nvdimm: make CONFIG_NVDIMM_DAX 'bool'
[cascardo/linux.git] / drivers / staging / greybus / spilib.c
1 /*
2  * Greybus SPI library
3  *
4  * Copyright 2014-2016 Google Inc.
5  * Copyright 2014-2016 Linaro Ltd.
6  *
7  * Released under the GPLv2 only.
8  */
9
10 #include <linux/bitops.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/spi/spi.h>
15
16 #include "greybus.h"
17 #include "spilib.h"
18
19 struct gb_spilib {
20         struct gb_connection    *connection;
21         struct device           *parent;
22         struct spi_transfer     *first_xfer;
23         struct spi_transfer     *last_xfer;
24         struct spilib_ops       *ops;
25         u32                     rx_xfer_offset;
26         u32                     tx_xfer_offset;
27         u32                     last_xfer_size;
28         unsigned int            op_timeout;
29         u16                     mode;
30         u16                     flags;
31         u32                     bits_per_word_mask;
32         u8                      num_chipselect;
33         u32                     min_speed_hz;
34         u32                     max_speed_hz;
35 };
36
37 #define GB_SPI_STATE_MSG_DONE           ((void *)0)
38 #define GB_SPI_STATE_MSG_IDLE           ((void *)1)
39 #define GB_SPI_STATE_MSG_RUNNING        ((void *)2)
40 #define GB_SPI_STATE_OP_READY           ((void *)3)
41 #define GB_SPI_STATE_OP_DONE            ((void *)4)
42 #define GB_SPI_STATE_MSG_ERROR          ((void *)-1)
43
44 #define XFER_TIMEOUT_TOLERANCE          200
45
46 static struct spi_master *get_master_from_spi(struct gb_spilib *spi)
47 {
48         return gb_connection_get_data(spi->connection);
49 }
50
51 static int tx_header_fit_operation(u32 tx_size, u32 count, size_t data_max)
52 {
53         size_t headers_size;
54
55         data_max -= sizeof(struct gb_spi_transfer_request);
56         headers_size = (count + 1) * sizeof(struct gb_spi_transfer);
57
58         return tx_size + headers_size > data_max ? 0 : 1;
59 }
60
61 static size_t calc_rx_xfer_size(u32 rx_size, u32 *tx_xfer_size, u32 len,
62                                 size_t data_max)
63 {
64         size_t rx_xfer_size;
65
66         data_max -= sizeof(struct gb_spi_transfer_response);
67
68         if (rx_size + len > data_max)
69                 rx_xfer_size = data_max - rx_size;
70         else
71                 rx_xfer_size = len;
72
73         /* if this is a write_read, for symmetry read the same as write */
74         if (*tx_xfer_size && rx_xfer_size > *tx_xfer_size)
75                 rx_xfer_size = *tx_xfer_size;
76         if (*tx_xfer_size && rx_xfer_size < *tx_xfer_size)
77                 *tx_xfer_size = rx_xfer_size;
78
79         return rx_xfer_size;
80 }
81
82 static size_t calc_tx_xfer_size(u32 tx_size, u32 count, size_t len,
83                                 size_t data_max)
84 {
85         size_t headers_size;
86
87         data_max -= sizeof(struct gb_spi_transfer_request);
88         headers_size = (count + 1) * sizeof(struct gb_spi_transfer);
89
90         if (tx_size + headers_size + len > data_max)
91                 return data_max - (tx_size + sizeof(struct gb_spi_transfer));
92
93         return len;
94 }
95
96 static void clean_xfer_state(struct gb_spilib *spi)
97 {
98         spi->first_xfer = NULL;
99         spi->last_xfer = NULL;
100         spi->rx_xfer_offset = 0;
101         spi->tx_xfer_offset = 0;
102         spi->last_xfer_size = 0;
103         spi->op_timeout = 0;
104 }
105
106 static bool is_last_xfer_done(struct gb_spilib *spi)
107 {
108         struct spi_transfer *last_xfer = spi->last_xfer;
109
110         if ((spi->tx_xfer_offset + spi->last_xfer_size == last_xfer->len) ||
111             (spi->rx_xfer_offset + spi->last_xfer_size == last_xfer->len))
112                 return true;
113
114         return false;
115 }
116
117 static int setup_next_xfer(struct gb_spilib *spi, struct spi_message *msg)
118 {
119         struct spi_transfer *last_xfer = spi->last_xfer;
120
121         if (msg->state != GB_SPI_STATE_OP_DONE)
122                 return 0;
123
124         /*
125          * if we transferred all content of the last transfer, reset values and
