staging: unisys: fix CamelCased notifier globals
[cascardo/linux.git] / drivers / staging / unisys / visorchipset / visorchipset_main.c
1 /* visorchipset_main.c
2  *
3  * Copyright (C) 2010 - 2013 UNISYS CORPORATION
4  * All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or (at
9  * your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  */
17
18 #include "globals.h"
19 #include "visorchipset.h"
20 #include "procobjecttree.h"
21 #include "visorchannel.h"
22 #include "periodic_work.h"
23 #include "file.h"
24 #include "parser.h"
25 #include "uisutils.h"
26 #include "controlvmcompletionstatus.h"
27 #include "guestlinuxdebug.h"
28
29 #include <linux/nls.h>
30 #include <linux/netdevice.h>
31 #include <linux/platform_device.h>
32 #include <linux/uuid.h>
33
34 #define CURRENT_FILE_PC VISOR_CHIPSET_PC_visorchipset_main_c
35 #define TEST_VNIC_PHYSITF "eth0"        /* physical network itf for
36                                          * vnic loopback test */
37 #define TEST_VNIC_SWITCHNO 1
38 #define TEST_VNIC_BUSNO 9
39
40 #define MAX_NAME_SIZE 128
41 #define MAX_IP_SIZE   50
42 #define MAXOUTSTANDINGCHANNELCOMMAND 256
43 #define POLLJIFFIES_CONTROLVMCHANNEL_FAST   1
44 #define POLLJIFFIES_CONTROLVMCHANNEL_SLOW 100
45
46 /* When the controlvm channel is idle for at least MIN_IDLE_SECONDS,
47 * we switch to slow polling mode.  As soon as we get a controlvm
48 * message, we switch back to fast polling mode.
49 */
50 #define MIN_IDLE_SECONDS 10
51 static ulong poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_FAST;
52 static ulong most_recent_message_jiffies;       /* when we got our last
53                                                  * controlvm message */
54 static inline char *
55 NONULLSTR(char *s)
56 {
57         if (s)
58                 return s;
59         return "";
60 }
61
62 static int serverregistered;
63 static int clientregistered;
64
65 #define MAX_CHIPSET_EVENTS 2
66 static u8 chipset_events[MAX_CHIPSET_EVENTS] = { 0, 0 };
67
68 static struct delayed_work periodic_controlvm_work;
69 static struct workqueue_struct *periodic_controlvm_workqueue;
70 static DEFINE_SEMAPHORE(notifier_lock);
71
72 static struct controlvm_message_header g_diag_msg_hdr;
73 static struct controlvm_message_header g_chipset_msg_hdr;
74 static struct controlvm_message_header g_del_dump_msg_hdr;
75 static const uuid_le spar_diag_pool_channel_protocol_uuid =
76         SPAR_DIAG_POOL_CHANNEL_PROTOCOL_UUID;
77 /* 0xffffff is an invalid Bus/Device number */
78 static ulong g_diagpool_bus_no = 0xffffff;
79 static ulong g_diagpool_dev_no = 0xffffff;
80 static struct controlvm_message_packet g_devicechangestate_packet;
81
82 /* Only VNIC and VHBA channels are sent to visorclientbus (aka
83  * "visorhackbus")
84  */
85 #define FOR_VISORHACKBUS(channel_type_guid) \
86         (((uuid_le_cmp(channel_type_guid,\
87                        spar_vnic_channel_protocol_uuid) == 0) ||\
88         (uuid_le_cmp(channel_type_guid,\
89                         spar_vhba_channel_protocol_uuid) == 0)))
90 #define FOR_VISORBUS(channel_type_guid) (!(FOR_VISORHACKBUS(channel_type_guid)))
91
92 #define is_diagpool_channel(channel_type_guid) \
93         (uuid_le_cmp(channel_type_guid,\
94                      spar_diag_pool_channel_protocol_uuid) == 0)
95
96 static LIST_HEAD(bus_info_list);
97 static LIST_HEAD(dev_info_list);
98
99 static struct visorchannel *controlvm_channel;
100
101 /* Manages the request payload in the controlvm channel */
102 static struct controlvm_payload_info {
103         u8 __iomem *ptr;        /* pointer to base address of payload pool */
104         u64 offset;             /* offset from beginning of controlvm
105                                  * channel to beginning of payload * pool */
106         u32 bytes;              /* number of bytes in payload pool */
107 } controlvm_payload_info;
108
109 /* Manages the info for a CONTROLVM_DUMP_CAPTURESTATE /
110  * CONTROLVM_DUMP_GETTEXTDUMP / CONTROLVM_DUMP_COMPLETE conversation.
111  */
112 static struct livedump_info {
113         struct controlvm_message_header dumpcapture_header;
114         struct controlvm_message_header gettextdump_header;
115         struct controlvm_message_header dumpcomplete_header;
116         BOOL gettextdump_outstanding;
117         u32 crc32;
118         ulong length;
119         atomic_t buffers_in_use;
120         ulong destination;
121 } livedump_info;
122
123 /* The following globals are used to handle the scenario where we are unable to
124  * offload the payload from a controlvm message due to memory requirements.  In
125  * this scenario, we simply stash the controlvm message, then attempt to
126  * process it again the next time controlvm_periodic_work() runs.
127  */
128 static struct controlvm_message controlvm_pending_msg;
129 static BOOL controlvm_pending_msg_valid = FALSE;
130
131 /* Pool of struct putfile_buffer_entry, for keeping track of pending (incoming)
132  * TRANSMIT_FILE PutFile payloads.
133  */
134 static struct kmem_cache *putfile_buffer_list_pool;
135 static const char putfile_buffer_list_pool_name[] =
136         "controlvm_putfile_buffer_list_pool";
137
138 /* This identifies a data buffer that has been received via a controlvm messages
139  * in a remote --> local CONTROLVM_TRANSMIT_FILE conversation.
140  */
141 struct putfile_buffer_entry {
142         struct list_head next;  /* putfile_buffer_entry list */
143         struct parser_context *parser_ctx; /* points to input data buffer */
144 };
145
146 /* List of struct putfile_request *, via next_putfile_request member.
147  * Each entry in this list identifies an outstanding TRANSMIT_FILE
148  * conversation.
149  */
150 static LIST_HEAD(putfile_request_list);
151
152 /* This describes a buffer and its current state of transfer (e.g., how many
153  * bytes have already been supplied as putfile data, and how many bytes are
154  * remaining) for a putfile_request.
155  */
156 struct putfile_active_buffer {
157         /* a payload from a controlvm message, containing a file data buffer */
158         struct parser_context *parser_ctx;
159         /* points within data area of parser_ctx to next byte of data */
160         u8 *pnext;
161         /* # bytes left from <pnext> to the end of this data buffer */
162         size_t bytes_remaining;
163 };
164
165 #define PUTFILE_REQUEST_SIG 0x0906101302281211
166 /* This identifies a single remote --> local CONTROLVM_TRANSMIT_FILE
167  * conversation.  Structs of this type are dynamically linked into
168  * <Putfile_request_list>.
169  */
170 struct putfile_request {
171         u64 sig;                /* PUTFILE_REQUEST_SIG */
172
173         /* header from original TransmitFile request */
174         struct controlvm_message_header controlvm_header;
175         u64 file_request_number;        /* from original TransmitFile request */
176
177         /* link to next struct putfile_request */
178         struct list_head next_putfile_request;
179
180         /* most-recent sequence number supplied via a controlvm message */
181         u64 data_sequence_number;
182
183         /* head of putfile_buffer_entry list, which describes the data to be
184          * supplied as putfile data;
185          * - this list is added to when controlvm messages come in that supply
186          * file data
187          * - this list is removed from via the hotplug program that is actually
188          * consuming these buffers to write as file data */
189         struct list_head input_buffer_list;
190         spinlock_t req_list_lock;       /* lock for input_buffer_list */
191
192         /* waiters for input_buffer_list to go non-empty */
193         wait_queue_head_t input_buffer_wq;
194
195         /* data not yet read within current putfile_buffer_entry */
196         struct putfile_active_buffer active_buf;
197
198         /* <0 = failed, 0 = in-progress, >0 = successful; */
199         /* note that this must be set with req_list_lock, and if you set <0, */
200         /* it is your responsibility to also free up all of the other objects */
201         /* in this struct (like input_buffer_list, active_buf.parser_ctx) */
202         /* before releasing the lock */
203         int completion_status;
204 };
205
206 static atomic_t visorchipset_cache_buffers_in_use = ATOMIC_INIT(0);
207
208 struct parahotplug_request {
209         struct list_head list;
210         int id;
211         unsigned long expiration;
212         struct controlvm_message msg;
213 };
214
215 static LIST_HEAD(parahotplug_request_list);
216 static DEFINE_SPINLOCK(parahotplug_request_list_lock);  /* lock for above */
217 static void parahotplug_process_list(void);
218
219 /* Manages the info for a CONTROLVM_DUMP_CAPTURESTATE /
220  * CONTROLVM_REPORTEVENT.
