Merge remote-tracking branch 'upstream' into next
[cascardo/linux.git] / drivers / staging / et131x / et131x.c
1 /*
2  * Agere Systems Inc.
3  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4  *
5  * Copyright © 2005 Agere Systems Inc.
6  * All rights reserved.
7  *   http://www.agere.com
8  *
9  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10  *
11  *------------------------------------------------------------------------------
12  *
13  * SOFTWARE LICENSE
14  *
15  * This software is provided subject to the following terms and conditions,
16  * which you should read carefully before using the software.  Using this
17  * software indicates your acceptance of these terms and conditions.  If you do
18  * not agree with these terms and conditions, do not use the software.
19  *
20  * Copyright © 2005 Agere Systems Inc.
21  * All rights reserved.
22  *
23  * Redistribution and use in source or binary forms, with or without
24  * modifications, are permitted provided that the following conditions are met:
25  *
26  * . Redistributions of source code must retain the above copyright notice, this
27  *    list of conditions and the following Disclaimer as comments in the code as
28  *    well as in the documentation and/or other materials provided with the
29  *    distribution.
30  *
31  * . Redistributions in binary form must reproduce the above copyright notice,
32  *    this list of conditions and the following Disclaimer in the documentation
33  *    and/or other materials provided with the distribution.
34  *
35  * . Neither the name of Agere Systems Inc. nor the names of the contributors
36  *    may be used to endorse or promote products derived from this software
37  *    without specific prior written permission.
38  *
39  * Disclaimer
40  *
41  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
44  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52  * DAMAGE.
53  *
54  */
55
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57
58 #include <linux/pci.h>
59 #include <linux/init.h>
60 #include <linux/module.h>
61 #include <linux/types.h>
62 #include <linux/kernel.h>
63
64 #include <linux/sched.h>
65 #include <linux/ptrace.h>
66 #include <linux/slab.h>
67 #include <linux/ctype.h>
68 #include <linux/string.h>
69 #include <linux/timer.h>
70 #include <linux/interrupt.h>
71 #include <linux/in.h>
72 #include <linux/delay.h>
73 #include <linux/bitops.h>
74 #include <linux/io.h>
75
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_arp.h>
80 #include <linux/ioport.h>
81 #include <linux/crc32.h>
82 #include <linux/random.h>
83 #include <linux/phy.h>
84
85 #include "et131x.h"
86
87 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
88 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
89 MODULE_LICENSE("Dual BSD/GPL");
90 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
91
92 /* EEPROM defines */
93 #define MAX_NUM_REGISTER_POLLS          1000
94 #define MAX_NUM_WRITE_RETRIES           2
95
96 /* MAC defines */
97 #define COUNTER_WRAP_16_BIT 0x10000
98 #define COUNTER_WRAP_12_BIT 0x1000
99
100 /* PCI defines */
101 #define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
102 #define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
103
104 /* ISR defines */
105 /*
106  * For interrupts, normal running is:
107  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
108  *       watchdog_interrupt & txdma_xfer_done
109  *
110  * In both cases, when flow control is enabled for either Tx or bi-direction,
111  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
112  * buffer rings are running low.
113  */
114 #define INT_MASK_DISABLE            0xffffffff
115
116 /* NOTE: Masking out MAC_STAT Interrupt for now...
117  * #define INT_MASK_ENABLE             0xfff6bf17
118  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
119  */
120 #define INT_MASK_ENABLE             0xfffebf17
121 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
122
123 /* General defines */
124 /* Packet and header sizes */
125 #define NIC_MIN_PACKET_SIZE     60
126
127 /* Multicast list size */
128 #define NIC_MAX_MCAST_LIST      128
129
130 /* Supported Filters */
131 #define ET131X_PACKET_TYPE_DIRECTED             0x0001
132 #define ET131X_PACKET_TYPE_MULTICAST            0x0002
133 #define ET131X_PACKET_TYPE_BROADCAST            0x0004
134 #define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
135 #define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
136
137 /* Tx Timeout */
138 #define ET131X_TX_TIMEOUT       (1 * HZ)
139 #define NIC_SEND_HANG_THRESHOLD 0
140
141 /* MP_TCB flags */
142 #define fMP_DEST_MULTI                  0x00000001
143 #define fMP_DEST_BROAD                  0x00000002
144
145 /* MP_ADAPTER flags */
146 #define fMP_ADAPTER_RECV_LOOKASIDE      0x00000004
147 #define fMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
148
149 /* MP_SHARED flags */
150 #define fMP_ADAPTER_LOWER_POWER         0x00200000
151
152 #define fMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
153 #define fMP_ADAPTER_HARDWARE_ERROR      0x04000000
154
155 #define fMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
156
157 /* Some offsets in PCI config space that are actually used. */
158 #define ET1310_PCI_MAC_ADDRESS          0xA4
159 #define ET1310_PCI_EEPROM_STATUS        0xB2
160 #define ET1310_PCI_ACK_NACK             0xC0
161 #define ET1310_PCI_REPLAY               0xC2
162 #define ET1310_PCI_L0L1LATENCY          0xCF
163
164 /* PCI Product IDs */
165 #define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
166 #define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
167
168 /* Define order of magnitude converter */
169 #define NANO_IN_A_MICRO 1000
170
171 #define PARM_RX_NUM_BUFS_DEF    4
172 #define PARM_RX_TIME_INT_DEF    10
173 #define PARM_RX_MEM_END_DEF     0x2bc
174 #define PARM_TX_TIME_INT_DEF    40
175 #define PARM_TX_NUM_BUFS_DEF    4
176 #define PARM_DMA_CACHE_DEF      0
177
178 /* RX defines */
179 #define USE_FBR0 1
180 #define FBR_CHUNKS 32
181 #define MAX_DESC_PER_RING_RX         1024
182
183 /* number of RFDs - default and min */
184 #ifdef USE_FBR0
185 #define RFD_LOW_WATER_MARK      40
186 #define NIC_DEFAULT_NUM_RFD     1024
187 #define NUM_FBRS                2
188 #else
189 #define RFD_LOW_WATER_MARK      20
190 #define NIC_DEFAULT_NUM_RFD     256
191 #define NUM_FBRS                1
192 #endif
193
194 #define NIC_MIN_NUM_RFD         64
195 #define NUM_PACKETS_HANDLED     256
196
197 #define ALCATEL_MULTICAST_PKT   0x01000000
198 #define ALCATEL_BROADCAST_PKT   0x02000000
199
200 /* typedefs for Free Buffer Descriptors */
201 struct fbr_desc {
202         u32 addr_lo;
203         u32 addr_hi;
204         u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
205 };
206
207 /* Packet Status Ring Descriptors
208  *
209  * Word 0:
210  *
211  * top 16 bits are from the Alcatel Status Word as enumerated in
212  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
213  *
214  * 0: hp                        hash pass
215  * 1: ipa                       IP checksum assist
216  * 2: ipp                       IP checksum pass
217  * 3: tcpa                      TCP checksum assist
218  * 4: tcpp                      TCP checksum pass
219  * 5: wol                       WOL Event
220  * 6: rxmac_error               RXMAC Error Indicator
221  * 7: drop                      Drop packet
222  * 8: ft                        Frame Truncated
223  * 9: jp                        Jumbo Packet
224  * 10: vp                       VLAN Packet
225  * 11-15: unused
226  * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
227  * 17: asw_RX_DV_event          short receive event detected
228  * 18: asw_false_carrier_event  bad carrier since last good packet
229  * 19: asw_code_err             one or more nibbles signalled as errors
230  * 20: asw_CRC_err              CRC error
231  * 21: asw_len_chk_err          frame length field incorrect
232  * 22: asw_too_long             frame length > 1518 bytes
233  * 23: asw_OK                   valid CRC + no code error
234  * 24: asw_multicast            has a multicast address
235  * 25: asw_broadcast            has a broadcast address
236  * 26: asw_dribble_nibble       spurious bits after EOP
237  * 27: asw_control_frame        is a control frame
238  * 28: asw_pause_frame          is a pause frame
239  * 29: asw_unsupported_op       unsupported OP code
240  * 30: asw_VLAN_tag             VLAN tag detected
241  * 31: asw_long_evt             Rx long event
242  *
243  * Word 1:
244  * 0-15: length                 length in bytes
245  * 16-25: bi                    Buffer Index
246  * 26-27: ri                    Ring Index
247  * 28-31: reserved
248  */
249
250 struct pkt_stat_desc {
251         u32 word0;
252         u32 word1;
253 };
254
255 /* Typedefs for the RX DMA status word */
256
257 /*
258  * rx status word 0 holds part of the status bits of the Rx DMA engine
259  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
260  * which contains the Free Buffer ring 0 and 1 available offset.
261  *
262  * bit 0-9 FBR1 offset
263  * bit 10 Wrap flag for FBR1
264  * bit 16-25 FBR0 offset
265  * bit 26 Wrap flag for FBR0
266  */
267
268 /*
269  * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
270  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
271  * which contains the Packet Status Ring available offset.
272  *
273  * bit 0-15 reserved
274  * bit 16-27 PSRoffset
275  * bit 28 PSRwrap
276  * bit 29-31 unused
277  */
278
279 /*
280  * struct rx_status_block is a structure representing the status of the Rx
281  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
282  */
283 struct rx_status_block {
284         u32 word0;
285         u32 word1;
286 };
287
288 /*
289  * Structure for look-up table holding free buffer ring pointers, addresses
290  * and state.
291  */
292 struct fbr_lookup {
293         void            *virt[MAX_DESC_PER_RING_RX];
294         void            *buffer1[MAX_DESC_PER_RING_RX];
295         void            *buffer2[MAX_DESC_PER_RING_RX];
296         u32              bus_high[MAX_DESC_PER_RING_RX];
297         u32              bus_low[MAX_DESC_PER_RING_RX];
298         void            *ring_virtaddr;
299         dma_addr_t       ring_physaddr;
300         void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
301         dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
302         u64              real_physaddr;
303         u64              offset;
304         u32              local_full;
305         u32              num_entries;
306         u32              buffsize;
307 };
308
309 /*
310  * struct rx_ring is the sructure representing the adaptor's local
311  * reference(s) to the rings
312  *
313  ******************************************************************************
314  * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
315  *                      and index 1 to refer to FRB0
316  ******************************************************************************
317  */
318 struct rx_ring {
319         struct fbr_lookup *fbr[NUM_FBRS];
320         void *ps_ring_virtaddr;
321         dma_addr_t ps_ring_physaddr;
322         u32 local_psr_full;
323         u32 psr_num_entries;
324
325         struct rx_status_block *rx_status_block;
326         dma_addr_t rx_status_bus;
327
328         /* RECV */
329         struct list_head recv_list;
330         u32 num_ready_recv;
331
332         u32 num_rfd;
333
334         bool unfinished_receives;
335
336         /* lookaside lists */
337         struct kmem_cache *recv_lookaside;
338 };
339
340 /* TX defines */
341 /*
342  * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
343  *
344  * 0-15: length of packet
345  * 16-27: VLAN tag
346  * 28: VLAN CFI
347  * 29-31: VLAN priority
348  *
349  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
350  *
351  * 0: last packet in the sequence
352  * 1: first packet in the sequence
353  * 2: interrupt the processor when this pkt sent
354  * 3: Control word - no packet data
355  * 4: Issue half-duplex backpressure : XON/XOFF
356  * 5: send pause frame
357  * 6: Tx frame has error
358  * 7: append CRC
359  * 8: MAC override
360  * 9: pad packet
361  * 10: Packet is a Huge packet
362  * 11: append VLAN tag
363  * 12: IP checksum assist
364  * 13: TCP checksum assist
365  * 14: UDP checksum assist
366  */
367
368 /* struct tx_desc represents each descriptor on the ring */
369 struct tx_desc {
370         u32 addr_hi;
371         u32 addr_lo;
372         u32 len_vlan;   /* control words how to xmit the */
373         u32 flags;      /* data (detailed above) */
374 };
375
376 /*
377  * The status of the Tx DMA engine it sits in free memory, and is pointed to
378  * by 0x101c / 0x1020. This is a DMA10 type
379  */
380
381 /* TCB (Transmit Control Block: Host Side) */
382 struct tcb {
383         struct tcb *next;       /* Next entry in ring */
384         u32 flags;              /* Our flags for the packet */
385         u32 count;              /* Used to spot stuck/lost packets */
386         u32 stale;              /* Used to spot stuck/lost packets */
387         struct sk_buff *skb;    /* Network skb we are tied to */
388         u32 index;              /* Ring indexes */
389         u32 index_start;
390 };
391
392 /* Structure representing our local reference(s) to the ring */
393 struct tx_ring {
394         /* TCB (Transmit Control Block) memory and lists */
395         struct tcb *tcb_ring;
396
397         /* List of TCBs that are ready to be used */
398         struct tcb *tcb_qhead;
399         struct tcb *tcb_qtail;
400
401         /* list of TCBs that are currently being sent.  NOTE that access to all
402          * three of these (including used) are controlled via the
403          * TCBSendQLock.  This lock should be secured prior to incementing /
404          * decrementing used, or any queue manipulation on send_head /
405          * tail
406          */
407         struct tcb *send_head;
408         struct tcb *send_tail;
409         int used;
410
411         /* The actual descriptor ring */
412         struct tx_desc *tx_desc_ring;
413         dma_addr_t tx_desc_ring_pa;
414
415         /* send_idx indicates where we last wrote to in the descriptor ring. */
416         u32 send_idx;
417
418         /* The location of the write-back status block */
419         u32 *tx_status;
420         dma_addr_t tx_status_pa;
421
422         /* Packets since the last IRQ: used for interrupt coalescing */
423         int since_irq;
424 };
425
426 /*
427  * Do not change these values: if changed, then change also in respective
428  * TXdma and Rxdma engines
429  */
430 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
431 #define NUM_TCB                      64
432
433 /*
434  * These values are all superseded by registry entries to facilitate tuning.
435  * Once the desired performance has been achieved, the optimal registry values
436  * should be re-populated to these #defines:
437  */
438 #define TX_ERROR_PERIOD             1000
439
440 #define LO_MARK_PERCENT_FOR_PSR     15
441 #define LO_MARK_PERCENT_FOR_RX      15
442
443 /* RFD (Receive Frame Descriptor) */
444 struct rfd {
445         struct list_head list_node;
446         struct sk_buff *skb;
447         u32 len;        /* total size of receive frame */
448         u16 bufferindex;
449         u8 ringindex;
450 };
451
452 /* Flow Control */
453 #define FLOW_BOTH       0
454 #define FLOW_TXONLY     1
455 #define FLOW_RXONLY     2
456 #define FLOW_NONE       3
457
458 /* Struct to define some device statistics */
459 struct ce_stats {
460         /* MIB II variables
461          *
462          * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
463          * MUST have 32, then we'll need another way to perform atomic
464          * operations
465          */
466         u32             unicast_pkts_rcvd;
467         atomic_t        unicast_pkts_xmtd;
468         u32             multicast_pkts_rcvd;
469         atomic_t        multicast_pkts_xmtd;
470         u32             broadcast_pkts_rcvd;
471         atomic_t        broadcast_pkts_xmtd;
472         u32             rcvd_pkts_dropped;
473
474         /* Tx Statistics. */
475         u32             tx_underflows;
476
477         u32             tx_collisions;
478         u32             tx_excessive_collisions;
479         u32             tx_first_collisions;
480         u32             tx_late_collisions;
481         u32             tx_max_pkt_errs;
482         u32             tx_deferred;
483
484         /* Rx Statistics. */
485         u32             rx_overflows;
486
487         u32             rx_length_errs;
488         u32             rx_align_errs;
489         u32             rx_crc_errs;
490         u32             rx_code_violations;
491         u32             rx_other_errs;
492
493         u32             synchronous_iterations;
494         u32             interrupt_status;
495 };
496
497 /* The private adapter structure */
498 struct et131x_adapter {
499         struct net_device *netdev;
500         struct pci_dev *pdev;
501         struct mii_bus *mii_bus;
502         struct phy_device *phydev;
503         struct work_struct task;
504
505         /* Flags that indicate current state of the adapter */
506         u32 flags;
507
508         /* local link state, to determine if a state change has occurred */
509         int link;
510
511         /* Configuration  */
512         u8 rom_addr[ETH_ALEN];
513         u8 addr[ETH_ALEN];
514         bool has_eeprom;
515         u8 eeprom_data[2];
516
517         /* Spinlocks */
518         spinlock_t lock;
519
520         spinlock_t tcb_send_qlock;
521         spinlock_t tcb_ready_qlock;
522         spinlock_t send_hw_lock;
523
524         spinlock_t rcv_lock;
525         spinlock_t rcv_pend_lock;
526         spinlock_t fbr_lock;
527
528         spinlock_t phy_lock;
529
530         /* Packet Filter and look ahead size */
531         u32 packet_filter;
532
533         /* multicast list */
534         u32 multicast_addr_count;
535         u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
536
537         /* Pointer to the device's PCI register space */
538         struct address_map __iomem *regs;
539
540         /* Registry parameters */
541         u8 wanted_flow;         /* Flow we want for 802.3x flow control */
542         u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
543
544         /* Derived from the registry: */
545         u8 flowcontrol;         /* flow control validated by the far-end */
546
547         /* Minimize init-time */
548         struct timer_list error_timer;
549
550         /* variable putting the phy into coma mode when boot up with no cable
551          * plugged in after 5 seconds
552          */
553         u8 boot_coma;
554
555         /* Next two used to save power information at power down. This
556          * information will be used during power up to set up parts of Power
557          * Management in JAGCore
558          */
559         u16 pdown_speed;
560         u8 pdown_duplex;
561
562         /* Tx Memory Variables */
563         struct tx_ring tx_ring;
564
565         /* Rx Memory Variables */
566         struct rx_ring rx_ring;
567
568         /* Stats */
569         struct ce_stats stats;
570
571         struct net_device_stats net_stats;
572 };
573
574 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
575 {
576         u32 reg;
577         int i;
578
579         /*
580          * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
581          *    bits 7,1:0 both equal to 1, at least once after reset.
582          *    Subsequent operations need only to check that bits 1:0 are equal
583          *    to 1 prior to starting a single byte read/write
584          */
585
586         for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
587                 /* Read registers grouped in DWORD1 */
588                 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
589                         return -EIO;
590
591                 /* I2C idle and Phy Queue Avail both true */
592                 if ((reg & 0x3000) == 0x3000) {
593                         if (status)
594                                 *status = reg;
595                         return reg & 0xFF;
596                 }
597         }
598         return -ETIMEDOUT;
599 }
600
601
602 /**
603  * eeprom_write - Write a byte to the ET1310's EEPROM
604  * @adapter: pointer to our private adapter structure
605  * @addr: the address to write
606  * @data: the value to write
607  *
608  * Returns 1 for a successful write.
609  */
610 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
611 {
612         struct pci_dev *pdev = adapter->pdev;
613         int index = 0;
614         int retries;
615         int err = 0;
616         int i2c_wack = 0;
617         int writeok = 0;
618         u32 status;
619         u32 val = 0;
620
621         /*
622          * For an EEPROM, an I2C single byte write is defined as a START
623          * condition followed by the device address, EEPROM address, one byte
624          * of data and a STOP condition.  The STOP condition will trigger the
625          * EEPROM's internally timed write cycle to the nonvolatile memory.
626          * All inputs are disabled during this write cycle and the EEPROM will
627          * not respond to any access until the internal write is complete.
628          */
629
630         err = eeprom_wait_ready(pdev, NULL);
631         if (err)
632                 return err;
633
634          /*
635          * 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
636          *    and bits 1:0 both =0.  Bit 5 should be set according to the
637          *    type of EEPROM being accessed (1=two byte addressing, 0=one
638          *    byte addressing).
639          */
640         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
641                         LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
642                 return -EIO;
643
644         i2c_wack = 1;
645
646         /* Prepare EEPROM address for Step 3 */
647
648         for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
649                 /* Write the address to the LBCIF Address Register */
650                 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
651                         break;
652                 /*
653                  * Write the data to the LBCIF Data Register (the I2C write
654                  * will begin).
655                  */
656                 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
657                         break;
658                 /*
659                  * Monitor bit 1:0 of the LBCIF Status Register.  When bits
660                  * 1:0 are both equal to 1, the I2C write has completed and the
661                  * internal write cycle of the EEPROM is about to start.
662                  * (bits 1:0 = 01 is a legal state while waiting from both
663                  * equal to 1, but bits 1:0 = 10 is invalid and implies that
664                  * something is broken).
665                  */
666                 err = eeprom_wait_ready(pdev, &status);
667                 if (err < 0)
668                         return 0;
669
670                 /*
671                  * Check bit 3 of the LBCIF Status Register.  If  equal to 1,
672                  * an error has occurred.Don't break here if we are revision
673                  * 1, this is so we do a blind write for load bug.
674                  */
675                 if ((status & LBCIF_STATUS_GENERAL_ERROR)
676                         && adapter->pdev->revision == 0)
677                         break;
678
679                 /*
680                  * Check bit 2 of the LBCIF Status Register.  If equal to 1 an
681                  * ACK error has occurred on the address phase of the write.
682                  * This could be due to an actual hardware failure or the
683                  * EEPROM may still be in its internal write cycle from a
684                  * previous write. This write operation was ignored and must be
685                   *repeated later.
686                  */
687                 if (status & LBCIF_STATUS_ACK_ERROR) {
688                         /*
689                          * This could be due to an actual hardware failure
690                          * or the EEPROM may still be in its internal write
691                          * cycle from a previous write. This write operation
692                          * was ignored and must be repeated later.
693                          */
694                         udelay(10);
695                         continue;
696                 }
697
698                 writeok = 1;
699                 break;
700         }
701
702         /*
703          * Set bit 6 of the LBCIF Control Register = 0.
