Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / spi / spi-tegra114.c
1 /*
2  * SPI driver for NVIDIA's Tegra114 SPI Controller.
3  *
4  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/clk/tegra.h>
21 #include <linux/completion.h>
22 #include <linux/delay.h>
23 #include <linux/dmaengine.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmapool.h>
26 #include <linux/err.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kernel.h>
31 #include <linux/kthread.h>
32 #include <linux/module.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/spi/spi.h>
38
39 #define SPI_COMMAND1                            0x000
40 #define SPI_BIT_LENGTH(x)                       (((x) & 0x1f) << 0)
41 #define SPI_PACKED                              (1 << 5)
42 #define SPI_TX_EN                               (1 << 11)
43 #define SPI_RX_EN                               (1 << 12)
44 #define SPI_BOTH_EN_BYTE                        (1 << 13)
45 #define SPI_BOTH_EN_BIT                         (1 << 14)
46 #define SPI_LSBYTE_FE                           (1 << 15)
47 #define SPI_LSBIT_FE                            (1 << 16)
48 #define SPI_BIDIROE                             (1 << 17)
49 #define SPI_IDLE_SDA_DRIVE_LOW                  (0 << 18)
50 #define SPI_IDLE_SDA_DRIVE_HIGH                 (1 << 18)
51 #define SPI_IDLE_SDA_PULL_LOW                   (2 << 18)
52 #define SPI_IDLE_SDA_PULL_HIGH                  (3 << 18)
53 #define SPI_IDLE_SDA_MASK                       (3 << 18)
54 #define SPI_CS_SS_VAL                           (1 << 20)
55 #define SPI_CS_SW_HW                            (1 << 21)
56 /* SPI_CS_POL_INACTIVE bits are default high */
57 #define SPI_CS_POL_INACTIVE                     22
58 #define SPI_CS_POL_INACTIVE_0                   (1 << 22)
59 #define SPI_CS_POL_INACTIVE_1                   (1 << 23)
60 #define SPI_CS_POL_INACTIVE_2                   (1 << 24)
61 #define SPI_CS_POL_INACTIVE_3                   (1 << 25)
62 #define SPI_CS_POL_INACTIVE_MASK                (0xF << 22)
63
64 #define SPI_CS_SEL_0                            (0 << 26)
65 #define SPI_CS_SEL_1                            (1 << 26)
66 #define SPI_CS_SEL_2                            (2 << 26)
67 #define SPI_CS_SEL_3                            (3 << 26)
68 #define SPI_CS_SEL_MASK                         (3 << 26)
69 #define SPI_CS_SEL(x)                           (((x) & 0x3) << 26)
70 #define SPI_CONTROL_MODE_0                      (0 << 28)
71 #define SPI_CONTROL_MODE_1                      (1 << 28)
72 #define SPI_CONTROL_MODE_2                      (2 << 28)
73 #define SPI_CONTROL_MODE_3                      (3 << 28)
74 #define SPI_CONTROL_MODE_MASK                   (3 << 28)
75 #define SPI_MODE_SEL(x)                         (((x) & 0x3) << 28)
76 #define SPI_M_S                                 (1 << 30)
77 #define SPI_PIO                                 (1 << 31)
78
79 #define SPI_COMMAND2                            0x004
80 #define SPI_TX_TAP_DELAY(x)                     (((x) & 0x3F) << 6)
81 #define SPI_RX_TAP_DELAY(x)                     (((x) & 0x3F) << 0)
82
83 #define SPI_CS_TIMING1                          0x008
84 #define SPI_SETUP_HOLD(setup, hold)             (((setup) << 4) | (hold))
85 #define SPI_CS_SETUP_HOLD(reg, cs, val)                 \
86                 ((((val) & 0xFFu) << ((cs) * 8)) |      \
87                 ((reg) & ~(0xFFu << ((cs) * 8))))
88
89 #define SPI_CS_TIMING2                          0x00C
90 #define CYCLES_BETWEEN_PACKETS_0(x)             (((x) & 0x1F) << 0)
91 #define CS_ACTIVE_BETWEEN_PACKETS_0             (1 << 5)
92 #define CYCLES_BETWEEN_PACKETS_1(x)             (((x) & 0x1F) << 8)
93 #define CS_ACTIVE_BETWEEN_PACKETS_1             (1 << 13)
94 #define CYCLES_BETWEEN_PACKETS_2(x)             (((x) & 0x1F) << 16)
95 #define CS_ACTIVE_BETWEEN_PACKETS_2             (1 << 21)
96 #define CYCLES_BETWEEN_PACKETS_3(x)             (((x) & 0x1F) << 24)
97 #define CS_ACTIVE_BETWEEN_PACKETS_3             (1 << 29)
98 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)         \
99                 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) |      \
100                         ((reg) & ~(1 << ((cs) * 8 + 5))))
101 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)            \
102                 (reg = (((val) & 0xF) << ((cs) * 8)) |          \
103                         ((reg) & ~(0xF << ((cs) * 8))))
104
105 #define SPI_TRANS_STATUS                        0x010
106 #define SPI_BLK_CNT(val)                        (((val) >> 0) & 0xFFFF)
107 #define SPI_SLV_IDLE_COUNT(val)                 (((val) >> 16) & 0xFF)
108 #define SPI_RDY                                 (1 << 30)
109
110 #define SPI_FIFO_STATUS                         0x014
111 #define SPI_RX_FIFO_EMPTY                       (1 << 0)
112 #define SPI_RX_FIFO_FULL                        (1 << 1)
113 #define SPI_TX_FIFO_EMPTY                       (1 << 2)
114 #define SPI_TX_FIFO_FULL                        (1 << 3)
115 #define SPI_RX_FIFO_UNF                         (1 << 4)
116 #define SPI_RX_FIFO_OVF                         (1 << 5)
117 #define SPI_TX_FIFO_UNF                         (1 << 6)
118 #define SPI_TX_FIFO_OVF                         (1 << 7)
119 #define SPI_ERR                                 (1 << 8)
120 #define SPI_TX_FIFO_FLUSH                       (1 << 14)
121 #define SPI_RX_FIFO_FLUSH                       (1 << 15)
122 #define SPI_TX_FIFO_EMPTY_COUNT(val)            (((val) >> 16) & 0x7F)
123 #define SPI_RX_FIFO_FULL_COUNT(val)             (((val) >> 23) & 0x7F)
124 #define SPI_FRAME_END                           (1 << 30)
125 #define SPI_CS_INACTIVE                         (1 << 31)
126
127 #define SPI_FIFO_ERROR                          (SPI_RX_FIFO_UNF | \
128                         SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
129 #define SPI_FIFO_EMPTY                  (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
130
131 #define SPI_TX_DATA                             0x018
132 #define SPI_RX_DATA                             0x01C
133
134 #define SPI_DMA_CTL                             0x020
135 #define SPI_TX_TRIG_1                           (0 << 15)
136 #define SPI_TX_TRIG_4                           (1 << 15)
137 #define SPI_TX_TRIG_8                           (2 << 15)
138 #define SPI_TX_TRIG_16                          (3 << 15)
139 #define SPI_TX_TRIG_MASK                        (3 << 15)
