Merge remote-tracking branches 'regulator/topic/88pm800', 'regulator/topic/ad5398...
[cascardo/linux.git] / drivers / thermal / power_allocator.c
1 /*
2  * A power allocator to manage temperature
3  *
4  * Copyright (C) 2014 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  */
15
16 #define pr_fmt(fmt) "Power allocator: " fmt
17
18 #include <linux/rculist.h>
19 #include <linux/slab.h>
20 #include <linux/thermal.h>
21
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/thermal_power_allocator.h>
24
25 #include "thermal_core.h"
26
27 #define FRAC_BITS 10
28 #define int_to_frac(x) ((x) << FRAC_BITS)
29 #define frac_to_int(x) ((x) >> FRAC_BITS)
30
31 /**
32  * mul_frac() - multiply two fixed-point numbers
33  * @x:  first multiplicand
34  * @y:  second multiplicand
35  *
36  * Return: the result of multiplying two fixed-point numbers.  The
37  * result is also a fixed-point number.
38  */
39 static inline s64 mul_frac(s64 x, s64 y)
40 {
41         return (x * y) >> FRAC_BITS;
42 }
43
44 /**
45  * div_frac() - divide two fixed-point numbers
46  * @x:  the dividend
47  * @y:  the divisor
48  *
49  * Return: the result of dividing two fixed-point numbers.  The
50  * result is also a fixed-point number.
51  */
52 static inline s64 div_frac(s64 x, s64 y)
53 {
54         return div_s64(x << FRAC_BITS, y);
55 }
56
57 /**
58  * struct power_allocator_params - parameters for the power allocator governor
59  * @err_integral:       accumulated error in the PID controller.
60  * @prev_err:   error in the previous iteration of the PID controller.
61  *              Used to calculate the derivative term.
62  * @trip_switch_on:     first passive trip point of the thermal zone.  The
63  *                      governor switches on when this trip point is crossed.
64  * @trip_max_desired_temperature:       last passive trip point of the thermal
65  *                                      zone.  The temperature we are
66  *                                      controlling for.
67  */
68 struct power_allocator_params {
69         s64 err_integral;
70         s32 prev_err;
71         int trip_switch_on;
72         int trip_max_desired_temperature;
73 };
74
75 /**
76  * pid_controller() - PID controller
77  * @tz: thermal zone we are operating in
78  * @current_temp:       the current temperature in millicelsius
79  * @control_temp:       the target temperature in millicelsius
80  * @max_allocatable_power:      maximum allocatable power for this thermal zone
81  *
82  * This PID controller increases the available power budget so that the
83  * temperature of the thermal zone gets as close as possible to
84  * @control_temp and limits the power if it exceeds it.  k_po is the
85  * proportional term when we are overshooting, k_pu is the
86  * proportional term when we are undershooting.  integral_cutoff is a
87  * threshold below which we stop accumulating the error.  The
88  * accumulated error is only valid if the requested power will make
89  * the system warmer.  If the system is mostly idle, there's no point
90  * in accumulating positive error.
91  *
92  * Return: The power budget for the next period.