126          * check if this was the last transfer in the message
127          */
128         if (is_last_xfer_done(spi)) {
129                 spi->tx_xfer_offset = 0;
130                 spi->rx_xfer_offset = 0;
131                 spi->op_timeout = 0;
132                 if (last_xfer == list_last_entry(&msg->transfers,
133                                                  struct spi_transfer,
134                                                  transfer_list))
135                         msg->state = GB_SPI_STATE_MSG_DONE;
136                 else
137                         spi->first_xfer = list_next_entry(last_xfer,
138                                                           transfer_list);
139                 return 0;
140         }
141
142         spi->first_xfer = last_xfer;
143         if (last_xfer->tx_buf)
144                 spi->tx_xfer_offset += spi->last_xfer_size;
145
146         if (last_xfer->rx_buf)
147                 spi->rx_xfer_offset += spi->last_xfer_size;
148
149         return 0;
150 }
151
152 static struct spi_transfer *get_next_xfer(struct spi_transfer *xfer,
153                                           struct spi_message *msg)
154 {
155         if (xfer == list_last_entry(&msg->transfers, struct spi_transfer,
156                                     transfer_list))
157                 return NULL;
158
159         return list_next_entry(xfer, transfer_list);
160 }
161
162 /* Routines to transfer data */
163 static struct gb_operation *gb_spi_operation_create(struct gb_spilib *spi,
164                 struct gb_connection *connection, struct spi_message *msg)
165 {
166         struct gb_spi_transfer_request *request;
167         struct spi_device *dev = msg->spi;
168         struct spi_transfer *xfer;
169         struct gb_spi_transfer *gb_xfer;
170         struct gb_operation *operation;
171         u32 tx_size = 0, rx_size = 0, count = 0, xfer_len = 0, request_size;
172         u32 tx_xfer_size = 0, rx_xfer_size = 0, len;
173         u32 total_len = 0;
174         unsigned int xfer_timeout;
175         size_t data_max;
176         void *tx_data;
177
178         data_max = gb_operation_get_payload_size_max(connection);
179         xfer = spi->first_xfer;
180
181         /* Find number of transfers queued and tx/rx length in the message */
182
183         while (msg->state != GB_SPI_STATE_OP_READY) {
184                 msg->state = GB_SPI_STATE_MSG_RUNNING;
185                 spi->last_xfer = xfer;
186
187                 if (!xfer->tx_buf && !xfer->rx_buf) {
188                         dev_err(spi->parent,
189                                 "bufferless transfer, length %u\n", xfer->len);
190                         msg->state = GB_SPI_STATE_MSG_ERROR;
191                         return NULL;
192                 }
193
194                 tx_xfer_size = 0;
195                 rx_xfer_size = 0;
196
197                 if (xfer->tx_buf) {
198                         len = xfer->len - spi->tx_xfer_offset;
199                         if (!tx_header_fit_operation(tx_size, count, data_max))
200                                 break;
201                         tx_xfer_size = calc_tx_xfer_size(tx_size, count,
202                                                          len, data_max);
203                         spi->last_xfer_size = tx_xfer_size;
204                 }
205
206                 if (xfer->rx_buf) {
207                         len = xfer->len - spi->rx_xfer_offset;
208                         rx_xfer_size = calc_rx_xfer_size(rx_size, &tx_xfer_size,
209                                                          len, data_max);
210                         spi->last_xfer_size = rx_xfer_size;
211                 }
212
213                 tx_size += tx_xfer_size;
214                 rx_size += rx_xfer_size;
215
216                 total_len += spi->last_xfer_size;
217                 count++;
218
219                 xfer = get_next_xfer(xfer, msg);
220                 if (!xfer || total_len >= data_max)
221                         msg->state = GB_SPI_STATE_OP_READY;
222         }
223
224         /*
225          * In addition to space for all message descriptors we need
226          * to have enough to hold all tx data.
