zram: fix warning of print format
[cascardo/linux.git] / drivers / staging / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *
6  * This code is released using a dual license strategy: BSD/GPL
7  * You can choose the licence that better fits your requirements.
8  *
9  * Released under the terms of 3-clause BSD License
10  * Released under the terms of GNU General Public License Version 2.0
11  *
12  * Project home: http://compcache.googlecode.com
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44
45 static void zram_stat64_add(struct zram *zram, u64 *v, u64 inc)
46 {
47         spin_lock(&zram->stat64_lock);
48         *v = *v + inc;
49         spin_unlock(&zram->stat64_lock);
50 }
51
52 static void zram_stat64_sub(struct zram *zram, u64 *v, u64 dec)
53 {
54         spin_lock(&zram->stat64_lock);
55         *v = *v - dec;
56         spin_unlock(&zram->stat64_lock);
57 }
58
59 static void zram_stat64_inc(struct zram *zram, u64 *v)
60 {
61         zram_stat64_add(zram, v, 1);
62 }
63
64 static int zram_test_flag(struct zram *zram, u32 index,
65                         enum zram_pageflags flag)
66 {
67         return zram->table[index].flags & BIT(flag);
68 }
69
70 static void zram_set_flag(struct zram *zram, u32 index,
71                         enum zram_pageflags flag)
72 {
73         zram->table[index].flags |= BIT(flag);
74 }
75
76 static void zram_clear_flag(struct zram *zram, u32 index,
77                         enum zram_pageflags flag)
78 {
79         zram->table[index].flags &= ~BIT(flag);
80 }
81
82 static int page_zero_filled(void *ptr)
83 {
84         unsigned int pos;
85         unsigned long *page;
86
87         page = (unsigned long *)ptr;
88
89         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
90                 if (page[pos])
91                         return 0;
92         }
93
94         return 1;
95 }
96
97 static void zram_free_page(struct zram *zram, size_t index)
98 {
99         unsigned long handle = zram->table[index].handle;
100         u16 size = zram->table[index].size;
101
102         if (unlikely(!handle)) {
103                 /*
104                  * No memory is allocated for zero filled pages.
105                  * Simply clear zero page flag.
106                  */
107                 if (zram_test_flag(zram, index, ZRAM_ZERO)) {
108                         zram_clear_flag(zram, index, ZRAM_ZERO);
109                         zram->stats.pages_zero--;
110                 }
111                 return;
112         }
113
114         if (unlikely(size > max_zpage_size))
115                 zram->stats.bad_compress--;
116
117         zs_free(zram->mem_pool, handle);
118
119         if (size <= PAGE_SIZE / 2)
120                 zram->stats.good_compress--;
121
122         zram_stat64_sub(zram, &zram->stats.compr_size,
123                         zram->table[index].size);
124         zram->stats.pages_stored--;
125
126         zram->table[index].handle = 0;
127         zram->table[index].size = 0;
128 }
129
130 static void handle_zero_page(struct bio_vec *bvec)
131 {
132         struct page *page = bvec->bv_page;
133         void *user_mem;
134
135         user_mem = kmap_atomic(page);
136         memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
137         kunmap_atomic(user_mem);
138
139         flush_dcache_page(page);
140 }
141
142 static inline int is_partial_io(struct bio_vec *bvec)
143 {
144         return bvec->bv_len != PAGE_SIZE;
145 }
146
147 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
148 {
149         int ret = LZO_E_OK;
150         size_t clen = PAGE_SIZE;
151         unsigned char *cmem;
152         unsigned long handle = zram->table[index].handle;
153
154         if (!handle || zram_test_flag(zram, index, ZRAM_ZERO)) {
155                 memset(mem, 0, PAGE_SIZE);
156                 return 0;
157         }
158
159         cmem = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
160         if (zram->table[index].size == PAGE_SIZE)
161                 memcpy(mem, cmem, PAGE_SIZE);
162         else
163                 ret = lzo1x_decompress_safe(cmem, zram->table[index].size,
164                                                 mem, &clen);
165         zs_unmap_object(zram->mem_pool, handle);
166
167         /* Should NEVER happen. Return bio error if it does. */
168         if (unlikely(ret != LZO_E_OK)) {
169                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
170                 zram_stat64_inc(zram, &zram->stats.failed_reads);
171                 return ret;
172         }
173
174         return 0;