140 #define SPI_RX_TRIG_1                           (0 << 19)
141 #define SPI_RX_TRIG_4                           (1 << 19)
142 #define SPI_RX_TRIG_8                           (2 << 19)
143 #define SPI_RX_TRIG_16                          (3 << 19)
144 #define SPI_RX_TRIG_MASK                        (3 << 19)
145 #define SPI_IE_TX                               (1 << 28)
146 #define SPI_IE_RX                               (1 << 29)
147 #define SPI_CONT                                (1 << 30)
148 #define SPI_DMA                                 (1 << 31)
149 #define SPI_DMA_EN                              SPI_DMA
150
151 #define SPI_DMA_BLK                             0x024
152 #define SPI_DMA_BLK_SET(x)                      (((x) & 0xFFFF) << 0)
153
154 #define SPI_TX_FIFO                             0x108
155 #define SPI_RX_FIFO                             0x188
156 #define MAX_CHIP_SELECT                         4
157 #define SPI_FIFO_DEPTH                          64
158 #define DATA_DIR_TX                             (1 << 0)
159 #define DATA_DIR_RX                             (1 << 1)
160
161 #define SPI_DMA_TIMEOUT                         (msecs_to_jiffies(1000))
162 #define DEFAULT_SPI_DMA_BUF_LEN                 (16*1024)
163 #define TX_FIFO_EMPTY_COUNT_MAX                 SPI_TX_FIFO_EMPTY_COUNT(0x40)
164 #define RX_FIFO_FULL_COUNT_ZERO                 SPI_RX_FIFO_FULL_COUNT(0)
165 #define MAX_HOLD_CYCLES                         16
166 #define SPI_DEFAULT_SPEED                       25000000
167
168 #define MAX_CHIP_SELECT                         4
169 #define SPI_FIFO_DEPTH                          64
170
171 struct tegra_spi_data {
172         struct device                           *dev;
173         struct spi_master                       *master;
174         spinlock_t                              lock;
175
176         struct clk                              *clk;
177         void __iomem                            *base;
178         phys_addr_t                             phys;
179         unsigned                                irq;
180         int                                     dma_req_sel;
181         u32                                     spi_max_frequency;
182         u32                                     cur_speed;
183
184         struct spi_device                       *cur_spi;
185         unsigned                                cur_pos;
186         unsigned                                cur_len;
187         unsigned                                words_per_32bit;
188         unsigned                                bytes_per_word;
189         unsigned                                curr_dma_words;
190         unsigned                                cur_direction;
191
192         unsigned                                cur_rx_pos;
193         unsigned                                cur_tx_pos;
194
195         unsigned                                dma_buf_size;
196         unsigned                                max_buf_size;
197         bool                                    is_curr_dma_xfer;
198
199         struct completion                       rx_dma_complete;
200         struct completion                       tx_dma_complete;
201
202         u32                                     tx_status;
203         u32                                     rx_status;
204         u32                                     status_reg;
205         bool                                    is_packed;
206         unsigned long                           packed_size;
207
208         u32                                     command1_reg;
209         u32                                     dma_control_reg;
210         u32                                     def_command1_reg;
211         u32                                     spi_cs_timing;
212
213         struct completion                       xfer_completion;
214         struct spi_transfer                     *curr_xfer;
215         struct dma_chan                         *rx_dma_chan;
216         u32                                     *rx_dma_buf;
217         dma_addr_t                              rx_dma_phys;
218         struct dma_async_tx_descriptor          *rx_dma_desc;
219
220         struct dma_chan                         *tx_dma_chan;
221         u32                                     *tx_dma_buf;
222         dma_addr_t                              tx_dma_phys;
223         struct dma_async_tx_descriptor          *tx_dma_desc;
224 };
225
226 static int tegra_spi_runtime_suspend(struct device *dev);
227 static int tegra_spi_runtime_resume(struct device *dev);
228
229 static inline unsigned long tegra_spi_readl(struct tegra_spi_data *tspi,
230                 unsigned long reg)
231 {
232         return readl(tspi->base + reg);
233 }
234
235 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
236                 unsigned long val, unsigned long reg)
237 {
238         writel(val, tspi->base + reg);
239
240         /* Read back register to make sure that register writes completed */
241         if (reg != SPI_TX_FIFO)
242                 readl(tspi->base + SPI_COMMAND1);
243 }
244
245 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
246 {
247         unsigned long val;
248
249         /* Write 1 to clear status register */
250         val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
251         tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
252
253         /* Clear fifo status error if any */
254         val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
255         if (val & SPI_ERR)
256                 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
257                                 SPI_FIFO_STATUS);
258 }
259
260 static unsigned tegra_spi_calculate_curr_xfer_param(
261         struct spi_device *spi, struct tegra_spi_data *tspi,
262         struct spi_transfer *t)
263 {
264         unsigned remain_len = t->len - tspi->cur_pos;
265         unsigned max_word;
266         unsigned bits_per_word = t->bits_per_word;
267         unsigned max_len;
268         unsigned total_fifo_words;
269
270         tspi->bytes_per_word = (bits_per_word - 1) / 8 + 1;
271
272         if (bits_per_word == 8 || bits_per_word == 16) {
273                 tspi->is_packed = 1;
274                 tspi->words_per_32bit = 32/bits_per_word;
275         } else {
276                 tspi->is_packed = 0;
277                 tspi->words_per_32bit = 1;