221  */
222 static struct visorchipset_busdev_notifiers busdev_server_notifiers;
223 static struct visorchipset_busdev_notifiers busdev_client_notifiers;
224
225 static void bus_create_response(ulong busNo, int response);
226 static void bus_destroy_response(ulong busNo, int response);
227 static void device_create_response(ulong busNo, ulong devNo, int response);
228 static void device_destroy_response(ulong busNo, ulong devNo, int response);
229 static void device_resume_response(ulong busNo, ulong devNo, int response);
230
231 static struct visorchipset_busdev_responders BusDev_Responders = {
232         .bus_create = bus_create_response,
233         .bus_destroy = bus_destroy_response,
234         .device_create = device_create_response,
235         .device_destroy = device_destroy_response,
236         .device_pause = visorchipset_device_pause_response,
237         .device_resume = device_resume_response,
238 };
239
240 /* info for /dev/visorchipset */
241 static dev_t MajorDev = -1; /**< indicates major num for device */
242
243 /* prototypes for attributes */
244 static ssize_t toolaction_show(struct device *dev,
245         struct device_attribute *attr, char *buf);
246 static ssize_t toolaction_store(struct device *dev,
247         struct device_attribute *attr, const char *buf, size_t count);
248 static DEVICE_ATTR_RW(toolaction);
249
250 static ssize_t boottotool_show(struct device *dev,
251         struct device_attribute *attr, char *buf);
252 static ssize_t boottotool_store(struct device *dev,
253         struct device_attribute *attr, const char *buf, size_t count);
254 static DEVICE_ATTR_RW(boottotool);
255
256 static ssize_t error_show(struct device *dev, struct device_attribute *attr,
257         char *buf);
258 static ssize_t error_store(struct device *dev, struct device_attribute *attr,
259         const char *buf, size_t count);
260 static DEVICE_ATTR_RW(error);
261
262 static ssize_t textid_show(struct device *dev, struct device_attribute *attr,
263         char *buf);
264 static ssize_t textid_store(struct device *dev, struct device_attribute *attr,
265         const char *buf, size_t count);
266 static DEVICE_ATTR_RW(textid);
267
268 static ssize_t remaining_steps_show(struct device *dev,
269         struct device_attribute *attr, char *buf);
270 static ssize_t remaining_steps_store(struct device *dev,
271         struct device_attribute *attr, const char *buf, size_t count);
272 static DEVICE_ATTR_RW(remaining_steps);
273
274 static ssize_t chipsetready_store(struct device *dev,
275                 struct device_attribute *attr, const char *buf, size_t count);
276 static DEVICE_ATTR_WO(chipsetready);
277
278 static ssize_t devicedisabled_store(struct device *dev,
279                 struct device_attribute *attr, const char *buf, size_t count);
280 static DEVICE_ATTR_WO(devicedisabled);
281
282 static ssize_t deviceenabled_store(struct device *dev,
283                 struct device_attribute *attr, const char *buf, size_t count);
284 static DEVICE_ATTR_WO(deviceenabled);
285
286 static struct attribute *visorchipset_install_attrs[] = {
287         &dev_attr_toolaction.attr,
288         &dev_attr_boottotool.attr,
289         &dev_attr_error.attr,
290         &dev_attr_textid.attr,
291         &dev_attr_remaining_steps.attr,
292         NULL
293 };
294
295 static struct attribute_group visorchipset_install_group = {
296         .name = "install",
297         .attrs = visorchipset_install_attrs
298 };
299
300 static struct attribute *visorchipset_guest_attrs[] = {
301         &dev_attr_chipsetready.attr,
302         NULL
303 };
304
305 static struct attribute_group visorchipset_guest_group = {
306         .name = "guest",
307         .attrs = visorchipset_guest_attrs
308 };
309
310 static struct attribute *visorchipset_parahotplug_attrs[] = {
311         &dev_attr_devicedisabled.attr,
312         &dev_attr_deviceenabled.attr,
313         NULL
314 };
315
316 static struct attribute_group visorchipset_parahotplug_group = {
317         .name = "parahotplug",
318         .attrs = visorchipset_parahotplug_attrs
319 };
320
321 static const struct attribute_group *visorchipset_dev_groups[] = {
322         &visorchipset_install_group,
323         &visorchipset_guest_group,
324         &visorchipset_parahotplug_group,
325         NULL
326 };
327
328 /* /sys/devices/platform/visorchipset */
329 static struct platform_device Visorchipset_platform_device = {
330         .name = "visorchipset",
331         .id = -1,
332         .dev.groups = visorchipset_dev_groups,
333 };
334
335 /* Function prototypes */
336 static void controlvm_respond(struct controlvm_message_header *msgHdr,
337                               int response);
338 static void controlvm_respond_chipset_init(
339                 struct controlvm_message_header *msgHdr, int response,
340                 enum ultra_chipset_feature features);
341 static void controlvm_respond_physdev_changestate(
342                 struct controlvm_message_header *msgHdr, int response,
343                 struct spar_segment_state state);
344
345 static ssize_t toolaction_show(struct device *dev,
346                                struct device_attribute *attr,
347                                char *buf)
348 {
349         u8 toolAction;
350
351         visorchannel_read(controlvm_channel,
352                 offsetof(struct spar_controlvm_channel_protocol,
353                            tool_action), &toolAction, sizeof(u8));
354         return scnprintf(buf, PAGE_SIZE, "%u\n", toolAction);
355 }
356
357 static ssize_t toolaction_store(struct device *dev,
358                                 struct device_attribute *attr,
359                                 const char *buf, size_t count)
360 {
361         u8 toolAction;
362         int ret;
363
364         if (kstrtou8(buf, 10, &toolAction) != 0)
365                 return -EINVAL;
366
367         ret = visorchannel_write(controlvm_channel,
368                 offsetof(struct spar_controlvm_channel_protocol, tool_action),
369                 &toolAction, sizeof(u8));
370
371         if (ret)
372                 return ret;
373         return count;
374 }
375
376 static ssize_t boottotool_show(struct device *dev,
377                                struct device_attribute *attr,
378                                char *buf)
379 {
380         struct efi_spar_indication efiSparIndication;
381
382         visorchannel_read(controlvm_channel,
383                 offsetof(struct spar_controlvm_channel_protocol,
384                         efi_spar_ind), &efiSparIndication,
385                 sizeof(struct efi_spar_indication));
386         return scnprintf(buf, PAGE_SIZE, "%u\n",
387                         efiSparIndication.boot_to_tool);
388 }
389
390 static ssize_t boottotool_store(struct device *dev,
391                                 struct device_attribute *attr,
392                                 const char *buf, size_t count)
393 {
394         int val, ret;
395         struct efi_spar_indication efiSparIndication;
396
397         if (kstrtoint(buf, 10, &val) != 0)
398                 return -EINVAL;
399
400         efiSparIndication.boot_to_tool = val;
401         ret = visorchannel_write(controlvm_channel,
402                         offsetof(struct spar_controlvm_channel_protocol,
403                                 efi_spar_ind),
404                         &(efiSparIndication),
405                 sizeof(struct efi_spar_indication));
406
407         if (ret)
408                 return ret;
409         return count;
410 }
411
412 static ssize_t error_show(struct device *dev, struct device_attribute *attr,
413                 char *buf)
414 {
415         u32 error;
416
417         visorchannel_read(controlvm_channel, offsetof(
418                 struct spar_controlvm_channel_protocol, installation_error),
419                 &error, sizeof(u32));
420         return scnprintf(buf, PAGE_SIZE, "%i\n", error);
421 }
422
423 static ssize_t error_store(struct device *dev, struct device_attribute *attr,
424                 const char *buf, size_t count)
425 {
426         u32 error;
427         int ret;
428
429         if (kstrtou32(buf, 10, &error) != 0)
430                 return -EINVAL;
431
432         ret = visorchannel_write(controlvm_channel,
433                         offsetof(struct spar_controlvm_channel_protocol,
434                                 installation_error),
435                         &error, sizeof(u32));
436         if (ret)
437                 return ret;
438         return count;
439 }
440
441 static ssize_t textid_show(struct device *dev, struct device_attribute *attr,
442                 char *buf)
443 {
444         u32 textId;
445
446         visorchannel_read(controlvm_channel, offsetof(
447                 struct spar_controlvm_channel_protocol, installation_text_id),
448                 &textId, sizeof(u32));
449         return scnprintf(buf, PAGE_SIZE, "%i\n", textId);
450 }
451
452 static ssize_t textid_store(struct device *dev, struct device_attribute *attr,
453                 const char *buf, size_t count)
454 {
455         u32 textId;
456         int ret;
457
458         if (kstrtou32(buf, 10, &textId) != 0)
459                 return -EINVAL;
460
461         ret = visorchannel_write(controlvm_channel,
462                         offsetof(struct spar_controlvm_channel_protocol,
463                                 installation_text_id),
464                         &textId, sizeof(u32));
465         if (ret)
466                 return ret;
467         return count;
468 }
469
470 static ssize_t remaining_steps_show(struct device *dev,
471         struct device_attribute *attr, char *buf)
472 {
473         u16 remainingSteps;
474
475         visorchannel_read(controlvm_channel,
476                 offsetof(struct spar_controlvm_channel_protocol,
477                         installation_remaining_steps),
478                 &remainingSteps,
479                 sizeof(u16));
480         return scnprintf(buf, PAGE_SIZE, "%hu\n", remainingSteps);
481 }
482
483 static ssize_t remaining_steps_store(struct device *dev,
484         struct device_attribute *attr, const char *buf, size_t count)
485 {
486         u16 remainingSteps;
487         int ret;
488
489         if (kstrtou16(buf, 10, &remainingSteps) != 0)
490                 return -EINVAL;
491
492         ret = visorchannel_write(controlvm_channel,
493                         offsetof(struct spar_controlvm_channel_protocol,
494                                 installation_remaining_steps),
495                         &remainingSteps, sizeof(u16));
496         if (ret)
497                 return ret;
498         return count;
499 }
500
501 static void
502 bus_info_clear(void *v)
503 {
504         struct visorchipset_bus_info *p = (struct visorchipset_bus_info *) (v);
505
506         kfree(p->name);
507         p->name = NULL;
508
509         kfree(p->description);
510         p->description = NULL;
511
512         p->state.created = 0;
513         memset(p, 0, sizeof(struct visorchipset_bus_info));
514 }
515
516 static void
517 dev_info_clear(void *v)
518 {
519         struct visorchipset_device_info *p =
520                         (struct visorchipset_device_info *)(v);
521
522         p->state.created = 0;
523         memset(p, 0, sizeof(struct visorchipset_device_info));
524 }
525
526 static u8
527 check_chipset_events(void)
528 {
529         int i;
530         u8 send_msg = 1;
531         /* Check events to determine if response should be sent */
532         for (i = 0; i < MAX_CHIPSET_EVENTS; i++)
533                 send_msg &= chipset_events[i];
534         return send_msg;
535 }
536
537 static void
538 clear_chipset_events(void)
539 {
540         int i;
541         /* Clear chipset_events */
542         for (i = 0; i < MAX_CHIPSET_EVENTS; i++)
543                 chipset_events[i] = 0;
544 }
545
546 void
547 visorchipset_register_busdev_server(
548                         struct visorchipset_busdev_notifiers *notifiers,
549                         struct visorchipset_busdev_responders *responders,
550                         struct ultra_vbus_deviceinfo *driver_info)
551 {
552         down(&notifier_lock);
553         if (!notifiers) {
554                 memset(&busdev_server_notifiers, 0,
555                        sizeof(busdev_server_notifiers));
556                 serverregistered = 0;   /* clear flag */
557         } else {
558                 busdev_server_notifiers = *notifiers;
559                 serverregistered = 1;   /* set flag */
560         }
561         if (responders)
562                 *responders = BusDev_Responders;
563         if (driver_info)
564                 bus_device_info_init(driver_info, "chipset", "visorchipset",
565                                    VERSION, NULL);
566
567         up(&notifier_lock);
568 }
569 EXPORT_SYMBOL_GPL(visorchipset_register_busdev_server);
570
571 void
572 visorchipset_register_busdev_client(
573                         struct visorchipset_busdev_notifiers *notifiers,
574                         struct visorchipset_busdev_responders *responders,
575                         struct ultra_vbus_deviceinfo *driver_info)
576 {
577         down(&notifier_lock);
578         if (!notifiers) {
579                 memset(&busdev_client_notifiers, 0,
580                        sizeof(busdev_client_notifiers));
581                 clientregistered = 0;   /* clear flag */
582         } else {
583                 busdev_client_notifiers = *notifiers;
584                 clientregistered = 1;   /* set flag */
585         }
586         if (responders)
587                 *responders = BusDev_Responders;
588         if (driver_info)
589                 bus_device_info_init(driver_info, "chipset(bolts)",
590                                      "visorchipset", VERSION, NULL);
591         up(&notifier_lock);
592 }
593 EXPORT_SYMBOL_GPL(visorchipset_register_busdev_client);
594
595 static void
596 cleanup_controlvm_structures(void)
597 {
598         struct visorchipset_bus_info *bi, *tmp_bi;
599         struct visorchipset_device_info *di, *tmp_di;
600
601         list_for_each_entry_safe(bi, tmp_bi, &bus_info_list, entry) {
602                 bus_info_clear(bi);
603                 list_del(&bi->entry);
604                 kfree(bi);
605         }
606
607         list_for_each_entry_safe(di, tmp_di, &dev_info_list, entry) {
608                 dev_info_clear(di);
609                 list_del(&di->entry);
610                 kfree(di);
611         }
612 }
613
614 static void
615 chipset_init(struct controlvm_message *inmsg)
616 {
617         static int chipset_inited;
618         enum ultra_chipset_feature features = 0;
619         int rc = CONTROLVM_RESP_SUCCESS;
620
621         POSTCODE_LINUX_2(CHIPSET_INIT_ENTRY_PC, POSTCODE_SEVERITY_INFO);
622         if (chipset_inited) {
623                 rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
624                 goto cleanup;
625         }
626         chipset_inited = 1;
627         POSTCODE_LINUX_2(CHIPSET_INIT_EXIT_PC, POSTCODE_SEVERITY_INFO);
628
629         /* Set features to indicate we support parahotplug (if Command
630          * also supports it). */
631         features =
632             inmsg->cmd.init_chipset.
