Merge branch 'debugfs_automount' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / staging / skein / skein_block.c
1 /***********************************************************************
2 **
3 ** Implementation of the Skein block functions.
4 **
5 ** Source code author: Doug Whiting, 2008.
6 **
7 ** This algorithm and source code is released to the public domain.
8 **
9 ** Compile-time switches:
10 **
11 **  SKEIN_USE_ASM  -- set bits (256/512/1024) to select which
12 **                    versions use ASM code for block processing
13 **                    [default: use C for all block sizes]
14 **
15 ************************************************************************/
16
17 #include <linux/string.h>
18 #include "skein_base.h"
19 #include "skein_block.h"
20
21 #ifndef SKEIN_USE_ASM
22 #define SKEIN_USE_ASM   (0) /* default is all C code (no ASM) */
23 #endif
24
25 #ifndef SKEIN_LOOP
26 #define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
27 #endif
28
29 #define BLK_BITS        (WCNT * 64) /* some useful definitions for code here */
30 #define KW_TWK_BASE     (0)
31 #define KW_KEY_BASE     (3)
32 #define ks              (kw + KW_KEY_BASE)
33 #define ts              (kw + KW_TWK_BASE)
34
35 #ifdef SKEIN_DEBUG
36 #define debug_save_tweak(ctx)       \
37 {                                   \
38         ctx->h.tweak[0] = ts[0];    \
39         ctx->h.tweak[1] = ts[1];    \
40 }
41 #else
42 #define debug_save_tweak(ctx)
43 #endif
44
45 #if !(SKEIN_USE_ASM & 256)
46 #undef  RCNT
47 #define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
48 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
49 #define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
50 #else
51 #define SKEIN_UNROLL_256 (0)
52 #endif
53
54 #if SKEIN_UNROLL_256
55 #if (RCNT % SKEIN_UNROLL_256)
56 #error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
57 #endif
58 #endif
59 #define ROUND256(p0, p1, p2, p3, ROT, r_num) \
60 do {                                         \
61         X##p0 += X##p1;                      \
62         X##p1 = rotl_64(X##p1, ROT##_0);     \
63         X##p1 ^= X##p0;                      \
64         X##p2 += X##p3;                      \
65         X##p3 = rotl_64(X##p3, ROT##_1);     \
66         X##p3 ^= X##p2;                      \
67 } while (0)
68
69 #if SKEIN_UNROLL_256 == 0
70 #define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \
71 do {                                                          \
72         ROUND256(p0, p1, p2, p3, ROT, r_num);                 \
73 } while (0)
74
75 #define I256(R)                                                           \
76 do {                                                                      \
77         /* inject the key schedule value */                               \
78         X0   += ks[((R) + 1) % 5];                                        \
79         X1   += ks[((R) + 2) % 5] + ts[((R) + 1) % 3];                    \
80         X2   += ks[((R) + 3) % 5] + ts[((R) + 2) % 3];                    \
81         X3   += ks[((R) + 4) % 5] + (R) + 1;                              \
82 } while (0)
83 #else
84 /* looping version */
85 #define R256(p0, p1, p2, p3, ROT, r_num) ROUND256(p0, p1, p2, p3, ROT, r_num)
86
87 #define I256(R) \
88 do { \
89         /* inject the key schedule value */ \
90         X0 += ks[r + (R) + 0]; \
91         X1 += ks[r + (R) + 1] + ts[r + (R) + 0];                          \
92         X2 += ks[r + (R) + 2] + ts[r + (R) + 1];                          \
93         X3 += ks[r + (R) + 3] + r + (R);                                  \
94         /* rotate key schedule */                                         \
95         ks[r + (R) + 4] = ks[r + (R) - 1];                                \
96         ts[r + (R) + 2] = ts[r + (R) - 1];                                \
97 } while (0)
98 #endif
99 #define R256_8_ROUNDS(R)                                 \
100 do {                                                     \
101                 R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1);  \
102                 R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2);  \
103                 R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3);  \
104                 R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4);  \