93  */
94 static u32 pid_controller(struct thermal_zone_device *tz,
95                           unsigned long current_temp,
96                           unsigned long control_temp,
97                           u32 max_allocatable_power)
98 {
99         s64 p, i, d, power_range;
100         s32 err, max_power_frac;
101         struct power_allocator_params *params = tz->governor_data;
102
103         max_power_frac = int_to_frac(max_allocatable_power);
104
105         err = ((s32)control_temp - (s32)current_temp);
106         err = int_to_frac(err);
107
108         /* Calculate the proportional term */
109         p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
110
111         /*
112          * Calculate the integral term
113          *
114          * if the error is less than cut off allow integration (but
115          * the integral is limited to max power)
116          */
117         i = mul_frac(tz->tzp->k_i, params->err_integral);
118
119         if (err < int_to_frac(tz->tzp->integral_cutoff)) {
120                 s64 i_next = i + mul_frac(tz->tzp->k_i, err);
121
122                 if (abs64(i_next) < max_power_frac) {
123                         i = i_next;
124                         params->err_integral += err;
125                 }
126         }
127
128         /*
129          * Calculate the derivative term
130          *
131          * We do err - prev_err, so with a positive k_d, a decreasing
132          * error (i.e. driving closer to the line) results in less
133          * power being applied, slowing down the controller)
134          */
135         d = mul_frac(tz->tzp->k_d, err - params->prev_err);
136         d = div_frac(d, tz->passive_delay);
137         params->prev_err = err;
138
139         power_range = p + i + d;
140
141         /* feed-forward the known sustainable dissipatable power */
142         power_range = tz->tzp->sustainable_power + frac_to_int(power_range);
143
144         power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
145
146         trace_thermal_power_allocator_pid(tz, frac_to_int(err),
147                                           frac_to_int(params->err_integral),
148                                           frac_to_int(p), frac_to_int(i),
149                                           frac_to_int(d), power_range);
150
151         return power_range;
152 }
153
154 /**
155  * divvy_up_power() - divvy the allocated power between the actors
156  * @req_power:  each actor's requested power
157  * @max_power:  each actor's maximum available power
158  * @num_actors: size of the @req_power, @max_power and @granted_power's array
159  * @total_req_power: sum of @req_power
160  * @power_range:        total allocated power
161  * @granted_power:      output array: each actor's granted power
162  * @extra_actor_power:  an appropriately sized array to be used in the
163  *                      function as temporary storage of the extra power given
164  *                      to the actors
165  *
166  * This function divides the total allocated power (@power_range)
167  * fairly between the actors.  It first tries to give each actor a
168  * share of the @power_range according to how much power it requested
169  * compared to the rest of the actors.  For example, if only one actor
170  * requests power, then it receives all the @power_range.  If
171  * three actors each requests 1mW, each receives a third of the
172  * @power_range.
173  *
174  * If any actor received more than their maximum power, then that
175  * surplus is re-divvied among the actors based on how far they are
176  * from their respective maximums.
177  *
178  * Granted power for each actor is written to @granted_power, which
179  * should've been allocated by the calling function.
180  */
181 static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
182                            u32 total_req_power, u32 power_range,
183                            u32 *granted_power, u32 *extra_actor_power)
184 {
185         u32 extra_power, capped_extra_power;
186         int i;
187
188         /*
189          * Prevent division by 0 if none of the actors request power.
190          */
191         if (!total_req_power)
192                 total_req_power = 1;
193
194         capped_extra_power = 0;
195         extra_power = 0;
196         for (i = 0; i < num_actors; i++) {
197                 u64 req_range = req_power[i] * power_range;
198
199                 granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
200                                                          total_req_power);
201
202                 if (granted_power[i] > max_power[i]) {
203                         extra_power += granted_power[i] - max_power[i];
204                         granted_power[i] = max_power[i];
205                 }
206
207                 extra_actor_power[i] = max_power[i] - granted_power[i];
208                 capped_extra_power += extra_actor_power[i];
209         }
210
211         if (!extra_power)
212                 return;
213
214         /*
215          * Re-divvy the reclaimed extra among actors based on
216          * how far they are from the max
217          */
218         extra_power = min(extra_power, capped_extra_power);
219         if (capped_extra_power > 0)
220                 for (i = 0; i < num_actors; i++)
221                         granted_power[i] += (extra_actor_power[i] *
222                                         extra_power) / capped_extra_power;
223 }
224
225 static int allocate_power(struct thermal_zone_device *tz,
226                           unsigned long current_temp,
227                           unsigned long control_temp)
228 {
229         struct thermal_instance *instance;
230         struct power_allocator_params *params = tz->governor_data;
231         u32 *req_power, *max_power, *granted_power, *extra_actor_power;
232         u32 *weighted_req_power;
233         u32 total_req_power, max_allocatable_power, total_weighted_req_power;
234         u32 total_granted_power, power_range;
235         int i, num_actors, total_weight, ret = 0;
236         int trip_max_desired_temperature = params->trip_max_desired_temperature;
237
238         mutex_lock(&tz->lock);
239
240         num_actors = 0;
241         total_weight = 0;
242         list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
243                 if ((instance->trip == trip_max_desired_temperature) &&
244                     cdev_is_power_actor(instance->cdev)) {
245                         num_actors++;
246                         total_weight += instance->weight;
247                 }
248         }
249
250         /*
251          * We need to allocate five arrays of the same size:
252          * req_power, max_power, granted_power, extra_actor_power and
253          * weighted_req_power.  They are going to be needed until this
254          * function returns.  Allocate them all in one go to simplify
255          * the allocation and deallocation logic.