704          */
705         udelay(10);
706
707         while (i2c_wack) {
708                 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
709                         LBCIF_CONTROL_LBCIF_ENABLE))
710                         writeok = 0;
711
712                 /* Do read until internal ACK_ERROR goes away meaning write
713                  * completed
714                  */
715                 do {
716                         pci_write_config_dword(pdev,
717                                                LBCIF_ADDRESS_REGISTER,
718                                                addr);
719                         do {
720                                 pci_read_config_dword(pdev,
721                                         LBCIF_DATA_REGISTER, &val);
722                         } while ((val & 0x00010000) == 0);
723                 } while (val & 0x00040000);
724
725                 if ((val & 0xFF00) != 0xC000 || index == 10000)
726                         break;
727                 index++;
728         }
729         return writeok ? 0 : -EIO;
730 }
731
732 /**
733  * eeprom_read - Read a byte from the ET1310's EEPROM
734  * @adapter: pointer to our private adapter structure
735  * @addr: the address from which to read
736  * @pdata: a pointer to a byte in which to store the value of the read
737  * @eeprom_id: the ID of the EEPROM
738  * @addrmode: how the EEPROM is to be accessed
739  *
740  * Returns 1 for a successful read
741  */
742 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
743 {
744         struct pci_dev *pdev = adapter->pdev;
745         int err;
746         u32 status;
747
748         /*
749          * A single byte read is similar to the single byte write, with the
750          * exception of the data flow:
751          */
752
753         err = eeprom_wait_ready(pdev, NULL);
754         if (err)
755                 return err;
756         /*
757          * Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
758          * and bits 1:0 both =0.  Bit 5 should be set according to the type
759          * of EEPROM being accessed (1=two byte addressing, 0=one byte
760          * addressing).
761          */
762         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
763                                   LBCIF_CONTROL_LBCIF_ENABLE))
764                 return -EIO;
765         /*
766          * Write the address to the LBCIF Address Register (I2C read will
767          * begin).
768          */
769         if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
770                 return -EIO;
771         /*
772          * Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
773          * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
774          * has occurred).
775          */
776         err = eeprom_wait_ready(pdev, &status);
777         if (err < 0)
778                 return err;
779         /*
780          * Regardless of error status, read data byte from LBCIF Data
781          * Register.
782          */
783         *pdata = err;
784         /*
785          * Check bit 2 of the LBCIF Status Register.  If = 1,
786          * then an error has occurred.
787          */
788         return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
789 }
790
791 static int et131x_init_eeprom(struct et131x_adapter *adapter)
792 {
793         struct pci_dev *pdev = adapter->pdev;
794         u8 eestatus;
795
796         /* We first need to check the EEPROM Status code located at offset
797          * 0xB2 of config space
798          */
799         pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
800                                       &eestatus);
801
802         /* THIS IS A WORKAROUND:
803          * I need to call this function twice to get my card in a
804          * LG M1 Express Dual running. I tried also a msleep before this
805          * function, because I thought there could be some time condidions
806          * but it didn't work. Call the whole function twice also work.
807          */
808         if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
809                 dev_err(&pdev->dev,
810                        "Could not read PCI config space for EEPROM Status\n");
811                 return -EIO;
812         }
813
814         /* Determine if the error(s) we care about are present. If they are
815          * present we need to fail.
816          */
817         if (eestatus & 0x4C) {
818                 int write_failed = 0;
819                 if (pdev->revision == 0x01) {
820                         int     i;
821                         static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
822
823                         /* Re-write the first 4 bytes if we have an eeprom
824                          * present and the revision id is 1, this fixes the
825                          * corruption seen with 1310 B Silicon
826                          */
827                         for (i = 0; i < 3; i++)
828                                 if (eeprom_write(adapter, i, eedata[i]) < 0)
829                                         write_failed = 1;
830                 }
831                 if (pdev->revision  != 0x01 || write_failed) {
832                         dev_err(&pdev->dev,
833                             "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
834
835                         /* This error could mean that there was an error
836                          * reading the eeprom or that the eeprom doesn't exist.
837                          * We will treat each case the same and not try to
838                          * gather additional information that normally would
839                          * come from the eeprom, like MAC Address
840                          */
841                         adapter->has_eeprom = 0;
842                         return -EIO;
843                 }
844         }
845         adapter->has_eeprom = 1;
846
847         /* Read the EEPROM for information regarding LED behavior. Refer to
848          * ET1310_phy.c, et131x_xcvr_init(), for its use.
849          */
850         eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
851         eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
852
853         if (adapter->eeprom_data[0] != 0xcd)
854                 /* Disable all optional features */
855                 adapter->eeprom_data[1] = 0x00;
856
857         return 0;
858 }
859
860 /**
861  * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
862  * @adapter: pointer to our adapter structure
863  */
864 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
865 {
866         /* Setup the receive dma configuration register for normal operation */
867         u32 csr =  0x2000;      /* FBR1 enable */
868
869         if (adapter->rx_ring.fbr[0]->buffsize == 4096)
870                 csr |= 0x0800;
871         else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
872                 csr |= 0x1000;
873         else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
874                 csr |= 0x1800;
875 #ifdef USE_FBR0
876         csr |= 0x0400;          /* FBR0 enable */
877         if (adapter->rx_ring.fbr[1]->buffsize == 256)
878                 csr |= 0x0100;
879         else if (adapter->rx_ring.fbr[1]->buffsize == 512)
880                 csr |= 0x0200;
881         else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
882                 csr |= 0x0300;
883 #endif
884         writel(csr, &adapter->regs->rxdma.csr);
885
886         csr = readl(&adapter->regs->rxdma.csr);
887         if ((csr & 0x00020000) != 0) {
888                 udelay(5);
889                 csr = readl(&adapter->regs->rxdma.csr);
890                 if ((csr & 0x00020000) != 0) {
891                         dev_err(&adapter->pdev->dev,
892                             "RX Dma failed to exit halt state.  CSR 0x%08x\n",
893                                 csr);
894                 }
895         }
896 }
897
898 /**
899  * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
900  * @adapter: pointer to our adapter structure
901  */
902 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
903 {
904         u32 csr;
905         /* Setup the receive dma configuration register */
906         writel(0x00002001, &adapter->regs->rxdma.csr);
907         csr = readl(&adapter->regs->rxdma.csr);
908         if ((csr & 0x00020000) == 0) {  /* Check halt status (bit 17) */
909                 udelay(5);
910                 csr = readl(&adapter->regs->rxdma.csr);
911                 if ((csr & 0x00020000) == 0)
912                         dev_err(&adapter->pdev->dev,
913                         "RX Dma failed to enter halt state. CSR 0x%08x\n",
914                                 csr);
915         }
916 }
917
918 /**
919  * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
920  * @adapter: pointer to our adapter structure
921  *
922  * Mainly used after a return to the D0 (full-power) state from a lower state.
923  */
924 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
925 {
926         /* Setup the transmit dma configuration register for normal
927          * operation
928          */
929         writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
930                                         &adapter->regs->txdma.csr);
931 }
932
933 static inline void add_10bit(u32 *v, int n)
934 {
935         *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
936 }
937
938 static inline void add_12bit(u32 *v, int n)
939 {
940         *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
941 }
942
943 /**
944  * et1310_config_mac_regs1 - Initialize the first part of MAC regs
945  * @adapter: pointer to our adapter structure
946  */
947 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
948 {
949         struct mac_regs __iomem *macregs = &adapter->regs->mac;
950         u32 station1;
951         u32 station2;
952         u32 ipg;
953
954         /* First we need to reset everything.  Write to MAC configuration
955          * register 1 to perform reset.
956          */
957         writel(0xC00F0000, &macregs->cfg1);
958
959         /* Next lets configure the MAC Inter-packet gap register */
960         ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
961         ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
962         writel(ipg, &macregs->ipg);
963
964         /* Next lets configure the MAC Half Duplex register */
965         /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
966         writel(0x00A1F037, &macregs->hfdp);
967
968         /* Next lets configure the MAC Interface Control register */
969         writel(0, &macregs->if_ctrl);
970
971         /* Let's move on to setting up the mii management configuration */
972         writel(0x07, &macregs->mii_mgmt_cfg);   /* Clock reset 0x7 */
973
974         /* Next lets configure the MAC Station Address register.  These
975          * values are read from the EEPROM during initialization and stored
976          * in the adapter structure.  We write what is stored in the adapter
977          * structure to the MAC Station Address registers high and low.  This
978          * station address is used for generating and checking pause control
979          * packets.
980          */
981         station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
982                    (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
983         station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
984                    (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
985                    (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
986                     adapter->addr[2];
987         writel(station1, &macregs->station_addr_1);
988         writel(station2, &macregs->station_addr_2);
989
990         /* Max ethernet packet in bytes that will be passed by the mac without
991          * being truncated.  Allow the MAC to pass 4 more than our max packet
992          * size.  This is 4 for the Ethernet CRC.
993          *
994          * Packets larger than (registry_jumbo_packet) that do not contain a
995          * VLAN ID will be dropped by the Rx function.
996          */
997         writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
998
999         /* clear out MAC config reset */
1000         writel(0, &macregs->cfg1);
1001 }
1002
1003 /**
1004  * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1005  * @adapter: pointer to our adapter structure
1006  */
1007 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
1008 {
1009         int32_t delay = 0;
1010         struct mac_regs __iomem *mac = &adapter->regs->mac;
1011         struct phy_device *phydev = adapter->phydev;
1012         u32 cfg1;
1013         u32 cfg2;
1014         u32 ifctrl;
1015         u32 ctl;
1016
1017         ctl = readl(&adapter->regs->txmac.ctl);
1018         cfg1 = readl(&mac->cfg1);
1019         cfg2 = readl(&mac->cfg2);
1020         ifctrl = readl(&mac->if_ctrl);
1021
1022         /* Set up the if mode bits */
1023         cfg2 &= ~0x300;
1024         if (phydev && phydev->speed == SPEED_1000) {
1025                 cfg2 |= 0x200;
1026                 /* Phy mode bit */
1027                 ifctrl &= ~(1 << 24);
1028         } else {
1029                 cfg2 |= 0x100;
1030                 ifctrl |= (1 << 24);
1031         }
1032
1033         /* We need to enable Rx/Tx */
1034         cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1035         /* Initialize loop back to off */
1036         cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1037         if (adapter->flowcontrol == FLOW_RXONLY ||
1038                                 adapter->flowcontrol == FLOW_BOTH)
1039                 cfg1 |= CFG1_RX_FLOW;
1040         writel(cfg1, &mac->cfg1);
1041
1042         /* Now we need to initialize the MAC Configuration 2 register */
1043         /* preamble 7, check length, huge frame off, pad crc, crc enable
1044            full duplex off */
1045         cfg2 |= 0x7016;
1046         cfg2 &= ~0x0021;
1047
1048         /* Turn on duplex if needed */
1049         if (phydev && phydev->duplex == DUPLEX_FULL)
1050                 cfg2 |= 0x01;
1051
1052         ifctrl &= ~(1 << 26);
1053         if (phydev && phydev->duplex == DUPLEX_HALF)
1054                 ifctrl |= (1<<26);      /* Enable ghd */
1055
1056         writel(ifctrl, &mac->if_ctrl);
1057         writel(cfg2, &mac->cfg2);
1058
1059         do {
1060                 udelay(10);
1061                 delay++;
1062                 cfg1 = readl(&mac->cfg1);
1063         } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1064
1065         if (delay == 100) {
1066                 dev_warn(&adapter->pdev->dev,
1067                     "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1068                         cfg1);
1069         }
1070
1071         /* Enable txmac */
1072         ctl |= 0x09;    /* TX mac enable, FC disable */
1073         writel(ctl, &adapter->regs->txmac.ctl);
1074
1075         /* Ready to start the RXDMA/TXDMA engine */
1076         if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1077                 et131x_rx_dma_enable(adapter);
1078                 et131x_tx_dma_enable(adapter);
1079         }
1080 }
1081
1082 /**
1083  * et1310_in_phy_coma - check if the device is in phy coma
1084  * @adapter: pointer to our adapter structure
1085  *
1086  * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1087  */
1088 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1089 {
1090         u32 pmcsr;
1091
1092         pmcsr = readl(&adapter->regs->global.pm_csr);
1093
1094         return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1095 }
1096
1097 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1098 {
1099         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1100         u32 hash1 = 0;
1101         u32 hash2 = 0;
1102         u32 hash3 = 0;
1103         u32 hash4 = 0;
1104         u32 pm_csr;
1105
1106         /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1107          * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
1108          * specified) then we should pass NO multi-cast addresses to the
1109          * driver.
1110          */
1111         if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1112                 int i;
1113
1114                 /* Loop through our multicast array and set up the device */
1115                 for (i = 0; i < adapter->multicast_addr_count; i++) {
1116                         u32 result;
1117
1118                         result = ether_crc(6, adapter->multicast_list[i]);
1119
1120                         result = (result & 0x3F800000) >> 23;
1121
1122                         if (result < 32) {
1123                                 hash1 |= (1 << result);
1124                         } else if ((31 < result) && (result < 64)) {
1125                                 result -= 32;
1126                                 hash2 |= (1 << result);
1127                         } else if ((63 < result) && (result < 96)) {
1128                                 result -= 64;
1129                                 hash3 |= (1 << result);
1130                         } else {
1131                                 result -= 96;
1132                                 hash4 |= (1 << result);
1133                         }
1134                 }
1135         }
1136
1137         /* Write out the new hash to the device */
1138         pm_csr = readl(&adapter->regs->global.pm_csr);
1139         if (!et1310_in_phy_coma(adapter)) {
1140                 writel(hash1, &rxmac->multi_hash1);
1141                 writel(hash2, &rxmac->multi_hash2);
1142                 writel(hash3, &rxmac->multi_hash3);
1143                 writel(hash4, &rxmac->multi_hash4);
1144         }
1145 }
1146
1147 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1148 {
1149         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1150         u32 uni_pf1;
1151         u32 uni_pf2;
1152         u32 uni_pf3;
1153         u32 pm_csr;
1154
1155         /* Set up unicast packet filter reg 3 to be the first two octets of
1156          * the MAC address for both address
1157          *
1158          * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1159          * MAC address for second address
1160          *
1161          * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1162          * MAC address for first address
1163          */
1164         uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1165                   (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1166                   (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1167                    adapter->addr[1];
1168
1169         uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1170                   (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1171                   (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1172                    adapter->addr[5];
1173
1174         uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1175                   (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1176                   (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1177                    adapter->addr[5];
1178
1179         pm_csr = readl(&adapter->regs->global.pm_csr);
1180         if (!et1310_in_phy_coma(adapter)) {
1181                 writel(uni_pf1, &rxmac->uni_pf_addr1);
1182                 writel(uni_pf2, &rxmac->uni_pf_addr2);
1183                 writel(uni_pf3, &rxmac->uni_pf_addr3);
1184         }
1185 }
1186
1187 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1188 {
1189         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1190         struct phy_device *phydev = adapter->phydev;
1191         u32 sa_lo;
1192         u32 sa_hi = 0;
1193         u32 pf_ctrl = 0;
1194
1195         /* Disable the MAC while it is being configured (also disable WOL) */
1196         writel(0x8, &rxmac->ctrl);
1197
1198         /* Initialize WOL to disabled. */
1199         writel(0, &rxmac->crc0);
1200         writel(0, &rxmac->crc12);
1201         writel(0, &rxmac->crc34);
1202
1203         /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1204          * its default Values of 0x00000000 because there are not WOL masks
1205          * as of this time.
1206          */
1207         writel(0, &rxmac->mask0_word0);
1208         writel(0, &rxmac->mask0_word1);
1209         writel(0, &rxmac->mask0_word2);
1210         writel(0, &rxmac->mask0_word3);
1211
1212         writel(0, &rxmac->mask1_word0);
1213         writel(0, &rxmac->mask1_word1);
1214         writel(0, &rxmac->mask1_word2);
1215         writel(0, &rxmac->mask1_word3);
1216
1217         writel(0, &rxmac->mask2_word0);
1218         writel(0, &rxmac->mask2_word1);
1219         writel(0, &rxmac->mask2_word2);
1220         writel(0, &rxmac->mask2_word3);
1221
1222         writel(0, &rxmac->mask3_word0);
1223         writel(0, &rxmac->mask3_word1);
1224         writel(0, &rxmac->mask3_word2);
1225         writel(0, &rxmac->mask3_word3);
1226
1227         writel(0, &rxmac->mask4_word0);
1228         writel(0, &rxmac->mask4_word1);
1229         writel(0, &rxmac->mask4_word2);
1230         writel(0, &rxmac->mask4_word3);
1231
1232         /* Lets setup the WOL Source Address */
1233         sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1234                 (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1235                 (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1236                  adapter->addr[5];
1237         writel(sa_lo, &rxmac->sa_lo);
1238
1239         sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1240                        adapter->addr[1];
1241         writel(sa_hi, &rxmac->sa_hi);
1242
1243         /* Disable all Packet Filtering */
1244         writel(0, &rxmac->pf_ctrl);
1245
1246         /* Let's initialize the Unicast Packet filtering address */
1247         if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1248                 et1310_setup_device_for_unicast(adapter);
1249                 pf_ctrl |= 4;   /* Unicast filter */
1250         } else {
1251                 writel(0, &rxmac->uni_pf_addr1);
1252                 writel(0, &rxmac->uni_pf_addr2);
1253                 writel(0, &rxmac->uni_pf_addr3);
1254         }
1255
1256         /* Let's initialize the Multicast hash */
1257         if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1258                 pf_ctrl |= 2;   /* Multicast filter */
1259                 et1310_setup_device_for_multicast(adapter);
1260         }
1261
1262         /* Runt packet filtering.  Didn't work in version A silicon. */
1263         pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1264         pf_ctrl |= 8;   /* Fragment filter */
1265
1266         if (adapter->registry_jumbo_packet > 8192)
1267                 /* In order to transmit jumbo packets greater than 8k, the
1268                  * FIFO between RxMAC and RxDMA needs to be reduced in size
1269                  * to (16k - Jumbo packet size).  In order to implement this,
1270                  * we must use "cut through" mode in the RxMAC, which chops
1271                  * packets down into segments which are (max_size * 16).  In
1272                  * this case we selected 256 bytes, since this is the size of
1273                  * the PCI-Express TLP's that the 1310 uses.
1274                  *
1275                  * seg_en on, fc_en off, size 0x10
1276                  */
1277                 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1278         else
1279                 writel(0, &rxmac->mcif_ctrl_max_seg);
1280
1281         /* Initialize the MCIF water marks */
1282         writel(0, &rxmac->mcif_water_mark);
1283
1284         /*  Initialize the MIF control */
1285         writel(0, &rxmac->mif_ctrl);
1286
1287         /* Initialize the Space Available Register */
1288         writel(0, &rxmac->space_avail);
1289
1290         /* Initialize the the mif_ctrl register
1291          * bit 3:  Receive code error. One or more nibbles were signaled as
1292          *         errors  during the reception of the packet.  Clear this
1293          *         bit in Gigabit, set it in 100Mbit.  This was derived
1294          *         experimentally at UNH.
1295          * bit 4:  Receive CRC error. The packet's CRC did not match the
1296          *         internally generated CRC.
1297          * bit 5:  Receive length check error. Indicates that frame length
1298          *         field value in the packet does not match the actual data
1299          *         byte length and is not a type field.
1300          * bit 16: Receive frame truncated.
1301          * bit 17: Drop packet enable
1302          */
1303         if (phydev && phydev->speed == SPEED_100)
1304                 writel(0x30038, &rxmac->mif_ctrl);
1305         else
1306                 writel(0x30030, &rxmac->mif_ctrl);
1307
1308         /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1309          * filter is always enabled since it is where the runt packets are
1310          * supposed to be dropped.  For version A silicon, runt packet
1311          * dropping doesn't work, so it is disabled in the pf_ctrl register,
1312          * but we still leave the packet filter on.
1313          */
1314         writel(pf_ctrl, &rxmac->pf_ctrl);
1315         writel(0x9, &rxmac->ctrl);
1316 }
1317
1318 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1319 {
1320         struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1321
1322         /* We need to update the Control Frame Parameters
1323          * cfpt - control frame pause timer set to 64 (0x40)
1324          * cfep - control frame extended pause timer set to 0x0
1325          */
1326         if (adapter->flowcontrol == FLOW_NONE)
1327                 writel(0, &txmac->cf_param);
1328         else
1329                 writel(0x40, &txmac->cf_param);
1330 }
1331
1332 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1333 {
1334         struct macstat_regs __iomem *macstat =
1335                 &adapter->regs->macstat;
1336
1337         /* Next we need to initialize all the macstat registers to zero on
1338          * the device.
1339          */
1340         writel(0, &macstat->txrx_0_64_byte_frames);
1341         writel(0, &macstat->txrx_65_127_byte_frames);
1342         writel(0, &macstat->txrx_128_255_byte_frames);
1343         writel(0, &macstat->txrx_256_511_byte_frames);
1344         writel(0, &macstat->txrx_512_1023_byte_frames);
1345         writel(0, &macstat->txrx_1024_1518_byte_frames);
1346         writel(0, &macstat->txrx_1519_1522_gvln_frames);
1347
1348         writel(0, &macstat->rx_bytes);
1349         writel(0, &macstat->rx_packets);
1350         writel(0, &macstat->rx_fcs_errs);
1351         writel(0, &macstat->rx_multicast_packets);
1352         writel(0, &macstat->rx_broadcast_packets);
1353         writel(0, &macstat->rx_control_frames);
1354         writel(0, &macstat->rx_pause_frames);
1355         writel(0, &macstat->rx_unknown_opcodes);
1356         writel(0, &macstat->rx_align_errs);
1357         writel(0, &macstat->rx_frame_len_errs);
1358         writel(0, &macstat->rx_code_errs);
1359         writel(0, &macstat->rx_carrier_sense_errs);
1360         writel(0, &macstat->rx_undersize_packets);
1361         writel(0, &macstat->rx_oversize_packets);
1362         writel(0, &macstat->rx_fragment_packets);
1363         writel(0, &macstat->rx_jabbers);
1364         writel(0, &macstat->rx_drops);
1365
1366         writel(0, &macstat->tx_bytes);
1367         writel(0, &macstat->tx_packets);
1368         writel(0, &macstat->tx_multicast_packets);
1369         writel(0, &macstat->tx_broadcast_packets);
1370         writel(0, &macstat->tx_pause_frames);
1371         writel(0, &macstat->tx_deferred);
1372         writel(0, &macstat->tx_excessive_deferred);
1373         writel(0, &macstat->tx_single_collisions);
1374         writel(0, &macstat->tx_multiple_collisions);
1375         writel(0, &macstat->tx_late_collisions);
1376         writel(0, &macstat->tx_excessive_collisions);
1377         writel(0, &macstat->tx_total_collisions);
1378         writel(0, &macstat->tx_pause_honored_frames);
1379         writel(0, &macstat->tx_drops);
1380         writel(0, &macstat->tx_jabbers);
1381         writel(0, &macstat->tx_fcs_errs);
1382         writel(0, &macstat->tx_control_frames);
1383         writel(0, &macstat->tx_oversize_frames);
1384         writel(0, &macstat->tx_undersize_frames);
1385         writel(0, &macstat->tx_fragments);
1386         writel(0, &macstat->carry_reg1);
1387         writel(0, &macstat->carry_reg2);
1388
1389         /* Unmask any counters that we want to track the overflow of.
