KVM: x86: update KVM_SAVE_MSRS_BEGIN to correct value
[cascardo/linux.git] / drivers / staging / et131x / et131x.c
1 /*
2  * Agere Systems Inc.
3  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4  *
5  * Copyright © 2005 Agere Systems Inc.
6  * All rights reserved.
7  *   http://www.agere.com
8  *
9  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10  *
11  *------------------------------------------------------------------------------
12  *
13  * SOFTWARE LICENSE
14  *
15  * This software is provided subject to the following terms and conditions,
16  * which you should read carefully before using the software.  Using this
17  * software indicates your acceptance of these terms and conditions.  If you do
18  * not agree with these terms and conditions, do not use the software.
19  *
20  * Copyright © 2005 Agere Systems Inc.
21  * All rights reserved.
22  *
23  * Redistribution and use in source or binary forms, with or without
24  * modifications, are permitted provided that the following conditions are met:
25  *
26  * . Redistributions of source code must retain the above copyright notice, this
27  *    list of conditions and the following Disclaimer as comments in the code as
28  *    well as in the documentation and/or other materials provided with the
29  *    distribution.
30  *
31  * . Redistributions in binary form must reproduce the above copyright notice,
32  *    this list of conditions and the following Disclaimer in the documentation
33  *    and/or other materials provided with the distribution.
34  *
35  * . Neither the name of Agere Systems Inc. nor the names of the contributors
36  *    may be used to endorse or promote products derived from this software
37  *    without specific prior written permission.
38  *
39  * Disclaimer
40  *
41  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
44  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52  * DAMAGE.
53  *
54  */
55
56 #include <linux/pci.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/types.h>
60 #include <linux/kernel.h>
61
62 #include <linux/sched.h>
63 #include <linux/ptrace.h>
64 #include <linux/slab.h>
65 #include <linux/ctype.h>
66 #include <linux/string.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/in.h>
70 #include <linux/delay.h>
71 #include <linux/bitops.h>
72 #include <linux/io.h>
73
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_arp.h>
78 #include <linux/ioport.h>
79 #include <linux/crc32.h>
80 #include <linux/random.h>
81 #include <linux/phy.h>
82
83 #include "et131x.h"
84
85 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
86 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
87 MODULE_LICENSE("Dual BSD/GPL");
88 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
89                    "for the ET1310 by Agere Systems");
90
91 /* EEPROM defines */
92 #define MAX_NUM_REGISTER_POLLS          1000
93 #define MAX_NUM_WRITE_RETRIES           2
94
95 /* MAC defines */
96 #define COUNTER_WRAP_16_BIT 0x10000
97 #define COUNTER_WRAP_12_BIT 0x1000
98
99 /* PCI defines */
100 #define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
101 #define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
102
103 /* ISR defines */
104 /*
105  * For interrupts, normal running is:
106  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
107  *       watchdog_interrupt & txdma_xfer_done
108  *
109  * In both cases, when flow control is enabled for either Tx or bi-direction,
110  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
111  * buffer rings are running low.
112  */
113 #define INT_MASK_DISABLE            0xffffffff
114
115 /* NOTE: Masking out MAC_STAT Interrupt for now...
116  * #define INT_MASK_ENABLE             0xfff6bf17
117  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
118  */
119 #define INT_MASK_ENABLE             0xfffebf17
120 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
121
122 /* General defines */
123 /* Packet and header sizes */
124 #define NIC_MIN_PACKET_SIZE     60
125
126 /* Multicast list size */
127 #define NIC_MAX_MCAST_LIST      128
128
129 /* Supported Filters */
130 #define ET131X_PACKET_TYPE_DIRECTED             0x0001
131 #define ET131X_PACKET_TYPE_MULTICAST            0x0002
132 #define ET131X_PACKET_TYPE_BROADCAST            0x0004
133 #define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
134 #define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
135
136 /* Tx Timeout */
137 #define ET131X_TX_TIMEOUT       (1 * HZ)
138 #define NIC_SEND_HANG_THRESHOLD 0
139
140 /* MP_TCB flags */
141 #define fMP_DEST_MULTI                  0x00000001
142 #define fMP_DEST_BROAD                  0x00000002
143
144 /* MP_ADAPTER flags */
145 #define fMP_ADAPTER_RECV_LOOKASIDE      0x00000004
146 #define fMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
147
148 /* MP_SHARED flags */
149 #define fMP_ADAPTER_LOWER_POWER         0x00200000
150
151 #define fMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
152 #define fMP_ADAPTER_HARDWARE_ERROR      0x04000000
153
154 #define fMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
155
156 /* Some offsets in PCI config space that are actually used. */
157 #define ET1310_PCI_MAC_ADDRESS          0xA4
158 #define ET1310_PCI_EEPROM_STATUS        0xB2
159 #define ET1310_PCI_ACK_NACK             0xC0
160 #define ET1310_PCI_REPLAY               0xC2
161 #define ET1310_PCI_L0L1LATENCY          0xCF
162
163 /* PCI Product IDs */
164 #define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
165 #define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
166
167 /* Define order of magnitude converter */
168 #define NANO_IN_A_MICRO 1000
169
170 #define PARM_RX_NUM_BUFS_DEF    4
171 #define PARM_RX_TIME_INT_DEF    10
172 #define PARM_RX_MEM_END_DEF     0x2bc
173 #define PARM_TX_TIME_INT_DEF    40
174 #define PARM_TX_NUM_BUFS_DEF    4
175 #define PARM_DMA_CACHE_DEF      0
176
177 /* RX defines */
178 #define USE_FBR0 1
179 #define FBR_CHUNKS 32
180 #define MAX_DESC_PER_RING_RX         1024
181
182 /* number of RFDs - default and min */
183 #ifdef USE_FBR0
184 #define RFD_LOW_WATER_MARK      40
185 #define NIC_DEFAULT_NUM_RFD     1024
186 #define NUM_FBRS                2
187 #else
188 #define RFD_LOW_WATER_MARK      20
189 #define NIC_DEFAULT_NUM_RFD     256
190 #define NUM_FBRS                1
191 #endif
192
193 #define NIC_MIN_NUM_RFD         64
194 #define NUM_PACKETS_HANDLED     256
195
196 #define ALCATEL_MULTICAST_PKT   0x01000000
197 #define ALCATEL_BROADCAST_PKT   0x02000000
198
199 /* typedefs for Free Buffer Descriptors */
200 struct fbr_desc {
201         u32 addr_lo;
202         u32 addr_hi;
203         u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
204 };
205
206 /* Packet Status Ring Descriptors
207  *
208  * Word 0:
209  *
210  * top 16 bits are from the Alcatel Status Word as enumerated in
211  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
212  *
213  * 0: hp                        hash pass
214  * 1: ipa                       IP checksum assist
215  * 2: ipp                       IP checksum pass
216  * 3: tcpa                      TCP checksum assist
217  * 4: tcpp                      TCP checksum pass
218  * 5: wol                       WOL Event
219  * 6: rxmac_error               RXMAC Error Indicator
220  * 7: drop                      Drop packet
221  * 8: ft                        Frame Truncated
222  * 9: jp                        Jumbo Packet
223  * 10: vp                       VLAN Packet
224  * 11-15: unused
225  * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
226  * 17: asw_RX_DV_event          short receive event detected
227  * 18: asw_false_carrier_event  bad carrier since last good packet
228  * 19: asw_code_err             one or more nibbles signalled as errors
229  * 20: asw_CRC_err              CRC error
230  * 21: asw_len_chk_err          frame length field incorrect
231  * 22: asw_too_long             frame length > 1518 bytes
232  * 23: asw_OK                   valid CRC + no code error
233  * 24: asw_multicast            has a multicast address
234  * 25: asw_broadcast            has a broadcast address
235  * 26: asw_dribble_nibble       spurious bits after EOP
236  * 27: asw_control_frame        is a control frame
237  * 28: asw_pause_frame          is a pause frame
238  * 29: asw_unsupported_op       unsupported OP code
239  * 30: asw_VLAN_tag             VLAN tag detected
240  * 31: asw_long_evt             Rx long event
241  *
242  * Word 1:
243  * 0-15: length                 length in bytes
244  * 16-25: bi                    Buffer Index
245  * 26-27: ri                    Ring Index
246  * 28-31: reserved
247  */
248
249 struct pkt_stat_desc {
250         u32 word0;
251         u32 word1;
252 };
253
254 /* Typedefs for the RX DMA status word */
255
256 /*
257  * rx status word 0 holds part of the status bits of the Rx DMA engine
258  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
259  * which contains the Free Buffer ring 0 and 1 available offset.
260  *
261  * bit 0-9 FBR1 offset
262  * bit 10 Wrap flag for FBR1
263  * bit 16-25 FBR0 offset
264  * bit 26 Wrap flag for FBR0
265  */
266
267 /*
268  * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
269  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
270  * which contains the Packet Status Ring available offset.
271  *
272  * bit 0-15 reserved
273  * bit 16-27 PSRoffset
274  * bit 28 PSRwrap
275  * bit 29-31 unused
276  */
277
278 /*
279  * struct rx_status_block is a structure representing the status of the Rx
280  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
281  */
282 struct rx_status_block {
283         u32 word0;
284         u32 word1;
285 };
286
287 /*
288  * Structure for look-up table holding free buffer ring pointers, addresses
289  * and state.
290  */
291 struct fbr_lookup {
292         void            *virt[MAX_DESC_PER_RING_RX];
293         void            *buffer1[MAX_DESC_PER_RING_RX];
294         void            *buffer2[MAX_DESC_PER_RING_RX];
295         u32              bus_high[MAX_DESC_PER_RING_RX];
296         u32              bus_low[MAX_DESC_PER_RING_RX];
297         void            *ring_virtaddr;
298         dma_addr_t       ring_physaddr;
299         void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
300         dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
301         u64              real_physaddr;
302         u64              offset;
303         u32              local_full;
304         u32              num_entries;
305         u32              buffsize;
306 };
307
308 /*
309  * struct rx_ring is the sructure representing the adaptor's local
310  * reference(s) to the rings
311  *
312  ******************************************************************************
313  * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
314  *                      and index 1 to refer to FRB0
315  ******************************************************************************
316  */
317 struct rx_ring {
318         struct fbr_lookup *fbr[NUM_FBRS];
319         void *ps_ring_virtaddr;
320         dma_addr_t ps_ring_physaddr;
321         u32 local_psr_full;
322         u32 psr_num_entries;
323
324         struct rx_status_block *rx_status_block;
325         dma_addr_t rx_status_bus;
326
327         /* RECV */
328         struct list_head recv_list;
329         u32 num_ready_recv;
330
331         u32 num_rfd;
332
333         bool unfinished_receives;
334
335         /* lookaside lists */
336         struct kmem_cache *recv_lookaside;
337 };
338
339 /* TX defines */
340 /*
341  * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
342  *
343  * 0-15: length of packet
344  * 16-27: VLAN tag
345  * 28: VLAN CFI
346  * 29-31: VLAN priority
347  *
348  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
349  *
350  * 0: last packet in the sequence
351  * 1: first packet in the sequence
352  * 2: interrupt the processor when this pkt sent
353  * 3: Control word - no packet data
354  * 4: Issue half-duplex backpressure : XON/XOFF
355  * 5: send pause frame
356  * 6: Tx frame has error
357  * 7: append CRC
358  * 8: MAC override
359  * 9: pad packet
360  * 10: Packet is a Huge packet
361  * 11: append VLAN tag
362  * 12: IP checksum assist
363  * 13: TCP checksum assist
364  * 14: UDP checksum assist
365  */
366
367 /* struct tx_desc represents each descriptor on the ring */
368 struct tx_desc {
369         u32 addr_hi;
370         u32 addr_lo;
371         u32 len_vlan;   /* control words how to xmit the */
372         u32 flags;      /* data (detailed above) */
373 };
374
375 /*
376  * The status of the Tx DMA engine it sits in free memory, and is pointed to
377  * by 0x101c / 0x1020. This is a DMA10 type
378  */
379
380 /* TCB (Transmit Control Block: Host Side) */
381 struct tcb {
382         struct tcb *next;       /* Next entry in ring */
383         u32 flags;              /* Our flags for the packet */
384         u32 count;              /* Used to spot stuck/lost packets */
385         u32 stale;              /* Used to spot stuck/lost packets */
386         struct sk_buff *skb;    /* Network skb we are tied to */
387         u32 index;              /* Ring indexes */
388         u32 index_start;
389 };
390
391 /* Structure representing our local reference(s) to the ring */
392 struct tx_ring {
393         /* TCB (Transmit Control Block) memory and lists */
394         struct tcb *tcb_ring;
395
396         /* List of TCBs that are ready to be used */
397         struct tcb *tcb_qhead;
398         struct tcb *tcb_qtail;
399
400         /* list of TCBs that are currently being sent.  NOTE that access to all
401          * three of these (including used) are controlled via the
402          * TCBSendQLock.  This lock should be secured prior to incementing /
403          * decrementing used, or any queue manipulation on send_head /
404          * tail
405          */
406         struct tcb *send_head;
407         struct tcb *send_tail;
408         int used;
409
410         /* The actual descriptor ring */
411         struct tx_desc *tx_desc_ring;
412         dma_addr_t tx_desc_ring_pa;
413
414         /* send_idx indicates where we last wrote to in the descriptor ring. */
415         u32 send_idx;
416
417         /* The location of the write-back status block */
418         u32 *tx_status;
419         dma_addr_t tx_status_pa;
420
421         /* Packets since the last IRQ: used for interrupt coalescing */
422         int since_irq;
423 };
424
425 /*
426  * Do not change these values: if changed, then change also in respective
427  * TXdma and Rxdma engines
428  */
429 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
430 #define NUM_TCB                      64
431
432 /*
433  * These values are all superseded by registry entries to facilitate tuning.
434  * Once the desired performance has been achieved, the optimal registry values
435  * should be re-populated to these #defines:
436  */
437 #define TX_ERROR_PERIOD             1000
438
439 #define LO_MARK_PERCENT_FOR_PSR     15
440 #define LO_MARK_PERCENT_FOR_RX      15
441
442 /* RFD (Receive Frame Descriptor) */
443 struct rfd {
444         struct list_head list_node;
445         struct sk_buff *skb;
446         u32 len;        /* total size of receive frame */
447         u16 bufferindex;
448         u8 ringindex;
449 };
450
451 /* Flow Control */
452 #define FLOW_BOTH       0
453 #define FLOW_TXONLY     1
454 #define FLOW_RXONLY     2
455 #define FLOW_NONE       3
456
457 /* Struct to define some device statistics */
458 struct ce_stats {
459         /* MIB II variables
460          *
461          * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
462          * MUST have 32, then we'll need another way to perform atomic
463          * operations
464          */
465         u32             unicast_pkts_rcvd;
466         atomic_t        unicast_pkts_xmtd;
467         u32             multicast_pkts_rcvd;
468         atomic_t        multicast_pkts_xmtd;
469         u32             broadcast_pkts_rcvd;
470         atomic_t        broadcast_pkts_xmtd;
471         u32             rcvd_pkts_dropped;
472
473         /* Tx Statistics. */
474         u32             tx_underflows;
475
476         u32             tx_collisions;
477         u32             tx_excessive_collisions;
478         u32             tx_first_collisions;
479         u32             tx_late_collisions;
480         u32             tx_max_pkt_errs;
481         u32             tx_deferred;
482
483         /* Rx Statistics. */
484         u32             rx_overflows;
485
486         u32             rx_length_errs;
487         u32             rx_align_errs;
488         u32             rx_crc_errs;
489         u32             rx_code_violations;
490         u32             rx_other_errs;
491
492         u32             synchronous_iterations;
493         u32             interrupt_status;
494 };
495
496 /* The private adapter structure */
497 struct et131x_adapter {
498         struct net_device *netdev;
499         struct pci_dev *pdev;
500         struct mii_bus *mii_bus;
501         struct phy_device *phydev;
502         struct work_struct task;
503
504         /* Flags that indicate current state of the adapter */
505         u32 flags;
506
507         /* local link state, to determine if a state change has occurred */
508         int link;
509
510         /* Configuration  */
511         u8 rom_addr[ETH_ALEN];
512         u8 addr[ETH_ALEN];
513         bool has_eeprom;
514         u8 eeprom_data[2];
515
516         /* Spinlocks */
517         spinlock_t lock;
518
519         spinlock_t tcb_send_qlock;
520         spinlock_t tcb_ready_qlock;
521         spinlock_t send_hw_lock;
522
523         spinlock_t rcv_lock;
524         spinlock_t rcv_pend_lock;
525         spinlock_t fbr_lock;
526
527         spinlock_t phy_lock;
528
529         /* Packet Filter and look ahead size */
530         u32 packet_filter;
531
532         /* multicast list */
533         u32 multicast_addr_count;
534         u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
535
536         /* Pointer to the device's PCI register space */
537         struct address_map __iomem *regs;
538
539         /* Registry parameters */
540         u8 wanted_flow;         /* Flow we want for 802.3x flow control */
541         u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
542
543         /* Derived from the registry: */
544         u8 flowcontrol;         /* flow control validated by the far-end */
545
546         /* Minimize init-time */
547         struct timer_list error_timer;
548
549         /* variable putting the phy into coma mode when boot up with no cable
550          * plugged in after 5 seconds
551          */
552         u8 boot_coma;
553
554         /* Next two used to save power information at power down. This
555          * information will be used during power up to set up parts of Power
556          * Management in JAGCore
557          */
558         u16 pdown_speed;
559         u8 pdown_duplex;
560
561         /* Tx Memory Variables */
562         struct tx_ring tx_ring;
563
564         /* Rx Memory Variables */
565         struct rx_ring rx_ring;
566
567         /* Stats */
568         struct ce_stats stats;
569
570         struct net_device_stats net_stats;
571 };
572
573 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
574 {
575         u32 reg;
576         int i;
577
578         /*
579          * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
580          *    bits 7,1:0 both equal to 1, at least once after reset.
581          *    Subsequent operations need only to check that bits 1:0 are equal
582          *    to 1 prior to starting a single byte read/write
583          */
584
585         for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
586                 /* Read registers grouped in DWORD1 */
587                 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
588                         return -EIO;
589
590                 /* I2C idle and Phy Queue Avail both true */
591                 if ((reg & 0x3000) == 0x3000) {
592                         if (status)
593                                 *status = reg;
594                         return reg & 0xFF;
595                 }
596         }
597         return -ETIMEDOUT;
598 }
599
600
601 /**
602  * eeprom_write - Write a byte to the ET1310's EEPROM
603  * @adapter: pointer to our private adapter structure
604  * @addr: the address to write
605  * @data: the value to write
606  *
607  * Returns 1 for a successful write.
608  */
609 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
610 {
611         struct pci_dev *pdev = adapter->pdev;
612         int index = 0;
613         int retries;
614         int err = 0;
615         int i2c_wack = 0;
616         int writeok = 0;
617         u32 status;
618         u32 val = 0;
619
620         /*
621          * For an EEPROM, an I2C single byte write is defined as a START
622          * condition followed by the device address, EEPROM address, one byte
623          * of data and a STOP condition.  The STOP condition will trigger the
624          * EEPROM's internally timed write cycle to the nonvolatile memory.
625          * All inputs are disabled during this write cycle and the EEPROM will
626          * not respond to any access until the internal write is complete.
627          */
628
629         err = eeprom_wait_ready(pdev, NULL);
630         if (err)
631                 return err;
632
633          /*
634          * 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
635          *    and bits 1:0 both =0.  Bit 5 should be set according to the
636          *    type of EEPROM being accessed (1=two byte addressing, 0=one
637          *    byte addressing).
638          */
639         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
640                         LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
641                 return -EIO;
642
643         i2c_wack = 1;
644
645         /* Prepare EEPROM address for Step 3 */
646
647         for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
648                 /* Write the address to the LBCIF Address Register */
649                 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
650                         break;
651                 /*
652                  * Write the data to the LBCIF Data Register (the I2C write
653                  * will begin).
654                  */
655                 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
656                         break;
657                 /*
658                  * Monitor bit 1:0 of the LBCIF Status Register.  When bits
659                  * 1:0 are both equal to 1, the I2C write has completed and the
660                  * internal write cycle of the EEPROM is about to start.
661                  * (bits 1:0 = 01 is a legal state while waiting from both
662                  * equal to 1, but bits 1:0 = 10 is invalid and implies that
663                  * something is broken).
664                  */
665                 err = eeprom_wait_ready(pdev, &status);
666                 if (err < 0)
667                         return 0;
668
669                 /*
670                  * Check bit 3 of the LBCIF Status Register.  If  equal to 1,
671                  * an error has occurred.Don't break here if we are revision
672                  * 1, this is so we do a blind write for load bug.
673                  */
674                 if ((status & LBCIF_STATUS_GENERAL_ERROR)
675                         && adapter->pdev->revision == 0)
676                         break;
677
678                 /*
679                  * Check bit 2 of the LBCIF Status Register.  If equal to 1 an
680                  * ACK error has occurred on the address phase of the write.
681                  * This could be due to an actual hardware failure or the
682                  * EEPROM may still be in its internal write cycle from a
683                  * previous write. This write operation was ignored and must be
684                   *repeated later.
685                  */
686                 if (status & LBCIF_STATUS_ACK_ERROR) {
687                         /*
688                          * This could be due to an actual hardware failure
689                          * or the EEPROM may still be in its internal write
690                          * cycle from a previous write. This write operation
691                          * was ignored and must be repeated later.
692                          */
693                         udelay(10);
694                         continue;
695                 }
696
697                 writeok = 1;
698                 break;
699         }
700
701         /*
702          * Set bit 6 of the LBCIF Control Register = 0.
703          */
704         udelay(10);
705
706         while (i2c_wack) {
707                 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
708                         LBCIF_CONTROL_LBCIF_ENABLE))
709                         writeok = 0;
710
711                 /* Do read until internal ACK_ERROR goes away meaning write
712                  * completed
713                  */
714                 do {
715                         pci_write_config_dword(pdev,
716                                                LBCIF_ADDRESS_REGISTER,
717                                                addr);
718                         do {
719                                 pci_read_config_dword(pdev,
720                                         LBCIF_DATA_REGISTER, &val);
721                         } while ((val & 0x00010000) == 0);
722                 } while (val & 0x00040000);
723
724                 if ((val & 0xFF00) != 0xC000 || index == 10000)
725                         break;
726                 index++;
727         }
728         return writeok ? 0 : -EIO;
729 }
730
731 /**
732  * eeprom_read - Read a byte from the ET1310's EEPROM
733  * @adapter: pointer to our private adapter structure
734  * @addr: the address from which to read
735  * @pdata: a pointer to a byte in which to store the value of the read
736  * @eeprom_id: the ID of the EEPROM
737  * @addrmode: how the EEPROM is to be accessed
738  *
739  * Returns 1 for a successful read
740  */
741 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
742 {
743         struct pci_dev *pdev = adapter->pdev;
744         int err;
745         u32 status;
746
747         /*
748          * A single byte read is similar to the single byte write, with the
749          * exception of the data flow:
750          */
751
752         err = eeprom_wait_ready(pdev, NULL);
753         if (err)
754                 return err;
755         /*
756          * Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
757          * and bits 1:0 both =0.  Bit 5 should be set according to the type
758          * of EEPROM being accessed (1=two byte addressing, 0=one byte
759          * addressing).