105                 I256(2 * (R));                           \
106                 R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5);  \
107                 R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6);  \
108                 R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7);  \
109                 R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8);  \
110                 I256(2 * (R) + 1);                       \
111 } while (0)
112
113 #define R256_UNROLL_R(NN)                     \
114         ((SKEIN_UNROLL_256 == 0 &&            \
115         SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
116         (SKEIN_UNROLL_256 > (NN)))
117
118 #if  (SKEIN_UNROLL_256 > 14)
119 #error  "need more unrolling in skein_256_process_block"
120 #endif
121 #endif
122
123 #if !(SKEIN_USE_ASM & 512)
124 #undef  RCNT
125 #define RCNT  (SKEIN_512_ROUNDS_TOTAL/8)
126
127 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
128 #define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
129 #else
130 #define SKEIN_UNROLL_512 (0)
131 #endif
132
133 #if SKEIN_UNROLL_512
134 #if (RCNT % SKEIN_UNROLL_512)
135 #error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
136 #endif
137 #endif
138 #define ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
139 do {                                                         \
140         X##p0 += X##p1;                                      \
141         X##p1 = rotl_64(X##p1, ROT##_0);                     \
142         X##p1 ^= X##p0;                                      \
143         X##p2 += X##p3;                                      \
144         X##p3 = rotl_64(X##p3, ROT##_1);                     \
145         X##p3 ^= X##p2;                                      \
146         X##p4 += X##p5;                                      \
147         X##p5 = rotl_64(X##p5, ROT##_2);                     \
148         X##p5 ^= X##p4;                                      \
149         X##p6 += X##p7; X##p7 = rotl_64(X##p7, ROT##_3);     \
150         X##p7 ^= X##p6;                                      \
151 } while (0)
152
153 #if SKEIN_UNROLL_512 == 0
154 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) /* unrolled */ \
155 do {                                                                    \
156         ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num);           \
157 } while (0)
158
159 #define I512(R)                                                           \
160 do {                                                                      \
161         /* inject the key schedule value */                               \
162         X0   += ks[((R) + 1) % 9];                                        \
163         X1   += ks[((R) + 2) % 9];                                        \
164         X2   += ks[((R) + 3) % 9];                                        \
165         X3   += ks[((R) + 4) % 9];                                        \
166         X4   += ks[((R) + 5) % 9];                                        \
167         X5   += ks[((R) + 6) % 9] + ts[((R) + 1) % 3];                    \
168         X6   += ks[((R) + 7) % 9] + ts[((R) + 2) % 3];                    \
169         X7   += ks[((R) + 8) % 9] + (R) + 1;                              \
170 } while (0)
171
172 #else /* looping version */
173 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)                 \
174         ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)             \
175
176 #define I512(R)                                                           \
177 do {                                                                      \
178         /* inject the key schedule value */                               \
179         X0   += ks[r + (R) + 0];                                          \
180         X1   += ks[r + (R) + 1];                                          \
181         X2   += ks[r + (R) + 2];                                          \
182         X3   += ks[r + (R) + 3];                                          \
183         X4   += ks[r + (R) + 4];                                          \
184         X5   += ks[r + (R) + 5] + ts[r + (R) + 0];                        \
185         X6   += ks[r + (R) + 6] + ts[r + (R) + 1];                        \
186         X7   += ks[r + (R) + 7] + r + (R);                                \