278         }
279
280         if (tspi->is_packed) {
281                 max_len = min(remain_len, tspi->max_buf_size);
282                 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
283                 total_fifo_words = (max_len + 3) / 4;
284         } else {
285                 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
286                 max_word = min(max_word, tspi->max_buf_size/4);
287                 tspi->curr_dma_words = max_word;
288                 total_fifo_words = max_word;
289         }
290         return total_fifo_words;
291 }
292
293 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
294         struct tegra_spi_data *tspi, struct spi_transfer *t)
295 {
296         unsigned nbytes;
297         unsigned tx_empty_count;
298         unsigned long fifo_status;
299         unsigned max_n_32bit;
300         unsigned i, count;
301         unsigned long x;
302         unsigned int written_words;
303         unsigned fifo_words_left;
304         u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
305
306         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
307         tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
308
309         if (tspi->is_packed) {
310                 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
311                 written_words = min(fifo_words_left, tspi->curr_dma_words);
312                 nbytes = written_words * tspi->bytes_per_word;
313                 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
314                 for (count = 0; count < max_n_32bit; count++) {
315                         x = 0;
316                         for (i = 0; (i < 4) && nbytes; i++, nbytes--)
317                                 x |= (*tx_buf++) << (i*8);
318                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
319                 }
320         } else {
321                 max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
322                 written_words = max_n_32bit;
323                 nbytes = written_words * tspi->bytes_per_word;
324                 for (count = 0; count < max_n_32bit; count++) {
325                         x = 0;
326                         for (i = 0; nbytes && (i < tspi->bytes_per_word);
327                                                         i++, nbytes--)
328                                 x |= ((*tx_buf++) << i*8);
329                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
330                 }
331         }
332         tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
333         return written_words;
334 }
335
336 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
337                 struct tegra_spi_data *tspi, struct spi_transfer *t)
338 {
339         unsigned rx_full_count;
340         unsigned long fifo_status;
341         unsigned i, count;
342         unsigned long x;
343         unsigned int read_words = 0;
344         unsigned len;
345         u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
346
347         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
348         rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
349         if (tspi->is_packed) {
350                 len = tspi->curr_dma_words * tspi->bytes_per_word;
351                 for (count = 0; count < rx_full_count; count++) {
352                         x = tegra_spi_readl(tspi, SPI_RX_FIFO);
353                         for (i = 0; len && (i < 4); i++, len--)
354                                 *rx_buf++ = (x >> i*8) & 0xFF;
355                 }
356                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
357                 read_words += tspi->curr_dma_words;
358         } else {
359                 unsigned int rx_mask;
360                 unsigned int bits_per_word = t->bits_per_word;
361
362                 rx_mask = (1 << bits_per_word) - 1;
363                 for (count = 0; count < rx_full_count; count++) {
364                         x = tegra_spi_readl(tspi, SPI_RX_FIFO);
365                         x &= rx_mask;
366                         for (i = 0; (i < tspi->bytes_per_word); i++)
367                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
368                 }
369                 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
370                 read_words += rx_full_count;
371         }
372         return read_words;
373 }
374
375 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
376                 struct tegra_spi_data *tspi, struct spi_transfer *t)
377 {
378         unsigned len;
379
380         /* Make the dma buffer to read by cpu */
381         dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
382                                 tspi->dma_buf_size, DMA_TO_DEVICE);
383
384         if (tspi->is_packed) {
385                 len = tspi->curr_dma_words * tspi->bytes_per_word;
386                 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
387         } else {
388                 unsigned int i;
389                 unsigned int count;
390                 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
391                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
392                 unsigned int x;
393
394                 for (count = 0; count < tspi->curr_dma_words; count++) {
395                         x = 0;
396                         for (i = 0; consume && (i < tspi->bytes_per_word);
397                                                         i++, consume--)
398                                 x |= ((*tx_buf++) << i * 8);
399                         tspi->tx_dma_buf[count] = x;
400                 }
401         }
402         tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
403
404         /* Make the dma buffer to read by dma */
405         dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
406                                 tspi->dma_buf_size, DMA_TO_DEVICE);
407 }
408
409 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
410                 struct tegra_spi_data *tspi, struct spi_transfer *t)
411 {
412         unsigned len;
413
414         /* Make the dma buffer to read by cpu */
415         dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
416                 tspi->dma_buf_size, DMA_FROM_DEVICE);
417
418         if (tspi->is_packed) {
419                 len = tspi->curr_dma_words * tspi->bytes_per_word;
420                 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