760          */
761         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
762                                   LBCIF_CONTROL_LBCIF_ENABLE))
763                 return -EIO;
764         /*
765          * Write the address to the LBCIF Address Register (I2C read will
766          * begin).
767          */
768         if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
769                 return -EIO;
770         /*
771          * Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
772          * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
773          * has occurred).
774          */
775         err = eeprom_wait_ready(pdev, &status);
776         if (err < 0)
777                 return err;
778         /*
779          * Regardless of error status, read data byte from LBCIF Data
780          * Register.
781          */
782         *pdata = err;
783         /*
784          * Check bit 2 of the LBCIF Status Register.  If = 1,
785          * then an error has occurred.
786          */
787         return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
788 }
789
790 static int et131x_init_eeprom(struct et131x_adapter *adapter)
791 {
792         struct pci_dev *pdev = adapter->pdev;
793         u8 eestatus;
794
795         /* We first need to check the EEPROM Status code located at offset
796          * 0xB2 of config space
797          */
798         pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
799                                       &eestatus);
800
801         /* THIS IS A WORKAROUND:
802          * I need to call this function twice to get my card in a
803          * LG M1 Express Dual running. I tried also a msleep before this
804          * function, because I thought there could be some time condidions
805          * but it didn't work. Call the whole function twice also work.
806          */
807         if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
808                 dev_err(&pdev->dev,
809                        "Could not read PCI config space for EEPROM Status\n");
810                 return -EIO;
811         }
812
813         /* Determine if the error(s) we care about are present. If they are
814          * present we need to fail.
815          */
816         if (eestatus & 0x4C) {
817                 int write_failed = 0;
818                 if (pdev->revision == 0x01) {
819                         int     i;
820                         static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
821
822                         /* Re-write the first 4 bytes if we have an eeprom
823                          * present and the revision id is 1, this fixes the
824                          * corruption seen with 1310 B Silicon
825                          */
826                         for (i = 0; i < 3; i++)
827                                 if (eeprom_write(adapter, i, eedata[i]) < 0)
828                                         write_failed = 1;
829                 }
830                 if (pdev->revision  != 0x01 || write_failed) {
831                         dev_err(&pdev->dev,
832                             "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
833
834                         /* This error could mean that there was an error
835                          * reading the eeprom or that the eeprom doesn't exist.
836                          * We will treat each case the same and not try to
837                          * gather additional information that normally would
838                          * come from the eeprom, like MAC Address
839                          */
840                         adapter->has_eeprom = 0;
841                         return -EIO;
842                 }
843         }
844         adapter->has_eeprom = 1;
845
846         /* Read the EEPROM for information regarding LED behavior. Refer to
847          * ET1310_phy.c, et131x_xcvr_init(), for its use.
848          */
849         eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
850         eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
851
852         if (adapter->eeprom_data[0] != 0xcd)
853                 /* Disable all optional features */
854                 adapter->eeprom_data[1] = 0x00;
855
856         return 0;
857 }
858
859 /**
860  * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
861  * @adapter: pointer to our adapter structure
862  */
863 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
864 {
865         /* Setup the receive dma configuration register for normal operation */
866         u32 csr =  0x2000;      /* FBR1 enable */
867
868         if (adapter->rx_ring.fbr[0]->buffsize == 4096)
869                 csr |= 0x0800;
870         else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
871                 csr |= 0x1000;
872         else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
873                 csr |= 0x1800;
874 #ifdef USE_FBR0
875         csr |= 0x0400;          /* FBR0 enable */
876         if (adapter->rx_ring.fbr[1]->buffsize == 256)
877                 csr |= 0x0100;
878         else if (adapter->rx_ring.fbr[1]->buffsize == 512)
879                 csr |= 0x0200;
880         else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
881                 csr |= 0x0300;
882 #endif
883         writel(csr, &adapter->regs->rxdma.csr);
884
885         csr = readl(&adapter->regs->rxdma.csr);
886         if ((csr & 0x00020000) != 0) {
887                 udelay(5);
888                 csr = readl(&adapter->regs->rxdma.csr);
889                 if ((csr & 0x00020000) != 0) {
890                         dev_err(&adapter->pdev->dev,
891                             "RX Dma failed to exit halt state.  CSR 0x%08x\n",
892                                 csr);
893                 }
894         }
895 }
896
897 /**
898  * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
899  * @adapter: pointer to our adapter structure
900  */
901 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
902 {
903         u32 csr;
904         /* Setup the receive dma configuration register */
905         writel(0x00002001, &adapter->regs->rxdma.csr);
906         csr = readl(&adapter->regs->rxdma.csr);
907         if ((csr & 0x00020000) == 0) {  /* Check halt status (bit 17) */
908                 udelay(5);
909                 csr = readl(&adapter->regs->rxdma.csr);
910                 if ((csr & 0x00020000) == 0)
911                         dev_err(&adapter->pdev->dev,
912                         "RX Dma failed to enter halt state. CSR 0x%08x\n",
913                                 csr);
914         }
915 }
916
917 /**
918  * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
919  * @adapter: pointer to our adapter structure
920  *
921  * Mainly used after a return to the D0 (full-power) state from a lower state.
922  */
923 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
924 {
925         /* Setup the transmit dma configuration register for normal
926          * operation
927          */
928         writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
929                                         &adapter->regs->txdma.csr);
930 }
931
932 static inline void add_10bit(u32 *v, int n)
933 {
934         *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
935 }
936
937 static inline void add_12bit(u32 *v, int n)
938 {
939         *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
940 }
941
942 /**
943  * et1310_config_mac_regs1 - Initialize the first part of MAC regs
944  * @adapter: pointer to our adapter structure
945  */
946 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
947 {
948         struct mac_regs __iomem *macregs = &adapter->regs->mac;
949         u32 station1;
950         u32 station2;
951         u32 ipg;
952
953         /* First we need to reset everything.  Write to MAC configuration
954          * register 1 to perform reset.
955          */
956         writel(0xC00F0000, &macregs->cfg1);
957
958         /* Next lets configure the MAC Inter-packet gap register */
959         ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
960         ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
961         writel(ipg, &macregs->ipg);
962
963         /* Next lets configure the MAC Half Duplex register */
964         /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
965         writel(0x00A1F037, &macregs->hfdp);
966
967         /* Next lets configure the MAC Interface Control register */
968         writel(0, &macregs->if_ctrl);
969
970         /* Let's move on to setting up the mii management configuration */
971         writel(0x07, &macregs->mii_mgmt_cfg);   /* Clock reset 0x7 */
972
973         /* Next lets configure the MAC Station Address register.  These
974          * values are read from the EEPROM during initialization and stored
975          * in the adapter structure.  We write what is stored in the adapter
976          * structure to the MAC Station Address registers high and low.  This
977          * station address is used for generating and checking pause control
978          * packets.
979          */
980         station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
981                    (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
982         station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
983                    (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
984                    (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
985                     adapter->addr[2];
986         writel(station1, &macregs->station_addr_1);
987         writel(station2, &macregs->station_addr_2);
988
989         /* Max ethernet packet in bytes that will be passed by the mac without
990          * being truncated.  Allow the MAC to pass 4 more than our max packet
991          * size.  This is 4 for the Ethernet CRC.
992          *
993          * Packets larger than (registry_jumbo_packet) that do not contain a
994          * VLAN ID will be dropped by the Rx function.
995          */
996         writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
997
998         /* clear out MAC config reset */
999         writel(0, &macregs->cfg1);
1000 }
1001
1002 /**
1003  * et1310_config_mac_regs2 - Initialize the second part of MAC regs
1004  * @adapter: pointer to our adapter structure
1005  */
1006 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
1007 {
1008         int32_t delay = 0;
1009         struct mac_regs __iomem *mac = &adapter->regs->mac;
1010         struct phy_device *phydev = adapter->phydev;
1011         u32 cfg1;
1012         u32 cfg2;
1013         u32 ifctrl;
1014         u32 ctl;
1015
1016         ctl = readl(&adapter->regs->txmac.ctl);
1017         cfg1 = readl(&mac->cfg1);
1018         cfg2 = readl(&mac->cfg2);
1019         ifctrl = readl(&mac->if_ctrl);
1020
1021         /* Set up the if mode bits */
1022         cfg2 &= ~0x300;
1023         if (phydev && phydev->speed == SPEED_1000) {
1024                 cfg2 |= 0x200;
1025                 /* Phy mode bit */
1026                 ifctrl &= ~(1 << 24);
1027         } else {
1028                 cfg2 |= 0x100;
1029                 ifctrl |= (1 << 24);
1030         }
1031
1032         /* We need to enable Rx/Tx */
1033         cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1034         /* Initialize loop back to off */
1035         cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1036         if (adapter->flowcontrol == FLOW_RXONLY ||
1037                                 adapter->flowcontrol == FLOW_BOTH)
1038                 cfg1 |= CFG1_RX_FLOW;
1039         writel(cfg1, &mac->cfg1);
1040
1041         /* Now we need to initialize the MAC Configuration 2 register */
1042         /* preamble 7, check length, huge frame off, pad crc, crc enable
1043            full duplex off */
1044         cfg2 |= 0x7016;
1045         cfg2 &= ~0x0021;
1046
1047         /* Turn on duplex if needed */
1048         if (phydev && phydev->duplex == DUPLEX_FULL)
1049                 cfg2 |= 0x01;
1050
1051         ifctrl &= ~(1 << 26);
1052         if (phydev && phydev->duplex == DUPLEX_HALF)
1053                 ifctrl |= (1<<26);      /* Enable ghd */
1054
1055         writel(ifctrl, &mac->if_ctrl);
1056         writel(cfg2, &mac->cfg2);
1057
1058         do {
1059                 udelay(10);
1060                 delay++;
1061                 cfg1 = readl(&mac->cfg1);
1062         } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1063
1064         if (delay == 100) {
1065                 dev_warn(&adapter->pdev->dev,
1066                     "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1067                         cfg1);
1068         }
1069
1070         /* Enable txmac */
1071         ctl |= 0x09;    /* TX mac enable, FC disable */
1072         writel(ctl, &adapter->regs->txmac.ctl);
1073
1074         /* Ready to start the RXDMA/TXDMA engine */
1075         if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1076                 et131x_rx_dma_enable(adapter);
1077                 et131x_tx_dma_enable(adapter);
1078         }
1079 }
1080
1081 /**
1082  * et1310_in_phy_coma - check if the device is in phy coma
1083  * @adapter: pointer to our adapter structure
1084  *
1085  * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1086  */
1087 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1088 {
1089         u32 pmcsr;
1090
1091         pmcsr = readl(&adapter->regs->global.pm_csr);
1092
1093         return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1094 }
1095
1096 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1097 {
1098         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1099         u32 hash1 = 0;
1100         u32 hash2 = 0;
1101         u32 hash3 = 0;
1102         u32 hash4 = 0;
1103         u32 pm_csr;
1104
1105         /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1106          * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
1107          * specified) then we should pass NO multi-cast addresses to the
1108          * driver.
1109          */
1110         if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1111                 int i;
1112
1113                 /* Loop through our multicast array and set up the device */
1114                 for (i = 0; i < adapter->multicast_addr_count; i++) {
1115                         u32 result;
1116
1117                         result = ether_crc(6, adapter->multicast_list[i]);
1118
1119                         result = (result & 0x3F800000) >> 23;
1120
1121                         if (result < 32) {
1122                                 hash1 |= (1 << result);
1123                         } else if ((31 < result) && (result < 64)) {
1124                                 result -= 32;
1125                                 hash2 |= (1 << result);
1126                         } else if ((63 < result) && (result < 96)) {
1127                                 result -= 64;
1128                                 hash3 |= (1 << result);
1129                         } else {
1130                                 result -= 96;
1131                                 hash4 |= (1 << result);
1132                         }
1133                 }
1134         }
1135
1136         /* Write out the new hash to the device */
1137         pm_csr = readl(&adapter->regs->global.pm_csr);
1138         if (!et1310_in_phy_coma(adapter)) {
1139                 writel(hash1, &rxmac->multi_hash1);
1140                 writel(hash2, &rxmac->multi_hash2);
1141                 writel(hash3, &rxmac->multi_hash3);
1142                 writel(hash4, &rxmac->multi_hash4);
1143         }
1144 }
1145
1146 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1147 {
1148         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1149         u32 uni_pf1;
1150         u32 uni_pf2;
1151         u32 uni_pf3;
1152         u32 pm_csr;
1153
1154         /* Set up unicast packet filter reg 3 to be the first two octets of
1155          * the MAC address for both address
1156          *
1157          * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1158          * MAC address for second address
1159          *
1160          * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1161          * MAC address for first address
1162          */
1163         uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1164                   (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1165                   (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1166                    adapter->addr[1];
1167
1168         uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1169                   (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1170                   (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1171                    adapter->addr[5];
1172
1173         uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1174                   (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1175                   (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1176                    adapter->addr[5];
1177
1178         pm_csr = readl(&adapter->regs->global.pm_csr);
1179         if (!et1310_in_phy_coma(adapter)) {
1180                 writel(uni_pf1, &rxmac->uni_pf_addr1);
1181                 writel(uni_pf2, &rxmac->uni_pf_addr2);
1182                 writel(uni_pf3, &rxmac->uni_pf_addr3);
1183         }
1184 }
1185
1186 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1187 {
1188         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1189         struct phy_device *phydev = adapter->phydev;
1190         u32 sa_lo;
1191         u32 sa_hi = 0;
1192         u32 pf_ctrl = 0;
1193
1194         /* Disable the MAC while it is being configured (also disable WOL) */
1195         writel(0x8, &rxmac->ctrl);
1196
1197         /* Initialize WOL to disabled. */
1198         writel(0, &rxmac->crc0);
1199         writel(0, &rxmac->crc12);
1200         writel(0, &rxmac->crc34);
1201
1202         /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1203          * its default Values of 0x00000000 because there are not WOL masks
1204          * as of this time.
1205          */
1206         writel(0, &rxmac->mask0_word0);
1207         writel(0, &rxmac->mask0_word1);
1208         writel(0, &rxmac->mask0_word2);
1209         writel(0, &rxmac->mask0_word3);
1210
1211         writel(0, &rxmac->mask1_word0);
1212         writel(0, &rxmac->mask1_word1);
1213         writel(0, &rxmac->mask1_word2);
1214         writel(0, &rxmac->mask1_word3);
1215
1216         writel(0, &rxmac->mask2_word0);
1217         writel(0, &rxmac->mask2_word1);
1218         writel(0, &rxmac->mask2_word2);
1219         writel(0, &rxmac->mask2_word3);
1220
1221         writel(0, &rxmac->mask3_word0);
1222         writel(0, &rxmac->mask3_word1);
1223         writel(0, &rxmac->mask3_word2);
1224         writel(0, &rxmac->mask3_word3);
1225
1226         writel(0, &rxmac->mask4_word0);
1227         writel(0, &rxmac->mask4_word1);
1228         writel(0, &rxmac->mask4_word2);
1229         writel(0, &rxmac->mask4_word3);
1230
1231         /* Lets setup the WOL Source Address */
1232         sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1233                 (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1234                 (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1235                  adapter->addr[5];
1236         writel(sa_lo, &rxmac->sa_lo);
1237
1238         sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1239                        adapter->addr[1];
1240         writel(sa_hi, &rxmac->sa_hi);
1241
1242         /* Disable all Packet Filtering */
1243         writel(0, &rxmac->pf_ctrl);
1244
1245         /* Let's initialize the Unicast Packet filtering address */
1246         if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1247                 et1310_setup_device_for_unicast(adapter);
1248                 pf_ctrl |= 4;   /* Unicast filter */
1249         } else {
1250                 writel(0, &rxmac->uni_pf_addr1);
1251                 writel(0, &rxmac->uni_pf_addr2);
1252                 writel(0, &rxmac->uni_pf_addr3);
1253         }
1254
1255         /* Let's initialize the Multicast hash */
1256         if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1257                 pf_ctrl |= 2;   /* Multicast filter */
1258                 et1310_setup_device_for_multicast(adapter);
1259         }
1260
1261         /* Runt packet filtering.  Didn't work in version A silicon. */
1262         pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1263         pf_ctrl |= 8;   /* Fragment filter */
1264
1265         if (adapter->registry_jumbo_packet > 8192)
1266                 /* In order to transmit jumbo packets greater than 8k, the
1267                  * FIFO between RxMAC and RxDMA needs to be reduced in size
1268                  * to (16k - Jumbo packet size).  In order to implement this,
1269                  * we must use "cut through" mode in the RxMAC, which chops
1270                  * packets down into segments which are (max_size * 16).  In
1271                  * this case we selected 256 bytes, since this is the size of
1272                  * the PCI-Express TLP's that the 1310 uses.
1273                  *
1274                  * seg_en on, fc_en off, size 0x10
1275                  */
1276                 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1277         else
1278                 writel(0, &rxmac->mcif_ctrl_max_seg);
1279
1280         /* Initialize the MCIF water marks */
1281         writel(0, &rxmac->mcif_water_mark);
1282
1283         /*  Initialize the MIF control */
1284         writel(0, &rxmac->mif_ctrl);
1285
1286         /* Initialize the Space Available Register */
1287         writel(0, &rxmac->space_avail);
1288
1289         /* Initialize the the mif_ctrl register
1290          * bit 3:  Receive code error. One or more nibbles were signaled as
1291          *         errors  during the reception of the packet.  Clear this
1292          *         bit in Gigabit, set it in 100Mbit.  This was derived
1293          *         experimentally at UNH.
1294          * bit 4:  Receive CRC error. The packet's CRC did not match the
1295          *         internally generated CRC.
1296          * bit 5:  Receive length check error. Indicates that frame length
1297          *         field value in the packet does not match the actual data
1298          *         byte length and is not a type field.
1299          * bit 16: Receive frame truncated.
1300          * bit 17: Drop packet enable
1301          */
1302         if (phydev && phydev->speed == SPEED_100)
1303                 writel(0x30038, &rxmac->mif_ctrl);
1304         else
1305                 writel(0x30030, &rxmac->mif_ctrl);
1306
1307         /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1308          * filter is always enabled since it is where the runt packets are
1309          * supposed to be dropped.  For version A silicon, runt packet
1310          * dropping doesn't work, so it is disabled in the pf_ctrl register,
1311          * but we still leave the packet filter on.
1312          */
1313         writel(pf_ctrl, &rxmac->pf_ctrl);
1314         writel(0x9, &rxmac->ctrl);
1315 }
1316
1317 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1318 {
1319         struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1320
1321         /* We need to update the Control Frame Parameters
1322          * cfpt - control frame pause timer set to 64 (0x40)
1323          * cfep - control frame extended pause timer set to 0x0
1324          */
1325         if (adapter->flowcontrol == FLOW_NONE)
1326                 writel(0, &txmac->cf_param);
1327         else
1328                 writel(0x40, &txmac->cf_param);
1329 }
1330
1331 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1332 {
1333         struct macstat_regs __iomem *macstat =
1334                 &adapter->regs->macstat;
1335
1336         /* Next we need to initialize all the macstat registers to zero on
1337          * the device.
1338          */
1339         writel(0, &macstat->txrx_0_64_byte_frames);
1340         writel(0, &macstat->txrx_65_127_byte_frames);
1341         writel(0, &macstat->txrx_128_255_byte_frames);
1342         writel(0, &macstat->txrx_256_511_byte_frames);
1343         writel(0, &macstat->txrx_512_1023_byte_frames);
1344         writel(0, &macstat->txrx_1024_1518_byte_frames);
1345         writel(0, &macstat->txrx_1519_1522_gvln_frames);
1346
1347         writel(0, &macstat->rx_bytes);
1348         writel(0, &macstat->rx_packets);
1349         writel(0, &macstat->rx_fcs_errs);
1350         writel(0, &macstat->rx_multicast_packets);
1351         writel(0, &macstat->rx_broadcast_packets);
1352         writel(0, &macstat->rx_control_frames);
1353         writel(0, &macstat->rx_pause_frames);
1354         writel(0, &macstat->rx_unknown_opcodes);
1355         writel(0, &macstat->rx_align_errs);
1356         writel(0, &macstat->rx_frame_len_errs);
1357         writel(0, &macstat->rx_code_errs);
1358         writel(0, &macstat->rx_carrier_sense_errs);
1359         writel(0, &macstat->rx_undersize_packets);
1360         writel(0, &macstat->rx_oversize_packets);
1361         writel(0, &macstat->rx_fragment_packets);
1362         writel(0, &macstat->rx_jabbers);
1363         writel(0, &macstat->rx_drops);
1364
1365         writel(0, &macstat->tx_bytes);
1366         writel(0, &macstat->tx_packets);
1367         writel(0, &macstat->tx_multicast_packets);
1368         writel(0, &macstat->tx_broadcast_packets);
1369         writel(0, &macstat->tx_pause_frames);
1370         writel(0, &macstat->tx_deferred);
1371         writel(0, &macstat->tx_excessive_deferred);
1372         writel(0, &macstat->tx_single_collisions);
1373         writel(0, &macstat->tx_multiple_collisions);
1374         writel(0, &macstat->tx_late_collisions);
1375         writel(0, &macstat->tx_excessive_collisions);
1376         writel(0, &macstat->tx_total_collisions);
1377         writel(0, &macstat->tx_pause_honored_frames);
1378         writel(0, &macstat->tx_drops);
1379         writel(0, &macstat->tx_jabbers);
1380         writel(0, &macstat->tx_fcs_errs);
1381         writel(0, &macstat->tx_control_frames);
1382         writel(0, &macstat->tx_oversize_frames);
1383         writel(0, &macstat->tx_undersize_frames);
1384         writel(0, &macstat->tx_fragments);
1385         writel(0, &macstat->carry_reg1);
1386         writel(0, &macstat->carry_reg2);
1387
1388         /* Unmask any counters that we want to track the overflow of.
