unlock(as);
1257
1258         return ret;
1259 }
1260
1261 static int atmel_spi_setup(struct spi_device *spi)
1262 {
1263         struct atmel_spi        *as;
1264         struct atmel_spi_device *asd;
1265         u32                     scbr, csr;
1266         unsigned int            bits = spi->bits_per_word;
1267         unsigned long           bus_hz;
1268         unsigned int            npcs_pin;
1269         int                     ret;
1270
1271         as = spi_master_get_devdata(spi->master);
1272
1273         if (as->stopping)
1274                 return -ESHUTDOWN;
1275
1276         if (spi->chip_select > spi->master->num_chipselect) {
1277                 dev_dbg(&spi->dev,
1278                                 "setup: invalid chipselect %u (%u defined)\n",
1279                                 spi->chip_select, spi->master->num_chipselect);
1280                 return -EINVAL;
1281         }
1282
1283         /* see notes above re chipselect */
1284         if (!atmel_spi_is_v2(as)
1285                         && spi->chip_select == 0
1286                         && (spi->mode & SPI_CS_HIGH)) {
1287                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1288                 return -EINVAL;
1289         }
1290
1291         /* v1 chips start out at half the peripheral bus speed. */
1292         bus_hz = clk_get_rate(as->clk);
1293         if (!atmel_spi_is_v2(as))
1294                 bus_hz /= 2;
1295
1296         if (spi->max_speed_hz) {
1297                 /*
1298                  * Calculate the lowest divider that satisfies the
1299                  * constraint, assuming div32/fdiv/mbz == 0.
1300                  */
1301                 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
1302
1303                 /*
1304                  * If the resulting divider doesn't fit into the
1305                  * register bitfield, we can't satisfy the constraint.
1306                  */
1307                 if (scbr >= (1 << SPI_SCBR_SIZE)) {
1308                         dev_dbg(&spi->dev,
1309                                 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
1310                                 spi->max_speed_hz, scbr, bus_hz/255);
1311                         return -EINVAL;
1312                 }
1313         } else
1314                 /* speed zero means "as slow as possible" */
1315                 scbr = 0xff;
1316
1317         csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
1318         if (spi->mode & SPI_CPOL)
1319                 csr |= SPI_BIT(CPOL);
1320         if (!(spi->mode & SPI_CPHA))
1321                 csr |= SPI_BIT(NCPHA);
1322
1323         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1324          *
1325          * DLYBCT would add delays between words, slowing down transfers.
1326          * It could potentially be useful to cope with DMA bottlenecks, but
1327          * in those cases it's probably best to just use a lower bitrate.
1328          */
1329         csr |= SPI_BF(DLYBS, 0);
1330         csr |= SPI_BF(DLYBCT, 0);
1331
1332         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1333         npcs_pin = (unsigned int)spi->controller_data;
1334
1335         if (gpio_is_valid(spi->cs_gpio))
1336                 npcs_pin = spi->cs_gpio;
1337
1338         asd = spi->controller_state;
1339         if (!asd) {
1340                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1341                 if (!asd)
1342                         return -ENOMEM;
1343
1344                 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1345                 if (ret) {
1346                         kfree(asd);
1347                         return ret;
1348                 }
1349
1350                 asd->npcs_pin = npcs_pin;
1351                 spi->controller_state = asd;
1352                 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1353         } else {
1354                 atmel_spi_lock(as);
1355                 if (as->stay == spi)
1356                         as->stay = NULL;
1357                 cs_deactivate(as, spi);
1358                 atmel_spi_unlock(as);
1359         }
1360
1361         asd->csr = csr;
1362
1363         dev_dbg(&spi->dev,
1364                 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
1365                 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
1366
1367         if (!atmel_spi_is_v2(as))
1368                 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1369
1370         return 0;
1371 }
1372
1373 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
1374 {
1375         struct atmel_spi        *as;
1376         struct spi_transfer     *xfer;
1377         struct device           *controller = spi->master->dev.parent;
1378         u8                      bits;
1379         struct atmel_spi_device *asd;
1380
1381         as = spi_master_get_devdata(spi->master);
1382
1383         dev_dbg(controller, "new message %p submitted for %s\n",
1384                         msg, dev_name(&spi->dev));
1385
1386         if (unlikely(list_empty(&msg->transfers)))
1387                 return -EINVAL;
1388
1389         if (as->stopping)
1390                 return -ESHUTDOWN;
1391
1392         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1393                 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1394                         dev_dbg(&spi->dev, "missing rx or tx buf\n");
1395                         return -EINVAL;
1396                 }
1397
1398                 if (xfer->bits_per_word) {
1399                         asd = spi->controller_state;
1400                         bits = (asd->csr >> 4) & 0xf;
1401                         if (bits != xfer->bits_per_word - 8) {
1402                                 dev_dbg(&spi->dev, "you can't yet change "
1403                                          "bits_per_word in transfers\n");
1404                                 return -ENOPROTOOPT;
1405                         }
1406                 }
1407
1408                 if (xfer->bits_per_word > 8) {
1409                         if (xfer->len % 2) {
1410                                 dev_dbg(&spi->dev, "buffer len should be 16 bits aligned\n");
1411                                 return -EINVAL;
1412                         }
1413                 }
1414
1415                 /* FIXME implement these protocol options!! */
1416                 if (xfer->speed_hz < spi->max_speed_hz) {
1417                         dev_dbg(&spi->dev, "can't change speed in transfer\n");
1418                         return -ENOPROTOOPT;
1419                 }
1420
1421                 /*
1422                  * DMA map early, for performance (empties dcache ASAP) and
1423                  * better fault reporting.
