Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      free_tty_struct         -       free a disused tty
161  *      @tty: tty struct to free
162  *
163  *      Free the write buffers, tty queue and tty memory itself.
164  *
165  *      Locking: none. Must be called after tty is definitely unused
166  */
167
168 void free_tty_struct(struct tty_struct *tty)
169 {
170         if (!tty)
171                 return;
172         if (tty->dev)
173                 put_device(tty->dev);
174         kfree(tty->write_buf);
175         tty->magic = 0xDEADDEAD;
176         kfree(tty);
177 }
178
179 static inline struct tty_struct *file_tty(struct file *file)
180 {
181         return ((struct tty_file_private *)file->private_data)->tty;
182 }
183
184 int tty_alloc_file(struct file *file)
185 {
186         struct tty_file_private *priv;
187
188         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
189         if (!priv)
190                 return -ENOMEM;
191
192         file->private_data = priv;
193
194         return 0;
195 }
196
197 /* Associate a new file with the tty structure */
198 void tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200         struct tty_file_private *priv = file->private_data;
201
202         priv->tty = tty;
203         priv->file = file;
204
205         spin_lock(&tty_files_lock);
206         list_add(&priv->list, &tty->tty_files);
207         spin_unlock(&tty_files_lock);
208 }
209
210 /**
211  * tty_free_file - free file->private_data
212  *
213  * This shall be used only for fail path handling when tty_add_file was not
214  * called yet.
215  */
216 void tty_free_file(struct file *file)
217 {
218         struct tty_file_private *priv = file->private_data;
219
220         file->private_data = NULL;
221         kfree(priv);
222 }
223
224 /* Delete file from its tty */
225 static void tty_del_file(struct file *file)
226 {
227         struct tty_file_private *priv = file->private_data;
228
229         spin_lock(&tty_files_lock);
230         list_del(&priv->list);
231         spin_unlock(&tty_files_lock);
232         tty_free_file(file);
233 }
234
235
236 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
237
238 /**
239  *      tty_name        -       return tty naming
240  *      @tty: tty structure
241  *      @buf: buffer for output
242  *
243  *      Convert a tty structure into a name. The name reflects the kernel
244  *      naming policy and if udev is in use may not reflect user space
245  *
246  *      Locking: none
247  */
248
249 char *tty_name(struct tty_struct *tty, char *buf)
250 {
251         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
252                 strcpy(buf, "NULL tty");
253         else
254                 strcpy(buf, tty->name);
255         return buf;
256 }
257
258 EXPORT_SYMBOL(tty_name);
259
260 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261                               const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264         if (!tty) {
265                 printk(KERN_WARNING
266                         "null TTY for (%d:%d) in %s\n",
267                         imajor(inode), iminor(inode), routine);
268                 return 1;
269         }
270         if (tty->magic != TTY_MAGIC) {
271                 printk(KERN_WARNING
272                         "bad magic number for tty struct (%d:%d) in %s\n",
273                         imajor(inode), iminor(inode), routine);
274                 return 1;
275         }
276 #endif
277         return 0;
278 }
279
280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283         struct list_head *p;
284         int count = 0;
285
286         spin_lock(&tty_files_lock);
287         list_for_each(p, &tty->tty_files) {
288                 count++;
289         }
290         spin_unlock(&tty_files_lock);
291         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292             tty->driver->subtype == PTY_TYPE_SLAVE &&
293             tty->link && tty->link->count)
294                 count++;
295         if (tty->count != count) {
296                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297                                     "!= #fd's(%d) in %s\n",
298                        tty->name, tty->count, count, routine);
299                 return count;
300         }
301 #endif
302         return 0;
303 }
304
305 /**
306  *      get_tty_driver          -       find device of a tty
307  *      @dev_t: device identifier
308  *      @index: returns the index of the tty
309  *
310  *      This routine returns a tty driver structure, given a device number
311  *      and also passes back the index number.
312  *
313  *      Locking: caller must hold tty_mutex
314  */
315
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318         struct tty_driver *p;
319
320         list_for_each_entry(p, &tty_drivers, tty_drivers) {
321                 dev_t base = MKDEV(p->major, p->minor_start);
322                 if (device < base || device >= base + p->num)
323                         continue;
324                 *index = device - base;
325                 return tty_driver_kref_get(p);
326         }
327         return NULL;
328 }
329
330 #ifdef CONFIG_CONSOLE_POLL
331
332 /**
333  *      tty_find_polling_driver -       find device of a polled tty
334  *      @name: name string to match
335  *      @line: pointer to resulting tty line nr
336  *
337  *      This routine returns a tty driver structure, given a name
338  *      and the condition that the tty driver is capable of polled
339  *      operation.
340  */
341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343         struct tty_driver *p, *res = NULL;
344         int tty_line = 0;
345         int len;
346         char *str, *stp;
347
348         for (str = name; *str; str++)
349                 if ((*str >= '0' && *str <= '9') || *str == ',')
350                         break;
351         if (!*str)
352                 return NULL;
353
354         len = str - name;
355         tty_line = simple_strtoul(str, &str, 10);
356
357         mutex_lock(&tty_mutex);
358         /* Search through the tty devices to look for a match */
359         list_for_each_entry(p, &tty_drivers, tty_drivers) {
360                 if (strncmp(name, p->name, len) != 0)
361                         continue;
362                 stp = str;
363                 if (*stp == ',')
364                         stp++;
365                 if (*stp == '\0')
366                         stp = NULL;
367
368                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
369                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370                         res = tty_driver_kref_get(p);
371                         *line = tty_line;
372                         break;
373                 }
374         }
375         mutex_unlock(&tty_mutex);
376
377         return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381
382 /**
383  *      tty_check_change        -       check for POSIX terminal changes
384  *      @tty: tty to check
385  *
386  *      If we try to write to, or set the state of, a terminal and we're
387  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
388  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
389  *
390  *      Locking: ctrl_lock
391  */
392
393 int tty_check_change(struct tty_struct *tty)
394 {
395         unsigned long flags;
396         int ret = 0;
397
398         if (current->signal->tty != tty)
399                 return 0;
400
401         spin_lock_irqsave(&tty->ctrl_lock, flags);
402
403         if (!tty->pgrp) {
404                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
405                 goto out_unlock;
406         }
407         if (task_pgrp(current) == tty->pgrp)
408                 goto out_unlock;
409         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
410         if (is_ignored(SIGTTOU))
411                 goto out;
412         if (is_current_pgrp_orphaned()) {
413                 ret = -EIO;
414                 goto out;
415         }
416         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
417         set_thread_flag(TIF_SIGPENDING);
418         ret = -ERESTARTSYS;
419 out:
420         return ret;
421 out_unlock:
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         return ret;
424 }
425
426 EXPORT_SYMBOL(tty_check_change);
427
428 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
429                                 size_t count, loff_t *ppos)
430 {
431         return 0;
432 }
433
434 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
435                                  size_t count, loff_t *ppos)
436 {
437         return -EIO;
438 }
439
440 /* No kernel lock held - none needed ;) */
441 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
442 {
443         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
444 }
445
446 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
447                 unsigned long arg)
448 {
449         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451
452 static long hung_up_tty_compat_ioctl(struct file *file,
453                                      unsigned int cmd, unsigned long arg)
454 {
455         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
456 }
457
458 static const struct file_operations tty_fops = {
459         .llseek         = no_llseek,
460         .read           = tty_read,
461         .write          = tty_write,
462         .poll           = tty_poll,
463         .unlocked_ioctl = tty_ioctl,
464         .compat_ioctl   = tty_compat_ioctl,
465         .open           = tty_open,
466         .release        = tty_release,
467         .fasync         = tty_fasync,
468 };
469
470 static const struct file_operations console_fops = {
471         .llseek         = no_llseek,
472         .read           = tty_read,
473         .write          = redirected_tty_write,
474         .poll           = tty_poll,
475         .unlocked_ioctl = tty_ioctl,
476         .compat_ioctl   = tty_compat_ioctl,
477         .open           = tty_open,
478         .release        = tty_release,
479         .fasync         = tty_fasync,
480 };
481
482 static const struct file_operations hung_up_tty_fops = {
483         .llseek         = no_llseek,
484         .read           = hung_up_tty_read,
485         .write          = hung_up_tty_write,
486         .poll           = hung_up_tty_poll,
487         .unlocked_ioctl = hung_up_tty_ioctl,
488         .compat_ioctl   = hung_up_tty_compat_ioctl,
489         .release        = tty_release,
490 };
491
492 static DEFINE_SPINLOCK(redirect_lock);
493 static struct file *redirect;
494
495 /**
496  *      tty_wakeup      -       request more data
497  *      @tty: terminal
498  *
499  *      Internal and external helper for wakeups of tty. This function
500  *      informs the line discipline if present that the driver is ready
501  *      to receive more output data.
502  */
503
504 void tty_wakeup(struct tty_struct *tty)
505 {
506         struct tty_ldisc *ld;
507
508         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
509                 ld = tty_ldisc_ref(tty);
510                 if (ld) {
511                         if (ld->ops->write_wakeup)
512                                 ld->ops->write_wakeup(tty);
513                         tty_ldisc_deref(ld);
514                 }
515         }
516         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
517 }
518
519 EXPORT_SYMBOL_GPL(tty_wakeup);
520
521 /**
522  *      tty_signal_session_leader       - sends SIGHUP to session leader
523  *      @tty            controlling tty
524  *      @exit_session   if non-zero, signal all foreground group processes
525  *
526  *      Send SIGHUP and SIGCONT to the session leader and its process group.