256          */
257         BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
258         BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
259         BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
260         BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
261         req_power = devm_kcalloc(&tz->device, num_actors * 5,
262                                  sizeof(*req_power), GFP_KERNEL);
263         if (!req_power) {
264                 ret = -ENOMEM;
265                 goto unlock;
266         }
267
268         max_power = &req_power[num_actors];
269         granted_power = &req_power[2 * num_actors];
270         extra_actor_power = &req_power[3 * num_actors];
271         weighted_req_power = &req_power[4 * num_actors];
272
273         i = 0;
274         total_weighted_req_power = 0;
275         total_req_power = 0;
276         max_allocatable_power = 0;
277
278         list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
279                 int weight;
280                 struct thermal_cooling_device *cdev = instance->cdev;
281
282                 if (instance->trip != trip_max_desired_temperature)
283                         continue;
284
285                 if (!cdev_is_power_actor(cdev))
286                         continue;
287
288                 if (cdev->ops->get_requested_power(cdev, tz, &req_power[i]))
289                         continue;
290
291                 if (!total_weight)
292                         weight = 1 << FRAC_BITS;
293                 else
294                         weight = instance->weight;
295
296                 weighted_req_power[i] = frac_to_int(weight * req_power[i]);
297
298                 if (power_actor_get_max_power(cdev, tz, &max_power[i]))
299                         continue;
300
301                 total_req_power += req_power[i];
302                 max_allocatable_power += max_power[i];
303                 total_weighted_req_power += weighted_req_power[i];
304
305                 i++;
306         }
307
308         power_range = pid_controller(tz, current_temp, control_temp,
309                                      max_allocatable_power);
310
311         divvy_up_power(weighted_req_power, max_power, num_actors,
312                        total_weighted_req_power, power_range, granted_power,
313                        extra_actor_power);
314
315         total_granted_power = 0;
316         i = 0;
317         list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
318                 if (instance->trip != trip_max_desired_temperature)
319                         continue;
320
321                 if (!cdev_is_power_actor(instance->cdev))
322                         continue;
323
324                 power_actor_set_power(instance->cdev, instance,
325                                       granted_power[i]);
326                 total_granted_power += granted_power[i];
327
328                 i++;
329         }
330
331         trace_thermal_power_allocator(tz, req_power, total_req_power,
332                                       granted_power, total_granted_power,
333                                       num_actors, power_range,
334                                       max_allocatable_power, current_temp,
335                                       (s32)control_temp - (s32)current_temp);
336
337         kfree(req_power);
338 unlock:
339         mutex_unlock(&tz->lock);
340
341         return ret;
342 }
343
344 static int get_governor_trips(struct thermal_zone_device *tz,
345                               struct power_allocator_params *params)
346 {
347         int i, ret, last_passive;
348         bool found_first_passive;
349
350         found_first_passive = false;
351         last_passive = -1;
352         ret = -EINVAL;
353
354         for (i = 0; i < tz->trips; i++) {
355                 enum thermal_trip_type type;
356
357                 ret = tz->ops->get_trip_type(tz, i, &type);
358                 if (ret)
359                         return ret;
360
361                 if (!found_first_passive) {
362                         if (type == THERMAL_TRIP_PASSIVE) {
363                                 params->trip_switch_on = i;
364                                 found_first_passive = true;
365                         }
366                 } else if (type == THERMAL_TRIP_PASSIVE) {
367                         last_passive = i;
368                 } else {
369                         break;
370                 }
371         }
372
373         if (last_passive != -1) {
374                 params->trip_max_desired_temperature = last_passive;
375                 ret = 0;
376         } else {
377                 ret = -EINVAL;
378         }
379
380         return ret;
381 }
382
383 static void reset_pid_controller(struct power_allocator_params *params)
384 {
385         params->err_integral = 0;
386         params->prev_err = 0;
387 }
388
389 static void allow_maximum_power(struct thermal_zone_device *tz)
390 {
391         struct thermal_instance *instance;
392         struct power_allocator_params *params = tz->governor_data;
393
394         list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
395                 if ((instance->trip != params->trip_max_desired_temperature) ||
396                     (!cdev_is_power_actor(instance->cdev)))
397                         continue;
398
399                 instance->target = 0;
400                 instance->cdev->updated = false;
401                 thermal_cdev_update(instance->cdev);
402         }
403 }
404
405 /**
406  * power_allocator_bind() - bind the power_allocator governor to a thermal zone
407  * @tz: thermal zone to bind it to
408  *
409  * Check that the thermal zone is valid for this governor, that is, it
410  * has two thermal trips.  If so, initialize the PID controller
411  * parameters and bind it to the thermal zone.