1424                  */
1425                 if ((!msg->is_dma_mapped) && (atmel_spi_use_dma(as, xfer)
1426                         || as->use_pdc)) {
1427                         if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1428                                 return -ENOMEM;
1429                 }
1430         }
1431
1432 #ifdef VERBOSE
1433         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1434                 dev_dbg(controller,
1435                         "  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
1436                         xfer, xfer->len,
1437                         xfer->tx_buf, xfer->tx_dma,
1438                         xfer->rx_buf, xfer->rx_dma);
1439         }
1440 #endif
1441
1442         msg->status = -EINPROGRESS;
1443         msg->actual_length = 0;
1444
1445         atmel_spi_lock(as);
1446         list_add_tail(&msg->queue, &as->queue);
1447         if (!as->current_transfer)
1448                 atmel_spi_next_message(spi->master);
1449         atmel_spi_unlock(as);
1450
1451         return 0;
1452 }
1453
1454 static void atmel_spi_cleanup(struct spi_device *spi)
1455 {
1456         struct atmel_spi        *as = spi_master_get_devdata(spi->master);
1457         struct atmel_spi_device *asd = spi->controller_state;
1458         unsigned                gpio = (unsigned) spi->controller_data;
1459
1460         if (!asd)
1461                 return;
1462
1463         atmel_spi_lock(as);
1464         if (as->stay == spi) {
1465                 as->stay = NULL;
1466                 cs_deactivate(as, spi);
1467         }
1468         atmel_spi_unlock(as);
1469
1470         spi->controller_state = NULL;
1471         gpio_free(gpio);
1472         kfree(asd);
1473 }
1474
1475 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1476 {
1477         return spi_readl(as, VERSION) & 0x00000fff;
1478 }
1479
1480 static void atmel_get_caps(struct atmel_spi *as)
1481 {
1482         unsigned int version;
1483
1484         version = atmel_get_version(as);
1485         dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1486
1487         as->caps.is_spi2 = version > 0x121;
1488         as->caps.has_wdrbt = version >= 0x210;
1489         as->caps.has_dma_support = version >= 0x212;
1490 }
1491
1492 /*-------------------------------------------------------------------------*/
1493
1494 static int atmel_spi_probe(struct platform_device *pdev)
1495 {
1496         struct resource         *regs;
1497         int                     irq;
1498         struct clk              *clk;
1499         int                     ret;
1500         struct spi_master       *master;
1501         struct atmel_spi        *as;
1502
1503         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1504         if (!regs)
1505                 return -ENXIO;
1506
1507         irq = platform_get_irq(pdev, 0);
1508         if (irq < 0)
1509                 return irq;
1510
1511         clk = clk_get(&pdev->dev, "spi_clk");
1512         if (IS_ERR(clk))
1513                 return PTR_ERR(clk);
1514
1515         /* setup spi core then atmel-specific driver state */
1516         ret = -ENOMEM;
1517         master = spi_alloc_master(&pdev->dev, sizeof *as);
1518         if (!master)
1519                 goto out_free;
1520
1521         /* the spi->mode bits understood by this driver: */
1522         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1523         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1524         master->dev.of_node = pdev->dev.of_node;
1525         master->bus_num = pdev->id;
1526         master->num_chipselect = master->dev.of_node ? 0 : 4;
1527         master->setup = atmel_spi_setup;
1528         master->transfer = atmel_spi_transfer;
1529         master->cleanup = atmel_spi_cleanup;
1530         platform_set_drvdata(pdev, master);
1531
1532         as = spi_master_get_devdata(master);
1533
1534         /*
1535          * Scratch buffer is used for throwaway rx and tx data.
1536          * It's coherent to minimize dcache pollution.