527  *      Optionally, signal all processes in the foreground process group.
528  *
529  *      Returns the number of processes in the session with this tty
530  *      as their controlling terminal. This value is used to drop
531  *      tty references for those processes.
532  */
533 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
534 {
535         struct task_struct *p;
536         int refs = 0;
537         struct pid *tty_pgrp = NULL;
538
539         read_lock(&tasklist_lock);
540         if (tty->session) {
541                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
542                         spin_lock_irq(&p->sighand->siglock);
543                         if (p->signal->tty == tty) {
544                                 p->signal->tty = NULL;
545                                 /* We defer the dereferences outside fo
546                                    the tasklist lock */
547                                 refs++;
548                         }
549                         if (!p->signal->leader) {
550                                 spin_unlock_irq(&p->sighand->siglock);
551                                 continue;
552                         }
553                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
554                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
555                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
556                         spin_lock(&tty->ctrl_lock);
557                         tty_pgrp = get_pid(tty->pgrp);
558                         if (tty->pgrp)
559                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
560                         spin_unlock(&tty->ctrl_lock);
561                         spin_unlock_irq(&p->sighand->siglock);
562                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
563         }
564         read_unlock(&tasklist_lock);
565
566         if (tty_pgrp) {
567                 if (exit_session)
568                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
569                 put_pid(tty_pgrp);
570         }
571
572         return refs;
573 }
574
575 /**
576  *      __tty_hangup            -       actual handler for hangup events
577  *      @work: tty device
578  *
579  *      This can be called by a "kworker" kernel thread.  That is process
580  *      synchronous but doesn't hold any locks, so we need to make sure we
581  *      have the appropriate locks for what we're doing.
582  *
583  *      The hangup event clears any pending redirections onto the hung up
584  *      device. It ensures future writes will error and it does the needed
585  *      line discipline hangup and signal delivery. The tty object itself
586  *      remains intact.
587  *
588  *      Locking:
589  *              BTM
590  *                redirect lock for undoing redirection
591  *                file list lock for manipulating list of ttys
592  *                tty_ldiscs_lock from called functions
593  *                termios_rwsem resetting termios data
594  *                tasklist_lock to walk task list for hangup event
595  *                  ->siglock to protect ->signal/->sighand
596  */
597 static void __tty_hangup(struct tty_struct *tty, int exit_session)
598 {
599         struct file *cons_filp = NULL;
600         struct file *filp, *f = NULL;
601         struct tty_file_private *priv;
602         int    closecount = 0, n;
603         int refs;
604
605         if (!tty)
606                 return;
607
608
609         spin_lock(&redirect_lock);
610         if (redirect && file_tty(redirect) == tty) {
611                 f = redirect;
612                 redirect = NULL;
613         }
614         spin_unlock(&redirect_lock);
615
616         tty_lock(tty);
617
618         if (test_bit(TTY_HUPPED, &tty->flags)) {
619                 tty_unlock(tty);
620                 return;
621         }
622
623         /* some functions below drop BTM, so we need this bit */
624         set_bit(TTY_HUPPING, &tty->flags);
625
626         /* inuse_filps is protected by the single tty lock,
627            this really needs to change if we want to flush the
628            workqueue with the lock held */
629         check_tty_count(tty, "tty_hangup");
630
631         spin_lock(&tty_files_lock);
632         /* This breaks for file handles being sent over AF_UNIX sockets ? */
633         list_for_each_entry(priv, &tty->tty_files, list) {
634                 filp = priv->file;
635                 if (filp->f_op->write == redirected_tty_write)
636                         cons_filp = filp;
637                 if (filp->f_op->write != tty_write)
638                         continue;
639                 closecount++;
640                 __tty_fasync(-1, filp, 0);      /* can't block */
641                 filp->f_op = &hung_up_tty_fops;
642         }
643         spin_unlock(&tty_files_lock);
644
645         refs = tty_signal_session_leader(tty, exit_session);
646         /* Account for the p->signal references we killed */
647         while (refs--)
648                 tty_kref_put(tty);
649
650         /*
651          * it drops BTM and thus races with reopen
652          * we protect the race by TTY_HUPPING
653          */
654         tty_ldisc_hangup(tty);
655
656         spin_lock_irq(&tty->ctrl_lock);
657         clear_bit(TTY_THROTTLED, &tty->flags);
658         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
659         put_pid(tty->session);
660         put_pid(tty->pgrp);
661         tty->session = NULL;
662         tty->pgrp = NULL;
663         tty->ctrl_status = 0;
664         spin_unlock_irq(&tty->ctrl_lock);
665
666         /*
667          * If one of the devices matches a console pointer, we
668          * cannot just call hangup() because that will cause
669          * tty->count and state->count to go out of sync.
670          * So we just call close() the right number of times.
671          */
672         if (cons_filp) {
673                 if (tty->ops->close)
674                         for (n = 0; n < closecount; n++)
675                                 tty->ops->close(tty, cons_filp);
676         } else if (tty->ops->hangup)
677                 tty->ops->hangup(tty);
678         /*
679          * We don't want to have driver/ldisc interactions beyond
680          * the ones we did here. The driver layer expects no
681          * calls after ->hangup() from the ldisc side. However we
682          * can't yet guarantee all that.
683          */
684         set_bit(TTY_HUPPED, &tty->flags);
685         clear_bit(TTY_HUPPING, &tty->flags);
686
687         tty_unlock(tty);
688
689         if (f)
690                 fput(f);
691 }
692
693 static void do_tty_hangup(struct work_struct *work)
694 {
695         struct tty_struct *tty =
696                 container_of(work, struct tty_struct, hangup_work);
697
698         __tty_hangup(tty, 0);
699 }
700
701 /**
702  *      tty_hangup              -       trigger a hangup event
703  *      @tty: tty to hangup
704  *
705  *      A carrier loss (virtual or otherwise) has occurred on this like
706  *      schedule a hangup sequence to run after this event.
707  */
708
709 void tty_hangup(struct tty_struct *tty)
710 {
711 #ifdef TTY_DEBUG_HANGUP
712         char    buf[64];
713         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
714 #endif
715         schedule_work(&tty->hangup_work);
716 }
717
718 EXPORT_SYMBOL(tty_hangup);
719
720 /**
721  *      tty_vhangup             -       process vhangup
722  *      @tty: tty to hangup
723  *
724  *      The user has asked via system call for the terminal to be hung up.
725  *      We do this synchronously so that when the syscall returns the process
726  *      is complete. That guarantee is necessary for security reasons.
727  */
728
729 void tty_vhangup(struct tty_struct *tty)
730 {
731 #ifdef TTY_DEBUG_HANGUP
732         char    buf[64];
733
734         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
735 #endif
736         __tty_hangup(tty, 0);
737 }
738
739 EXPORT_SYMBOL(tty_vhangup);
740
741
742 /**
743  *      tty_vhangup_self        -       process vhangup for own ctty
744  *
745  *      Perform a vhangup on the current controlling tty
746  */
747
748 void tty_vhangup_self(void)
749 {
750         struct tty_struct *tty;
751
752         tty = get_current_tty();
753         if (tty) {
754                 tty_vhangup(tty);
755                 tty_kref_put(tty);
756         }
757 }
758
759 /**
760  *      tty_vhangup_session             -       hangup session leader exit
761  *      @tty: tty to hangup
762  *
763  *      The session leader is exiting and hanging up its controlling terminal.
764  *      Every process in the foreground process group is signalled SIGHUP.
765  *
766  *      We do this synchronously so that when the syscall returns the process
767  *      is complete. That guarantee is necessary for security reasons.
768  */
769
770 static void tty_vhangup_session(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773         char    buf[64];
774
775         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
776 #endif
777         __tty_hangup(tty, 1);
778 }
779
780 /**
781  *      tty_hung_up_p           -       was tty hung up
782  *      @filp: file pointer of tty
783  *
784  *      Return true if the tty has been subject to a vhangup or a carrier
785  *      loss
786  */
787
788 int tty_hung_up_p(struct file *filp)
789 {
790         return (filp->f_op == &hung_up_tty_fops);
791 }
792
793 EXPORT_SYMBOL(tty_hung_up_p);
794
795 static void session_clear_tty(struct pid *session)
796 {
797         struct task_struct *p;
798         do_each_pid_task(session, PIDTYPE_SID, p) {
799                 proc_clear_tty(p);
800         } while_each_pid_task(session, PIDTYPE_SID, p);
801 }
802
803 /**
804  *      disassociate_ctty       -       disconnect controlling tty
805  *      @on_exit: true if exiting so need to "hang up" the session
806  *
807  *      This function is typically called only by the session leader, when
808  *      it wants to disassociate itself from its controlling tty.
809  *
810  *      It performs the following functions:
811  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
812  *      (2)  Clears the tty from being controlling the session
813  *      (3)  Clears the controlling tty for all processes in the
814  *              session group.
815  *
816  *      The argument on_exit is set to 1 if called when a process is
817  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
818  *
819  *      Locking:
820  *              BTM is taken for hysterical raisins, and held when
821  *                called from no_tty().