187         /* rotate key schedule */                                         \
188         ks[r + (R) + 8] = ks[r + (R) - 1];                                \
189         ts[r + (R) + 2] = ts[r + (R) - 1];                                \
190 } while (0)
191 #endif /* end of looped code definitions */
192 #define R512_8_ROUNDS(R)  /* do 8 full rounds */                      \
193 do {                                                                  \
194                 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1);   \
195                 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2);   \
196                 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3);   \
197                 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4);   \
198                 I512(2 * (R));                              \
199                 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5);   \
200                 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6);   \
201                 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7);   \
202                 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8);   \
203                 I512(2 * (R) + 1);        /* and key injection */     \
204 } while (0)
205 #define R512_UNROLL_R(NN)                             \
206                 ((SKEIN_UNROLL_512 == 0 &&            \
207                 SKEIN_512_ROUNDS_TOTAL/8 > (NN)) ||   \
208                 (SKEIN_UNROLL_512 > (NN)))
209
210 #if  (SKEIN_UNROLL_512 > 14)
211 #error  "need more unrolling in skein_512_process_block"
212 #endif
213 #endif
214
215 #if !(SKEIN_USE_ASM & 1024)
216 #undef  RCNT
217 #define RCNT  (SKEIN_1024_ROUNDS_TOTAL/8)
218 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
219 #define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
220 #else
221 #define SKEIN_UNROLL_1024 (0)
222 #endif
223
224 #if (SKEIN_UNROLL_1024 != 0)
225 #if (RCNT % SKEIN_UNROLL_1024)
226 #error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
227 #endif
228 #endif
229 #define ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
230                   pF, ROT, r_num)                                             \
231 do {                                                                          \
232         X##p0 += X##p1;                                                       \
233         X##p1 = rotl_64(X##p1, ROT##_0);                                      \
234         X##p1 ^= X##p0;                                                       \
235         X##p2 += X##p3;                                                       \
236         X##p3 = rotl_64(X##p3, ROT##_1);                                      \
237         X##p3 ^= X##p2;                                                       \
238         X##p4 += X##p5;                                                       \
239         X##p5 = rotl_64(X##p5, ROT##_2);                                      \
240         X##p5 ^= X##p4;                                                       \
241         X##p6 += X##p7;                                                       \
242         X##p7 = rotl_64(X##p7, ROT##_3);                                      \
243         X##p7 ^= X##p6;                                                       \
244         X##p8 += X##p9;                                                       \
245         X##p9 = rotl_64(X##p9, ROT##_4);                                      \
246         X##p9 ^= X##p8;                                                       \
247         X##pA += X##pB;                                                       \
248         X##pB = rotl_64(X##pB, ROT##_5);                                      \
249         X##pB ^= X##pA;                                                       \
250         X##pC += X##pD;                                                       \
251         X##pD = rotl_64(X##pD, ROT##_6);                                      \
252         X##pD ^= X##pC;                                                       \
253         X##pE += X##pF;                                                       \
254         X##pF = rotl_64(X##pF, ROT##_7);                                      \
255         X##pF ^= X##pE;                                                       \
256 } while (0)
257
