Merge tag 'mmc-fixes-for-3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/cjb/mmc
[cascardo/linux.git] / drivers / staging / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *
6  * This code is released using a dual license strategy: BSD/GPL
7  * You can choose the licence that better fits your requirements.
8  *
9  * Released under the terms of 3-clause BSD License
10  * Released under the terms of GNU General Public License Version 2.0
11  *
12  * Project home: http://compcache.googlecode.com
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices;
44
45 static void zram_stat_inc(u32 *v)
46 {
47         *v = *v + 1;
48 }
49
50 static void zram_stat_dec(u32 *v)
51 {
52         *v = *v - 1;
53 }
54
55 static void zram_stat64_add(struct zram *zram, u64 *v, u64 inc)
56 {
57         spin_lock(&zram->stat64_lock);
58         *v = *v + inc;
59         spin_unlock(&zram->stat64_lock);
60 }
61
62 static void zram_stat64_sub(struct zram *zram, u64 *v, u64 dec)
63 {
64         spin_lock(&zram->stat64_lock);
65         *v = *v - dec;
66         spin_unlock(&zram->stat64_lock);
67 }
68
69 static void zram_stat64_inc(struct zram *zram, u64 *v)
70 {
71         zram_stat64_add(zram, v, 1);
72 }
73
74 static int zram_test_flag(struct zram *zram, u32 index,
75                         enum zram_pageflags flag)
76 {
77         return zram->table[index].flags & BIT(flag);
78 }
79
80 static void zram_set_flag(struct zram *zram, u32 index,
81                         enum zram_pageflags flag)
82 {
83         zram->table[index].flags |= BIT(flag);
84 }
85
86 static void zram_clear_flag(struct zram *zram, u32 index,
87                         enum zram_pageflags flag)
88 {
89         zram->table[index].flags &= ~BIT(flag);
90 }
91
92 static int page_zero_filled(void *ptr)
93 {
94         unsigned int pos;
95         unsigned long *page;
96
97         page = (unsigned long *)ptr;
98
99         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
100                 if (page[pos])
101                         return 0;
102         }
103
104         return 1;
105 }
106
107 static void zram_set_disksize(struct zram *zram, size_t totalram_bytes)
108 {
109         if (!zram->disksize) {
110                 pr_info(
111                 "disk size not provided. You can use disksize_kb module "
112                 "param to specify size.\nUsing default: (%u%% of RAM).\n",
113                 default_disksize_perc_ram
114                 );
115                 zram->disksize = default_disksize_perc_ram *
116                                         (totalram_bytes / 100);
117         }
118
119         if (zram->disksize > 2 * (totalram_bytes)) {
120                 pr_info(
121                 "There is little point creating a zram of greater than "
122                 "twice the size of memory since we expect a 2:1 compression "
123                 "ratio. Note that zram uses about 0.1%% of the size of "
124                 "the disk when not in use so a huge zram is "
125                 "wasteful.\n"
126                 "\tMemory Size: %zu kB\n"
127                 "\tSize you selected: %llu kB\n"
128                 "Continuing anyway ...\n",
129                 totalram_bytes >> 10, zram->disksize
130                 );
131         }
132
133         zram->disksize &= PAGE_MASK;
134 }
135
136 static void zram_free_page(struct zram *zram, size_t index)
137 {
138         unsigned long handle = zram->table[index].handle;
139         u16 size = zram->table[index].size;
140
141         if (unlikely(!handle)) {
142                 /*
143                  * No memory is allocated for zero filled pages.
144                  * Simply clear zero page flag.