1389          * Initially this will be all counters.  It may become clear later
1390          * that we do not need to track all counters.
1391          */
1392         writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1393         writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1394 }
1395
1396 /**
1397  * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1398  * @adapter: pointer to our private adapter structure
1399  * @addr: the address of the transceiver
1400  * @reg: the register to read
1401  * @value: pointer to a 16-bit value in which the value will be stored
1402  *
1403  * Returns 0 on success, errno on failure (as defined in errno.h)
1404  */
1405 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1406               u8 reg, u16 *value)
1407 {
1408         struct mac_regs __iomem *mac = &adapter->regs->mac;
1409         int status = 0;
1410         u32 delay = 0;
1411         u32 mii_addr;
1412         u32 mii_cmd;
1413         u32 mii_indicator;
1414
1415         /* Save a local copy of the registers we are dealing with so we can
1416          * set them back
1417          */
1418         mii_addr = readl(&mac->mii_mgmt_addr);
1419         mii_cmd = readl(&mac->mii_mgmt_cmd);
1420
1421         /* Stop the current operation */
1422         writel(0, &mac->mii_mgmt_cmd);
1423
1424         /* Set up the register we need to read from on the correct PHY */
1425         writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1426
1427         writel(0x1, &mac->mii_mgmt_cmd);
1428
1429         do {
1430                 udelay(50);
1431                 delay++;
1432                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1433         } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1434
1435         /* If we hit the max delay, we could not read the register */
1436         if (delay == 50) {
1437                 dev_warn(&adapter->pdev->dev,
1438                             "reg 0x%08x could not be read\n", reg);
1439                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1440                             mii_indicator);
1441
1442                 status = -EIO;
1443         }
1444
1445         /* If we hit here we were able to read the register and we need to
1446          * return the value to the caller */
1447         *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1448
1449         /* Stop the read operation */
1450         writel(0, &mac->mii_mgmt_cmd);
1451
1452         /* set the registers we touched back to the state at which we entered
1453          * this function
1454          */
1455         writel(mii_addr, &mac->mii_mgmt_addr);
1456         writel(mii_cmd, &mac->mii_mgmt_cmd);
1457
1458         return status;
1459 }
1460
1461 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1462 {
1463         struct phy_device *phydev = adapter->phydev;
1464
1465         if (!phydev)
1466                 return -EIO;
1467
1468         return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1469 }
1470
1471 /**
1472  * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1473  * @adapter: pointer to our private adapter structure
1474  * @reg: the register to read
1475  * @value: 16-bit value to write
1476  *
1477  * FIXME: one caller in netdev still
1478  *
1479  * Return 0 on success, errno on failure (as defined in errno.h)
1480  */
1481 static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1482 {
1483         struct mac_regs __iomem *mac = &adapter->regs->mac;
1484         struct phy_device *phydev = adapter->phydev;
1485         int status = 0;
1486         u8 addr;
1487         u32 delay = 0;
1488         u32 mii_addr;
1489         u32 mii_cmd;
1490         u32 mii_indicator;
1491
1492         if (!phydev)
1493                 return -EIO;
1494
1495         addr = phydev->addr;
1496
1497         /* Save a local copy of the registers we are dealing with so we can
1498          * set them back
1499          */
1500         mii_addr = readl(&mac->mii_mgmt_addr);
1501         mii_cmd = readl(&mac->mii_mgmt_cmd);
1502
1503         /* Stop the current operation */
1504         writel(0, &mac->mii_mgmt_cmd);
1505
1506         /* Set up the register we need to write to on the correct PHY */
1507         writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1508
1509         /* Add the value to write to the registers to the mac */
1510         writel(value, &mac->mii_mgmt_ctrl);
1511
1512         do {
1513                 udelay(50);
1514                 delay++;
1515                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1516         } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1517
1518         /* If we hit the max delay, we could not write the register */
1519         if (delay == 100) {
1520                 u16 tmp;
1521
1522                 dev_warn(&adapter->pdev->dev,
1523                     "reg 0x%08x could not be written", reg);
1524                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1525                             mii_indicator);
1526                 dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1527                             readl(&mac->mii_mgmt_cmd));
1528
1529                 et131x_mii_read(adapter, reg, &tmp);
1530
1531                 status = -EIO;
1532         }
1533         /* Stop the write operation */
1534         writel(0, &mac->mii_mgmt_cmd);
1535
1536         /*
1537          * set the registers we touched back to the state at which we entered
1538          * this function
1539          */
1540         writel(mii_addr, &mac->mii_mgmt_addr);
1541         writel(mii_cmd, &mac->mii_mgmt_cmd);
1542
1543         return status;
1544 }
1545
1546 /* Still used from _mac for BIT_READ */
1547 static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
1548                                       u16 action, u16 regnum, u16 bitnum,
1549                                       u8 *value)
1550 {
1551         u16 reg;
1552         u16 mask = 0x0001 << bitnum;
1553
1554         /* Read the requested register */
1555         et131x_mii_read(adapter, regnum, &reg);
1556
1557         switch (action) {
1558         case TRUEPHY_BIT_READ:
1559                 *value = (reg & mask) >> bitnum;
1560                 break;
1561
1562         case TRUEPHY_BIT_SET:
1563                 et131x_mii_write(adapter, regnum, reg | mask);
1564                 break;
1565
1566         case TRUEPHY_BIT_CLEAR:
1567                 et131x_mii_write(adapter, regnum, reg & ~mask);
1568                 break;
1569
1570         default:
1571                 break;
1572         }
1573 }
1574
1575 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1576 {
1577         struct phy_device *phydev = adapter->phydev;
1578
1579         if (phydev->duplex == DUPLEX_HALF) {
1580                 adapter->flowcontrol = FLOW_NONE;
1581         } else {
1582                 char remote_pause, remote_async_pause;
1583
1584                 et1310_phy_access_mii_bit(adapter,
1585                                 TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1586                 et1310_phy_access_mii_bit(adapter,
1587                                 TRUEPHY_BIT_READ, 5, 11,
1588                                 &remote_async_pause);
1589
1590                 if ((remote_pause == TRUEPHY_BIT_SET) &&
1591                     (remote_async_pause == TRUEPHY_BIT_SET)) {
1592                         adapter->flowcontrol = adapter->wanted_flow;
1593                 } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1594                            (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1595                         if (adapter->wanted_flow == FLOW_BOTH)
1596                                 adapter->flowcontrol = FLOW_BOTH;
1597                         else
1598                                 adapter->flowcontrol = FLOW_NONE;
1599                 } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1600                            (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1601                         adapter->flowcontrol = FLOW_NONE;
1602                 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1603                                remote_async_pause == TRUEPHY_SET_BIT) */
1604                         if (adapter->wanted_flow == FLOW_BOTH)
1605                                 adapter->flowcontrol = FLOW_RXONLY;
1606                         else
1607                                 adapter->flowcontrol = FLOW_NONE;
1608                 }
1609         }
1610 }
1611
1612 /**
1613  * et1310_update_macstat_host_counters - Update the local copy of the statistics
1614  * @adapter: pointer to the adapter structure
1615  */
1616 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1617 {
1618         struct ce_stats *stats = &adapter->stats;
1619         struct macstat_regs __iomem *macstat =
1620                 &adapter->regs->macstat;
1621
1622         stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1623         stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1624         stats->tx_deferred             += readl(&macstat->tx_deferred);
1625         stats->tx_excessive_collisions +=
1626                                 readl(&macstat->tx_multiple_collisions);
1627         stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1628         stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1629         stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1630
1631         stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1632         stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1633         stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1634         stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1635         stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1636         stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1637         stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1638 }
1639
1640 /**
1641  * et1310_handle_macstat_interrupt
1642  * @adapter: pointer to the adapter structure
1643  *
1644  * One of the MACSTAT counters has wrapped.  Update the local copy of
1645  * the statistics held in the adapter structure, checking the "wrap"
1646  * bit for each counter.
1647  */
1648 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1649 {
1650         u32 carry_reg1;
1651         u32 carry_reg2;
1652
1653         /* Read the interrupt bits from the register(s).  These are Clear On
1654          * Write.
1655          */
1656         carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1657         carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1658
1659         writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1660         writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1661
1662         /* We need to do update the host copy of all the MAC_STAT counters.
1663          * For each counter, check it's overflow bit.  If the overflow bit is
1664          * set, then increment the host version of the count by one complete
1665          * revolution of the counter.  This routine is called when the counter
1666          * block indicates that one of the counters has wrapped.
1667          */
1668         if (carry_reg1 & (1 << 14))
1669                 adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1670         if (carry_reg1 & (1 << 8))
1671                 adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1672         if (carry_reg1 & (1 << 7))
1673                 adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1674         if (carry_reg1 & (1 << 2))
1675                 adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1676         if (carry_reg1 & (1 << 6))
1677                 adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1678         if (carry_reg1 & (1 << 3))
1679                 adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1680         if (carry_reg1 & (1 << 0))
1681                 adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1682         if (carry_reg2 & (1 << 16))
1683                 adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1684         if (carry_reg2 & (1 << 15))
1685                 adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1686         if (carry_reg2 & (1 << 6))
1687                 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1688         if (carry_reg2 & (1 << 8))
1689                 adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1690         if (carry_reg2 & (1 << 5))
1691                 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1692         if (carry_reg2 & (1 << 4))
1693                 adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1694         if (carry_reg2 & (1 << 2))
1695                 adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1696 }
1697
1698 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1699 {
1700         struct net_device *netdev = bus->priv;
1701         struct et131x_adapter *adapter = netdev_priv(netdev);
1702         u16 value;
1703         int ret;
1704
1705         ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1706
1707         if (ret < 0)
1708                 return ret;
1709         else
1710                 return value;
1711 }
1712
1713 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1714                              int reg, u16 value)
1715 {
1716         struct net_device *netdev = bus->priv;
1717         struct et131x_adapter *adapter = netdev_priv(netdev);
1718
1719         return et131x_mii_write(adapter, reg, value);
1720 }
1721
1722 static int et131x_mdio_reset(struct mii_bus *bus)
1723 {
1724         struct net_device *netdev = bus->priv;
1725         struct et131x_adapter *adapter = netdev_priv(netdev);
1726
1727         et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1728
1729         return 0;
1730 }
1731
1732 /**
1733  *      et1310_phy_power_down   -       PHY power control
1734  *      @adapter: device to control
1735  *      @down: true for off/false for back on
1736  *
1737  *      one hundred, ten, one thousand megs
1738  *      How would you like to have your LAN accessed
1739  *      Can't you see that this code processed
1740  *      Phy power, phy power..
1741  */
1742 static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1743 {
1744         u16 data;
1745
1746         et131x_mii_read(adapter, MII_BMCR, &data);
1747         data &= ~BMCR_PDOWN;
1748         if (down)
1749                 data |= BMCR_PDOWN;
1750         et131x_mii_write(adapter, MII_BMCR, data);
1751 }
1752
1753 /**
1754  * et131x_xcvr_init - Init the phy if we are setting it into force mode
1755  * @adapter: pointer to our private adapter structure
1756  *
1757  */
1758 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1759 {
1760         u16 imr;
1761         u16 isr;
1762         u16 lcr2;
1763
1764         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1765         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1766
1767         /* Set the link status interrupt only.  Bad behavior when link status
1768          * and auto neg are set, we run into a nested interrupt problem
1769          */
1770         imr |= (ET_PHY_INT_MASK_AUTONEGSTAT &
1771                 ET_PHY_INT_MASK_LINKSTAT &
1772                 ET_PHY_INT_MASK_ENABLE);
1773
1774         et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1775
1776         /* Set the LED behavior such that LED 1 indicates speed (off =
1777          * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1778          * link and activity (on for link, blink off for activity).
1779          *
1780          * NOTE: Some customizations have been added here for specific
1781          * vendors; The LED behavior is now determined by vendor data in the
1782          * EEPROM. However, the above description is the default.
1783          */
1784         if ((adapter->eeprom_data[1] & 0x4) == 0) {
1785                 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1786
1787                 lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T);
1788                 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1789
1790                 if ((adapter->eeprom_data[1] & 0x8) == 0)
1791                         lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1792                 else
1793                         lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1794
1795                 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1796         }
1797 }
1798
1799 /**
1800  * et131x_configure_global_regs -       configure JAGCore global regs
1801  * @adapter: pointer to our adapter structure
1802  *
1803  * Used to configure the global registers on the JAGCore
1804  */
1805 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1806 {
1807         struct global_regs __iomem *regs = &adapter->regs->global;
1808
1809         writel(0, &regs->rxq_start_addr);
1810         writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1811
1812         if (adapter->registry_jumbo_packet < 2048) {
1813                 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1814                  * block of RAM that the driver can split between Tx
1815                  * and Rx as it desires.  Our default is to split it
1816                  * 50/50:
1817                  */
1818                 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1819                 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1820         } else if (adapter->registry_jumbo_packet < 8192) {
1821                 /* For jumbo packets > 2k but < 8k, split 50-50. */
1822                 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1823                 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1824         } else {
1825                 /* 9216 is the only packet size greater than 8k that
1826                  * is available. The Tx buffer has to be big enough
1827                  * for one whole packet on the Tx side. We'll make
1828                  * the Tx 9408, and give the rest to Rx
1829                  */
1830                 writel(0x01b3, &regs->rxq_end_addr);
1831                 writel(0x01b4, &regs->txq_start_addr);
1832         }
1833
1834         /* Initialize the loopback register. Disable all loopbacks. */
1835         writel(0, &regs->loopback);
1836
1837         /* MSI Register */
1838         writel(0, &regs->msi_config);
1839
1840         /* By default, disable the watchdog timer.  It will be enabled when
1841          * a packet is queued.
1842          */
1843         writel(0, &regs->watchdog_timer);
1844 }
1845
1846 /**
1847  * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1848  * @adapter: pointer to our adapter structure
1849  */
1850 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1851 {
1852         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1853         struct rx_ring *rx_local = &adapter->rx_ring;
1854         struct fbr_desc *fbr_entry;
1855         u32 entry;
1856         u32 psr_num_des;
1857         unsigned long flags;
1858
1859         /* Halt RXDMA to perform the reconfigure.  */
1860         et131x_rx_dma_disable(adapter);
1861
1862         /* Load the completion writeback physical address
1863          *
1864          * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1865          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1866          * are ever returned, make sure the high part is retrieved here
1867          * before storing the adjusted address.
1868          */
1869         writel((u32) ((u64)rx_local->rx_status_bus >> 32),
1870                &rx_dma->dma_wb_base_hi);
1871         writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
1872
1873         memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1874
1875         /* Set the address and parameters of the packet status ring into the
1876          * 1310's registers
1877          */
1878         writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
1879                &rx_dma->psr_base_hi);
1880         writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
1881         writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1882         writel(0, &rx_dma->psr_full_offset);
1883
1884         psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1885         writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1886                &rx_dma->psr_min_des);
1887
1888         spin_lock_irqsave(&adapter->rcv_lock, flags);
1889
1890         /* These local variables track the PSR in the adapter structure */
1891         rx_local->local_psr_full = 0;
1892
1893         /* Now's the best time to initialize FBR1 contents */
1894         fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1895         for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1896                 fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1897                 fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1898                 fbr_entry->word2 = entry;
1899                 fbr_entry++;
1900         }
1901
1902         /* Set the address and parameters of Free buffer ring 1 (and 0 if
1903          * required) into the 1310's registers
1904          */
1905         writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
1906                &rx_dma->fbr1_base_hi);
1907         writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
1908         writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1909         writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1910
1911         /* This variable tracks the free buffer ring 1 full position, so it
1912          * has to match the above.
1913          */
1914         rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1915         writel(
1916            ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1917            &rx_dma->fbr1_min_des);
1918
1919 #ifdef USE_FBR0
1920         /* Now's the best time to initialize FBR0 contents */
1921         fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1922         for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1923                 fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1924                 fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1925                 fbr_entry->word2 = entry;
1926                 fbr_entry++;
1927         }
1928
1929         writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
1930                &rx_dma->fbr0_base_hi);
1931         writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
1932         writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1933         writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1934
1935         /* This variable tracks the free buffer ring 0 full position, so it
1936          * has to match the above.
1937          */
1938         rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1939         writel(
1940            ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1941            &rx_dma->fbr0_min_des);
1942 #endif
1943
1944         /* Program the number of packets we will receive before generating an
1945          * interrupt.
1946          * For version B silicon, this value gets updated once autoneg is
1947          *complete.
1948          */
1949         writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1950
1951         /* The "time_done" is not working correctly to coalesce interrupts
1952          * after a given time period, but rather is giving us an interrupt
1953          * regardless of whether we have received packets.
1954          * This value gets updated once autoneg is complete.
1955          */
1956         writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1957
1958         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1959 }
1960
1961 /**
1962  * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1963  * @adapter: pointer to our private adapter structure
1964  *
1965  * Configure the transmit engine with the ring buffers we have created
1966  * and prepare it for use.
1967  */
1968 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1969 {
1970         struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1971
1972         /* Load the hardware with the start of the transmit descriptor ring. */
1973         writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
1974                &txdma->pr_base_hi);
1975         writel((u32) adapter->tx_ring.tx_desc_ring_pa,
1976                &txdma->pr_base_lo);
1977
1978         /* Initialise the transmit DMA engine */
1979         writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1980
1981         /* Load the completion writeback physical address */
1982         writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
1983                                                 &txdma->dma_wb_base_hi);
1984         writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
1985
1986         *adapter->tx_ring.tx_status = 0;
1987
1988         writel(0, &txdma->service_request);
1989         adapter->tx_ring.send_idx = 0;
1990 }
1991
1992 /**
1993  * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1994  * @adapter: pointer to our private adapter structure
1995  *
1996  * Returns 0 on success, errno on failure (as defined in errno.h)
1997  */
1998 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1999 {
2000         /* Configure the JAGCore */
2001         et131x_configure_global_regs(adapter);
2002
2003         et1310_config_mac_regs1(adapter);
2004
2005         /* Configure the MMC registers */
2006         /* All we need to do is initialize the Memory Control Register */
2007         writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
2008
2009         et1310_config_rxmac_regs(adapter);
2010         et1310_config_txmac_regs(adapter);
2011
2012         et131x_config_rx_dma_regs(adapter);
2013         et131x_config_tx_dma_regs(adapter);
2014
2015         et1310_config_macstat_regs(adapter);
2016
2017         et1310_phy_power_down(adapter, 0);
2018         et131x_xcvr_init(adapter);
2019 }
2020
2021 /**
2022  * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2023  * @adapter: pointer to our private adapter structure
2024  */
2025 static void et131x_soft_reset(struct et131x_adapter *adapter)
2026 {
2027         /* Disable MAC Core */
2028         writel(0xc00f0000, &adapter->regs->mac.cfg1);
2029
2030         /* Set everything to a reset value */
2031         writel(0x7F, &adapter->regs->global.sw_reset);
2032         writel(0x000f0000, &adapter->regs->mac.cfg1);
2033         writel(0x00000000, &adapter->regs->mac.cfg1);
2034 }
2035
2036 /**
2037  *      et131x_enable_interrupts        -       enable interrupt
2038  *      @adapter: et131x device
2039  *
2040  *      Enable the appropriate interrupts on the ET131x according to our
2041  *      configuration
2042  */
2043 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
2044 {
2045         u32 mask;
2046
2047         /* Enable all global interrupts */
2048         if (adapter->flowcontrol == FLOW_TXONLY ||
2049                             adapter->flowcontrol == FLOW_BOTH)
2050                 mask = INT_MASK_ENABLE;
2051         else
2052                 mask = INT_MASK_ENABLE_NO_FLOW;
2053
2054         writel(mask, &adapter->regs->global.int_mask);
2055 }
2056
2057 /**
2058  *      et131x_disable_interrupts       -       interrupt disable
2059  *      @adapter: et131x device
2060  *
2061  *      Block all interrupts from the et131x device at the device itself
2062  */
2063 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
2064 {
2065         /* Disable all global interrupts */
2066         writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2067 }
2068
2069 /**
2070  * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2071  * @adapter: pointer to our adapter structure
2072  */
2073 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2074 {
2075         /* Setup the tramsmit dma configuration register */
2076         writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2077                                         &adapter->regs->txdma.csr);
2078 }
2079
2080 /**
2081  * et131x_enable_txrx - Enable tx/rx queues
2082  * @netdev: device to be enabled
2083  */
2084 static void et131x_enable_txrx(struct net_device *netdev)
2085 {
2086         struct et131x_adapter *adapter = netdev_priv(netdev);
2087
2088         /* Enable the Tx and Rx DMA engines (if not already enabled) */
2089         et131x_rx_dma_enable(adapter);
2090         et131x_tx_dma_enable(adapter);
2091
2092         /* Enable device interrupts */
2093         if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2094                 et131x_enable_interrupts(adapter);
2095
2096         /* We're ready to move some data, so start the queue */
2097         netif_start_queue(netdev);
2098 }
2099
2100 /**
2101  * et131x_disable_txrx - Disable tx/rx queues
2102  * @netdev: device to be disabled
2103  */
2104 static void et131x_disable_txrx(struct net_device *netdev)
2105 {
2106         struct et131x_adapter *adapter = netdev_priv(netdev);
2107
2108         /* First thing is to stop the queue */
2109         netif_stop_queue(netdev);
2110
2111         /* Stop the Tx and Rx DMA engines */
2112         et131x_rx_dma_disable(adapter);
2113         et131x_tx_dma_disable(adapter);
2114
2115         /* Disable device interrupts */
2116         et131x_disable_interrupts(adapter);
2117 }
2118
2119 /**
2120  * et131x_init_send - Initialize send data structures
2121  * @adapter: pointer to our private adapter structure
2122  */
2123 static void et131x_init_send(struct et131x_adapter *adapter)
2124 {
2125         struct tcb *tcb;
2126         u32 ct;
2127         struct tx_ring *tx_ring;
2128
2129         /* Setup some convenience pointers */
2130         tx_ring = &adapter->tx_ring;
2131         tcb = adapter->tx_ring.tcb_ring;
2132
2133         tx_ring->tcb_qhead = tcb;
2134
2135         memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2136
2137         /* Go through and set up each TCB */
2138         for (ct = 0; ct++ < NUM_TCB; tcb++)
2139                 /* Set the link pointer in HW TCB to the next TCB in the
2140                  * chain
2141                  */
2142                 tcb->next = tcb + 1;
2143
2144         /* Set the  tail pointer */
2145         tcb--;
2146         tx_ring->tcb_qtail = tcb;
2147         tcb->next = NULL;
2148         /* Curr send queue should now be empty */
2149         tx_ring->send_head = NULL;
2150         tx_ring->send_tail = NULL;
2151 }
2152
2153 /**
2154  * et1310_enable_phy_coma - called when network cable is unplugged
2155  * @adapter: pointer to our adapter structure
2156  *
2157  * driver receive an phy status change interrupt while in D0 and check that
2158  * phy_status is down.