258 #if SKEIN_UNROLL_1024 == 0
259 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
260               ROT, rn)                                                        \
261         ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
262                   pF, ROT, rn)                                                \
263
264 #define I1024(R)                                                          \
265 do {                                                                      \
266         /* inject the key schedule value */                               \
267         X00 += ks[((R) + 1) % 17];                                        \
268         X01 += ks[((R) + 2) % 17];                                        \
269         X02 += ks[((R) + 3) % 17];                                        \
270         X03 += ks[((R) + 4) % 17];                                        \
271         X04 += ks[((R) + 5) % 17];                                        \
272         X05 += ks[((R) + 6) % 17];                                        \
273         X06 += ks[((R) + 7) % 17];                                        \
274         X07 += ks[((R) + 8) % 17];                                        \
275         X08 += ks[((R) + 9) % 17];                                        \
276         X09 += ks[((R) + 10) % 17];                                       \
277         X10 += ks[((R) + 11) % 17];                                       \
278         X11 += ks[((R) + 12) % 17];                                       \
279         X12 += ks[((R) + 13) % 17];                                       \
280         X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3];                   \
281         X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3];                   \
282         X15 += ks[((R) + 16) % 17] + (R) + 1;                             \
283 } while (0)
284 #else /* looping version */
285 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
286               ROT, rn)                                                        \
287         ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
288                   pF, ROT, rn)                                                \
289
290 #define I1024(R)                                                           \
291 do {                                                                       \
292         /* inject the key schedule value */                                \
293         X00 += ks[r + (R) + 0];                                            \
294         X01 += ks[r + (R) + 1];                                            \
295         X02 += ks[r + (R) + 2];                                            \
296         X03 += ks[r + (R) + 3];                                            \
297         X04 += ks[r + (R) + 4];                                            \
298         X05 += ks[r + (R) + 5];                                            \
299         X06 += ks[r + (R) + 6];                                            \
300         X07 += ks[r + (R) + 7];                                            \
301         X08 += ks[r + (R) + 8];                                            \
302         X09 += ks[r + (R) + 9];                                            \
303         X10 += ks[r + (R) + 10];                                           \
304         X11 += ks[r + (R) + 11];                                           \
305         X12 += ks[r + (R) + 12];                                           \
306         X13 += ks[r + (R) + 13] + ts[r + (R) + 0];                         \
307         X14 += ks[r + (R) + 14] + ts[r + (R) + 1];                         \
308         X15 += ks[r + (R) + 15] + r + (R);                                 \
309         /* rotate key schedule */                                          \
310         ks[r + (R) + 16] = ks[r + (R) - 1];                                \
311         ts[r + (R) + 2] = ts[r + (R) - 1];                                 \
312 } while (0)
313
314 #endif
315 #define R1024_8_ROUNDS(R)                                                     \
316 do {                                                                          \
317         R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \
318               R1024_0, 8*(R) + 1);                                            \
