thermal: exynos: cache non_hw_trigger_levels in pdata
[cascardo/linux.git] / drivers / thermal / samsung / exynos_tmu.c
1 /*
2  * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3  *
4  *  Copyright (C) 2011 Samsung Electronics
5  *  Donggeun Kim <dg77.kim@samsung.com>
6  *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23
24 #include <linux/clk.h>
25 #include <linux/io.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/regulator/consumer.h>
33
34 #include "exynos_thermal_common.h"
35 #include "exynos_tmu.h"
36 #include "exynos_tmu_data.h"
37
38 /**
39  * struct exynos_tmu_data : A structure to hold the private data of the TMU
40         driver
41  * @id: identifier of the one instance of the TMU controller.
42  * @pdata: pointer to the tmu platform/configuration data
43  * @base: base address of the single instance of the TMU controller.
44  * @base_second: base address of the common registers of the TMU controller.
45  * @irq: irq number of the TMU controller.
46  * @soc: id of the SOC type.
47  * @irq_work: pointer to the irq work structure.
48  * @lock: lock to implement synchronization.
49  * @clk: pointer to the clock structure.
50  * @clk_sec: pointer to the clock structure for accessing the base_second.
51  * @temp_error1: fused value of the first point trim.
52  * @temp_error2: fused value of the second point trim.
53  * @regulator: pointer to the TMU regulator structure.
54  * @reg_conf: pointer to structure to register with core thermal.
55  */
56 struct exynos_tmu_data {
57         int id;
58         struct exynos_tmu_platform_data *pdata;
59         void __iomem *base;
60         void __iomem *base_second;
61         int irq;
62         enum soc_type soc;
63         struct work_struct irq_work;
64         struct mutex lock;
65         struct clk *clk, *clk_sec;
66         u8 temp_error1, temp_error2;
67         struct regulator *regulator;
68         struct thermal_sensor_conf *reg_conf;
69 };
70
71 /*
72  * TMU treats temperature as a mapped temperature code.
73  * The temperature is converted differently depending on the calibration type.
74  */
75 static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
76 {
77         struct exynos_tmu_platform_data *pdata = data->pdata;
78         int temp_code;
79
80         switch (pdata->cal_type) {
81         case TYPE_TWO_POINT_TRIMMING:
82                 temp_code = (temp - pdata->first_point_trim) *
83                         (data->temp_error2 - data->temp_error1) /
84                         (pdata->second_point_trim - pdata->first_point_trim) +
85                         data->temp_error1;
86                 break;
87         case TYPE_ONE_POINT_TRIMMING:
88                 temp_code = temp + data->temp_error1 - pdata->first_point_trim;
89                 break;
90         default:
91                 temp_code = temp + pdata->default_temp_offset;
92                 break;
93         }
94
95         return temp_code;
96 }
97
98 /*
99  * Calculate a temperature value from a temperature code.
100  * The unit of the temperature is degree Celsius.
101  */
102 static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
103 {
104         struct exynos_tmu_platform_data *pdata = data->pdata;
105         int temp;
106
107         switch (pdata->cal_type) {
108         case TYPE_TWO_POINT_TRIMMING:
109                 temp = (temp_code - data->temp_error1) *
110                         (pdata->second_point_trim - pdata->first_point_trim) /
111                         (data->temp_error2 - data->temp_error1) +
112                         pdata->first_point_trim;
113                 break;
114         case TYPE_ONE_POINT_TRIMMING:
115                 temp = temp_code - data->temp_error1 + pdata->first_point_trim;
116                 break;
117         default:
118                 temp = temp_code - pdata->default_temp_offset;
119                 break;
120         }
121
122         return temp;
123 }
124
125 static int exynos_tmu_initialize(struct platform_device *pdev)
126 {
127         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
128         struct exynos_tmu_platform_data *pdata = data->pdata;
129         const struct exynos_tmu_registers *reg = pdata->registers;
130         unsigned int status, trim_info = 0, con;
131         unsigned int rising_threshold = 0, falling_threshold = 0;
132         int ret = 0, threshold_code, i;
133
134         mutex_lock(&data->lock);
135         clk_enable(data->clk);
136         if (!IS_ERR(data->clk_sec))
137                 clk_enable(data->clk_sec);
138
139         if (TMU_SUPPORTS(pdata, READY_STATUS)) {
140                 status = readb(data->base + reg->tmu_status);
141                 if (!status) {
142                         ret = -EBUSY;
143                         goto out;
144                 }
145         }
146
147         if (TMU_SUPPORTS(pdata, TRIM_RELOAD))
148                 __raw_writel(1, data->base + reg->triminfo_ctrl);
149
150         /* Save trimming info in order to perform calibration */
151         if (data->soc == SOC_ARCH_EXYNOS5440) {
152                 /*
153                  * For exynos5440 soc triminfo value is swapped between TMU0 and
154                  * TMU2, so the below logic is needed.