1390          * Initially this will be all counters.  It may become clear later
1391          * that we do not need to track all counters.
1392          */
1393         writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1394         writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1395 }
1396
1397 /**
1398  * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1399  * @adapter: pointer to our private adapter structure
1400  * @addr: the address of the transceiver
1401  * @reg: the register to read
1402  * @value: pointer to a 16-bit value in which the value will be stored
1403  *
1404  * Returns 0 on success, errno on failure (as defined in errno.h)
1405  */
1406 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1407               u8 reg, u16 *value)
1408 {
1409         struct mac_regs __iomem *mac = &adapter->regs->mac;
1410         int status = 0;
1411         u32 delay = 0;
1412         u32 mii_addr;
1413         u32 mii_cmd;
1414         u32 mii_indicator;
1415
1416         /* Save a local copy of the registers we are dealing with so we can
1417          * set them back
1418          */
1419         mii_addr = readl(&mac->mii_mgmt_addr);
1420         mii_cmd = readl(&mac->mii_mgmt_cmd);
1421
1422         /* Stop the current operation */
1423         writel(0, &mac->mii_mgmt_cmd);
1424
1425         /* Set up the register we need to read from on the correct PHY */
1426         writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1427
1428         writel(0x1, &mac->mii_mgmt_cmd);
1429
1430         do {
1431                 udelay(50);
1432                 delay++;
1433                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1434         } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1435
1436         /* If we hit the max delay, we could not read the register */
1437         if (delay == 50) {
1438                 dev_warn(&adapter->pdev->dev,
1439                             "reg 0x%08x could not be read\n", reg);
1440                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1441                             mii_indicator);
1442
1443                 status = -EIO;
1444         }
1445
1446         /* If we hit here we were able to read the register and we need to
1447          * return the value to the caller */
1448         *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1449
1450         /* Stop the read operation */
1451         writel(0, &mac->mii_mgmt_cmd);
1452
1453         /* set the registers we touched back to the state at which we entered
1454          * this function
1455          */
1456         writel(mii_addr, &mac->mii_mgmt_addr);
1457         writel(mii_cmd, &mac->mii_mgmt_cmd);
1458
1459         return status;
1460 }
1461
1462 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1463 {
1464         struct phy_device *phydev = adapter->phydev;
1465
1466         if (!phydev)
1467                 return -EIO;
1468
1469         return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1470 }
1471
1472 /**
1473  * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1474  * @adapter: pointer to our private adapter structure
1475  * @reg: the register to read
1476  * @value: 16-bit value to write
1477  *
1478  * FIXME: one caller in netdev still
1479  *
1480  * Return 0 on success, errno on failure (as defined in errno.h)
1481  */
1482 static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1483 {
1484         struct mac_regs __iomem *mac = &adapter->regs->mac;
1485         struct phy_device *phydev = adapter->phydev;
1486         int status = 0;
1487         u8 addr;
1488         u32 delay = 0;
1489         u32 mii_addr;
1490         u32 mii_cmd;
1491         u32 mii_indicator;
1492
1493         if (!phydev)
1494                 return -EIO;
1495
1496         addr = phydev->addr;
1497
1498         /* Save a local copy of the registers we are dealing with so we can
1499          * set them back
1500          */
1501         mii_addr = readl(&mac->mii_mgmt_addr);
1502         mii_cmd = readl(&mac->mii_mgmt_cmd);
1503
1504         /* Stop the current operation */
1505         writel(0, &mac->mii_mgmt_cmd);
1506
1507         /* Set up the register we need to write to on the correct PHY */
1508         writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1509
1510         /* Add the value to write to the registers to the mac */
1511         writel(value, &mac->mii_mgmt_ctrl);
1512
1513         do {
1514                 udelay(50);
1515                 delay++;
1516                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1517         } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1518
1519         /* If we hit the max delay, we could not write the register */
1520         if (delay == 100) {
1521                 u16 tmp;
1522
1523                 dev_warn(&adapter->pdev->dev,
1524                     "reg 0x%08x could not be written", reg);
1525                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1526                             mii_indicator);
1527                 dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1528                             readl(&mac->mii_mgmt_cmd));
1529
1530                 et131x_mii_read(adapter, reg, &tmp);
1531
1532                 status = -EIO;
1533         }
1534         /* Stop the write operation */
1535         writel(0, &mac->mii_mgmt_cmd);
1536
1537         /*
1538          * set the registers we touched back to the state at which we entered
1539          * this function
1540          */
1541         writel(mii_addr, &mac->mii_mgmt_addr);
1542         writel(mii_cmd, &mac->mii_mgmt_cmd);
1543
1544         return status;
1545 }
1546
1547 /* Still used from _mac for BIT_READ */
1548 static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
1549                                       u16 action, u16 regnum, u16 bitnum,
1550                                       u8 *value)
1551 {
1552         u16 reg;
1553         u16 mask = 0x0001 << bitnum;
1554
1555         /* Read the requested register */
1556         et131x_mii_read(adapter, regnum, &reg);
1557
1558         switch (action) {
1559         case TRUEPHY_BIT_READ:
1560                 *value = (reg & mask) >> bitnum;
1561                 break;
1562
1563         case TRUEPHY_BIT_SET:
1564                 et131x_mii_write(adapter, regnum, reg | mask);
1565                 break;
1566
1567         case TRUEPHY_BIT_CLEAR:
1568                 et131x_mii_write(adapter, regnum, reg & ~mask);
1569                 break;
1570
1571         default:
1572                 break;
1573         }
1574 }
1575
1576 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1577 {
1578         struct phy_device *phydev = adapter->phydev;
1579
1580         if (phydev->duplex == DUPLEX_HALF) {
1581                 adapter->flowcontrol = FLOW_NONE;
1582         } else {
1583                 char remote_pause, remote_async_pause;
1584
1585                 et1310_phy_access_mii_bit(adapter,
1586                                 TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1587                 et1310_phy_access_mii_bit(adapter,
1588                                 TRUEPHY_BIT_READ, 5, 11,
1589                                 &remote_async_pause);
1590
1591                 if ((remote_pause == TRUEPHY_BIT_SET) &&
1592                     (remote_async_pause == TRUEPHY_BIT_SET)) {
1593                         adapter->flowcontrol = adapter->wanted_flow;
1594                 } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1595                            (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1596                         if (adapter->wanted_flow == FLOW_BOTH)
1597                                 adapter->flowcontrol = FLOW_BOTH;
1598                         else
1599                                 adapter->flowcontrol = FLOW_NONE;
1600                 } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1601                            (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1602                         adapter->flowcontrol = FLOW_NONE;
1603                 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1604                                remote_async_pause == TRUEPHY_SET_BIT) */
1605                         if (adapter->wanted_flow == FLOW_BOTH)
1606                                 adapter->flowcontrol = FLOW_RXONLY;
1607                         else
1608                                 adapter->flowcontrol = FLOW_NONE;
1609                 }
1610         }
1611 }
1612
1613 /**
1614  * et1310_update_macstat_host_counters - Update the local copy of the statistics
1615  * @adapter: pointer to the adapter structure
1616  */
1617 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1618 {
1619         struct ce_stats *stats = &adapter->stats;
1620         struct macstat_regs __iomem *macstat =
1621                 &adapter->regs->macstat;
1622
1623         stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1624         stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1625         stats->tx_deferred             += readl(&macstat->tx_deferred);
1626         stats->tx_excessive_collisions +=
1627                                 readl(&macstat->tx_multiple_collisions);
1628         stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1629         stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1630         stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1631
1632         stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1633         stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1634         stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1635         stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1636         stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1637         stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1638         stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1639 }
1640
1641 /**
1642  * et1310_handle_macstat_interrupt
1643  * @adapter: pointer to the adapter structure
1644  *
1645  * One of the MACSTAT counters has wrapped.  Update the local copy of
1646  * the statistics held in the adapter structure, checking the "wrap"
1647  * bit for each counter.
1648  */
1649 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1650 {
1651         u32 carry_reg1;
1652         u32 carry_reg2;
1653
1654         /* Read the interrupt bits from the register(s).  These are Clear On
1655          * Write.
1656          */
1657         carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1658         carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1659
1660         writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1661         writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1662
1663         /* We need to do update the host copy of all the MAC_STAT counters.
1664          * For each counter, check it's overflow bit.  If the overflow bit is
1665          * set, then increment the host version of the count by one complete
1666          * revolution of the counter.  This routine is called when the counter
1667          * block indicates that one of the counters has wrapped.
1668          */
1669         if (carry_reg1 & (1 << 14))
1670                 adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1671         if (carry_reg1 & (1 << 8))
1672                 adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1673         if (carry_reg1 & (1 << 7))
1674                 adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1675         if (carry_reg1 & (1 << 2))
1676                 adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1677         if (carry_reg1 & (1 << 6))
1678                 adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1679         if (carry_reg1 & (1 << 3))
1680                 adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1681         if (carry_reg1 & (1 << 0))
1682                 adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1683         if (carry_reg2 & (1 << 16))
1684                 adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1685         if (carry_reg2 & (1 << 15))
1686                 adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1687         if (carry_reg2 & (1 << 6))
1688                 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1689         if (carry_reg2 & (1 << 8))
1690                 adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1691         if (carry_reg2 & (1 << 5))
1692                 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1693         if (carry_reg2 & (1 << 4))
1694                 adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1695         if (carry_reg2 & (1 << 2))
1696                 adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1697 }
1698
1699 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1700 {
1701         struct net_device *netdev = bus->priv;
1702         struct et131x_adapter *adapter = netdev_priv(netdev);
1703         u16 value;
1704         int ret;
1705
1706         ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1707
1708         if (ret < 0)
1709                 return ret;
1710         else
1711                 return value;
1712 }
1713
1714 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1715                              int reg, u16 value)
1716 {
1717         struct net_device *netdev = bus->priv;
1718         struct et131x_adapter *adapter = netdev_priv(netdev);
1719
1720         return et131x_mii_write(adapter, reg, value);
1721 }
1722
1723 static int et131x_mdio_reset(struct mii_bus *bus)
1724 {
1725         struct net_device *netdev = bus->priv;
1726         struct et131x_adapter *adapter = netdev_priv(netdev);
1727
1728         et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1729
1730         return 0;
1731 }
1732
1733 /**
1734  *      et1310_phy_power_down   -       PHY power control
1735  *      @adapter: device to control
1736  *      @down: true for off/false for back on
1737  *
1738  *      one hundred, ten, one thousand megs
1739  *      How would you like to have your LAN accessed
1740  *      Can't you see that this code processed
1741  *      Phy power, phy power..
1742  */
1743 static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1744 {
1745         u16 data;
1746
1747         et131x_mii_read(adapter, MII_BMCR, &data);
1748         data &= ~BMCR_PDOWN;
1749         if (down)
1750                 data |= BMCR_PDOWN;
1751         et131x_mii_write(adapter, MII_BMCR, data);
1752 }
1753
1754 /**
1755  * et131x_xcvr_init - Init the phy if we are setting it into force mode
1756  * @adapter: pointer to our private adapter structure
1757  *
1758  */
1759 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1760 {
1761         u16 imr;
1762         u16 isr;
1763         u16 lcr2;
1764
1765         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1766         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1767
1768         /* Set the link status interrupt only.  Bad behavior when link status
1769          * and auto neg are set, we run into a nested interrupt problem
1770          */
1771         imr |= (ET_PHY_INT_MASK_AUTONEGSTAT |
1772                 ET_PHY_INT_MASK_LINKSTAT |
1773                 ET_PHY_INT_MASK_ENABLE);
1774
1775         et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1776
1777         /* Set the LED behavior such that LED 1 indicates speed (off =
1778          * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1779          * link and activity (on for link, blink off for activity).
1780          *
1781          * NOTE: Some customizations have been added here for specific
1782          * vendors; The LED behavior is now determined by vendor data in the
1783          * EEPROM. However, the above description is the default.
1784          */
1785         if ((adapter->eeprom_data[1] & 0x4) == 0) {
1786                 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1787
1788                 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1789                 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1790
1791                 if ((adapter->eeprom_data[1] & 0x8) == 0)
1792                         lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1793                 else
1794                         lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1795
1796                 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1797         }
1798 }
1799
1800 /**
1801  * et131x_configure_global_regs -       configure JAGCore global regs
1802  * @adapter: pointer to our adapter structure
1803  *
1804  * Used to configure the global registers on the JAGCore
1805  */
1806 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1807 {
1808         struct global_regs __iomem *regs = &adapter->regs->global;
1809
1810         writel(0, &regs->rxq_start_addr);
1811         writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1812
1813         if (adapter->registry_jumbo_packet < 2048) {
1814                 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1815                  * block of RAM that the driver can split between Tx
1816                  * and Rx as it desires.  Our default is to split it
1817                  * 50/50:
1818                  */
1819                 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1820                 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1821         } else if (adapter->registry_jumbo_packet < 8192) {
1822                 /* For jumbo packets > 2k but < 8k, split 50-50. */
1823                 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1824                 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1825         } else {
1826                 /* 9216 is the only packet size greater than 8k that
1827                  * is available. The Tx buffer has to be big enough
1828                  * for one whole packet on the Tx side. We'll make
1829                  * the Tx 9408, and give the rest to Rx
1830                  */
1831                 writel(0x01b3, &regs->rxq_end_addr);
1832                 writel(0x01b4, &regs->txq_start_addr);
1833         }
1834
1835         /* Initialize the loopback register. Disable all loopbacks. */
1836         writel(0, &regs->loopback);
1837
1838         /* MSI Register */
1839         writel(0, &regs->msi_config);
1840
1841         /* By default, disable the watchdog timer.  It will be enabled when
1842          * a packet is queued.
1843          */
1844         writel(0, &regs->watchdog_timer);
1845 }
1846
1847 /**
1848  * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1849  * @adapter: pointer to our adapter structure
1850  */
1851 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1852 {
1853         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1854         struct rx_ring *rx_local = &adapter->rx_ring;
1855         struct fbr_desc *fbr_entry;
1856         u32 entry;
1857         u32 psr_num_des;
1858         unsigned long flags;
1859
1860         /* Halt RXDMA to perform the reconfigure.  */
1861         et131x_rx_dma_disable(adapter);
1862
1863         /* Load the completion writeback physical address
1864          *
1865          * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1866          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1867          * are ever returned, make sure the high part is retrieved here
1868          * before storing the adjusted address.
1869          */
1870         writel((u32) ((u64)rx_local->rx_status_bus >> 32),
1871                &rx_dma->dma_wb_base_hi);
1872         writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
1873
1874         memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1875
1876         /* Set the address and parameters of the packet status ring into the
1877          * 1310's registers
1878          */
1879         writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
1880                &rx_dma->psr_base_hi);
1881         writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
1882         writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1883         writel(0, &rx_dma->psr_full_offset);
1884
1885         psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1886         writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1887                &rx_dma->psr_min_des);
1888
1889         spin_lock_irqsave(&adapter->rcv_lock, flags);
1890
1891         /* These local variables track the PSR in the adapter structure */
1892         rx_local->local_psr_full = 0;
1893
1894         /* Now's the best time to initialize FBR1 contents */
1895         fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1896         for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1897                 fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1898                 fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1899                 fbr_entry->word2 = entry;
1900                 fbr_entry++;
1901         }
1902
1903         /* Set the address and parameters of Free buffer ring 1 (and 0 if
1904          * required) into the 1310's registers
1905          */
1906         writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
1907                &rx_dma->fbr1_base_hi);
1908         writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
1909         writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1910         writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1911
1912         /* This variable tracks the free buffer ring 1 full position, so it
1913          * has to match the above.
1914          */
1915         rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1916         writel(
1917            ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1918            &rx_dma->fbr1_min_des);
1919
1920 #ifdef USE_FBR0
1921         /* Now's the best time to initialize FBR0 contents */
1922         fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1923         for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1924                 fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1925                 fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1926                 fbr_entry->word2 = entry;
1927                 fbr_entry++;
1928         }
1929
1930         writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
1931                &rx_dma->fbr0_base_hi);
1932         writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
1933         writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1934         writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1935
1936         /* This variable tracks the free buffer ring 0 full position, so it
1937          * has to match the above.
1938          */
1939         rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1940         writel(
1941            ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1942            &rx_dma->fbr0_min_des);
1943 #endif
1944
1945         /* Program the number of packets we will receive before generating an
1946          * interrupt.
1947          * For version B silicon, this value gets updated once autoneg is
1948          *complete.
1949          */
1950         writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1951
1952         /* The "time_done" is not working correctly to coalesce interrupts
1953          * after a given time period, but rather is giving us an interrupt
1954          * regardless of whether we have received packets.
1955          * This value gets updated once autoneg is complete.
1956          */
1957         writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1958
1959         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1960 }
1961
1962 /**
1963  * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1964  * @adapter: pointer to our private adapter structure
1965  *
1966  * Configure the transmit engine with the ring buffers we have created
1967  * and prepare it for use.
1968  */
1969 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1970 {
1971         struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1972
1973         /* Load the hardware with the start of the transmit descriptor ring. */
1974         writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
1975                &txdma->pr_base_hi);
1976         writel((u32) adapter->tx_ring.tx_desc_ring_pa,
1977                &txdma->pr_base_lo);
1978
1979         /* Initialise the transmit DMA engine */
1980         writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1981
1982         /* Load the completion writeback physical address */
1983         writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
1984                                                 &txdma->dma_wb_base_hi);
1985         writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
1986
1987         *adapter->tx_ring.tx_status = 0;
1988
1989         writel(0, &txdma->service_request);
1990         adapter->tx_ring.send_idx = 0;
1991 }
1992
1993 /**
1994  * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1995  * @adapter: pointer to our private adapter structure
1996  *
1997  * Returns 0 on success, errno on failure (as defined in errno.h)
1998  */
1999 static void et131x_adapter_setup(struct et131x_adapter *adapter)
2000 {
2001         /* Configure the JAGCore */
2002         et131x_configure_global_regs(adapter);
2003
2004         et1310_config_mac_regs1(adapter);
2005
2006         /* Configure the MMC registers */
2007         /* All we need to do is initialize the Memory Control Register */
2008         writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
2009
2010         et1310_config_rxmac_regs(adapter);
2011         et1310_config_txmac_regs(adapter);
2012
2013         et131x_config_rx_dma_regs(adapter);
2014         et131x_config_tx_dma_regs(adapter);
2015
2016         et1310_config_macstat_regs(adapter);
2017
2018         et1310_phy_power_down(adapter, 0);
2019         et131x_xcvr_init(adapter);
2020 }
2021
2022 /**
2023  * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2024  * @adapter: pointer to our private adapter structure
2025  */
2026 static void et131x_soft_reset(struct et131x_adapter *adapter)
2027 {
2028         /* Disable MAC Core */
2029         writel(0xc00f0000, &adapter->regs->mac.cfg1);
2030
2031         /* Set everything to a reset value */
2032         writel(0x7F, &adapter->regs->global.sw_reset);
2033         writel(0x000f0000, &adapter->regs->mac.cfg1);
2034         writel(0x00000000, &adapter->regs->mac.cfg1);
2035 }
2036
2037 /**
2038  *      et131x_enable_interrupts        -       enable interrupt
2039  *      @adapter: et131x device
2040  *
2041  *      Enable the appropriate interrupts on the ET131x according to our
2042  *      configuration
2043  */
2044 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
2045 {
2046         u32 mask;
2047
2048         /* Enable all global interrupts */
2049         if (adapter->flowcontrol == FLOW_TXONLY ||
2050                             adapter->flowcontrol == FLOW_BOTH)
2051                 mask = INT_MASK_ENABLE;
2052         else
2053                 mask = INT_MASK_ENABLE_NO_FLOW;
2054
2055         writel(mask, &adapter->regs->global.int_mask);
2056 }
2057
2058 /**
2059  *      et131x_disable_interrupts       -       interrupt disable
2060  *      @adapter: et131x device
2061  *
2062  *      Block all interrupts from the et131x device at the device itself
2063  */
2064 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
2065 {
2066         /* Disable all global interrupts */
2067         writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2068 }
2069
2070 /**
2071  * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2072  * @adapter: pointer to our adapter structure
2073  */
2074 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2075 {
2076         /* Setup the tramsmit dma configuration register */
2077         writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2078                                         &adapter->regs->txdma.csr);
2079 }
2080
2081 /**
2082  * et131x_enable_txrx - Enable tx/rx queues
2083  * @netdev: device to be enabled
2084  */
2085 static void et131x_enable_txrx(struct net_device *netdev)
2086 {
2087         struct et131x_adapter *adapter = netdev_priv(netdev);
2088
2089         /* Enable the Tx and Rx DMA engines (if not already enabled) */
2090         et131x_rx_dma_enable(adapter);
2091         et131x_tx_dma_enable(adapter);
2092
2093         /* Enable device interrupts */
2094         if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2095                 et131x_enable_interrupts(adapter);
2096
2097         /* We're ready to move some data, so start the queue */
2098         netif_start_queue(netdev);
2099 }
2100
2101 /**
2102  * et131x_disable_txrx - Disable tx/rx queues
2103  * @netdev: device to be disabled
2104  */
2105 static void et131x_disable_txrx(struct net_device *netdev)
2106 {
2107         struct et131x_adapter *adapter = netdev_priv(netdev);
2108
2109         /* First thing is to stop the queue */
2110         netif_stop_queue(netdev);
2111
2112         /* Stop the Tx and Rx DMA engines */
2113         et131x_rx_dma_disable(adapter);
2114         et131x_tx_dma_disable(adapter);
2115
2116         /* Disable device interrupts */
2117         et131x_disable_interrupts(adapter);
2118 }
2119
2120 /**
2121  * et131x_init_send - Initialize send data structures
2122  * @adapter: pointer to our private adapter structure
2123  */
2124 static void et131x_init_send(struct et131x_adapter *adapter)
2125 {
2126         struct tcb *tcb;
2127         u32 ct;
2128         struct tx_ring *tx_ring;
2129
2130         /* Setup some convenience pointers */
2131         tx_ring = &adapter->tx_ring;
2132         tcb = adapter->tx_ring.tcb_ring;
2133
2134         tx_ring->tcb_qhead = tcb;
2135
2136         memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2137
2138         /* Go through and set up each TCB */
2139         for (ct = 0; ct++ < NUM_TCB; tcb++)
2140                 /* Set the link pointer in HW TCB to the next TCB in the
2141                  * chain
2142                  */
2143                 tcb->next = tcb + 1;
2144
2145         /* Set the  tail pointer */
2146         tcb--;
2147         tx_ring->tcb_qtail = tcb;
2148         tcb->next = NULL;
2149         /* Curr send queue should now be empty */
2150         tx_ring->send_head = NULL;
2151         tx_ring->send_tail = NULL;
2152 }
2153
2154 /**
2155  * et1310_enable_phy_coma - called when network cable is unplugged
2156  * @adapter: pointer to our adapter structure
2157  *
2158  * driver receive an phy status change interrupt while in D0 and check that
2159  * phy_status is down.