319         R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \
320               R1024_1, 8*(R) + 2);                                            \
321         R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \
322               R1024_2, 8*(R) + 3);                                            \
323         R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \
324               R1024_3, 8*(R) + 4);                                            \
325         I1024(2*(R));                                                         \
326         R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \
327               R1024_4, 8*(R) + 5);                                            \
328         R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \
329               R1024_5, 8*(R) + 6);                                            \
330         R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \
331               R1024_6, 8*(R) + 7);                                            \
332         R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \
333               R1024_7, 8*(R) + 8);                                            \
334         I1024(2*(R)+1);                                                       \
335 } while (0)
336
337 #define R1024_UNROLL_R(NN)                              \
338                 ((SKEIN_UNROLL_1024 == 0 &&             \
339                 SKEIN_1024_ROUNDS_TOTAL/8 > (NN)) ||  \
340                 (SKEIN_UNROLL_1024 > (NN)))
341
342 #if  (SKEIN_UNROLL_1024 > 14)
343 #error  "need more unrolling in Skein_1024_Process_Block"
344 #endif
345 #endif
346
347 /*****************************  SKEIN_256 ******************************/
348 #if !(SKEIN_USE_ASM & 256)
349 void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
350                              size_t blk_cnt, size_t byte_cnt_add)
351 { /* do it in C */
352         enum {
353                 WCNT = SKEIN_256_STATE_WORDS
354         };
355         size_t r;
356 #if SKEIN_UNROLL_256
357         /* key schedule: chaining vars + tweak + "rot"*/
358         u64  kw[WCNT+4+RCNT*2];
359 #else
360         /* key schedule words : chaining vars + tweak */
361         u64  kw[WCNT+4];
362 #endif
363         u64  X0, X1, X2, X3; /* local copy of context vars, for speed */
364         u64  w[WCNT]; /* local copy of input block */
365 #ifdef SKEIN_DEBUG
366         const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */
367
368         X_ptr[0] = &X0;
369         X_ptr[1] = &X1;
370         X_ptr[2] = &X2;
371         X_ptr[3] = &X3;
372 #endif
373         skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
374         ts[0] = ctx->h.tweak[0];
375         ts[1] = ctx->h.tweak[1];
376         do  {
377                 /*
378                  * this implementation only supports 2**64 input bytes
379                  * (no carry out here)
380                  */
381                 ts[0] += byte_cnt_add; /* update processed length */
382
383                 /* precompute the key schedule for this block */
384                 ks[0] = ctx->x[0];
385                 ks[1] = ctx->x[1];
386                 ks[2] = ctx->x[2];
387                 ks[3] = ctx->x[3];
388                 ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
389
390                 ts[2] = ts[0] ^ ts[1];
391
392                 /* get input block in little-endian format */
393                 skein_get64_lsb_first(w, blk_ptr, WCNT);
394                 debug_save_tweak(ctx);
395
396                 /* do the first full key injection */
397                 X0 = w[0] + ks[0];
398                 X1 = w[1] + ks[1] + ts[0];
399                 X2 = w[2] + ks[2] + ts[1];
400                 X3 = w[3] + ks[3];
401
402                 blk_ptr += SKEIN_256_BLOCK_BYTES;
403
404                 /* run the rounds */
405                 for (r = 1;
406                         r < (SKEIN_UNROLL_256 ? 2 * RCNT : 2);
407                         r += (SKEIN_UNROLL_256 ? 2 * SKEIN_UNROLL_256 : 1)) {
408                         R256_8_ROUNDS(0);
409 #if   R256_UNROLL_R(1)
410                         R256_8_ROUNDS(1);
411 #endif
412 #if   R256_UNROLL_R(2)
413                         R256_8_ROUNDS(2);
414 #endif
415 #if   R256_UNROLL_R(3)
416                         R256_8_ROUNDS(3);
417 #endif
418 #if   R256_UNROLL_R(4)