155                  */
156                 switch (data->id) {
157                 case 0:
158                         trim_info = readl(data->base +
159                         EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
160                         break;
161                 case 1:
162                         trim_info = readl(data->base + reg->triminfo_data);
163                         break;
164                 case 2:
165                         trim_info = readl(data->base -
166                         EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
167                 }
168         } else {
169                 /* On exynos5420 the triminfo register is in the shared space */
170                 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
171                         trim_info = readl(data->base_second +
172                                                         reg->triminfo_data);
173                 else
174                         trim_info = readl(data->base + reg->triminfo_data);
175         }
176         data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
177         data->temp_error2 = ((trim_info >> reg->triminfo_85_shift) &
178                                 EXYNOS_TMU_TEMP_MASK);
179
180         if (!data->temp_error1 ||
181                 (pdata->min_efuse_value > data->temp_error1) ||
182                 (data->temp_error1 > pdata->max_efuse_value))
183                 data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
184
185         if (!data->temp_error2)
186                 data->temp_error2 =
187                         (pdata->efuse_value >> reg->triminfo_85_shift) &
188                         EXYNOS_TMU_TEMP_MASK;
189
190         rising_threshold = readl(data->base + reg->threshold_th0);
191
192         if (data->soc == SOC_ARCH_EXYNOS4210) {
193                 /* Write temperature code for threshold */
194                 threshold_code = temp_to_code(data, pdata->threshold);
195                 writeb(threshold_code,
196                         data->base + reg->threshold_temp);
197                 for (i = 0; i < pdata->non_hw_trigger_levels; i++)
198                         writeb(pdata->trigger_levels[i], data->base +
199                         reg->threshold_th0 + i * sizeof(reg->threshold_th0));
200
201                 writel(reg->intclr_rise_mask, data->base + reg->tmu_intclear);
202         } else {
203                 /* Write temperature code for rising and falling threshold */
204                 for (i = 0; i < pdata->non_hw_trigger_levels; i++) {
205                         threshold_code = temp_to_code(data,
206                                                 pdata->trigger_levels[i]);
207                         rising_threshold &= ~(0xff << 8 * i);
208                         rising_threshold |= threshold_code << 8 * i;
209                         if (pdata->threshold_falling) {
210                                 threshold_code = temp_to_code(data,
211                                                 pdata->trigger_levels[i] -
212                                                 pdata->threshold_falling);
213                                 falling_threshold |= threshold_code << 8 * i;
214                         }
215                 }
216
217                 writel(rising_threshold,
218                                 data->base + reg->threshold_th0);
219                 writel(falling_threshold,
220                                 data->base + reg->threshold_th1);
221
222                 writel((reg->intclr_rise_mask << reg->intclr_rise_shift) |
223                         (reg->intclr_fall_mask << reg->intclr_fall_shift),
224                                 data->base + reg->tmu_intclear);
225
226                 /* if last threshold limit is also present */
227                 i = pdata->max_trigger_level - 1;
228                 if (pdata->trigger_levels[i] &&
229                                 (pdata->trigger_type[i] == HW_TRIP)) {
230                         threshold_code = temp_to_code(data,
231                                                 pdata->trigger_levels[i]);
232                         if (i == EXYNOS_MAX_TRIGGER_PER_REG - 1) {
233                                 /* 1-4 level to be assigned in th0 reg */
234                                 rising_threshold &= ~(0xff << 8 * i);
235                                 rising_threshold |= threshold_code << 8 * i;
236                                 writel(rising_threshold,
237                                         data->base + reg->threshold_th0);
238                         } else if (i == EXYNOS_MAX_TRIGGER_PER_REG) {
239                                 /* 5th level to be assigned in th2 reg */
240                                 rising_threshold =
241                                 threshold_code << reg->threshold_th3_l0_shift;