2160  *
2161  *          -- gate off JAGCore;
2162  *          -- set gigE PHY in Coma mode
2163  *          -- wake on phy_interrupt; Perform software reset JAGCore,
2164  *             re-initialize jagcore and gigE PHY
2165  *
2166  *      Add D0-ASPM-PhyLinkDown Support:
2167  *          -- while in D0, when there is a phy_interrupt indicating phy link
2168  *             down status, call the MPSetPhyComa routine to enter this active
2169  *             state power saving mode
2170  *          -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2171  *       indicating linkup status, call the MPDisablePhyComa routine to
2172  *             restore JAGCore and gigE PHY
2173  */
2174 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2175 {
2176         unsigned long flags;
2177         u32 pmcsr;
2178
2179         pmcsr = readl(&adapter->regs->global.pm_csr);
2180
2181         /* Save the GbE PHY speed and duplex modes. Need to restore this
2182          * when cable is plugged back in
2183          */
2184         /*
2185          * TODO - when PM is re-enabled, check if we need to
2186          * perform a similar task as this -
2187          * adapter->pdown_speed = adapter->ai_force_speed;
2188          * adapter->pdown_duplex = adapter->ai_force_duplex;
2189          */
2190
2191         /* Stop sending packets. */
2192         spin_lock_irqsave(&adapter->send_hw_lock, flags);
2193         adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2194         spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2195
2196         /* Wait for outstanding Receive packets */
2197
2198         et131x_disable_txrx(adapter->netdev);
2199
2200         /* Gate off JAGCore 3 clock domains */
2201         pmcsr &= ~ET_PMCSR_INIT;
2202         writel(pmcsr, &adapter->regs->global.pm_csr);
2203
2204         /* Program gigE PHY in to Coma mode */
2205         pmcsr |= ET_PM_PHY_SW_COMA;
2206         writel(pmcsr, &adapter->regs->global.pm_csr);
2207 }
2208
2209 /**
2210  * et1310_disable_phy_coma - Disable the Phy Coma Mode
2211  * @adapter: pointer to our adapter structure
2212  */
2213 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2214 {
2215         u32 pmcsr;
2216
2217         pmcsr = readl(&adapter->regs->global.pm_csr);
2218
2219         /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2220         pmcsr |= ET_PMCSR_INIT;
2221         pmcsr &= ~ET_PM_PHY_SW_COMA;
2222         writel(pmcsr, &adapter->regs->global.pm_csr);
2223
2224         /* Restore the GbE PHY speed and duplex modes;
2225          * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2226          */
2227         /* TODO - when PM is re-enabled, check if we need to
2228          * perform a similar task as this -
2229          * adapter->ai_force_speed = adapter->pdown_speed;
2230          * adapter->ai_force_duplex = adapter->pdown_duplex;
2231          */
2232
2233         /* Re-initialize the send structures */
2234         et131x_init_send(adapter);
2235
2236         /* Bring the device back to the state it was during init prior to
2237          * autonegotiation being complete.  This way, when we get the auto-neg
2238          * complete interrupt, we can complete init by calling ConfigMacREGS2.
2239          */
2240         et131x_soft_reset(adapter);
2241
2242         /* setup et1310 as per the documentation ?? */
2243         et131x_adapter_setup(adapter);
2244
2245         /* Allow Tx to restart */
2246         adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2247
2248         et131x_enable_txrx(adapter->netdev);
2249 }
2250
2251 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2252 {
2253         u32 tmp_free_buff_ring = *free_buff_ring;
2254         tmp_free_buff_ring++;
2255         /* This works for all cases where limit < 1024. The 1023 case
2256            works because 1023++ is 1024 which means the if condition is not
2257            taken but the carry of the bit into the wrap bit toggles the wrap
2258            value correctly */
2259         if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2260                 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2261                 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2262         }
2263         /* For the 1023 case */
2264         tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2265         *free_buff_ring = tmp_free_buff_ring;
2266         return tmp_free_buff_ring;
2267 }
2268
2269 /**
2270  * et131x_align_allocated_memory - Align allocated memory on a given boundary
2271  * @adapter: pointer to our adapter structure
2272  * @phys_addr: pointer to Physical address
2273  * @offset: pointer to the offset variable
2274  * @mask: correct mask
2275  */
2276 static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2277                                           u64 *phys_addr, u64 *offset,
2278                                           u64 mask)
2279 {
2280         u64 new_addr = *phys_addr & ~mask;
2281
2282         *offset = 0;
2283
2284         if (new_addr != *phys_addr) {
2285                 /* Move to next aligned block */
2286                 new_addr += mask + 1;
2287                 /* Return offset for adjusting virt addr */
2288                 *offset = new_addr - *phys_addr;
2289                 /* Return new physical address */
2290                 *phys_addr = new_addr;
2291         }
2292 }
2293
2294 /**
2295  * et131x_rx_dma_memory_alloc
2296  * @adapter: pointer to our private adapter structure
2297  *
2298  * Returns 0 on success and errno on failure (as defined in errno.h)
2299  *
2300  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2301  * and the Packet Status Ring.
2302  */
2303 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2304 {
2305         u32 i, j;
2306         u32 bufsize;
2307         u32 pktstat_ringsize, fbr_chunksize;
2308         struct rx_ring *rx_ring;
2309
2310         /* Setup some convenience pointers */
2311         rx_ring = &adapter->rx_ring;
2312
2313         /* Alloc memory for the lookup table */
2314 #ifdef USE_FBR0
2315         rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2316 #endif
2317         rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2318
2319         /* The first thing we will do is configure the sizes of the buffer
2320          * rings. These will change based on jumbo packet support.  Larger
2321          * jumbo packets increases the size of each entry in FBR0, and the
2322          * number of entries in FBR0, while at the same time decreasing the
2323          * number of entries in FBR1.
2324          *
2325          * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
2326          * entries are huge in order to accommodate a "jumbo" frame, then it
2327          * will have less entries.  Conversely, FBR1 will now be relied upon
2328          * to carry more "normal" frames, thus it's entry size also increases
2329          * and the number of entries goes up too (since it now carries
2330          * "small" + "regular" packets.
2331          *
2332          * In this scheme, we try to maintain 512 entries between the two
2333          * rings. Also, FBR1 remains a constant size - when it's size doubles
2334          * the number of entries halves.  FBR0 increases in size, however.
2335          */
2336
2337         if (adapter->registry_jumbo_packet < 2048) {
2338 #ifdef USE_FBR0
2339                 rx_ring->fbr[1]->buffsize = 256;
2340                 rx_ring->fbr[1]->num_entries = 512;
2341 #endif
2342                 rx_ring->fbr[0]->buffsize = 2048;
2343                 rx_ring->fbr[0]->num_entries = 512;
2344         } else if (adapter->registry_jumbo_packet < 4096) {
2345 #ifdef USE_FBR0
2346                 rx_ring->fbr[1]->buffsize = 512;
2347                 rx_ring->fbr[1]->num_entries = 1024;
2348 #endif
2349                 rx_ring->fbr[0]->buffsize = 4096;
2350                 rx_ring->fbr[0]->num_entries = 512;
2351         } else {
2352 #ifdef USE_FBR0
2353                 rx_ring->fbr[1]->buffsize = 1024;
2354                 rx_ring->fbr[1]->num_entries = 768;
2355 #endif
2356                 rx_ring->fbr[0]->buffsize = 16384;
2357                 rx_ring->fbr[0]->num_entries = 128;
2358         }
2359
2360 #ifdef USE_FBR0
2361         adapter->rx_ring.psr_num_entries =
2362                                 adapter->rx_ring.fbr[1]->num_entries +
2363                                 adapter->rx_ring.fbr[0]->num_entries;
2364 #else
2365         adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
2366 #endif
2367
2368         /* Allocate an area of memory for Free Buffer Ring 1 */
2369         bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2370                                                                         0xfff;
2371         rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2372                                         bufsize,
2373                                         &rx_ring->fbr[0]->ring_physaddr,
2374                                         GFP_KERNEL);
2375         if (!rx_ring->fbr[0]->ring_virtaddr) {
2376                 dev_err(&adapter->pdev->dev,
2377                           "Cannot alloc memory for Free Buffer Ring 1\n");
2378                 return -ENOMEM;
2379         }
2380
2381         /* Save physical address
2382          *
2383          * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2384          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2385          * are ever returned, make sure the high part is retrieved here
2386          * before storing the adjusted address.
2387          */
2388         rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
2389
2390         /* Align Free Buffer Ring 1 on a 4K boundary */
2391         et131x_align_allocated_memory(adapter,
2392                                       &rx_ring->fbr[0]->real_physaddr,
2393                                       &rx_ring->fbr[0]->offset, 0x0FFF);
2394
2395         rx_ring->fbr[0]->ring_virtaddr =
2396                         (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2397                         rx_ring->fbr[0]->offset);
2398
2399 #ifdef USE_FBR0
2400         /* Allocate an area of memory for Free Buffer Ring 0 */
2401         bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2402                                                                         0xfff;
2403         rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2404                                                 bufsize,
2405                                                 &rx_ring->fbr[1]->ring_physaddr,
2406                                                 GFP_KERNEL);
2407         if (!rx_ring->fbr[1]->ring_virtaddr) {
2408                 dev_err(&adapter->pdev->dev,
2409                           "Cannot alloc memory for Free Buffer Ring 0\n");
2410                 return -ENOMEM;
2411         }
2412
2413         /* Save physical address
2414          *
2415          * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2416          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2417          * are ever returned, make sure the high part is retrieved here before
2418          * storing the adjusted address.
2419          */
2420         rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
2421
2422         /* Align Free Buffer Ring 0 on a 4K boundary */
2423         et131x_align_allocated_memory(adapter,
2424                                       &rx_ring->fbr[1]->real_physaddr,
2425                                       &rx_ring->fbr[1]->offset, 0x0FFF);
2426
2427         rx_ring->fbr[1]->ring_virtaddr =
2428                         (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2429                         rx_ring->fbr[1]->offset);
2430 #endif
2431         for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2432                 u64 fbr1_tmp_physaddr;
2433                 u64 fbr1_offset;
2434                 u32 fbr1_align;
2435
2436                 /* This code allocates an area of memory big enough for N
2437                  * free buffers + (buffer_size - 1) so that the buffers can
2438                  * be aligned on 4k boundaries.  If each buffer were aligned
2439                  * to a buffer_size boundary, the effect would be to double
2440                  * the size of FBR0.  By allocating N buffers at once, we
2441                  * reduce this overhead.
2442                  */
2443                 if (rx_ring->fbr[0]->buffsize > 4096)
2444                         fbr1_align = 4096;
2445                 else
2446                         fbr1_align = rx_ring->fbr[0]->buffsize;
2447
2448                 fbr_chunksize =
2449                     (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2450                 rx_ring->fbr[0]->mem_virtaddrs[i] =
2451                     dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2452                                        &rx_ring->fbr[0]->mem_physaddrs[i],
2453                                        GFP_KERNEL);
2454
2455                 if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2456                         dev_err(&adapter->pdev->dev,
2457                                 "Could not alloc memory\n");
2458                         return -ENOMEM;
2459                 }
2460
2461                 /* See NOTE in "Save Physical Address" comment above */
2462                 fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2463
2464                 et131x_align_allocated_memory(adapter,
2465                                               &fbr1_tmp_physaddr,
2466                                               &fbr1_offset, (fbr1_align - 1));
2467
2468                 for (j = 0; j < FBR_CHUNKS; j++) {
2469                         u32 index = (i * FBR_CHUNKS) + j;
2470
2471                         /* Save the Virtual address of this index for quick
2472                          * access later
2473                          */
2474                         rx_ring->fbr[0]->virt[index] =
2475                             (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2476                             (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2477
2478                         /* now store the physical address in the descriptor
2479                          * so the device can access it
2480                          */
2481                         rx_ring->fbr[0]->bus_high[index] =
2482                             (u32) (fbr1_tmp_physaddr >> 32);
2483                         rx_ring->fbr[0]->bus_low[index] =
2484                             (u32) fbr1_tmp_physaddr;
2485
2486                         fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2487
2488                         rx_ring->fbr[0]->buffer1[index] =
2489                             rx_ring->fbr[0]->virt[index];
2490                         rx_ring->fbr[0]->buffer2[index] =
2491                             rx_ring->fbr[0]->virt[index] - 4;
2492                 }
2493         }
2494
2495 #ifdef USE_FBR0
2496         /* Same for FBR0 (if in use) */
2497         for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2498                 u64 fbr0_tmp_physaddr;
2499                 u64 fbr0_offset;
2500
2501                 fbr_chunksize =
2502                     ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2503                 rx_ring->fbr[1]->mem_virtaddrs[i] =
2504                     dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2505                                        &rx_ring->fbr[1]->mem_physaddrs[i],
2506                                        GFP_KERNEL);
2507
2508                 if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2509                         dev_err(&adapter->pdev->dev,
2510                                 "Could not alloc memory\n");
2511                         return -ENOMEM;
2512                 }
2513
2514                 /* See NOTE in "Save Physical Address" comment above */
2515                 fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2516
2517                 et131x_align_allocated_memory(adapter,
2518                                               &fbr0_tmp_physaddr,
2519                                               &fbr0_offset,
2520                                               rx_ring->fbr[1]->buffsize - 1);
2521
2522                 for (j = 0; j < FBR_CHUNKS; j++) {
2523                         u32 index = (i * FBR_CHUNKS) + j;
2524
2525                         rx_ring->fbr[1]->virt[index] =
2526                             (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2527                             (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2528
2529                         rx_ring->fbr[1]->bus_high[index] =
2530                             (u32) (fbr0_tmp_physaddr >> 32);
2531                         rx_ring->fbr[1]->bus_low[index] =
2532                             (u32) fbr0_tmp_physaddr;
2533
2534                         fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2535
2536                         rx_ring->fbr[1]->buffer1[index] =
2537                             rx_ring->fbr[1]->virt[index];
2538                         rx_ring->fbr[1]->buffer2[index] =
2539                             rx_ring->fbr[1]->virt[index] - 4;
2540                 }
2541         }
2542 #endif
2543
2544         /* Allocate an area of memory for FIFO of Packet Status ring entries */
2545         pktstat_ringsize =
2546             sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2547
2548         rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2549                                                   pktstat_ringsize,
2550                                                   &rx_ring->ps_ring_physaddr,
2551                                                   GFP_KERNEL);
2552
2553         if (!rx_ring->ps_ring_virtaddr) {
2554                 dev_err(&adapter->pdev->dev,
2555                           "Cannot alloc memory for Packet Status Ring\n");
2556                 return -ENOMEM;
2557         }
2558         pr_info("Packet Status Ring %llx\n",
2559                 (unsigned long long) rx_ring->ps_ring_physaddr);
2560
2561         /*
2562          * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2563          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2564          * are ever returned, make sure the high part is retrieved here before
2565          * storing the adjusted address.
2566          */
2567
2568         /* Allocate an area of memory for writeback of status information */
2569         rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2570                                             sizeof(struct rx_status_block),
2571                                             &rx_ring->rx_status_bus,
2572                                             GFP_KERNEL);
2573         if (!rx_ring->rx_status_block) {
2574                 dev_err(&adapter->pdev->dev,
2575                           "Cannot alloc memory for Status Block\n");
2576                 return -ENOMEM;
2577         }
2578         rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2579         pr_info("PRS %llx\n", (unsigned long long)rx_ring->rx_status_bus);
2580
2581         /* Recv
2582          * kmem_cache_create initializes a lookaside list. After successful
2583          * creation, nonpaged fixed-size blocks can be allocated from and
2584          * freed to the lookaside list.
2585          * RFDs will be allocated from this pool.
2586          */
2587         rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2588                                                    sizeof(struct rfd),
2589                                                    0,
2590                                                    SLAB_CACHE_DMA |
2591                                                    SLAB_HWCACHE_ALIGN,
2592                                                    NULL);
2593
2594         adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2595
2596         /* The RFDs are going to be put on lists later on, so initialize the
2597          * lists now.
2598          */
2599         INIT_LIST_HEAD(&rx_ring->recv_list);
2600         return 0;
2601 }
2602
2603 /**
2604  * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2605  * @adapter: pointer to our private adapter structure
2606  */
2607 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2608 {
2609         u32 index;
2610         u32 bufsize;
2611         u32 pktstat_ringsize;
2612         struct rfd *rfd;
2613         struct rx_ring *rx_ring;
2614
2615         /* Setup some convenience pointers */
2616         rx_ring = &adapter->rx_ring;
2617
2618         /* Free RFDs and associated packet descriptors */
2619         WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2620
2621         while (!list_empty(&rx_ring->recv_list)) {
2622                 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2623                                 struct rfd, list_node);
2624
2625                 list_del(&rfd->list_node);
2626                 rfd->skb = NULL;
2627                 kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2628         }
2629
2630         /* Free Free Buffer Ring 1 */
2631         if (rx_ring->fbr[0]->ring_virtaddr) {
2632                 /* First the packet memory */
2633                 for (index = 0; index <
2634                      (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2635                         if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2636                                 u32 fbr1_align;
2637
2638                                 if (rx_ring->fbr[0]->buffsize > 4096)
2639                                         fbr1_align = 4096;
2640                                 else
2641                                         fbr1_align = rx_ring->fbr[0]->buffsize;
2642
2643                                 bufsize =
2644                                     (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2645                                     fbr1_align - 1;
2646
2647                                 dma_free_coherent(&adapter->pdev->dev,
2648                                         bufsize,
2649                                         rx_ring->fbr[0]->mem_virtaddrs[index],
2650                                         rx_ring->fbr[0]->mem_physaddrs[index]);
2651
2652                                 rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2653                         }
2654                 }
2655
2656                 /* Now the FIFO itself */
2657                 rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2658                     rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2659
2660                 bufsize =
2661                     (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2662                                                                         0xfff;
2663
2664                 dma_free_coherent(&adapter->pdev->dev, bufsize,
2665                                     rx_ring->fbr[0]->ring_virtaddr,
2666                                     rx_ring->fbr[0]->ring_physaddr);
2667
2668                 rx_ring->fbr[0]->ring_virtaddr = NULL;
2669         }
2670
2671 #ifdef USE_FBR0
2672         /* Now the same for Free Buffer Ring 0 */
2673         if (rx_ring->fbr[1]->ring_virtaddr) {
2674                 /* First the packet memory */
2675                 for (index = 0; index <
2676                      (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2677                         if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2678                                 bufsize =
2679                                     (rx_ring->fbr[1]->buffsize *
2680                                      (FBR_CHUNKS + 1)) - 1;
2681
2682                                 dma_free_coherent(&adapter->pdev->dev,
2683                                         bufsize,
2684                                         rx_ring->fbr[1]->mem_virtaddrs[index],
2685                                         rx_ring->fbr[1]->mem_physaddrs[index]);
2686
2687                                 rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2688                         }
2689                 }
2690
2691                 /* Now the FIFO itself */
2692                 rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2693                     rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2694
2695                 bufsize =
2696                     (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2697                                                                         0xfff;
2698
2699                 dma_free_coherent(&adapter->pdev->dev,
2700                                   bufsize,
2701                                   rx_ring->fbr[1]->ring_virtaddr,
2702                                   rx_ring->fbr[1]->ring_physaddr);
2703
2704                 rx_ring->fbr[1]->ring_virtaddr = NULL;
2705         }
2706 #endif
2707
2708         /* Free Packet Status Ring */
2709         if (rx_ring->ps_ring_virtaddr) {
2710                 pktstat_ringsize =
2711                     sizeof(struct pkt_stat_desc) *
2712                     adapter->rx_ring.psr_num_entries;
2713
2714                 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2715                                     rx_ring->ps_ring_virtaddr,
2716                                     rx_ring->ps_ring_physaddr);
2717
2718                 rx_ring->ps_ring_virtaddr = NULL;
2719         }
2720
2721         /* Free area of memory for the writeback of status information */
2722         if (rx_ring->rx_status_block) {
2723                 dma_free_coherent(&adapter->pdev->dev,
2724                         sizeof(struct rx_status_block),
2725                         rx_ring->rx_status_block, rx_ring->rx_status_bus);
2726                 rx_ring->rx_status_block = NULL;
2727         }
2728
2729         /* Destroy the lookaside (RFD) pool */
2730         if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2731                 kmem_cache_destroy(rx_ring->recv_lookaside);
2732                 adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2733         }
2734
2735         /* Free the FBR Lookup Table */
2736 #ifdef USE_FBR0
2737         kfree(rx_ring->fbr[1]);
2738 #endif
2739
2740         kfree(rx_ring->fbr[0]);
2741
2742         /* Reset Counters */
2743         rx_ring->num_ready_recv = 0;
2744 }
2745
2746 /**
2747  * et131x_init_recv - Initialize receive data structures.