175 }
176
177 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
178                           u32 index, int offset, struct bio *bio)
179 {
180         int ret;
181         struct page *page;
182         unsigned char *user_mem, *uncmem = NULL;
183
184         page = bvec->bv_page;
185
186         if (unlikely(!zram->table[index].handle) ||
187                         zram_test_flag(zram, index, ZRAM_ZERO)) {
188                 handle_zero_page(bvec);
189                 return 0;
190         }
191
192         if (is_partial_io(bvec))
193                 /* Use  a temporary buffer to decompress the page */
194                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
195
196         user_mem = kmap_atomic(page);
197         if (!is_partial_io(bvec))
198                 uncmem = user_mem;
199
200         if (!uncmem) {
201                 pr_info("Unable to allocate temp memory\n");
202                 ret = -ENOMEM;
203                 goto out_cleanup;
204         }
205
206         ret = zram_decompress_page(zram, uncmem, index);
207         /* Should NEVER happen. Return bio error if it does. */
208         if (unlikely(ret != LZO_E_OK)) {
209                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
210                 zram_stat64_inc(zram, &zram->stats.failed_reads);
211                 goto out_cleanup;
212         }
213
214         if (is_partial_io(bvec))
215                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
216                                 bvec->bv_len);
217
218         flush_dcache_page(page);
219         ret = 0;
220 out_cleanup:
221         kunmap_atomic(user_mem);
222         if (is_partial_io(bvec))
223                 kfree(uncmem);
224         return ret;
225 }
226
227 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
228                            int offset)
229 {
230         int ret = 0;
231         size_t clen;
232         unsigned long handle;
233         struct page *page;
234         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
235
236         page = bvec->bv_page;
237         src = zram->compress_buffer;
238
239         if (is_partial_io(bvec)) {
240                 /*
241                  * This is a partial IO. We need to read the full page
242                  * before to write the changes.
243                  */
244                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
245                 if (!uncmem) {
246                         pr_info("Error allocating temp memory!\n");
247                         ret = -ENOMEM;
248                         goto out;
249                 }
250                 ret = zram_decompress_page(zram, uncmem, index);
251                 if (ret)
252                         goto out;
253         }
254
255         /*
256          * System overwrites unused sectors. Free memory associated
257          * with this sector now.
258          */
259         if (zram->table[index].handle ||
260             zram_test_flag(zram, index, ZRAM_ZERO))
261                 zram_free_page(zram, index);
262
263         user_mem = kmap_atomic(page);
264
265         if (is_partial_io(bvec)) {
266                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
267                        bvec->bv_len);
268                 kunmap_atomic(user_mem);
269                 user_mem = NULL;
270         } else {
271                 uncmem = user_mem;
272         }
273
274         if (page_zero_filled(uncmem)) {
275                 kunmap_atomic(user_mem);
276                 if (is_partial_io(bvec))
277                         kfree(uncmem);
278                 zram->stats.pages_zero++;
279                 zram_set_flag(zram, index, ZRAM_ZERO);
280                 ret = 0;
281                 goto out;
282         }
283
284         ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
285                                zram->compress_workmem);
286
287         if (!is_partial_io(bvec)) {
288                 kunmap_atomic(user_mem);
289                 user_mem = NULL;
290                 uncmem = NULL;
291         }
292
293         if (unlikely(ret != LZO_E_OK)) {
294                 pr_err("Compression failed! err=%d\n", ret);
295                 goto out;
296         }
297
298         if (unlikely(clen > max_zpage_size)) {
299                 zram->stats.bad_compress++;
300                 clen = PAGE_SIZE;
301                 src = NULL;
302                 if (is_partial_io(bvec))
303                         src = uncmem;
304         }
305
306         handle = zs_malloc(zram->mem_pool, clen);