242                                 writel(rising_threshold,
243                                         data->base + reg->threshold_th2);
244                         }
245                         con = readl(data->base + reg->tmu_ctrl);
246                         con |= (1 << reg->therm_trip_en_shift);
247                         writel(con, data->base + reg->tmu_ctrl);
248                 }
249         }
250         /*Clear the PMIN in the common TMU register*/
251         if (reg->tmu_pmin && !data->id)
252                 writel(0, data->base_second + reg->tmu_pmin);
253 out:
254         clk_disable(data->clk);
255         mutex_unlock(&data->lock);
256         if (!IS_ERR(data->clk_sec))
257                 clk_disable(data->clk_sec);
258
259         return ret;
260 }
261
262 static void exynos_tmu_control(struct platform_device *pdev, bool on)
263 {
264         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
265         struct exynos_tmu_platform_data *pdata = data->pdata;
266         const struct exynos_tmu_registers *reg = pdata->registers;
267         unsigned int con, interrupt_en;
268
269         mutex_lock(&data->lock);
270         clk_enable(data->clk);
271
272         con = readl(data->base + reg->tmu_ctrl);
273
274         if (pdata->test_mux)
275                 con |= (pdata->test_mux << reg->test_mux_addr_shift);
276
277         if (pdata->reference_voltage) {
278                 con &= ~(reg->buf_vref_sel_mask << reg->buf_vref_sel_shift);
279                 con |= pdata->reference_voltage << reg->buf_vref_sel_shift;
280         }
281
282         if (pdata->gain) {
283                 con &= ~(reg->buf_slope_sel_mask << reg->buf_slope_sel_shift);
284                 con |= (pdata->gain << reg->buf_slope_sel_shift);
285         }
286
287         if (pdata->noise_cancel_mode) {
288                 con &= ~(reg->therm_trip_mode_mask <<
289                                         reg->therm_trip_mode_shift);
290                 con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift);
291         }
292
293         if (on) {
294                 con |= (1 << reg->core_en_shift);
295                 interrupt_en =
296                         pdata->trigger_enable[3] << reg->inten_rise3_shift |
297                         pdata->trigger_enable[2] << reg->inten_rise2_shift |
298                         pdata->trigger_enable[1] << reg->inten_rise1_shift |
299                         pdata->trigger_enable[0] << reg->inten_rise0_shift;
300                 if (TMU_SUPPORTS(pdata, FALLING_TRIP))
301                         interrupt_en |=
302                                 interrupt_en << reg->inten_fall0_shift;
303         } else {
304                 con &= ~(1 << reg->core_en_shift);
305                 interrupt_en = 0; /* Disable all interrupts */
306         }
307         writel(interrupt_en, data->base + reg->tmu_inten);
308         writel(con, data->base + reg->tmu_ctrl);
309
310         clk_disable(data->clk);
311         mutex_unlock(&data->lock);
312 }
313
314 static int exynos_tmu_read(struct exynos_tmu_data *data)
315 {
316         struct exynos_tmu_platform_data *pdata = data->pdata;
317         const struct exynos_tmu_registers *reg = pdata->registers;
318         u8 temp_code;
319         int temp;
320
321         mutex_lock(&data->lock);
322         clk_enable(data->clk);
323
324         temp_code = readb(data->base + reg->tmu_cur_temp);
325
326         if (data->soc == SOC_ARCH_EXYNOS4210)
327                 /* temp_code should range between 75 and 175 */
328                 if (temp_code < 75 || temp_code > 175) {
329                         temp = -ENODATA;
330                         goto out;
331                 }
332
333         temp = code_to_temp(data, temp_code);
334 out:
335         clk_disable(data->clk);
336         mutex_unlock(&data->lock);
337
338         return temp;
339 }
340
341 #ifdef CONFIG_THERMAL_EMULATION
342 static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
343 {
344         struct exynos_tmu_data *data = drv_data;
345         struct exynos_tmu_platform_data *pdata = data->pdata;
346         const struct exynos_tmu_registers *reg = pdata->registers;
347         unsigned int val;
348         int ret = -EINVAL;
349
350         if (!TMU_SUPPORTS(pdata, EMULATION))
351                 goto out;
352
353         if (temp && temp < MCELSIUS)
354                 goto out;
355
356         mutex_lock(&data->lock);
357         clk_enable(data->clk);
358
359         val = readl(data->base + reg->emul_con);
360
361         if (temp) {
362                 temp /= MCELSIUS;
363
364                 if (TMU_SUPPORTS(pdata, EMUL_TIME)) {
365                         val &= ~(EXYNOS_EMUL_TIME_MASK << reg->emul_time_shift);
366                         val |= (EXYNOS_EMUL_TIME << reg->emul_time_shift);