2748  * @adapter: pointer to our private adapter structure
2749  *
2750  * Returns 0 on success and errno on failure (as defined in errno.h)
2751  */
2752 static int et131x_init_recv(struct et131x_adapter *adapter)
2753 {
2754         int status = -ENOMEM;
2755         struct rfd *rfd = NULL;
2756         u32 rfdct;
2757         u32 numrfd = 0;
2758         struct rx_ring *rx_ring;
2759
2760         /* Setup some convenience pointers */
2761         rx_ring = &adapter->rx_ring;
2762
2763         /* Setup each RFD */
2764         for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2765                 rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2766                                                      GFP_ATOMIC | GFP_DMA);
2767
2768                 if (!rfd) {
2769                         dev_err(&adapter->pdev->dev,
2770                                   "Couldn't alloc RFD out of kmem_cache\n");
2771                         status = -ENOMEM;
2772                         continue;
2773                 }
2774
2775                 rfd->skb = NULL;
2776
2777                 /* Add this RFD to the recv_list */
2778                 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2779
2780                 /* Increment both the available RFD's, and the total RFD's. */
2781                 rx_ring->num_ready_recv++;
2782                 numrfd++;
2783         }
2784
2785         if (numrfd > NIC_MIN_NUM_RFD)
2786                 status = 0;
2787
2788         rx_ring->num_rfd = numrfd;
2789
2790         if (status != 0) {
2791                 kmem_cache_free(rx_ring->recv_lookaside, rfd);
2792                 dev_err(&adapter->pdev->dev,
2793                           "Allocation problems in et131x_init_recv\n");
2794         }
2795         return status;
2796 }
2797
2798 /**
2799  * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2800  * @adapter: pointer to our adapter structure
2801  */
2802 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2803 {
2804         struct phy_device *phydev = adapter->phydev;
2805
2806         if (!phydev)
2807                 return;
2808
2809         /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2810          * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2811          */
2812         if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2813                 writel(0, &adapter->regs->rxdma.max_pkt_time);
2814                 writel(1, &adapter->regs->rxdma.num_pkt_done);
2815         }
2816 }
2817
2818 /**
2819  * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2820  * @adapter: pointer to our adapter
2821  * @rfd: pointer to the RFD
2822  */
2823 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2824 {
2825         struct rx_ring *rx_local = &adapter->rx_ring;
2826         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2827         u16 buff_index = rfd->bufferindex;
2828         u8 ring_index = rfd->ringindex;
2829         unsigned long flags;
2830
2831         /* We don't use any of the OOB data besides status. Otherwise, we
2832          * need to clean up OOB data
2833          */
2834         if (
2835 #ifdef USE_FBR0
2836             (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2837 #endif
2838             (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2839                 spin_lock_irqsave(&adapter->fbr_lock, flags);
2840
2841                 if (ring_index == 1) {
2842                         struct fbr_desc *next = (struct fbr_desc *)
2843                                         (rx_local->fbr[0]->ring_virtaddr) +
2844                                         INDEX10(rx_local->fbr[0]->local_full);
2845
2846                         /* Handle the Free Buffer Ring advancement here. Write
2847                          * the PA / Buffer Index for the returned buffer into
2848                          * the oldest (next to be freed)FBR entry
2849                          */
2850                         next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2851                         next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2852                         next->word2 = buff_index;
2853
2854                         writel(bump_free_buff_ring(
2855                                         &rx_local->fbr[0]->local_full,
2856                                         rx_local->fbr[0]->num_entries - 1),
2857                                         &rx_dma->fbr1_full_offset);
2858                 }
2859 #ifdef USE_FBR0
2860                 else {
2861                         struct fbr_desc *next = (struct fbr_desc *)
2862                                 rx_local->fbr[1]->ring_virtaddr +
2863                                     INDEX10(rx_local->fbr[1]->local_full);
2864
2865                         /* Handle the Free Buffer Ring advancement here. Write
2866                          * the PA / Buffer Index for the returned buffer into
2867                          * the oldest (next to be freed) FBR entry
2868                          */
2869                         next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2870                         next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2871                         next->word2 = buff_index;
2872
2873                         writel(bump_free_buff_ring(
2874                                         &rx_local->fbr[1]->local_full,
2875                                         rx_local->fbr[1]->num_entries - 1),
2876                                &rx_dma->fbr0_full_offset);
2877                 }
2878 #endif
2879                 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2880         } else {
2881                 dev_err(&adapter->pdev->dev,
2882                           "%s illegal Buffer Index returned\n", __func__);
2883         }
2884
2885         /* The processing on this RFD is done, so put it back on the tail of
2886          * our list
2887          */
2888         spin_lock_irqsave(&adapter->rcv_lock, flags);
2889         list_add_tail(&rfd->list_node, &rx_local->recv_list);
2890         rx_local->num_ready_recv++;
2891         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2892
2893         WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2894 }
2895
2896 /**
2897  * nic_rx_pkts - Checks the hardware for available packets
2898  * @adapter: pointer to our adapter
2899  *
2900  * Returns rfd, a pointer to our MPRFD.
2901  *
2902  * Checks the hardware for available packets, using completion ring
2903  * If packets are available, it gets an RFD from the recv_list, attaches
2904  * the packet to it, puts the RFD in the RecvPendList, and also returns
2905  * the pointer to the RFD.
2906  */
2907 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2908 {
2909         struct rx_ring *rx_local = &adapter->rx_ring;
2910         struct rx_status_block *status;
2911         struct pkt_stat_desc *psr;
2912         struct rfd *rfd;
2913         u32 i;
2914         u8 *buf;
2915         unsigned long flags;
2916         struct list_head *element;
2917         u8 ring_index;
2918         u16 buff_index;
2919         u32 len;
2920         u32 word0;
2921         u32 word1;
2922
2923         /* RX Status block is written by the DMA engine prior to every
2924          * interrupt. It contains the next to be used entry in the Packet
2925          * Status Ring, and also the two Free Buffer rings.
2926          */
2927         status = rx_local->rx_status_block;
2928         word1 = status->word1 >> 16;    /* Get the useful bits */
2929
2930         /* Check the PSR and wrap bits do not match */
2931         if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2932                 /* Looks like this ring is not updated yet */
2933                 return NULL;
2934
2935         /* The packet status ring indicates that data is available. */
2936         psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2937                         (rx_local->local_psr_full & 0xFFF);
2938
2939         /* Grab any information that is required once the PSR is
2940          * advanced, since we can no longer rely on the memory being
2941          * accurate
2942          */
2943         len = psr->word1 & 0xFFFF;
2944         ring_index = (psr->word1 >> 26) & 0x03;
2945         buff_index = (psr->word1 >> 16) & 0x3FF;
2946         word0 = psr->word0;
2947
2948         /* Indicate that we have used this PSR entry. */
2949         /* FIXME wrap 12 */
2950         add_12bit(&rx_local->local_psr_full, 1);
2951         if (
2952           (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2953                 /* Clear psr full and toggle the wrap bit */
2954                 rx_local->local_psr_full &=  ~0xFFF;
2955                 rx_local->local_psr_full ^= 0x1000;
2956         }
2957
2958         writel(rx_local->local_psr_full,
2959                &adapter->regs->rxdma.psr_full_offset);
2960
2961 #ifndef USE_FBR0
2962         if (ring_index != 1)
2963                 return NULL;
2964 #endif
2965
2966 #ifdef USE_FBR0
2967         if (ring_index > 1 ||
2968                 (ring_index == 0 &&
2969                 buff_index > rx_local->fbr[1]->num_entries - 1) ||
2970                 (ring_index == 1 &&
2971                 buff_index > rx_local->fbr[0]->num_entries - 1)) {
2972 #else
2973         if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1) {
2974 #endif
2975                 /* Illegal buffer or ring index cannot be used by S/W*/
2976                 dev_err(&adapter->pdev->dev,
2977                           "NICRxPkts PSR Entry %d indicates "
2978                           "length of %d and/or bad bi(%d)\n",
2979                           rx_local->local_psr_full & 0xFFF,
2980                           len, buff_index);
2981                 return NULL;
2982         }
2983
2984         /* Get and fill the RFD. */
2985         spin_lock_irqsave(&adapter->rcv_lock, flags);
2986
2987         rfd = NULL;
2988         element = rx_local->recv_list.next;
2989         rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2990
2991         if (rfd == NULL) {
2992                 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2993                 return NULL;
2994         }
2995
2996         list_del(&rfd->list_node);
2997         rx_local->num_ready_recv--;
2998
2999         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
3000
3001         rfd->bufferindex = buff_index;
3002         rfd->ringindex = ring_index;
3003
3004         /* In V1 silicon, there is a bug which screws up filtering of
3005          * runt packets.  Therefore runt packet filtering is disabled
3006          * in the MAC and the packets are dropped here.  They are
3007          * also counted here.
3008          */
3009         if (len < (NIC_MIN_PACKET_SIZE + 4)) {
3010                 adapter->stats.rx_other_errs++;
3011                 len = 0;
3012         }
3013
3014         if (len) {
3015                 /* Determine if this is a multicast packet coming in */
3016                 if ((word0 & ALCATEL_MULTICAST_PKT) &&
3017                     !(word0 & ALCATEL_BROADCAST_PKT)) {
3018                         /* Promiscuous mode and Multicast mode are
3019                          * not mutually exclusive as was first
3020                          * thought.  I guess Promiscuous is just
3021                          * considered a super-set of the other
3022                          * filters. Generally filter is 0x2b when in
3023                          * promiscuous mode.
3024                          */
3025                         if ((adapter->packet_filter &
3026                                         ET131X_PACKET_TYPE_MULTICAST)
3027                             && !(adapter->packet_filter &
3028                                         ET131X_PACKET_TYPE_PROMISCUOUS)
3029                             && !(adapter->packet_filter &
3030                                         ET131X_PACKET_TYPE_ALL_MULTICAST)) {
3031                                 /*
3032                                  * Note - ring_index for fbr[] array is reversed
3033                                  * 1 for FBR0 etc
3034                                  */
3035                                 buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
3036                                                 virt[buff_index];
3037
3038                                 /* Loop through our list to see if the
3039                                  * destination address of this packet
3040                                  * matches one in our list.
3041                                  */
3042                                 for (i = 0; i < adapter->multicast_addr_count;
3043                                      i++) {
3044                                         if (buf[0] ==
3045                                                 adapter->multicast_list[i][0]
3046                                             && buf[1] ==
3047                                                 adapter->multicast_list[i][1]
3048                                             && buf[2] ==
3049                                                 adapter->multicast_list[i][2]
3050                                             && buf[3] ==
3051                                                 adapter->multicast_list[i][3]
3052                                             && buf[4] ==
3053                                                 adapter->multicast_list[i][4]
3054                                             && buf[5] ==
3055                                                 adapter->multicast_list[i][5]) {
3056                                                 break;
3057                                         }
3058                                 }
3059
3060                                 /* If our index is equal to the number
3061                                  * of Multicast address we have, then
3062                                  * this means we did not find this
3063                                  * packet's matching address in our
3064                                  * list.  Set the len to zero,
3065                                  * so we free our RFD when we return
3066                                  * from this function.
3067                                  */
3068                                 if (i == adapter->multicast_addr_count)
3069                                         len = 0;
3070                         }
3071
3072                         if (len > 0)
3073                                 adapter->stats.multicast_pkts_rcvd++;
3074                 } else if (word0 & ALCATEL_BROADCAST_PKT)
3075                         adapter->stats.broadcast_pkts_rcvd++;
3076                 else
3077                         /* Not sure what this counter measures in
3078                          * promiscuous mode. Perhaps we should check
3079                          * the MAC address to see if it is directed
3080                          * to us in promiscuous mode.
3081                          */
3082                         adapter->stats.unicast_pkts_rcvd++;
3083         }
3084
3085         if (len > 0) {
3086                 struct sk_buff *skb = NULL;
3087
3088                 /*rfd->len = len - 4; */
3089                 rfd->len = len;
3090
3091                 skb = dev_alloc_skb(rfd->len + 2);
3092                 if (!skb) {
3093                         dev_err(&adapter->pdev->dev,
3094                                   "Couldn't alloc an SKB for Rx\n");
3095                         return NULL;
3096                 }
3097
3098                 adapter->net_stats.rx_bytes += rfd->len;
3099
3100                 /*
3101                  * Note - ring_index for fbr[] array is reversed,
3102                  * 1 for FBR0 etc
3103                  */
3104                 memcpy(skb_put(skb, rfd->len),
3105                     rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3106                     rfd->len);
3107
3108                 skb->dev = adapter->netdev;
3109                 skb->protocol = eth_type_trans(skb, adapter->netdev);
3110                 skb->ip_summed = CHECKSUM_NONE;
3111
3112                 netif_rx_ni(skb);
3113         } else {
3114                 rfd->len = 0;
3115         }
3116
3117         nic_return_rfd(adapter, rfd);
3118         return rfd;
3119 }
3120
3121 /**
3122  * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3123  * @adapter: pointer to our adapter
3124  *
3125  * Assumption, Rcv spinlock has been acquired.
3126  */
3127 static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3128 {
3129         struct rfd *rfd = NULL;
3130         u32 count = 0;
3131         bool done = true;
3132
3133         /* Process up to available RFD's */
3134         while (count < NUM_PACKETS_HANDLED) {
3135                 if (list_empty(&adapter->rx_ring.recv_list)) {
3136                         WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3137                         done = false;
3138                         break;
3139                 }
3140
3141                 rfd = nic_rx_pkts(adapter);
3142
3143                 if (rfd == NULL)
3144                         break;
3145
3146                 /* Do not receive any packets until a filter has been set.
3147                  * Do not receive any packets until we have link.
3148                  * If length is zero, return the RFD in order to advance the
3149                  * Free buffer ring.
3150                  */
3151                 if (!adapter->packet_filter ||
3152                     !netif_carrier_ok(adapter->netdev) ||
3153                     rfd->len == 0)
3154                         continue;
3155
3156                 /* Increment the number of packets we received */
3157                 adapter->net_stats.rx_packets++;
3158
3159                 /* Set the status on the packet, either resources or success */
3160                 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3161                         dev_warn(&adapter->pdev->dev,
3162                                     "RFD's are running out\n");
3163                 }
3164                 count++;
3165         }
3166
3167         if (count == NUM_PACKETS_HANDLED || !done) {
3168                 adapter->rx_ring.unfinished_receives = true;
3169                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3170                        &adapter->regs->global.watchdog_timer);
3171         } else
3172                 /* Watchdog timer will disable itself if appropriate. */
3173                 adapter->rx_ring.unfinished_receives = false;
3174 }
3175
3176 /**
3177  * et131x_tx_dma_memory_alloc
3178  * @adapter: pointer to our private adapter structure
3179  *
3180  * Returns 0 on success and errno on failure (as defined in errno.h).
3181  *
3182  * Allocates memory that will be visible both to the device and to the CPU.
3183  * The OS will pass us packets, pointers to which we will insert in the Tx
3184  * Descriptor queue. The device will read this queue to find the packets in
3185  * memory. The device will update the "status" in memory each time it xmits a
3186  * packet.
3187  */
3188 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3189 {
3190         int desc_size = 0;
3191         struct tx_ring *tx_ring = &adapter->tx_ring;
3192
3193         /* Allocate memory for the TCB's (Transmit Control Block) */
3194         adapter->tx_ring.tcb_ring =
3195                 kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3196         if (!adapter->tx_ring.tcb_ring) {
3197                 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3198                 return -ENOMEM;
3199         }
3200
3201         /* Allocate enough memory for the Tx descriptor ring, and allocate
3202          * some extra so that the ring can be aligned on a 4k boundary.
3203          */
3204         desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3205         tx_ring->tx_desc_ring =
3206             (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
3207                                                   desc_size,
3208                                                   &tx_ring->tx_desc_ring_pa,
3209                                                   GFP_KERNEL);
3210         if (!adapter->tx_ring.tx_desc_ring) {
3211                 dev_err(&adapter->pdev->dev,
3212                         "Cannot alloc memory for Tx Ring\n");
3213                 return -ENOMEM;
3214         }
3215
3216         /* Save physical address
3217          *
3218          * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3219          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3220          * are ever returned, make sure the high part is retrieved here before
3221          * storing the adjusted address.
3222          */
3223         /* Allocate memory for the Tx status block */
3224         tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3225                                                     sizeof(u32),
3226                                                     &tx_ring->tx_status_pa,
3227                                                     GFP_KERNEL);
3228         if (!adapter->tx_ring.tx_status_pa) {
3229                 dev_err(&adapter->pdev->dev,
3230                                   "Cannot alloc memory for Tx status block\n");
3231                 return -ENOMEM;
3232         }
3233         return 0;
3234 }
3235
3236 /**
3237  * et131x_tx_dma_memory_free - Free all memory allocated within this module
3238  * @adapter: pointer to our private adapter structure
3239  *
3240  * Returns 0 on success and errno on failure (as defined in errno.h).
3241  */
3242 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3243 {
3244         int desc_size = 0;
3245
3246         if (adapter->tx_ring.tx_desc_ring) {
3247                 /* Free memory relating to Tx rings here */
3248                 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3249                                                                 + 4096 - 1;
3250                 dma_free_coherent(&adapter->pdev->dev,
3251                                     desc_size,
3252                                     adapter->tx_ring.tx_desc_ring,
3253                                     adapter->tx_ring.tx_desc_ring_pa);
3254                 adapter->tx_ring.tx_desc_ring = NULL;
3255         }
3256
3257         /* Free memory for the Tx status block */
3258         if (adapter->tx_ring.tx_status) {
3259                 dma_free_coherent(&adapter->pdev->dev,
3260                                     sizeof(u32),
3261                                     adapter->tx_ring.tx_status,
3262                                     adapter->tx_ring.tx_status_pa);
3263
3264                 adapter->tx_ring.tx_status = NULL;
3265         }
3266         /* Free the memory for the tcb structures */
3267         kfree(adapter->tx_ring.tcb_ring);
3268 }
3269
3270 /**
3271  * nic_send_packet - NIC specific send handler for version B silicon.
3272  * @adapter: pointer to our adapter
3273  * @tcb: pointer to struct tcb
3274  *
3275  * Returns 0 or errno.
3276  */
3277 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3278 {
3279         u32 i;
3280         struct tx_desc desc[24];        /* 24 x 16 byte */
3281         u32 frag = 0;
3282         u32 thiscopy, remainder;
3283         struct sk_buff *skb = tcb->skb;
3284         u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3285         struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3286         unsigned long flags;
3287         struct phy_device *phydev = adapter->phydev;
3288
3289         /* Part of the optimizations of this send routine restrict us to
3290          * sending 24 fragments at a pass.  In practice we should never see
3291          * more than 5 fragments.
3292          *
3293          * NOTE: The older version of this function (below) can handle any
3294          * number of fragments. If needed, we can call this function,
3295          * although it is less efficient.
3296          */
3297         if (nr_frags > 23)
3298                 return -EIO;
3299
3300         memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3301
3302         for (i = 0; i < nr_frags; i++) {
3303                 /* If there is something in this element, lets get a
3304                  * descriptor from the ring and get the necessary data
3305                  */
3306                 if (i == 0) {
3307                         /* If the fragments are smaller than a standard MTU,
3308                          * then map them to a single descriptor in the Tx
3309                          * Desc ring. However, if they're larger, as is
3310                          * possible with support for jumbo packets, then
3311                          * split them each across 2 descriptors.
3312                          *
3313                          * This will work until we determine why the hardware
3314                          * doesn't seem to like large fragments.
3315                          */
3316                         if ((skb->len - skb->data_len) <= 1514) {
3317                                 desc[frag].addr_hi = 0;
3318                                 /* Low 16bits are length, high is vlan and
3319                                    unused currently so zero */
3320                                 desc[frag].len_vlan =
3321                                         skb->len - skb->data_len;
3322
3323                                 /* NOTE: Here, the dma_addr_t returned from
3324                                  * dma_map_single() is implicitly cast as a
3325                                  * u32. Although dma_addr_t can be
3326                                  * 64-bit, the address returned by
3327                                  * dma_map_single() is always 32-bit
3328                                  * addressable (as defined by the pci/dma
3329                                  * subsystem)
3330                                  */
3331                                 desc[frag++].addr_lo =
3332                                     dma_map_single(&adapter->pdev->dev,
3333                                                    skb->data,
3334                                                    skb->len -
3335                                                    skb->data_len,
3336                                                    DMA_TO_DEVICE);
3337                         } else {
3338                                 desc[frag].addr_hi = 0;
3339                                 desc[frag].len_vlan =
3340                                     (skb->len - skb->data_len) / 2;
3341
3342                                 /* NOTE: Here, the dma_addr_t returned from
3343                                  * dma_map_single() is implicitly cast as a
3344                                  * u32. Although dma_addr_t can be
3345                                  * 64-bit, the address returned by
3346                                  * dma_map_single() is always 32-bit
3347                                  * addressable (as defined by the pci/dma
3348                                  * subsystem)
3349                                  */
3350                                 desc[frag++].addr_lo =
3351                                     dma_map_single(&adapter->pdev->dev,
3352                                                    skb->data,
3353                                                    ((skb->len -
3354                                                      skb->data_len) / 2),
3355                                                    DMA_TO_DEVICE);
3356                                 desc[frag].addr_hi = 0;
3357
3358                                 desc[frag].len_vlan =
3359                                     (skb->len - skb->data_len) / 2;
3360
3361                                 /* NOTE: Here, the dma_addr_t returned from
3362                                  * dma_map_single() is implicitly cast as a
3363                                  * u32. Although dma_addr_t can be
3364                                  * 64-bit, the address returned by
3365                                  * dma_map_single() is always 32-bit
3366                                  * addressable (as defined by the pci/dma
3367                                  * subsystem)
3368                                  */
3369                                 desc[frag++].addr_lo =
3370                                     dma_map_single(&adapter->pdev->dev,
3371                                                    skb->data +
3372                                                    ((skb->len -
3373                                                      skb->data_len) / 2),
3374                                                    ((skb->len -
3375                                                      skb->data_len) / 2),
3376                                                    DMA_TO_DEVICE);
3377                         }
3378                 } else {
3379                         desc[frag].addr_hi = 0;
3380                         desc[frag].len_vlan =
3381                                         frags[i - 1].size;
3382
3383                         /* NOTE: Here, the dma_addr_t returned from
3384                          * dma_map_page() is implicitly cast as a u32.