2159  *
2160  *          -- gate off JAGCore;
2161  *          -- set gigE PHY in Coma mode
2162  *          -- wake on phy_interrupt; Perform software reset JAGCore,
2163  *             re-initialize jagcore and gigE PHY
2164  *
2165  *      Add D0-ASPM-PhyLinkDown Support:
2166  *          -- while in D0, when there is a phy_interrupt indicating phy link
2167  *             down status, call the MPSetPhyComa routine to enter this active
2168  *             state power saving mode
2169  *          -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2170  *       indicating linkup status, call the MPDisablePhyComa routine to
2171  *             restore JAGCore and gigE PHY
2172  */
2173 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2174 {
2175         unsigned long flags;
2176         u32 pmcsr;
2177
2178         pmcsr = readl(&adapter->regs->global.pm_csr);
2179
2180         /* Save the GbE PHY speed and duplex modes. Need to restore this
2181          * when cable is plugged back in
2182          */
2183         /*
2184          * TODO - when PM is re-enabled, check if we need to
2185          * perform a similar task as this -
2186          * adapter->pdown_speed = adapter->ai_force_speed;
2187          * adapter->pdown_duplex = adapter->ai_force_duplex;
2188          */
2189
2190         /* Stop sending packets. */
2191         spin_lock_irqsave(&adapter->send_hw_lock, flags);
2192         adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2193         spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2194
2195         /* Wait for outstanding Receive packets */
2196
2197         et131x_disable_txrx(adapter->netdev);
2198
2199         /* Gate off JAGCore 3 clock domains */
2200         pmcsr &= ~ET_PMCSR_INIT;
2201         writel(pmcsr, &adapter->regs->global.pm_csr);
2202
2203         /* Program gigE PHY in to Coma mode */
2204         pmcsr |= ET_PM_PHY_SW_COMA;
2205         writel(pmcsr, &adapter->regs->global.pm_csr);
2206 }
2207
2208 /**
2209  * et1310_disable_phy_coma - Disable the Phy Coma Mode
2210  * @adapter: pointer to our adapter structure
2211  */
2212 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2213 {
2214         u32 pmcsr;
2215
2216         pmcsr = readl(&adapter->regs->global.pm_csr);
2217
2218         /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2219         pmcsr |= ET_PMCSR_INIT;
2220         pmcsr &= ~ET_PM_PHY_SW_COMA;
2221         writel(pmcsr, &adapter->regs->global.pm_csr);
2222
2223         /* Restore the GbE PHY speed and duplex modes;
2224          * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2225          */
2226         /* TODO - when PM is re-enabled, check if we need to
2227          * perform a similar task as this -
2228          * adapter->ai_force_speed = adapter->pdown_speed;
2229          * adapter->ai_force_duplex = adapter->pdown_duplex;
2230          */
2231
2232         /* Re-initialize the send structures */
2233         et131x_init_send(adapter);
2234
2235         /* Bring the device back to the state it was during init prior to
2236          * autonegotiation being complete.  This way, when we get the auto-neg
2237          * complete interrupt, we can complete init by calling ConfigMacREGS2.
2238          */
2239         et131x_soft_reset(adapter);
2240
2241         /* setup et1310 as per the documentation ?? */
2242         et131x_adapter_setup(adapter);
2243
2244         /* Allow Tx to restart */
2245         adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2246
2247         et131x_enable_txrx(adapter->netdev);
2248 }
2249
2250 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2251 {
2252         u32 tmp_free_buff_ring = *free_buff_ring;
2253         tmp_free_buff_ring++;
2254         /* This works for all cases where limit < 1024. The 1023 case
2255            works because 1023++ is 1024 which means the if condition is not
2256            taken but the carry of the bit into the wrap bit toggles the wrap
2257            value correctly */
2258         if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2259                 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2260                 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2261         }
2262         /* For the 1023 case */
2263         tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2264         *free_buff_ring = tmp_free_buff_ring;
2265         return tmp_free_buff_ring;
2266 }
2267
2268 /**
2269  * et131x_align_allocated_memory - Align allocated memory on a given boundary
2270  * @adapter: pointer to our adapter structure
2271  * @phys_addr: pointer to Physical address
2272  * @offset: pointer to the offset variable
2273  * @mask: correct mask
2274  */
2275 static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2276                                           u64 *phys_addr, u64 *offset,
2277                                           u64 mask)
2278 {
2279         u64 new_addr = *phys_addr & ~mask;
2280
2281         *offset = 0;
2282
2283         if (new_addr != *phys_addr) {
2284                 /* Move to next aligned block */
2285                 new_addr += mask + 1;
2286                 /* Return offset for adjusting virt addr */
2287                 *offset = new_addr - *phys_addr;
2288                 /* Return new physical address */
2289                 *phys_addr = new_addr;
2290         }
2291 }
2292
2293 /**
2294  * et131x_rx_dma_memory_alloc
2295  * @adapter: pointer to our private adapter structure
2296  *
2297  * Returns 0 on success and errno on failure (as defined in errno.h)
2298  *
2299  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2300  * and the Packet Status Ring.
2301  */
2302 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2303 {
2304         u32 i, j;
2305         u32 bufsize;
2306         u32 pktstat_ringsize, fbr_chunksize;
2307         struct rx_ring *rx_ring;
2308
2309         /* Setup some convenience pointers */
2310         rx_ring = &adapter->rx_ring;
2311
2312         /* Alloc memory for the lookup table */
2313 #ifdef USE_FBR0
2314         rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2315 #endif
2316         rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2317
2318         /* The first thing we will do is configure the sizes of the buffer
2319          * rings. These will change based on jumbo packet support.  Larger
2320          * jumbo packets increases the size of each entry in FBR0, and the
2321          * number of entries in FBR0, while at the same time decreasing the
2322          * number of entries in FBR1.
2323          *
2324          * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
2325          * entries are huge in order to accommodate a "jumbo" frame, then it
2326          * will have less entries.  Conversely, FBR1 will now be relied upon
2327          * to carry more "normal" frames, thus it's entry size also increases
2328          * and the number of entries goes up too (since it now carries
2329          * "small" + "regular" packets.
2330          *
2331          * In this scheme, we try to maintain 512 entries between the two
2332          * rings. Also, FBR1 remains a constant size - when it's size doubles
2333          * the number of entries halves.  FBR0 increases in size, however.
2334          */
2335
2336         if (adapter->registry_jumbo_packet < 2048) {
2337 #ifdef USE_FBR0
2338                 rx_ring->fbr[1]->buffsize = 256;
2339                 rx_ring->fbr[1]->num_entries = 512;
2340 #endif
2341                 rx_ring->fbr[0]->buffsize = 2048;
2342                 rx_ring->fbr[0]->num_entries = 512;
2343         } else if (adapter->registry_jumbo_packet < 4096) {
2344 #ifdef USE_FBR0
2345                 rx_ring->fbr[1]->buffsize = 512;
2346                 rx_ring->fbr[1]->num_entries = 1024;
2347 #endif
2348                 rx_ring->fbr[0]->buffsize = 4096;
2349                 rx_ring->fbr[0]->num_entries = 512;
2350         } else {
2351 #ifdef USE_FBR0
2352                 rx_ring->fbr[1]->buffsize = 1024;
2353                 rx_ring->fbr[1]->num_entries = 768;
2354 #endif
2355                 rx_ring->fbr[0]->buffsize = 16384;
2356                 rx_ring->fbr[0]->num_entries = 128;
2357         }
2358
2359 #ifdef USE_FBR0
2360         adapter->rx_ring.psr_num_entries =
2361                                 adapter->rx_ring.fbr[1]->num_entries +
2362                                 adapter->rx_ring.fbr[0]->num_entries;
2363 #else
2364         adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
2365 #endif
2366
2367         /* Allocate an area of memory for Free Buffer Ring 1 */
2368         bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2369                                                                         0xfff;
2370         rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2371                                         bufsize,
2372                                         &rx_ring->fbr[0]->ring_physaddr,
2373                                         GFP_KERNEL);
2374         if (!rx_ring->fbr[0]->ring_virtaddr) {
2375                 dev_err(&adapter->pdev->dev,
2376                           "Cannot alloc memory for Free Buffer Ring 1\n");
2377                 return -ENOMEM;
2378         }
2379
2380         /* Save physical address
2381          *
2382          * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2383          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2384          * are ever returned, make sure the high part is retrieved here
2385          * before storing the adjusted address.
2386          */
2387         rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
2388
2389         /* Align Free Buffer Ring 1 on a 4K boundary */
2390         et131x_align_allocated_memory(adapter,
2391                                       &rx_ring->fbr[0]->real_physaddr,
2392                                       &rx_ring->fbr[0]->offset, 0x0FFF);
2393
2394         rx_ring->fbr[0]->ring_virtaddr =
2395                         (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2396                         rx_ring->fbr[0]->offset);
2397
2398 #ifdef USE_FBR0
2399         /* Allocate an area of memory for Free Buffer Ring 0 */
2400         bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2401                                                                         0xfff;
2402         rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2403                                                 bufsize,
2404                                                 &rx_ring->fbr[1]->ring_physaddr,
2405                                                 GFP_KERNEL);
2406         if (!rx_ring->fbr[1]->ring_virtaddr) {
2407                 dev_err(&adapter->pdev->dev,
2408                           "Cannot alloc memory for Free Buffer Ring 0\n");
2409                 return -ENOMEM;
2410         }
2411
2412         /* Save physical address
2413          *
2414          * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2415          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2416          * are ever returned, make sure the high part is retrieved here before
2417          * storing the adjusted address.
2418          */
2419         rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
2420
2421         /* Align Free Buffer Ring 0 on a 4K boundary */
2422         et131x_align_allocated_memory(adapter,
2423                                       &rx_ring->fbr[1]->real_physaddr,
2424                                       &rx_ring->fbr[1]->offset, 0x0FFF);
2425
2426         rx_ring->fbr[1]->ring_virtaddr =
2427                         (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2428                         rx_ring->fbr[1]->offset);
2429 #endif
2430         for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2431                 u64 fbr1_tmp_physaddr;
2432                 u64 fbr1_offset;
2433                 u32 fbr1_align;
2434
2435                 /* This code allocates an area of memory big enough for N
2436                  * free buffers + (buffer_size - 1) so that the buffers can
2437                  * be aligned on 4k boundaries.  If each buffer were aligned
2438                  * to a buffer_size boundary, the effect would be to double
2439                  * the size of FBR0.  By allocating N buffers at once, we
2440                  * reduce this overhead.
2441                  */
2442                 if (rx_ring->fbr[0]->buffsize > 4096)
2443                         fbr1_align = 4096;
2444                 else
2445                         fbr1_align = rx_ring->fbr[0]->buffsize;
2446
2447                 fbr_chunksize =
2448                     (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2449                 rx_ring->fbr[0]->mem_virtaddrs[i] =
2450                     dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2451                                        &rx_ring->fbr[0]->mem_physaddrs[i],
2452                                        GFP_KERNEL);
2453
2454                 if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2455                         dev_err(&adapter->pdev->dev,
2456                                 "Could not alloc memory\n");
2457                         return -ENOMEM;
2458                 }
2459
2460                 /* See NOTE in "Save Physical Address" comment above */
2461                 fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2462
2463                 et131x_align_allocated_memory(adapter,
2464                                               &fbr1_tmp_physaddr,
2465                                               &fbr1_offset, (fbr1_align - 1));
2466
2467                 for (j = 0; j < FBR_CHUNKS; j++) {
2468                         u32 index = (i * FBR_CHUNKS) + j;
2469
2470                         /* Save the Virtual address of this index for quick
2471                          * access later
2472                          */
2473                         rx_ring->fbr[0]->virt[index] =
2474                             (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2475                             (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2476
2477                         /* now store the physical address in the descriptor
2478                          * so the device can access it
2479                          */
2480                         rx_ring->fbr[0]->bus_high[index] =
2481                             (u32) (fbr1_tmp_physaddr >> 32);
2482                         rx_ring->fbr[0]->bus_low[index] =
2483                             (u32) fbr1_tmp_physaddr;
2484
2485                         fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2486
2487                         rx_ring->fbr[0]->buffer1[index] =
2488                             rx_ring->fbr[0]->virt[index];
2489                         rx_ring->fbr[0]->buffer2[index] =
2490                             rx_ring->fbr[0]->virt[index] - 4;
2491                 }
2492         }
2493
2494 #ifdef USE_FBR0
2495         /* Same for FBR0 (if in use) */
2496         for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2497                 u64 fbr0_tmp_physaddr;
2498                 u64 fbr0_offset;
2499
2500                 fbr_chunksize =
2501                     ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2502                 rx_ring->fbr[1]->mem_virtaddrs[i] =
2503                     dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2504                                        &rx_ring->fbr[1]->mem_physaddrs[i],
2505                                        GFP_KERNEL);
2506
2507                 if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2508                         dev_err(&adapter->pdev->dev,
2509                                 "Could not alloc memory\n");
2510                         return -ENOMEM;
2511                 }
2512
2513                 /* See NOTE in "Save Physical Address" comment above */
2514                 fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2515
2516                 et131x_align_allocated_memory(adapter,
2517                                               &fbr0_tmp_physaddr,
2518                                               &fbr0_offset,
2519                                               rx_ring->fbr[1]->buffsize - 1);
2520
2521                 for (j = 0; j < FBR_CHUNKS; j++) {
2522                         u32 index = (i * FBR_CHUNKS) + j;
2523
2524                         rx_ring->fbr[1]->virt[index] =
2525                             (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2526                             (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2527
2528                         rx_ring->fbr[1]->bus_high[index] =
2529                             (u32) (fbr0_tmp_physaddr >> 32);
2530                         rx_ring->fbr[1]->bus_low[index] =
2531                             (u32) fbr0_tmp_physaddr;
2532
2533                         fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2534
2535                         rx_ring->fbr[1]->buffer1[index] =
2536                             rx_ring->fbr[1]->virt[index];
2537                         rx_ring->fbr[1]->buffer2[index] =
2538                             rx_ring->fbr[1]->virt[index] - 4;
2539                 }
2540         }
2541 #endif
2542
2543         /* Allocate an area of memory for FIFO of Packet Status ring entries */
2544         pktstat_ringsize =
2545             sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2546
2547         rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2548                                                   pktstat_ringsize,
2549                                                   &rx_ring->ps_ring_physaddr,
2550                                                   GFP_KERNEL);
2551
2552         if (!rx_ring->ps_ring_virtaddr) {
2553                 dev_err(&adapter->pdev->dev,
2554                           "Cannot alloc memory for Packet Status Ring\n");
2555                 return -ENOMEM;
2556         }
2557         printk(KERN_INFO "Packet Status Ring %lx\n",
2558             (unsigned long) rx_ring->ps_ring_physaddr);
2559
2560         /*
2561          * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2562          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2563          * are ever returned, make sure the high part is retrieved here before
2564          * storing the adjusted address.
2565          */
2566
2567         /* Allocate an area of memory for writeback of status information */
2568         rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2569                                             sizeof(struct rx_status_block),
2570                                             &rx_ring->rx_status_bus,
2571                                             GFP_KERNEL);
2572         if (!rx_ring->rx_status_block) {
2573                 dev_err(&adapter->pdev->dev,
2574                           "Cannot alloc memory for Status Block\n");
2575                 return -ENOMEM;
2576         }
2577         rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2578         printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
2579
2580         /* Recv
2581          * kmem_cache_create initializes a lookaside list. After successful
2582          * creation, nonpaged fixed-size blocks can be allocated from and
2583          * freed to the lookaside list.
2584          * RFDs will be allocated from this pool.
2585          */
2586         rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2587                                                    sizeof(struct rfd),
2588                                                    0,
2589                                                    SLAB_CACHE_DMA |
2590                                                    SLAB_HWCACHE_ALIGN,
2591                                                    NULL);
2592
2593         adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2594
2595         /* The RFDs are going to be put on lists later on, so initialize the
2596          * lists now.
2597          */
2598         INIT_LIST_HEAD(&rx_ring->recv_list);
2599         return 0;
2600 }
2601
2602 /**
2603  * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2604  * @adapter: pointer to our private adapter structure
2605  */
2606 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2607 {
2608         u32 index;
2609         u32 bufsize;
2610         u32 pktstat_ringsize;
2611         struct rfd *rfd;
2612         struct rx_ring *rx_ring;
2613
2614         /* Setup some convenience pointers */
2615         rx_ring = &adapter->rx_ring;
2616
2617         /* Free RFDs and associated packet descriptors */
2618         WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2619
2620         while (!list_empty(&rx_ring->recv_list)) {
2621                 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2622                                 struct rfd, list_node);
2623
2624                 list_del(&rfd->list_node);
2625                 rfd->skb = NULL;
2626                 kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2627         }
2628
2629         /* Free Free Buffer Ring 1 */
2630         if (rx_ring->fbr[0]->ring_virtaddr) {
2631                 /* First the packet memory */
2632                 for (index = 0; index <
2633                      (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2634                         if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2635                                 u32 fbr1_align;
2636
2637                                 if (rx_ring->fbr[0]->buffsize > 4096)
2638                                         fbr1_align = 4096;
2639                                 else
2640                                         fbr1_align = rx_ring->fbr[0]->buffsize;
2641
2642                                 bufsize =
2643                                     (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2644                                     fbr1_align - 1;
2645
2646                                 dma_free_coherent(&adapter->pdev->dev,
2647                                         bufsize,
2648                                         rx_ring->fbr[0]->mem_virtaddrs[index],
2649                                         rx_ring->fbr[0]->mem_physaddrs[index]);
2650
2651                                 rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2652                         }
2653                 }
2654
2655                 /* Now the FIFO itself */
2656                 rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2657                     rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2658
2659                 bufsize =
2660                     (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2661                                                                         0xfff;
2662
2663                 dma_free_coherent(&adapter->pdev->dev, bufsize,
2664                                     rx_ring->fbr[0]->ring_virtaddr,
2665                                     rx_ring->fbr[0]->ring_physaddr);
2666
2667                 rx_ring->fbr[0]->ring_virtaddr = NULL;
2668         }
2669
2670 #ifdef USE_FBR0
2671         /* Now the same for Free Buffer Ring 0 */
2672         if (rx_ring->fbr[1]->ring_virtaddr) {
2673                 /* First the packet memory */
2674                 for (index = 0; index <
2675                      (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2676                         if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2677                                 bufsize =
2678                                     (rx_ring->fbr[1]->buffsize *
2679                                      (FBR_CHUNKS + 1)) - 1;
2680
2681                                 dma_free_coherent(&adapter->pdev->dev,
2682                                         bufsize,
2683                                         rx_ring->fbr[1]->mem_virtaddrs[index],
2684                                         rx_ring->fbr[1]->mem_physaddrs[index]);
2685
2686                                 rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2687                         }
2688                 }
2689
2690                 /* Now the FIFO itself */
2691                 rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2692                     rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2693
2694                 bufsize =
2695                     (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2696                                                                         0xfff;
2697
2698                 dma_free_coherent(&adapter->pdev->dev,
2699                                   bufsize,
2700                                   rx_ring->fbr[1]->ring_virtaddr,
2701                                   rx_ring->fbr[1]->ring_physaddr);
2702
2703                 rx_ring->fbr[1]->ring_virtaddr = NULL;
2704         }
2705 #endif
2706
2707         /* Free Packet Status Ring */
2708         if (rx_ring->ps_ring_virtaddr) {
2709                 pktstat_ringsize =
2710                     sizeof(struct pkt_stat_desc) *
2711                     adapter->rx_ring.psr_num_entries;
2712
2713                 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2714                                     rx_ring->ps_ring_virtaddr,
2715                                     rx_ring->ps_ring_physaddr);
2716
2717                 rx_ring->ps_ring_virtaddr = NULL;
2718         }
2719
2720         /* Free area of memory for the writeback of status information */
2721         if (rx_ring->rx_status_block) {
2722                 dma_free_coherent(&adapter->pdev->dev,
2723                         sizeof(struct rx_status_block),
2724                         rx_ring->rx_status_block, rx_ring->rx_status_bus);
2725                 rx_ring->rx_status_block = NULL;
2726         }
2727
2728         /* Destroy the lookaside (RFD) pool */
2729         if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2730                 kmem_cache_destroy(rx_ring->recv_lookaside);
2731                 adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2732         }
2733
2734         /* Free the FBR Lookup Table */
2735 #ifdef USE_FBR0
2736         kfree(rx_ring->fbr[1]);
2737 #endif
2738
2739         kfree(rx_ring->fbr[0]);
2740
2741         /* Reset Counters */
2742         rx_ring->num_ready_recv = 0;
2743 }
2744
2745 /**
2746  * et131x_init_recv - Initialize receive data structures.