419                         R256_8_ROUNDS(4);
420 #endif
421 #if   R256_UNROLL_R(5)
422                         R256_8_ROUNDS(5);
423 #endif
424 #if   R256_UNROLL_R(6)
425                         R256_8_ROUNDS(6);
426 #endif
427 #if   R256_UNROLL_R(7)
428                         R256_8_ROUNDS(7);
429 #endif
430 #if   R256_UNROLL_R(8)
431                         R256_8_ROUNDS(8);
432 #endif
433 #if   R256_UNROLL_R(9)
434                         R256_8_ROUNDS(9);
435 #endif
436 #if   R256_UNROLL_R(10)
437                         R256_8_ROUNDS(10);
438 #endif
439 #if   R256_UNROLL_R(11)
440                         R256_8_ROUNDS(11);
441 #endif
442 #if   R256_UNROLL_R(12)
443                         R256_8_ROUNDS(12);
444 #endif
445 #if   R256_UNROLL_R(13)
446                         R256_8_ROUNDS(13);
447 #endif
448 #if   R256_UNROLL_R(14)
449                         R256_8_ROUNDS(14);
450 #endif
451                 }
452                 /* do the final "feedforward" xor, update context chaining */
453                 ctx->x[0] = X0 ^ w[0];
454                 ctx->x[1] = X1 ^ w[1];
455                 ctx->x[2] = X2 ^ w[2];
456                 ctx->x[3] = X3 ^ w[3];
457
458                 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
459         } while (--blk_cnt);
460         ctx->h.tweak[0] = ts[0];
461         ctx->h.tweak[1] = ts[1];
462 }
463
464 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
465 size_t skein_256_process_block_code_size(void)
466 {
467         return ((u8 *) skein_256_process_block_code_size) -
468                 ((u8 *) skein_256_process_block);
469 }
470 unsigned int skein_256_unroll_cnt(void)
471 {
472         return SKEIN_UNROLL_256;
473 }
474 #endif
475 #endif
476
477 /*****************************  SKEIN_512 ******************************/
478 #if !(SKEIN_USE_ASM & 512)
479 void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr,
480                              size_t blk_cnt, size_t byte_cnt_add)
481 { /* do it in C */
482         enum {
483                 WCNT = SKEIN_512_STATE_WORDS
484         };
485         size_t  r;
486 #if SKEIN_UNROLL_512
487         u64  kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot"*/
488 #else
489         u64  kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
490 #endif
491         u64  X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */
492         u64  w[WCNT]; /* local copy of input block */
493 #ifdef SKEIN_DEBUG
494         const u64 *X_ptr[8]; /* use for debugging (help cc put Xn in regs) */
495
496         X_ptr[0] = &X0;
497         X_ptr[1] = &X1;
498         X_ptr[2] = &X2;
499         X_ptr[3] = &X3;
500         X_ptr[4] = &X4;
501         X_ptr[5] = &X5;
502         X_ptr[6] = &X6;
503         X_ptr[7] = &X7;
504 #endif
505
506         skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
507         ts[0] = ctx->h.tweak[0];
508         ts[1] = ctx->h.tweak[1];
509         do  {
510                 /*
511                  * this implementation only supports 2**64 input bytes
512                  * (no carry out here)
513                  */
514                 ts[0] += byte_cnt_add; /* update processed length */
515
516                 /* precompute the key schedule for this block */
517                 ks[0] = ctx->x[0];
518                 ks[1] = ctx->x[1];
519                 ks[2] = ctx->x[2];
520                 ks[3] = ctx->x[3];
521                 ks[4] = ctx->x[4];
522                 ks[5] = ctx->x[5];
523                 ks[6] = ctx->x[6];
524                 ks[7] = ctx->x[7];
525                 ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
526                         ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
527
528                 ts[2] = ts[0] ^ ts[1];
529
530                 /* get input block in little-endian format */
531                 skein_get64_lsb_first(w, blk_ptr, WCNT);
532                 debug_save_tweak(ctx);
533
534                 /* do the first full key injection */
535                 X0 = w[0] + ks[0];
536                 X1 = w[1] + ks[1];
537                 X2 = w[2] + ks[2];
538                 X3 = w[3] + ks[3];
539                 X4 = w[4] + ks[4];
540                 X5 = w[5] + ks[5] + ts[0];
541                 X6 = w[6] + ks[6] + ts[1];
542                 X7 = w[7] + ks[7];