3385                          * Although dma_addr_t can be 64-bit, the address
3386                          * returned by dma_map_page() is always 32-bit
3387                          * addressable (as defined by the pci/dma subsystem)
3388                          */
3389                         desc[frag++].addr_lo = skb_frag_dma_map(
3390                                                         &adapter->pdev->dev,
3391                                                         &frags[i - 1],
3392                                                         0,
3393                                                         frags[i - 1].size,
3394                                                         DMA_TO_DEVICE);
3395                 }
3396         }
3397
3398         if (phydev && phydev->speed == SPEED_1000) {
3399                 if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3400                         /* Last element & Interrupt flag */
3401                         desc[frag - 1].flags = 0x5;
3402                         adapter->tx_ring.since_irq = 0;
3403                 } else { /* Last element */
3404                         desc[frag - 1].flags = 0x1;
3405                 }
3406         } else
3407                 desc[frag - 1].flags = 0x5;
3408
3409         desc[0].flags |= 2;     /* First element flag */
3410
3411         tcb->index_start = adapter->tx_ring.send_idx;
3412         tcb->stale = 0;
3413
3414         spin_lock_irqsave(&adapter->send_hw_lock, flags);
3415
3416         thiscopy = NUM_DESC_PER_RING_TX -
3417                                 INDEX10(adapter->tx_ring.send_idx);
3418
3419         if (thiscopy >= frag) {
3420                 remainder = 0;
3421                 thiscopy = frag;
3422         } else {
3423                 remainder = frag - thiscopy;
3424         }
3425
3426         memcpy(adapter->tx_ring.tx_desc_ring +
3427                INDEX10(adapter->tx_ring.send_idx), desc,
3428                sizeof(struct tx_desc) * thiscopy);
3429
3430         add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3431
3432         if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3433                   INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3434                 adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3435                 adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3436         }
3437
3438         if (remainder) {
3439                 memcpy(adapter->tx_ring.tx_desc_ring,
3440                        desc + thiscopy,
3441                        sizeof(struct tx_desc) * remainder);
3442
3443                 add_10bit(&adapter->tx_ring.send_idx, remainder);
3444         }
3445
3446         if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3447                 if (adapter->tx_ring.send_idx)
3448                         tcb->index = NUM_DESC_PER_RING_TX - 1;
3449                 else
3450                         tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3451         } else
3452                 tcb->index = adapter->tx_ring.send_idx - 1;
3453
3454         spin_lock(&adapter->tcb_send_qlock);
3455
3456         if (adapter->tx_ring.send_tail)
3457                 adapter->tx_ring.send_tail->next = tcb;
3458         else
3459                 adapter->tx_ring.send_head = tcb;
3460
3461         adapter->tx_ring.send_tail = tcb;
3462
3463         WARN_ON(tcb->next != NULL);
3464
3465         adapter->tx_ring.used++;
3466
3467         spin_unlock(&adapter->tcb_send_qlock);
3468
3469         /* Write the new write pointer back to the device. */
3470         writel(adapter->tx_ring.send_idx,
3471                &adapter->regs->txdma.service_request);
3472
3473         /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
3474          * timer to wake us up if this packet isn't followed by N more.
3475          */
3476         if (phydev && phydev->speed == SPEED_1000) {
3477                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3478                        &adapter->regs->global.watchdog_timer);
3479         }
3480         spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3481
3482         return 0;
3483 }
3484
3485 /**
3486  * send_packet - Do the work to send a packet
3487  * @skb: the packet(s) to send
3488  * @adapter: a pointer to the device's private adapter structure
3489  *
3490  * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3491  *
3492  * Assumption: Send spinlock has been acquired
3493  */
3494 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3495 {
3496         int status;
3497         struct tcb *tcb = NULL;
3498         u16 *shbufva;
3499         unsigned long flags;
3500
3501         /* All packets must have at least a MAC address and a protocol type */
3502         if (skb->len < ETH_HLEN)
3503                 return -EIO;
3504
3505         /* Get a TCB for this packet */
3506         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3507
3508         tcb = adapter->tx_ring.tcb_qhead;
3509
3510         if (tcb == NULL) {
3511                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3512                 return -ENOMEM;
3513         }
3514
3515         adapter->tx_ring.tcb_qhead = tcb->next;
3516
3517         if (adapter->tx_ring.tcb_qhead == NULL)
3518                 adapter->tx_ring.tcb_qtail = NULL;
3519
3520         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3521
3522         tcb->skb = skb;
3523
3524         if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3525                 shbufva = (u16 *) skb->data;
3526
3527                 if ((shbufva[0] == 0xffff) &&
3528                     (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3529                         tcb->flags |= fMP_DEST_BROAD;
3530                 } else if ((shbufva[0] & 0x3) == 0x0001) {
3531                         tcb->flags |=  fMP_DEST_MULTI;
3532                 }
3533         }
3534
3535         tcb->next = NULL;
3536
3537         /* Call the NIC specific send handler. */
3538         status = nic_send_packet(adapter, tcb);
3539
3540         if (status != 0) {
3541                 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3542
3543                 if (adapter->tx_ring.tcb_qtail)
3544                         adapter->tx_ring.tcb_qtail->next = tcb;
3545                 else
3546                         /* Apparently ready Q is empty. */
3547                         adapter->tx_ring.tcb_qhead = tcb;
3548
3549                 adapter->tx_ring.tcb_qtail = tcb;
3550                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3551                 return status;
3552         }
3553         WARN_ON(adapter->tx_ring.used > NUM_TCB);
3554         return 0;
3555 }
3556
3557 /**
3558  * et131x_send_packets - This function is called by the OS to send packets
3559  * @skb: the packet(s) to send
3560  * @netdev:device on which to TX the above packet(s)
3561  *
3562  * Return 0 in almost all cases; non-zero value in extreme hard failure only
3563  */
3564 static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3565 {
3566         int status = 0;
3567         struct et131x_adapter *adapter = netdev_priv(netdev);
3568
3569         /* Send these packets
3570          *
3571          * NOTE: The Linux Tx entry point is only given one packet at a time
3572          * to Tx, so the PacketCount and it's array used makes no sense here
3573          */
3574
3575         /* TCB is not available */
3576         if (adapter->tx_ring.used >= NUM_TCB) {
3577                 /* NOTE: If there's an error on send, no need to queue the
3578                  * packet under Linux; if we just send an error up to the
3579                  * netif layer, it will resend the skb to us.
3580                  */
3581                 status = -ENOMEM;
3582         } else {
3583                 /* We need to see if the link is up; if it's not, make the
3584                  * netif layer think we're good and drop the packet
3585                  */
3586                 if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3587                                         !netif_carrier_ok(netdev)) {
3588                         dev_kfree_skb_any(skb);
3589                         skb = NULL;
3590
3591                         adapter->net_stats.tx_dropped++;
3592                 } else {
3593                         status = send_packet(skb, adapter);
3594                         if (status != 0 && status != -ENOMEM) {
3595                                 /* On any other error, make netif think we're
3596                                  * OK and drop the packet
3597                                  */
3598                                 dev_kfree_skb_any(skb);
3599                                 skb = NULL;
3600                                 adapter->net_stats.tx_dropped++;
3601                         }
3602                 }
3603         }
3604         return status;
3605 }
3606
3607 /**
3608  * free_send_packet - Recycle a struct tcb
3609  * @adapter: pointer to our adapter
3610  * @tcb: pointer to struct tcb
3611  *
3612  * Complete the packet if necessary
3613  * Assumption - Send spinlock has been acquired
3614  */
3615 static inline void free_send_packet(struct et131x_adapter *adapter,
3616                                                 struct tcb *tcb)
3617 {
3618         unsigned long flags;
3619         struct tx_desc *desc = NULL;
3620         struct net_device_stats *stats = &adapter->net_stats;
3621
3622         if (tcb->flags & fMP_DEST_BROAD)
3623                 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3624         else if (tcb->flags & fMP_DEST_MULTI)
3625                 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3626         else
3627                 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3628
3629         if (tcb->skb) {
3630                 stats->tx_bytes += tcb->skb->len;
3631
3632                 /* Iterate through the TX descriptors on the ring
3633                  * corresponding to this packet and umap the fragments
3634                  * they point to
3635                  */
3636                 do {
3637                         desc = (struct tx_desc *)
3638                                     (adapter->tx_ring.tx_desc_ring +
3639                                                 INDEX10(tcb->index_start));
3640
3641                         dma_unmap_single(&adapter->pdev->dev,
3642                                          desc->addr_lo,
3643                                          desc->len_vlan, DMA_TO_DEVICE);
3644
3645                         add_10bit(&tcb->index_start, 1);
3646                         if (INDEX10(tcb->index_start) >=
3647                                                         NUM_DESC_PER_RING_TX) {
3648                                 tcb->index_start &= ~ET_DMA10_MASK;
3649                                 tcb->index_start ^= ET_DMA10_WRAP;
3650                         }
3651                 } while (desc != (adapter->tx_ring.tx_desc_ring +
3652                                 INDEX10(tcb->index)));
3653
3654                 dev_kfree_skb_any(tcb->skb);
3655         }
3656
3657         memset(tcb, 0, sizeof(struct tcb));
3658
3659         /* Add the TCB to the Ready Q */
3660         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3661
3662         adapter->net_stats.tx_packets++;
3663
3664         if (adapter->tx_ring.tcb_qtail)
3665                 adapter->tx_ring.tcb_qtail->next = tcb;
3666         else
3667                 /* Apparently ready Q is empty. */
3668                 adapter->tx_ring.tcb_qhead = tcb;
3669
3670         adapter->tx_ring.tcb_qtail = tcb;
3671
3672         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3673         WARN_ON(adapter->tx_ring.used < 0);
3674 }
3675
3676 /**
3677  * et131x_free_busy_send_packets - Free and complete the stopped active sends
3678  * @adapter: pointer to our adapter
3679  *
3680  * Assumption - Send spinlock has been acquired
3681  */
3682 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3683 {
3684         struct tcb *tcb;
3685         unsigned long flags;
3686         u32 freed = 0;
3687
3688         /* Any packets being sent? Check the first TCB on the send list */
3689         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3690
3691         tcb = adapter->tx_ring.send_head;
3692
3693         while (tcb != NULL && freed < NUM_TCB) {
3694                 struct tcb *next = tcb->next;
3695
3696                 adapter->tx_ring.send_head = next;
3697
3698                 if (next == NULL)
3699                         adapter->tx_ring.send_tail = NULL;
3700
3701                 adapter->tx_ring.used--;
3702
3703                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3704
3705                 freed++;
3706                 free_send_packet(adapter, tcb);
3707
3708                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3709
3710                 tcb = adapter->tx_ring.send_head;
3711         }
3712
3713         WARN_ON(freed == NUM_TCB);
3714
3715         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3716
3717         adapter->tx_ring.used = 0;
3718 }
3719
3720 /**
3721  * et131x_handle_send_interrupt - Interrupt handler for sending processing
3722  * @adapter: pointer to our adapter
3723  *
3724  * Re-claim the send resources, complete sends and get more to send from
3725  * the send wait queue.
3726  *
3727  * Assumption - Send spinlock has been acquired
3728  */
3729 static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3730 {
3731         unsigned long flags;
3732         u32 serviced;
3733         struct tcb *tcb;
3734         u32 index;
3735
3736         serviced = readl(&adapter->regs->txdma.new_service_complete);
3737         index = INDEX10(serviced);
3738
3739         /* Has the ring wrapped?  Process any descriptors that do not have
3740          * the same "wrap" indicator as the current completion indicator
3741          */
3742         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3743
3744         tcb = adapter->tx_ring.send_head;
3745
3746         while (tcb &&
3747                ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3748                index < INDEX10(tcb->index)) {
3749                 adapter->tx_ring.used--;
3750                 adapter->tx_ring.send_head = tcb->next;
3751                 if (tcb->next == NULL)
3752                         adapter->tx_ring.send_tail = NULL;
3753
3754                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3755                 free_send_packet(adapter, tcb);
3756                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3757
3758                 /* Goto the next packet */
3759                 tcb = adapter->tx_ring.send_head;
3760         }
3761         while (tcb &&
3762                !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3763                && index > (tcb->index & ET_DMA10_MASK)) {
3764                 adapter->tx_ring.used--;
3765                 adapter->tx_ring.send_head = tcb->next;
3766                 if (tcb->next == NULL)
3767                         adapter->tx_ring.send_tail = NULL;
3768
3769                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3770                 free_send_packet(adapter, tcb);
3771                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3772
3773                 /* Goto the next packet */
3774                 tcb = adapter->tx_ring.send_head;
3775         }
3776
3777         /* Wake up the queue when we hit a low-water mark */
3778         if (adapter->tx_ring.used <= NUM_TCB / 3)
3779                 netif_wake_queue(adapter->netdev);
3780
3781         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3782 }
3783
3784 static int et131x_get_settings(struct net_device *netdev,
3785                                struct ethtool_cmd *cmd)
3786 {
3787         struct et131x_adapter *adapter = netdev_priv(netdev);
3788
3789         return phy_ethtool_gset(adapter->phydev, cmd);
3790 }
3791
3792 static int et131x_set_settings(struct net_device *netdev,
3793                                struct ethtool_cmd *cmd)
3794 {
3795         struct et131x_adapter *adapter = netdev_priv(netdev);
3796
3797         return phy_ethtool_sset(adapter->phydev, cmd);
3798 }
3799
3800 static int et131x_get_regs_len(struct net_device *netdev)
3801 {
3802 #define ET131X_REGS_LEN 256
3803         return ET131X_REGS_LEN * sizeof(u32);
3804 }
3805
3806 static void et131x_get_regs(struct net_device *netdev,
3807                             struct ethtool_regs *regs, void *regs_data)
3808 {
3809         struct et131x_adapter *adapter = netdev_priv(netdev);
3810         struct address_map __iomem *aregs = adapter->regs;
3811         u32 *regs_buff = regs_data;
3812         u32 num = 0;
3813
3814         memset(regs_data, 0, et131x_get_regs_len(netdev));
3815
3816         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3817                         adapter->pdev->device;
3818
3819         /* PHY regs */
3820         et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3821         et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3822         et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3823         et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3824         et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3825         et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3826         et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3827         /* Autoneg next page transmit reg */
3828         et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3829         /* Link partner next page reg */
3830         et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3831         et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3832         et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3833         et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3834         et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3835         et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3836         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3837                         (u16 *)&regs_buff[num++]);
3838         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3839                         (u16 *)&regs_buff[num++]);
3840         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3841                         (u16 *)&regs_buff[num++]);
3842         et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3843                         (u16 *)&regs_buff[num++]);
3844         et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3845         et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3846         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3847         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3848                         (u16 *)&regs_buff[num++]);
3849         et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3850         et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3851         et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3852
3853         /* Global regs */
3854         regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3855         regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3856         regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3857         regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3858         regs_buff[num++] = readl(&aregs->global.pm_csr);
3859         regs_buff[num++] = adapter->stats.interrupt_status;
3860         regs_buff[num++] = readl(&aregs->global.int_mask);
3861         regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3862         regs_buff[num++] = readl(&aregs->global.int_status_alias);
3863         regs_buff[num++] = readl(&aregs->global.sw_reset);
3864         regs_buff[num++] = readl(&aregs->global.slv_timer);
3865         regs_buff[num++] = readl(&aregs->global.msi_config);
3866         regs_buff[num++] = readl(&aregs->global.loopback);
3867         regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3868
3869         /* TXDMA regs */
3870         regs_buff[num++] = readl(&aregs->txdma.csr);
3871         regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3872         regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3873         regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3874         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3875         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3876         regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3877         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3878         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3879         regs_buff[num++] = readl(&aregs->txdma.service_request);
3880         regs_buff[num++] = readl(&aregs->txdma.service_complete);
3881         regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3882         regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3883         regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3884         regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3885         regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3886         regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3887         regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3888         regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3889         regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3890         regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3891         regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3892         regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3893         regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3894         regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3895         regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3896
3897         /* RXDMA regs */
3898         regs_buff[num++] = readl(&aregs->rxdma.csr);
3899         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3900         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3901         regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3902         regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3903         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3904         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3905         regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3906         regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3907         regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3908         regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3909         regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3910         regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3911         regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3912         regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3913         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3914         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3915         regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3916         regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3917         regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3918         regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3919         regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3920         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3921         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3922         regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3923         regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3924         regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3925         regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3926         regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3927 }
3928
3929 #define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3930 static void et131x_get_drvinfo(struct net_device *netdev,
3931                                struct ethtool_drvinfo *info)
3932 {
3933         struct et131x_adapter *adapter = netdev_priv(netdev);
3934
3935         strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3936         strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3937         strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3938 }
3939
3940 static struct ethtool_ops et131x_ethtool_ops = {
3941         .get_settings   = et131x_get_settings,
3942         .set_settings   = et131x_set_settings,
3943         .get_drvinfo    = et131x_get_drvinfo,
3944         .get_regs_len   = et131x_get_regs_len,
3945         .get_regs       = et131x_get_regs,
3946         .get_link = ethtool_op_get_link,
3947 };
3948 /**
3949  * et131x_hwaddr_init - set up the MAC Address on the ET1310
3950  * @adapter: pointer to our private adapter structure
3951  */
3952 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3953 {
3954         /* If have our default mac from init and no mac address from
3955          * EEPROM then we need to generate the last octet and set it on the
3956          * device
3957          */
3958         if (adapter->rom_addr[0] == 0x00 &&
3959             adapter->rom_addr[1] == 0x00 &&
3960             adapter->rom_addr[2] == 0x00 &&
3961             adapter->rom_addr[3] == 0x00 &&
3962             adapter->rom_addr[4] == 0x00 &&
3963             adapter->rom_addr[5] == 0x00) {
3964                 /*
3965                  * We need to randomly generate the last octet so we
3966                  * decrease our chances of setting the mac address to
3967                  * same as another one of our cards in the system
3968                  */
3969                 get_random_bytes(&adapter->addr[5], 1);
3970                 /*
3971                  * We have the default value in the register we are
3972                  * working with so we need to copy the current
3973                  * address into the permanent address
3974                  */
3975                 memcpy(adapter->rom_addr,
3976                         adapter->addr, ETH_ALEN);
3977         } else {
3978                 /* We do not have an override address, so set the
3979                  * current address to the permanent address and add
3980                  * it to the device
3981                  */
3982                 memcpy(adapter->addr,
3983                        adapter->rom_addr, ETH_ALEN);
3984         }
3985 }
3986
3987 /**
3988  * et131x_pci_init       - initial PCI setup
3989  * @adapter: pointer to our private adapter structure
3990  * @pdev: our PCI device
3991  *
3992  * Perform the initial setup of PCI registers and if possible initialise
3993  * the MAC address. At this point the I/O registers have yet to be mapped
3994  */
3995 static int et131x_pci_init(struct et131x_adapter *adapter,
3996                                                 struct pci_dev *pdev)
3997 {
3998         int cap = pci_pcie_cap(pdev);
3999         u16 max_payload;
4000         u16 ctl;
4001         int i, rc;
4002
4003         rc = et131x_init_eeprom(adapter);
4004         if (rc < 0)
4005                 goto out;
4006
4007         if (!cap) {
4008                 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
4009                 goto err_out;
4010         }
4011
4012         /* Let's set up the PORT LOGIC Register.  First we need to know what
4013          * the max_payload_size is
4014          */
4015         if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCAP, &max_payload)) {
4016                 dev_err(&pdev->dev,
4017                     "Could not read PCI config space for Max Payload Size\n");
4018                 goto err_out;
4019         }
4020
4021         /* Program the Ack/Nak latency and replay timers */
4022         max_payload &= 0x07;
4023
4024         if (max_payload < 2) {
4025                 static const u16 acknak[2] = { 0x76, 0xD0 };
4026                 static const u16 replay[2] = { 0x1E0, 0x2ED };
4027
4028                 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
4029                                                acknak[max_payload])) {
4030                         dev_err(&pdev->dev,
4031                           "Could not write PCI config space for ACK/NAK\n");
4032                         goto err_out;
4033                 }
4034                 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
4035                                                replay[max_payload])) {
4036                         dev_err(&pdev->dev,
4037                           "Could not write PCI config space for Replay Timer\n");
4038                         goto err_out;
4039                 }
4040         }
4041
4042         /* l0s and l1 latency timers.  We are using default values.
4043          * Representing 001 for L0s and 010 for L1
4044          */
4045         if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
4046                 dev_err(&pdev->dev,
4047                   "Could not write PCI config space for Latency Timers\n");
4048                 goto err_out;
4049         }
4050
4051         /* Change the max read size to 2k */
4052         if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl)) {
4053                 dev_err(&pdev->dev,
4054                         "Could not read PCI config space for Max read size\n");
4055                 goto err_out;
4056         }
4057
4058         ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | (0x04 << 12);
4059
4060         if (pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl)) {
4061                 dev_err(&pdev->dev,
4062                       "Could not write PCI config space for Max read size\n");
4063                 goto err_out;
4064         }
4065
4066         /* Get MAC address from config space if an eeprom exists, otherwise
4067          * the MAC address there will not be valid
4068          */
4069         if (!adapter->has_eeprom) {
4070                 et131x_hwaddr_init(adapter);
4071                 return 0;
4072         }
4073
4074         for (i = 0; i < ETH_ALEN; i++) {
4075                 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
4076                                         adapter->rom_addr + i)) {
4077                         dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
4078                         goto err_out;
4079                 }
4080         }
4081         memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
4082 out:
4083         return rc;
4084 err_out:
4085         rc = -EIO;
4086         goto out;
4087 }
4088
4089 /**
4090  * et131x_error_timer_handler
4091  * @data: timer-specific variable; here a pointer to our adapter structure
4092  *
4093  * The routine called when the error timer expires, to track the number of
4094  * recurring errors.
4095  */
4096 static void et131x_error_timer_handler(unsigned long data)
4097 {
4098         struct et131x_adapter *adapter = (struct et131x_adapter *) data;
4099         struct phy_device *phydev = adapter->phydev;
4100
4101         if (et1310_in_phy_coma(adapter)) {
4102                 /* Bring the device immediately out of coma, to
4103                  * prevent it from sleeping indefinitely, this
4104                  * mechanism could be improved! */
4105                 et1310_disable_phy_coma(adapter);
4106                 adapter->boot_coma = 20;
4107         } else {
4108                 et1310_update_macstat_host_counters(adapter);
4109         }
4110
4111         if (!phydev->link && adapter->boot_coma < 11)
4112                 adapter->boot_coma++;
4113
4114         if (adapter->boot_coma == 10) {
4115                 if (!phydev->link) {
4116                         if (!et1310_in_phy_coma(adapter)) {
4117                                 /* NOTE - This was originally a 'sync with
4118                                  *  interrupt'. How to do that under Linux?