633             features & ULTRA_CHIPSET_FEATURE_PARA_HOTPLUG;
634
635         /* Set the "reply" bit so Command knows this is a
636          * features-aware driver. */
637         features |= ULTRA_CHIPSET_FEATURE_REPLY;
638
639 cleanup:
640         if (rc < 0)
641                 cleanup_controlvm_structures();
642         if (inmsg->hdr.flags.response_expected)
643                 controlvm_respond_chipset_init(&inmsg->hdr, rc, features);
644 }
645
646 static void
647 controlvm_init_response(struct controlvm_message *msg,
648                         struct controlvm_message_header *msgHdr, int response)
649 {
650         memset(msg, 0, sizeof(struct controlvm_message));
651         memcpy(&msg->hdr, msgHdr, sizeof(struct controlvm_message_header));
652         msg->hdr.payload_bytes = 0;
653         msg->hdr.payload_vm_offset = 0;
654         msg->hdr.payload_max_bytes = 0;
655         if (response < 0) {
656                 msg->hdr.flags.failed = 1;
657                 msg->hdr.completion_status = (u32) (-response);
658         }
659 }
660
661 static void
662 controlvm_respond(struct controlvm_message_header *msgHdr, int response)
663 {
664         struct controlvm_message outmsg;
665
666         controlvm_init_response(&outmsg, msgHdr, response);
667         /* For DiagPool channel DEVICE_CHANGESTATE, we need to send
668         * back the deviceChangeState structure in the packet. */
669         if (msgHdr->id == CONTROLVM_DEVICE_CHANGESTATE &&
670             g_devicechangestate_packet.device_change_state.bus_no ==
671             g_diagpool_bus_no &&
672             g_devicechangestate_packet.device_change_state.dev_no ==
673             g_diagpool_dev_no)
674                 outmsg.cmd = g_devicechangestate_packet;
675         if (outmsg.hdr.flags.test_message == 1)
676                 return;
677
678         if (!visorchannel_signalinsert(controlvm_channel,
679                                        CONTROLVM_QUEUE_REQUEST, &outmsg)) {
680                 return;
681         }
682 }
683
684 static void
685 controlvm_respond_chipset_init(struct controlvm_message_header *msgHdr,
686                                int response,
687                                enum ultra_chipset_feature features)
688 {
689         struct controlvm_message outmsg;
690
691         controlvm_init_response(&outmsg, msgHdr, response);
692         outmsg.cmd.init_chipset.features = features;
693         if (!visorchannel_signalinsert(controlvm_channel,
694                                        CONTROLVM_QUEUE_REQUEST, &outmsg)) {
695                 return;
696         }
697 }
698
699 static void controlvm_respond_physdev_changestate(
700                 struct controlvm_message_header *msgHdr, int response,
701                 struct spar_segment_state state)
702 {
703         struct controlvm_message outmsg;
704
705         controlvm_init_response(&outmsg, msgHdr, response);
706         outmsg.cmd.device_change_state.state = state;
707         outmsg.cmd.device_change_state.flags.phys_device = 1;
708         if (!visorchannel_signalinsert(controlvm_channel,
709                                        CONTROLVM_QUEUE_REQUEST, &outmsg)) {
710                 return;
711         }
712 }
713
714 void
715 visorchipset_save_message(struct controlvm_message *msg,
716                           enum crash_obj_type type)
717 {
718         u32 crash_msg_offset;
719         u16 crash_msg_count;
720
721         /* get saved message count */
722         if (visorchannel_read(controlvm_channel,
723                               offsetof(struct spar_controlvm_channel_protocol,
724                                        saved_crash_message_count),
725                               &crash_msg_count, sizeof(u16)) < 0) {
726                 POSTCODE_LINUX_2(CRASH_DEV_CTRL_RD_FAILURE_PC,
727                                  POSTCODE_SEVERITY_ERR);
728                 return;
729         }
730
731         if (crash_msg_count != CONTROLVM_CRASHMSG_MAX) {
732                 POSTCODE_LINUX_3(CRASH_DEV_COUNT_FAILURE_PC,
733                                  crash_msg_count,
734                                  POSTCODE_SEVERITY_ERR);
735                 return;
736         }
737
738         /* get saved crash message offset */
739         if (visorchannel_read(controlvm_channel,
740                               offsetof(struct spar_controlvm_channel_protocol,
741                                        saved_crash_message_offset),
742                               &crash_msg_offset, sizeof(u32)) < 0) {
743                 POSTCODE_LINUX_2(CRASH_DEV_CTRL_RD_FAILURE_PC,
744                                  POSTCODE_SEVERITY_ERR);
745                 return;
746         }
747
748         if (type == CRASH_BUS) {
749                 if (visorchannel_write(controlvm_channel,
750                                        crash_msg_offset,
751                                        msg,
752                                        sizeof(struct controlvm_message)) < 0) {
753                         POSTCODE_LINUX_2(SAVE_MSG_BUS_FAILURE_PC,
754                                          POSTCODE_SEVERITY_ERR);
755                         return;
756                 }
757         } else {
758                 if (visorchannel_write(controlvm_channel,
759                                        crash_msg_offset +
760                                        sizeof(struct controlvm_message), msg,
761                                        sizeof(struct controlvm_message)) < 0) {
762                         POSTCODE_LINUX_2(SAVE_MSG_DEV_FAILURE_PC,
763                                          POSTCODE_SEVERITY_ERR);
764                         return;
765                 }
766         }
767 }
768 EXPORT_SYMBOL_GPL(visorchipset_save_message);
769
770 static void
771 bus_responder(enum controlvm_id cmd_id, ulong bus_no, int response)
772 {
773         struct visorchipset_bus_info *p = NULL;
774         BOOL need_clear = FALSE;
775
776         p = findbus(&bus_info_list, bus_no);
777         if (!p)
778                 return;
779
780         if (response < 0) {
781                 if ((cmd_id == CONTROLVM_BUS_CREATE) &&
782                     (response != (-CONTROLVM_RESP_ERROR_ALREADY_DONE)))
783                         /* undo the row we just created... */
784                         delbusdevices(&dev_info_list, bus_no);
785         } else {
786                 if (cmd_id == CONTROLVM_BUS_CREATE)
787                         p->state.created = 1;
788                 if (cmd_id == CONTROLVM_BUS_DESTROY)
789                         need_clear = TRUE;
790         }
791
792         if (p->pending_msg_hdr.id == CONTROLVM_INVALID)
793                 return;         /* no controlvm response needed */
794         if (p->pending_msg_hdr.id != (u32)cmd_id)
795                 return;
796         controlvm_respond(&p->pending_msg_hdr, response);
797         p->pending_msg_hdr.id = CONTROLVM_INVALID;
798         if (need_clear) {
799                 bus_info_clear(p);
800                 delbusdevices(&dev_info_list, bus_no);
801         }
802 }
803
804 static void
805 device_changestate_responder(enum controlvm_id cmd_id,
806                              ulong bus_no, ulong dev_no, int response,
807                              struct spar_segment_state response_state)
808 {
809         struct visorchipset_device_info *p = NULL;
810         struct controlvm_message outmsg;
811
812         p = finddevice(&dev_info_list, bus_no, dev_no);
813         if (!p)
814                 return;
815         if (p->pending_msg_hdr.id == CONTROLVM_INVALID)
816                 return;         /* no controlvm response needed */
817         if (p->pending_msg_hdr.id != cmd_id)
818                 return;
819
820         controlvm_init_response(&outmsg, &p->pending_msg_hdr, response);
821
822         outmsg.cmd.device_change_state.bus_no = bus_no;
823         outmsg.cmd.device_change_state.dev_no = dev_no;
824         outmsg.cmd.device_change_state.state = response_state;
825
826         if (!visorchannel_signalinsert(controlvm_channel,
827                                        CONTROLVM_QUEUE_REQUEST, &outmsg))
828                 return;
829
830         p->pending_msg_hdr.id = CONTROLVM_INVALID;
831 }
832
833 static void
834 device_responder(enum controlvm_id cmd_id, ulong bus_no, ulong dev_no,
835                  int response)
836 {
837         struct visorchipset_device_info *p = NULL;
838         BOOL need_clear = FALSE;
839
840         p = finddevice(&dev_info_list, bus_no, dev_no);
841         if (!p)
842                 return;
843         if (response >= 0) {
844                 if (cmd_id == CONTROLVM_DEVICE_CREATE)
845                         p->state.created = 1;
846                 if (cmd_id == CONTROLVM_DEVICE_DESTROY)
847                         need_clear = TRUE;
848         }
849
850         if (p->pending_msg_hdr.id == CONTROLVM_INVALID)
851                 return;         /* no controlvm response needed */
852
853         if (p->pending_msg_hdr.id != (u32)cmd_id)
854                 return;
855
856         controlvm_respond(&p->pending_msg_hdr, response);
857         p->pending_msg_hdr.id = CONTROLVM_INVALID;
858         if (need_clear)
859                 dev_info_clear(p);
860 }
861
862 static void
863 bus_epilog(u32 bus_no,
864            u32 cmd, struct controlvm_message_header *msg_hdr,
865            int response, BOOL need_response)
866 {
867         BOOL notified = FALSE;
868
869         struct visorchipset_bus_info *bus_info = findbus(&bus_info_list,
870                                                          bus_no);
871
872         if (!bus_info)
873                 return;
874
875         if (need_response) {
876                 memcpy(&bus_info->pending_msg_hdr, msg_hdr,
877                        sizeof(struct controlvm_message_header));
878         } else {
879                 bus_info->pending_msg_hdr.id = CONTROLVM_INVALID;
880         }
881
882         down(&notifier_lock);
883         if (response == CONTROLVM_RESP_SUCCESS) {
884                 switch (cmd) {
885                 case CONTROLVM_BUS_CREATE:
886                         /* We can't tell from the bus_create
887                         * information which of our 2 bus flavors the
888                         * devices on this bus will ultimately end up.