2747  * @adapter: pointer to our private adapter structure
2748  *
2749  * Returns 0 on success and errno on failure (as defined in errno.h)
2750  */
2751 static int et131x_init_recv(struct et131x_adapter *adapter)
2752 {
2753         int status = -ENOMEM;
2754         struct rfd *rfd = NULL;
2755         u32 rfdct;
2756         u32 numrfd = 0;
2757         struct rx_ring *rx_ring;
2758
2759         /* Setup some convenience pointers */
2760         rx_ring = &adapter->rx_ring;
2761
2762         /* Setup each RFD */
2763         for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2764                 rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2765                                                      GFP_ATOMIC | GFP_DMA);
2766
2767                 if (!rfd) {
2768                         dev_err(&adapter->pdev->dev,
2769                                   "Couldn't alloc RFD out of kmem_cache\n");
2770                         status = -ENOMEM;
2771                         continue;
2772                 }
2773
2774                 rfd->skb = NULL;
2775
2776                 /* Add this RFD to the recv_list */
2777                 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2778
2779                 /* Increment both the available RFD's, and the total RFD's. */
2780                 rx_ring->num_ready_recv++;
2781                 numrfd++;
2782         }
2783
2784         if (numrfd > NIC_MIN_NUM_RFD)
2785                 status = 0;
2786
2787         rx_ring->num_rfd = numrfd;
2788
2789         if (status != 0) {
2790                 kmem_cache_free(rx_ring->recv_lookaside, rfd);
2791                 dev_err(&adapter->pdev->dev,
2792                           "Allocation problems in et131x_init_recv\n");
2793         }
2794         return status;
2795 }
2796
2797 /**
2798  * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2799  * @adapter: pointer to our adapter structure
2800  */
2801 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2802 {
2803         struct phy_device *phydev = adapter->phydev;
2804
2805         if (!phydev)
2806                 return;
2807
2808         /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2809          * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2810          */
2811         if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2812                 writel(0, &adapter->regs->rxdma.max_pkt_time);
2813                 writel(1, &adapter->regs->rxdma.num_pkt_done);
2814         }
2815 }
2816
2817 /**
2818  * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2819  * @adapter: pointer to our adapter
2820  * @rfd: pointer to the RFD
2821  */
2822 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2823 {
2824         struct rx_ring *rx_local = &adapter->rx_ring;
2825         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2826         u16 buff_index = rfd->bufferindex;
2827         u8 ring_index = rfd->ringindex;
2828         unsigned long flags;
2829
2830         /* We don't use any of the OOB data besides status. Otherwise, we
2831          * need to clean up OOB data
2832          */
2833         if (
2834 #ifdef USE_FBR0
2835             (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2836 #endif
2837             (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2838                 spin_lock_irqsave(&adapter->fbr_lock, flags);
2839
2840                 if (ring_index == 1) {
2841                         struct fbr_desc *next = (struct fbr_desc *)
2842                                         (rx_local->fbr[0]->ring_virtaddr) +
2843                                         INDEX10(rx_local->fbr[0]->local_full);
2844
2845                         /* Handle the Free Buffer Ring advancement here. Write
2846                          * the PA / Buffer Index for the returned buffer into
2847                          * the oldest (next to be freed)FBR entry
2848                          */
2849                         next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2850                         next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2851                         next->word2 = buff_index;
2852
2853                         writel(bump_free_buff_ring(
2854                                         &rx_local->fbr[0]->local_full,
2855                                         rx_local->fbr[0]->num_entries - 1),
2856                                         &rx_dma->fbr1_full_offset);
2857                 }
2858 #ifdef USE_FBR0
2859                 else {
2860                         struct fbr_desc *next = (struct fbr_desc *)
2861                                 rx_local->fbr[1]->ring_virtaddr +
2862                                     INDEX10(rx_local->fbr[1]->local_full);
2863
2864                         /* Handle the Free Buffer Ring advancement here. Write
2865                          * the PA / Buffer Index for the returned buffer into
2866                          * the oldest (next to be freed) FBR entry
2867                          */
2868                         next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2869                         next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2870                         next->word2 = buff_index;
2871
2872                         writel(bump_free_buff_ring(
2873                                         &rx_local->fbr[1]->local_full,
2874                                         rx_local->fbr[1]->num_entries - 1),
2875                                &rx_dma->fbr0_full_offset);
2876                 }
2877 #endif
2878                 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2879         } else {
2880                 dev_err(&adapter->pdev->dev,
2881                           "%s illegal Buffer Index returned\n", __func__);
2882         }
2883
2884         /* The processing on this RFD is done, so put it back on the tail of
2885          * our list
2886          */
2887         spin_lock_irqsave(&adapter->rcv_lock, flags);
2888         list_add_tail(&rfd->list_node, &rx_local->recv_list);
2889         rx_local->num_ready_recv++;
2890         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2891
2892         WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2893 }
2894
2895 /**
2896  * nic_rx_pkts - Checks the hardware for available packets
2897  * @adapter: pointer to our adapter
2898  *
2899  * Returns rfd, a pointer to our MPRFD.
2900  *
2901  * Checks the hardware for available packets, using completion ring
2902  * If packets are available, it gets an RFD from the recv_list, attaches
2903  * the packet to it, puts the RFD in the RecvPendList, and also returns
2904  * the pointer to the RFD.
2905  */
2906 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2907 {
2908         struct rx_ring *rx_local = &adapter->rx_ring;
2909         struct rx_status_block *status;
2910         struct pkt_stat_desc *psr;
2911         struct rfd *rfd;
2912         u32 i;
2913         u8 *buf;
2914         unsigned long flags;
2915         struct list_head *element;
2916         u8 ring_index;
2917         u16 buff_index;
2918         u32 len;
2919         u32 word0;
2920         u32 word1;
2921
2922         /* RX Status block is written by the DMA engine prior to every
2923          * interrupt. It contains the next to be used entry in the Packet
2924          * Status Ring, and also the two Free Buffer rings.
2925          */
2926         status = rx_local->rx_status_block;
2927         word1 = status->word1 >> 16;    /* Get the useful bits */
2928
2929         /* Check the PSR and wrap bits do not match */
2930         if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2931                 /* Looks like this ring is not updated yet */
2932                 return NULL;
2933
2934         /* The packet status ring indicates that data is available. */
2935         psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2936                         (rx_local->local_psr_full & 0xFFF);
2937
2938         /* Grab any information that is required once the PSR is
2939          * advanced, since we can no longer rely on the memory being
2940          * accurate
2941          */
2942         len = psr->word1 & 0xFFFF;
2943         ring_index = (psr->word1 >> 26) & 0x03;
2944         buff_index = (psr->word1 >> 16) & 0x3FF;
2945         word0 = psr->word0;
2946
2947         /* Indicate that we have used this PSR entry. */
2948         /* FIXME wrap 12 */
2949         add_12bit(&rx_local->local_psr_full, 1);
2950         if (
2951           (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2952                 /* Clear psr full and toggle the wrap bit */
2953                 rx_local->local_psr_full &=  ~0xFFF;
2954                 rx_local->local_psr_full ^= 0x1000;
2955         }
2956
2957         writel(rx_local->local_psr_full,
2958                &adapter->regs->rxdma.psr_full_offset);
2959
2960 #ifndef USE_FBR0
2961         if (ring_index != 1)
2962                 return NULL;
2963 #endif
2964
2965 #ifdef USE_FBR0
2966         if (ring_index > 1 ||
2967                 (ring_index == 0 &&
2968                 buff_index > rx_local->fbr[1]->num_entries - 1) ||
2969                 (ring_index == 1 &&
2970                 buff_index > rx_local->fbr[0]->num_entries - 1))
2971 #else
2972         if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1)
2973 #endif
2974         {
2975                 /* Illegal buffer or ring index cannot be used by S/W*/
2976                 dev_err(&adapter->pdev->dev,
2977                           "NICRxPkts PSR Entry %d indicates "
2978                           "length of %d and/or bad bi(%d)\n",
2979                           rx_local->local_psr_full & 0xFFF,
2980                           len, buff_index);
2981                 return NULL;
2982         }
2983
2984         /* Get and fill the RFD. */
2985         spin_lock_irqsave(&adapter->rcv_lock, flags);
2986
2987         rfd = NULL;
2988         element = rx_local->recv_list.next;
2989         rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2990
2991         if (rfd == NULL) {
2992                 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2993                 return NULL;
2994         }
2995
2996         list_del(&rfd->list_node);
2997         rx_local->num_ready_recv--;
2998
2999         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
3000
3001         rfd->bufferindex = buff_index;
3002         rfd->ringindex = ring_index;
3003
3004         /* In V1 silicon, there is a bug which screws up filtering of
3005          * runt packets.  Therefore runt packet filtering is disabled
3006          * in the MAC and the packets are dropped here.  They are
3007          * also counted here.
3008          */
3009         if (len < (NIC_MIN_PACKET_SIZE + 4)) {
3010                 adapter->stats.rx_other_errs++;
3011                 len = 0;
3012         }
3013
3014         if (len) {
3015                 /* Determine if this is a multicast packet coming in */
3016                 if ((word0 & ALCATEL_MULTICAST_PKT) &&
3017                     !(word0 & ALCATEL_BROADCAST_PKT)) {
3018                         /* Promiscuous mode and Multicast mode are
3019                          * not mutually exclusive as was first
3020                          * thought.  I guess Promiscuous is just
3021                          * considered a super-set of the other
3022                          * filters. Generally filter is 0x2b when in
3023                          * promiscuous mode.
3024                          */
3025                         if ((adapter->packet_filter &
3026                                         ET131X_PACKET_TYPE_MULTICAST)
3027                             && !(adapter->packet_filter &
3028                                         ET131X_PACKET_TYPE_PROMISCUOUS)
3029                             && !(adapter->packet_filter &
3030                                         ET131X_PACKET_TYPE_ALL_MULTICAST)) {
3031                                 /*
3032                                  * Note - ring_index for fbr[] array is reversed
3033                                  * 1 for FBR0 etc
3034                                  */
3035                                 buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
3036                                                 virt[buff_index];
3037
3038                                 /* Loop through our list to see if the
3039                                  * destination address of this packet
3040                                  * matches one in our list.
3041                                  */
3042                                 for (i = 0; i < adapter->multicast_addr_count;
3043                                      i++) {
3044                                         if (buf[0] ==
3045                                                 adapter->multicast_list[i][0]
3046                                             && buf[1] ==
3047                                                 adapter->multicast_list[i][1]
3048                                             && buf[2] ==
3049                                                 adapter->multicast_list[i][2]
3050                                             && buf[3] ==
3051                                                 adapter->multicast_list[i][3]
3052                                             && buf[4] ==
3053                                                 adapter->multicast_list[i][4]
3054                                             && buf[5] ==
3055                                                 adapter->multicast_list[i][5]) {
3056                                                 break;
3057                                         }
3058                                 }
3059
3060                                 /* If our index is equal to the number
3061                                  * of Multicast address we have, then
3062                                  * this means we did not find this
3063                                  * packet's matching address in our
3064                                  * list.  Set the len to zero,
3065                                  * so we free our RFD when we return
3066                                  * from this function.
3067                                  */
3068                                 if (i == adapter->multicast_addr_count)
3069                                         len = 0;
3070                         }
3071
3072                         if (len > 0)
3073                                 adapter->stats.multicast_pkts_rcvd++;
3074                 } else if (word0 & ALCATEL_BROADCAST_PKT)
3075                         adapter->stats.broadcast_pkts_rcvd++;
3076                 else
3077                         /* Not sure what this counter measures in
3078                          * promiscuous mode. Perhaps we should check
3079                          * the MAC address to see if it is directed
3080                          * to us in promiscuous mode.
3081                          */
3082                         adapter->stats.unicast_pkts_rcvd++;
3083         }
3084
3085         if (len > 0) {
3086                 struct sk_buff *skb = NULL;
3087
3088                 /*rfd->len = len - 4; */
3089                 rfd->len = len;
3090
3091                 skb = dev_alloc_skb(rfd->len + 2);
3092                 if (!skb) {
3093                         dev_err(&adapter->pdev->dev,
3094                                   "Couldn't alloc an SKB for Rx\n");
3095                         return NULL;
3096                 }
3097
3098                 adapter->net_stats.rx_bytes += rfd->len;
3099
3100                 /*
3101                  * Note - ring_index for fbr[] array is reversed,
3102                  * 1 for FBR0 etc
3103                  */
3104                 memcpy(skb_put(skb, rfd->len),
3105                     rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3106                     rfd->len);
3107
3108                 skb->dev = adapter->netdev;
3109                 skb->protocol = eth_type_trans(skb, adapter->netdev);
3110                 skb->ip_summed = CHECKSUM_NONE;
3111
3112                 netif_rx_ni(skb);
3113         } else {
3114                 rfd->len = 0;
3115         }
3116
3117         nic_return_rfd(adapter, rfd);
3118         return rfd;
3119 }
3120
3121 /**
3122  * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3123  * @adapter: pointer to our adapter
3124  *
3125  * Assumption, Rcv spinlock has been acquired.
3126  */
3127 static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3128 {
3129         struct rfd *rfd = NULL;
3130         u32 count = 0;
3131         bool done = true;
3132
3133         /* Process up to available RFD's */
3134         while (count < NUM_PACKETS_HANDLED) {
3135                 if (list_empty(&adapter->rx_ring.recv_list)) {
3136                         WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3137                         done = false;
3138                         break;
3139                 }
3140
3141                 rfd = nic_rx_pkts(adapter);
3142
3143                 if (rfd == NULL)
3144                         break;
3145
3146                 /* Do not receive any packets until a filter has been set.
3147                  * Do not receive any packets until we have link.
3148                  * If length is zero, return the RFD in order to advance the
3149                  * Free buffer ring.
3150                  */
3151                 if (!adapter->packet_filter ||
3152                     !netif_carrier_ok(adapter->netdev) ||
3153                     rfd->len == 0)
3154                         continue;
3155
3156                 /* Increment the number of packets we received */
3157                 adapter->net_stats.rx_packets++;
3158
3159                 /* Set the status on the packet, either resources or success */
3160                 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3161                         dev_warn(&adapter->pdev->dev,
3162                                     "RFD's are running out\n");
3163                 }
3164                 count++;
3165         }
3166
3167         if (count == NUM_PACKETS_HANDLED || !done) {
3168                 adapter->rx_ring.unfinished_receives = true;
3169                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3170                        &adapter->regs->global.watchdog_timer);
3171         } else
3172                 /* Watchdog timer will disable itself if appropriate. */
3173                 adapter->rx_ring.unfinished_receives = false;
3174 }
3175
3176 /**
3177  * et131x_tx_dma_memory_alloc
3178  * @adapter: pointer to our private adapter structure
3179  *
3180  * Returns 0 on success and errno on failure (as defined in errno.h).
3181  *
3182  * Allocates memory that will be visible both to the device and to the CPU.
3183  * The OS will pass us packets, pointers to which we will insert in the Tx
3184  * Descriptor queue. The device will read this queue to find the packets in
3185  * memory. The device will update the "status" in memory each time it xmits a
3186  * packet.
3187  */
3188 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3189 {
3190         int desc_size = 0;
3191         struct tx_ring *tx_ring = &adapter->tx_ring;
3192
3193         /* Allocate memory for the TCB's (Transmit Control Block) */
3194         adapter->tx_ring.tcb_ring =
3195                 kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3196         if (!adapter->tx_ring.tcb_ring) {
3197                 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3198                 return -ENOMEM;
3199         }
3200
3201         /* Allocate enough memory for the Tx descriptor ring, and allocate
3202          * some extra so that the ring can be aligned on a 4k boundary.
3203          */
3204         desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3205         tx_ring->tx_desc_ring =
3206             (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
3207                                                   desc_size,
3208                                                   &tx_ring->tx_desc_ring_pa,
3209                                                   GFP_KERNEL);
3210         if (!adapter->tx_ring.tx_desc_ring) {
3211                 dev_err(&adapter->pdev->dev,
3212                         "Cannot alloc memory for Tx Ring\n");
3213                 return -ENOMEM;
3214         }
3215
3216         /* Save physical address
3217          *
3218          * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3219          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3220          * are ever returned, make sure the high part is retrieved here before
3221          * storing the adjusted address.
3222          */
3223         /* Allocate memory for the Tx status block */
3224         tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3225                                                     sizeof(u32),
3226                                                     &tx_ring->tx_status_pa,
3227                                                     GFP_KERNEL);
3228         if (!adapter->tx_ring.tx_status_pa) {
3229                 dev_err(&adapter->pdev->dev,
3230                                   "Cannot alloc memory for Tx status block\n");
3231                 return -ENOMEM;
3232         }
3233         return 0;
3234 }
3235
3236 /**
3237  * et131x_tx_dma_memory_free - Free all memory allocated within this module
3238  * @adapter: pointer to our private adapter structure
3239  *
3240  * Returns 0 on success and errno on failure (as defined in errno.h).
3241  */
3242 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3243 {
3244         int desc_size = 0;
3245
3246         if (adapter->tx_ring.tx_desc_ring) {
3247                 /* Free memory relating to Tx rings here */
3248                 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3249                                                                 + 4096 - 1;
3250                 dma_free_coherent(&adapter->pdev->dev,
3251                                     desc_size,
3252                                     adapter->tx_ring.tx_desc_ring,
3253                                     adapter->tx_ring.tx_desc_ring_pa);
3254                 adapter->tx_ring.tx_desc_ring = NULL;
3255         }
3256
3257         /* Free memory for the Tx status block */
3258         if (adapter->tx_ring.tx_status) {
3259                 dma_free_coherent(&adapter->pdev->dev,
3260                                     sizeof(u32),
3261                                     adapter->tx_ring.tx_status,
3262                                     adapter->tx_ring.tx_status_pa);
3263
3264                 adapter->tx_ring.tx_status = NULL;
3265         }
3266         /* Free the memory for the tcb structures */
3267         kfree(adapter->tx_ring.tcb_ring);
3268 }
3269
3270 /**
3271  * nic_send_packet - NIC specific send handler for version B silicon.
3272  * @adapter: pointer to our adapter
3273  * @tcb: pointer to struct tcb
3274  *
3275  * Returns 0 or errno.
3276  */
3277 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3278 {
3279         u32 i;
3280         struct tx_desc desc[24];        /* 24 x 16 byte */
3281         u32 frag = 0;
3282         u32 thiscopy, remainder;
3283         struct sk_buff *skb = tcb->skb;
3284         u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3285         struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3286         unsigned long flags;
3287         struct phy_device *phydev = adapter->phydev;
3288
3289         /* Part of the optimizations of this send routine restrict us to
3290          * sending 24 fragments at a pass.  In practice we should never see
3291          * more than 5 fragments.
3292          *
3293          * NOTE: The older version of this function (below) can handle any
3294          * number of fragments. If needed, we can call this function,
3295          * although it is less efficient.
3296          */
3297         if (nr_frags > 23)
3298                 return -EIO;
3299
3300         memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3301
3302         for (i = 0; i < nr_frags; i++) {
3303                 /* If there is something in this element, lets get a
3304                  * descriptor from the ring and get the necessary data
3305                  */
3306                 if (i == 0) {
3307                         /* If the fragments are smaller than a standard MTU,
3308                          * then map them to a single descriptor in the Tx
3309                          * Desc ring. However, if they're larger, as is
3310                          * possible with support for jumbo packets, then
3311                          * split them each across 2 descriptors.
3312                          *
3313                          * This will work until we determine why the hardware
3314                          * doesn't seem to like large fragments.
3315                          */
3316                         if ((skb->len - skb->data_len) <= 1514) {
3317                                 desc[frag].addr_hi = 0;
3318                                 /* Low 16bits are length, high is vlan and
3319                                    unused currently so zero */
3320                                 desc[frag].len_vlan =
3321                                         skb->len - skb->data_len;
3322
3323                                 /* NOTE: Here, the dma_addr_t returned from
3324                                  * dma_map_single() is implicitly cast as a
3325                                  * u32. Although dma_addr_t can be
3326                                  * 64-bit, the address returned by
3327                                  * dma_map_single() is always 32-bit
3328                                  * addressable (as defined by the pci/dma
3329                                  * subsystem)
3330                                  */
3331                                 desc[frag++].addr_lo =
3332                                     dma_map_single(&adapter->pdev->dev,
3333                                                    skb->data,
3334                                                    skb->len -
3335                                                    skb->data_len,
3336                                                    DMA_TO_DEVICE);
3337                         } else {
3338                                 desc[frag].addr_hi = 0;
3339                                 desc[frag].len_vlan =
3340                                     (skb->len - skb->data_len) / 2;
3341
3342                                 /* NOTE: Here, the dma_addr_t returned from
3343                                  * dma_map_single() is implicitly cast as a
3344                                  * u32. Although dma_addr_t can be
3345                                  * 64-bit, the address returned by
3346                                  * dma_map_single() is always 32-bit
3347                                  * addressable (as defined by the pci/dma
3348                                  * subsystem)
3349                                  */
3350                                 desc[frag++].addr_lo =
3351                                     dma_map_single(&adapter->pdev->dev,
3352                                                    skb->data,
3353                                                    ((skb->len -
3354                                                      skb->data_len) / 2),
3355                                                    DMA_TO_DEVICE);
3356                                 desc[frag].addr_hi = 0;
3357
3358                                 desc[frag].len_vlan =
3359                                     (skb->len - skb->data_len) / 2;
3360
3361                                 /* NOTE: Here, the dma_addr_t returned from
3362                                  * dma_map_single() is implicitly cast as a
3363                                  * u32. Although dma_addr_t can be
3364                                  * 64-bit, the address returned by
3365                                  * dma_map_single() is always 32-bit
3366                                  * addressable (as defined by the pci/dma
3367                                  * subsystem)
3368                                  */
3369                                 desc[frag++].addr_lo =
3370                                     dma_map_single(&adapter->pdev->dev,
3371                                                    skb->data +
3372                                                    ((skb->len -
3373                                                      skb->data_len) / 2),
3374                                                    ((skb->len -
3375                                                      skb->data_len) / 2),
3376                                                    DMA_TO_DEVICE);
3377                         }
3378                 } else {
3379                         desc[frag].addr_hi = 0;
3380                         desc[frag].len_vlan =
3381                                         frags[i - 1].size;
3382
3383                         /* NOTE: Here, the dma_addr_t returned from
3384                          * dma_map_page() is implicitly cast as a u32.