822  *                tty_mutex is taken to protect tty
823  *                ->siglock is taken to protect ->signal/->sighand
824  *                tasklist_lock is taken to walk process list for sessions
825  *                  ->siglock is taken to protect ->signal/->sighand
826  */
827
828 void disassociate_ctty(int on_exit)
829 {
830         struct tty_struct *tty;
831
832         if (!current->signal->leader)
833                 return;
834
835         tty = get_current_tty();
836         if (tty) {
837                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
838                         tty_vhangup_session(tty);
839                 } else {
840                         struct pid *tty_pgrp = tty_get_pgrp(tty);
841                         if (tty_pgrp) {
842                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
843                                 if (!on_exit)
844                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
845                                 put_pid(tty_pgrp);
846                         }
847                 }
848                 tty_kref_put(tty);
849
850         } else if (on_exit) {
851                 struct pid *old_pgrp;
852                 spin_lock_irq(&current->sighand->siglock);
853                 old_pgrp = current->signal->tty_old_pgrp;
854                 current->signal->tty_old_pgrp = NULL;
855                 spin_unlock_irq(&current->sighand->siglock);
856                 if (old_pgrp) {
857                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
858                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
859                         put_pid(old_pgrp);
860                 }
861                 return;
862         }
863
864         spin_lock_irq(&current->sighand->siglock);
865         put_pid(current->signal->tty_old_pgrp);
866         current->signal->tty_old_pgrp = NULL;
867
868         tty = tty_kref_get(current->signal->tty);
869         if (tty) {
870                 unsigned long flags;
871                 spin_lock_irqsave(&tty->ctrl_lock, flags);
872                 put_pid(tty->session);
873                 put_pid(tty->pgrp);
874                 tty->session = NULL;
875                 tty->pgrp = NULL;
876                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
877                 tty_kref_put(tty);
878         } else {
879 #ifdef TTY_DEBUG_HANGUP
880                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
881                        " = NULL", tty);
882 #endif
883         }
884
885         spin_unlock_irq(&current->sighand->siglock);
886         /* Now clear signal->tty under the lock */
887         read_lock(&tasklist_lock);
888         session_clear_tty(task_session(current));
889         read_unlock(&tasklist_lock);
890 }
891
892 /**
893  *
894  *      no_tty  - Ensure the current process does not have a controlling tty
895  */
896 void no_tty(void)
897 {
898         /* FIXME: Review locking here. The tty_lock never covered any race
899            between a new association and proc_clear_tty but possible we need
900            to protect against this anyway */
901         struct task_struct *tsk = current;
902         disassociate_ctty(0);
903         proc_clear_tty(tsk);
904 }
905
906
907 /**
908  *      stop_tty        -       propagate flow control
909  *      @tty: tty to stop
910  *
911  *      Perform flow control to the driver. May be called
912  *      on an already stopped device and will not re-call the driver
913  *      method.
914  *
915  *      This functionality is used by both the line disciplines for
916  *      halting incoming flow and by the driver. It may therefore be
917  *      called from any context, may be under the tty atomic_write_lock
918  *      but not always.
919  *
920  *      Locking:
921  *              flow_lock
922  */
923
924 void __stop_tty(struct tty_struct *tty)
925 {
926         if (tty->stopped)
927                 return;
928         tty->stopped = 1;
929         if (tty->ops->stop)
930                 (tty->ops->stop)(tty);
931 }
932
933 void stop_tty(struct tty_struct *tty)
934 {
935         unsigned long flags;
936
937         spin_lock_irqsave(&tty->flow_lock, flags);
938         __stop_tty(tty);
939         spin_unlock_irqrestore(&tty->flow_lock, flags);
940 }
941 EXPORT_SYMBOL(stop_tty);
942
943 /**
944  *      start_tty       -       propagate flow control
945  *      @tty: tty to start
946  *
947  *      Start a tty that has been stopped if at all possible. If this
948  *      tty was previous stopped and is now being started, the driver
949  *      start method is invoked and the line discipline woken.
950  *
951  *      Locking:
952  *              flow_lock
953  */
954
955 void __start_tty(struct tty_struct *tty)
956 {
957         if (!tty->stopped || tty->flow_stopped)
958                 return;
959         tty->stopped = 0;
960         if (tty->ops->start)
961                 (tty->ops->start)(tty);
962         tty_wakeup(tty);
963 }
964
965 void start_tty(struct tty_struct *tty)
966 {
967         unsigned long flags;
968
969         spin_lock_irqsave(&tty->flow_lock, flags);
970         __start_tty(tty);
971         spin_unlock_irqrestore(&tty->flow_lock, flags);
972 }
973 EXPORT_SYMBOL(start_tty);
974
975 /* We limit tty time update visibility to every 8 seconds or so. */
976 static void tty_update_time(struct timespec *time)
977 {
978         unsigned long sec = get_seconds() & ~7;
979         if ((long)(sec - time->tv_sec) > 0)
980                 time->tv_sec = sec;
981 }
982
983 /**
984  *      tty_read        -       read method for tty device files
985  *      @file: pointer to tty file
986  *      @buf: user buffer
987  *      @count: size of user buffer
988  *      @ppos: unused
989  *
990  *      Perform the read system call function on this terminal device. Checks
991  *      for hung up devices before calling the line discipline method.
992  *
993  *      Locking:
994  *              Locks the line discipline internally while needed. Multiple
995  *      read calls may be outstanding in parallel.
996  */
997
998 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
999                         loff_t *ppos)
1000 {
1001         int i;
1002         struct inode *inode = file_inode(file);
1003         struct tty_struct *tty = file_tty(file);
1004         struct tty_ldisc *ld;
1005
1006         if (tty_paranoia_check(tty, inode, "tty_read"))
1007                 return -EIO;
1008         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1009                 return -EIO;
1010
1011         /* We want to wait for the line discipline to sort out in this
1012            situation */
1013         ld = tty_ldisc_ref_wait(tty);
1014         if (ld->ops->read)
1015                 i = (ld->ops->read)(tty, file, buf, count);
1016         else
1017                 i = -EIO;
1018         tty_ldisc_deref(ld);
1019
1020         if (i > 0)
1021                 tty_update_time(&inode->i_atime);
1022
1023         return i;
1024 }
1025
1026 static void tty_write_unlock(struct tty_struct *tty)
1027         __releases(&tty->atomic_write_lock)
1028 {
1029         mutex_unlock(&tty->atomic_write_lock);
1030         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1031 }
1032
1033 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1034         __acquires(&tty->atomic_write_lock)
1035 {
1036         if (!mutex_trylock(&tty->atomic_write_lock)) {
1037                 if (ndelay)
1038                         return -EAGAIN;
1039                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1040                         return -ERESTARTSYS;
1041         }
1042         return 0;
1043 }
1044
1045 /*
1046  * Split writes up in sane blocksizes to avoid
1047  * denial-of-service type attacks
1048  */
1049 static inline ssize_t do_tty_write(
1050         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1051         struct tty_struct *tty,
1052         struct file *file,
1053         const char __user *buf,
1054         size_t count)
1055 {
1056         ssize_t ret, written = 0;
1057         unsigned int chunk;
1058
1059         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1060         if (ret < 0)
1061                 return ret;
1062
1063         /*
1064          * We chunk up writes into a temporary buffer. This
1065          * simplifies low-level drivers immensely, since they
1066          * don't have locking issues and user mode accesses.
1067          *
1068          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1069          * big chunk-size..
1070          *
1071          * The default chunk-size is 2kB, because the NTTY
1072          * layer has problems with bigger chunks. It will
1073          * claim to be able to handle more characters than
1074          * it actually does.
1075          *
1076          * FIXME: This can probably go away now except that 64K chunks
1077          * are too likely to fail unless switched to vmalloc...
1078          */
1079         chunk = 2048;
1080         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1081                 chunk = 65536;
1082         if (count < chunk)
1083                 chunk = count;
1084
1085         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1086         if (tty->write_cnt < chunk) {
1087                 unsigned char *buf_chunk;
1088
1089                 if (chunk < 1024)
1090                         chunk = 1024;
1091
1092                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1093                 if (!buf_chunk) {
1094                         ret = -ENOMEM;
1095                         goto out;
1096                 }
1097                 kfree(tty->write_buf);
1098                 tty->write_cnt = chunk;
1099                 tty->write_buf = buf_chunk;
1100         }
1101
1102         /* Do the write .. */
1103         for (;;) {
1104                 size_t size = count;
1105                 if (size > chunk)
1106                         size = chunk;
1107                 ret = -EFAULT;
1108                 if (copy_from_user(tty->write_buf, buf, size))
1109                         break;
1110                 ret = write(tty, file, tty->write_buf, size);
1111                 if (ret <= 0)
1112                         break;
1113                 written += ret;
1114                 buf += ret;
1115                 count -= ret;
1116                 if (!count)
1117                         break;
1118                 ret = -ERESTARTSYS;
1119                 if (signal_pending(current))
1120                         break;
1121                 cond_resched();
1122         }
1123         if (written) {
1124                 tty_update_time(&file_inode(file)->i_mtime);
1125                 ret = written;
1126         }
1127 out:
1128         tty_write_unlock(tty);
1129         return ret;
1130 }
1131
1132 /**
1133  * tty_write_message - write a message to a certain tty, not just the console.
1134  * @tty: the destination tty_struct
1135  * @msg: the message to write
1136  *
1137  * This is used for messages that need to be redirected to a specific tty.
1138  * We don't put it into the syslog queue right now maybe in the future if
1139  * really needed.
1140  *
1141  * We must still hold the BTM and test the CLOSING flag for the moment.