889                         * FORTUNATELY, it turns out it is harmless to
890                         * send the bus_create to both of them.  We can
891                         * narrow things down a little bit, though,
892                         * because we know: - BusDev_Server can handle
893                         * either server or client devices
894                         * - BusDev_Client can handle ONLY client
895                         * devices */
896                         if (busdev_server_notifiers.bus_create) {
897                                 (*busdev_server_notifiers.bus_create) (bus_no);
898                                 notified = TRUE;
899                         }
900                         if ((!bus_info->flags.server) /*client */ &&
901                             busdev_client_notifiers.bus_create) {
902                                 (*busdev_client_notifiers.bus_create) (bus_no);
903                                 notified = TRUE;
904                         }
905                         break;
906                 case CONTROLVM_BUS_DESTROY:
907                         if (busdev_server_notifiers.bus_destroy) {
908                                 (*busdev_server_notifiers.bus_destroy) (bus_no);
909                                 notified = TRUE;
910                         }
911                         if ((!bus_info->flags.server) /*client */ &&
912                             busdev_client_notifiers.bus_destroy) {
913                                 (*busdev_client_notifiers.bus_destroy) (bus_no);
914                                 notified = TRUE;
915                         }
916                         break;
917                 }
918         }
919         if (notified)
920                 /* The callback function just called above is responsible
921                  * for calling the appropriate visorchipset_busdev_responders
922                  * function, which will call bus_responder()
923                  */
924                 ;
925         else
926                 bus_responder(cmd, bus_no, response);
927         up(&notifier_lock);
928 }
929
930 static void
931 device_epilog(u32 bus_no, u32 dev_no, struct spar_segment_state state, u32 cmd,
932               struct controlvm_message_header *msg_hdr, int response,
933               BOOL need_response, BOOL for_visorbus)
934 {
935         struct visorchipset_busdev_notifiers *notifiers = NULL;
936         BOOL notified = FALSE;
937
938         struct visorchipset_device_info *dev_info =
939                 finddevice(&dev_info_list, bus_no, dev_no);
940         char *envp[] = {
941                 "SPARSP_DIAGPOOL_PAUSED_STATE = 1",
942                 NULL
943         };
944
945         if (!dev_info)
946                 return;
947
948         if (for_visorbus)
949                 notifiers = &busdev_server_notifiers;
950         else
951                 notifiers = &busdev_client_notifiers;
952         if (need_response) {
953                 memcpy(&dev_info->pending_msg_hdr, msg_hdr,
954                        sizeof(struct controlvm_message_header));
955         } else {
956                 dev_info->pending_msg_hdr.id = CONTROLVM_INVALID;
957         }
958
959         down(&notifier_lock);
960         if (response >= 0) {
961                 switch (cmd) {
962                 case CONTROLVM_DEVICE_CREATE:
963                         if (notifiers->device_create) {
964                                 (*notifiers->device_create) (bus_no, dev_no);
965                                 notified = TRUE;
966                         }
967                         break;
968                 case CONTROLVM_DEVICE_CHANGESTATE:
969                         /* ServerReady / ServerRunning / SegmentStateRunning */
970                         if (state.alive == segment_state_running.alive &&
971                             state.operating ==
972                                 segment_state_running.operating) {
973                                 if (notifiers->device_resume) {
974                                         (*notifiers->device_resume) (bus_no,
975                                                                      dev_no);
976                                         notified = TRUE;
977                                 }
978                         }
979                         /* ServerNotReady / ServerLost / SegmentStateStandby */
980                         else if (state.alive == segment_state_standby.alive &&
981                                  state.operating ==
982                                  segment_state_standby.operating) {
983                                 /* technically this is standby case
984                                  * where server is lost
985                                  */
986                                 if (notifiers->device_pause) {
987                                         (*notifiers->device_pause) (bus_no,
988                                                                     dev_no);
989                                         notified = TRUE;
990                                 }
991                         } else if (state.alive == segment_state_paused.alive &&
992                                    state.operating ==
993                                    segment_state_paused.operating) {
994                                 /* this is lite pause where channel is
995                                  * still valid just 'pause' of it
996                                  */
997                                 if (bus_no == g_diagpool_bus_no &&
998                                     dev_no == g_diagpool_dev_no) {
999                                         /* this will trigger the
1000                                          * diag_shutdown.sh script in
1001                                          * the visorchipset hotplug */
1002                                         kobject_uevent_env
1003                                             (&Visorchipset_platform_device.dev.
1004                                              kobj, KOBJ_ONLINE, envp);
1005                                 }
1006                         }
1007                         break;
1008                 case CONTROLVM_DEVICE_DESTROY:
1009                         if (notifiers->device_destroy) {
1010                                 (*notifiers->device_destroy) (bus_no, dev_no);
1011                                 notified = TRUE;
1012                         }
1013                         break;
1014                 }
1015         }
1016         if (notified)
1017                 /* The callback function just called above is responsible
1018                  * for calling the appropriate visorchipset_busdev_responders
1019                  * function, which will call device_responder()
1020                  */
1021                 ;
1022         else
1023                 device_responder(cmd, bus_no, dev_no, response);
1024         up(&notifier_lock);
1025 }
1026
1027 static void
1028 bus_create(struct controlvm_message *inmsg)
1029 {
1030         struct controlvm_message_packet *cmd = &inmsg->cmd;
1031         ulong bus_no = cmd->create_bus.bus_no;
1032         int rc = CONTROLVM_RESP_SUCCESS;
1033         struct visorchipset_bus_info *bus_info = NULL;
1034
1035         bus_info = findbus(&bus_info_list, bus_no);
1036         if (bus_info && (bus_info->state.created == 1)) {
1037                 POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus_no,
1038                                  POSTCODE_SEVERITY_ERR);
1039                 rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
1040                 goto cleanup;
1041         }
1042         bus_info = kzalloc(sizeof(*bus_info), GFP_KERNEL);
1043         if (!bus_info) {
1044                 POSTCODE_LINUX_3(BUS_CREATE_FAILURE_PC, bus_no,
1045                                  POSTCODE_SEVERITY_ERR);
1046                 rc = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
1047                 goto cleanup;
1048         }
1049
1050         INIT_LIST_HEAD(&bus_info->entry);
1051         bus_info->bus_no = bus_no;
1052         bus_info->dev_no = cmd->create_bus.dev_count;
1053
1054         POSTCODE_LINUX_3(BUS_CREATE_ENTRY_PC, bus_no, POSTCODE_SEVERITY_INFO);
1055
1056         if (inmsg->hdr.flags.test_message == 1)
1057                 bus_info->chan_info.addr_type = ADDRTYPE_LOCALTEST;
1058         else
1059                 bus_info->chan_info.addr_type = ADDRTYPE_LOCALPHYSICAL;
1060
1061         bus_info->flags.server = inmsg->hdr.flags.server;
1062         bus_info->chan_info.channel_addr = cmd->create_bus.channel_addr;
1063         bus_info->chan_info.n_channel_bytes = cmd->create_bus.channel_bytes;
1064         bus_info->chan_info.channel_type_uuid =
1065                         cmd->create_bus.bus_data_type_uuid;
1066         bus_info->chan_info.channel_inst_uuid = cmd->create_bus.bus_inst_uuid;
1067
1068         list_add(&bus_info->entry, &bus_info_list);
1069
1070         POSTCODE_LINUX_3(BUS_CREATE_EXIT_PC, bus_no, POSTCODE_SEVERITY_INFO);
1071
1072 cleanup:
1073         bus_epilog(bus_no, CONTROLVM_BUS_CREATE, &inmsg->hdr,
1074                    rc, inmsg->hdr.flags.response_expected == 1);
1075 }
1076
1077 static void
1078 bus_destroy(struct controlvm_message *inmsg)
1079 {
1080         struct controlvm_message_packet *cmd = &inmsg->cmd;
1081         ulong bus_no = cmd->destroy_bus.bus_no;
1082         struct visorchipset_bus_info *bus_info;
1083         int rc = CONTROLVM_RESP_SUCCESS;
1084
1085         bus_info = findbus(&bus_info_list, bus_no);
1086         if (!bus_info)
1087                 rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
1088         else if (bus_info->state.created == 0)
1089                 rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
1090
1091         bus_epilog(bus_no, CONTROLVM_BUS_DESTROY, &inmsg->hdr,
1092                    rc, inmsg->hdr.flags.response_expected == 1);
1093 }
1094
1095 static void
1096 bus_configure(struct controlvm_message *inmsg,
1097               struct parser_context *parser_ctx)
1098 {
1099         struct controlvm_message_packet *cmd = &inmsg->cmd;
1100         ulong bus_no = cmd->configure_bus.bus_no;
1101         struct visorchipset_bus_info *bus_info = NULL;
1102         int rc = CONTROLVM_RESP_SUCCESS;
1103         char s[99];
1104
1105         bus_no = cmd->configure_bus.bus_no;
1106         POSTCODE_LINUX_3(BUS_CONFIGURE_ENTRY_PC, bus_no,
1107                          POSTCODE_SEVERITY_INFO);
1108
1109         bus_info = findbus(&bus_info_list, bus_no);
1110         if (!bus_info) {
1111                 POSTCODE_LINUX_3(BUS_CONFIGURE_FAILURE_PC, bus_no,
1112                                  POSTCODE_SEVERITY_ERR);
1113                 rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
1114         } else if (bus_info->state.created == 0) {
1115                 POSTCODE_LINUX_3(BUS_CONFIGURE_FAILURE_PC, bus_no,
1116                                  POSTCODE_SEVERITY_ERR);
1117                 rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
1118         } else if (bus_info->pending_msg_hdr.id != CONTROLVM_INVALID) {
1119                 POSTCODE_LINUX_3(BUS_CONFIGURE_FAILURE_PC, bus_no,
1120                                  POSTCODE_SEVERITY_ERR);
1121                 rc = -CONTROLVM_RESP_ERROR_MESSAGE_ID_INVALID_FOR_CLIENT;
1122         } else {
1123                 bus_info->partition_handle = cmd->configure_bus.guest_handle;
1124                 bus_info->partition_uuid = parser_id_get(parser_ctx);
1125                 parser_param_start(parser_ctx, PARSERSTRING_NAME);
1126                 bus_info->name = parser_string_get(parser_ctx);
1127
1128                 visorchannel_uuid_id(&bus_info->partition_uuid, s);
1129                 POSTCODE_LINUX_3(BUS_CONFIGURE_EXIT_PC, bus_no,
1130                                  POSTCODE_SEVERITY_INFO);
1131         }
1132         bus_epilog(bus_no, CONTROLVM_BUS_CONFIGURE, &inmsg->hdr,
1133                    rc, inmsg->hdr.flags.response_expected == 1);
1134 }
1135
1136 static void
1137 my_device_create(struct controlvm_message *inmsg)
1138 {
1139         struct controlvm_message_packet *cmd = &inmsg->cmd;
1140         ulong bus_no = cmd->create_device.bus_no;
1141         ulong dev_no = cmd->create_device.dev_no;
1142         struct visorchipset_device_info *dev_info = NULL;
1143         struct visorchipset_bus_info *bus_info = NULL;
1144         int rc = CONTROLVM_RESP_SUCCESS;
1145
1146         dev_info = finddevice(&dev_info_list, bus_no, dev_no);
1147         if (dev_info && (dev_info->state.created == 1)) {
1148                 POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
1149                                  POSTCODE_SEVERITY_ERR);
1150                 rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
1151                 goto cleanup;
1152         }
1153         bus_info = findbus(&bus_info_list, bus_no);
1154         if (!bus_info) {
1155                 POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
1156                                  POSTCODE_SEVERITY_ERR);
1157                 rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
1158                 goto cleanup;