367                 }
368                 val &= ~(EXYNOS_EMUL_DATA_MASK << reg->emul_temp_shift);
369                 val |= (temp_to_code(data, temp) << reg->emul_temp_shift) |
370                         EXYNOS_EMUL_ENABLE;
371         } else {
372                 val &= ~EXYNOS_EMUL_ENABLE;
373         }
374
375         writel(val, data->base + reg->emul_con);
376
377         clk_disable(data->clk);
378         mutex_unlock(&data->lock);
379         return 0;
380 out:
381         return ret;
382 }
383 #else
384 static int exynos_tmu_set_emulation(void *drv_data,     unsigned long temp)
385         { return -EINVAL; }
386 #endif/*CONFIG_THERMAL_EMULATION*/
387
388 static void exynos_tmu_work(struct work_struct *work)
389 {
390         struct exynos_tmu_data *data = container_of(work,
391                         struct exynos_tmu_data, irq_work);
392         struct exynos_tmu_platform_data *pdata = data->pdata;
393         const struct exynos_tmu_registers *reg = pdata->registers;
394         unsigned int val_irq, val_type;
395
396         if (!IS_ERR(data->clk_sec))
397                 clk_enable(data->clk_sec);
398         /* Find which sensor generated this interrupt */
399         if (reg->tmu_irqstatus) {
400                 val_type = readl(data->base_second + reg->tmu_irqstatus);
401                 if (!((val_type >> data->id) & 0x1))
402                         goto out;
403         }
404         if (!IS_ERR(data->clk_sec))
405                 clk_disable(data->clk_sec);
406
407         exynos_report_trigger(data->reg_conf);
408         mutex_lock(&data->lock);
409         clk_enable(data->clk);
410
411         /* TODO: take action based on particular interrupt */
412         val_irq = readl(data->base + reg->tmu_intstat);
413         /* clear the interrupts */
414         writel(val_irq, data->base + reg->tmu_intclear);
415
416         clk_disable(data->clk);
417         mutex_unlock(&data->lock);
418 out:
419         enable_irq(data->irq);
420 }
421
422 static irqreturn_t exynos_tmu_irq(int irq, void *id)
423 {
424         struct exynos_tmu_data *data = id;
425
426         disable_irq_nosync(irq);
427         schedule_work(&data->irq_work);
428
429         return IRQ_HANDLED;
430 }
431
432 static const struct of_device_id exynos_tmu_match[] = {
433         {
434                 .compatible = "samsung,exynos3250-tmu",
435                 .data = (void *)EXYNOS3250_TMU_DRV_DATA,
436         },
437         {
438                 .compatible = "samsung,exynos4210-tmu",
439                 .data = (void *)EXYNOS4210_TMU_DRV_DATA,
440         },
441         {
442                 .compatible = "samsung,exynos4412-tmu",
443                 .data = (void *)EXYNOS4412_TMU_DRV_DATA,
444         },
445         {
446                 .compatible = "samsung,exynos5250-tmu",
447                 .data = (void *)EXYNOS5250_TMU_DRV_DATA,
448         },
449         {
450                 .compatible = "samsung,exynos5260-tmu",
451                 .data = (void *)EXYNOS5260_TMU_DRV_DATA,
452         },
453         {
454                 .compatible = "samsung,exynos5420-tmu",
455                 .data = (void *)EXYNOS5420_TMU_DRV_DATA,
456         },
457         {
458                 .compatible = "samsung,exynos5420-tmu-ext-triminfo",
459                 .data = (void *)EXYNOS5420_TMU_DRV_DATA,
460         },
461         {
462                 .compatible = "samsung,exynos5440-tmu",
463                 .data = (void *)EXYNOS5440_TMU_DRV_DATA,
464         },
465         {},
466 };
467 MODULE_DEVICE_TABLE(of, exynos_tmu_match);
468
469 static inline struct  exynos_tmu_platform_data *exynos_get_driver_data(
470                         struct platform_device *pdev, int id)
471 {
472         struct  exynos_tmu_init_data *data_table;
473         struct exynos_tmu_platform_data *tmu_data;
474         const struct of_device_id *match;
475
476         match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
477         if (!match)
478                 return NULL;
479         data_table = (struct exynos_tmu_init_data *) match->data;
480         if (!data_table || id >= data_table->tmu_count)
481                 return NULL;
482         tmu_data = data_table->tmu_data;
483         return (struct exynos_tmu_platform_data *) (tmu_data + id);
484 }
485
486 static int exynos_map_dt_data(struct platform_device *pdev)
487 {
488         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
489         struct exynos_tmu_platform_data *pdata;
490         struct resource res;
491         int ret;
492
493         if (!data || !pdev->dev.of_node)
494                 return -ENODEV;
495
496         /*
497          * Try enabling the regulator if found
498          * TODO: Add regulator as an SOC feature, so that regulator enable
499          * is a compulsory call.