227          */
228         request_size = sizeof(*request);
229         request_size += count * sizeof(*gb_xfer);
230         request_size += tx_size;
231
232         /* Response consists only of incoming data */
233         operation = gb_operation_create(connection, GB_SPI_TYPE_TRANSFER,
234                                         request_size, rx_size, GFP_KERNEL);
235         if (!operation)
236                 return NULL;
237
238         request = operation->request->payload;
239         request->count = cpu_to_le16(count);
240         request->mode = dev->mode;
241         request->chip_select = dev->chip_select;
242
243         gb_xfer = &request->transfers[0];
244         tx_data = gb_xfer + count;      /* place tx data after last gb_xfer */
245
246         /* Fill in the transfers array */
247         xfer = spi->first_xfer;
248         while (msg->state != GB_SPI_STATE_OP_DONE) {
249                 if (xfer == spi->last_xfer)
250                         xfer_len = spi->last_xfer_size;
251                 else
252                         xfer_len = xfer->len;
253
254                 /* make sure we do not timeout in a slow transfer */
255                 xfer_timeout = xfer_len * 8 * MSEC_PER_SEC / xfer->speed_hz;
256                 xfer_timeout += GB_OPERATION_TIMEOUT_DEFAULT;
257
258                 if (xfer_timeout > spi->op_timeout)
259                         spi->op_timeout = xfer_timeout;
260
261                 gb_xfer->speed_hz = cpu_to_le32(xfer->speed_hz);
262                 gb_xfer->len = cpu_to_le32(xfer_len);
263                 gb_xfer->delay_usecs = cpu_to_le16(xfer->delay_usecs);
264                 gb_xfer->cs_change = xfer->cs_change;
265                 gb_xfer->bits_per_word = xfer->bits_per_word;
266
267                 /* Copy tx data */
268                 if (xfer->tx_buf) {
269                         gb_xfer->xfer_flags |= GB_SPI_XFER_WRITE;
270                         memcpy(tx_data, xfer->tx_buf + spi->tx_xfer_offset,
271                                xfer_len);
272                         tx_data += xfer_len;
273                 }
274
275                 if (xfer->rx_buf)
276                         gb_xfer->xfer_flags |= GB_SPI_XFER_READ;
277
278                 if (xfer == spi->last_xfer) {
279                         if (!is_last_xfer_done(spi))
280                                 gb_xfer->xfer_flags |= GB_SPI_XFER_INPROGRESS;
281                         msg->state = GB_SPI_STATE_OP_DONE;
282                         continue;
283                 }
284
285                 gb_xfer++;
286                 xfer = get_next_xfer(xfer, msg);
287         }
288
289         msg->actual_length += total_len;
290
291         return operation;
292 }
293
294 static void gb_spi_decode_response(struct gb_spilib *spi,
295                                    struct spi_message *msg,
296                                    struct gb_spi_transfer_response *response)
297 {
298         struct spi_transfer *xfer = spi->first_xfer;
299         void *rx_data = response->data;
300         u32 xfer_len;
301
302         while (xfer) {
303                 /* Copy rx data */
304                 if (xfer->rx_buf) {
305                         if (xfer == spi->first_xfer)
306                                 xfer_len = xfer->len - spi->rx_xfer_offset;
307                         else if (xfer == spi->last_xfer)
308                                 xfer_len = spi->last_xfer_size;
309                         else
310                                 xfer_len = xfer->len;
311
312                         memcpy(xfer->rx_buf + spi->rx_xfer_offset, rx_data,
313                                xfer_len);
314                         rx_data += xfer_len;
315                 }
316
317                 if (xfer == spi->last_xfer)
318                         break;
319
320                 xfer = list_next_entry(xfer, transfer_list);
321         }
322 }
323
324 static int gb_spi_transfer_one_message(struct spi_master *master,
325                                        struct spi_message *msg)
326 {
327         struct gb_spilib *spi = spi_master_get_devdata(master);
328         struct gb_connection *connection = spi->connection;