1159         }
1160         if (bus_info->state.created == 0) {
1161                 POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
1162                                  POSTCODE_SEVERITY_ERR);
1163                 rc = -CONTROLVM_RESP_ERROR_BUS_INVALID;
1164                 goto cleanup;
1165         }
1166         dev_info = kzalloc(sizeof(*dev_info), GFP_KERNEL);
1167         if (!dev_info) {
1168                 POSTCODE_LINUX_4(DEVICE_CREATE_FAILURE_PC, dev_no, bus_no,
1169                                  POSTCODE_SEVERITY_ERR);
1170                 rc = -CONTROLVM_RESP_ERROR_KMALLOC_FAILED;
1171                 goto cleanup;
1172         }
1173
1174         INIT_LIST_HEAD(&dev_info->entry);
1175         dev_info->bus_no = bus_no;
1176         dev_info->dev_no = dev_no;
1177         dev_info->dev_inst_uuid = cmd->create_device.dev_inst_uuid;
1178         POSTCODE_LINUX_4(DEVICE_CREATE_ENTRY_PC, dev_no, bus_no,
1179                          POSTCODE_SEVERITY_INFO);
1180
1181         if (inmsg->hdr.flags.test_message == 1)
1182                 dev_info->chan_info.addr_type = ADDRTYPE_LOCALTEST;
1183         else
1184                 dev_info->chan_info.addr_type = ADDRTYPE_LOCALPHYSICAL;
1185         dev_info->chan_info.channel_addr = cmd->create_device.channel_addr;
1186         dev_info->chan_info.n_channel_bytes = cmd->create_device.channel_bytes;
1187         dev_info->chan_info.channel_type_uuid =
1188                         cmd->create_device.data_type_uuid;
1189         dev_info->chan_info.intr = cmd->create_device.intr;
1190         list_add(&dev_info->entry, &dev_info_list);
1191         POSTCODE_LINUX_4(DEVICE_CREATE_EXIT_PC, dev_no, bus_no,
1192                          POSTCODE_SEVERITY_INFO);
1193 cleanup:
1194         /* get the bus and devNo for DiagPool channel */
1195         if (dev_info &&
1196             is_diagpool_channel(dev_info->chan_info.channel_type_uuid)) {
1197                 g_diagpool_bus_no = bus_no;
1198                 g_diagpool_dev_no = dev_no;
1199         }
1200         device_epilog(bus_no, dev_no, segment_state_running,
1201                       CONTROLVM_DEVICE_CREATE, &inmsg->hdr, rc,
1202                       inmsg->hdr.flags.response_expected == 1,
1203                       FOR_VISORBUS(dev_info->chan_info.channel_type_uuid));
1204 }
1205
1206 static void
1207 my_device_changestate(struct controlvm_message *inmsg)
1208 {
1209         struct controlvm_message_packet *cmd = &inmsg->cmd;
1210         ulong bus_no = cmd->device_change_state.bus_no;
1211         ulong dev_no = cmd->device_change_state.dev_no;
1212         struct spar_segment_state state = cmd->device_change_state.state;
1213         struct visorchipset_device_info *dev_info = NULL;
1214         int rc = CONTROLVM_RESP_SUCCESS;
1215
1216         dev_info = finddevice(&dev_info_list, bus_no, dev_no);
1217         if (!dev_info) {
1218                 POSTCODE_LINUX_4(DEVICE_CHANGESTATE_FAILURE_PC, dev_no, bus_no,
1219                                  POSTCODE_SEVERITY_ERR);
1220                 rc = -CONTROLVM_RESP_ERROR_DEVICE_INVALID;
1221         } else if (dev_info->state.created == 0) {
1222                 POSTCODE_LINUX_4(DEVICE_CHANGESTATE_FAILURE_PC, dev_no, bus_no,
1223                                  POSTCODE_SEVERITY_ERR);
1224                 rc = -CONTROLVM_RESP_ERROR_DEVICE_INVALID;
1225         }
1226         if ((rc >= CONTROLVM_RESP_SUCCESS) && dev_info)
1227                 device_epilog(bus_no, dev_no, state,
1228                               CONTROLVM_DEVICE_CHANGESTATE, &inmsg->hdr, rc,
1229                               inmsg->hdr.flags.response_expected == 1,
1230                               FOR_VISORBUS(
1231                                         dev_info->chan_info.channel_type_uuid));
1232 }
1233
1234 static void
1235 my_device_destroy(struct controlvm_message *inmsg)
1236 {
1237         struct controlvm_message_packet *cmd = &inmsg->cmd;
1238         ulong bus_no = cmd->destroy_device.bus_no;
1239         ulong dev_no = cmd->destroy_device.dev_no;
1240         struct visorchipset_device_info *dev_info = NULL;
1241         int rc = CONTROLVM_RESP_SUCCESS;
1242
1243         dev_info = finddevice(&dev_info_list, bus_no, dev_no);
1244         if (!dev_info)
1245                 rc = -CONTROLVM_RESP_ERROR_DEVICE_INVALID;
1246         else if (dev_info->state.created == 0)
1247                 rc = -CONTROLVM_RESP_ERROR_ALREADY_DONE;
1248
1249         if ((rc >= CONTROLVM_RESP_SUCCESS) && dev_info)
1250                 device_epilog(bus_no, dev_no, segment_state_running,
1251                               CONTROLVM_DEVICE_DESTROY, &inmsg->hdr, rc,
1252                               inmsg->hdr.flags.response_expected == 1,
1253                               FOR_VISORBUS(
1254                                         dev_info->chan_info.channel_type_uuid));
1255 }
1256
1257 /* When provided with the physical address of the controlvm channel
1258  * (phys_addr), the offset to the payload area we need to manage
1259  * (offset), and the size of this payload area (bytes), fills in the
1260  * controlvm_payload_info struct.  Returns TRUE for success or FALSE
1261  * for failure.
1262  */
1263 static int
1264 initialize_controlvm_payload_info(HOSTADDRESS phys_addr, u64 offset, u32 bytes,
1265                                   struct controlvm_payload_info *info)
1266 {
1267         u8 __iomem *payload = NULL;
1268         int rc = CONTROLVM_RESP_SUCCESS;
1269
1270         if (!info) {
1271                 rc = -CONTROLVM_RESP_ERROR_PAYLOAD_INVALID;
1272                 goto cleanup;
1273         }
1274         memset(info, 0, sizeof(struct controlvm_payload_info));
1275         if ((offset == 0) || (bytes == 0)) {
1276                 rc = -CONTROLVM_RESP_ERROR_PAYLOAD_INVALID;
1277                 goto cleanup;
1278         }
1279         payload = ioremap_cache(phys_addr + offset, bytes);
1280         if (!payload) {
1281                 rc = -CONTROLVM_RESP_ERROR_IOREMAP_FAILED;
1282                 goto cleanup;
1283         }
1284
1285         info->offset = offset;
1286         info->bytes = bytes;
1287         info->ptr = payload;
1288
1289 cleanup:
1290         if (rc < 0) {
1291                 if (payload) {
1292                         iounmap(payload);
1293                         payload = NULL;
1294                 }
1295         }
1296         return rc;
1297 }
1298
1299 static void
1300 destroy_controlvm_payload_info(struct controlvm_payload_info *info)
1301 {
1302         if (info->ptr) {
1303                 iounmap(info->ptr);
1304                 info->ptr = NULL;
1305         }
1306         memset(info, 0, sizeof(struct controlvm_payload_info));
1307 }
1308
1309 static void
1310 initialize_controlvm_payload(void)
1311 {
1312         HOSTADDRESS phys_addr = visorchannel_get_physaddr(controlvm_channel);
1313         u64 payload_offset = 0;
1314         u32 payload_bytes = 0;
1315
1316         if (visorchannel_read(controlvm_channel,
1317                               offsetof(struct spar_controlvm_channel_protocol,
1318                                        request_payload_offset),
1319                               &payload_offset, sizeof(payload_offset)) < 0) {
1320                 POSTCODE_LINUX_2(CONTROLVM_INIT_FAILURE_PC,
1321                                  POSTCODE_SEVERITY_ERR);
1322                 return;
1323         }
1324         if (visorchannel_read(controlvm_channel,
1325                               offsetof(struct spar_controlvm_channel_protocol,
1326                                        request_payload_bytes),
1327                               &payload_bytes, sizeof(payload_bytes)) < 0) {
1328                 POSTCODE_LINUX_2(CONTROLVM_INIT_FAILURE_PC,
1329                                  POSTCODE_SEVERITY_ERR);
1330                 return;
1331         }
1332         initialize_controlvm_payload_info(phys_addr,
1333                                           payload_offset, payload_bytes,
1334                                           &controlvm_payload_info);
1335 }
1336
1337 /*  Send ACTION=online for DEVPATH=/sys/devices/platform/visorchipset.
1338  *  Returns CONTROLVM_RESP_xxx code.
1339  */
1340 int
1341 visorchipset_chipset_ready(void)
1342 {
1343         kobject_uevent(&Visorchipset_platform_device.dev.kobj, KOBJ_ONLINE);
1344         return CONTROLVM_RESP_SUCCESS;
1345 }
1346 EXPORT_SYMBOL_GPL(visorchipset_chipset_ready);
1347
1348 int
1349 visorchipset_chipset_selftest(void)
1350 {
1351         char env_selftest[20];
1352         char *envp[] = { env_selftest, NULL };
1353
1354         sprintf(env_selftest, "SPARSP_SELFTEST=%d", 1);
1355         kobject_uevent_env(&Visorchipset_platform_device.dev.kobj, KOBJ_CHANGE,
1356                            envp);
1357         return CONTROLVM_RESP_SUCCESS;
1358 }
1359 EXPORT_SYMBOL_GPL(visorchipset_chipset_selftest);
1360
1361 /*  Send ACTION=offline for DEVPATH=/sys/devices/platform/visorchipset.
1362  *  Returns CONTROLVM_RESP_xxx code.
1363  */
1364 int
1365 visorchipset_chipset_notready(void)
1366 {
1367         kobject_uevent(&Visorchipset_platform_device.dev.kobj, KOBJ_OFFLINE);
1368         return CONTROLVM_RESP_SUCCESS;
1369 }
1370 EXPORT_SYMBOL_GPL(visorchipset_chipset_notready);
1371
1372 static void
1373 chipset_ready(struct controlvm_message_header *msgHdr)
1374 {
1375         int rc = visorchipset_chipset_ready();
1376
1377         if (rc != CONTROLVM_RESP_SUCCESS)
1378                 rc = -rc;
1379         if (msgHdr->flags.response_expected && !visorchipset_holdchipsetready)
1380                 controlvm_respond(msgHdr, rc);
1381         if (msgHdr->flags.response_expected && visorchipset_holdchipsetready) {
1382                 /* Send CHIPSET_READY response when all modules have been loaded
1383                  * and disks mounted for the partition
1384                  */
1385                 g_chipset_msg_hdr = *msgHdr;
1386         }
1387 }
1388
1389 static void
1390 chipset_selftest(struct controlvm_message_header *msgHdr)
1391 {
1392         int rc = visorchipset_chipset_selftest();
1393
1394         if (rc != CONTROLVM_RESP_SUCCESS)
1395                 rc = -rc;
1396         if (msgHdr->flags.response_expected)
1397                 controlvm_respond(msgHdr, rc);
1398 }
1399
1400 static void
1401 chipset_notready(struct controlvm_message_header *msgHdr)
1402 {
1403         int rc = visorchipset_chipset_notready();
1404
1405         if (rc != CONTROLVM_RESP_SUCCESS)
1406                 rc = -rc;
1407         if (msgHdr->flags.response_expected)
1408                 controlvm_respond(msgHdr, rc);
1409 }
1410
1411 /* This is your "one-stop" shop for grabbing the next message from the
1412  * CONTROLVM_QUEUE_EVENT queue in the controlvm channel.
1413  */
1414 static BOOL
1415 read_controlvm_event(struct controlvm_message *msg)
1416 {
1417         if (visorchannel_signalremove(controlvm_channel,
1418                                       CONTROLVM_QUEUE_EVENT, msg)) {
1419                 /* got a message */
1420                 if (msg->hdr.flags.test_message == 1)
1421                         return FALSE;
1422                 return TRUE;
1423         }
1424         return FALSE;
1425 }
1426
1427 /*
1428  * The general parahotplug flow works as follows.  The visorchipset
1429  * driver receives a DEVICE_CHANGESTATE message from Command
1430  * specifying a physical device to enable or disable.  The CONTROLVM
1431  * message handler calls parahotplug_process_message, which then adds
1432  * the message to a global list and kicks off a udev event which
1433  * causes a user level script to enable or disable the specified
1434  * device.  The udev script then writes to
1435  * /proc/visorchipset/parahotplug, which causes parahotplug_proc_write
1436  * to get called, at which point the appropriate CONTROLVM message is
1437  * retrieved from the list and responded to.
1438  */
1439
1440 #define PARAHOTPLUG_TIMEOUT_MS 2000
1441
1442 /*
1443  * Generate unique int to match an outstanding CONTROLVM message with a
1444  * udev script /proc response
1445  */
1446 static int
1447 parahotplug_next_id(void)
1448 {
1449         static atomic_t id = ATOMIC_INIT(0);
1450
1451         return atomic_inc_return(&id);
1452 }
1453
1454 /*
1455  * Returns the time (in jiffies) when a CONTROLVM message on the list
1456  * should expire -- PARAHOTPLUG_TIMEOUT_MS in the future
1457  */
1458 static unsigned long
1459 parahotplug_next_expiration(void)
1460 {
1461         return jiffies + msecs_to_jiffies(PARAHOTPLUG_TIMEOUT_MS);
1462 }
1463
1464 /*
1465  * Create a parahotplug_request, which is basically a wrapper for a
1466  * CONTROLVM_MESSAGE that we can stick on a list
1467  */
1468 static struct parahotplug_request *
1469 parahotplug_request_create(struct controlvm_message *msg)
1470 {
1471         struct parahotplug_request *req;
1472
1473         req = kmalloc(sizeof(*req), GFP_KERNEL | __GFP_NORETRY);
1474         if (!req)
1475                 return NULL;
1476
1477         req->id = parahotplug_next_id();
1478         req->expiration = parahotplug_next_expiration();
1479         req->msg = *msg;
1480
1481         return req;
1482 }
1483
1484 /*
1485  * Free a parahotplug_request.