500          */
501         data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
502         if (!IS_ERR(data->regulator)) {
503                 ret = regulator_enable(data->regulator);
504                 if (ret) {
505                         dev_err(&pdev->dev, "failed to enable vtmu\n");
506                         return ret;
507                 }
508         } else {
509                 dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
510         }
511
512         data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
513         if (data->id < 0)
514                 data->id = 0;
515
516         data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
517         if (data->irq <= 0) {
518                 dev_err(&pdev->dev, "failed to get IRQ\n");
519                 return -ENODEV;
520         }
521
522         if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
523                 dev_err(&pdev->dev, "failed to get Resource 0\n");
524                 return -ENODEV;
525         }
526
527         data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
528         if (!data->base) {
529                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
530                 return -EADDRNOTAVAIL;
531         }
532
533         pdata = exynos_get_driver_data(pdev, data->id);
534         if (!pdata) {
535                 dev_err(&pdev->dev, "No platform init data supplied.\n");
536                 return -ENODEV;
537         }
538         data->pdata = pdata;
539         /*
540          * Check if the TMU shares some registers and then try to map the
541          * memory of common registers.
542          */
543         if (!TMU_SUPPORTS(pdata, ADDRESS_MULTIPLE))
544                 return 0;
545
546         if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
547                 dev_err(&pdev->dev, "failed to get Resource 1\n");
548                 return -ENODEV;
549         }
550
551         data->base_second = devm_ioremap(&pdev->dev, res.start,
552                                         resource_size(&res));
553         if (!data->base_second) {
554                 dev_err(&pdev->dev, "Failed to ioremap memory\n");
555                 return -ENOMEM;
556         }
557
558         return 0;
559 }
560
561 static int exynos_tmu_probe(struct platform_device *pdev)
562 {
563         struct exynos_tmu_data *data;
564         struct exynos_tmu_platform_data *pdata;
565         struct thermal_sensor_conf *sensor_conf;
566         int ret, i;
567
568         data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
569                                         GFP_KERNEL);
570         if (!data)
571                 return -ENOMEM;
572
573         platform_set_drvdata(pdev, data);
574         mutex_init(&data->lock);
575
576         ret = exynos_map_dt_data(pdev);
577         if (ret)
578                 return ret;
579
580         pdata = data->pdata;
581
582         INIT_WORK(&data->irq_work, exynos_tmu_work);
583
584         data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
585         if (IS_ERR(data->clk)) {
586                 dev_err(&pdev->dev, "Failed to get clock\n");
587                 return  PTR_ERR(data->clk);
588         }
589
590         data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
591         if (IS_ERR(data->clk_sec)) {
592                 if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
593                         dev_err(&pdev->dev, "Failed to get triminfo clock\n");
594                         return PTR_ERR(data->clk_sec);
595                 }
596         } else {
597                 ret = clk_prepare(data->clk_sec);
598                 if (ret) {
599                         dev_err(&pdev->dev, "Failed to get clock\n");
600                         return ret;
601                 }
602         }
603
604         ret = clk_prepare(data->clk);
605         if (ret) {
606                 dev_err(&pdev->dev, "Failed to get clock\n");
607                 goto err_clk_sec;
608         }
609
610         if (pdata->type == SOC_ARCH_EXYNOS3250 ||
611             pdata->type == SOC_ARCH_EXYNOS4210 ||
612             pdata->type == SOC_ARCH_EXYNOS4412 ||
613             pdata->type == SOC_ARCH_EXYNOS5250 ||
614             pdata->type == SOC_ARCH_EXYNOS5260 ||
615             pdata->type == SOC_ARCH_EXYNOS5420_TRIMINFO ||
616             pdata->type == SOC_ARCH_EXYNOS5440)
617                 data->soc = pdata->type;
618         else {
619                 ret = -EINVAL;
620                 dev_err(&pdev->dev, "Platform not supported\n");
621                 goto err_clk;
622         }