307         if (!handle) {
308                 pr_info("Error allocating memory for compressed "
309                         "page: %u, size=%zu\n", index, clen);
310                 ret = -ENOMEM;
311                 goto out;
312         }
313         cmem = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
314
315         if ((clen == PAGE_SIZE) && !is_partial_io(bvec))
316                 src = kmap_atomic(page);
317         memcpy(cmem, src, clen);
318         if ((clen == PAGE_SIZE) && !is_partial_io(bvec))
319                 kunmap_atomic(src);
320
321         zs_unmap_object(zram->mem_pool, handle);
322
323         zram->table[index].handle = handle;
324         zram->table[index].size = clen;
325
326         /* Update stats */
327         zram_stat64_add(zram, &zram->stats.compr_size, clen);
328         zram->stats.pages_stored++;
329         if (clen <= PAGE_SIZE / 2)
330                 zram->stats.good_compress++;
331
332 out:
333         if (is_partial_io(bvec))
334                 kfree(uncmem);
335
336         if (ret)
337                 zram_stat64_inc(zram, &zram->stats.failed_writes);
338         return ret;
339 }
340
341 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
342                         int offset, struct bio *bio, int rw)
343 {
344         int ret;
345
346         if (rw == READ) {
347                 down_read(&zram->lock);
348                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
349                 up_read(&zram->lock);
350         } else {
351                 down_write(&zram->lock);
352                 ret = zram_bvec_write(zram, bvec, index, offset);
353                 up_write(&zram->lock);
354         }
355
356         return ret;
357 }
358
359 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
360 {
361         if (*offset + bvec->bv_len >= PAGE_SIZE)
362                 (*index)++;
363         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
364 }
365
366 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
367 {
368         int i, offset;
369         u32 index;
370         struct bio_vec *bvec;
371
372         switch (rw) {
373         case READ:
374                 zram_stat64_inc(zram, &zram->stats.num_reads);
375                 break;
376         case WRITE:
377                 zram_stat64_inc(zram, &zram->stats.num_writes);
378                 break;
379         }
380
381         index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
382         offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
383
384         bio_for_each_segment(bvec, bio, i) {
385                 int max_transfer_size = PAGE_SIZE - offset;
386
387                 if (bvec->bv_len > max_transfer_size) {
388                         /*
389                          * zram_bvec_rw() can only make operation on a single
390                          * zram page. Split the bio vector.
391                          */
392                         struct bio_vec bv;
393
394                         bv.bv_page = bvec->bv_page;
395                         bv.bv_len = max_transfer_size;
396                         bv.bv_offset = bvec->bv_offset;
397
398                         if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
399                                 goto out;
400
401                         bv.bv_len = bvec->bv_len - max_transfer_size;
402                         bv.bv_offset += max_transfer_size;
403                         if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
404                                 goto out;
405                 } else
406                         if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
407                             < 0)
408                                 goto out;
409
410                 update_position(&index, &offset, bvec);
411         }
412
413         set_bit(BIO_UPTODATE, &bio->bi_flags);
414         bio_endio(bio, 0);
415         return;
416
417 out:
418         bio_io_error(bio);
419 }
420
421 /*
422  * Check if request is within bounds and aligned on zram logical blocks.
423  */
424 static inline int valid_io_request(struct zram *zram, struct bio *bio)
425 {
426         if (unlikely(
427                 (bio->bi_sector >= (zram->disksize >> SECTOR_SHIFT)) ||
428                 (bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)) ||
429                 (bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))) {
430
431                 return 0;
432         }
433
434         /* I/O request is valid */
435         return 1;
436 }
437
438 /*
439  * Handler function for all zram I/O requests.