421         } else {
422                 unsigned int i;
423                 unsigned int count;
424                 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
425                 unsigned int x;
426                 unsigned int rx_mask;
427                 unsigned int bits_per_word = t->bits_per_word;
428
429                 rx_mask = (1 << bits_per_word) - 1;
430                 for (count = 0; count < tspi->curr_dma_words; count++) {
431                         x = tspi->rx_dma_buf[count];
432                         x &= rx_mask;
433                         for (i = 0; (i < tspi->bytes_per_word); i++)
434                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
435                 }
436         }
437         tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
438
439         /* Make the dma buffer to read by dma */
440         dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
441                 tspi->dma_buf_size, DMA_FROM_DEVICE);
442 }
443
444 static void tegra_spi_dma_complete(void *args)
445 {
446         struct completion *dma_complete = args;
447
448         complete(dma_complete);
449 }
450
451 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
452 {
453         INIT_COMPLETION(tspi->tx_dma_complete);
454         tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
455                                 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
456                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
457         if (!tspi->tx_dma_desc) {
458                 dev_err(tspi->dev, "Not able to get desc for Tx\n");
459                 return -EIO;
460         }
461
462         tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
463         tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
464
465         dmaengine_submit(tspi->tx_dma_desc);
466         dma_async_issue_pending(tspi->tx_dma_chan);
467         return 0;
468 }
469
470 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
471 {
472         INIT_COMPLETION(tspi->rx_dma_complete);
473         tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
474                                 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
475                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
476         if (!tspi->rx_dma_desc) {
477                 dev_err(tspi->dev, "Not able to get desc for Rx\n");
478                 return -EIO;
479         }
480
481         tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
482         tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
483
484         dmaengine_submit(tspi->rx_dma_desc);
485         dma_async_issue_pending(tspi->rx_dma_chan);
486         return 0;
487 }
488
489 static int tegra_spi_start_dma_based_transfer(
490                 struct tegra_spi_data *tspi, struct spi_transfer *t)
491 {
492         unsigned long val;
493         unsigned int len;
494         int ret = 0;
495         unsigned long status;
496
497         /* Make sure that Rx and Tx fifo are empty */
498         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
499         if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
500                 dev_err(tspi->dev,
501                         "Rx/Tx fifo are not empty status 0x%08lx\n", status);
502                 return -EIO;
503         }
504
505         val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
506         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
507
508         if (tspi->is_packed)
509                 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
510                                         4) * 4;
511         else
512                 len = tspi->curr_dma_words * 4;
513
514         /* Set attention level based on length of transfer */
515         if (len & 0xF)
516                 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
517         else if (((len) >> 4) & 0x1)
518                 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
519         else
520                 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
521
522         if (tspi->cur_direction & DATA_DIR_TX)
523                 val |= SPI_IE_TX;
524
525         if (tspi->cur_direction & DATA_DIR_RX)
526                 val |= SPI_IE_RX;
527
528         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
529         tspi->dma_control_reg = val;
530
531         if (tspi->cur_direction & DATA_DIR_TX) {
532                 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
533                 ret = tegra_spi_start_tx_dma(tspi, len);
534                 if (ret < 0) {
535                         dev_err(tspi->dev,
536                                 "Starting tx dma failed, err %d\n", ret);
537                         return ret;
538                 }
539         }
540
541         if (tspi->cur_direction & DATA_DIR_RX) {
542                 /* Make the dma buffer to read by dma */
543                 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
544                                 tspi->dma_buf_size, DMA_FROM_DEVICE);
545
546                 ret = tegra_spi_start_rx_dma(tspi, len);
547                 if (ret < 0) {
548                         dev_err(tspi->dev,
549                                 "Starting rx dma failed, err %d\n", ret);
550                         if (tspi->cur_direction & DATA_DIR_TX)
551                                 dmaengine_terminate_all(tspi->tx_dma_chan);
552                         return ret;
553                 }
554         }
555         tspi->is_curr_dma_xfer = true;
556         tspi->dma_control_reg = val;
557
558         val |= SPI_DMA_EN;
559         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
560         return ret;
561 }
562
563 static int tegra_spi_start_cpu_based_transfer(
564                 struct tegra_spi_data *tspi, struct spi_transfer *t)
565 {
566         unsigned long val;
567         unsigned cur_words;
568
569         if (tspi->cur_direction & DATA_DIR_TX)
570                 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
571         else
572                 cur_words = tspi->curr_dma_words;
573
574         val = SPI_DMA_BLK_SET(cur_words - 1);
575         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
576
577         val = 0;
578         if (tspi->cur_direction & DATA_DIR_TX)
579                 val |= SPI_IE_TX;
580
581         if (tspi->cur_direction & DATA_DIR_RX)