1142  */
1143
1144 void tty_write_message(struct tty_struct *tty, char *msg)
1145 {
1146         if (tty) {
1147                 mutex_lock(&tty->atomic_write_lock);
1148                 tty_lock(tty);
1149                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1150                         tty_unlock(tty);
1151                         tty->ops->write(tty, msg, strlen(msg));
1152                 } else
1153                         tty_unlock(tty);
1154                 tty_write_unlock(tty);
1155         }
1156         return;
1157 }
1158
1159
1160 /**
1161  *      tty_write               -       write method for tty device file
1162  *      @file: tty file pointer
1163  *      @buf: user data to write
1164  *      @count: bytes to write
1165  *      @ppos: unused
1166  *
1167  *      Write data to a tty device via the line discipline.
1168  *
1169  *      Locking:
1170  *              Locks the line discipline as required
1171  *              Writes to the tty driver are serialized by the atomic_write_lock
1172  *      and are then processed in chunks to the device. The line discipline
1173  *      write method will not be invoked in parallel for each device.
1174  */
1175
1176 static ssize_t tty_write(struct file *file, const char __user *buf,
1177                                                 size_t count, loff_t *ppos)
1178 {
1179         struct tty_struct *tty = file_tty(file);
1180         struct tty_ldisc *ld;
1181         ssize_t ret;
1182
1183         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1184                 return -EIO;
1185         if (!tty || !tty->ops->write ||
1186                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1187                         return -EIO;
1188         /* Short term debug to catch buggy drivers */
1189         if (tty->ops->write_room == NULL)
1190                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1191                         tty->driver->name);
1192         ld = tty_ldisc_ref_wait(tty);
1193         if (!ld->ops->write)
1194                 ret = -EIO;
1195         else
1196                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1197         tty_ldisc_deref(ld);
1198         return ret;
1199 }
1200
1201 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1202                                                 size_t count, loff_t *ppos)
1203 {
1204         struct file *p = NULL;
1205
1206         spin_lock(&redirect_lock);
1207         if (redirect)
1208                 p = get_file(redirect);
1209         spin_unlock(&redirect_lock);
1210
1211         if (p) {
1212                 ssize_t res;
1213                 res = vfs_write(p, buf, count, &p->f_pos);
1214                 fput(p);
1215                 return res;
1216         }
1217         return tty_write(file, buf, count, ppos);
1218 }
1219
1220 /**
1221  *      tty_send_xchar  -       send priority character
1222  *
1223  *      Send a high priority character to the tty even if stopped
1224  *
1225  *      Locking: none for xchar method, write ordering for write method.
1226  */
1227
1228 int tty_send_xchar(struct tty_struct *tty, char ch)
1229 {
1230         int     was_stopped = tty->stopped;
1231
1232         if (tty->ops->send_xchar) {
1233                 tty->ops->send_xchar(tty, ch);
1234                 return 0;
1235         }
1236
1237         if (tty_write_lock(tty, 0) < 0)
1238                 return -ERESTARTSYS;
1239
1240         if (was_stopped)
1241                 start_tty(tty);
1242         tty->ops->write(tty, &ch, 1);
1243         if (was_stopped)
1244                 stop_tty(tty);
1245         tty_write_unlock(tty);
1246         return 0;
1247 }
1248
1249 static char ptychar[] = "pqrstuvwxyzabcde";
1250
1251 /**
1252  *      pty_line_name   -       generate name for a pty
1253  *      @driver: the tty driver in use
1254  *      @index: the minor number
1255  *      @p: output buffer of at least 6 bytes
1256  *
1257  *      Generate a name from a driver reference and write it to the output
1258  *      buffer.
1259  *
1260  *      Locking: None
1261  */
1262 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1263 {
1264         int i = index + driver->name_base;
1265         /* ->name is initialized to "ttyp", but "tty" is expected */
1266         sprintf(p, "%s%c%x",
1267                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1268                 ptychar[i >> 4 & 0xf], i & 0xf);
1269 }
1270
1271 /**
1272  *      tty_line_name   -       generate name for a tty
1273  *      @driver: the tty driver in use
1274  *      @index: the minor number
1275  *      @p: output buffer of at least 7 bytes
1276  *
1277  *      Generate a name from a driver reference and write it to the output
1278  *      buffer.
1279  *
1280  *      Locking: None
1281  */
1282 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1283 {
1284         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1285                 return sprintf(p, "%s", driver->name);
1286         else
1287                 return sprintf(p, "%s%d", driver->name,
1288                                index + driver->name_base);
1289 }
1290
1291 /**
1292  *      tty_driver_lookup_tty() - find an existing tty, if any
1293  *      @driver: the driver for the tty
1294  *      @idx:    the minor number
1295  *
1296  *      Return the tty, if found or ERR_PTR() otherwise.
1297  *
1298  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1299  *      be held until the 'fast-open' is also done. Will change once we
1300  *      have refcounting in the driver and per driver locking
1301  */
1302 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1303                 struct inode *inode, int idx)
1304 {
1305         if (driver->ops->lookup)
1306                 return driver->ops->lookup(driver, inode, idx);
1307
1308         return driver->ttys[idx];
1309 }
1310
1311 /**
1312  *      tty_init_termios        -  helper for termios setup
1313  *      @tty: the tty to set up
1314  *
1315  *      Initialise the termios structures for this tty. Thus runs under
1316  *      the tty_mutex currently so we can be relaxed about ordering.
1317  */
1318
1319 int tty_init_termios(struct tty_struct *tty)
1320 {
1321         struct ktermios *tp;
1322         int idx = tty->index;
1323
1324         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1325                 tty->termios = tty->driver->init_termios;
1326         else {
1327                 /* Check for lazy saved data */
1328                 tp = tty->driver->termios[idx];
1329                 if (tp != NULL)
1330                         tty->termios = *tp;
1331                 else
1332                         tty->termios = tty->driver->init_termios;
1333         }
1334         /* Compatibility until drivers always set this */
1335         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1336         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1337         return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(tty_init_termios);
1340
1341 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1342 {
1343         int ret = tty_init_termios(tty);
1344         if (ret)
1345                 return ret;
1346
1347         tty_driver_kref_get(driver);
1348         tty->count++;
1349         driver->ttys[tty->index] = tty;
1350         return 0;
1351 }
1352 EXPORT_SYMBOL_GPL(tty_standard_install);
1353
1354 /**
1355  *      tty_driver_install_tty() - install a tty entry in the driver
1356  *      @driver: the driver for the tty
1357  *      @tty: the tty
1358  *
1359  *      Install a tty object into the driver tables. The tty->index field
1360  *      will be set by the time this is called. This method is responsible
1361  *      for ensuring any need additional structures are allocated and
1362  *      configured.
1363  *
1364  *      Locking: tty_mutex for now
1365  */
1366 static int tty_driver_install_tty(struct tty_driver *driver,
1367                                                 struct tty_struct *tty)
1368 {
1369         return driver->ops->install ? driver->ops->install(driver, tty) :
1370                 tty_standard_install(driver, tty);
1371 }
1372
1373 /**
1374  *      tty_driver_remove_tty() - remove a tty from the driver tables
1375  *      @driver: the driver for the tty
1376  *      @idx:    the minor number
1377  *
1378  *      Remvoe a tty object from the driver tables. The tty->index field
1379  *      will be set by the time this is called.
1380  *
1381  *      Locking: tty_mutex for now
1382  */
1383 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1384 {
1385         if (driver->ops->remove)
1386                 driver->ops->remove(driver, tty);
1387         else
1388                 driver->ttys[tty->index] = NULL;
1389 }
1390
1391 /*
1392  *      tty_reopen()    - fast re-open of an open tty
1393  *      @tty    - the tty to open
1394  *
1395  *      Return 0 on success, -errno on error.
1396  *
1397  *      Locking: tty_mutex must be held from the time the tty was found
1398  *               till this open completes.
1399  */
1400 static int tty_reopen(struct tty_struct *tty)
1401 {
1402         struct tty_driver *driver = tty->driver;
1403
1404         if (test_bit(TTY_CLOSING, &tty->flags) ||
1405                         test_bit(TTY_HUPPING, &tty->flags))
1406                 return -EIO;
1407
1408         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1409             driver->subtype == PTY_TYPE_MASTER) {
1410                 /*
1411                  * special case for PTY masters: only one open permitted,
1412                  * and the slave side open count is incremented as well.
1413                  */
1414                 if (tty->count)
1415                         return -EIO;
1416
1417                 tty->link->count++;
1418         }
1419         tty->count++;
1420
1421         WARN_ON(!tty->ldisc);
1422
1423         return 0;
1424 }
1425
1426 /**
1427  *      tty_init_dev            -       initialise a tty device
1428  *      @driver: tty driver we are opening a device on
1429  *      @idx: device index
1430  *      @ret_tty: returned tty structure
1431  *
1432  *      Prepare a tty device. This may not be a "new" clean device but
1433  *      could also be an active device. The pty drivers require special
1434  *      handling because of this.
1435  *
1436  *      Locking:
1437  *              The function is called under the tty_mutex, which
1438  *      protects us from the tty struct or driver itself going away.
1439  *
1440  *      On exit the tty device has the line discipline attached and
1441  *      a reference count of 1. If a pair was created for pty/tty use
1442  *      and the other was a pty master then it too has a reference count of 1.
1443  *
1444  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1445  * failed open.  The new code protects the open with a mutex, so it's
1446  * really quite straightforward.  The mutex locking can probably be
1447  * relaxed for the (most common) case of reopening a tty.