440  */
441 static void zram_make_request(struct request_queue *queue, struct bio *bio)
442 {
443         struct zram *zram = queue->queuedata;
444
445         down_read(&zram->init_lock);
446         if (unlikely(!zram->init_done))
447                 goto error;
448
449         if (!valid_io_request(zram, bio)) {
450                 zram_stat64_inc(zram, &zram->stats.invalid_io);
451                 goto error;
452         }
453
454         __zram_make_request(zram, bio, bio_data_dir(bio));
455         up_read(&zram->init_lock);
456
457         return;
458
459 error:
460         up_read(&zram->init_lock);
461         bio_io_error(bio);
462 }
463
464 void __zram_reset_device(struct zram *zram)
465 {
466         size_t index;
467
468         if (!zram->init_done)
469                 return;
470
471         zram->init_done = 0;
472
473         /* Free various per-device buffers */
474         kfree(zram->compress_workmem);
475         free_pages((unsigned long)zram->compress_buffer, 1);
476
477         zram->compress_workmem = NULL;
478         zram->compress_buffer = NULL;
479
480         /* Free all pages that are still in this zram device */
481         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
482                 unsigned long handle = zram->table[index].handle;
483                 if (!handle)
484                         continue;
485
486                 zs_free(zram->mem_pool, handle);
487         }
488
489         vfree(zram->table);
490         zram->table = NULL;
491
492         zs_destroy_pool(zram->mem_pool);
493         zram->mem_pool = NULL;
494
495         /* Reset stats */
496         memset(&zram->stats, 0, sizeof(zram->stats));
497
498         zram->disksize = 0;
499         set_capacity(zram->disk, 0);
500 }
501
502 void zram_reset_device(struct zram *zram)
503 {
504         down_write(&zram->init_lock);
505         __zram_reset_device(zram);
506         up_write(&zram->init_lock);
507 }
508
509 /* zram->init_lock should be held */
510 int zram_init_device(struct zram *zram)
511 {
512         int ret;
513         size_t num_pages;
514
515         if (zram->disksize > 2 * (totalram_pages << PAGE_SHIFT)) {
516                 pr_info(
517                 "There is little point creating a zram of greater than "
518                 "twice the size of memory since we expect a 2:1 compression "
519                 "ratio. Note that zram uses about 0.1%% of the size of "
520                 "the disk when not in use so a huge zram is "
521                 "wasteful.\n"
522                 "\tMemory Size: %lu kB\n"
523                 "\tSize you selected: %llu kB\n"
524                 "Continuing anyway ...\n",
525                 (totalram_pages << PAGE_SHIFT) >> 10, zram->disksize >> 10
526                 );
527         }
528
529         zram->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
530         if (!zram->compress_workmem) {
531                 pr_err("Error allocating compressor working memory!\n");
532                 ret = -ENOMEM;
533                 goto fail_no_table;
534         }
535
536         zram->compress_buffer =
537                 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
538         if (!zram->compress_buffer) {
539                 pr_err("Error allocating compressor buffer space\n");
540                 ret = -ENOMEM;
541                 goto fail_no_table;
542         }
543
544         num_pages = zram->disksize >> PAGE_SHIFT;
545         zram->table = vzalloc(num_pages * sizeof(*zram->table));
546         if (!zram->table) {
547                 pr_err("Error allocating zram address table\n");
548                 ret = -ENOMEM;
549                 goto fail_no_table;
550         }
551
552         /* zram devices sort of resembles non-rotational disks */
553         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
554
555         zram->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
556         if (!zram->mem_pool) {
557                 pr_err("Error creating memory pool\n");
558                 ret = -ENOMEM;
559                 goto fail;
560         }
561
562         zram->init_done = 1;
563
564         pr_debug("Initialization done!\n");
565         return 0;
566
567 fail_no_table:
568         /* To prevent accessing table entries during cleanup */
569         zram->disksize = 0;
570 fail:
571         __zram_reset_device(zram);
572         pr_err("Initialization failed: err=%d\n", ret);
573         return ret;
574 }
575
576 static void zram_slot_free_notify(struct block_device *bdev,
577                                 unsigned long index)
578 {
579         struct zram *zram;
580
581         zram = bdev->bd_disk->private_data;
582         zram_free_page(zram, index);
583         zram_stat64_inc(zram, &zram->stats.notify_free);
584 }
585
586 static const struct block_device_operations zram_devops = {
587         .swap_slot_free_notify = zram_slot_free_notify,
588         .owner = THIS_MODULE
589 };
590
591 static int create_device(struct zram *zram, int device_id)
592 {
593         int ret = 0;
594
595         init_rwsem(&zram->lock);
596         init_rwsem(&zram->init_lock);
597         spin_lock_init(&zram->stat64_lock);
598
599         zram->queue = blk_alloc_queue(GFP_KERNEL);
600         if (!zram->queue) {
601                 pr_err("Error allocating disk queue for device %d\n",
602                         device_id);
603                 ret = -ENOMEM;
604                 goto out;
605         }
606
607         blk_queue_make_request(zram->queue, zram_make_request);
608         zram->queue->queuedata = zram;
609
610          /* gendisk structure */
611         zram->disk = alloc_disk(1);
612         if (!zram->disk) {
613                 blk_cleanup_queue(zram->queue);
614                 pr_warn("Error allocating disk structure for device %d\n",
615                         device_id);
616                 ret = -ENOMEM;
617                 goto out;
618         }
619
620         zram->disk->major = zram_major;
621         zram->disk->first_minor = device_id;
622         zram->disk->fops = &zram_devops;
623         zram->disk->queue = zram->queue;
624         zram->disk->private_data = zram;
625         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
626
627         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
628         set_capacity(zram->disk, 0);
629
630         /*
631          * To ensure that we always get PAGE_SIZE aligned
632          * and n*PAGE_SIZED sized I/O requests.