582                 val |= SPI_IE_RX;
583
584         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
585         tspi->dma_control_reg = val;
586
587         tspi->is_curr_dma_xfer = false;
588
589         val |= SPI_DMA_EN;
590         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
591         return 0;
592 }
593
594 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
595                         bool dma_to_memory)
596 {
597         struct dma_chan *dma_chan;
598         u32 *dma_buf;
599         dma_addr_t dma_phys;
600         int ret;
601         struct dma_slave_config dma_sconfig;
602         dma_cap_mask_t mask;
603
604         dma_cap_zero(mask);
605         dma_cap_set(DMA_SLAVE, mask);
606         dma_chan = dma_request_channel(mask, NULL, NULL);
607         if (!dma_chan) {
608                 dev_err(tspi->dev,
609                         "Dma channel is not available, will try later\n");
610                 return -EPROBE_DEFER;
611         }
612
613         dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
614                                 &dma_phys, GFP_KERNEL);
615         if (!dma_buf) {
616                 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
617                 dma_release_channel(dma_chan);
618                 return -ENOMEM;
619         }
620
621         dma_sconfig.slave_id = tspi->dma_req_sel;
622         if (dma_to_memory) {
623                 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
624                 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
625                 dma_sconfig.src_maxburst = 0;
626         } else {
627                 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
628                 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
629                 dma_sconfig.dst_maxburst = 0;
630         }
631
632         ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
633         if (ret)
634                 goto scrub;
635         if (dma_to_memory) {
636                 tspi->rx_dma_chan = dma_chan;
637                 tspi->rx_dma_buf = dma_buf;
638                 tspi->rx_dma_phys = dma_phys;
639         } else {
640                 tspi->tx_dma_chan = dma_chan;
641                 tspi->tx_dma_buf = dma_buf;
642                 tspi->tx_dma_phys = dma_phys;
643         }
644         return 0;
645
646 scrub:
647         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
648         dma_release_channel(dma_chan);
649         return ret;
650 }
651
652 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
653         bool dma_to_memory)
654 {
655         u32 *dma_buf;
656         dma_addr_t dma_phys;
657         struct dma_chan *dma_chan;
658
659         if (dma_to_memory) {
660                 dma_buf = tspi->rx_dma_buf;
661                 dma_chan = tspi->rx_dma_chan;
662                 dma_phys = tspi->rx_dma_phys;
663                 tspi->rx_dma_chan = NULL;
664                 tspi->rx_dma_buf = NULL;
665         } else {
666                 dma_buf = tspi->tx_dma_buf;
667                 dma_chan = tspi->tx_dma_chan;
668                 dma_phys = tspi->tx_dma_phys;
669                 tspi->tx_dma_buf = NULL;
670                 tspi->tx_dma_chan = NULL;
671         }
672         if (!dma_chan)
673                 return;
674
675         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
676         dma_release_channel(dma_chan);
677 }
678
679 static int tegra_spi_start_transfer_one(struct spi_device *spi,
680                 struct spi_transfer *t, bool is_first_of_msg,
681                 bool is_single_xfer)
682 {
683         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
684         u32 speed = t->speed_hz;
685         u8 bits_per_word = t->bits_per_word;
686         unsigned total_fifo_words;
687         int ret;
688         unsigned long command1;
689         int req_mode;
690
691         if (speed != tspi->cur_speed) {
692                 clk_set_rate(tspi->clk, speed);
693                 tspi->cur_speed = speed;
694         }
695
696         tspi->cur_spi = spi;
697         tspi->cur_pos = 0;
698         tspi->cur_rx_pos = 0;
699         tspi->cur_tx_pos = 0;
700         tspi->curr_xfer = t;
701         total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
702
703         if (is_first_of_msg) {
704                 tegra_spi_clear_status(tspi);
705
706                 command1 = tspi->def_command1_reg;
707                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
708
709                 command1 &= ~SPI_CONTROL_MODE_MASK;
710                 req_mode = spi->mode & 0x3;
711                 if (req_mode == SPI_MODE_0)
712                         command1 |= SPI_CONTROL_MODE_0;
713                 else if (req_mode == SPI_MODE_1)
714                         command1 |= SPI_CONTROL_MODE_1;
715                 else if (req_mode == SPI_MODE_2)
716                         command1 |= SPI_CONTROL_MODE_2;
717                 else if (req_mode == SPI_MODE_3)
718                         command1 |= SPI_CONTROL_MODE_3;
719
720                 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
721
722                 command1 |= SPI_CS_SW_HW;
723                 if (spi->mode & SPI_CS_HIGH)
724                         command1 |= SPI_CS_SS_VAL;
725                 else
726                         command1 &= ~SPI_CS_SS_VAL;
727
728                 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
729         } else {
730                 command1 = tspi->command1_reg;
731                 command1 &= ~SPI_BIT_LENGTH(~0);
732                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
733         }
734
735         if (tspi->is_packed)
736                 command1 |= SPI_PACKED;
737
738         command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
739         tspi->cur_direction = 0;
740         if (t->rx_buf) {
741                 command1 |= SPI_RX_EN;
742                 tspi->cur_direction |= DATA_DIR_RX;
743         }
744         if (t->tx_buf) {
745                 command1 |= SPI_TX_EN;
746                 tspi->cur_direction |= DATA_DIR_TX;
747         }
748         command1 |= SPI_CS_SEL(spi->chip_select);
749         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
750         tspi->command1_reg = command1;
751
752         dev_dbg(tspi->dev, "The def 0x%x and written 0x%lx\n",
753                                 tspi->def_command1_reg, command1);