1486  */
1487 static void
1488 parahotplug_request_destroy(struct parahotplug_request *req)
1489 {
1490         kfree(req);
1491 }
1492
1493 /*
1494  * Cause uevent to run the user level script to do the disable/enable
1495  * specified in (the CONTROLVM message in) the specified
1496  * parahotplug_request
1497  */
1498 static void
1499 parahotplug_request_kickoff(struct parahotplug_request *req)
1500 {
1501         struct controlvm_message_packet *cmd = &req->msg.cmd;
1502         char env_cmd[40], env_id[40], env_state[40], env_bus[40], env_dev[40],
1503             env_func[40];
1504         char *envp[] = {
1505                 env_cmd, env_id, env_state, env_bus, env_dev, env_func, NULL
1506         };
1507
1508         sprintf(env_cmd, "SPAR_PARAHOTPLUG=1");
1509         sprintf(env_id, "SPAR_PARAHOTPLUG_ID=%d", req->id);
1510         sprintf(env_state, "SPAR_PARAHOTPLUG_STATE=%d",
1511                 cmd->device_change_state.state.active);
1512         sprintf(env_bus, "SPAR_PARAHOTPLUG_BUS=%d",
1513                 cmd->device_change_state.bus_no);
1514         sprintf(env_dev, "SPAR_PARAHOTPLUG_DEVICE=%d",
1515                 cmd->device_change_state.dev_no >> 3);
1516         sprintf(env_func, "SPAR_PARAHOTPLUG_FUNCTION=%d",
1517                 cmd->device_change_state.dev_no & 0x7);
1518
1519         kobject_uevent_env(&Visorchipset_platform_device.dev.kobj, KOBJ_CHANGE,
1520                            envp);
1521 }
1522
1523 /*
1524  * Remove any request from the list that's been on there too long and
1525  * respond with an error.
1526  */
1527 static void
1528 parahotplug_process_list(void)
1529 {
1530         struct list_head *pos = NULL;
1531         struct list_head *tmp = NULL;
1532
1533         spin_lock(&parahotplug_request_list_lock);
1534
1535         list_for_each_safe(pos, tmp, &parahotplug_request_list) {
1536                 struct parahotplug_request *req =
1537                     list_entry(pos, struct parahotplug_request, list);
1538
1539                 if (!time_after_eq(jiffies, req->expiration))
1540                         continue;
1541
1542                 list_del(pos);
1543                 if (req->msg.hdr.flags.response_expected)
1544                         controlvm_respond_physdev_changestate(
1545                                 &req->msg.hdr,
1546                                 CONTROLVM_RESP_ERROR_DEVICE_UDEV_TIMEOUT,
1547                                 req->msg.cmd.device_change_state.state);
1548                 parahotplug_request_destroy(req);
1549         }
1550
1551         spin_unlock(&parahotplug_request_list_lock);
1552 }
1553
1554 /*
1555  * Called from the /proc handler, which means the user script has
1556  * finished the enable/disable.  Find the matching identifier, and
1557  * respond to the CONTROLVM message with success.
1558  */
1559 static int
1560 parahotplug_request_complete(int id, u16 active)
1561 {
1562         struct list_head *pos = NULL;
1563         struct list_head *tmp = NULL;
1564
1565         spin_lock(&parahotplug_request_list_lock);
1566
1567         /* Look for a request matching "id". */
1568         list_for_each_safe(pos, tmp, &parahotplug_request_list) {
1569                 struct parahotplug_request *req =
1570                     list_entry(pos, struct parahotplug_request, list);
1571                 if (req->id == id) {
1572                         /* Found a match.  Remove it from the list and
1573                          * respond.
1574                          */
1575                         list_del(pos);
1576                         spin_unlock(&parahotplug_request_list_lock);
1577                         req->msg.cmd.device_change_state.state.active = active;
1578                         if (req->msg.hdr.flags.response_expected)
1579                                 controlvm_respond_physdev_changestate(
1580                                         &req->msg.hdr, CONTROLVM_RESP_SUCCESS,
1581                                         req->msg.cmd.device_change_state.state);
1582                         parahotplug_request_destroy(req);
1583                         return 0;
1584                 }
1585         }
1586
1587         spin_unlock(&parahotplug_request_list_lock);
1588         return -1;
1589 }
1590
1591 /*
1592  * Enables or disables a PCI device by kicking off a udev script
1593  */
1594 static void
1595 parahotplug_process_message(struct controlvm_message *inmsg)
1596 {
1597         struct parahotplug_request *req;
1598
1599         req = parahotplug_request_create(inmsg);
1600
1601         if (!req)
1602                 return;
1603
1604         if (inmsg->cmd.device_change_state.state.active) {
1605                 /* For enable messages, just respond with success
1606                 * right away.  This is a bit of a hack, but there are
1607                 * issues with the early enable messages we get (with
1608                 * either the udev script not detecting that the device
1609                 * is up, or not getting called at all).  Fortunately
1610                 * the messages that get lost don't matter anyway, as
1611                 * devices are automatically enabled at
1612                 * initialization.
1613                 */
1614                 parahotplug_request_kickoff(req);
1615                 controlvm_respond_physdev_changestate(&inmsg->hdr,
1616                                 CONTROLVM_RESP_SUCCESS, inmsg->cmd.
1617                                 device_change_state.state);
1618                 parahotplug_request_destroy(req);
1619         } else {
1620                 /* For disable messages, add the request to the
1621                 * request list before kicking off the udev script.  It
1622                 * won't get responded to until the script has
1623                 * indicated it's done.
1624                 */
1625                 spin_lock(&parahotplug_request_list_lock);
1626                 list_add_tail(&req->list, &parahotplug_request_list);
1627                 spin_unlock(&parahotplug_request_list_lock);
1628
1629                 parahotplug_request_kickoff(req);
1630         }
1631 }
1632
1633 /* Process a controlvm message.
1634  * Return result:
1635  *    FALSE - this function will return FALSE only in the case where the
1636  *            controlvm message was NOT processed, but processing must be
1637  *            retried before reading the next controlvm message; a
1638  *            scenario where this can occur is when we need to throttle
1639  *            the allocation of memory in which to copy out controlvm
1640  *            payload data
1641  *    TRUE  - processing of the controlvm message completed,
1642  *            either successfully or with an error.
1643  */
1644 static BOOL
1645 handle_command(struct controlvm_message inmsg, HOSTADDRESS channel_addr)
1646 {
1647         struct controlvm_message_packet *cmd = &inmsg.cmd;
1648         u64 parm_addr = 0;
1649         u32 parm_bytes = 0;
1650         struct parser_context *parser_ctx = NULL;
1651         bool local_addr = false;
1652         struct controlvm_message ackmsg;
1653
1654         /* create parsing context if necessary */
1655         local_addr = (inmsg.hdr.flags.test_message == 1);
1656         if (channel_addr == 0)
1657                 return TRUE;
1658         parm_addr = channel_addr + inmsg.hdr.payload_vm_offset;
1659         parm_bytes = inmsg.hdr.payload_bytes;
1660
1661         /* Parameter and channel addresses within test messages actually lie
1662          * within our OS-controlled memory.  We need to know that, because it
1663          * makes a difference in how we compute the virtual address.
1664          */
1665         if (parm_addr != 0 && parm_bytes != 0) {
1666                 BOOL retry = FALSE;
1667
1668                 parser_ctx =
1669                     parser_init_byte_stream(parm_addr, parm_bytes,
1670                                             local_addr, &retry);
1671                 if (!parser_ctx && retry)
1672                         return FALSE;
1673         }
1674
1675         if (!local_addr) {
1676                 controlvm_init_response(&ackmsg, &inmsg.hdr,
1677                                         CONTROLVM_RESP_SUCCESS);
1678                 if (controlvm_channel)
1679                         visorchannel_signalinsert(controlvm_channel,
1680                                                   CONTROLVM_QUEUE_ACK,
1681                                                   &ackmsg);
1682         }
1683         switch (inmsg.hdr.id) {
1684         case CONTROLVM_CHIPSET_INIT:
1685                 chipset_init(&inmsg);
1686                 break;
1687         case CONTROLVM_BUS_CREATE:
1688                 bus_create(&inmsg);
1689                 break;
1690         case CONTROLVM_BUS_DESTROY:
1691                 bus_destroy(&inmsg);
1692                 break;
1693         case CONTROLVM_BUS_CONFIGURE:
1694                 bus_configure(&inmsg, parser_ctx);
1695                 break;
1696         case CONTROLVM_DEVICE_CREATE:
1697                 my_device_create(&inmsg);
1698                 break;
1699         case CONTROLVM_DEVICE_CHANGESTATE:
1700                 if (cmd->device_change_state.flags.phys_device) {
1701                         parahotplug_process_message(&inmsg);
1702                 } else {
1703                         /* save the hdr and cmd structures for later use */
1704                         /* when sending back the response to Command */
1705                         my_device_changestate(&inmsg);
1706                         g_diag_msg_hdr = inmsg.hdr;
1707                         g_devicechangestate_packet = inmsg.cmd;
1708                         break;
1709                 }
1710                 break;
1711         case CONTROLVM_DEVICE_DESTROY:
1712                 my_device_destroy(&inmsg);
1713                 break;
1714         case CONTROLVM_DEVICE_CONFIGURE:
1715                 /* no op for now, just send a respond that we passed */
1716                 if (inmsg.hdr.flags.response_expected)
1717                         controlvm_respond(&inmsg.hdr, CONTROLVM_RESP_SUCCESS);
1718                 break;
1719         case CONTROLVM_CHIPSET_READY:
1720                 chipset_ready(&inmsg.hdr);
1721                 break;
1722         case CONTROLVM_CHIPSET_SELFTEST:
1723                 chipset_selftest(&inmsg.hdr);
1724                 break;
1725         case CONTROLVM_CHIPSET_STOP:
1726                 chipset_notready(&inmsg.hdr);
1727                 break;
1728         default:
1729                 if (inmsg.hdr.flags.response_expected)
1730                         controlvm_respond(&inmsg.hdr,
1731                                 -CONTROLVM_RESP_ERROR_MESSAGE_ID_UNKNOWN);
1732                 break;
1733         }
1734
1735         if (parser_ctx) {
1736                 parser_done(parser_ctx);
1737                 parser_ctx = NULL;
1738         }
1739         return TRUE;
1740 }
1741
1742 static HOSTADDRESS controlvm_get_channel_address(void)
1743 {
1744         u64 addr = 0;
1745         u32 size = 0;
1746
1747         if (!VMCALL_SUCCESSFUL(issue_vmcall_io_controlvm_addr(&addr, &size)))
1748                 return 0;
1749
1750         return addr;
1751 }
1752
1753 static void
1754 controlvm_periodic_work(struct work_struct *work)
1755 {
1756         struct controlvm_message inmsg;
1757         BOOL got_command = FALSE;
1758         BOOL handle_command_failed = FALSE;
1759         static u64 poll_count;
1760
1761         /* make sure visorbus server is registered for controlvm callbacks */
1762         if (visorchipset_serverregwait && !serverregistered)
1763                 goto cleanup;
1764         /* make sure visorclientbus server is regsitered for controlvm
1765          * callbacks
1766          */
1767         if (visorchipset_clientregwait && !clientregistered)
1768                 goto cleanup;
1769
1770         poll_count++;
1771         if (poll_count >= 250)
1772                 ;       /* keep going */
1773         else