3385                          * Although dma_addr_t can be 64-bit, the address
3386                          * returned by dma_map_page() is always 32-bit
3387                          * addressable (as defined by the pci/dma subsystem)
3388                          */
3389                         desc[frag++].addr_lo = skb_frag_dma_map(
3390                                                         &adapter->pdev->dev,
3391                                                         &frags[i - 1],
3392                                                         0,
3393                                                         frags[i - 1].size,
3394                                                         DMA_TO_DEVICE);
3395                 }
3396         }
3397
3398         if (phydev && phydev->speed == SPEED_1000) {
3399                 if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3400                         /* Last element & Interrupt flag */
3401                         desc[frag - 1].flags = 0x5;
3402                         adapter->tx_ring.since_irq = 0;
3403                 } else { /* Last element */
3404                         desc[frag - 1].flags = 0x1;
3405                 }
3406         } else
3407                 desc[frag - 1].flags = 0x5;
3408
3409         desc[0].flags |= 2;     /* First element flag */
3410
3411         tcb->index_start = adapter->tx_ring.send_idx;
3412         tcb->stale = 0;
3413
3414         spin_lock_irqsave(&adapter->send_hw_lock, flags);
3415
3416         thiscopy = NUM_DESC_PER_RING_TX -
3417                                 INDEX10(adapter->tx_ring.send_idx);
3418
3419         if (thiscopy >= frag) {
3420                 remainder = 0;
3421                 thiscopy = frag;
3422         } else {
3423                 remainder = frag - thiscopy;
3424         }
3425
3426         memcpy(adapter->tx_ring.tx_desc_ring +
3427                INDEX10(adapter->tx_ring.send_idx), desc,
3428                sizeof(struct tx_desc) * thiscopy);
3429
3430         add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3431
3432         if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3433                   INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3434                 adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3435                 adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3436         }
3437
3438         if (remainder) {
3439                 memcpy(adapter->tx_ring.tx_desc_ring,
3440                        desc + thiscopy,
3441                        sizeof(struct tx_desc) * remainder);
3442
3443                 add_10bit(&adapter->tx_ring.send_idx, remainder);
3444         }
3445
3446         if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3447                 if (adapter->tx_ring.send_idx)
3448                         tcb->index = NUM_DESC_PER_RING_TX - 1;
3449                 else
3450                         tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3451         } else
3452                 tcb->index = adapter->tx_ring.send_idx - 1;
3453
3454         spin_lock(&adapter->tcb_send_qlock);
3455
3456         if (adapter->tx_ring.send_tail)
3457                 adapter->tx_ring.send_tail->next = tcb;
3458         else
3459                 adapter->tx_ring.send_head = tcb;
3460
3461         adapter->tx_ring.send_tail = tcb;
3462
3463         WARN_ON(tcb->next != NULL);
3464
3465         adapter->tx_ring.used++;
3466
3467         spin_unlock(&adapter->tcb_send_qlock);
3468
3469         /* Write the new write pointer back to the device. */
3470         writel(adapter->tx_ring.send_idx,
3471                &adapter->regs->txdma.service_request);
3472
3473         /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
3474          * timer to wake us up if this packet isn't followed by N more.
3475          */
3476         if (phydev && phydev->speed == SPEED_1000) {
3477                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3478                        &adapter->regs->global.watchdog_timer);
3479         }
3480         spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3481
3482         return 0;
3483 }
3484
3485 /**
3486  * send_packet - Do the work to send a packet
3487  * @skb: the packet(s) to send
3488  * @adapter: a pointer to the device's private adapter structure
3489  *
3490  * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3491  *
3492  * Assumption: Send spinlock has been acquired
3493  */
3494 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3495 {
3496         int status;
3497         struct tcb *tcb = NULL;
3498         u16 *shbufva;
3499         unsigned long flags;
3500
3501         /* All packets must have at least a MAC address and a protocol type */
3502         if (skb->len < ETH_HLEN)
3503                 return -EIO;
3504
3505         /* Get a TCB for this packet */
3506         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3507
3508         tcb = adapter->tx_ring.tcb_qhead;
3509
3510         if (tcb == NULL) {
3511                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3512                 return -ENOMEM;
3513         }
3514
3515         adapter->tx_ring.tcb_qhead = tcb->next;
3516
3517         if (adapter->tx_ring.tcb_qhead == NULL)
3518                 adapter->tx_ring.tcb_qtail = NULL;
3519
3520         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3521
3522         tcb->skb = skb;
3523
3524         if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3525                 shbufva = (u16 *) skb->data;
3526
3527                 if ((shbufva[0] == 0xffff) &&
3528                     (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3529                         tcb->flags |= fMP_DEST_BROAD;
3530                 } else if ((shbufva[0] & 0x3) == 0x0001) {
3531                         tcb->flags |=  fMP_DEST_MULTI;
3532                 }
3533         }
3534
3535         tcb->next = NULL;
3536
3537         /* Call the NIC specific send handler. */
3538         status = nic_send_packet(adapter, tcb);
3539
3540         if (status != 0) {
3541                 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3542
3543                 if (adapter->tx_ring.tcb_qtail)
3544                         adapter->tx_ring.tcb_qtail->next = tcb;
3545                 else
3546                         /* Apparently ready Q is empty. */
3547                         adapter->tx_ring.tcb_qhead = tcb;
3548
3549                 adapter->tx_ring.tcb_qtail = tcb;
3550                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3551                 return status;
3552         }
3553         WARN_ON(adapter->tx_ring.used > NUM_TCB);
3554         return 0;
3555 }
3556
3557 /**
3558  * et131x_send_packets - This function is called by the OS to send packets
3559  * @skb: the packet(s) to send
3560  * @netdev:device on which to TX the above packet(s)
3561  *
3562  * Return 0 in almost all cases; non-zero value in extreme hard failure only
3563  */
3564 static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3565 {
3566         int status = 0;
3567         struct et131x_adapter *adapter = netdev_priv(netdev);
3568
3569         /* Send these packets
3570          *
3571          * NOTE: The Linux Tx entry point is only given one packet at a time
3572          * to Tx, so the PacketCount and it's array used makes no sense here
3573          */
3574
3575         /* TCB is not available */
3576         if (adapter->tx_ring.used >= NUM_TCB) {
3577                 /* NOTE: If there's an error on send, no need to queue the
3578                  * packet under Linux; if we just send an error up to the
3579                  * netif layer, it will resend the skb to us.
3580                  */
3581                 status = -ENOMEM;
3582         } else {
3583                 /* We need to see if the link is up; if it's not, make the
3584                  * netif layer think we're good and drop the packet
3585                  */
3586                 if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3587                                         !netif_carrier_ok(netdev)) {
3588                         dev_kfree_skb_any(skb);
3589                         skb = NULL;
3590
3591                         adapter->net_stats.tx_dropped++;
3592                 } else {
3593                         status = send_packet(skb, adapter);
3594                         if (status != 0 && status != -ENOMEM) {
3595                                 /* On any other error, make netif think we're
3596                                  * OK and drop the packet
3597                                  */
3598                                 dev_kfree_skb_any(skb);
3599                                 skb = NULL;
3600                                 adapter->net_stats.tx_dropped++;
3601                         }
3602                 }
3603         }
3604         return status;
3605 }
3606
3607 /**
3608  * free_send_packet - Recycle a struct tcb
3609  * @adapter: pointer to our adapter
3610  * @tcb: pointer to struct tcb
3611  *
3612  * Complete the packet if necessary
3613  * Assumption - Send spinlock has been acquired
3614  */
3615 static inline void free_send_packet(struct et131x_adapter *adapter,
3616                                                 struct tcb *tcb)
3617 {
3618         unsigned long flags;
3619         struct tx_desc *desc = NULL;
3620         struct net_device_stats *stats = &adapter->net_stats;
3621
3622         if (tcb->flags & fMP_DEST_BROAD)
3623                 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3624         else if (tcb->flags & fMP_DEST_MULTI)
3625                 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3626         else
3627                 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3628
3629         if (tcb->skb) {
3630                 stats->tx_bytes += tcb->skb->len;
3631
3632                 /* Iterate through the TX descriptors on the ring
3633                  * corresponding to this packet and umap the fragments
3634                  * they point to
3635                  */
3636                 do {
3637                         desc = (struct tx_desc *)
3638                                     (adapter->tx_ring.tx_desc_ring +
3639                                                 INDEX10(tcb->index_start));
3640
3641                         dma_unmap_single(&adapter->pdev->dev,
3642                                          desc->addr_lo,
3643                                          desc->len_vlan, DMA_TO_DEVICE);
3644
3645                         add_10bit(&tcb->index_start, 1);
3646                         if (INDEX10(tcb->index_start) >=
3647                                                         NUM_DESC_PER_RING_TX) {
3648                                 tcb->index_start &= ~ET_DMA10_MASK;
3649                                 tcb->index_start ^= ET_DMA10_WRAP;
3650                         }
3651                 } while (desc != (adapter->tx_ring.tx_desc_ring +
3652                                 INDEX10(tcb->index)));
3653
3654                 dev_kfree_skb_any(tcb->skb);
3655         }
3656
3657         memset(tcb, 0, sizeof(struct tcb));
3658
3659         /* Add the TCB to the Ready Q */
3660         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3661
3662         adapter->net_stats.tx_packets++;
3663
3664         if (adapter->tx_ring.tcb_qtail)
3665                 adapter->tx_ring.tcb_qtail->next = tcb;
3666         else
3667                 /* Apparently ready Q is empty. */
3668                 adapter->tx_ring.tcb_qhead = tcb;
3669
3670         adapter->tx_ring.tcb_qtail = tcb;
3671
3672         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3673         WARN_ON(adapter->tx_ring.used < 0);
3674 }
3675
3676 /**
3677  * et131x_free_busy_send_packets - Free and complete the stopped active sends
3678  * @adapter: pointer to our adapter
3679  *
3680  * Assumption - Send spinlock has been acquired
3681  */
3682 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3683 {
3684         struct tcb *tcb;
3685         unsigned long flags;
3686         u32 freed = 0;
3687
3688         /* Any packets being sent? Check the first TCB on the send list */
3689         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3690
3691         tcb = adapter->tx_ring.send_head;
3692
3693         while (tcb != NULL && freed < NUM_TCB) {
3694                 struct tcb *next = tcb->next;
3695
3696                 adapter->tx_ring.send_head = next;
3697
3698                 if (next == NULL)
3699                         adapter->tx_ring.send_tail = NULL;
3700
3701                 adapter->tx_ring.used--;
3702
3703                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3704
3705                 freed++;
3706                 free_send_packet(adapter, tcb);
3707
3708                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3709
3710                 tcb = adapter->tx_ring.send_head;
3711         }
3712
3713         WARN_ON(freed == NUM_TCB);
3714
3715         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3716
3717         adapter->tx_ring.used = 0;
3718 }
3719
3720 /**
3721  * et131x_handle_send_interrupt - Interrupt handler for sending processing
3722  * @adapter: pointer to our adapter
3723  *
3724  * Re-claim the send resources, complete sends and get more to send from
3725  * the send wait queue.
3726  *
3727  * Assumption - Send spinlock has been acquired
3728  */
3729 static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3730 {
3731         unsigned long flags;
3732         u32 serviced;
3733         struct tcb *tcb;
3734         u32 index;
3735
3736         serviced = readl(&adapter->regs->txdma.new_service_complete);
3737         index = INDEX10(serviced);
3738
3739         /* Has the ring wrapped?  Process any descriptors that do not have
3740          * the same "wrap" indicator as the current completion indicator
3741          */
3742         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3743
3744         tcb = adapter->tx_ring.send_head;
3745
3746         while (tcb &&
3747                ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3748                index < INDEX10(tcb->index)) {
3749                 adapter->tx_ring.used--;
3750                 adapter->tx_ring.send_head = tcb->next;
3751                 if (tcb->next == NULL)
3752                         adapter->tx_ring.send_tail = NULL;
3753
3754                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3755                 free_send_packet(adapter, tcb);
3756                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3757
3758                 /* Goto the next packet */
3759                 tcb = adapter->tx_ring.send_head;
3760         }
3761         while (tcb &&
3762                !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3763                && index > (tcb->index & ET_DMA10_MASK)) {
3764                 adapter->tx_ring.used--;
3765                 adapter->tx_ring.send_head = tcb->next;
3766                 if (tcb->next == NULL)
3767                         adapter->tx_ring.send_tail = NULL;
3768
3769                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3770                 free_send_packet(adapter, tcb);
3771                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3772
3773                 /* Goto the next packet */
3774                 tcb = adapter->tx_ring.send_head;
3775         }
3776
3777         /* Wake up the queue when we hit a low-water mark */
3778         if (adapter->tx_ring.used <= NUM_TCB / 3)
3779                 netif_wake_queue(adapter->netdev);
3780
3781         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3782 }
3783
3784 static int et131x_get_settings(struct net_device *netdev,
3785                                struct ethtool_cmd *cmd)
3786 {
3787         struct et131x_adapter *adapter = netdev_priv(netdev);
3788
3789         return phy_ethtool_gset(adapter->phydev, cmd);
3790 }
3791
3792 static int et131x_set_settings(struct net_device *netdev,
3793                                struct ethtool_cmd *cmd)
3794 {
3795         struct et131x_adapter *adapter = netdev_priv(netdev);
3796
3797         return phy_ethtool_sset(adapter->phydev, cmd);
3798 }
3799
3800 static int et131x_get_regs_len(struct net_device *netdev)
3801 {
3802 #define ET131X_REGS_LEN 256
3803         return ET131X_REGS_LEN * sizeof(u32);
3804 }
3805
3806 static void et131x_get_regs(struct net_device *netdev,
3807                             struct ethtool_regs *regs, void *regs_data)
3808 {
3809         struct et131x_adapter *adapter = netdev_priv(netdev);
3810         struct address_map __iomem *aregs = adapter->regs;
3811         u32 *regs_buff = regs_data;
3812         u32 num = 0;
3813
3814         memset(regs_data, 0, et131x_get_regs_len(netdev));
3815
3816         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3817                         adapter->pdev->device;
3818
3819         /* PHY regs */
3820         et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3821         et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3822         et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3823         et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3824         et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3825         et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3826         et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3827         /* Autoneg next page transmit reg */
3828         et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3829         /* Link partner next page reg */
3830         et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3831         et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3832         et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3833         et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3834         et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3835         et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3836         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3837                         (u16 *)&regs_buff[num++]);
3838         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3839                         (u16 *)&regs_buff[num++]);
3840         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3841                         (u16 *)&regs_buff[num++]);
3842         et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3843                         (u16 *)&regs_buff[num++]);
3844         et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3845         et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3846         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3847         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3848                         (u16 *)&regs_buff[num++]);
3849         et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3850         et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3851         et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3852
3853         /* Global regs */
3854         regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3855         regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3856         regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3857         regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3858         regs_buff[num++] = readl(&aregs->global.pm_csr);
3859         regs_buff[num++] = adapter->stats.interrupt_status;
3860         regs_buff[num++] = readl(&aregs->global.int_mask);
3861         regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3862         regs_buff[num++] = readl(&aregs->global.int_status_alias);
3863         regs_buff[num++] = readl(&aregs->global.sw_reset);
3864         regs_buff[num++] = readl(&aregs->global.slv_timer);
3865         regs_buff[num++] = readl(&aregs->global.msi_config);
3866         regs_buff[num++] = readl(&aregs->global.loopback);
3867         regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3868
3869         /* TXDMA regs */
3870         regs_buff[num++] = readl(&aregs->txdma.csr);
3871         regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3872         regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3873         regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3874         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3875         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3876         regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3877         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3878         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3879         regs_buff[num++] = readl(&aregs->txdma.service_request);
3880         regs_buff[num++] = readl(&aregs->txdma.service_complete);
3881         regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3882         regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3883         regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3884         regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3885         regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3886         regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3887         regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3888         regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3889         regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3890         regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3891         regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3892         regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3893         regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3894         regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3895         regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3896
3897         /* RXDMA regs */
3898         regs_buff[num++] = readl(&aregs->rxdma.csr);
3899         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3900         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3901         regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3902         regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3903         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3904         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3905         regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3906         regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3907         regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3908         regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3909         regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3910         regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3911         regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3912         regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3913         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3914         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3915         regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3916         regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3917         regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3918         regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3919         regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3920         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3921         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3922         regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3923         regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3924         regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3925         regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3926         regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3927 }
3928
3929 #define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3930 static void et131x_get_drvinfo(struct net_device *netdev,
3931                                struct ethtool_drvinfo *info)
3932 {
3933         struct et131x_adapter *adapter = netdev_priv(netdev);
3934
3935         strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3936         strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3937         strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3938 }
3939
3940 static struct ethtool_ops et131x_ethtool_ops = {
3941         .get_settings   = et131x_get_settings,
3942         .set_settings   = et131x_set_settings,
3943         .get_drvinfo    = et131x_get_drvinfo,
3944         .get_regs_len   = et131x_get_regs_len,
3945         .get_regs       = et131x_get_regs,
3946         .get_link = ethtool_op_get_link,
3947 };
3948
3949 static void et131x_set_ethtool_ops(struct net_device *netdev)
3950 {
3951         SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
3952 }
3953
3954 /**
3955  * et131x_hwaddr_init - set up the MAC Address on the ET1310
3956  * @adapter: pointer to our private adapter structure
3957  */
3958 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3959 {
3960         /* If have our default mac from init and no mac address from
3961          * EEPROM then we need to generate the last octet and set it on the
3962          * device
3963          */
3964         if (adapter->rom_addr[0] == 0x00 &&
3965             adapter->rom_addr[1] == 0x00 &&
3966             adapter->rom_addr[2] == 0x00 &&
3967             adapter->rom_addr[3] == 0x00 &&
3968             adapter->rom_addr[4] == 0x00 &&
3969             adapter->rom_addr[5] == 0x00) {
3970                 /*
3971                  * We need to randomly generate the last octet so we
3972                  * decrease our chances of setting the mac address to
3973                  * same as another one of our cards in the system
3974                  */
3975                 get_random_bytes(&adapter->addr[5], 1);
3976                 /*
3977                  * We have the default value in the register we are
3978                  * working with so we need to copy the current
3979                  * address into the permanent address
3980                  */
3981                 memcpy(adapter->rom_addr,
3982                         adapter->addr, ETH_ALEN);
3983         } else {
3984                 /* We do not have an override address, so set the
3985                  * current address to the permanent address and add
3986                  * it to the device
3987                  */
3988                 memcpy(adapter->addr,
3989                        adapter->rom_addr, ETH_ALEN);
3990         }
3991 }
3992
3993 /**
3994  * et131x_pci_init       - initial PCI setup
3995  * @adapter: pointer to our private adapter structure
3996  * @pdev: our PCI device
3997  *
3998  * Perform the initial setup of PCI registers and if possible initialise
3999  * the MAC address. At this point the I/O registers have yet to be mapped
4000  */
4001 static int et131x_pci_init(struct et131x_adapter *adapter,
4002                                                 struct pci_dev *pdev)
4003 {
4004         int cap = pci_pcie_cap(pdev);
4005         u16 max_payload;
4006         u16 ctl;
4007         int i, rc;
4008
4009         rc = et131x_init_eeprom(adapter);
4010         if (rc < 0)
4011                 goto out;
4012
4013         if (!cap) {
4014                 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
4015                 goto err_out;
4016         }
4017
4018         /* Let's set up the PORT LOGIC Register.  First we need to know what
4019          * the max_payload_size is
4020          */
4021         if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCAP, &max_payload)) {
4022                 dev_err(&pdev->dev,
4023                     "Could not read PCI config space for Max Payload Size\n");
4024                 goto err_out;
4025         }
4026
4027         /* Program the Ack/Nak latency and replay timers */
4028         max_payload &= 0x07;
4029
4030         if (max_payload < 2) {
4031                 static const u16 acknak[2] = { 0x76, 0xD0 };
4032                 static const u16 replay[2] = { 0x1E0, 0x2ED };
4033
4034                 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
4035                                                acknak[max_payload])) {
4036                         dev_err(&pdev->dev,
4037                           "Could not write PCI config space for ACK/NAK\n");
4038                         goto err_out;
4039                 }
4040                 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
4041                                                replay[max_payload])) {
4042                         dev_err(&pdev->dev,
4043                           "Could not write PCI config space for Replay Timer\n");
4044                         goto err_out;
4045                 }
4046         }
4047
4048         /* l0s and l1 latency timers.  We are using default values.
4049          * Representing 001 for L0s and 010 for L1
4050          */
4051         if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
4052                 dev_err(&pdev->dev,
4053                   "Could not write PCI config space for Latency Timers\n");
4054                 goto err_out;
4055         }
4056
4057         /* Change the max read size to 2k */
4058         if (pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl)) {
4059                 dev_err(&pdev->dev,
4060                         "Could not read PCI config space for Max read size\n");
4061                 goto err_out;
4062         }
4063
4064         ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | (0x04 << 12);
4065
4066         if (pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl)) {
4067                 dev_err(&pdev->dev,
4068                       "Could not write PCI config space for Max read size\n");
4069                 goto err_out;
4070         }
4071
4072         /* Get MAC address from config space if an eeprom exists, otherwise
4073          * the MAC address there will not be valid
4074          */
4075         if (!adapter->has_eeprom) {
4076                 et131x_hwaddr_init(adapter);
4077                 return 0;
4078         }
4079
4080         for (i = 0; i < ETH_ALEN; i++) {
4081                 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
4082                                         adapter->rom_addr + i)) {
4083                         dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
4084                         goto err_out;
4085                 }
4086         }
4087         memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
4088 out:
4089         return rc;
4090 err_out:
4091         rc = -EIO;
4092         goto out;
4093 }
4094
4095 /**
4096  * et131x_error_timer_handler
4097  * @data: timer-specific variable; here a pointer to our adapter structure
4098  *
4099  * The routine called when the error timer expires, to track the number of
4100  * recurring errors.
4101  */
4102 static void et131x_error_timer_handler(unsigned long data)
4103 {
4104         struct et131x_adapter *adapter = (struct et131x_adapter *) data;
4105         struct phy_device *phydev = adapter->phydev;
4106
4107         if (et1310_in_phy_coma(adapter)) {
4108                 /* Bring the device immediately out of coma, to
4109                  * prevent it from sleeping indefinitely, this
4110                  * mechanism could be improved! */
4111                 et1310_disable_phy_coma(adapter);
4112                 adapter->boot_coma = 20;
4113         } else {
4114                 et1310_update_macstat_host_counters(adapter);
4115         }
4116
4117         if (!phydev->link && adapter->boot_coma < 11)
4118                 adapter->boot_coma++;
4119
4120         if (adapter->boot_coma == 10) {
4121                 if (!phydev->link) {
4122                         if (!et1310_in_phy_coma(adapter)) {
4123                                 /* NOTE - This was originally a 'sync with
4124                                  *  interrupt'. How to do that under Linux?
4125                                  */
4126                                 et131x_enable_interrupts(adapter);
4127                                 et1310_enable_phy_coma(adapter);
4128                         }
4129                 }
4130         }
4131
4132         /* This is a periodic timer, so reschedule */
4133         mod_timer(&adapter->error_timer, jiffies +
4134                                           TX_ERROR_PERIOD * HZ / 1000);
4135 }
4136
4137 /**
4138  * et131x_adapter_memory_alloc
4139  * @adapter: pointer to our private adapter structure
4140  *
4141  * Returns 0 on success, errno on failure (as defined in errno.h).
4142  *
4143  * Allocate all the memory blocks for send, receive and others.