145                  */
146                 if (zram_test_flag(zram, index, ZRAM_ZERO)) {
147                         zram_clear_flag(zram, index, ZRAM_ZERO);
148                         zram_stat_dec(&zram->stats.pages_zero);
149                 }
150                 return;
151         }
152
153         if (unlikely(size > max_zpage_size))
154                 zram_stat_dec(&zram->stats.bad_compress);
155
156         zs_free(zram->mem_pool, handle);
157
158         if (size <= PAGE_SIZE / 2)
159                 zram_stat_dec(&zram->stats.good_compress);
160
161         zram_stat64_sub(zram, &zram->stats.compr_size,
162                         zram->table[index].size);
163         zram_stat_dec(&zram->stats.pages_stored);
164
165         zram->table[index].handle = 0;
166         zram->table[index].size = 0;
167 }
168
169 static void handle_zero_page(struct bio_vec *bvec)
170 {
171         struct page *page = bvec->bv_page;
172         void *user_mem;
173
174         user_mem = kmap_atomic(page);
175         memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
176         kunmap_atomic(user_mem);
177
178         flush_dcache_page(page);
179 }
180
181 static inline int is_partial_io(struct bio_vec *bvec)
182 {
183         return bvec->bv_len != PAGE_SIZE;
184 }
185
186 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
187                           u32 index, int offset, struct bio *bio)
188 {
189         int ret;
190         size_t clen;
191         struct page *page;
192         unsigned char *user_mem, *cmem, *uncmem = NULL;
193
194         page = bvec->bv_page;
195
196         if (zram_test_flag(zram, index, ZRAM_ZERO)) {
197                 handle_zero_page(bvec);
198                 return 0;
199         }
200
201         /* Requested page is not present in compressed area */
202         if (unlikely(!zram->table[index].handle)) {
203                 pr_debug("Read before write: sector=%lu, size=%u",
204                          (ulong)(bio->bi_sector), bio->bi_size);
205                 handle_zero_page(bvec);
206                 return 0;
207         }
208
209         if (is_partial_io(bvec)) {
210                 /* Use  a temporary buffer to decompress the page */
211                 uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
212                 if (!uncmem) {
213                         pr_info("Error allocating temp memory!\n");
214                         return -ENOMEM;
215                 }
216         }
217
218         user_mem = kmap_atomic(page);
219         if (!is_partial_io(bvec))
220                 uncmem = user_mem;
221         clen = PAGE_SIZE;
222
223         cmem = zs_map_object(zram->mem_pool, zram->table[index].handle,
224                                 ZS_MM_RO);
225
226         if (zram->table[index].size == PAGE_SIZE) {
227                 memcpy(uncmem, cmem, PAGE_SIZE);
228                 ret = LZO_E_OK;
229         } else {
230                 ret = lzo1x_decompress_safe(cmem, zram->table[index].size,
231                                     uncmem, &clen);
232         }
233
234         if (is_partial_io(bvec)) {
235                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
236                        bvec->bv_len);
237                 kfree(uncmem);
238         }
239
240         zs_unmap_object(zram->mem_pool, zram->table[index].handle);
241         kunmap_atomic(user_mem);
242
243         /* Should NEVER happen. Return bio error if it does. */
244         if (unlikely(ret != LZO_E_OK)) {
245                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
246                 zram_stat64_inc(zram, &zram->stats.failed_reads);
247                 return ret;
248         }
249
250         flush_dcache_page(page);
251
252         return 0;
253 }
254
255 static int zram_read_before_write(struct zram *zram, char *mem, u32 index)
256 {
257         int ret;
258         size_t clen = PAGE_SIZE;
259         unsigned char *cmem;
260         unsigned long handle = zram->table[index].handle;
261
262         if (zram_test_flag(zram, index, ZRAM_ZERO) || !handle) {
263                 memset(mem, 0, PAGE_SIZE);
264                 return 0;
265         }
266
267         cmem = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
268         ret = lzo1x_decompress_safe(cmem, zram->table[index].size,
269                                     mem, &clen);
270         zs_unmap_object(zram->mem_pool, handle);
271
272         /* Should NEVER happen. Return bio error if it does. */
273         if (unlikely(ret != LZO_E_OK)) {
274                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
275                 zram_stat64_inc(zram, &zram->stats.failed_reads);
276                 return ret;
277         }
278
279         return 0;
280 }
281
282 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
283                            int offset)
284 {
285         int ret;
286         size_t clen;
287         unsigned long handle;
288         struct page *page;
289         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
290
291         page = bvec->bv_page;
292         src = zram->compress_buffer;
293
294         if (is_partial_io(bvec)) {
295                 /*
296                  * This is a partial IO. We need to read the full page
297                  * before to write the changes.
298                  */
299                 uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
300                 if (!uncmem) {
301                         pr_info("Error allocating temp memory!\n");
302                         ret = -ENOMEM;
303                         goto out;
304                 }
305                 ret = zram_read_before_write(zram, uncmem, index);
306                 if (ret) {
307                         kfree(uncmem);
308                         goto out;
309                 }
310         }
311
312         /*
313          * System overwrites unused sectors. Free memory associated
314          * with this sector now.