754
755         if (total_fifo_words > SPI_FIFO_DEPTH)
756                 ret = tegra_spi_start_dma_based_transfer(tspi, t);
757         else
758                 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
759         return ret;
760 }
761
762 static int tegra_spi_setup(struct spi_device *spi)
763 {
764         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
765         unsigned long val;
766         unsigned long flags;
767         int ret;
768         unsigned int cs_pol_bit[MAX_CHIP_SELECT] = {
769                         SPI_CS_POL_INACTIVE_0,
770                         SPI_CS_POL_INACTIVE_1,
771                         SPI_CS_POL_INACTIVE_2,
772                         SPI_CS_POL_INACTIVE_3,
773         };
774
775         dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
776                 spi->bits_per_word,
777                 spi->mode & SPI_CPOL ? "" : "~",
778                 spi->mode & SPI_CPHA ? "" : "~",
779                 spi->max_speed_hz);
780
781         BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);
782
783         /* Set speed to the spi max fequency if spi device has not set */
784         spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency;
785
786         ret = pm_runtime_get_sync(tspi->dev);
787         if (ret < 0) {
788                 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
789                 return ret;
790         }
791
792         spin_lock_irqsave(&tspi->lock, flags);
793         val = tspi->def_command1_reg;
794         if (spi->mode & SPI_CS_HIGH)
795                 val &= ~cs_pol_bit[spi->chip_select];
796         else
797                 val |= cs_pol_bit[spi->chip_select];
798         tspi->def_command1_reg = val;
799         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
800         spin_unlock_irqrestore(&tspi->lock, flags);
801
802         pm_runtime_put(tspi->dev);
803         return 0;
804 }
805
806 static int tegra_spi_transfer_one_message(struct spi_master *master,
807                         struct spi_message *msg)
808 {
809         bool is_first_msg = true;
810         int single_xfer;
811         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
812         struct spi_transfer *xfer;
813         struct spi_device *spi = msg->spi;
814         int ret;
815
816         msg->status = 0;
817         msg->actual_length = 0;
818
819         ret = pm_runtime_get_sync(tspi->dev);
820         if (ret < 0) {
821                 dev_err(tspi->dev, "runtime PM get failed: %d\n", ret);
822                 msg->status = ret;
823                 spi_finalize_current_message(master);
824                 return ret;
825         }
826
827         single_xfer = list_is_singular(&msg->transfers);
828         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
829                 INIT_COMPLETION(tspi->xfer_completion);
830                 ret = tegra_spi_start_transfer_one(spi, xfer,
831                                         is_first_msg, single_xfer);
832                 if (ret < 0) {
833                         dev_err(tspi->dev,
834                                 "spi can not start transfer, err %d\n", ret);
835                         goto exit;
836                 }
837                 is_first_msg = false;
838                 ret = wait_for_completion_timeout(&tspi->xfer_completion,
839                                                 SPI_DMA_TIMEOUT);
840                 if (WARN_ON(ret == 0)) {
841                         dev_err(tspi->dev,
842                                 "spi trasfer timeout, err %d\n", ret);
843                         ret = -EIO;
844                         goto exit;
845                 }
846
847                 if (tspi->tx_status ||  tspi->rx_status) {
848                         dev_err(tspi->dev, "Error in Transfer\n");
849                         ret = -EIO;
850                         goto exit;
851                 }
852                 msg->actual_length += xfer->len;
853                 if (xfer->cs_change && xfer->delay_usecs) {
854                         tegra_spi_writel(tspi, tspi->def_command1_reg,
855                                         SPI_COMMAND1);
856                         udelay(xfer->delay_usecs);
857                 }
858         }
859         ret = 0;
860 exit:
861         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
862         pm_runtime_put(tspi->dev);
863         msg->status = ret;
864         spi_finalize_current_message(master);
865         return ret;
866 }
867
868 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
869 {
870         struct spi_transfer *t = tspi->curr_xfer;
871         unsigned long flags;
872
873         spin_lock_irqsave(&tspi->lock, flags);
874         if (tspi->tx_status ||  tspi->rx_status) {
875                 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
876                         tspi->status_reg);
877                 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
878                         tspi->command1_reg, tspi->dma_control_reg);
879                 tegra_periph_reset_assert(tspi->clk);
880                 udelay(2);
881                 tegra_periph_reset_deassert(tspi->clk);
882                 complete(&tspi->xfer_completion);
883                 goto exit;
884         }
885
886         if (tspi->cur_direction & DATA_DIR_RX)
887                 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
888
889         if (tspi->cur_direction & DATA_DIR_TX)
890                 tspi->cur_pos = tspi->cur_tx_pos;
891         else
892                 tspi->cur_pos = tspi->cur_rx_pos;
893
894         if (tspi->cur_pos == t->len) {
895                 complete(&tspi->xfer_completion);
896                 goto exit;
897         }
898
899         tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
900         tegra_spi_start_cpu_based_transfer(tspi, t);
901 exit:
902         spin_unlock_irqrestore(&tspi->lock, flags);
903         return IRQ_HANDLED;
904 }
905
906 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
907 {
908         struct spi_transfer *t = tspi->curr_xfer;
909         long wait_status;
910         int err = 0;
911         unsigned total_fifo_words;
912         unsigned long flags;
913
914         /* Abort dmas if any error */
915         if (tspi->cur_direction & DATA_DIR_TX) {
916                 if (tspi->tx_status) {
917                         dmaengine_terminate_all(tspi->tx_dma_chan);