1448  */
1449
1450 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1451 {
1452         struct tty_struct *tty;
1453         int retval;
1454
1455         /*
1456          * First time open is complex, especially for PTY devices.
1457          * This code guarantees that either everything succeeds and the
1458          * TTY is ready for operation, or else the table slots are vacated
1459          * and the allocated memory released.  (Except that the termios
1460          * and locked termios may be retained.)
1461          */
1462
1463         if (!try_module_get(driver->owner))
1464                 return ERR_PTR(-ENODEV);
1465
1466         tty = alloc_tty_struct(driver, idx);
1467         if (!tty) {
1468                 retval = -ENOMEM;
1469                 goto err_module_put;
1470         }
1471
1472         tty_lock(tty);
1473         retval = tty_driver_install_tty(driver, tty);
1474         if (retval < 0)
1475                 goto err_deinit_tty;
1476
1477         if (!tty->port)
1478                 tty->port = driver->ports[idx];
1479
1480         WARN_RATELIMIT(!tty->port,
1481                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1482                         __func__, tty->driver->name);
1483
1484         tty->port->itty = tty;
1485
1486         /*
1487          * Structures all installed ... call the ldisc open routines.
1488          * If we fail here just call release_tty to clean up.  No need
1489          * to decrement the use counts, as release_tty doesn't care.
1490          */
1491         retval = tty_ldisc_setup(tty, tty->link);
1492         if (retval)
1493                 goto err_release_tty;
1494         /* Return the tty locked so that it cannot vanish under the caller */
1495         return tty;
1496
1497 err_deinit_tty:
1498         tty_unlock(tty);
1499         deinitialize_tty_struct(tty);
1500         free_tty_struct(tty);
1501 err_module_put:
1502         module_put(driver->owner);
1503         return ERR_PTR(retval);
1504
1505         /* call the tty release_tty routine to clean out this slot */
1506 err_release_tty:
1507         tty_unlock(tty);
1508         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1509                                  "clearing slot %d\n", idx);
1510         release_tty(tty, idx);
1511         return ERR_PTR(retval);
1512 }
1513
1514 void tty_free_termios(struct tty_struct *tty)
1515 {
1516         struct ktermios *tp;
1517         int idx = tty->index;
1518
1519         /* If the port is going to reset then it has no termios to save */
1520         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1521                 return;
1522
1523         /* Stash the termios data */
1524         tp = tty->driver->termios[idx];
1525         if (tp == NULL) {
1526                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1527                 if (tp == NULL) {
1528                         pr_warn("tty: no memory to save termios state.\n");
1529                         return;
1530                 }
1531                 tty->driver->termios[idx] = tp;
1532         }
1533         *tp = tty->termios;
1534 }
1535 EXPORT_SYMBOL(tty_free_termios);
1536
1537 /**
1538  *      tty_flush_works         -       flush all works of a tty
1539  *      @tty: tty device to flush works for
1540  *
1541  *      Sync flush all works belonging to @tty.
1542  */
1543 static void tty_flush_works(struct tty_struct *tty)
1544 {
1545         flush_work(&tty->SAK_work);
1546         flush_work(&tty->hangup_work);
1547 }
1548
1549 /**
1550  *      release_one_tty         -       release tty structure memory
1551  *      @kref: kref of tty we are obliterating
1552  *
1553  *      Releases memory associated with a tty structure, and clears out the
1554  *      driver table slots. This function is called when a device is no longer
1555  *      in use. It also gets called when setup of a device fails.
1556  *
1557  *      Locking:
1558  *              takes the file list lock internally when working on the list
1559  *      of ttys that the driver keeps.
1560  *
1561  *      This method gets called from a work queue so that the driver private
1562  *      cleanup ops can sleep (needed for USB at least)
1563  */
1564 static void release_one_tty(struct work_struct *work)
1565 {
1566         struct tty_struct *tty =
1567                 container_of(work, struct tty_struct, hangup_work);
1568         struct tty_driver *driver = tty->driver;
1569         struct module *owner = driver->owner;
1570
1571         if (tty->ops->cleanup)
1572                 tty->ops->cleanup(tty);
1573
1574         tty->magic = 0;
1575         tty_driver_kref_put(driver);
1576         module_put(owner);
1577
1578         spin_lock(&tty_files_lock);
1579         list_del_init(&tty->tty_files);
1580         spin_unlock(&tty_files_lock);
1581
1582         put_pid(tty->pgrp);
1583         put_pid(tty->session);
1584         free_tty_struct(tty);
1585 }
1586
1587 static void queue_release_one_tty(struct kref *kref)
1588 {
1589         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1590
1591         /* The hangup queue is now free so we can reuse it rather than
1592            waste a chunk of memory for each port */
1593         INIT_WORK(&tty->hangup_work, release_one_tty);
1594         schedule_work(&tty->hangup_work);
1595 }
1596
1597 /**
1598  *      tty_kref_put            -       release a tty kref
1599  *      @tty: tty device
1600  *
1601  *      Release a reference to a tty device and if need be let the kref
1602  *      layer destruct the object for us
1603  */
1604
1605 void tty_kref_put(struct tty_struct *tty)
1606 {
1607         if (tty)
1608                 kref_put(&tty->kref, queue_release_one_tty);
1609 }
1610 EXPORT_SYMBOL(tty_kref_put);
1611
1612 /**
1613  *      release_tty             -       release tty structure memory
1614  *
1615  *      Release both @tty and a possible linked partner (think pty pair),
1616  *      and decrement the refcount of the backing module.
1617  *
1618  *      Locking:
1619  *              tty_mutex
1620  *              takes the file list lock internally when working on the list
1621  *      of ttys that the driver keeps.
1622  *
1623  */
1624 static void release_tty(struct tty_struct *tty, int idx)
1625 {
1626         /* This should always be true but check for the moment */
1627         WARN_ON(tty->index != idx);
1628         WARN_ON(!mutex_is_locked(&tty_mutex));
1629         if (tty->ops->shutdown)
1630                 tty->ops->shutdown(tty);
1631         tty_free_termios(tty);
1632         tty_driver_remove_tty(tty->driver, tty);
1633         tty->port->itty = NULL;
1634         if (tty->link)
1635                 tty->link->port->itty = NULL;
1636         cancel_work_sync(&tty->port->buf.work);
1637
1638         if (tty->link)
1639                 tty_kref_put(tty->link);
1640         tty_kref_put(tty);
1641 }
1642
1643 /**
1644  *      tty_release_checks - check a tty before real release
1645  *      @tty: tty to check
1646  *      @o_tty: link of @tty (if any)
1647  *      @idx: index of the tty
1648  *
1649  *      Performs some paranoid checking before true release of the @tty.
1650  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1651  */
1652 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1653                 int idx)
1654 {
1655 #ifdef TTY_PARANOIA_CHECK
1656         if (idx < 0 || idx >= tty->driver->num) {
1657                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1658                                 __func__, tty->name);
1659                 return -1;
1660         }
1661
1662         /* not much to check for devpts */
1663         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1664                 return 0;
1665
1666         if (tty != tty->driver->ttys[idx]) {
1667                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1668                                 __func__, idx, tty->name);
1669                 return -1;
1670         }
1671         if (tty->driver->other) {
1672                 if (o_tty != tty->driver->other->ttys[idx]) {
1673                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1674                                         __func__, idx, tty->name);
1675                         return -1;
1676                 }
1677                 if (o_tty->link != tty) {
1678                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1679                         return -1;
1680                 }
1681         }
1682 #endif
1683         return 0;
1684 }
1685
1686 /**
1687  *      tty_release             -       vfs callback for close
1688  *      @inode: inode of tty
1689  *      @filp: file pointer for handle to tty
1690  *
1691  *      Called the last time each file handle is closed that references
1692  *      this tty. There may however be several such references.
1693  *
1694  *      Locking:
1695  *              Takes bkl. See tty_release_dev
1696  *
1697  * Even releasing the tty structures is a tricky business.. We have
1698  * to be very careful that the structures are all released at the
1699  * same time, as interrupts might otherwise get the wrong pointers.
1700  *
1701  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1702  * lead to double frees or releasing memory still in use.
1703  */
1704
1705 int tty_release(struct inode *inode, struct file *filp)
1706 {
1707         struct tty_struct *tty = file_tty(filp);
1708         struct tty_struct *o_tty;
1709         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1710         int     idx;
1711         char    buf[64];
1712         long    timeout = 0;
1713         int     once = 1;
1714
1715         if (tty_paranoia_check(tty, inode, __func__))
1716                 return 0;
1717
1718         tty_lock(tty);
1719         check_tty_count(tty, __func__);
1720
1721         __tty_fasync(-1, filp, 0);
1722
1723         idx = tty->index;
1724         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1725                       tty->driver->subtype == PTY_TYPE_MASTER);
1726         /* Review: parallel close */
1727         o_tty = tty->link;
1728
1729         if (tty_release_checks(tty, o_tty, idx)) {
1730                 tty_unlock(tty);
1731                 return 0;
1732         }
1733
1734 #ifdef TTY_DEBUG_HANGUP
1735         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1736                         tty_name(tty, buf), tty->count);
1737 #endif
1738
1739         if (tty->ops->close)
1740                 tty->ops->close(tty, filp);
1741
1742         tty_unlock(tty);
1743         /*
1744          * Sanity check: if tty->count is going to zero, there shouldn't be
1745          * any waiters on tty->read_wait or tty->write_wait.  We test the
1746          * wait queues and kick everyone out _before_ actually starting to
1747          * close.  This ensures that we won't block while releasing the tty
1748          * structure.