315          */
316         if (zram->table[index].handle ||
317             zram_test_flag(zram, index, ZRAM_ZERO))
318                 zram_free_page(zram, index);
319
320         user_mem = kmap_atomic(page);
321
322         if (is_partial_io(bvec))
323                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
324                        bvec->bv_len);
325         else
326                 uncmem = user_mem;
327
328         if (page_zero_filled(uncmem)) {
329                 kunmap_atomic(user_mem);
330                 if (is_partial_io(bvec))
331                         kfree(uncmem);
332                 zram_stat_inc(&zram->stats.pages_zero);
333                 zram_set_flag(zram, index, ZRAM_ZERO);
334                 ret = 0;
335                 goto out;
336         }
337
338         ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
339                                zram->compress_workmem);
340
341         kunmap_atomic(user_mem);
342         if (is_partial_io(bvec))
343                         kfree(uncmem);
344
345         if (unlikely(ret != LZO_E_OK)) {
346                 pr_err("Compression failed! err=%d\n", ret);
347                 goto out;
348         }
349
350         if (unlikely(clen > max_zpage_size)) {
351                 zram_stat_inc(&zram->stats.bad_compress);
352                 src = uncmem;
353                 clen = PAGE_SIZE;
354         }
355
356         handle = zs_malloc(zram->mem_pool, clen);
357         if (!handle) {
358                 pr_info("Error allocating memory for compressed "
359                         "page: %u, size=%zu\n", index, clen);
360                 ret = -ENOMEM;
361                 goto out;
362         }
363         cmem = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
364
365         memcpy(cmem, src, clen);
366
367         zs_unmap_object(zram->mem_pool, handle);
368
369         zram->table[index].handle = handle;
370         zram->table[index].size = clen;
371
372         /* Update stats */
373         zram_stat64_add(zram, &zram->stats.compr_size, clen);
374         zram_stat_inc(&zram->stats.pages_stored);
375         if (clen <= PAGE_SIZE / 2)
376                 zram_stat_inc(&zram->stats.good_compress);
377
378         return 0;
379
380 out:
381         if (ret)
382                 zram_stat64_inc(zram, &zram->stats.failed_writes);
383         return ret;
384 }
385
386 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
387                         int offset, struct bio *bio, int rw)
388 {
389         int ret;
390
391         if (rw == READ) {
392                 down_read(&zram->lock);
393                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
394                 up_read(&zram->lock);
395         } else {
396                 down_write(&zram->lock);
397                 ret = zram_bvec_write(zram, bvec, index, offset);
398                 up_write(&zram->lock);
399         }
400
401         return ret;
402 }
403
404 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
405 {
406         if (*offset + bvec->bv_len >= PAGE_SIZE)
407                 (*index)++;
408         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
409 }
410
411 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
412 {
413         int i, offset;
414         u32 index;
415         struct bio_vec *bvec;
416
417         switch (rw) {
418         case READ:
419                 zram_stat64_inc(zram, &zram->stats.num_reads);
420                 break;
421         case WRITE:
422                 zram_stat64_inc(zram, &zram->stats.num_writes);
423                 break;
424         }
425
426         index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
427         offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
428
429         bio_for_each_segment(bvec, bio, i) {
430                 int max_transfer_size = PAGE_SIZE - offset;
431
432                 if (bvec->bv_len > max_transfer_size) {
433                         /*
434                          * zram_bvec_rw() can only make operation on a single
435                          * zram page. Split the bio vector.
436                          */
437                         struct bio_vec bv;
438
439                         bv.bv_page = bvec->bv_page;
440                         bv.bv_len = max_transfer_size;
441                         bv.bv_offset = bvec->bv_offset;
442
443                         if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
444                                 goto out;
445
446                         bv.bv_len = bvec->bv_len - max_transfer_size;
447                         bv.bv_offset += max_transfer_size;
448                         if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
449                                 goto out;
450                 } else
451                         if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
452                             < 0)
453                                 goto out;
454
455                 update_position(&index, &offset, bvec);
456         }
457
458         set_bit(BIO_UPTODATE, &bio->bi_flags);
459         bio_endio(bio, 0);
460         return;
461
462 out:
463         bio_io_error(bio);
464 }
465
466 /*
467  * Check if request is within bounds and aligned on zram logical blocks.
468  */
469 static inline int valid_io_request(struct zram *zram, struct bio *bio)
470 {
471         if (unlikely(
472                 (bio->bi_sector >= (zram->disksize >> SECTOR_SHIFT)) ||
473                 (bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)) ||
474                 (bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))) {
475
476                 return 0;
477         }
478
479         /* I/O request is valid */
480         return 1;
481 }
482
483 /*
484  * Handler function for all zram I/O requests.