918                         err += 1;
919                 } else {
920                         wait_status = wait_for_completion_interruptible_timeout(
921                                 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
922                         if (wait_status <= 0) {
923                                 dmaengine_terminate_all(tspi->tx_dma_chan);
924                                 dev_err(tspi->dev, "TxDma Xfer failed\n");
925                                 err += 1;
926                         }
927                 }
928         }
929
930         if (tspi->cur_direction & DATA_DIR_RX) {
931                 if (tspi->rx_status) {
932                         dmaengine_terminate_all(tspi->rx_dma_chan);
933                         err += 2;
934                 } else {
935                         wait_status = wait_for_completion_interruptible_timeout(
936                                 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
937                         if (wait_status <= 0) {
938                                 dmaengine_terminate_all(tspi->rx_dma_chan);
939                                 dev_err(tspi->dev, "RxDma Xfer failed\n");
940                                 err += 2;
941                         }
942                 }
943         }
944
945         spin_lock_irqsave(&tspi->lock, flags);
946         if (err) {
947                 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
948                         tspi->status_reg);
949                 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
950                         tspi->command1_reg, tspi->dma_control_reg);
951                 tegra_periph_reset_assert(tspi->clk);
952                 udelay(2);
953                 tegra_periph_reset_deassert(tspi->clk);
954                 complete(&tspi->xfer_completion);
955                 spin_unlock_irqrestore(&tspi->lock, flags);
956                 return IRQ_HANDLED;
957         }
958
959         if (tspi->cur_direction & DATA_DIR_RX)
960                 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
961
962         if (tspi->cur_direction & DATA_DIR_TX)
963                 tspi->cur_pos = tspi->cur_tx_pos;
964         else
965                 tspi->cur_pos = tspi->cur_rx_pos;
966
967         if (tspi->cur_pos == t->len) {
968                 complete(&tspi->xfer_completion);
969                 goto exit;
970         }
971
972         /* Continue transfer in current message */
973         total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
974                                                         tspi, t);
975         if (total_fifo_words > SPI_FIFO_DEPTH)
976                 err = tegra_spi_start_dma_based_transfer(tspi, t);
977         else
978                 err = tegra_spi_start_cpu_based_transfer(tspi, t);
979
980 exit:
981         spin_unlock_irqrestore(&tspi->lock, flags);
982         return IRQ_HANDLED;
983 }
984
985 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
986 {
987         struct tegra_spi_data *tspi = context_data;
988
989         if (!tspi->is_curr_dma_xfer)
990                 return handle_cpu_based_xfer(tspi);
991         return handle_dma_based_xfer(tspi);
992 }
993
994 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
995 {
996         struct tegra_spi_data *tspi = context_data;
997
998         tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
999         if (tspi->cur_direction & DATA_DIR_TX)
1000                 tspi->tx_status = tspi->status_reg &
1001                                         (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1002
1003         if (tspi->cur_direction & DATA_DIR_RX)
1004                 tspi->rx_status = tspi->status_reg &
1005                                         (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1006         tegra_spi_clear_status(tspi);
1007
1008         return IRQ_WAKE_THREAD;
1009 }
1010
1011 static void tegra_spi_parse_dt(struct platform_device *pdev,
1012         struct tegra_spi_data *tspi)
1013 {
1014         struct device_node *np = pdev->dev.of_node;
1015         u32 of_dma[2];
1016
1017         if (of_property_read_u32_array(np, "nvidia,dma-request-selector",
1018                                 of_dma, 2) >= 0)
1019                 tspi->dma_req_sel = of_dma[1];
1020
1021         if (of_property_read_u32(np, "spi-max-frequency",
1022                                 &tspi->spi_max_frequency))
1023                 tspi->spi_max_frequency = 25000000; /* 25MHz */
1024 }
1025
1026 static struct of_device_id tegra_spi_of_match[] = {
1027         { .compatible = "nvidia,tegra114-spi", },
1028         {}
1029 };
1030 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1031
1032 static int tegra_spi_probe(struct platform_device *pdev)
1033 {
1034         struct spi_master       *master;
1035         struct tegra_spi_data   *tspi;
1036         struct resource         *r;
1037         int ret, spi_irq;
1038
1039         master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1040         if (!master) {
1041                 dev_err(&pdev->dev, "master allocation failed\n");
1042                 return -ENOMEM;
1043         }
1044         platform_set_drvdata(pdev, master);
1045         tspi = spi_master_get_devdata(master);
1046
1047         /* Parse DT */
1048         tegra_spi_parse_dt(pdev, tspi);
1049
1050         /* the spi->mode bits understood by this driver: */
1051         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1052         master->setup = tegra_spi_setup;
1053         master->transfer_one_message = tegra_spi_transfer_one_message;
1054         master->num_chipselect = MAX_CHIP_SELECT;
1055         master->bus_num = -1;
1056
1057         tspi->master = master;
1058         tspi->dev = &pdev->dev;
1059         spin_lock_init(&tspi->lock);
1060
1061         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1062         if (!r) {
1063                 dev_err(&pdev->dev, "No IO memory resource\n");
1064                 ret = -ENODEV;
1065                 goto exit_free_master;
1066         }
1067         tspi->phys = r->start;
1068         tspi->base = devm_ioremap_resource(&pdev->dev, r);
1069         if (IS_ERR(tspi->base)) {
1070                 ret = PTR_ERR(tspi->base);
1071                 dev_err(&pdev->dev, "ioremap failed: err = %d\n", ret);
1072                 goto exit_free_master;
1073         }
1074