543
544                 blk_ptr += SKEIN_512_BLOCK_BYTES;
545
546                 /* run the rounds */
547                 for (r = 1;
548                         r < (SKEIN_UNROLL_512 ? 2 * RCNT : 2);
549                         r += (SKEIN_UNROLL_512 ? 2 * SKEIN_UNROLL_512 : 1)) {
550
551                         R512_8_ROUNDS(0);
552
553 #if   R512_UNROLL_R(1)
554                         R512_8_ROUNDS(1);
555 #endif
556 #if   R512_UNROLL_R(2)
557                         R512_8_ROUNDS(2);
558 #endif
559 #if   R512_UNROLL_R(3)
560                         R512_8_ROUNDS(3);
561 #endif
562 #if   R512_UNROLL_R(4)
563                         R512_8_ROUNDS(4);
564 #endif
565 #if   R512_UNROLL_R(5)
566                         R512_8_ROUNDS(5);
567 #endif
568 #if   R512_UNROLL_R(6)
569                         R512_8_ROUNDS(6);
570 #endif
571 #if   R512_UNROLL_R(7)
572                         R512_8_ROUNDS(7);
573 #endif
574 #if   R512_UNROLL_R(8)
575                         R512_8_ROUNDS(8);
576 #endif
577 #if   R512_UNROLL_R(9)
578                         R512_8_ROUNDS(9);
579 #endif
580 #if   R512_UNROLL_R(10)
581                         R512_8_ROUNDS(10);
582 #endif
583 #if   R512_UNROLL_R(11)
584                         R512_8_ROUNDS(11);
585 #endif
586 #if   R512_UNROLL_R(12)
587                         R512_8_ROUNDS(12);
588 #endif
589 #if   R512_UNROLL_R(13)
590                         R512_8_ROUNDS(13);
591 #endif
592 #if   R512_UNROLL_R(14)
593                         R512_8_ROUNDS(14);
594 #endif
595                 }
596
597                 /* do the final "feedforward" xor, update context chaining */
598                 ctx->x[0] = X0 ^ w[0];
599                 ctx->x[1] = X1 ^ w[1];
600                 ctx->x[2] = X2 ^ w[2];
601                 ctx->x[3] = X3 ^ w[3];
602                 ctx->x[4] = X4 ^ w[4];
603                 ctx->x[5] = X5 ^ w[5];
604                 ctx->x[6] = X6 ^ w[6];
605                 ctx->x[7] = X7 ^ w[7];
606
607                 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
608         } while (--blk_cnt);
609         ctx->h.tweak[0] = ts[0];
610         ctx->h.tweak[1] = ts[1];
611 }
612
613 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
614 size_t skein_512_process_block_code_size(void)
615 {
616         return ((u8 *) skein_512_process_block_code_size) -
617                 ((u8 *) skein_512_process_block);
618 }
619 unsigned int skein_512_unroll_cnt(void)
620 {
621         return SKEIN_UNROLL_512;
622 }
623 #endif
624 #endif
625
626 /*****************************  SKEIN_1024 ******************************/
627 #if !(SKEIN_USE_ASM & 1024)
628 void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr,
629                               size_t blk_cnt, size_t byte_cnt_add)
630 { /* do it in C, always looping (unrolled is bigger AND slower!) */
631         enum {
632                 WCNT = SKEIN_1024_STATE_WORDS
633         };
634         size_t  r;
635 #if (SKEIN_UNROLL_1024 != 0)
636         u64  kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot" */
637 #else
638         u64  kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
639 #endif
640
641         /* local copy of vars, for speed */
642         u64  X00, X01, X02, X03, X04, X05, X06, X07,
643              X08, X09, X10, X11, X12, X13, X14, X15;
644         u64  w[WCNT]; /* local copy of input block */
645
646         skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
647         ts[0] = ctx->h.tweak[0];
648         ts[1] = ctx->h.tweak[1];
649         do  {
650                 /*
651                  * this implementation only supports 2**64 input bytes
652                  * (no carry out here)
653                  */
654                 ts[0] += byte_cnt_add; /* update processed length */
655
656                 /* precompute the key schedule for this block */
657                 ks[0]  = ctx->x[0];
658                 ks[1]  = ctx->x[1];
659                 ks[2]  = ctx->x[2];
660                 ks[3]  = ctx->x[3];
661                 ks[4]  = ctx->x[4];
662                 ks[5]  = ctx->x[5];
663                 ks[6]  = ctx->x[6];
664                 ks[7]  = ctx->x[7];
665                 ks[8]  = ctx->x[8];
666                 ks[9]  = ctx->x[9];
667                 ks[10] = ctx->x[10];
668                 ks[11] = ctx->x[11];