485  */
486 static void zram_make_request(struct request_queue *queue, struct bio *bio)
487 {
488         struct zram *zram = queue->queuedata;
489
490         if (unlikely(!zram->init_done) && zram_init_device(zram))
491                 goto error;
492
493         down_read(&zram->init_lock);
494         if (unlikely(!zram->init_done))
495                 goto error_unlock;
496
497         if (!valid_io_request(zram, bio)) {
498                 zram_stat64_inc(zram, &zram->stats.invalid_io);
499                 goto error_unlock;
500         }
501
502         __zram_make_request(zram, bio, bio_data_dir(bio));
503         up_read(&zram->init_lock);
504
505         return;
506
507 error_unlock:
508         up_read(&zram->init_lock);
509 error:
510         bio_io_error(bio);
511 }
512
513 void __zram_reset_device(struct zram *zram)
514 {
515         size_t index;
516
517         zram->init_done = 0;
518
519         /* Free various per-device buffers */
520         kfree(zram->compress_workmem);
521         free_pages((unsigned long)zram->compress_buffer, 1);
522
523         zram->compress_workmem = NULL;
524         zram->compress_buffer = NULL;
525
526         /* Free all pages that are still in this zram device */
527         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
528                 unsigned long handle = zram->table[index].handle;
529                 if (!handle)
530                         continue;
531
532                 zs_free(zram->mem_pool, handle);
533         }
534
535         vfree(zram->table);
536         zram->table = NULL;
537
538         zs_destroy_pool(zram->mem_pool);
539         zram->mem_pool = NULL;
540
541         /* Reset stats */
542         memset(&zram->stats, 0, sizeof(zram->stats));
543
544         zram->disksize = 0;
545 }
546
547 void zram_reset_device(struct zram *zram)
548 {
549         down_write(&zram->init_lock);
550         __zram_reset_device(zram);
551         up_write(&zram->init_lock);
552 }
553
554 int zram_init_device(struct zram *zram)
555 {
556         int ret;
557         size_t num_pages;
558
559         down_write(&zram->init_lock);
560
561         if (zram->init_done) {
562                 up_write(&zram->init_lock);
563                 return 0;
564         }
565
566         zram_set_disksize(zram, totalram_pages << PAGE_SHIFT);
567
568         zram->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
569         if (!zram->compress_workmem) {
570                 pr_err("Error allocating compressor working memory!\n");
571                 ret = -ENOMEM;
572                 goto fail_no_table;
573         }
574
575         zram->compress_buffer =
576                 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
577         if (!zram->compress_buffer) {
578                 pr_err("Error allocating compressor buffer space\n");
579                 ret = -ENOMEM;
580                 goto fail_no_table;
581         }
582
583         num_pages = zram->disksize >> PAGE_SHIFT;
584         zram->table = vzalloc(num_pages * sizeof(*zram->table));
585         if (!zram->table) {
586                 pr_err("Error allocating zram address table\n");
587                 ret = -ENOMEM;
588                 goto fail_no_table;
589         }
590
591         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
592
593         /* zram devices sort of resembles non-rotational disks */
594         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
595
596         zram->mem_pool = zs_create_pool("zram", GFP_NOIO | __GFP_HIGHMEM);
597         if (!zram->mem_pool) {
598                 pr_err("Error creating memory pool\n");
599                 ret = -ENOMEM;
600                 goto fail;
601         }
602
603         zram->init_done = 1;
604         up_write(&zram->init_lock);
605
606         pr_debug("Initialization done!\n");
607         return 0;
608
609 fail_no_table:
610         /* To prevent accessing table entries during cleanup */
611         zram->disksize = 0;
612 fail:
613         __zram_reset_device(zram);
614         up_write(&zram->init_lock);
615         pr_err("Initialization failed: err=%d\n", ret);
616         return ret;
617 }
618
619 static void zram_slot_free_notify(struct block_device *bdev,
620                                 unsigned long index)
621 {
622         struct zram *zram;
623
624         zram = bdev->bd_disk->private_data;
625         zram_free_page(zram, index);
626         zram_stat64_inc(zram, &zram->stats.notify_free);
627 }
628
629 static const struct block_device_operations zram_devops = {
630         .swap_slot_free_notify = zram_slot_free_notify,
631         .owner = THIS_MODULE
632 };
633
634 static int create_device(struct zram *zram, int device_id)
635 {
636         int ret = 0;
637
638         init_rwsem(&zram->lock);
639         init_rwsem(&zram->init_lock);
640         spin_lock_init(&zram->stat64_lock);