412  *
413  * Return: 0 on success, -EINVAL if the trips were invalid or -ENOMEM
414  * if we ran out of memory.
415  */
416 static int power_allocator_bind(struct thermal_zone_device *tz)
417 {
418         int ret;
419         struct power_allocator_params *params;
420         unsigned long switch_on_temp, control_temp;
421         u32 temperature_threshold;
422
423         if (!tz->tzp || !tz->tzp->sustainable_power) {
424                 dev_err(&tz->device,
425                         "power_allocator: missing sustainable_power\n");
426                 return -EINVAL;
427         }
428
429         params = kzalloc(sizeof(*params), GFP_KERNEL);
430         if (!params)
431                 return -ENOMEM;
432
433         ret = get_governor_trips(tz, params);
434         if (ret) {
435                 dev_err(&tz->device,
436                         "thermal zone %s has wrong trip setup for power allocator\n",
437                         tz->type);
438                 goto free;
439         }
440
441         ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
442                                      &switch_on_temp);
443         if (ret)
444                 goto free;
445
446         ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
447                                      &control_temp);
448         if (ret)
449                 goto free;
450
451         temperature_threshold = control_temp - switch_on_temp;
452
453         tz->tzp->k_po = tz->tzp->k_po ?:
454                 int_to_frac(tz->tzp->sustainable_power) / temperature_threshold;
455         tz->tzp->k_pu = tz->tzp->k_pu ?:
456                 int_to_frac(2 * tz->tzp->sustainable_power) /
457                 temperature_threshold;
458         tz->tzp->k_i = tz->tzp->k_i ?: int_to_frac(10) / 1000;
459         /*
460          * The default for k_d and integral_cutoff is 0, so we can
461          * leave them as they are.
462          */
463
464         reset_pid_controller(params);
465
466         tz->governor_data = params;
467
468         return 0;
469
470 free:
471         kfree(params);
472         return ret;
473 }
474
475 static void power_allocator_unbind(struct thermal_zone_device *tz)
476 {
477         dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
478         kfree(tz->governor_data);
479         tz->governor_data = NULL;
480 }
481
482 static int power_allocator_throttle(struct thermal_zone_device *tz, int trip)
483 {
484         int ret;
485         unsigned long switch_on_temp, control_temp, current_temp;
486         struct power_allocator_params *params = tz->governor_data;
487
488         /*
489          * We get called for every trip point but we only need to do
490          * our calculations once
491          */
492         if (trip != params->trip_max_desired_temperature)
493                 return 0;
494
495         ret = thermal_zone_get_temp(tz, &current_temp);
496         if (ret) {
497                 dev_warn(&tz->device, "Failed to get temperature: %d\n", ret);
498                 return ret;
499         }
500
501         ret = tz->ops->get_trip_temp(tz, params->trip_switch_on,
502                                      &switch_on_temp);
503         if (ret) {
504                 dev_warn(&tz->device,
505                          "Failed to get switch on temperature: %d\n", ret);
506                 return ret;
507         }
508
509         if (current_temp < switch_on_temp) {
510                 tz->passive = 0;
511                 reset_pid_controller(params);
512                 allow_maximum_power(tz);
513                 return 0;
514         }
515
516         tz->passive = 1;
517
518         ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature,
519                                 &control_temp);
520         if (ret) {
521                 dev_warn(&tz->device,
522                          "Failed to get the maximum desired temperature: %d\n",
523                          ret);
524                 return ret;
525         }
526
527         return allocate_power(tz, current_temp, control_temp);
528 }
529
530 static struct thermal_governor thermal_gov_power_allocator = {
531         .name           = "power_allocator",
532         .bind_to_tz     = power_allocator_bind,
533         .unbind_from_tz = power_allocator_unbind,
534         .throttle       = power_allocator_throttle,
535 };
536
537 int thermal_gov_power_allocator_register(void)
538 {
539         return thermal_register_governor(&thermal_gov_power_allocator);
540 }
541
542 void thermal_gov_power_allocator_unregister(void)
543 {
544         thermal_unregister_governor(&thermal_gov_power_allocator);
545 }