329         struct gb_spi_transfer_response *response;
330         struct gb_operation *operation;
331         int ret = 0;
332
333         spi->first_xfer = list_first_entry_or_null(&msg->transfers,
334                                                    struct spi_transfer,
335                                                    transfer_list);
336         if (!spi->first_xfer) {
337                 ret = -ENOMEM;
338                 goto out;
339         }
340
341         msg->state = GB_SPI_STATE_MSG_IDLE;
342
343         while (msg->state != GB_SPI_STATE_MSG_DONE &&
344                msg->state != GB_SPI_STATE_MSG_ERROR) {
345                 operation = gb_spi_operation_create(spi, connection, msg);
346                 if (!operation) {
347                         msg->state = GB_SPI_STATE_MSG_ERROR;
348                         ret = -EINVAL;
349                         continue;
350                 }
351
352                 ret = gb_operation_request_send_sync_timeout(operation,
353                                                              spi->op_timeout);
354                 if (!ret) {
355                         response = operation->response->payload;
356                         if (response)
357                                 gb_spi_decode_response(spi, msg, response);
358                 } else {
359                         dev_err(spi->parent,
360                                 "transfer operation failed: %d\n", ret);
361                         msg->state = GB_SPI_STATE_MSG_ERROR;
362                 }
363
364                 gb_operation_put(operation);
365                 setup_next_xfer(spi, msg);
366         }
367
368 out:
369         msg->status = ret;
370         clean_xfer_state(spi);
371         spi_finalize_current_message(master);
372
373         return ret;
374 }
375
376 static int gb_spi_prepare_transfer_hardware(struct spi_master *master)
377 {
378         struct gb_spilib *spi = spi_master_get_devdata(master);
379
380         return spi->ops->prepare_transfer_hardware(spi->parent);
381 }
382
383 static int gb_spi_unprepare_transfer_hardware(struct spi_master *master)
384 {
385         struct gb_spilib *spi = spi_master_get_devdata(master);
386
387         spi->ops->unprepare_transfer_hardware(spi->parent);
388
389         return 0;
390 }
391
392 static int gb_spi_setup(struct spi_device *spi)
393 {
394         /* Nothing to do for now */
395         return 0;
396 }
397
398 static void gb_spi_cleanup(struct spi_device *spi)
399 {
400         /* Nothing to do for now */
401 }
402
403 /* Routines to get controller information */
404
405 /*
406  * Map Greybus spi mode bits/flags/bpw into Linux ones.
407  * All bits are same for now and so these macro's return same values.
408  */
409 #define gb_spi_mode_map(mode) mode
410 #define gb_spi_flags_map(flags) flags
411
412 static int gb_spi_get_master_config(struct gb_spilib *spi)
413 {
414         struct gb_spi_master_config_response response;
415         u16 mode, flags;
416         int ret;
417
418         ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_MASTER_CONFIG,
419                                 NULL, 0, &response, sizeof(response));
420         if (ret < 0)
421                 return ret;
422
423         mode = le16_to_cpu(response.mode);
424         spi->mode = gb_spi_mode_map(mode);
425
426         flags = le16_to_cpu(response.flags);
427         spi->flags = gb_spi_flags_map(flags);
428
429         spi->bits_per_word_mask = le32_to_cpu(response.bits_per_word_mask);
430         spi->num_chipselect = response.num_chipselect;
431
432         spi->min_speed_hz = le32_to_cpu(response.min_speed_hz);
433         spi->max_speed_hz = le32_to_cpu(response.max_speed_hz);
434
435         return 0;
436 }
437
438 static int gb_spi_setup_device(struct gb_spilib *spi, u8 cs)
439 {
440         struct spi_master *master = get_master_from_spi(spi);
441         struct gb_spi_device_config_request request;
442         struct gb_spi_device_config_response response;
443         struct spi_board_info spi_board = { {0} };
444         struct spi_device *spidev;
445         int ret;
446         u8 dev_type;
447
448         request.chip_select = cs;
