spi: sunxi: expose maximum transfer size limit
[cascardo/linux.git] / drivers / spi / spi-sun6i.c
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23
24 #include <linux/spi/spi.h>
25
26 #define SUN6I_FIFO_DEPTH                128
27
28 #define SUN6I_GBL_CTL_REG               0x04
29 #define SUN6I_GBL_CTL_BUS_ENABLE                BIT(0)
30 #define SUN6I_GBL_CTL_MASTER                    BIT(1)
31 #define SUN6I_GBL_CTL_TP                        BIT(7)
32 #define SUN6I_GBL_CTL_RST                       BIT(31)
33
34 #define SUN6I_TFR_CTL_REG               0x08
35 #define SUN6I_TFR_CTL_CPHA                      BIT(0)
36 #define SUN6I_TFR_CTL_CPOL                      BIT(1)
37 #define SUN6I_TFR_CTL_SPOL                      BIT(2)
38 #define SUN6I_TFR_CTL_CS_MASK                   0x30
39 #define SUN6I_TFR_CTL_CS(cs)                    (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
40 #define SUN6I_TFR_CTL_CS_MANUAL                 BIT(6)
41 #define SUN6I_TFR_CTL_CS_LEVEL                  BIT(7)
42 #define SUN6I_TFR_CTL_DHB                       BIT(8)
43 #define SUN6I_TFR_CTL_FBS                       BIT(12)
44 #define SUN6I_TFR_CTL_XCH                       BIT(31)
45
46 #define SUN6I_INT_CTL_REG               0x10
47 #define SUN6I_INT_CTL_RF_OVF                    BIT(8)
48 #define SUN6I_INT_CTL_TC                        BIT(12)
49
50 #define SUN6I_INT_STA_REG               0x14
51
52 #define SUN6I_FIFO_CTL_REG              0x18
53 #define SUN6I_FIFO_CTL_RF_RST                   BIT(15)
54 #define SUN6I_FIFO_CTL_TF_RST                   BIT(31)
55
56 #define SUN6I_FIFO_STA_REG              0x1c
57 #define SUN6I_FIFO_STA_RF_CNT_MASK              0x7f
58 #define SUN6I_FIFO_STA_RF_CNT_BITS              0
59 #define SUN6I_FIFO_STA_TF_CNT_MASK              0x7f
60 #define SUN6I_FIFO_STA_TF_CNT_BITS              16
61
62 #define SUN6I_CLK_CTL_REG               0x24
63 #define SUN6I_CLK_CTL_CDR2_MASK                 0xff
64 #define SUN6I_CLK_CTL_CDR2(div)                 (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
65 #define SUN6I_CLK_CTL_CDR1_MASK                 0xf
66 #define SUN6I_CLK_CTL_CDR1(div)                 (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
67 #define SUN6I_CLK_CTL_DRS                       BIT(12)
68
69 #define SUN6I_BURST_CNT_REG             0x30
70 #define SUN6I_BURST_CNT(cnt)                    ((cnt) & 0xffffff)
71
72 #define SUN6I_XMIT_CNT_REG              0x34
73 #define SUN6I_XMIT_CNT(cnt)                     ((cnt) & 0xffffff)
74
75 #define SUN6I_BURST_CTL_CNT_REG         0x38
76 #define SUN6I_BURST_CTL_CNT_STC(cnt)            ((cnt) & 0xffffff)
77
78 #define SUN6I_TXDATA_REG                0x200
79 #define SUN6I_RXDATA_REG                0x300
80
81 struct sun6i_spi {
82         struct spi_master       *master;
83         void __iomem            *base_addr;
84         struct clk              *hclk;
85         struct clk              *mclk;
86         struct reset_control    *rstc;
87
88         struct completion       done;
89
90         const u8                *tx_buf;
91         u8                      *rx_buf;
92         int                     len;
93 };
94
95 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
96 {
97         return readl(sspi->base_addr + reg);
98 }
99
100 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
101 {
102         writel(value, sspi->base_addr + reg);
103 }
104
105 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
106 {
107         u32 reg, cnt;
108         u8 byte;
109
110         /* See how much data is available */
111         reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
112         reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
113         cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
114
115         if (len > cnt)
116                 len = cnt;
117
118         while (len--) {
119                 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
120                 if (sspi->rx_buf)
121                         *sspi->rx_buf++ = byte;
122         }
123 }
124
125 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
126 {
127         u8 byte;
128
129         if (len > sspi->len)
130                 len = sspi->len;
131
132         while (len--) {
133                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
134                 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
135                 sspi->len--;
136         }
137 }
138
139 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
140 {
141         struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
142         u32 reg;
143
144         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
145         reg &= ~SUN6I_TFR_CTL_CS_MASK;
146         reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
147
148         if (enable)
149                 reg |= SUN6I_TFR_CTL_CS_LEVEL;
150         else
151                 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
152
153         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
154 }
155
156 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
157 {
158         return SUN6I_FIFO_DEPTH - 1;
159 }
160
161 static int sun6i_spi_transfer_one(struct spi_master *master,
162                                   struct spi_device *spi,
163                                   struct spi_transfer *tfr)
164 {
165         struct sun6i_spi *sspi = spi_master_get_devdata(master);
166         unsigned int mclk_rate, div, timeout;
167         unsigned int tx_len = 0;
168         int ret = 0;
169         u32 reg;
170
171         /* We don't support transfer larger than the FIFO */
172         if (tfr->len > SUN6I_FIFO_DEPTH)
173                 return -EINVAL;
174
175         reinit_completion(&sspi->done);
176         sspi->tx_buf = tfr->tx_buf;
177         sspi->rx_buf = tfr->rx_buf;
178         sspi->len = tfr->len;
179
180         /* Clear pending interrupts */
181         sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
182
183         /* Reset FIFO */
184         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
185                         SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
186
187         /*
188          * Setup the transfer control register: Chip Select,
189          * polarities, etc.