623
624         ret = exynos_tmu_initialize(pdev);
625         if (ret) {
626                 dev_err(&pdev->dev, "Failed to initialize TMU\n");
627                 goto err_clk;
628         }
629
630         exynos_tmu_control(pdev, true);
631
632         /* Allocate a structure to register with the exynos core thermal */
633         sensor_conf = devm_kzalloc(&pdev->dev,
634                                 sizeof(struct thermal_sensor_conf), GFP_KERNEL);
635         if (!sensor_conf) {
636                 ret = -ENOMEM;
637                 goto err_clk;
638         }
639         sprintf(sensor_conf->name, "therm_zone%d", data->id);
640         sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read;
641         sensor_conf->write_emul_temp =
642                 (int (*)(void *, unsigned long))exynos_tmu_set_emulation;
643         sensor_conf->driver_data = data;
644         sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] +
645                         pdata->trigger_enable[1] + pdata->trigger_enable[2]+
646                         pdata->trigger_enable[3];
647
648         for (i = 0; i < sensor_conf->trip_data.trip_count; i++) {
649                 sensor_conf->trip_data.trip_val[i] =
650                         pdata->threshold + pdata->trigger_levels[i];
651                 sensor_conf->trip_data.trip_type[i] =
652                                         pdata->trigger_type[i];
653         }
654
655         sensor_conf->trip_data.trigger_falling = pdata->threshold_falling;
656
657         sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count;
658         for (i = 0; i < pdata->freq_tab_count; i++) {
659                 sensor_conf->cooling_data.freq_data[i].freq_clip_max =
660                                         pdata->freq_tab[i].freq_clip_max;
661                 sensor_conf->cooling_data.freq_data[i].temp_level =
662                                         pdata->freq_tab[i].temp_level;
663         }
664         sensor_conf->dev = &pdev->dev;
665         /* Register the sensor with thermal management interface */
666         ret = exynos_register_thermal(sensor_conf);
667         if (ret) {
668                 dev_err(&pdev->dev, "Failed to register thermal interface\n");
669                 goto err_clk;
670         }
671         data->reg_conf = sensor_conf;
672
673         ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
674                 IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
675         if (ret) {
676                 dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
677                 goto err_clk;
678         }
679
680         return 0;
681 err_clk:
682         clk_unprepare(data->clk);
683 err_clk_sec:
684         if (!IS_ERR(data->clk_sec))
685                 clk_unprepare(data->clk_sec);
686         return ret;
687 }
688
689 static int exynos_tmu_remove(struct platform_device *pdev)
690 {
691         struct exynos_tmu_data *data = platform_get_drvdata(pdev);
692
693         exynos_unregister_thermal(data->reg_conf);
694
695         exynos_tmu_control(pdev, false);
696
697         clk_unprepare(data->clk);
698         if (!IS_ERR(data->clk_sec))
699                 clk_unprepare(data->clk_sec);
700
701         if (!IS_ERR(data->regulator))
702                 regulator_disable(data->regulator);
703
704         return 0;
705 }
706
707 #ifdef CONFIG_PM_SLEEP
708 static int exynos_tmu_suspend(struct device *dev)
709 {
710         exynos_tmu_control(to_platform_device(dev), false);
711
712         return 0;
713 }
714
715 static int exynos_tmu_resume(struct device *dev)
716 {
717         struct platform_device *pdev = to_platform_device(dev);
718
719         exynos_tmu_initialize(pdev);
720         exynos_tmu_control(pdev, true);
721
722         return 0;
723 }
724
725 static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
726                          exynos_tmu_suspend, exynos_tmu_resume);
727 #define EXYNOS_TMU_PM   (&exynos_tmu_pm)
728 #else
729 #define EXYNOS_TMU_PM   NULL
730 #endif
731
732 static struct platform_driver exynos_tmu_driver = {
733         .driver = {
734                 .name   = "exynos-tmu",
735                 .owner  = THIS_MODULE,
736                 .pm     = EXYNOS_TMU_PM,
737                 .of_match_table = exynos_tmu_match,
738         },
739         .probe = exynos_tmu_probe,
740         .remove = exynos_tmu_remove,
741 };
742
743 module_platform_driver(exynos_tmu_driver);
744
745 MODULE_DESCRIPTION("EXYNOS TMU Driver");
746 MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
747 MODULE_LICENSE("GPL");
748 MODULE_ALIAS("platform:exynos-tmu");