449
450         ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_DEVICE_CONFIG,
451                                 &request, sizeof(request),
452                                 &response, sizeof(response));
453         if (ret < 0)
454                 return ret;
455
456         dev_type = response.device_type;
457
458         if (dev_type == GB_SPI_SPI_DEV)
459                 strlcpy(spi_board.modalias, "spidev",
460                         sizeof(spi_board.modalias));
461         else if (dev_type == GB_SPI_SPI_NOR)
462                 strlcpy(spi_board.modalias, "spi-nor",
463                         sizeof(spi_board.modalias));
464         else if (dev_type == GB_SPI_SPI_MODALIAS)
465                 memcpy(spi_board.modalias, response.name,
466                        sizeof(spi_board.modalias));
467         else
468                 return -EINVAL;
469
470         spi_board.mode          = le16_to_cpu(response.mode);
471         spi_board.bus_num       = master->bus_num;
472         spi_board.chip_select   = cs;
473         spi_board.max_speed_hz  = le32_to_cpu(response.max_speed_hz);
474
475         spidev = spi_new_device(master, &spi_board);
476         if (!spidev)
477                 return -EINVAL;
478
479         return 0;
480 }
481
482 int gb_spilib_master_init(struct gb_connection *connection, struct device *dev,
483                           struct spilib_ops *ops)
484 {
485         struct gb_spilib *spi;
486         struct spi_master *master;
487         int ret;
488         u8 i;
489
490         /* Allocate master with space for data */
491         master = spi_alloc_master(dev, sizeof(*spi));
492         if (!master) {
493                 dev_err(dev, "cannot alloc SPI master\n");
494                 return -ENOMEM;
495         }
496
497         spi = spi_master_get_devdata(master);
498         spi->connection = connection;
499         gb_connection_set_data(connection, master);
500         spi->parent = dev;
501         spi->ops = ops;
502
503         /* get master configuration */
504         ret = gb_spi_get_master_config(spi);
505         if (ret)
506                 goto exit_spi_put;
507
508         master->bus_num = -1; /* Allow spi-core to allocate it dynamically */
509         master->num_chipselect = spi->num_chipselect;
510         master->mode_bits = spi->mode;
511         master->flags = spi->flags;
512         master->bits_per_word_mask = spi->bits_per_word_mask;
513
514         /* Attach methods */
515         master->cleanup = gb_spi_cleanup;
516         master->setup = gb_spi_setup;
517         master->transfer_one_message = gb_spi_transfer_one_message;
518
519         if (ops && ops->prepare_transfer_hardware) {
520                 master->prepare_transfer_hardware =
521                         gb_spi_prepare_transfer_hardware;
522         }
523
524         if (ops && ops->unprepare_transfer_hardware) {
525                 master->unprepare_transfer_hardware =
526                         gb_spi_unprepare_transfer_hardware;
527         }
528
529         master->auto_runtime_pm = true;
530
531         ret = spi_register_master(master);
532         if (ret < 0)
533                 goto exit_spi_put;
534
535         /* now, fetch the devices configuration */
536         for (i = 0; i < spi->num_chipselect; i++) {
537                 ret = gb_spi_setup_device(spi, i);
538                 if (ret < 0) {
539                         dev_err(dev, "failed to allocate spi device %d: %d\n",
540                                 i, ret);
541                         goto exit_spi_unregister;
542                 }
543         }
544
545         return 0;
546
547 exit_spi_unregister:
548         spi_unregister_master(master);
549 exit_spi_put:
550         spi_master_put(master);
551
552         return ret;
553 }
554 EXPORT_SYMBOL_GPL(gb_spilib_master_init);
555
556 void gb_spilib_master_exit(struct gb_connection *connection)
557 {
558         struct spi_master *master = gb_connection_get_data(connection);
559
560         spi_unregister_master(master);
561         spi_master_put(master);
562 }
563 EXPORT_SYMBOL_GPL(gb_spilib_master_exit);
564
565 MODULE_LICENSE("GPL v2");