190          */
191         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
192
193         if (spi->mode & SPI_CPOL)
194                 reg |= SUN6I_TFR_CTL_CPOL;
195         else
196                 reg &= ~SUN6I_TFR_CTL_CPOL;
197
198         if (spi->mode & SPI_CPHA)
199                 reg |= SUN6I_TFR_CTL_CPHA;
200         else
201                 reg &= ~SUN6I_TFR_CTL_CPHA;
202
203         if (spi->mode & SPI_LSB_FIRST)
204                 reg |= SUN6I_TFR_CTL_FBS;
205         else
206                 reg &= ~SUN6I_TFR_CTL_FBS;
207
208         /*
209          * If it's a TX only transfer, we don't want to fill the RX
210          * FIFO with bogus data
211          */
212         if (sspi->rx_buf)
213                 reg &= ~SUN6I_TFR_CTL_DHB;
214         else
215                 reg |= SUN6I_TFR_CTL_DHB;
216
217         /* We want to control the chip select manually */
218         reg |= SUN6I_TFR_CTL_CS_MANUAL;
219
220         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
221
222         /* Ensure that we have a parent clock fast enough */
223         mclk_rate = clk_get_rate(sspi->mclk);
224         if (mclk_rate < (2 * tfr->speed_hz)) {
225                 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
226                 mclk_rate = clk_get_rate(sspi->mclk);
227         }
228
229         /*
230          * Setup clock divider.
231          *
232          * We have two choices there. Either we can use the clock
233          * divide rate 1, which is calculated thanks to this formula:
234          * SPI_CLK = MOD_CLK / (2 ^ cdr)
235          * Or we can use CDR2, which is calculated with the formula:
236          * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
237          * Wether we use the former or the latter is set through the
238          * DRS bit.
239          *
240          * First try CDR2, and if we can't reach the expected
241          * frequency, fall back to CDR1.
242          */
243         div = mclk_rate / (2 * tfr->speed_hz);
244         if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
245                 if (div > 0)
246                         div--;
247
248                 reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
249         } else {
250                 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
251                 reg = SUN6I_CLK_CTL_CDR1(div);
252         }
253
254         sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
255
256         /* Setup the transfer now... */
257         if (sspi->tx_buf)
258                 tx_len = tfr->len;
259
260         /* Setup the counters */
261         sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
262         sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
263         sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
264                         SUN6I_BURST_CTL_CNT_STC(tx_len));
265
266         /* Fill the TX FIFO */
267         sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
268
269         /* Enable the interrupts */
270         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
271
272         /* Start the transfer */
273         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
274         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
275
276         timeout = wait_for_completion_timeout(&sspi->done,
277                                               msecs_to_jiffies(1000));
278         if (!timeout) {
279                 ret = -ETIMEDOUT;
280                 goto out;
281         }
282
283         sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
284
285 out:
286         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
287
288         return ret;
289 }
290
291 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
292 {
293         struct sun6i_spi *sspi = dev_id;
294         u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
295
296         /* Transfer complete */
297         if (status & SUN6I_INT_CTL_TC) {
298                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
299                 complete(&sspi->done);
300                 return IRQ_HANDLED;
301         }
302
303         return IRQ_NONE;
304 }
305
306 static int sun6i_spi_runtime_resume(struct device *dev)
307 {
308         struct spi_master *master = dev_get_drvdata(dev);
309         struct sun6i_spi *sspi = spi_master_get_devdata(master);
310         int ret;
311
312         ret = clk_prepare_enable(sspi->hclk);
313         if (ret) {
314                 dev_err(dev, "Couldn't enable AHB clock\n");
315                 goto out;
316         }
317
318         ret = clk_prepare_enable(sspi->mclk);
319         if (ret) {
320                 dev_err(dev, "Couldn't enable module clock\n");
321                 goto err;
322         }
323
324         ret = reset_control_deassert(sspi->rstc);
325         if (ret) {
326                 dev_err(dev, "Couldn't deassert the device from reset\n");
327                 goto err2;
328         }
329
330         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
331                         SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
332
333         return 0;
334
335 err2:
336         clk_disable_unprepare(sspi->mclk);
337 err:
338         clk_disable_unprepare(sspi->hclk);
339 out:
340         return ret;
341 }
342
343 static int sun6i_spi_runtime_suspend(struct device *dev)
344 {
345         struct spi_master *master = dev_get_drvdata(dev);
346         struct sun6i_spi *sspi = spi_master_get_devdata(master);
347
348         reset_control_assert(sspi->rstc);
349         clk_disable_unprepare(sspi->mclk);
350         clk_disable_unprepare(sspi->hclk);
351
352         return 0;
353 }
354
355 static int sun6i_spi_probe(struct platform_device *pdev)
356 {
357         struct spi_master *master;
358         struct sun6i_spi *sspi;
359         struct resource *res;
360         int ret = 0, irq;
361
362         master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
363         if (!master) {
364                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
365                 return -ENOMEM;
366         }
367
368         platform_set_drvdata(pdev, master);
369         sspi = spi_master_get_devdata(master);
370
371         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
372         sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
373         if (IS_ERR(sspi->base_addr)) {
374                 ret = PTR_ERR(sspi->base_addr);
375                 goto err_free_master;
376         }
377
378         irq = platform_get_irq(pdev, 0);
379         if (irq < 0) {
380                 dev_err(&pdev->dev, "No spi IRQ specified\n");
381                 ret = -ENXIO;
382                 goto err_free_master;
383         }
384
385         ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
386                                0, "sun6i-spi", sspi);
387         if (ret) {
388                 dev_err(&pdev->dev, "Cannot request IRQ\n");
389                 goto err_free_master;
390         }
391
392         sspi->master = master;
393         master->set_cs = sun6i_spi_set_cs;
394         master->transfer_one = sun6i_spi_transfer_one;
395         master->num_chipselect = 4;
396         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
397         master->bits_per_word_mask = SPI_BPW_MASK(8);
398         master->dev.of_node = pdev->dev.of_node;
399         master->auto_runtime_pm = true;
400         master->max_transfer_size = sun6i_spi_max_transfer_size;
401
402         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
403         if (IS_ERR(sspi->hclk)) {
404                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
405                 ret = PTR_ERR(sspi->hclk);
406                 goto err_free_master;
407         }
408
409         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
410         if (IS_ERR(sspi->mclk)) {
411                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
412                 ret = PTR_ERR(sspi->mclk);
413                 goto err_free_master;
414         }
415
416         init_completion(&sspi->done);
417
418         sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
419         if (IS_ERR(sspi->rstc)) {
420                 dev_err(&pdev->dev, "Couldn't get reset controller\n");
421                 ret = PTR_ERR(sspi->rstc);
422                 goto err_free_master;
423         }
424
425         /*
426          * This wake-up/shutdown pattern is to be able to have the
427          * device woken up, even if runtime_pm is disabled
428          */
429         ret = sun6i_spi_runtime_resume(&pdev->dev);
430         if (ret) {
431                 dev_err(&pdev->dev, "Couldn't resume the device\n");
432                 goto err_free_master;
433         }
434
435         pm_runtime_set_active(&pdev->dev);
436         pm_runtime_enable(&pdev->dev);
437         pm_runtime_idle(&pdev->dev);
438
439         ret = devm_spi_register_master(&pdev->dev, master);
440         if (ret) {
441                 dev_err(&pdev->dev, "cannot register SPI master\n");
442                 goto err_pm_disable;
443         }
444
445         return 0;
446
447 err_pm_disable:
448         pm_runtime_disable(&pdev->dev);
449         sun6i_spi_runtime_suspend(&pdev->dev);
450 err_free_master:
451         spi_master_put(master);
452         return ret;
453 }
454
455 static int sun6i_spi_remove(struct platform_device *pdev)
456 {
457         pm_runtime_disable(&pdev->dev);
458
459         return 0;
460 }
461
462 static const struct of_device_id sun6i_spi_match[] = {
463         { .compatible = "allwinner,sun6i-a31-spi", },
464         {}
465 };
466 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
467
468 static const struct dev_pm_ops sun6i_spi_pm_ops = {
469         .runtime_resume         = sun6i_spi_runtime_resume,
470         .runtime_suspend        = sun6i_spi_runtime_suspend,
471 };
472
473 static struct platform_driver sun6i_spi_driver = {
474         .probe  = sun6i_spi_probe,
475         .remove = sun6i_spi_remove,
476         .driver = {
477                 .name           = "sun6i-spi",
478                 .of_match_table = sun6i_spi_match,
479                 .pm             = &sun6i_spi_pm_ops,
480         },
481 };
482 module_platform_driver(sun6i_spi_driver);
483
484 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
485 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
486 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
487 MODULE_LICENSE("GPL");