1749          *
1750          * The test for the o_tty closing is necessary, since the master and
1751          * slave sides may close in any order.  If the slave side closes out
1752          * first, its count will be one, since the master side holds an open.
1753          * Thus this test wouldn't be triggered at the time the slave closes,
1754          * so we do it now.
1755          *
1756          * Note that it's possible for the tty to be opened again while we're
1757          * flushing out waiters.  By recalculating the closing flags before
1758          * each iteration we avoid any problems.
1759          */
1760         while (1) {
1761                 /* Guard against races with tty->count changes elsewhere and
1762                    opens on /dev/tty */
1763
1764                 mutex_lock(&tty_mutex);
1765                 tty_lock_pair(tty, o_tty);
1766                 tty_closing = tty->count <= 1;
1767                 o_tty_closing = o_tty &&
1768                         (o_tty->count <= (pty_master ? 1 : 0));
1769                 do_sleep = 0;
1770
1771                 if (tty_closing) {
1772                         if (waitqueue_active(&tty->read_wait)) {
1773                                 wake_up_poll(&tty->read_wait, POLLIN);
1774                                 do_sleep++;
1775                         }
1776                         if (waitqueue_active(&tty->write_wait)) {
1777                                 wake_up_poll(&tty->write_wait, POLLOUT);
1778                                 do_sleep++;
1779                         }
1780                 }
1781                 if (o_tty_closing) {
1782                         if (waitqueue_active(&o_tty->read_wait)) {
1783                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1784                                 do_sleep++;
1785                         }
1786                         if (waitqueue_active(&o_tty->write_wait)) {
1787                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1788                                 do_sleep++;
1789                         }
1790                 }
1791                 if (!do_sleep)
1792                         break;
1793
1794                 if (once) {
1795                         once = 0;
1796                         printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1797                                __func__, tty_name(tty, buf));
1798                 }
1799                 tty_unlock_pair(tty, o_tty);
1800                 mutex_unlock(&tty_mutex);
1801                 schedule_timeout_killable(timeout);
1802                 if (timeout < 120 * HZ)
1803                         timeout = 2 * timeout + 1;
1804                 else
1805                         timeout = MAX_SCHEDULE_TIMEOUT;
1806         }
1807
1808         /*
1809          * The closing flags are now consistent with the open counts on
1810          * both sides, and we've completed the last operation that could
1811          * block, so it's safe to proceed with closing.
1812          *
1813          * We must *not* drop the tty_mutex until we ensure that a further
1814          * entry into tty_open can not pick up this tty.
1815          */
1816         if (pty_master) {
1817                 if (--o_tty->count < 0) {
1818                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1819                                 __func__, o_tty->count, tty_name(o_tty, buf));
1820                         o_tty->count = 0;
1821                 }
1822         }
1823         if (--tty->count < 0) {
1824                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1825                                 __func__, tty->count, tty_name(tty, buf));
1826                 tty->count = 0;
1827         }
1828
1829         /*
1830          * We've decremented tty->count, so we need to remove this file
1831          * descriptor off the tty->tty_files list; this serves two
1832          * purposes:
1833          *  - check_tty_count sees the correct number of file descriptors
1834          *    associated with this tty.
1835          *  - do_tty_hangup no longer sees this file descriptor as
1836          *    something that needs to be handled for hangups.
1837          */
1838         tty_del_file(filp);
1839
1840         /*
1841          * Perform some housekeeping before deciding whether to return.
1842          *
1843          * Set the TTY_CLOSING flag if this was the last open.  In the
1844          * case of a pty we may have to wait around for the other side
1845          * to close, and TTY_CLOSING makes sure we can't be reopened.
1846          */
1847         if (tty_closing)
1848                 set_bit(TTY_CLOSING, &tty->flags);
1849         if (o_tty_closing)
1850                 set_bit(TTY_CLOSING, &o_tty->flags);
1851
1852         /*
1853          * If _either_ side is closing, make sure there aren't any
1854          * processes that still think tty or o_tty is their controlling
1855          * tty.
1856          */
1857         if (tty_closing || o_tty_closing) {
1858                 read_lock(&tasklist_lock);
1859                 session_clear_tty(tty->session);
1860                 if (o_tty)
1861                         session_clear_tty(o_tty->session);
1862                 read_unlock(&tasklist_lock);
1863         }
1864
1865         mutex_unlock(&tty_mutex);
1866         tty_unlock_pair(tty, o_tty);
1867         /* At this point the TTY_CLOSING flag should ensure a dead tty
1868            cannot be re-opened by a racing opener */
1869
1870         /* check whether both sides are closing ... */
1871         if (!tty_closing || (o_tty && !o_tty_closing))
1872                 return 0;
1873
1874 #ifdef TTY_DEBUG_HANGUP
1875         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1876 #endif
1877         /*
1878          * Ask the line discipline code to release its structures
1879          */
1880         tty_ldisc_release(tty, o_tty);
1881
1882         /* Wait for pending work before tty destruction commmences */
1883         tty_flush_works(tty);
1884         if (o_tty)
1885                 tty_flush_works(o_tty);
1886
1887 #ifdef TTY_DEBUG_HANGUP
1888         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1889 #endif
1890         /*
1891          * The release_tty function takes care of the details of clearing
1892          * the slots and preserving the termios structure. The tty_unlock_pair
1893          * should be safe as we keep a kref while the tty is locked (so the
1894          * unlock never unlocks a freed tty).
1895          */
1896         mutex_lock(&tty_mutex);
1897         release_tty(tty, idx);
1898         mutex_unlock(&tty_mutex);
1899
1900         return 0;
1901 }
1902
1903 /**
1904  *      tty_open_current_tty - get tty of current task for open
1905  *      @device: device number
1906  *      @filp: file pointer to tty
1907  *      @return: tty of the current task iff @device is /dev/tty
1908  *
1909  *      We cannot return driver and index like for the other nodes because
1910  *      devpts will not work then. It expects inodes to be from devpts FS.
1911  *
1912  *      We need to move to returning a refcounted object from all the lookup
1913  *      paths including this one.
1914  */
1915 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1916 {
1917         struct tty_struct *tty;
1918
1919         if (device != MKDEV(TTYAUX_MAJOR, 0))
1920                 return NULL;
1921
1922         tty = get_current_tty();
1923         if (!tty)
1924                 return ERR_PTR(-ENXIO);
1925
1926         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1927         /* noctty = 1; */
1928         tty_kref_put(tty);
1929         /* FIXME: we put a reference and return a TTY! */
1930         /* This is only safe because the caller holds tty_mutex */
1931         return tty;
1932 }
1933
1934 /**
1935  *      tty_lookup_driver - lookup a tty driver for a given device file
1936  *      @device: device number
1937  *      @filp: file pointer to tty
1938  *      @noctty: set if the device should not become a controlling tty
1939  *      @index: index for the device in the @return driver
1940  *      @return: driver for this inode (with increased refcount)
1941  *
1942  *      If @return is not erroneous, the caller is responsible to decrement the
1943  *      refcount by tty_driver_kref_put.
1944  *
1945  *      Locking: tty_mutex protects get_tty_driver
1946  */
1947 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1948                 int *noctty, int *index)
1949 {
1950         struct tty_driver *driver;
1951
1952         switch (device) {
1953 #ifdef CONFIG_VT
1954         case MKDEV(TTY_MAJOR, 0): {
1955                 extern struct tty_driver *console_driver;
1956                 driver = tty_driver_kref_get(console_driver);
1957                 *index = fg_console;
1958                 *noctty = 1;
1959                 break;
1960         }
1961 #endif
1962         case MKDEV(TTYAUX_MAJOR, 1): {
1963                 struct tty_driver *console_driver = console_device(index);
1964                 if (console_driver) {
1965                         driver = tty_driver_kref_get(console_driver);
1966                         if (driver) {
1967                                 /* Don't let /dev/console block */
1968                                 filp->f_flags |= O_NONBLOCK;
1969                                 *noctty = 1;
1970                                 break;
1971                         }
1972                 }
1973                 return ERR_PTR(-ENODEV);
1974         }
1975         default:
1976                 driver = get_tty_driver(device, index);
1977                 if (!driver)
1978                         return ERR_PTR(-ENODEV);
1979                 break;
1980         }
1981         return driver;
1982 }
1983
1984 /**
1985  *      tty_open                -       open a tty device
1986  *      @inode: inode of device file
1987  *      @filp: file pointer to tty
1988  *
1989  *      tty_open and tty_release keep up the tty count that contains the
1990  *      number of opens done on a tty. We cannot use the inode-count, as
1991  *      different inodes might point to the same tty.
1992  *
1993  *      Open-counting is needed for pty masters, as well as for keeping
1994  *      track of serial lines: DTR is dropped when the last close happens.
1995  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1996  *
1997  *      The termios state of a pty is reset on first open so that
1998  *      settings don't persist across reuse.
1999  *
2000  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2001  *               tty->count should protect the rest.