4119                                  */
4120                                 et131x_enable_interrupts(adapter);
4121                                 et1310_enable_phy_coma(adapter);
4122                         }
4123                 }
4124         }
4125
4126         /* This is a periodic timer, so reschedule */
4127         mod_timer(&adapter->error_timer, jiffies +
4128                                           TX_ERROR_PERIOD * HZ / 1000);
4129 }
4130
4131 /**
4132  * et131x_adapter_memory_alloc
4133  * @adapter: pointer to our private adapter structure
4134  *
4135  * Returns 0 on success, errno on failure (as defined in errno.h).
4136  *
4137  * Allocate all the memory blocks for send, receive and others.
4138  */
4139 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4140 {
4141         int status;
4142
4143         /* Allocate memory for the Tx Ring */
4144         status = et131x_tx_dma_memory_alloc(adapter);
4145         if (status != 0) {
4146                 dev_err(&adapter->pdev->dev,
4147                           "et131x_tx_dma_memory_alloc FAILED\n");
4148                 return status;
4149         }
4150         /* Receive buffer memory allocation */
4151         status = et131x_rx_dma_memory_alloc(adapter);
4152         if (status != 0) {
4153                 dev_err(&adapter->pdev->dev,
4154                           "et131x_rx_dma_memory_alloc FAILED\n");
4155                 et131x_tx_dma_memory_free(adapter);
4156                 return status;
4157         }
4158
4159         /* Init receive data structures */
4160         status = et131x_init_recv(adapter);
4161         if (status != 0) {
4162                 dev_err(&adapter->pdev->dev,
4163                         "et131x_init_recv FAILED\n");
4164                 et131x_tx_dma_memory_free(adapter);
4165                 et131x_rx_dma_memory_free(adapter);
4166         }
4167         return status;
4168 }
4169
4170 /**
4171  * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4172  * @adapter: pointer to our private adapter structure
4173  */
4174 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4175 {
4176         /* Free DMA memory */
4177         et131x_tx_dma_memory_free(adapter);
4178         et131x_rx_dma_memory_free(adapter);
4179 }
4180
4181 static void et131x_adjust_link(struct net_device *netdev)
4182 {
4183         struct et131x_adapter *adapter = netdev_priv(netdev);
4184         struct  phy_device *phydev = adapter->phydev;
4185
4186         if (netif_carrier_ok(netdev)) {
4187                 adapter->boot_coma = 20;
4188
4189                 if (phydev && phydev->speed == SPEED_10) {
4190                         /*
4191                          * NOTE - Is there a way to query this without
4192                          * TruePHY?
4193                          * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4194                          * EMI_TRUEPHY_A13O) {
4195                          */
4196                         u16 register18;
4197
4198                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4199                                          &register18);
4200                         et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4201                                          register18 | 0x4);
4202                         et131x_mii_write(adapter, PHY_INDEX_REG,
4203                                          register18 | 0x8402);
4204                         et131x_mii_write(adapter, PHY_DATA_REG,
4205                                          register18 | 511);
4206                         et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4207                                          register18);
4208                 }
4209
4210                 et1310_config_flow_control(adapter);
4211
4212                 if (phydev && phydev->speed == SPEED_1000 &&
4213                                 adapter->registry_jumbo_packet > 2048) {
4214                         u16 reg;
4215
4216                         et131x_mii_read(adapter, PHY_CONFIG, &reg);
4217                         reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4218                         reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4219                         et131x_mii_write(adapter, PHY_CONFIG, reg);
4220                 }
4221
4222                 et131x_set_rx_dma_timer(adapter);
4223                 et1310_config_mac_regs2(adapter);
4224         }
4225
4226         if (phydev && phydev->link != adapter->link) {
4227                 /*
4228                  * Check to see if we are in coma mode and if
4229                  * so, disable it because we will not be able
4230                  * to read PHY values until we are out.
4231                  */
4232                 if (et1310_in_phy_coma(adapter))
4233                         et1310_disable_phy_coma(adapter);
4234
4235                 if (phydev->link) {
4236                         adapter->boot_coma = 20;
4237                 } else {
4238                         dev_warn(&adapter->pdev->dev,
4239                             "Link down - cable problem ?\n");
4240                         adapter->boot_coma = 0;
4241
4242                         if (phydev->speed == SPEED_10) {
4243                                 /* NOTE - Is there a way to query this without
4244                                  * TruePHY?
4245                                  * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4246                                  * EMI_TRUEPHY_A13O)
4247                                  */
4248                                 u16 register18;
4249
4250                                 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4251                                                  &register18);
4252                                 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4253                                                  register18 | 0x4);
4254                                 et131x_mii_write(adapter, PHY_INDEX_REG,
4255                                                  register18 | 0x8402);
4256                                 et131x_mii_write(adapter, PHY_DATA_REG,
4257                                                  register18 | 511);
4258                                 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4259                                                  register18);
4260                         }
4261
4262                         /* Free the packets being actively sent & stopped */
4263                         et131x_free_busy_send_packets(adapter);
4264
4265                         /* Re-initialize the send structures */
4266                         et131x_init_send(adapter);
4267
4268                         /*
4269                          * Bring the device back to the state it was during
4270                          * init prior to autonegotiation being complete. This
4271                          * way, when we get the auto-neg complete interrupt,
4272                          * we can complete init by calling config_mac_regs2.
4273                          */
4274                         et131x_soft_reset(adapter);
4275
4276                         /* Setup ET1310 as per the documentation */
4277                         et131x_adapter_setup(adapter);
4278
4279                         /* perform reset of tx/rx */
4280                         et131x_disable_txrx(netdev);
4281                         et131x_enable_txrx(netdev);
4282                 }
4283
4284                 adapter->link = phydev->link;
4285
4286                 phy_print_status(phydev);
4287         }
4288 }
4289
4290 static int et131x_mii_probe(struct net_device *netdev)
4291 {
4292         struct et131x_adapter *adapter = netdev_priv(netdev);
4293         struct  phy_device *phydev = NULL;
4294
4295         phydev = phy_find_first(adapter->mii_bus);
4296         if (!phydev) {
4297                 dev_err(&adapter->pdev->dev, "no PHY found\n");
4298                 return -ENODEV;
4299         }
4300
4301         phydev = phy_connect(netdev, dev_name(&phydev->dev),
4302                         &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4303
4304         if (IS_ERR(phydev)) {
4305                 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4306                 return PTR_ERR(phydev);
4307         }
4308
4309         phydev->supported &= (SUPPORTED_10baseT_Half
4310                                 | SUPPORTED_10baseT_Full
4311                                 | SUPPORTED_100baseT_Half
4312                                 | SUPPORTED_100baseT_Full
4313                                 | SUPPORTED_Autoneg
4314                                 | SUPPORTED_MII
4315                                 | SUPPORTED_TP);
4316
4317         if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4318                 phydev->supported |= SUPPORTED_1000baseT_Full;
4319
4320         phydev->advertising = phydev->supported;
4321         adapter->phydev = phydev;
4322
4323         dev_info(&adapter->pdev->dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
4324                  phydev->drv->name, dev_name(&phydev->dev));
4325
4326         return 0;
4327 }
4328
4329 /**
4330  * et131x_adapter_init
4331  * @adapter: pointer to the private adapter struct
4332  * @pdev: pointer to the PCI device
4333  *
4334  * Initialize the data structures for the et131x_adapter object and link
4335  * them together with the platform provided device structures.
4336  */
4337 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4338                 struct pci_dev *pdev)
4339 {
4340         static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4341
4342         struct et131x_adapter *adapter;
4343
4344         /* Allocate private adapter struct and copy in relevant information */
4345         adapter = netdev_priv(netdev);
4346         adapter->pdev = pci_dev_get(pdev);
4347         adapter->netdev = netdev;
4348
4349         /* Initialize spinlocks here */
4350         spin_lock_init(&adapter->lock);
4351         spin_lock_init(&adapter->tcb_send_qlock);
4352         spin_lock_init(&adapter->tcb_ready_qlock);
4353         spin_lock_init(&adapter->send_hw_lock);
4354         spin_lock_init(&adapter->rcv_lock);
4355         spin_lock_init(&adapter->rcv_pend_lock);
4356         spin_lock_init(&adapter->fbr_lock);
4357         spin_lock_init(&adapter->phy_lock);
4358
4359         adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
4360
4361         /* Set the MAC address to a default */
4362         memcpy(adapter->addr, default_mac, ETH_ALEN);
4363
4364         return adapter;
4365 }
4366
4367 /**
4368  * et131x_pci_remove
4369  * @pdev: a pointer to the device's pci_dev structure
4370  *
4371  * Registered in the pci_driver structure, this function is called when the
4372  * PCI subsystem detects that a PCI device which matches the information
4373  * contained in the pci_device_id table has been removed.
4374  */
4375 static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4376 {
4377         struct net_device *netdev = pci_get_drvdata(pdev);
4378         struct et131x_adapter *adapter = netdev_priv(netdev);
4379
4380         unregister_netdev(netdev);
4381         phy_disconnect(adapter->phydev);
4382         mdiobus_unregister(adapter->mii_bus);
4383         kfree(adapter->mii_bus->irq);
4384         mdiobus_free(adapter->mii_bus);
4385
4386         et131x_adapter_memory_free(adapter);
4387         iounmap(adapter->regs);
4388         pci_dev_put(pdev);
4389
4390         free_netdev(netdev);
4391         pci_release_regions(pdev);
4392         pci_disable_device(pdev);
4393 }
4394
4395 /**
4396  * et131x_up - Bring up a device for use.
4397  * @netdev: device to be opened
4398  */
4399 static void et131x_up(struct net_device *netdev)
4400 {
4401         struct et131x_adapter *adapter = netdev_priv(netdev);
4402
4403         et131x_enable_txrx(netdev);
4404         phy_start(adapter->phydev);
4405 }
4406
4407 /**
4408  * et131x_down - Bring down the device
4409  * @netdev: device to be brought down
4410  */
4411 static void et131x_down(struct net_device *netdev)
4412 {
4413         struct et131x_adapter *adapter = netdev_priv(netdev);
4414
4415         /* Save the timestamp for the TX watchdog, prevent a timeout */
4416         netdev->trans_start = jiffies;
4417
4418         phy_stop(adapter->phydev);
4419         et131x_disable_txrx(netdev);
4420 }
4421
4422 #ifdef CONFIG_PM_SLEEP
4423 static int et131x_suspend(struct device *dev)
4424 {
4425         struct pci_dev *pdev = to_pci_dev(dev);
4426         struct net_device *netdev = pci_get_drvdata(pdev);
4427
4428         if (netif_running(netdev)) {
4429                 netif_device_detach(netdev);
4430                 et131x_down(netdev);
4431                 pci_save_state(pdev);
4432         }
4433
4434         return 0;
4435 }
4436
4437 static int et131x_resume(struct device *dev)
4438 {
4439         struct pci_dev *pdev = to_pci_dev(dev);
4440         struct net_device *netdev = pci_get_drvdata(pdev);
4441
4442         if (netif_running(netdev)) {
4443                 pci_restore_state(pdev);
4444                 et131x_up(netdev);
4445                 netif_device_attach(netdev);
4446         }
4447
4448         return 0;
4449 }
4450
4451 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4452 #define ET131X_PM_OPS (&et131x_pm_ops)
4453 #else
4454 #define ET131X_PM_OPS NULL
4455 #endif
4456
4457 /**
4458  * et131x_isr - The Interrupt Service Routine for the driver.
4459  * @irq: the IRQ on which the interrupt was received.
4460  * @dev_id: device-specific info (here a pointer to a net_device struct)
4461  *
4462  * Returns a value indicating if the interrupt was handled.
4463  */
4464 irqreturn_t et131x_isr(int irq, void *dev_id)
4465 {
4466         bool handled = true;
4467         struct net_device *netdev = (struct net_device *)dev_id;
4468         struct et131x_adapter *adapter = NULL;
4469         u32 status;
4470
4471         if (!netif_device_present(netdev)) {
4472                 handled = false;
4473                 goto out;
4474         }
4475
4476         adapter = netdev_priv(netdev);
4477
4478         /* If the adapter is in low power state, then it should not
4479          * recognize any interrupt
4480          */
4481
4482         /* Disable Device Interrupts */
4483         et131x_disable_interrupts(adapter);
4484
4485         /* Get a copy of the value in the interrupt status register
4486          * so we can process the interrupting section
4487          */
4488         status = readl(&adapter->regs->global.int_status);
4489
4490         if (adapter->flowcontrol == FLOW_TXONLY ||
4491             adapter->flowcontrol == FLOW_BOTH) {
4492                 status &= ~INT_MASK_ENABLE;
4493         } else {
4494                 status &= ~INT_MASK_ENABLE_NO_FLOW;
4495         }
4496
4497         /* Make sure this is our interrupt */
4498         if (!status) {
4499                 handled = false;
4500                 et131x_enable_interrupts(adapter);
4501                 goto out;
4502         }
4503
4504         /* This is our interrupt, so process accordingly */
4505
4506         if (status & ET_INTR_WATCHDOG) {
4507                 struct tcb *tcb = adapter->tx_ring.send_head;
4508
4509                 if (tcb)
4510                         if (++tcb->stale > 1)
4511                                 status |= ET_INTR_TXDMA_ISR;
4512
4513                 if (adapter->rx_ring.unfinished_receives)
4514                         status |= ET_INTR_RXDMA_XFR_DONE;
4515                 else if (tcb == NULL)
4516                         writel(0, &adapter->regs->global.watchdog_timer);
4517
4518                 status &= ~ET_INTR_WATCHDOG;
4519         }
4520
4521         if (status == 0) {
4522                 /* This interrupt has in some way been "handled" by
4523                  * the ISR. Either it was a spurious Rx interrupt, or
4524                  * it was a Tx interrupt that has been filtered by
4525                  * the ISR.
4526                  */
4527                 et131x_enable_interrupts(adapter);
4528                 goto out;
4529         }
4530
4531         /* We need to save the interrupt status value for use in our
4532          * DPC. We will clear the software copy of that in that
4533          * routine.
4534          */
4535         adapter->stats.interrupt_status = status;
4536
4537         /* Schedule the ISR handler as a bottom-half task in the
4538          * kernel's tq_immediate queue, and mark the queue for
4539          * execution
4540          */
4541         schedule_work(&adapter->task);
4542 out:
4543         return IRQ_RETVAL(handled);
4544 }
4545
4546 /**
4547  * et131x_isr_handler - The ISR handler
4548  * @p_adapter, a pointer to the device's private adapter structure
4549  *
4550  * scheduled to run in a deferred context by the ISR. This is where the ISR's
4551  * work actually gets done.
4552  */
4553 static void et131x_isr_handler(struct work_struct *work)
4554 {
4555         struct et131x_adapter *adapter =
4556                 container_of(work, struct et131x_adapter, task);
4557         u32 status = adapter->stats.interrupt_status;
4558         struct address_map __iomem *iomem = adapter->regs;
4559
4560         /*
4561          * These first two are by far the most common.  Once handled, we clear
4562          * their two bits in the status word.  If the word is now zero, we
4563          * exit.
4564          */
4565         /* Handle all the completed Transmit interrupts */
4566         if (status & ET_INTR_TXDMA_ISR)
4567                 et131x_handle_send_interrupt(adapter);
4568
4569         /* Handle all the completed Receives interrupts */
4570         if (status & ET_INTR_RXDMA_XFR_DONE)
4571                 et131x_handle_recv_interrupt(adapter);
4572
4573         status &= 0xffffffd7;
4574
4575         if (status) {
4576                 /* Handle the TXDMA Error interrupt */
4577                 if (status & ET_INTR_TXDMA_ERR) {
4578                         u32 txdma_err;
4579
4580                         /* Following read also clears the register (COR) */
4581                         txdma_err = readl(&iomem->txdma.tx_dma_error);
4582
4583                         dev_warn(&adapter->pdev->dev,
4584                                     "TXDMA_ERR interrupt, error = %d\n",
4585                                     txdma_err);
4586                 }
4587
4588                 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4589                 if (status &
4590                     (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4591                         /*
4592                          * This indicates the number of unused buffers in
4593                          * RXDMA free buffer ring 0 is <= the limit you
4594                          * programmed. Free buffer resources need to be
4595                          * returned.  Free buffers are consumed as packets
4596                          * are passed from the network to the host. The host
4597                          * becomes aware of the packets from the contents of
4598                          * the packet status ring. This ring is queried when
4599                          * the packet done interrupt occurs. Packets are then
4600                          * passed to the OS. When the OS is done with the
4601                          * packets the resources can be returned to the
4602                          * ET1310 for re-use. This interrupt is one method of
4603                          * returning resources.
4604                          */
4605
4606                         /* If the user has flow control on, then we will
4607                          * send a pause packet, otherwise just exit
4608                          */
4609                         if (adapter->flowcontrol == FLOW_TXONLY ||
4610                             adapter->flowcontrol == FLOW_BOTH) {
4611                                 u32 pm_csr;
4612
4613                                 /* Tell the device to send a pause packet via
4614                                  * the back pressure register (bp req  and
4615                                  * bp xon/xoff)
4616                                  */
4617                                 pm_csr = readl(&iomem->global.pm_csr);
4618                                 if (!et1310_in_phy_coma(adapter))
4619                                         writel(3, &iomem->txmac.bp_ctrl);
4620                         }
4621                 }
4622
4623                 /* Handle Packet Status Ring Low Interrupt */
4624                 if (status & ET_INTR_RXDMA_STAT_LOW) {
4625
4626                         /*
4627                          * Same idea as with the two Free Buffer Rings.
4628                          * Packets going from the network to the host each
4629                          * consume a free buffer resource and a packet status
4630                          * resource.  These resoures are passed to the OS.
4631                          * When the OS is done with the resources, they need
4632                          * to be returned to the ET1310. This is one method
4633                          * of returning the resources.
4634                          */
4635                 }
4636
4637                 /* Handle RXDMA Error Interrupt */
4638                 if (status & ET_INTR_RXDMA_ERR) {
4639                         /*
4640                          * The rxdma_error interrupt is sent when a time-out
4641                          * on a request issued by the JAGCore has occurred or
4642                          * a completion is returned with an un-successful
4643                          * status.  In both cases the request is considered
4644                          * complete. The JAGCore will automatically re-try the
4645                          * request in question. Normally information on events
4646                          * like these are sent to the host using the "Advanced
4647                          * Error Reporting" capability. This interrupt is
4648                          * another way of getting similar information. The
4649                          * only thing required is to clear the interrupt by
4650                          * reading the ISR in the global resources. The
4651                          * JAGCore will do a re-try on the request.  Normally
4652                          * you should never see this interrupt. If you start
4653                          * to see this interrupt occurring frequently then
4654                          * something bad has occurred. A reset might be the
4655                          * thing to do.
4656                          */
4657                         /* TRAP();*/
4658
4659                         dev_warn(&adapter->pdev->dev,
4660                                     "RxDMA_ERR interrupt, error %x\n",
4661                                     readl(&iomem->txmac.tx_test));
4662                 }
4663
4664                 /* Handle the Wake on LAN Event */
4665                 if (status & ET_INTR_WOL) {
4666                         /*
4667                          * This is a secondary interrupt for wake on LAN.
4668                          * The driver should never see this, if it does,
4669                          * something serious is wrong. We will TRAP the
4670                          * message when we are in DBG mode, otherwise we
4671                          * will ignore it.
4672                          */
4673                         dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4674                 }
4675
4676                 /* Let's move on to the TxMac */
4677                 if (status & ET_INTR_TXMAC) {
4678                         u32 err = readl(&iomem->txmac.err);
4679
4680                         /*
4681                          * When any of the errors occur and TXMAC generates
4682                          * an interrupt to report these errors, it usually
4683                          * means that TXMAC has detected an error in the data
4684                          * stream retrieved from the on-chip Tx Q. All of
4685                          * these errors are catastrophic and TXMAC won't be
4686                          * able to recover data when these errors occur.  In
4687                          * a nutshell, the whole Tx path will have to be reset
4688                          * and re-configured afterwards.
4689                          */
4690                         dev_warn(&adapter->pdev->dev,
4691                                     "TXMAC interrupt, error 0x%08x\n",
4692                                     err);
4693
4694                         /* If we are debugging, we want to see this error,
4695                          * otherwise we just want the device to be reset and
4696                          * continue
4697                          */
4698                 }
4699
4700                 /* Handle RXMAC Interrupt */
4701                 if (status & ET_INTR_RXMAC) {
4702                         /*
4703                          * These interrupts are catastrophic to the device,
4704                          * what we need to do is disable the interrupts and
4705                          * set the flag to cause us to reset so we can solve
4706                          * this issue.
4707                          */
4708                         /* MP_SET_FLAG( adapter,
4709                                                 fMP_ADAPTER_HARDWARE_ERROR); */
4710
4711                         dev_warn(&adapter->pdev->dev,
4712                           "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
4713                                     readl(&iomem->rxmac.err_reg));
4714
4715                         dev_warn(&adapter->pdev->dev,
4716                                     "Enable 0x%08x, Diag 0x%08x\n",
4717                                     readl(&iomem->rxmac.ctrl),
4718                                     readl(&iomem->rxmac.rxq_diag));
4719
4720                         /*
4721                          * If we are debugging, we want to see this error,
4722                          * otherwise we just want the device to be reset and
4723                          * continue
4724                          */
4725                 }
4726
4727                 /* Handle MAC_STAT Interrupt */
4728                 if (status & ET_INTR_MAC_STAT) {
4729                         /*
4730                          * This means at least one of the un-masked counters
4731                          * in the MAC_STAT block has rolled over.  Use this
4732                          * to maintain the top, software managed bits of the
4733                          * counter(s).
4734                          */
4735                         et1310_handle_macstat_interrupt(adapter);
4736                 }
4737
4738                 /* Handle SLV Timeout Interrupt */
4739                 if (status & ET_INTR_SLV_TIMEOUT) {
4740                         /*
4741                          * This means a timeout has occurred on a read or
4742                          * write request to one of the JAGCore registers. The
4743                          * Global Resources block has terminated the request
4744                          * and on a read request, returned a "fake" value.
4745                          * The most likely reasons are: Bad Address or the
4746                          * addressed module is in a power-down state and
4747                          * can't respond.
4748                          */
4749                 }
4750         }
4751         et131x_enable_interrupts(adapter);
4752 }
4753
4754 /**
4755  * et131x_stats - Return the current device statistics.