1774                 goto cleanup;
1775
1776         /* Check events to determine if response to CHIPSET_READY
1777          * should be sent
1778          */
1779         if (visorchipset_holdchipsetready &&
1780             (g_chipset_msg_hdr.id != CONTROLVM_INVALID)) {
1781                 if (check_chipset_events() == 1) {
1782                         controlvm_respond(&g_chipset_msg_hdr, 0);
1783                         clear_chipset_events();
1784                         memset(&g_chipset_msg_hdr, 0,
1785                                sizeof(struct controlvm_message_header));
1786                 }
1787         }
1788
1789         while (visorchannel_signalremove(controlvm_channel,
1790                                          CONTROLVM_QUEUE_RESPONSE,
1791                                          &inmsg))
1792                 ;
1793         if (!got_command) {
1794                 if (controlvm_pending_msg_valid) {
1795                         /* we throttled processing of a prior
1796                         * msg, so try to process it again
1797                         * rather than reading a new one
1798                         */
1799                         inmsg = controlvm_pending_msg;
1800                         controlvm_pending_msg_valid = FALSE;
1801                         got_command = true;
1802                 } else {
1803                         got_command = read_controlvm_event(&inmsg);
1804                 }
1805         }
1806
1807         handle_command_failed = FALSE;
1808         while (got_command && (!handle_command_failed)) {
1809                 most_recent_message_jiffies = jiffies;
1810                 if (handle_command(inmsg,
1811                                    visorchannel_get_physaddr
1812                                    (controlvm_channel)))
1813                         got_command = read_controlvm_event(&inmsg);
1814                 else {
1815                         /* this is a scenario where throttling
1816                         * is required, but probably NOT an
1817                         * error...; we stash the current
1818                         * controlvm msg so we will attempt to
1819                         * reprocess it on our next loop
1820                         */
1821                         handle_command_failed = TRUE;
1822                         controlvm_pending_msg = inmsg;
1823                         controlvm_pending_msg_valid = TRUE;
1824                 }
1825         }
1826
1827         /* parahotplug_worker */
1828         parahotplug_process_list();
1829
1830 cleanup:
1831
1832         if (time_after(jiffies,
1833                        most_recent_message_jiffies + (HZ * MIN_IDLE_SECONDS))) {
1834                 /* it's been longer than MIN_IDLE_SECONDS since we
1835                 * processed our last controlvm message; slow down the
1836                 * polling
1837                 */
1838                 if (poll_jiffies != POLLJIFFIES_CONTROLVMCHANNEL_SLOW)
1839                         poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_SLOW;
1840         } else {
1841                 if (poll_jiffies != POLLJIFFIES_CONTROLVMCHANNEL_FAST)
1842                         poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_FAST;
1843         }
1844
1845         queue_delayed_work(periodic_controlvm_workqueue,
1846                            &periodic_controlvm_work, poll_jiffies);
1847 }
1848
1849 static void
1850 setup_crash_devices_work_queue(struct work_struct *work)
1851 {
1852         struct controlvm_message local_crash_bus_msg;
1853         struct controlvm_message local_crash_dev_msg;
1854         struct controlvm_message msg;
1855         u32 local_crash_msg_offset;
1856         u16 local_crash_msg_count;
1857
1858         /* make sure visorbus server is registered for controlvm callbacks */
1859         if (visorchipset_serverregwait && !serverregistered)
1860                 goto cleanup;
1861
1862         /* make sure visorclientbus server is regsitered for controlvm
1863          * callbacks
1864          */
1865         if (visorchipset_clientregwait && !clientregistered)
1866                 goto cleanup;
1867
1868         POSTCODE_LINUX_2(CRASH_DEV_ENTRY_PC, POSTCODE_SEVERITY_INFO);
1869
1870         /* send init chipset msg */
1871         msg.hdr.id = CONTROLVM_CHIPSET_INIT;
1872         msg.cmd.init_chipset.bus_count = 23;
1873         msg.cmd.init_chipset.switch_count = 0;
1874
1875         chipset_init(&msg);
1876
1877         /* get saved message count */
1878         if (visorchannel_read(controlvm_channel,
1879                               offsetof(struct spar_controlvm_channel_protocol,
1880                                        saved_crash_message_count),
1881                               &local_crash_msg_count, sizeof(u16)) < 0) {
1882                 POSTCODE_LINUX_2(CRASH_DEV_CTRL_RD_FAILURE_PC,
1883                                  POSTCODE_SEVERITY_ERR);
1884                 return;
1885         }
1886
1887         if (local_crash_msg_count != CONTROLVM_CRASHMSG_MAX) {
1888                 POSTCODE_LINUX_3(CRASH_DEV_COUNT_FAILURE_PC,
1889                                  local_crash_msg_count,
1890                                  POSTCODE_SEVERITY_ERR);
1891                 return;
1892         }
1893
1894         /* get saved crash message offset */
1895         if (visorchannel_read(controlvm_channel,
1896                               offsetof(struct spar_controlvm_channel_protocol,
1897                                        saved_crash_message_offset),
1898                               &local_crash_msg_offset, sizeof(u32)) < 0) {
1899                 POSTCODE_LINUX_2(CRASH_DEV_CTRL_RD_FAILURE_PC,
1900                                  POSTCODE_SEVERITY_ERR);
1901                 return;
1902         }
1903
1904         /* read create device message for storage bus offset */
1905         if (visorchannel_read(controlvm_channel,
1906                               local_crash_msg_offset,
1907                               &local_crash_bus_msg,
1908                               sizeof(struct controlvm_message)) < 0) {
1909                 POSTCODE_LINUX_2(CRASH_DEV_RD_BUS_FAIULRE_PC,
1910                                  POSTCODE_SEVERITY_ERR);
1911                 return;
1912         }
1913
1914         /* read create device message for storage device */
1915         if (visorchannel_read(controlvm_channel,
1916                               local_crash_msg_offset +
1917                               sizeof(struct controlvm_message),
1918                               &local_crash_dev_msg,
1919                               sizeof(struct controlvm_message)) < 0) {
1920                 POSTCODE_LINUX_2(CRASH_DEV_RD_DEV_FAIULRE_PC,
1921                                  POSTCODE_SEVERITY_ERR);
1922                 return;
1923         }
1924
1925         /* reuse IOVM create bus message */
1926         if (local_crash_bus_msg.cmd.create_bus.channel_addr != 0) {
1927                 bus_create(&local_crash_bus_msg);
1928         } else {
1929                 POSTCODE_LINUX_2(CRASH_DEV_BUS_NULL_FAILURE_PC,
1930                                  POSTCODE_SEVERITY_ERR);
1931                 return;
1932         }
1933
1934         /* reuse create device message for storage device */
1935         if (local_crash_dev_msg.cmd.create_device.channel_addr != 0) {
1936                 my_device_create(&local_crash_dev_msg);
1937         } else {
1938                 POSTCODE_LINUX_2(CRASH_DEV_DEV_NULL_FAILURE_PC,
1939                                  POSTCODE_SEVERITY_ERR);
1940                 return;
1941         }
1942         POSTCODE_LINUX_2(CRASH_DEV_EXIT_PC, POSTCODE_SEVERITY_INFO);
1943         return;
1944
1945 cleanup:
1946
1947         poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_SLOW;
1948
1949         queue_delayed_work(periodic_controlvm_workqueue,
1950                            &periodic_controlvm_work, poll_jiffies);
1951 }
1952
1953 static void
1954 bus_create_response(ulong busNo, int response)
1955 {
1956         bus_responder(CONTROLVM_BUS_CREATE, busNo, response);
1957 }
1958
1959 static void
1960 bus_destroy_response(ulong busNo, int response)
1961 {
1962         bus_responder(CONTROLVM_BUS_DESTROY, busNo, response);
1963 }
1964
1965 static void
1966 device_create_response(ulong busNo, ulong devNo, int response)
1967 {
1968         device_responder(CONTROLVM_DEVICE_CREATE, busNo, devNo, response);
1969 }
1970
1971 static void
1972 device_destroy_response(ulong busNo, ulong devNo, int response)
1973 {
1974         device_responder(CONTROLVM_DEVICE_DESTROY, busNo, devNo, response);
1975 }
1976
1977 void
1978 visorchipset_device_pause_response(ulong bus_no, ulong dev_no, int response)
1979 {
1980         device_changestate_responder(CONTROLVM_DEVICE_CHANGESTATE,
1981                                      bus_no, dev_no, response,
1982                                      segment_state_standby);
1983 }
1984 EXPORT_SYMBOL_GPL(visorchipset_device_pause_response);
1985
1986 static void
1987 device_resume_response(ulong busNo, ulong devNo, int response)
1988 {
1989         device_changestate_responder(CONTROLVM_DEVICE_CHANGESTATE,
1990                                      busNo, devNo, response,
1991                                      segment_state_running);
1992 }
1993
1994 BOOL
1995 visorchipset_get_bus_info(ulong bus_no, struct visorchipset_bus_info *bus_info)
1996 {
1997         void *p = findbus(&bus_info_list, bus_no);
1998
1999         if (!p)
2000                 return FALSE;
2001         memcpy(bus_info, p, sizeof(struct visorchipset_bus_info));
2002         return TRUE;
2003 }
2004 EXPORT_SYMBOL_GPL(visorchipset_get_bus_info);
2005
2006 BOOL
2007 visorchipset_set_bus_context(ulong bus_no, void *context)
2008 {
2009         struct visorchipset_bus_info *p = findbus(&bus_info_list, bus_no);
2010
2011         if (!p)
2012                 return FALSE;
2013         p->bus_driver_context = context;
2014         return TRUE;
2015 }
2016 EXPORT_SYMBOL_GPL(visorchipset_set_bus_context);
2017
2018 BOOL
2019 visorchipset_get_device_info(ulong bus_no, ulong dev_no,
2020                              struct visorchipset_device_info *dev_info)
2021 {
2022         void *p = finddevice(&dev_info_list, bus_no, dev_no);
2023
2024         if (!p)
2025                 return FALSE;
2026         memcpy(dev_info, p, sizeof(struct visorchipset_device_info));
2027         return TRUE;
2028 }
2029 EXPORT_SYMBOL_GPL(visorchipset_get_device_info);
2030
2031 BOOL
2032 visorchipset_set_device_context(ulong bus_no, ulong dev_no, void *context)
2033 {
2034         struct visorchipset_device_info *p =
2035                         finddevice(&dev_info_list, bus_no, dev_no);
2036
2037         if (!p)
2038                 return FALSE;
2039         p->bus_driver_context = context;
2040         return TRUE;
2041 }
2042 EXPORT_SYMBOL_GPL(visorchipset_set_device_context);
2043
2044 /* Generic wrapper function for allocating memory from a kmem_cache pool.
2045  */
2046 void *
2047 visorchipset_cache_alloc(struct kmem_cache *pool, BOOL ok_to_block,
2048                          char *fn, int ln)
2049 {
2050         gfp_t gfp;
2051         void *p;
2052
2053         if (ok_to_block)
2054                 gfp = GFP_KERNEL;
2055         else
2056                 gfp = GFP_ATOMIC;
2057         /* __GFP_NORETRY means "ok to fail", meaning
2058          * kmem_cache_alloc() can return NULL, implying the caller CAN
2059          * cope with failure.  If you do NOT specify __GFP_NORETRY,
2060          * Linux will go to extreme measures to get memory for you
2061          * (like, invoke oom killer), which will probably cripple the
2062          * system.
2063          */
2064         gfp |= __GFP_NORETRY;
2065         p = kmem_cache_alloc(pool, gfp);
2066         if (!p)
2067                 return NULL;
2068
2069         atomic_inc(&visorchipset_cache_buffers_in_use);
2070         return p;
2071 }
2072
2073 /* Generic wrapper function for freeing memory from a kmem_cache pool.