1075         spi_irq = platform_get_irq(pdev, 0);
1076         tspi->irq = spi_irq;
1077         ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1078                         tegra_spi_isr_thread, IRQF_ONESHOT,
1079                         dev_name(&pdev->dev), tspi);
1080         if (ret < 0) {
1081                 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1082                                         tspi->irq);
1083                 goto exit_free_master;
1084         }
1085
1086         tspi->clk = devm_clk_get(&pdev->dev, "spi");
1087         if (IS_ERR(tspi->clk)) {
1088                 dev_err(&pdev->dev, "can not get clock\n");
1089                 ret = PTR_ERR(tspi->clk);
1090                 goto exit_free_irq;
1091         }
1092
1093         tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1094         tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1095
1096         if (tspi->dma_req_sel) {
1097                 ret = tegra_spi_init_dma_param(tspi, true);
1098                 if (ret < 0) {
1099                         dev_err(&pdev->dev, "RxDma Init failed, err %d\n", ret);
1100                         goto exit_free_irq;
1101                 }
1102
1103                 ret = tegra_spi_init_dma_param(tspi, false);
1104                 if (ret < 0) {
1105                         dev_err(&pdev->dev, "TxDma Init failed, err %d\n", ret);
1106                         goto exit_rx_dma_free;
1107                 }
1108                 tspi->max_buf_size = tspi->dma_buf_size;
1109                 init_completion(&tspi->tx_dma_complete);
1110                 init_completion(&tspi->rx_dma_complete);
1111         }
1112
1113         init_completion(&tspi->xfer_completion);
1114
1115         pm_runtime_enable(&pdev->dev);
1116         if (!pm_runtime_enabled(&pdev->dev)) {
1117                 ret = tegra_spi_runtime_resume(&pdev->dev);
1118                 if (ret)
1119                         goto exit_pm_disable;
1120         }
1121
1122         ret = pm_runtime_get_sync(&pdev->dev);
1123         if (ret < 0) {
1124                 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1125                 goto exit_pm_disable;
1126         }
1127         tspi->def_command1_reg  = SPI_M_S;
1128         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1129         pm_runtime_put(&pdev->dev);
1130
1131         master->dev.of_node = pdev->dev.of_node;
1132         ret = spi_register_master(master);
1133         if (ret < 0) {
1134                 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1135                 goto exit_pm_disable;
1136         }
1137         return ret;
1138
1139 exit_pm_disable:
1140         pm_runtime_disable(&pdev->dev);
1141         if (!pm_runtime_status_suspended(&pdev->dev))
1142                 tegra_spi_runtime_suspend(&pdev->dev);
1143         tegra_spi_deinit_dma_param(tspi, false);
1144 exit_rx_dma_free:
1145         tegra_spi_deinit_dma_param(tspi, true);
1146 exit_free_irq:
1147         free_irq(spi_irq, tspi);
1148 exit_free_master:
1149         spi_master_put(master);
1150         return ret;
1151 }
1152
1153 static int tegra_spi_remove(struct platform_device *pdev)
1154 {
1155         struct spi_master *master = platform_get_drvdata(pdev);
1156         struct tegra_spi_data   *tspi = spi_master_get_devdata(master);
1157
1158         free_irq(tspi->irq, tspi);
1159         spi_unregister_master(master);
1160
1161         if (tspi->tx_dma_chan)
1162                 tegra_spi_deinit_dma_param(tspi, false);
1163
1164         if (tspi->rx_dma_chan)
1165                 tegra_spi_deinit_dma_param(tspi, true);
1166
1167         pm_runtime_disable(&pdev->dev);
1168         if (!pm_runtime_status_suspended(&pdev->dev))
1169                 tegra_spi_runtime_suspend(&pdev->dev);
1170
1171         return 0;
1172 }
1173
1174 #ifdef CONFIG_PM_SLEEP
1175 static int tegra_spi_suspend(struct device *dev)
1176 {
1177         struct spi_master *master = dev_get_drvdata(dev);
1178
1179         return spi_master_suspend(master);
1180 }
1181
1182 static int tegra_spi_resume(struct device *dev)
1183 {
1184         struct spi_master *master = dev_get_drvdata(dev);
1185         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1186         int ret;
1187
1188         ret = pm_runtime_get_sync(dev);
1189         if (ret < 0) {
1190                 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1191                 return ret;
1192         }
1193         tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1194         pm_runtime_put(dev);
1195
1196         return spi_master_resume(master);
1197 }
1198 #endif
1199
1200 static int tegra_spi_runtime_suspend(struct device *dev)
1201 {
1202         struct spi_master *master = dev_get_drvdata(dev);
1203         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1204
1205         /* Flush all write which are in PPSB queue by reading back */
1206         tegra_spi_readl(tspi, SPI_COMMAND1);
1207
1208         clk_disable_unprepare(tspi->clk);
1209         return 0;
1210 }
1211
1212 static int tegra_spi_runtime_resume(struct device *dev)
1213 {
1214         struct spi_master *master = dev_get_drvdata(dev);
1215         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1216         int ret;
1217
1218         ret = clk_prepare_enable(tspi->clk);
1219         if (ret < 0) {
1220                 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1221                 return ret;
1222         }
1223         return 0;
1224 }
1225
1226 static const struct dev_pm_ops tegra_spi_pm_ops = {
1227         SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1228                 tegra_spi_runtime_resume, NULL)
1229         SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1230 };
1231 static struct platform_driver tegra_spi_driver = {
1232         .driver = {
1233                 .name           = "spi-tegra114",
1234                 .owner          = THIS_MODULE,
1235                 .pm             = &tegra_spi_pm_ops,
1236                 .of_match_table = tegra_spi_of_match,
1237         },
1238         .probe =        tegra_spi_probe,
1239         .remove =       tegra_spi_remove,
1240 };
1241 module_platform_driver(tegra_spi_driver);
1242
1243 MODULE_ALIAS("platform:spi-tegra114");
1244 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1245 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1246 MODULE_LICENSE("GPL v2");