4756  * @netdev: device whose stats are being queried
4757  *
4758  * Returns 0 on success, errno on failure (as defined in errno.h)
4759  */
4760 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4761 {
4762         struct et131x_adapter *adapter = netdev_priv(netdev);
4763         struct net_device_stats *stats = &adapter->net_stats;
4764         struct ce_stats *devstat = &adapter->stats;
4765
4766         stats->rx_errors = devstat->rx_length_errs +
4767                            devstat->rx_align_errs +
4768                            devstat->rx_crc_errs +
4769                            devstat->rx_code_violations +
4770                            devstat->rx_other_errs;
4771         stats->tx_errors = devstat->tx_max_pkt_errs;
4772         stats->multicast = devstat->multicast_pkts_rcvd;
4773         stats->collisions = devstat->tx_collisions;
4774
4775         stats->rx_length_errors = devstat->rx_length_errs;
4776         stats->rx_over_errors = devstat->rx_overflows;
4777         stats->rx_crc_errors = devstat->rx_crc_errs;
4778
4779         /* NOTE: These stats don't have corresponding values in CE_STATS,
4780          * so we're going to have to update these directly from within the
4781          * TX/RX code
4782          */
4783         /* stats->rx_bytes            = 20; devstat->; */
4784         /* stats->tx_bytes            = 20;  devstat->; */
4785         /* stats->rx_dropped          = devstat->; */
4786         /* stats->tx_dropped          = devstat->; */
4787
4788         /*  NOTE: Not used, can't find analogous statistics */
4789         /* stats->rx_frame_errors     = devstat->; */
4790         /* stats->rx_fifo_errors      = devstat->; */
4791         /* stats->rx_missed_errors    = devstat->; */
4792
4793         /* stats->tx_aborted_errors   = devstat->; */
4794         /* stats->tx_carrier_errors   = devstat->; */
4795         /* stats->tx_fifo_errors      = devstat->; */
4796         /* stats->tx_heartbeat_errors = devstat->; */
4797         /* stats->tx_window_errors    = devstat->; */
4798         return stats;
4799 }
4800
4801 /**
4802  * et131x_open - Open the device for use.
4803  * @netdev: device to be opened
4804  *
4805  * Returns 0 on success, errno on failure (as defined in errno.h)
4806  */
4807 static int et131x_open(struct net_device *netdev)
4808 {
4809         struct et131x_adapter *adapter = netdev_priv(netdev);
4810         struct pci_dev *pdev = adapter->pdev;
4811         unsigned int irq = pdev->irq;
4812         int result;
4813
4814         /* Start the timer to track NIC errors */
4815         init_timer(&adapter->error_timer);
4816         adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4817         adapter->error_timer.function = et131x_error_timer_handler;
4818         adapter->error_timer.data = (unsigned long)adapter;
4819         add_timer(&adapter->error_timer);
4820
4821         result = request_irq(irq, et131x_isr,
4822                              IRQF_SHARED, netdev->name, netdev);
4823         if (result) {
4824                 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4825                 return result;
4826         }
4827
4828         adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4829
4830         et131x_up(netdev);
4831
4832         return result;
4833 }
4834
4835 /**
4836  * et131x_close - Close the device
4837  * @netdev: device to be closed
4838  *
4839  * Returns 0 on success, errno on failure (as defined in errno.h)
4840  */
4841 static int et131x_close(struct net_device *netdev)
4842 {
4843         struct et131x_adapter *adapter = netdev_priv(netdev);
4844
4845         et131x_down(netdev);
4846
4847         adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4848         free_irq(adapter->pdev->irq, netdev);
4849
4850         /* Stop the error timer */
4851         return del_timer_sync(&adapter->error_timer);
4852 }
4853
4854 /**
4855  * et131x_ioctl - The I/O Control handler for the driver
4856  * @netdev: device on which the control request is being made
4857  * @reqbuf: a pointer to the IOCTL request buffer
4858  * @cmd: the IOCTL command code
4859  *
4860  * Returns 0 on success, errno on failure (as defined in errno.h)
4861  */
4862 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4863                         int cmd)
4864 {
4865         struct et131x_adapter *adapter = netdev_priv(netdev);
4866
4867         if (!adapter->phydev)
4868                 return -EINVAL;
4869
4870         return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4871 }
4872
4873 /**
4874  * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4875  * @adapter: pointer to our private adapter structure
4876  *
4877  * FIXME: lot of dups with MAC code
4878  *
4879  * Returns 0 on success, errno on failure
4880  */
4881 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4882 {
4883         int filter = adapter->packet_filter;
4884         int status = 0;
4885         u32 ctrl;
4886         u32 pf_ctrl;
4887
4888         ctrl = readl(&adapter->regs->rxmac.ctrl);
4889         pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4890
4891         /* Default to disabled packet filtering.  Enable it in the individual
4892          * case statements that require the device to filter something
4893          */
4894         ctrl |= 0x04;
4895
4896         /* Set us to be in promiscuous mode so we receive everything, this
4897          * is also true when we get a packet filter of 0
4898          */
4899         if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4900                 pf_ctrl &= ~7;  /* Clear filter bits */
4901         else {
4902                 /*
4903                  * Set us up with Multicast packet filtering.  Three cases are
4904                  * possible - (1) we have a multi-cast list, (2) we receive ALL
4905                  * multicast entries or (3) we receive none.
4906                  */
4907                 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4908                         pf_ctrl &= ~2;  /* Multicast filter bit */
4909                 else {
4910                         et1310_setup_device_for_multicast(adapter);
4911                         pf_ctrl |= 2;
4912                         ctrl &= ~0x04;
4913                 }
4914
4915                 /* Set us up with Unicast packet filtering */
4916                 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4917                         et1310_setup_device_for_unicast(adapter);
4918                         pf_ctrl |= 4;
4919                         ctrl &= ~0x04;
4920                 }
4921
4922                 /* Set us up with Broadcast packet filtering */
4923                 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4924                         pf_ctrl |= 1;   /* Broadcast filter bit */
4925                         ctrl &= ~0x04;
4926                 } else
4927                         pf_ctrl &= ~1;
4928
4929                 /* Setup the receive mac configuration registers - Packet
4930                  * Filter control + the enable / disable for packet filter
4931                  * in the control reg.
4932                  */
4933                 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4934                 writel(ctrl, &adapter->regs->rxmac.ctrl);
4935         }
4936         return status;
4937 }
4938
4939 /**
4940  * et131x_multicast - The handler to configure multicasting on the interface
4941  * @netdev: a pointer to a net_device struct representing the device
4942  */
4943 static void et131x_multicast(struct net_device *netdev)
4944 {
4945         struct et131x_adapter *adapter = netdev_priv(netdev);
4946         int packet_filter;
4947         unsigned long flags;
4948         struct netdev_hw_addr *ha;
4949         int i;
4950
4951         spin_lock_irqsave(&adapter->lock, flags);
4952
4953         /* Before we modify the platform-independent filter flags, store them
4954          * locally. This allows us to determine if anything's changed and if
4955          * we even need to bother the hardware
4956          */
4957         packet_filter = adapter->packet_filter;
4958
4959         /* Clear the 'multicast' flag locally; because we only have a single
4960          * flag to check multicast, and multiple multicast addresses can be
4961          * set, this is the easiest way to determine if more than one
4962          * multicast address is being set.
4963          */
4964         packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4965
4966         /* Check the net_device flags and set the device independent flags
4967          * accordingly
4968          */
4969
4970         if (netdev->flags & IFF_PROMISC)
4971                 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4972         else
4973                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4974
4975         if (netdev->flags & IFF_ALLMULTI)
4976                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4977
4978         if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4979                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4980
4981         if (netdev_mc_count(netdev) < 1) {
4982                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4983                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4984         } else
4985                 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4986
4987         /* Set values in the private adapter struct */
4988         i = 0;
4989         netdev_for_each_mc_addr(ha, netdev) {
4990                 if (i == NIC_MAX_MCAST_LIST)
4991                         break;
4992                 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4993         }
4994         adapter->multicast_addr_count = i;
4995
4996         /* Are the new flags different from the previous ones? If not, then no
4997          * action is required
4998          *
4999          * NOTE - This block will always update the multicast_list with the
5000          *        hardware, even if the addresses aren't the same.
5001          */
5002         if (packet_filter != adapter->packet_filter) {
5003                 /* Call the device's filter function */
5004                 et131x_set_packet_filter(adapter);
5005         }
5006         spin_unlock_irqrestore(&adapter->lock, flags);
5007 }
5008
5009 /**
5010  * et131x_tx - The handler to tx a packet on the device
5011  * @skb: data to be Tx'd
5012  * @netdev: device on which data is to be Tx'd
5013  *
5014  * Returns 0 on success, errno on failure (as defined in errno.h)
5015  */
5016 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5017 {
5018         int status = 0;
5019         struct et131x_adapter *adapter = netdev_priv(netdev);
5020
5021         /* stop the queue if it's getting full */
5022         if (adapter->tx_ring.used >= NUM_TCB - 1 &&
5023             !netif_queue_stopped(netdev))
5024                 netif_stop_queue(netdev);
5025
5026         /* Save the timestamp for the TX timeout watchdog */
5027         netdev->trans_start = jiffies;
5028
5029         /* Call the device-specific data Tx routine */
5030         status = et131x_send_packets(skb, netdev);
5031
5032         /* Check status and manage the netif queue if necessary */
5033         if (status != 0) {
5034                 if (status == -ENOMEM)
5035                         status = NETDEV_TX_BUSY;
5036                 else
5037                         status = NETDEV_TX_OK;
5038         }
5039         return status;
5040 }
5041
5042 /**
5043  * et131x_tx_timeout - Timeout handler
5044  * @netdev: a pointer to a net_device struct representing the device
5045  *
5046  * The handler called when a Tx request times out. The timeout period is
5047  * specified by the 'tx_timeo" element in the net_device structure (see
5048  * et131x_alloc_device() to see how this value is set).
5049  */
5050 static void et131x_tx_timeout(struct net_device *netdev)
5051 {
5052         struct et131x_adapter *adapter = netdev_priv(netdev);
5053         struct tcb *tcb;
5054         unsigned long flags;
5055
5056         /* If the device is closed, ignore the timeout */
5057         if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5058                 return;
5059
5060         /* Any nonrecoverable hardware error?
5061          * Checks adapter->flags for any failure in phy reading
5062          */
5063         if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5064                 return;
5065
5066         /* Hardware failure? */
5067         if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5068                 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5069                 return;
5070         }
5071
5072         /* Is send stuck? */
5073         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5074
5075         tcb = adapter->tx_ring.send_head;
5076
5077         if (tcb != NULL) {
5078                 tcb->count++;
5079
5080                 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5081                         spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5082                                                flags);
5083
5084                         dev_warn(&adapter->pdev->dev,
5085                                 "Send stuck - reset.  tcb->WrIndex %x, flags 0x%08x\n",
5086                                 tcb->index,
5087                                 tcb->flags);
5088
5089                         adapter->net_stats.tx_errors++;
5090
5091                         /* perform reset of tx/rx */
5092                         et131x_disable_txrx(netdev);
5093                         et131x_enable_txrx(netdev);
5094                         return;
5095                 }
5096         }
5097
5098         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5099 }
5100
5101 /**
5102  * et131x_change_mtu - The handler called to change the MTU for the device
5103  * @netdev: device whose MTU is to be changed
5104  * @new_mtu: the desired MTU
5105  *
5106  * Returns 0 on success, errno on failure (as defined in errno.h)
5107  */
5108 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5109 {
5110         int result = 0;
5111         struct et131x_adapter *adapter = netdev_priv(netdev);
5112
5113         /* Make sure the requested MTU is valid */
5114         if (new_mtu < 64 || new_mtu > 9216)
5115                 return -EINVAL;
5116
5117         et131x_disable_txrx(netdev);
5118         et131x_handle_send_interrupt(adapter);
5119         et131x_handle_recv_interrupt(adapter);
5120
5121         /* Set the new MTU */
5122         netdev->mtu = new_mtu;
5123
5124         /* Free Rx DMA memory */
5125         et131x_adapter_memory_free(adapter);
5126
5127         /* Set the config parameter for Jumbo Packet support */
5128         adapter->registry_jumbo_packet = new_mtu + 14;
5129         et131x_soft_reset(adapter);
5130
5131         /* Alloc and init Rx DMA memory */
5132         result = et131x_adapter_memory_alloc(adapter);
5133         if (result != 0) {
5134                 dev_warn(&adapter->pdev->dev,
5135                         "Change MTU failed; couldn't re-alloc DMA memory\n");
5136                 return result;
5137         }
5138
5139         et131x_init_send(adapter);
5140
5141         et131x_hwaddr_init(adapter);
5142         memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5143
5144         /* Init the device with the new settings */
5145         et131x_adapter_setup(adapter);
5146
5147         et131x_enable_txrx(netdev);
5148
5149         return result;
5150 }
5151
5152 /**
5153  * et131x_set_mac_addr - handler to change the MAC address for the device
5154  * @netdev: device whose MAC is to be changed
5155  * @new_mac: the desired MAC address
5156  *
5157  * Returns 0 on success, errno on failure (as defined in errno.h)
5158  *
5159  * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5160  */
5161 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5162 {
5163         int result = 0;
5164         struct et131x_adapter *adapter = netdev_priv(netdev);
5165         struct sockaddr *address = new_mac;
5166
5167         /* begin blux */
5168
5169         if (adapter == NULL)
5170                 return -ENODEV;
5171
5172         /* Make sure the requested MAC is valid */
5173         if (!is_valid_ether_addr(address->sa_data))
5174                 return -EADDRNOTAVAIL;
5175
5176         et131x_disable_txrx(netdev);
5177         et131x_handle_send_interrupt(adapter);
5178         et131x_handle_recv_interrupt(adapter);
5179
5180         /* Set the new MAC */
5181         /* netdev->set_mac_address  = &new_mac; */
5182
5183         memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5184
5185         netdev_info(netdev, "Setting MAC address to %pM\n",
5186                     netdev->dev_addr);
5187
5188         /* Free Rx DMA memory */
5189         et131x_adapter_memory_free(adapter);
5190
5191         et131x_soft_reset(adapter);
5192
5193         /* Alloc and init Rx DMA memory */
5194         result = et131x_adapter_memory_alloc(adapter);
5195         if (result != 0) {
5196                 dev_err(&adapter->pdev->dev,
5197                         "Change MAC failed; couldn't re-alloc DMA memory\n");
5198                 return result;
5199         }
5200
5201         et131x_init_send(adapter);
5202
5203         et131x_hwaddr_init(adapter);
5204
5205         /* Init the device with the new settings */
5206         et131x_adapter_setup(adapter);
5207
5208         et131x_enable_txrx(netdev);
5209
5210         return result;
5211 }
5212
5213 static const struct net_device_ops et131x_netdev_ops = {
5214         .ndo_open               = et131x_open,
5215         .ndo_stop               = et131x_close,
5216         .ndo_start_xmit         = et131x_tx,
5217         .ndo_set_rx_mode        = et131x_multicast,
5218         .ndo_tx_timeout         = et131x_tx_timeout,
5219         .ndo_change_mtu         = et131x_change_mtu,
5220         .ndo_set_mac_address    = et131x_set_mac_addr,
5221         .ndo_validate_addr      = eth_validate_addr,
5222         .ndo_get_stats          = et131x_stats,
5223         .ndo_do_ioctl           = et131x_ioctl,
5224 };
5225
5226 /**
5227  * et131x_pci_setup - Perform device initialization
5228  * @pdev: a pointer to the device's pci_dev structure
5229  * @ent: this device's entry in the pci_device_id table
5230  *
5231  * Returns 0 on success, errno on failure (as defined in errno.h)
5232  *
5233  * Registered in the pci_driver structure, this function is called when the
5234  * PCI subsystem finds a new PCI device which matches the information
5235  * contained in the pci_device_id table. This routine is the equivalent to
5236  * a device insertion routine.
5237  */
5238 static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5239                                const struct pci_device_id *ent)
5240 {
5241         struct net_device *netdev;
5242         struct et131x_adapter *adapter;
5243         int rc;
5244         int ii;
5245
5246         rc = pci_enable_device(pdev);
5247         if (rc < 0) {
5248                 dev_err(&pdev->dev, "pci_enable_device() failed\n");
5249                 goto out;
5250         }
5251
5252         /* Perform some basic PCI checks */
5253         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5254                 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5255                 rc = -ENODEV;
5256                 goto err_disable;
5257         }
5258
5259         rc = pci_request_regions(pdev, DRIVER_NAME);
5260         if (rc < 0) {
5261                 dev_err(&pdev->dev, "Can't get PCI resources\n");
5262                 goto err_disable;
5263         }
5264
5265         pci_set_master(pdev);
5266
5267         /* Check the DMA addressing support of this device */
5268         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5269                 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5270                 if (rc < 0) {
5271                         dev_err(&pdev->dev,
5272                           "Unable to obtain 64 bit DMA for consistent allocations\n");
5273                         goto err_release_res;
5274                 }
5275         } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5276                 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5277                 if (rc < 0) {
5278                         dev_err(&pdev->dev,
5279                           "Unable to obtain 32 bit DMA for consistent allocations\n");
5280                         goto err_release_res;
5281                 }
5282         } else {
5283                 dev_err(&pdev->dev, "No usable DMA addressing method\n");
5284                 rc = -EIO;
5285                 goto err_release_res;
5286         }
5287
5288         /* Allocate netdev and private adapter structs */
5289         netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5290         if (!netdev) {
5291                 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5292                 rc = -ENOMEM;
5293                 goto err_release_res;
5294         }
5295
5296         netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5297         netdev->netdev_ops     = &et131x_netdev_ops;
5298
5299         SET_NETDEV_DEV(netdev, &pdev->dev);
5300         SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
5301
5302         adapter = et131x_adapter_init(netdev, pdev);
5303
5304         rc = et131x_pci_init(adapter, pdev);
5305         if (rc < 0)
5306                 goto err_free_dev;
5307
5308         /* Map the bus-relative registers to system virtual memory */
5309         adapter->regs = pci_ioremap_bar(pdev, 0);
5310         if (!adapter->regs) {
5311                 dev_err(&pdev->dev, "Cannot map device registers\n");
5312                 rc = -ENOMEM;
5313                 goto err_free_dev;
5314         }
5315
5316         /* If Phy COMA mode was enabled when we went down, disable it here. */
5317         writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
5318
5319         /* Issue a global reset to the et1310 */
5320         et131x_soft_reset(adapter);
5321
5322         /* Disable all interrupts (paranoid) */
5323         et131x_disable_interrupts(adapter);
5324
5325         /* Allocate DMA memory */
5326         rc = et131x_adapter_memory_alloc(adapter);
5327         if (rc < 0) {
5328                 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5329                 goto err_iounmap;
5330         }
5331
5332         /* Init send data structures */
5333         et131x_init_send(adapter);
5334
5335         /* Set up the task structure for the ISR's deferred handler */
5336         INIT_WORK(&adapter->task, et131x_isr_handler);
5337
5338         /* Copy address into the net_device struct */
5339         memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5340
5341         /* Init variable for counting how long we do not have link status */
5342         adapter->boot_coma = 0;
5343         et1310_disable_phy_coma(adapter);
5344
5345         rc = -ENOMEM;
5346
5347         /* Setup the mii_bus struct */
5348         adapter->mii_bus = mdiobus_alloc();
5349         if (!adapter->mii_bus) {
5350                 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5351                 goto err_mem_free;
5352         }
5353
5354         adapter->mii_bus->name = "et131x_eth_mii";
5355         snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5356                 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5357         adapter->mii_bus->priv = netdev;
5358         adapter->mii_bus->read = et131x_mdio_read;
5359         adapter->mii_bus->write = et131x_mdio_write;
5360         adapter->mii_bus->reset = et131x_mdio_reset;
5361         adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5362         if (!adapter->mii_bus->irq) {
5363                 dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5364                 goto err_mdio_free;
5365         }
5366
5367         for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5368                 adapter->mii_bus->irq[ii] = PHY_POLL;
5369
5370         rc = mdiobus_register(adapter->mii_bus);
5371         if (rc < 0) {
5372                 dev_err(&pdev->dev, "failed to register MII bus\n");
5373                 goto err_mdio_free_irq;
5374         }
5375
5376         rc = et131x_mii_probe(netdev);
5377         if (rc < 0) {
5378                 dev_err(&pdev->dev, "failed to probe MII bus\n");
5379                 goto err_mdio_unregister;
5380         }
5381
5382         /* Setup et1310 as per the documentation */
5383         et131x_adapter_setup(adapter);
5384
5385         /* We can enable interrupts now
5386          *
5387          *  NOTE - Because registration of interrupt handler is done in the
5388          *         device's open(), defer enabling device interrupts to that
5389          *         point
5390          */
5391
5392         /* Register the net_device struct with the Linux network layer */
5393         rc = register_netdev(netdev);
5394         if (rc < 0) {
5395                 dev_err(&pdev->dev, "register_netdev() failed\n");
5396                 goto err_phy_disconnect;
5397         }
5398
5399         /* Register the net_device struct with the PCI subsystem. Save a copy
5400          * of the PCI config space for this device now that the device has
5401          * been initialized, just in case it needs to be quickly restored.
5402          */
5403         pci_set_drvdata(pdev, netdev);
5404 out:
5405         return rc;
5406
5407 err_phy_disconnect:
5408         phy_disconnect(adapter->phydev);
5409 err_mdio_unregister:
5410         mdiobus_unregister(adapter->mii_bus);
5411 err_mdio_free_irq:
5412         kfree(adapter->mii_bus->irq);
5413 err_mdio_free:
5414         mdiobus_free(adapter->mii_bus);
5415 err_mem_free:
5416         et131x_adapter_memory_free(adapter);
5417 err_iounmap:
5418         iounmap(adapter->regs);
5419 err_free_dev:
5420         pci_dev_put(pdev);
5421         free_netdev(netdev);
5422 err_release_res:
5423         pci_release_regions(pdev);
5424 err_disable:
5425         pci_disable_device(pdev);
5426         goto out;
5427 }
5428
5429 static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5430         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5431         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5432         {0,}
5433 };
5434 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5435
5436 static struct pci_driver et131x_driver = {
5437         .name           = DRIVER_NAME,
5438         .id_table       = et131x_pci_table,
5439         .probe          = et131x_pci_setup,
5440         .remove         = __devexit_p(et131x_pci_remove),
5441         .driver.pm      = ET131X_PM_OPS,
5442 };
5443
5444 module_pci_driver(et131x_driver);