2074  */
2075 void
2076 visorchipset_cache_free(struct kmem_cache *pool, void *p, char *fn, int ln)
2077 {
2078         if (!p)
2079                 return;
2080
2081         atomic_dec(&visorchipset_cache_buffers_in_use);
2082         kmem_cache_free(pool, p);
2083 }
2084
2085 static ssize_t chipsetready_store(struct device *dev,
2086         struct device_attribute *attr, const char *buf, size_t count)
2087 {
2088         char msgtype[64];
2089
2090         if (sscanf(buf, "%63s", msgtype) != 1)
2091                 return -EINVAL;
2092
2093         if (strcmp(msgtype, "CALLHOMEDISK_MOUNTED") == 0) {
2094                 chipset_events[0] = 1;
2095                 return count;
2096         } else if (strcmp(msgtype, "MODULES_LOADED") == 0) {
2097                 chipset_events[1] = 1;
2098                 return count;
2099         }
2100         return -EINVAL;
2101 }
2102
2103 /* The parahotplug/devicedisabled interface gets called by our support script
2104  * when an SR-IOV device has been shut down. The ID is passed to the script
2105  * and then passed back when the device has been removed.
2106  */
2107 static ssize_t devicedisabled_store(struct device *dev,
2108         struct device_attribute *attr, const char *buf, size_t count)
2109 {
2110         uint id;
2111
2112         if (kstrtouint(buf, 10, &id) != 0)
2113                 return -EINVAL;
2114
2115         parahotplug_request_complete(id, 0);
2116         return count;
2117 }
2118
2119 /* The parahotplug/deviceenabled interface gets called by our support script
2120  * when an SR-IOV device has been recovered. The ID is passed to the script
2121  * and then passed back when the device has been brought back up.
2122  */
2123 static ssize_t deviceenabled_store(struct device *dev,
2124         struct device_attribute *attr, const char *buf, size_t count)
2125 {
2126         uint id;
2127
2128         if (kstrtouint(buf, 10, &id) != 0)
2129                 return -EINVAL;
2130
2131         parahotplug_request_complete(id, 1);
2132         return count;
2133 }
2134
2135 static int __init
2136 visorchipset_init(void)
2137 {
2138         int rc = 0, x = 0;
2139         HOSTADDRESS addr;
2140
2141         if (!unisys_spar_platform)
2142                 return -ENODEV;
2143
2144         memset(&busdev_server_notifiers, 0, sizeof(busdev_server_notifiers));
2145         memset(&busdev_client_notifiers, 0, sizeof(busdev_client_notifiers));
2146         memset(&controlvm_payload_info, 0, sizeof(controlvm_payload_info));
2147         memset(&livedump_info, 0, sizeof(livedump_info));
2148         atomic_set(&livedump_info.buffers_in_use, 0);
2149
2150         if (visorchipset_testvnic) {
2151                 POSTCODE_LINUX_3(CHIPSET_INIT_FAILURE_PC, x, DIAG_SEVERITY_ERR);
2152                 rc = x;
2153                 goto cleanup;
2154         }
2155
2156         addr = controlvm_get_channel_address();
2157         if (addr != 0) {
2158                 controlvm_channel =
2159                     visorchannel_create_with_lock
2160                     (addr,
2161                      sizeof(struct spar_controlvm_channel_protocol),
2162                      spar_controlvm_channel_protocol_uuid);
2163                 if (SPAR_CONTROLVM_CHANNEL_OK_CLIENT(
2164                                 visorchannel_get_header(controlvm_channel))) {
2165                         initialize_controlvm_payload();
2166                 } else {
2167                         visorchannel_destroy(controlvm_channel);
2168                         controlvm_channel = NULL;
2169                         return -ENODEV;
2170                 }
2171         } else {
2172                 return -ENODEV;
2173         }
2174
2175         MajorDev = MKDEV(visorchipset_major, 0);
2176         rc = visorchipset_file_init(MajorDev, &controlvm_channel);
2177         if (rc < 0) {
2178                 POSTCODE_LINUX_2(CHIPSET_INIT_FAILURE_PC, DIAG_SEVERITY_ERR);
2179                 goto cleanup;
2180         }
2181
2182         memset(&g_diag_msg_hdr, 0, sizeof(struct controlvm_message_header));
2183
2184         memset(&g_chipset_msg_hdr, 0, sizeof(struct controlvm_message_header));
2185
2186         memset(&g_del_dump_msg_hdr, 0, sizeof(struct controlvm_message_header));
2187
2188         putfile_buffer_list_pool =
2189             kmem_cache_create(putfile_buffer_list_pool_name,
2190                               sizeof(struct putfile_buffer_entry),
2191                               0, SLAB_HWCACHE_ALIGN, NULL);
2192         if (!putfile_buffer_list_pool) {
2193                 POSTCODE_LINUX_2(CHIPSET_INIT_FAILURE_PC, DIAG_SEVERITY_ERR);
2194                 rc = -1;
2195                 goto cleanup;
2196         }
2197         if (!visorchipset_disable_controlvm) {
2198                 /* if booting in a crash kernel */
2199                 if (visorchipset_crash_kernel)
2200                         INIT_DELAYED_WORK(&periodic_controlvm_work,
2201                                           setup_crash_devices_work_queue);
2202                 else
2203                         INIT_DELAYED_WORK(&periodic_controlvm_work,
2204                                           controlvm_periodic_work);
2205                 periodic_controlvm_workqueue =
2206                     create_singlethread_workqueue("visorchipset_controlvm");
2207
2208                 if (!periodic_controlvm_workqueue) {
2209                         POSTCODE_LINUX_2(CREATE_WORKQUEUE_FAILED_PC,
2210                                          DIAG_SEVERITY_ERR);
2211                         rc = -ENOMEM;
2212                         goto cleanup;
2213                 }
2214                 most_recent_message_jiffies = jiffies;
2215                 poll_jiffies = POLLJIFFIES_CONTROLVMCHANNEL_FAST;
2216                 rc = queue_delayed_work(periodic_controlvm_workqueue,
2217                                         &periodic_controlvm_work, poll_jiffies);
2218                 if (rc < 0) {
2219                         POSTCODE_LINUX_2(QUEUE_DELAYED_WORK_PC,
2220                                          DIAG_SEVERITY_ERR);
2221                         goto cleanup;
2222                 }
2223         }
2224
2225         Visorchipset_platform_device.dev.devt = MajorDev;
2226         if (platform_device_register(&Visorchipset_platform_device) < 0) {
2227                 POSTCODE_LINUX_2(DEVICE_REGISTER_FAILURE_PC, DIAG_SEVERITY_ERR);
2228                 rc = -1;
2229                 goto cleanup;
2230         }
2231         POSTCODE_LINUX_2(CHIPSET_INIT_SUCCESS_PC, POSTCODE_SEVERITY_INFO);
2232         rc = 0;
2233 cleanup:
2234         if (rc) {
2235                 POSTCODE_LINUX_3(CHIPSET_INIT_FAILURE_PC, rc,
2236                                  POSTCODE_SEVERITY_ERR);
2237         }
2238         return rc;
2239 }
2240
2241 static void
2242 visorchipset_exit(void)
2243 {
2244         POSTCODE_LINUX_2(DRIVER_EXIT_PC, POSTCODE_SEVERITY_INFO);
2245
2246         if (visorchipset_disable_controlvm) {
2247                 ;
2248         } else {
2249                 cancel_delayed_work(&periodic_controlvm_work);
2250                 flush_workqueue(periodic_controlvm_workqueue);
2251                 destroy_workqueue(periodic_controlvm_workqueue);
2252                 periodic_controlvm_workqueue = NULL;
2253                 destroy_controlvm_payload_info(&controlvm_payload_info);
2254         }
2255         if (putfile_buffer_list_pool) {
2256                 kmem_cache_destroy(putfile_buffer_list_pool);
2257                 putfile_buffer_list_pool = NULL;
2258         }
2259
2260         cleanup_controlvm_structures();
2261
2262         memset(&g_diag_msg_hdr, 0, sizeof(struct controlvm_message_header));
2263
2264         memset(&g_chipset_msg_hdr, 0, sizeof(struct controlvm_message_header));
2265
2266         memset(&g_del_dump_msg_hdr, 0, sizeof(struct controlvm_message_header));
2267
2268         visorchannel_destroy(controlvm_channel);
2269
2270         visorchipset_file_cleanup();
2271         POSTCODE_LINUX_2(DRIVER_EXIT_PC, POSTCODE_SEVERITY_INFO);
2272 }
2273
2274 module_param_named(testvnic, visorchipset_testvnic, int, S_IRUGO);
2275 MODULE_PARM_DESC(visorchipset_testvnic, "1 to test vnic, using dummy VNIC connected via a loopback to a physical ethernet");
2276 int visorchipset_testvnic = 0;
2277
2278 module_param_named(testvnicclient, visorchipset_testvnicclient, int, S_IRUGO);
2279 MODULE_PARM_DESC(visorchipset_testvnicclient, "1 to test vnic, using real VNIC channel attached to a separate IOVM guest");
2280 int visorchipset_testvnicclient = 0;
2281
2282 module_param_named(testmsg, visorchipset_testmsg, int, S_IRUGO);
2283 MODULE_PARM_DESC(visorchipset_testmsg,
2284                  "1 to manufacture the chipset, bus, and switch messages");
2285 int visorchipset_testmsg = 0;
2286
2287 module_param_named(major, visorchipset_major, int, S_IRUGO);
2288 MODULE_PARM_DESC(visorchipset_major, "major device number to use for the device node");
2289 int visorchipset_major = 0;
2290
2291 module_param_named(serverregwait, visorchipset_serverregwait, int, S_IRUGO);
2292 MODULE_PARM_DESC(visorchipset_serverreqwait,
2293                  "1 to have the module wait for the visor bus to register");
2294 int visorchipset_serverregwait = 0;     /* default is off */
2295 module_param_named(clientregwait, visorchipset_clientregwait, int, S_IRUGO);
2296 MODULE_PARM_DESC(visorchipset_clientregwait, "1 to have the module wait for the visorclientbus to register");
2297 int visorchipset_clientregwait = 1;     /* default is on */
2298 module_param_named(testteardown, visorchipset_testteardown, int, S_IRUGO);
2299 MODULE_PARM_DESC(visorchipset_testteardown,
2300                  "1 to test teardown of the chipset, bus, and switch");
2301 int visorchipset_testteardown = 0;      /* default is off */
2302 module_param_named(disable_controlvm, visorchipset_disable_controlvm, int,
2303                    S_IRUGO);
2304 MODULE_PARM_DESC(visorchipset_disable_controlvm,
2305                  "1 to disable polling of controlVm channel");
2306 int visorchipset_disable_controlvm = 0; /* default is off */
2307 module_param_named(crash_kernel, visorchipset_crash_kernel, int, S_IRUGO);
2308 MODULE_PARM_DESC(visorchipset_crash_kernel,
2309                  "1 means we are running in crash kernel");
2310 int visorchipset_crash_kernel = 0; /* default is running in non-crash kernel */
2311 module_param_named(holdchipsetready, visorchipset_holdchipsetready,
2312                    int, S_IRUGO);
2313 MODULE_PARM_DESC(visorchipset_holdchipsetready,
2314                  "1 to hold response to CHIPSET_READY");
2315 int visorchipset_holdchipsetready = 0; /* default is to send CHIPSET_READY
2316                                       * response immediately */
2317 module_init(visorchipset_init);
2318 module_exit(visorchipset_exit);
2319
2320 MODULE_AUTHOR("Unisys");
2321 MODULE_LICENSE("GPL");
2322 MODULE_DESCRIPTION("Supervisor chipset driver for service partition: ver "
2323                    VERSION);
2324 MODULE_VERSION(VERSION);