669                 ks[12] = ctx->x[12];
670                 ks[13] = ctx->x[13];
671                 ks[14] = ctx->x[14];
672                 ks[15] = ctx->x[15];
673                 ks[16] =  ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
674                           ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
675                           ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
676                           ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
677
678                 ts[2] = ts[0] ^ ts[1];
679
680                 /* get input block in little-endian format */
681                 skein_get64_lsb_first(w, blk_ptr, WCNT);
682                 debug_save_tweak(ctx);
683
684                 /* do the first full key injection */
685                 X00 = w[0] + ks[0];
686                 X01 = w[1] + ks[1];
687                 X02 = w[2] + ks[2];
688                 X03 = w[3] + ks[3];
689                 X04 = w[4] + ks[4];
690                 X05 = w[5] + ks[5];
691                 X06 = w[6] + ks[6];
692                 X07 = w[7] + ks[7];
693                 X08 = w[8] + ks[8];
694                 X09 = w[9] + ks[9];
695                 X10 = w[10] + ks[10];
696                 X11 = w[11] + ks[11];
697                 X12 = w[12] + ks[12];
698                 X13 = w[13] + ks[13] + ts[0];
699                 X14 = w[14] + ks[14] + ts[1];
700                 X15 = w[15] + ks[15];
701
702                 for (r = 1;
703                         r < (SKEIN_UNROLL_1024 ? 2 * RCNT : 2);
704                         r += (SKEIN_UNROLL_1024 ? 2 * SKEIN_UNROLL_1024 : 1)) {
705                         R1024_8_ROUNDS(0);
706 #if   R1024_UNROLL_R(1)
707                         R1024_8_ROUNDS(1);
708 #endif
709 #if   R1024_UNROLL_R(2)
710                         R1024_8_ROUNDS(2);
711 #endif
712 #if   R1024_UNROLL_R(3)
713                         R1024_8_ROUNDS(3);
714 #endif
715 #if   R1024_UNROLL_R(4)
716                         R1024_8_ROUNDS(4);
717 #endif
718 #if   R1024_UNROLL_R(5)
719                         R1024_8_ROUNDS(5);
720 #endif
721 #if   R1024_UNROLL_R(6)
722                         R1024_8_ROUNDS(6);
723 #endif
724 #if   R1024_UNROLL_R(7)
725                         R1024_8_ROUNDS(7);
726 #endif
727 #if   R1024_UNROLL_R(8)
728                         R1024_8_ROUNDS(8);
729 #endif
730 #if   R1024_UNROLL_R(9)
731                         R1024_8_ROUNDS(9);
732 #endif
733 #if   R1024_UNROLL_R(10)
734                         R1024_8_ROUNDS(10);
735 #endif
736 #if   R1024_UNROLL_R(11)
737                         R1024_8_ROUNDS(11);
738 #endif
739 #if   R1024_UNROLL_R(12)
740                         R1024_8_ROUNDS(12);
741 #endif
742 #if   R1024_UNROLL_R(13)
743                         R1024_8_ROUNDS(13);
744 #endif
745 #if   R1024_UNROLL_R(14)
746                         R1024_8_ROUNDS(14);
747 #endif
748                 }
749                 /* do the final "feedforward" xor, update context chaining */
750
751                 ctx->x[0] = X00 ^ w[0];
752                 ctx->x[1] = X01 ^ w[1];
753                 ctx->x[2] = X02 ^ w[2];
754                 ctx->x[3] = X03 ^ w[3];
755                 ctx->x[4] = X04 ^ w[4];
756                 ctx->x[5] = X05 ^ w[5];
757                 ctx->x[6] = X06 ^ w[6];
758                 ctx->x[7] = X07 ^ w[7];
759                 ctx->x[8] = X08 ^ w[8];
760                 ctx->x[9] = X09 ^ w[9];
761                 ctx->x[10] = X10 ^ w[10];
762                 ctx->x[11] = X11 ^ w[11];
763                 ctx->x[12] = X12 ^ w[12];
764                 ctx->x[13] = X13 ^ w[13];
765                 ctx->x[14] = X14 ^ w[14];
766                 ctx->x[15] = X15 ^ w[15];
767
768                 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
769                 blk_ptr += SKEIN_1024_BLOCK_BYTES;
770         } while (--blk_cnt);
771         ctx->h.tweak[0] = ts[0];
772         ctx->h.tweak[1] = ts[1];
773 }
774
775 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
776 size_t skein_1024_process_block_code_size(void)
777 {
778         return ((u8 *) skein_1024_process_block_code_size) -
779                 ((u8 *) skein_1024_process_block);
780 }
781 unsigned int skein_1024_unroll_cnt(void)
782 {
783         return SKEIN_UNROLL_1024;
784 }
785 #endif
786 #endif