4144  */
4145 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4146 {
4147         int status;
4148
4149         /* Allocate memory for the Tx Ring */
4150         status = et131x_tx_dma_memory_alloc(adapter);
4151         if (status != 0) {
4152                 dev_err(&adapter->pdev->dev,
4153                           "et131x_tx_dma_memory_alloc FAILED\n");
4154                 return status;
4155         }
4156         /* Receive buffer memory allocation */
4157         status = et131x_rx_dma_memory_alloc(adapter);
4158         if (status != 0) {
4159                 dev_err(&adapter->pdev->dev,
4160                           "et131x_rx_dma_memory_alloc FAILED\n");
4161                 et131x_tx_dma_memory_free(adapter);
4162                 return status;
4163         }
4164
4165         /* Init receive data structures */
4166         status = et131x_init_recv(adapter);
4167         if (status != 0) {
4168                 dev_err(&adapter->pdev->dev,
4169                         "et131x_init_recv FAILED\n");
4170                 et131x_tx_dma_memory_free(adapter);
4171                 et131x_rx_dma_memory_free(adapter);
4172         }
4173         return status;
4174 }
4175
4176 /**
4177  * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4178  * @adapter: pointer to our private adapter structure
4179  */
4180 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4181 {
4182         /* Free DMA memory */
4183         et131x_tx_dma_memory_free(adapter);
4184         et131x_rx_dma_memory_free(adapter);
4185 }
4186
4187 static void et131x_adjust_link(struct net_device *netdev)
4188 {
4189         struct et131x_adapter *adapter = netdev_priv(netdev);
4190         struct  phy_device *phydev = adapter->phydev;
4191
4192         if (netif_carrier_ok(netdev)) {
4193                 adapter->boot_coma = 20;
4194
4195                 if (phydev && phydev->speed == SPEED_10) {
4196                         /*
4197                          * NOTE - Is there a way to query this without
4198                          * TruePHY?
4199                          * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4200                          * EMI_TRUEPHY_A13O) {
4201                          */
4202                         u16 register18;
4203
4204                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4205                                          &register18);
4206                         et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4207                                          register18 | 0x4);
4208                         et131x_mii_write(adapter, PHY_INDEX_REG,
4209                                          register18 | 0x8402);
4210                         et131x_mii_write(adapter, PHY_DATA_REG,
4211                                          register18 | 511);
4212                         et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4213                                          register18);
4214                 }
4215
4216                 et1310_config_flow_control(adapter);
4217
4218                 if (phydev && phydev->speed == SPEED_1000 &&
4219                                 adapter->registry_jumbo_packet > 2048) {
4220                         u16 reg;
4221
4222                         et131x_mii_read(adapter, PHY_CONFIG, &reg);
4223                         reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4224                         reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4225                         et131x_mii_write(adapter, PHY_CONFIG, reg);
4226                 }
4227
4228                 et131x_set_rx_dma_timer(adapter);
4229                 et1310_config_mac_regs2(adapter);
4230         }
4231
4232         if (phydev && phydev->link != adapter->link) {
4233                 /*
4234                  * Check to see if we are in coma mode and if
4235                  * so, disable it because we will not be able
4236                  * to read PHY values until we are out.
4237                  */
4238                 if (et1310_in_phy_coma(adapter))
4239                         et1310_disable_phy_coma(adapter);
4240
4241                 if (phydev->link) {
4242                         adapter->boot_coma = 20;
4243                 } else {
4244                         dev_warn(&adapter->pdev->dev,
4245                             "Link down - cable problem ?\n");
4246                         adapter->boot_coma = 0;
4247
4248                         if (phydev->speed == SPEED_10) {
4249                                 /* NOTE - Is there a way to query this without
4250                                  * TruePHY?
4251                                  * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4252                                  * EMI_TRUEPHY_A13O)
4253                                  */
4254                                 u16 register18;
4255
4256                                 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4257                                                  &register18);
4258                                 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4259                                                  register18 | 0x4);
4260                                 et131x_mii_write(adapter, PHY_INDEX_REG,
4261                                                  register18 | 0x8402);
4262                                 et131x_mii_write(adapter, PHY_DATA_REG,
4263                                                  register18 | 511);
4264                                 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4265                                                  register18);
4266                         }
4267
4268                         /* Free the packets being actively sent & stopped */
4269                         et131x_free_busy_send_packets(adapter);
4270
4271                         /* Re-initialize the send structures */
4272                         et131x_init_send(adapter);
4273
4274                         /*
4275                          * Bring the device back to the state it was during
4276                          * init prior to autonegotiation being complete. This
4277                          * way, when we get the auto-neg complete interrupt,
4278                          * we can complete init by calling config_mac_regs2.
4279                          */
4280                         et131x_soft_reset(adapter);
4281
4282                         /* Setup ET1310 as per the documentation */
4283                         et131x_adapter_setup(adapter);
4284
4285                         /* perform reset of tx/rx */
4286                         et131x_disable_txrx(netdev);
4287                         et131x_enable_txrx(netdev);
4288                 }
4289
4290                 adapter->link = phydev->link;
4291
4292                 phy_print_status(phydev);
4293         }
4294 }
4295
4296 static int et131x_mii_probe(struct net_device *netdev)
4297 {
4298         struct et131x_adapter *adapter = netdev_priv(netdev);
4299         struct  phy_device *phydev = NULL;
4300
4301         phydev = phy_find_first(adapter->mii_bus);
4302         if (!phydev) {
4303                 dev_err(&adapter->pdev->dev, "no PHY found\n");
4304                 return -ENODEV;
4305         }
4306
4307         phydev = phy_connect(netdev, dev_name(&phydev->dev),
4308                         &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4309
4310         if (IS_ERR(phydev)) {
4311                 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4312                 return PTR_ERR(phydev);
4313         }
4314
4315         phydev->supported &= (SUPPORTED_10baseT_Half
4316                                 | SUPPORTED_10baseT_Full
4317                                 | SUPPORTED_100baseT_Half
4318                                 | SUPPORTED_100baseT_Full
4319                                 | SUPPORTED_Autoneg
4320                                 | SUPPORTED_MII
4321                                 | SUPPORTED_TP);
4322
4323         if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4324                 phydev->supported |= SUPPORTED_1000baseT_Full;
4325
4326         phydev->advertising = phydev->supported;
4327         adapter->phydev = phydev;
4328
4329         dev_info(&adapter->pdev->dev, "attached PHY driver [%s] "
4330                  "(mii_bus:phy_addr=%s)\n",
4331                  phydev->drv->name, dev_name(&phydev->dev));
4332
4333         return 0;
4334 }
4335
4336 /**
4337  * et131x_adapter_init
4338  * @adapter: pointer to the private adapter struct
4339  * @pdev: pointer to the PCI device
4340  *
4341  * Initialize the data structures for the et131x_adapter object and link
4342  * them together with the platform provided device structures.
4343  */
4344 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4345                 struct pci_dev *pdev)
4346 {
4347         static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4348
4349         struct et131x_adapter *adapter;
4350
4351         /* Allocate private adapter struct and copy in relevant information */
4352         adapter = netdev_priv(netdev);
4353         adapter->pdev = pci_dev_get(pdev);
4354         adapter->netdev = netdev;
4355
4356         /* Initialize spinlocks here */
4357         spin_lock_init(&adapter->lock);
4358         spin_lock_init(&adapter->tcb_send_qlock);
4359         spin_lock_init(&adapter->tcb_ready_qlock);
4360         spin_lock_init(&adapter->send_hw_lock);
4361         spin_lock_init(&adapter->rcv_lock);
4362         spin_lock_init(&adapter->rcv_pend_lock);
4363         spin_lock_init(&adapter->fbr_lock);
4364         spin_lock_init(&adapter->phy_lock);
4365
4366         adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
4367
4368         /* Set the MAC address to a default */
4369         memcpy(adapter->addr, default_mac, ETH_ALEN);
4370
4371         return adapter;
4372 }
4373
4374 /**
4375  * et131x_pci_remove
4376  * @pdev: a pointer to the device's pci_dev structure
4377  *
4378  * Registered in the pci_driver structure, this function is called when the
4379  * PCI subsystem detects that a PCI device which matches the information
4380  * contained in the pci_device_id table has been removed.
4381  */
4382 static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4383 {
4384         struct net_device *netdev = pci_get_drvdata(pdev);
4385         struct et131x_adapter *adapter = netdev_priv(netdev);
4386
4387         unregister_netdev(netdev);
4388         phy_disconnect(adapter->phydev);
4389         mdiobus_unregister(adapter->mii_bus);
4390         kfree(adapter->mii_bus->irq);
4391         mdiobus_free(adapter->mii_bus);
4392
4393         et131x_adapter_memory_free(adapter);
4394         iounmap(adapter->regs);
4395         pci_dev_put(pdev);
4396
4397         free_netdev(netdev);
4398         pci_release_regions(pdev);
4399         pci_disable_device(pdev);
4400 }
4401
4402 /**
4403  * et131x_up - Bring up a device for use.
4404  * @netdev: device to be opened
4405  */
4406 static void et131x_up(struct net_device *netdev)
4407 {
4408         struct et131x_adapter *adapter = netdev_priv(netdev);
4409
4410         et131x_enable_txrx(netdev);
4411         phy_start(adapter->phydev);
4412 }
4413
4414 /**
4415  * et131x_down - Bring down the device
4416  * @netdev: device to be brought down
4417  */
4418 static void et131x_down(struct net_device *netdev)
4419 {
4420         struct et131x_adapter *adapter = netdev_priv(netdev);
4421
4422         /* Save the timestamp for the TX watchdog, prevent a timeout */
4423         netdev->trans_start = jiffies;
4424
4425         phy_stop(adapter->phydev);
4426         et131x_disable_txrx(netdev);
4427 }
4428
4429 #ifdef CONFIG_PM_SLEEP
4430 static int et131x_suspend(struct device *dev)
4431 {
4432         struct pci_dev *pdev = to_pci_dev(dev);
4433         struct net_device *netdev = pci_get_drvdata(pdev);
4434
4435         if (netif_running(netdev)) {
4436                 netif_device_detach(netdev);
4437                 et131x_down(netdev);
4438                 pci_save_state(pdev);
4439         }
4440
4441         return 0;
4442 }
4443
4444 static int et131x_resume(struct device *dev)
4445 {
4446         struct pci_dev *pdev = to_pci_dev(dev);
4447         struct net_device *netdev = pci_get_drvdata(pdev);
4448
4449         if (netif_running(netdev)) {
4450                 pci_restore_state(pdev);
4451                 et131x_up(netdev);
4452                 netif_device_attach(netdev);
4453         }
4454
4455         return 0;
4456 }
4457
4458 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4459 #define ET131X_PM_OPS (&et131x_pm_ops)
4460 #else
4461 #define ET131X_PM_OPS NULL
4462 #endif
4463
4464 /**
4465  * et131x_isr - The Interrupt Service Routine for the driver.
4466  * @irq: the IRQ on which the interrupt was received.
4467  * @dev_id: device-specific info (here a pointer to a net_device struct)
4468  *
4469  * Returns a value indicating if the interrupt was handled.
4470  */
4471 irqreturn_t et131x_isr(int irq, void *dev_id)
4472 {
4473         bool handled = true;
4474         struct net_device *netdev = (struct net_device *)dev_id;
4475         struct et131x_adapter *adapter = NULL;
4476         u32 status;
4477
4478         if (!netif_device_present(netdev)) {
4479                 handled = false;
4480                 goto out;
4481         }
4482
4483         adapter = netdev_priv(netdev);
4484
4485         /* If the adapter is in low power state, then it should not
4486          * recognize any interrupt
4487          */
4488
4489         /* Disable Device Interrupts */
4490         et131x_disable_interrupts(adapter);
4491
4492         /* Get a copy of the value in the interrupt status register
4493          * so we can process the interrupting section
4494          */
4495         status = readl(&adapter->regs->global.int_status);
4496
4497         if (adapter->flowcontrol == FLOW_TXONLY ||
4498             adapter->flowcontrol == FLOW_BOTH) {
4499                 status &= ~INT_MASK_ENABLE;
4500         } else {
4501                 status &= ~INT_MASK_ENABLE_NO_FLOW;
4502         }
4503
4504         /* Make sure this is our interrupt */
4505         if (!status) {
4506                 handled = false;
4507                 et131x_enable_interrupts(adapter);
4508                 goto out;
4509         }
4510
4511         /* This is our interrupt, so process accordingly */
4512
4513         if (status & ET_INTR_WATCHDOG) {
4514                 struct tcb *tcb = adapter->tx_ring.send_head;
4515
4516                 if (tcb)
4517                         if (++tcb->stale > 1)
4518                                 status |= ET_INTR_TXDMA_ISR;
4519
4520                 if (adapter->rx_ring.unfinished_receives)
4521                         status |= ET_INTR_RXDMA_XFR_DONE;
4522                 else if (tcb == NULL)
4523                         writel(0, &adapter->regs->global.watchdog_timer);
4524
4525                 status &= ~ET_INTR_WATCHDOG;
4526         }
4527
4528         if (status == 0) {
4529                 /* This interrupt has in some way been "handled" by
4530                  * the ISR. Either it was a spurious Rx interrupt, or
4531                  * it was a Tx interrupt that has been filtered by
4532                  * the ISR.
4533                  */
4534                 et131x_enable_interrupts(adapter);
4535                 goto out;
4536         }
4537
4538         /* We need to save the interrupt status value for use in our
4539          * DPC. We will clear the software copy of that in that
4540          * routine.
4541          */
4542         adapter->stats.interrupt_status = status;
4543
4544         /* Schedule the ISR handler as a bottom-half task in the
4545          * kernel's tq_immediate queue, and mark the queue for
4546          * execution
4547          */
4548         schedule_work(&adapter->task);
4549 out:
4550         return IRQ_RETVAL(handled);
4551 }
4552
4553 /**
4554  * et131x_isr_handler - The ISR handler
4555  * @p_adapter, a pointer to the device's private adapter structure
4556  *
4557  * scheduled to run in a deferred context by the ISR. This is where the ISR's
4558  * work actually gets done.
4559  */
4560 static void et131x_isr_handler(struct work_struct *work)
4561 {
4562         struct et131x_adapter *adapter =
4563                 container_of(work, struct et131x_adapter, task);
4564         u32 status = adapter->stats.interrupt_status;
4565         struct address_map __iomem *iomem = adapter->regs;
4566
4567         /*
4568          * These first two are by far the most common.  Once handled, we clear
4569          * their two bits in the status word.  If the word is now zero, we
4570          * exit.
4571          */
4572         /* Handle all the completed Transmit interrupts */
4573         if (status & ET_INTR_TXDMA_ISR)
4574                 et131x_handle_send_interrupt(adapter);
4575
4576         /* Handle all the completed Receives interrupts */
4577         if (status & ET_INTR_RXDMA_XFR_DONE)
4578                 et131x_handle_recv_interrupt(adapter);
4579
4580         status &= 0xffffffd7;
4581
4582         if (status) {
4583                 /* Handle the TXDMA Error interrupt */
4584                 if (status & ET_INTR_TXDMA_ERR) {
4585                         u32 txdma_err;
4586
4587                         /* Following read also clears the register (COR) */
4588                         txdma_err = readl(&iomem->txdma.tx_dma_error);
4589
4590                         dev_warn(&adapter->pdev->dev,
4591                                     "TXDMA_ERR interrupt, error = %d\n",
4592                                     txdma_err);
4593                 }
4594
4595                 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4596                 if (status &
4597                     (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4598                         /*
4599                          * This indicates the number of unused buffers in
4600                          * RXDMA free buffer ring 0 is <= the limit you
4601                          * programmed. Free buffer resources need to be
4602                          * returned.  Free buffers are consumed as packets
4603                          * are passed from the network to the host. The host
4604                          * becomes aware of the packets from the contents of
4605                          * the packet status ring. This ring is queried when
4606                          * the packet done interrupt occurs. Packets are then
4607                          * passed to the OS. When the OS is done with the
4608                          * packets the resources can be returned to the
4609                          * ET1310 for re-use. This interrupt is one method of
4610                          * returning resources.
4611                          */
4612
4613                         /* If the user has flow control on, then we will
4614                          * send a pause packet, otherwise just exit
4615                          */
4616                         if (adapter->flowcontrol == FLOW_TXONLY ||
4617                             adapter->flowcontrol == FLOW_BOTH) {
4618                                 u32 pm_csr;
4619
4620                                 /* Tell the device to send a pause packet via
4621                                  * the back pressure register (bp req  and
4622                                  * bp xon/xoff)
4623                                  */
4624                                 pm_csr = readl(&iomem->global.pm_csr);
4625                                 if (!et1310_in_phy_coma(adapter))
4626                                         writel(3, &iomem->txmac.bp_ctrl);
4627                         }
4628                 }
4629
4630                 /* Handle Packet Status Ring Low Interrupt */
4631                 if (status & ET_INTR_RXDMA_STAT_LOW) {
4632
4633                         /*
4634                          * Same idea as with the two Free Buffer Rings.
4635                          * Packets going from the network to the host each
4636                          * consume a free buffer resource and a packet status
4637                          * resource.  These resoures are passed to the OS.
4638                          * When the OS is done with the resources, they need
4639                          * to be returned to the ET1310. This is one method
4640                          * of returning the resources.
4641                          */
4642                 }
4643
4644                 /* Handle RXDMA Error Interrupt */
4645                 if (status & ET_INTR_RXDMA_ERR) {
4646                         /*
4647                          * The rxdma_error interrupt is sent when a time-out
4648                          * on a request issued by the JAGCore has occurred or
4649                          * a completion is returned with an un-successful
4650                          * status.  In both cases the request is considered
4651                          * complete. The JAGCore will automatically re-try the
4652                          * request in question. Normally information on events
4653                          * like these are sent to the host using the "Advanced
4654                          * Error Reporting" capability. This interrupt is
4655                          * another way of getting similar information. The
4656                          * only thing required is to clear the interrupt by
4657                          * reading the ISR in the global resources. The
4658                          * JAGCore will do a re-try on the request.  Normally
4659                          * you should never see this interrupt. If you start
4660                          * to see this interrupt occurring frequently then
4661                          * something bad has occurred. A reset might be the
4662                          * thing to do.
4663                          */
4664                         /* TRAP();*/
4665
4666                         dev_warn(&adapter->pdev->dev,
4667                                     "RxDMA_ERR interrupt, error %x\n",
4668                                     readl(&iomem->txmac.tx_test));
4669                 }
4670
4671                 /* Handle the Wake on LAN Event */
4672                 if (status & ET_INTR_WOL) {
4673                         /*
4674                          * This is a secondary interrupt for wake on LAN.
4675                          * The driver should never see this, if it does,
4676                          * something serious is wrong. We will TRAP the
4677                          * message when we are in DBG mode, otherwise we
4678                          * will ignore it.
4679                          */
4680                         dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4681                 }
4682
4683                 /* Let's move on to the TxMac */
4684                 if (status & ET_INTR_TXMAC) {
4685                         u32 err = readl(&iomem->txmac.err);
4686
4687                         /*
4688                          * When any of the errors occur and TXMAC generates
4689                          * an interrupt to report these errors, it usually
4690                          * means that TXMAC has detected an error in the data
4691                          * stream retrieved from the on-chip Tx Q. All of
4692                          * these errors are catastrophic and TXMAC won't be
4693                          * able to recover data when these errors occur.  In
4694                          * a nutshell, the whole Tx path will have to be reset
4695                          * and re-configured afterwards.
4696                          */
4697                         dev_warn(&adapter->pdev->dev,
4698                                     "TXMAC interrupt, error 0x%08x\n",
4699                                     err);
4700
4701                         /* If we are debugging, we want to see this error,
4702                          * otherwise we just want the device to be reset and
4703                          * continue
4704                          */
4705                 }
4706
4707                 /* Handle RXMAC Interrupt */
4708                 if (status & ET_INTR_RXMAC) {
4709                         /*
4710                          * These interrupts are catastrophic to the device,
4711                          * what we need to do is disable the interrupts and
4712                          * set the flag to cause us to reset so we can solve
4713                          * this issue.
4714                          */
4715                         /* MP_SET_FLAG( adapter,
4716                                                 fMP_ADAPTER_HARDWARE_ERROR); */
4717
4718                         dev_warn(&adapter->pdev->dev,
4719                           "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
4720                                     readl(&iomem->rxmac.err_reg));
4721
4722                         dev_warn(&adapter->pdev->dev,
4723                                     "Enable 0x%08x, Diag 0x%08x\n",
4724                                     readl(&iomem->rxmac.ctrl),
4725                                     readl(&iomem->rxmac.rxq_diag));
4726
4727                         /*
4728                          * If we are debugging, we want to see this error,
4729                          * otherwise we just want the device to be reset and
4730                          * continue
4731                          */
4732                 }
4733
4734                 /* Handle MAC_STAT Interrupt */
4735                 if (status & ET_INTR_MAC_STAT) {
4736                         /*
4737                          * This means at least one of the un-masked counters
4738                          * in the MAC_STAT block has rolled over.  Use this
4739                          * to maintain the top, software managed bits of the
4740                          * counter(s).
4741                          */
4742                         et1310_handle_macstat_interrupt(adapter);
4743                 }
4744
4745                 /* Handle SLV Timeout Interrupt */
4746                 if (status & ET_INTR_SLV_TIMEOUT) {
4747                         /*
4748                          * This means a timeout has occurred on a read or
4749                          * write request to one of the JAGCore registers. The
4750                          * Global Resources block has terminated the request
4751                          * and on a read request, returned a "fake" value.
4752                          * The most likely reasons are: Bad Address or the
4753                          * addressed module is in a power-down state and
4754                          * can't respond.
4755                          */
4756                 }
4757         }
4758         et131x_enable_interrupts(adapter);
4759 }
4760
4761 /**
4762  * et131x_stats - Return the current device statistics.