633          */
634         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
635         blk_queue_logical_block_size(zram->disk->queue,
636                                         ZRAM_LOGICAL_BLOCK_SIZE);
637         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
638         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
639
640         add_disk(zram->disk);
641
642         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
643                                 &zram_disk_attr_group);
644         if (ret < 0) {
645                 pr_warn("Error creating sysfs group");
646                 goto out;
647         }
648
649         zram->init_done = 0;
650
651 out:
652         return ret;
653 }
654
655 static void destroy_device(struct zram *zram)
656 {
657         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
658                         &zram_disk_attr_group);
659
660         if (zram->disk) {
661                 del_gendisk(zram->disk);
662                 put_disk(zram->disk);
663         }
664
665         if (zram->queue)
666                 blk_cleanup_queue(zram->queue);
667 }
668
669 unsigned int zram_get_num_devices(void)
670 {
671         return num_devices;
672 }
673
674 static int __init zram_init(void)
675 {
676         int ret, dev_id;
677
678         if (num_devices > max_num_devices) {
679                 pr_warn("Invalid value for num_devices: %u\n",
680                                 num_devices);
681                 ret = -EINVAL;
682                 goto out;
683         }
684
685         zram_major = register_blkdev(0, "zram");
686         if (zram_major <= 0) {
687                 pr_warn("Unable to get major number\n");
688                 ret = -EBUSY;
689                 goto out;
690         }
691
692         /* Allocate the device array and initialize each one */
693         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
694         if (!zram_devices) {
695                 ret = -ENOMEM;
696                 goto unregister;
697         }
698
699         for (dev_id = 0; dev_id < num_devices; dev_id++) {
700                 ret = create_device(&zram_devices[dev_id], dev_id);
701                 if (ret)
702                         goto free_devices;
703         }
704
705         pr_info("Created %u device(s) ...\n", num_devices);
706
707         return 0;
708
709 free_devices:
710         while (dev_id)
711                 destroy_device(&zram_devices[--dev_id]);
712         kfree(zram_devices);
713 unregister:
714         unregister_blkdev(zram_major, "zram");
715 out:
716         return ret;
717 }
718
719 static void __exit zram_exit(void)
720 {
721         int i;
722         struct zram *zram;
723
724         for (i = 0; i < num_devices; i++) {
725                 zram = &zram_devices[i];
726
727                 destroy_device(zram);
728                 zram_reset_device(zram);
729         }
730
731         unregister_blkdev(zram_major, "zram");
732
733         kfree(zram_devices);
734         pr_debug("Cleanup done!\n");
735 }
736
737 module_param(num_devices, uint, 0);
738 MODULE_PARM_DESC(num_devices, "Number of zram devices");
739
740 module_init(zram_init);
741 module_exit(zram_exit);
742
743 MODULE_LICENSE("Dual BSD/GPL");
744 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
745 MODULE_DESCRIPTION("Compressed RAM Block Device");