2002  *               ->siglock protects ->signal/->sighand
2003  *
2004  *      Note: the tty_unlock/lock cases without a ref are only safe due to
2005  *      tty_mutex
2006  */
2007
2008 static int tty_open(struct inode *inode, struct file *filp)
2009 {
2010         struct tty_struct *tty;
2011         int noctty, retval;
2012         struct tty_driver *driver = NULL;
2013         int index;
2014         dev_t device = inode->i_rdev;
2015         unsigned saved_flags = filp->f_flags;
2016
2017         nonseekable_open(inode, filp);
2018
2019 retry_open:
2020         retval = tty_alloc_file(filp);
2021         if (retval)
2022                 return -ENOMEM;
2023
2024         noctty = filp->f_flags & O_NOCTTY;
2025         index  = -1;
2026         retval = 0;
2027
2028         mutex_lock(&tty_mutex);
2029         /* This is protected by the tty_mutex */
2030         tty = tty_open_current_tty(device, filp);
2031         if (IS_ERR(tty)) {
2032                 retval = PTR_ERR(tty);
2033                 goto err_unlock;
2034         } else if (!tty) {
2035                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2036                 if (IS_ERR(driver)) {
2037                         retval = PTR_ERR(driver);
2038                         goto err_unlock;
2039                 }
2040
2041                 /* check whether we're reopening an existing tty */
2042                 tty = tty_driver_lookup_tty(driver, inode, index);
2043                 if (IS_ERR(tty)) {
2044                         retval = PTR_ERR(tty);
2045                         goto err_unlock;
2046                 }
2047         }
2048
2049         if (tty) {
2050                 tty_lock(tty);
2051                 retval = tty_reopen(tty);
2052                 if (retval < 0) {
2053                         tty_unlock(tty);
2054                         tty = ERR_PTR(retval);
2055                 }
2056         } else  /* Returns with the tty_lock held for now */
2057                 tty = tty_init_dev(driver, index);
2058
2059         mutex_unlock(&tty_mutex);
2060         if (driver)
2061                 tty_driver_kref_put(driver);
2062         if (IS_ERR(tty)) {
2063                 retval = PTR_ERR(tty);
2064                 goto err_file;
2065         }
2066
2067         tty_add_file(tty, filp);
2068
2069         check_tty_count(tty, __func__);
2070         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2071             tty->driver->subtype == PTY_TYPE_MASTER)
2072                 noctty = 1;
2073 #ifdef TTY_DEBUG_HANGUP
2074         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2075 #endif
2076         if (tty->ops->open)
2077                 retval = tty->ops->open(tty, filp);
2078         else
2079                 retval = -ENODEV;
2080         filp->f_flags = saved_flags;
2081
2082         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2083                                                 !capable(CAP_SYS_ADMIN))
2084                 retval = -EBUSY;
2085
2086         if (retval) {
2087 #ifdef TTY_DEBUG_HANGUP
2088                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2089                                 retval, tty->name);
2090 #endif
2091                 tty_unlock(tty); /* need to call tty_release without BTM */
2092                 tty_release(inode, filp);
2093                 if (retval != -ERESTARTSYS)
2094                         return retval;
2095
2096                 if (signal_pending(current))
2097                         return retval;
2098
2099                 schedule();
2100                 /*
2101                  * Need to reset f_op in case a hangup happened.
2102                  */
2103                 if (filp->f_op == &hung_up_tty_fops)
2104                         filp->f_op = &tty_fops;
2105                 goto retry_open;
2106         }
2107         clear_bit(TTY_HUPPED, &tty->flags);
2108         tty_unlock(tty);
2109
2110
2111         mutex_lock(&tty_mutex);
2112         tty_lock(tty);
2113         spin_lock_irq(&current->sighand->siglock);
2114         if (!noctty &&
2115             current->signal->leader &&
2116             !current->signal->tty &&
2117             tty->session == NULL)
2118                 __proc_set_tty(current, tty);
2119         spin_unlock_irq(&current->sighand->siglock);
2120         tty_unlock(tty);
2121         mutex_unlock(&tty_mutex);
2122         return 0;
2123 err_unlock:
2124         mutex_unlock(&tty_mutex);
2125         /* after locks to avoid deadlock */
2126         if (!IS_ERR_OR_NULL(driver))
2127                 tty_driver_kref_put(driver);
2128 err_file:
2129         tty_free_file(filp);
2130         return retval;
2131 }
2132
2133
2134
2135 /**
2136  *      tty_poll        -       check tty status
2137  *      @filp: file being polled
2138  *      @wait: poll wait structures to update
2139  *
2140  *      Call the line discipline polling method to obtain the poll
2141  *      status of the device.
2142  *
2143  *      Locking: locks called line discipline but ldisc poll method
2144  *      may be re-entered freely by other callers.
2145  */
2146
2147 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2148 {
2149         struct tty_struct *tty = file_tty(filp);
2150         struct tty_ldisc *ld;
2151         int ret = 0;
2152
2153         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2154                 return 0;
2155
2156         ld = tty_ldisc_ref_wait(tty);
2157         if (ld->ops->poll)
2158                 ret = (ld->ops->poll)(tty, filp, wait);
2159         tty_ldisc_deref(ld);
2160         return ret;
2161 }
2162
2163 static int __tty_fasync(int fd, struct file *filp, int on)
2164 {
2165         struct tty_struct *tty = file_tty(filp);
2166         struct tty_ldisc *ldisc;
2167         unsigned long flags;
2168         int retval = 0;
2169
2170         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2171                 goto out;
2172
2173         retval = fasync_helper(fd, filp, on, &tty->fasync);
2174         if (retval <= 0)
2175                 goto out;
2176
2177         ldisc = tty_ldisc_ref(tty);
2178         if (ldisc) {
2179                 if (ldisc->ops->fasync)
2180                         ldisc->ops->fasync(tty, on);
2181                 tty_ldisc_deref(ldisc);
2182         }
2183
2184         if (on) {
2185                 enum pid_type type;
2186                 struct pid *pid;
2187
2188                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2189                 if (tty->pgrp) {
2190                         pid = tty->pgrp;
2191                         type = PIDTYPE_PGID;
2192                 } else {
2193                         pid = task_pid(current);
2194                         type = PIDTYPE_PID;
2195                 }
2196                 get_pid(pid);
2197                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2198                 __f_setown(filp, pid, type, 0);
2199                 put_pid(pid);
2200                 retval = 0;
2201         }
2202 out:
2203         return retval;
2204 }
2205
2206 static int tty_fasync(int fd, struct file *filp, int on)
2207 {
2208         struct tty_struct *tty = file_tty(filp);
2209         int retval;
2210
2211         tty_lock(tty);
2212         retval = __tty_fasync(fd, filp, on);
2213         tty_unlock(tty);
2214
2215         return retval;
2216 }
2217
2218 /**
2219  *      tiocsti                 -       fake input character
2220  *      @tty: tty to fake input into
2221  *      @p: pointer to character
2222  *
2223  *      Fake input to a tty device. Does the necessary locking and
2224  *      input management.
2225  *
2226  *      FIXME: does not honour flow control ??
2227  *
2228  *      Locking:
2229  *              Called functions take tty_ldiscs_lock
2230  *              current->signal->tty check is safe without locks
2231  *
2232  *      FIXME: may race normal receive processing
2233  */
2234
2235 static int tiocsti(struct tty_struct *tty, char __user *p)
2236 {
2237         char ch, mbz = 0;
2238         struct tty_ldisc *ld;
2239
2240         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2241                 return -EPERM;
2242         if (get_user(ch, p))
2243                 return -EFAULT;
2244         tty_audit_tiocsti(tty, ch);
2245         ld = tty_ldisc_ref_wait(tty);
2246         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2247         tty_ldisc_deref(ld);
2248         return 0;
2249 }
2250
2251 /**
2252  *      tiocgwinsz              -       implement window query ioctl
2253  *      @tty; tty
2254  *      @arg: user buffer for result
2255  *
2256  *      Copies the kernel idea of the window size into the user buffer.
2257  *
2258  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2259  *              is consistent.
2260  */
2261
2262 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2263 {
2264         int err;
2265
2266         mutex_lock(&tty->winsize_mutex);
2267         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2268         mutex_unlock(&tty->winsize_mutex);
2269
2270         return err ? -EFAULT: 0;
2271 }
2272
2273 /**
2274  *      tty_do_resize           -       resize event
2275  *      @tty: tty being resized
2276  *      @rows: rows (character)
2277  *      @cols: cols (character)
2278  *
2279  *      Update the termios variables and send the necessary signals to
2280  *      peform a terminal resize correctly
2281  */
2282
2283 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2284 {
2285         struct pid *pgrp;
2286         unsigned long flags;
2287
2288         /* Lock the tty */
2289         mutex_lock(&tty->winsize_mutex);
2290         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2291                 goto done;
2292         /* Get the PID values and reference them so we can
2293            avoid holding the tty ctrl lock while sending signals */
2294         spin_lock_irqsave(&tty->ctrl_lock, flags);
2295         pgrp = get_pid(tty->pgrp);
2296         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2297
2298         if (pgrp)
2299                 kill_pgrp(pgrp, SIGWINCH, 1);
2300         put_pid(pgrp);
2301
2302         tty->winsize = *ws;
2303 done:
2304         mutex_unlock(&tty->winsize_mutex);
2305         return 0;
2306 }
2307 EXPORT_SYMBOL(tty_do_resize);
2308
2309 /**
2310  *      tiocswinsz              -       implement window size set ioctl
2311  *      @tty; tty side of tty
2312  *      @arg: user buffer for result
2313  *
2314  *      Copies the user idea of the window size to the kernel. Traditionally
2315  *      this is just advisory information but for the Linux console it
2316  *      actually has driver level meaning and triggers a VC resize.