1537          */
1538         as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1539                                         &as->buffer_dma, GFP_KERNEL);
1540         if (!as->buffer)
1541                 goto out_free;
1542
1543         spin_lock_init(&as->lock);
1544         INIT_LIST_HEAD(&as->queue);
1545
1546         as->pdev = pdev;
1547         as->regs = ioremap(regs->start, resource_size(regs));
1548         if (!as->regs)
1549                 goto out_free_buffer;
1550         as->phybase = regs->start;
1551         as->irq = irq;
1552         as->clk = clk;
1553
1554         atmel_get_caps(as);
1555
1556         as->use_dma = false;
1557         as->use_pdc = false;
1558         if (as->caps.has_dma_support) {
1559                 if (atmel_spi_configure_dma(as) == 0)
1560                         as->use_dma = true;
1561         } else {
1562                 as->use_pdc = true;
1563         }
1564
1565         if (as->caps.has_dma_support && !as->use_dma)
1566                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1567
1568         if (as->use_pdc) {
1569                 ret = request_irq(irq, atmel_spi_pdc_interrupt, 0,
1570                                         dev_name(&pdev->dev), master);
1571         } else {
1572                 tasklet_init(&as->tasklet, atmel_spi_tasklet_func,
1573                                         (unsigned long)master);
1574
1575                 ret = request_irq(irq, atmel_spi_pio_interrupt, 0,
1576                                         dev_name(&pdev->dev), master);
1577         }
1578         if (ret)
1579                 goto out_unmap_regs;
1580
1581         /* Initialize the hardware */
1582         clk_enable(clk);
1583         spi_writel(as, CR, SPI_BIT(SWRST));
1584         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1585         if (as->caps.has_wdrbt) {
1586                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1587                                 | SPI_BIT(MSTR));
1588         } else {
1589                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1590         }
1591
1592         if (as->use_pdc)
1593                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1594         spi_writel(as, CR, SPI_BIT(SPIEN));
1595
1596         /* go! */
1597         dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1598                         (unsigned long)regs->start, irq);
1599
1600         ret = spi_register_master(master);
1601         if (ret)
1602                 goto out_free_dma;
1603
1604         return 0;
1605
1606 out_free_dma:
1607         if (as->use_dma)
1608                 atmel_spi_release_dma(as);
1609
1610         spi_writel(as, CR, SPI_BIT(SWRST));
1611         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1612         clk_disable(clk);
1613         free_irq(irq, master);
1614 out_unmap_regs:
1615         iounmap(as->regs);
1616 out_free_buffer:
1617         if (!as->use_pdc)
1618                 tasklet_kill(&as->tasklet);
1619         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1620                         as->buffer_dma);
1621 out_free:
1622         clk_put(clk);
1623         spi_master_put(master);
1624         return ret;
1625 }
1626
1627 static int atmel_spi_remove(struct platform_device *pdev)
1628 {
1629         struct spi_master       *master = platform_get_drvdata(pdev);
1630         struct atmel_spi        *as = spi_master_get_devdata(master);
1631         struct spi_message      *msg;
1632         struct spi_transfer     *xfer;
1633
1634         /* reset the hardware and block queue progress */
1635         spin_lock_irq(&as->lock);
1636         as->stopping = 1;
1637         if (as->use_dma) {
1638                 atmel_spi_stop_dma(as);
1639                 atmel_spi_release_dma(as);
1640         }
1641
1642         spi_writel(as, CR, SPI_BIT(SWRST));
1643         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1644         spi_readl(as, SR);
1645         spin_unlock_irq(&as->lock);
1646
1647         /* Terminate remaining queued transfers */
1648         list_for_each_entry(msg, &as->queue, queue) {
1649                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1650                         if (!msg->is_dma_mapped
1651                                 && (atmel_spi_use_dma(as, xfer)
1652                                         || as->use_pdc))
1653                                 atmel_spi_dma_unmap_xfer(master, xfer);
1654                 }
1655                 msg->status = -ESHUTDOWN;
1656                 msg->complete(msg->context);
1657         }
1658
1659         if (!as->use_pdc)
1660                 tasklet_kill(&as->tasklet);
1661         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1662                         as->buffer_dma);
1663
1664         clk_disable(as->clk);
1665         clk_put(as->clk);
1666         free_irq(as->irq, master);
1667         iounmap(as->regs);
1668
1669         spi_unregister_master(master);
1670
1671         return 0;
1672 }
1673
1674 #ifdef  CONFIG_PM
1675
1676 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1677 {
1678         struct spi_master       *master = platform_get_drvdata(pdev);
1679         struct atmel_spi        *as = spi_master_get_devdata(master);
1680
1681         clk_disable(as->clk);
1682         return 0;
1683 }
1684
1685 static int atmel_spi_resume(struct platform_device *pdev)
1686 {
1687         struct spi_master       *master = platform_get_drvdata(pdev);
1688         struct atmel_spi        *as = spi_master_get_devdata(master);
1689
1690         clk_enable(as->clk);
1691         return 0;
1692 }
1693
1694 #else
1695 #define atmel_spi_suspend       NULL
1696 #define atmel_spi_resume        NULL
1697 #endif
1698
1699 #if defined(CONFIG_OF)
1700 static const struct of_device_id atmel_spi_dt_ids[] = {
1701         { .compatible = "atmel,at91rm9200-spi" },
1702         { /* sentinel */ }
1703 };
1704
1705 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1706 #endif
1707
1708 static struct platform_driver atmel_spi_driver = {
1709         .driver         = {
1710                 .name   = "atmel_spi",
1711                 .owner  = THIS_MODULE,
1712                 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1713         },
1714         .suspend        = atmel_spi_suspend,
1715         .resume         = atmel_spi_resume,
1716         .probe          = atmel_spi_probe,
1717         .remove         = atmel_spi_remove,
1718 };
1719 module_platform_driver(atmel_spi_driver);
1720
1721 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1722 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1723 MODULE_LICENSE("GPL");
1724 MODULE_ALIAS("platform:atmel_spi");