641
642         zram->queue = blk_alloc_queue(GFP_KERNEL);
643         if (!zram->queue) {
644                 pr_err("Error allocating disk queue for device %d\n",
645                         device_id);
646                 ret = -ENOMEM;
647                 goto out;
648         }
649
650         blk_queue_make_request(zram->queue, zram_make_request);
651         zram->queue->queuedata = zram;
652
653          /* gendisk structure */
654         zram->disk = alloc_disk(1);
655         if (!zram->disk) {
656                 blk_cleanup_queue(zram->queue);
657                 pr_warn("Error allocating disk structure for device %d\n",
658                         device_id);
659                 ret = -ENOMEM;
660                 goto out;
661         }
662
663         zram->disk->major = zram_major;
664         zram->disk->first_minor = device_id;
665         zram->disk->fops = &zram_devops;
666         zram->disk->queue = zram->queue;
667         zram->disk->private_data = zram;
668         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
669
670         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
671         set_capacity(zram->disk, 0);
672
673         /*
674          * To ensure that we always get PAGE_SIZE aligned
675          * and n*PAGE_SIZED sized I/O requests.
676          */
677         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
678         blk_queue_logical_block_size(zram->disk->queue,
679                                         ZRAM_LOGICAL_BLOCK_SIZE);
680         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
681         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
682
683         add_disk(zram->disk);
684
685         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
686                                 &zram_disk_attr_group);
687         if (ret < 0) {
688                 pr_warn("Error creating sysfs group");
689                 goto out;
690         }
691
692         zram->init_done = 0;
693
694 out:
695         return ret;
696 }
697
698 static void destroy_device(struct zram *zram)
699 {
700         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
701                         &zram_disk_attr_group);
702
703         if (zram->disk) {
704                 del_gendisk(zram->disk);
705                 put_disk(zram->disk);
706         }
707
708         if (zram->queue)
709                 blk_cleanup_queue(zram->queue);
710 }
711
712 unsigned int zram_get_num_devices(void)
713 {
714         return num_devices;
715 }
716
717 static int __init zram_init(void)
718 {
719         int ret, dev_id;
720
721         if (num_devices > max_num_devices) {
722                 pr_warn("Invalid value for num_devices: %u\n",
723                                 num_devices);
724                 ret = -EINVAL;
725                 goto out;
726         }
727
728         zram_major = register_blkdev(0, "zram");
729         if (zram_major <= 0) {
730                 pr_warn("Unable to get major number\n");
731                 ret = -EBUSY;
732                 goto out;
733         }
734
735         if (!num_devices) {
736                 pr_info("num_devices not specified. Using default: 1\n");
737                 num_devices = 1;
738         }
739
740         /* Allocate the device array and initialize each one */
741         pr_info("Creating %u devices ...\n", num_devices);
742         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
743         if (!zram_devices) {
744                 ret = -ENOMEM;
745                 goto unregister;
746         }
747
748         for (dev_id = 0; dev_id < num_devices; dev_id++) {
749                 ret = create_device(&zram_devices[dev_id], dev_id);
750                 if (ret)
751                         goto free_devices;
752         }
753
754         return 0;
755
756 free_devices:
757         while (dev_id)
758                 destroy_device(&zram_devices[--dev_id]);
759         kfree(zram_devices);
760 unregister:
761         unregister_blkdev(zram_major, "zram");
762 out:
763         return ret;
764 }
765
766 static void __exit zram_exit(void)
767 {
768         int i;
769         struct zram *zram;
770
771         for (i = 0; i < num_devices; i++) {
772                 zram = &zram_devices[i];
773
774                 destroy_device(zram);
775                 if (zram->init_done)
776                         zram_reset_device(zram);
777         }
778
779         unregister_blkdev(zram_major, "zram");
780
781         kfree(zram_devices);
782         pr_debug("Cleanup done!\n");
783 }
784
785 module_param(num_devices, uint, 0);
786 MODULE_PARM_DESC(num_devices, "Number of zram devices");
787
788 module_init(zram_init);
789 module_exit(zram_exit);
790
791 MODULE_LICENSE("Dual BSD/GPL");
792 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
793 MODULE_DESCRIPTION("Compressed RAM Block Device");