4763  * @netdev: device whose stats are being queried
4764  *
4765  * Returns 0 on success, errno on failure (as defined in errno.h)
4766  */
4767 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4768 {
4769         struct et131x_adapter *adapter = netdev_priv(netdev);
4770         struct net_device_stats *stats = &adapter->net_stats;
4771         struct ce_stats *devstat = &adapter->stats;
4772
4773         stats->rx_errors = devstat->rx_length_errs +
4774                            devstat->rx_align_errs +
4775                            devstat->rx_crc_errs +
4776                            devstat->rx_code_violations +
4777                            devstat->rx_other_errs;
4778         stats->tx_errors = devstat->tx_max_pkt_errs;
4779         stats->multicast = devstat->multicast_pkts_rcvd;
4780         stats->collisions = devstat->tx_collisions;
4781
4782         stats->rx_length_errors = devstat->rx_length_errs;
4783         stats->rx_over_errors = devstat->rx_overflows;
4784         stats->rx_crc_errors = devstat->rx_crc_errs;
4785
4786         /* NOTE: These stats don't have corresponding values in CE_STATS,
4787          * so we're going to have to update these directly from within the
4788          * TX/RX code
4789          */
4790         /* stats->rx_bytes            = 20; devstat->; */
4791         /* stats->tx_bytes            = 20;  devstat->; */
4792         /* stats->rx_dropped          = devstat->; */
4793         /* stats->tx_dropped          = devstat->; */
4794
4795         /*  NOTE: Not used, can't find analogous statistics */
4796         /* stats->rx_frame_errors     = devstat->; */
4797         /* stats->rx_fifo_errors      = devstat->; */
4798         /* stats->rx_missed_errors    = devstat->; */
4799
4800         /* stats->tx_aborted_errors   = devstat->; */
4801         /* stats->tx_carrier_errors   = devstat->; */
4802         /* stats->tx_fifo_errors      = devstat->; */
4803         /* stats->tx_heartbeat_errors = devstat->; */
4804         /* stats->tx_window_errors    = devstat->; */
4805         return stats;
4806 }
4807
4808 /**
4809  * et131x_open - Open the device for use.
4810  * @netdev: device to be opened
4811  *
4812  * Returns 0 on success, errno on failure (as defined in errno.h)
4813  */
4814 static int et131x_open(struct net_device *netdev)
4815 {
4816         struct et131x_adapter *adapter = netdev_priv(netdev);
4817         struct pci_dev *pdev = adapter->pdev;
4818         unsigned int irq = pdev->irq;
4819         int result;
4820
4821         /* Start the timer to track NIC errors */
4822         init_timer(&adapter->error_timer);
4823         adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4824         adapter->error_timer.function = et131x_error_timer_handler;
4825         adapter->error_timer.data = (unsigned long)adapter;
4826         add_timer(&adapter->error_timer);
4827
4828         result = request_irq(irq, et131x_isr,
4829                              IRQF_SHARED, netdev->name, netdev);
4830         if (result) {
4831                 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4832                 return result;
4833         }
4834
4835         adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4836
4837         et131x_up(netdev);
4838
4839         return result;
4840 }
4841
4842 /**
4843  * et131x_close - Close the device
4844  * @netdev: device to be closed
4845  *
4846  * Returns 0 on success, errno on failure (as defined in errno.h)
4847  */
4848 static int et131x_close(struct net_device *netdev)
4849 {
4850         struct et131x_adapter *adapter = netdev_priv(netdev);
4851
4852         et131x_down(netdev);
4853
4854         adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4855         free_irq(adapter->pdev->irq, netdev);
4856
4857         /* Stop the error timer */
4858         return del_timer_sync(&adapter->error_timer);
4859 }
4860
4861 /**
4862  * et131x_ioctl - The I/O Control handler for the driver
4863  * @netdev: device on which the control request is being made
4864  * @reqbuf: a pointer to the IOCTL request buffer
4865  * @cmd: the IOCTL command code
4866  *
4867  * Returns 0 on success, errno on failure (as defined in errno.h)
4868  */
4869 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4870                         int cmd)
4871 {
4872         struct et131x_adapter *adapter = netdev_priv(netdev);
4873
4874         if (!adapter->phydev)
4875                 return -EINVAL;
4876
4877         return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4878 }
4879
4880 /**
4881  * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4882  * @adapter: pointer to our private adapter structure
4883  *
4884  * FIXME: lot of dups with MAC code
4885  *
4886  * Returns 0 on success, errno on failure
4887  */
4888 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4889 {
4890         int filter = adapter->packet_filter;
4891         int status = 0;
4892         u32 ctrl;
4893         u32 pf_ctrl;
4894
4895         ctrl = readl(&adapter->regs->rxmac.ctrl);
4896         pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4897
4898         /* Default to disabled packet filtering.  Enable it in the individual
4899          * case statements that require the device to filter something
4900          */
4901         ctrl |= 0x04;
4902
4903         /* Set us to be in promiscuous mode so we receive everything, this
4904          * is also true when we get a packet filter of 0
4905          */
4906         if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4907                 pf_ctrl &= ~7;  /* Clear filter bits */
4908         else {
4909                 /*
4910                  * Set us up with Multicast packet filtering.  Three cases are
4911                  * possible - (1) we have a multi-cast list, (2) we receive ALL
4912                  * multicast entries or (3) we receive none.
4913                  */
4914                 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4915                         pf_ctrl &= ~2;  /* Multicast filter bit */
4916                 else {
4917                         et1310_setup_device_for_multicast(adapter);
4918                         pf_ctrl |= 2;
4919                         ctrl &= ~0x04;
4920                 }
4921
4922                 /* Set us up with Unicast packet filtering */
4923                 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4924                         et1310_setup_device_for_unicast(adapter);
4925                         pf_ctrl |= 4;
4926                         ctrl &= ~0x04;
4927                 }
4928
4929                 /* Set us up with Broadcast packet filtering */
4930                 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4931                         pf_ctrl |= 1;   /* Broadcast filter bit */
4932                         ctrl &= ~0x04;
4933                 } else
4934                         pf_ctrl &= ~1;
4935
4936                 /* Setup the receive mac configuration registers - Packet
4937                  * Filter control + the enable / disable for packet filter
4938                  * in the control reg.
4939                  */
4940                 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4941                 writel(ctrl, &adapter->regs->rxmac.ctrl);
4942         }
4943         return status;
4944 }
4945
4946 /**
4947  * et131x_multicast - The handler to configure multicasting on the interface
4948  * @netdev: a pointer to a net_device struct representing the device
4949  */
4950 static void et131x_multicast(struct net_device *netdev)
4951 {
4952         struct et131x_adapter *adapter = netdev_priv(netdev);
4953         int packet_filter;
4954         unsigned long flags;
4955         struct netdev_hw_addr *ha;
4956         int i;
4957
4958         spin_lock_irqsave(&adapter->lock, flags);
4959
4960         /* Before we modify the platform-independent filter flags, store them
4961          * locally. This allows us to determine if anything's changed and if
4962          * we even need to bother the hardware
4963          */
4964         packet_filter = adapter->packet_filter;
4965
4966         /* Clear the 'multicast' flag locally; because we only have a single
4967          * flag to check multicast, and multiple multicast addresses can be
4968          * set, this is the easiest way to determine if more than one
4969          * multicast address is being set.
4970          */
4971         packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4972
4973         /* Check the net_device flags and set the device independent flags
4974          * accordingly
4975          */
4976
4977         if (netdev->flags & IFF_PROMISC)
4978                 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4979         else
4980                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4981
4982         if (netdev->flags & IFF_ALLMULTI)
4983                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4984
4985         if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4986                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4987
4988         if (netdev_mc_count(netdev) < 1) {
4989                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4990                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4991         } else
4992                 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4993
4994         /* Set values in the private adapter struct */
4995         i = 0;
4996         netdev_for_each_mc_addr(ha, netdev) {
4997                 if (i == NIC_MAX_MCAST_LIST)
4998                         break;
4999                 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
5000         }
5001         adapter->multicast_addr_count = i;
5002
5003         /* Are the new flags different from the previous ones? If not, then no
5004          * action is required
5005          *
5006          * NOTE - This block will always update the multicast_list with the
5007          *        hardware, even if the addresses aren't the same.
5008          */
5009         if (packet_filter != adapter->packet_filter) {
5010                 /* Call the device's filter function */
5011                 et131x_set_packet_filter(adapter);
5012         }
5013         spin_unlock_irqrestore(&adapter->lock, flags);
5014 }
5015
5016 /**
5017  * et131x_tx - The handler to tx a packet on the device
5018  * @skb: data to be Tx'd
5019  * @netdev: device on which data is to be Tx'd
5020  *
5021  * Returns 0 on success, errno on failure (as defined in errno.h)
5022  */
5023 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5024 {
5025         int status = 0;
5026         struct et131x_adapter *adapter = netdev_priv(netdev);
5027
5028         /* stop the queue if it's getting full */
5029         if (adapter->tx_ring.used >= NUM_TCB - 1 &&
5030             !netif_queue_stopped(netdev))
5031                 netif_stop_queue(netdev);
5032
5033         /* Save the timestamp for the TX timeout watchdog */
5034         netdev->trans_start = jiffies;
5035
5036         /* Call the device-specific data Tx routine */
5037         status = et131x_send_packets(skb, netdev);
5038
5039         /* Check status and manage the netif queue if necessary */
5040         if (status != 0) {
5041                 if (status == -ENOMEM)
5042                         status = NETDEV_TX_BUSY;
5043                 else
5044                         status = NETDEV_TX_OK;
5045         }
5046         return status;
5047 }
5048
5049 /**
5050  * et131x_tx_timeout - Timeout handler
5051  * @netdev: a pointer to a net_device struct representing the device
5052  *
5053  * The handler called when a Tx request times out. The timeout period is
5054  * specified by the 'tx_timeo" element in the net_device structure (see
5055  * et131x_alloc_device() to see how this value is set).
5056  */
5057 static void et131x_tx_timeout(struct net_device *netdev)
5058 {
5059         struct et131x_adapter *adapter = netdev_priv(netdev);
5060         struct tcb *tcb;
5061         unsigned long flags;
5062
5063         /* If the device is closed, ignore the timeout */
5064         if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5065                 return;
5066
5067         /* Any nonrecoverable hardware error?
5068          * Checks adapter->flags for any failure in phy reading
5069          */
5070         if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5071                 return;
5072
5073         /* Hardware failure? */
5074         if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5075                 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5076                 return;
5077         }
5078
5079         /* Is send stuck? */
5080         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5081
5082         tcb = adapter->tx_ring.send_head;
5083
5084         if (tcb != NULL) {
5085                 tcb->count++;
5086
5087                 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5088                         spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5089                                                flags);
5090
5091                         dev_warn(&adapter->pdev->dev,
5092                                 "Send stuck - reset.  tcb->WrIndex %x, flags 0x%08x\n",
5093                                 tcb->index,
5094                                 tcb->flags);
5095
5096                         adapter->net_stats.tx_errors++;
5097
5098                         /* perform reset of tx/rx */
5099                         et131x_disable_txrx(netdev);
5100                         et131x_enable_txrx(netdev);
5101                         return;
5102                 }
5103         }
5104
5105         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5106 }
5107
5108 /**
5109  * et131x_change_mtu - The handler called to change the MTU for the device
5110  * @netdev: device whose MTU is to be changed
5111  * @new_mtu: the desired MTU
5112  *
5113  * Returns 0 on success, errno on failure (as defined in errno.h)
5114  */
5115 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5116 {
5117         int result = 0;
5118         struct et131x_adapter *adapter = netdev_priv(netdev);
5119
5120         /* Make sure the requested MTU is valid */
5121         if (new_mtu < 64 || new_mtu > 9216)
5122                 return -EINVAL;
5123
5124         et131x_disable_txrx(netdev);
5125         et131x_handle_send_interrupt(adapter);
5126         et131x_handle_recv_interrupt(adapter);
5127
5128         /* Set the new MTU */
5129         netdev->mtu = new_mtu;
5130
5131         /* Free Rx DMA memory */
5132         et131x_adapter_memory_free(adapter);
5133
5134         /* Set the config parameter for Jumbo Packet support */
5135         adapter->registry_jumbo_packet = new_mtu + 14;
5136         et131x_soft_reset(adapter);
5137
5138         /* Alloc and init Rx DMA memory */
5139         result = et131x_adapter_memory_alloc(adapter);
5140         if (result != 0) {
5141                 dev_warn(&adapter->pdev->dev,
5142                         "Change MTU failed; couldn't re-alloc DMA memory\n");
5143                 return result;
5144         }
5145
5146         et131x_init_send(adapter);
5147
5148         et131x_hwaddr_init(adapter);
5149         memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5150
5151         /* Init the device with the new settings */
5152         et131x_adapter_setup(adapter);
5153
5154         et131x_enable_txrx(netdev);
5155
5156         return result;
5157 }
5158
5159 /**
5160  * et131x_set_mac_addr - handler to change the MAC address for the device
5161  * @netdev: device whose MAC is to be changed
5162  * @new_mac: the desired MAC address
5163  *
5164  * Returns 0 on success, errno on failure (as defined in errno.h)
5165  *
5166  * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5167  */
5168 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5169 {
5170         int result = 0;
5171         struct et131x_adapter *adapter = netdev_priv(netdev);
5172         struct sockaddr *address = new_mac;
5173
5174         /* begin blux */
5175
5176         if (adapter == NULL)
5177                 return -ENODEV;
5178
5179         /* Make sure the requested MAC is valid */
5180         if (!is_valid_ether_addr(address->sa_data))
5181                 return -EADDRNOTAVAIL;
5182
5183         et131x_disable_txrx(netdev);
5184         et131x_handle_send_interrupt(adapter);
5185         et131x_handle_recv_interrupt(adapter);
5186
5187         /* Set the new MAC */
5188         /* netdev->set_mac_address  = &new_mac; */
5189
5190         memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5191
5192         printk(KERN_INFO "%s: Setting MAC address to %pM\n",
5193                         netdev->name, netdev->dev_addr);
5194
5195         /* Free Rx DMA memory */
5196         et131x_adapter_memory_free(adapter);
5197
5198         et131x_soft_reset(adapter);
5199
5200         /* Alloc and init Rx DMA memory */
5201         result = et131x_adapter_memory_alloc(adapter);
5202         if (result != 0) {
5203                 dev_err(&adapter->pdev->dev,
5204                         "Change MAC failed; couldn't re-alloc DMA memory\n");
5205                 return result;
5206         }
5207
5208         et131x_init_send(adapter);
5209
5210         et131x_hwaddr_init(adapter);
5211
5212         /* Init the device with the new settings */
5213         et131x_adapter_setup(adapter);
5214
5215         et131x_enable_txrx(netdev);
5216
5217         return result;
5218 }
5219
5220 static const struct net_device_ops et131x_netdev_ops = {
5221         .ndo_open               = et131x_open,
5222         .ndo_stop               = et131x_close,
5223         .ndo_start_xmit         = et131x_tx,
5224         .ndo_set_rx_mode        = et131x_multicast,
5225         .ndo_tx_timeout         = et131x_tx_timeout,
5226         .ndo_change_mtu         = et131x_change_mtu,
5227         .ndo_set_mac_address    = et131x_set_mac_addr,
5228         .ndo_validate_addr      = eth_validate_addr,
5229         .ndo_get_stats          = et131x_stats,
5230         .ndo_do_ioctl           = et131x_ioctl,
5231 };
5232
5233 /**
5234  * et131x_pci_setup - Perform device initialization
5235  * @pdev: a pointer to the device's pci_dev structure
5236  * @ent: this device's entry in the pci_device_id table
5237  *
5238  * Returns 0 on success, errno on failure (as defined in errno.h)
5239  *
5240  * Registered in the pci_driver structure, this function is called when the
5241  * PCI subsystem finds a new PCI device which matches the information
5242  * contained in the pci_device_id table. This routine is the equivalent to
5243  * a device insertion routine.
5244  */
5245 static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5246                                const struct pci_device_id *ent)
5247 {
5248         struct net_device *netdev;
5249         struct et131x_adapter *adapter;
5250         int rc;
5251         int ii;
5252
5253         rc = pci_enable_device(pdev);
5254         if (rc < 0) {
5255                 dev_err(&pdev->dev, "pci_enable_device() failed\n");
5256                 goto out;
5257         }
5258
5259         /* Perform some basic PCI checks */
5260         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5261                 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5262                 rc = -ENODEV;
5263                 goto err_disable;
5264         }
5265
5266         rc = pci_request_regions(pdev, DRIVER_NAME);
5267         if (rc < 0) {
5268                 dev_err(&pdev->dev, "Can't get PCI resources\n");
5269                 goto err_disable;
5270         }
5271
5272         pci_set_master(pdev);
5273
5274         /* Check the DMA addressing support of this device */
5275         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5276                 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5277                 if (rc < 0) {
5278                         dev_err(&pdev->dev,
5279                           "Unable to obtain 64 bit DMA for consistent allocations\n");
5280                         goto err_release_res;
5281                 }
5282         } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5283                 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5284                 if (rc < 0) {
5285                         dev_err(&pdev->dev,
5286                           "Unable to obtain 32 bit DMA for consistent allocations\n");
5287                         goto err_release_res;
5288                 }
5289         } else {
5290                 dev_err(&pdev->dev, "No usable DMA addressing method\n");
5291                 rc = -EIO;
5292                 goto err_release_res;
5293         }
5294
5295         /* Allocate netdev and private adapter structs */
5296         netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5297         if (!netdev) {
5298                 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5299                 rc = -ENOMEM;
5300                 goto err_release_res;
5301         }
5302
5303         netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5304         netdev->netdev_ops     = &et131x_netdev_ops;
5305
5306         SET_NETDEV_DEV(netdev, &pdev->dev);
5307         et131x_set_ethtool_ops(netdev);
5308
5309         adapter = et131x_adapter_init(netdev, pdev);
5310
5311         rc = et131x_pci_init(adapter, pdev);
5312         if (rc < 0)
5313                 goto err_free_dev;
5314
5315         /* Map the bus-relative registers to system virtual memory */
5316         adapter->regs = pci_ioremap_bar(pdev, 0);
5317         if (!adapter->regs) {
5318                 dev_err(&pdev->dev, "Cannot map device registers\n");
5319                 rc = -ENOMEM;
5320                 goto err_free_dev;
5321         }
5322
5323         /* If Phy COMA mode was enabled when we went down, disable it here. */
5324         writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
5325
5326         /* Issue a global reset to the et1310 */
5327         et131x_soft_reset(adapter);
5328
5329         /* Disable all interrupts (paranoid) */
5330         et131x_disable_interrupts(adapter);
5331
5332         /* Allocate DMA memory */
5333         rc = et131x_adapter_memory_alloc(adapter);
5334         if (rc < 0) {
5335                 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5336                 goto err_iounmap;
5337         }
5338
5339         /* Init send data structures */
5340         et131x_init_send(adapter);
5341
5342         /* Set up the task structure for the ISR's deferred handler */
5343         INIT_WORK(&adapter->task, et131x_isr_handler);
5344
5345         /* Copy address into the net_device struct */
5346         memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5347
5348         /* Init variable for counting how long we do not have link status */
5349         adapter->boot_coma = 0;
5350         et1310_disable_phy_coma(adapter);
5351
5352         rc = -ENOMEM;
5353
5354         /* Setup the mii_bus struct */
5355         adapter->mii_bus = mdiobus_alloc();
5356         if (!adapter->mii_bus) {
5357                 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5358                 goto err_mem_free;
5359         }
5360
5361         adapter->mii_bus->name = "et131x_eth_mii";
5362         snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5363                 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5364         adapter->mii_bus->priv = netdev;
5365         adapter->mii_bus->read = et131x_mdio_read;
5366         adapter->mii_bus->write = et131x_mdio_write;
5367         adapter->mii_bus->reset = et131x_mdio_reset;
5368         adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5369         if (!adapter->mii_bus->irq) {
5370                 dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5371                 goto err_mdio_free;
5372         }
5373
5374         for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5375                 adapter->mii_bus->irq[ii] = PHY_POLL;
5376
5377         rc = mdiobus_register(adapter->mii_bus);
5378         if (rc < 0) {
5379                 dev_err(&pdev->dev, "failed to register MII bus\n");
5380                 goto err_mdio_free_irq;
5381         }
5382
5383         rc = et131x_mii_probe(netdev);
5384         if (rc < 0) {
5385                 dev_err(&pdev->dev, "failed to probe MII bus\n");
5386                 goto err_mdio_unregister;
5387         }
5388
5389         /* Setup et1310 as per the documentation */
5390         et131x_adapter_setup(adapter);
5391
5392         /* We can enable interrupts now
5393          *
5394          *  NOTE - Because registration of interrupt handler is done in the
5395          *         device's open(), defer enabling device interrupts to that
5396          *         point
5397          */
5398
5399         /* Register the net_device struct with the Linux network layer */
5400         rc = register_netdev(netdev);
5401         if (rc < 0) {
5402                 dev_err(&pdev->dev, "register_netdev() failed\n");
5403                 goto err_phy_disconnect;
5404         }
5405
5406         /* Register the net_device struct with the PCI subsystem. Save a copy
5407          * of the PCI config space for this device now that the device has
5408          * been initialized, just in case it needs to be quickly restored.
5409          */
5410         pci_set_drvdata(pdev, netdev);
5411 out:
5412         return rc;
5413
5414 err_phy_disconnect:
5415         phy_disconnect(adapter->phydev);
5416 err_mdio_unregister:
5417         mdiobus_unregister(adapter->mii_bus);
5418 err_mdio_free_irq:
5419         kfree(adapter->mii_bus->irq);
5420 err_mdio_free:
5421         mdiobus_free(adapter->mii_bus);
5422 err_mem_free:
5423         et131x_adapter_memory_free(adapter);
5424 err_iounmap:
5425         iounmap(adapter->regs);
5426 err_free_dev:
5427         pci_dev_put(pdev);
5428         free_netdev(netdev);
5429 err_release_res:
5430         pci_release_regions(pdev);
5431 err_disable:
5432         pci_disable_device(pdev);
5433         goto out;
5434 }
5435
5436 static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5437         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5438         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5439         {0,}
5440 };
5441 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5442
5443 static struct pci_driver et131x_driver = {
5444         .name           = DRIVER_NAME,
5445         .id_table       = et131x_pci_table,
5446         .probe          = et131x_pci_setup,
5447         .remove         = __devexit_p(et131x_pci_remove),
5448         .driver.pm      = ET131X_PM_OPS,
5449 };
5450
5451 /**
5452  * et131x_init_module - The "main" entry point called on driver initialization
5453  *
5454  * Returns 0 on success, errno on failure (as defined in errno.h)
5455  */
5456 static int __init et131x_init_module(void)
5457 {
5458         return pci_register_driver(&et131x_driver);
5459 }
5460
5461 /**
5462  * et131x_cleanup_module - The entry point called on driver cleanup
5463  */
5464 static void __exit et131x_cleanup_module(void)
5465 {
5466         pci_unregister_driver(&et131x_driver);
5467 }
5468
5469 module_init(et131x_init_module);
5470 module_exit(et131x_cleanup_module);
5471