2317  *
2318  *      Locking:
2319  *              Driver dependent. The default do_resize method takes the
2320  *      tty termios mutex and ctrl_lock. The console takes its own lock
2321  *      then calls into the default method.
2322  */
2323
2324 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2325 {
2326         struct winsize tmp_ws;
2327         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2328                 return -EFAULT;
2329
2330         if (tty->ops->resize)
2331                 return tty->ops->resize(tty, &tmp_ws);
2332         else
2333                 return tty_do_resize(tty, &tmp_ws);
2334 }
2335
2336 /**
2337  *      tioccons        -       allow admin to move logical console
2338  *      @file: the file to become console
2339  *
2340  *      Allow the administrator to move the redirected console device
2341  *
2342  *      Locking: uses redirect_lock to guard the redirect information
2343  */
2344
2345 static int tioccons(struct file *file)
2346 {
2347         if (!capable(CAP_SYS_ADMIN))
2348                 return -EPERM;
2349         if (file->f_op->write == redirected_tty_write) {
2350                 struct file *f;
2351                 spin_lock(&redirect_lock);
2352                 f = redirect;
2353                 redirect = NULL;
2354                 spin_unlock(&redirect_lock);
2355                 if (f)
2356                         fput(f);
2357                 return 0;
2358         }
2359         spin_lock(&redirect_lock);
2360         if (redirect) {
2361                 spin_unlock(&redirect_lock);
2362                 return -EBUSY;
2363         }
2364         redirect = get_file(file);
2365         spin_unlock(&redirect_lock);
2366         return 0;
2367 }
2368
2369 /**
2370  *      fionbio         -       non blocking ioctl
2371  *      @file: file to set blocking value
2372  *      @p: user parameter
2373  *
2374  *      Historical tty interfaces had a blocking control ioctl before
2375  *      the generic functionality existed. This piece of history is preserved
2376  *      in the expected tty API of posix OS's.
2377  *
2378  *      Locking: none, the open file handle ensures it won't go away.
2379  */
2380
2381 static int fionbio(struct file *file, int __user *p)
2382 {
2383         int nonblock;
2384
2385         if (get_user(nonblock, p))
2386                 return -EFAULT;
2387
2388         spin_lock(&file->f_lock);
2389         if (nonblock)
2390                 file->f_flags |= O_NONBLOCK;
2391         else
2392                 file->f_flags &= ~O_NONBLOCK;
2393         spin_unlock(&file->f_lock);
2394         return 0;
2395 }
2396
2397 /**
2398  *      tiocsctty       -       set controlling tty
2399  *      @tty: tty structure
2400  *      @arg: user argument
2401  *
2402  *      This ioctl is used to manage job control. It permits a session
2403  *      leader to set this tty as the controlling tty for the session.
2404  *
2405  *      Locking:
2406  *              Takes tty_mutex() to protect tty instance
2407  *              Takes tasklist_lock internally to walk sessions
2408  *              Takes ->siglock() when updating signal->tty
2409  */
2410
2411 static int tiocsctty(struct tty_struct *tty, int arg)
2412 {
2413         int ret = 0;
2414         if (current->signal->leader && (task_session(current) == tty->session))
2415                 return ret;
2416
2417         mutex_lock(&tty_mutex);
2418         /*
2419          * The process must be a session leader and
2420          * not have a controlling tty already.
2421          */
2422         if (!current->signal->leader || current->signal->tty) {
2423                 ret = -EPERM;
2424                 goto unlock;
2425         }
2426
2427         if (tty->session) {
2428                 /*
2429                  * This tty is already the controlling
2430                  * tty for another session group!
2431                  */
2432                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2433                         /*
2434                          * Steal it away
2435                          */
2436                         read_lock(&tasklist_lock);
2437                         session_clear_tty(tty->session);
2438                         read_unlock(&tasklist_lock);
2439                 } else {
2440                         ret = -EPERM;
2441                         goto unlock;
2442                 }
2443         }
2444         proc_set_tty(current, tty);
2445 unlock:
2446         mutex_unlock(&tty_mutex);
2447         return ret;
2448 }
2449
2450 /**
2451  *      tty_get_pgrp    -       return a ref counted pgrp pid
2452  *      @tty: tty to read
2453  *
2454  *      Returns a refcounted instance of the pid struct for the process
2455  *      group controlling the tty.
2456  */
2457
2458 struct pid *tty_get_pgrp(struct tty_struct *tty)
2459 {
2460         unsigned long flags;
2461         struct pid *pgrp;
2462
2463         spin_lock_irqsave(&tty->ctrl_lock, flags);
2464         pgrp = get_pid(tty->pgrp);
2465         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2466
2467         return pgrp;
2468 }
2469 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2470
2471 /**
2472  *      tiocgpgrp               -       get process group
2473  *      @tty: tty passed by user
2474  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2475  *      @p: returned pid
2476  *
2477  *      Obtain the process group of the tty. If there is no process group
2478  *      return an error.
2479  *
2480  *      Locking: none. Reference to current->signal->tty is safe.
2481  */
2482
2483 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2484 {
2485         struct pid *pid;
2486         int ret;
2487         /*
2488          * (tty == real_tty) is a cheap way of
2489          * testing if the tty is NOT a master pty.
2490          */
2491         if (tty == real_tty && current->signal->tty != real_tty)
2492                 return -ENOTTY;
2493         pid = tty_get_pgrp(real_tty);
2494         ret =  put_user(pid_vnr(pid), p);
2495         put_pid(pid);
2496         return ret;
2497 }
2498
2499 /**
2500  *      tiocspgrp               -       attempt to set process group
2501  *      @tty: tty passed by user
2502  *      @real_tty: tty side device matching tty passed by user
2503  *      @p: pid pointer
2504  *
2505  *      Set the process group of the tty to the session passed. Only
2506  *      permitted where the tty session is our session.
2507  *
2508  *      Locking: RCU, ctrl lock
2509  */
2510
2511 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2512 {
2513         struct pid *pgrp;
2514         pid_t pgrp_nr;
2515         int retval = tty_check_change(real_tty);
2516         unsigned long flags;
2517
2518         if (retval == -EIO)
2519                 return -ENOTTY;
2520         if (retval)
2521                 return retval;
2522         if (!current->signal->tty ||
2523             (current->signal->tty != real_tty) ||
2524             (real_tty->session != task_session(current)))
2525                 return -ENOTTY;
2526         if (get_user(pgrp_nr, p))
2527                 return -EFAULT;
2528         if (pgrp_nr < 0)
2529                 return -EINVAL;
2530         rcu_read_lock();
2531         pgrp = find_vpid(pgrp_nr);
2532         retval = -ESRCH;
2533         if (!pgrp)
2534                 goto out_unlock;
2535         retval = -EPERM;
2536         if (session_of_pgrp(pgrp) != task_session(current))
2537                 goto out_unlock;
2538         retval = 0;
2539         spin_lock_irqsave(&tty->ctrl_lock, flags);
2540         put_pid(real_tty->pgrp);
2541         real_tty->pgrp = get_pid(pgrp);
2542         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2543 out_unlock:
2544         rcu_read_unlock();
2545         return retval;
2546 }
2547
2548 /**
2549  *      tiocgsid                -       get session id
2550  *      @tty: tty passed by user
2551  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2552  *      @p: pointer to returned session id
2553  *
2554  *      Obtain the session id of the tty. If there is no session
2555  *      return an error.
2556  *
2557  *      Locking: none. Reference to current->signal->tty is safe.
2558  */
2559
2560 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2561 {
2562         /*
2563          * (tty == real_tty) is a cheap way of
2564          * testing if the tty is NOT a master pty.
2565         */
2566         if (tty == real_tty && current->signal->tty != real_tty)
2567                 return -ENOTTY;
2568         if (!real_tty->session)
2569                 return -ENOTTY;
2570         return put_user(pid_vnr(real_tty->session), p);
2571 }
2572
2573 /**
2574  *      tiocsetd        -       set line discipline
2575  *      @tty: tty device
2576  *      @p: pointer to user data
2577  *
2578  *      Set the line discipline according to user request.
2579  *
2580  *      Locking: see tty_set_ldisc, this function is just a helper
2581  */
2582
2583 static int tiocsetd(struct tty_struct *tty, int __user *p)
2584 {
2585         int ldisc;
2586         int ret;
2587
2588         if (get_user(ldisc, p))
2589                 return -EFAULT;
2590
2591         ret = tty_set_ldisc(tty, ldisc);
2592
2593         return ret;
2594 }
2595
2596 /**
2597  *      send_break      -       performed time break
2598  *      @tty: device to break on
2599  *      @duration: timeout in mS
2600  *
2601  *      Perform a timed break on hardware that lacks its own driver level
2602  *      timed break functionality.
2603  *
2604  *      Locking:
2605  *              atomic_write_lock serializes
2606  *
2607  */
2608
2609 static int send_break(struct tty_struct *tty, unsigned int duration)
2610 {
2611         int retval;
2612
2613         if (tty->ops->break_ctl == NULL)
2614                 return 0;
2615
2616         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2617                 retval = tty->ops->break_ctl(tty, duration);
2618         else {
2619                 /* Do the work ourselves */
2620                 if (tty_write_lock(tty, 0) < 0)
2621                         return -EINTR;
2622                 retval = tty->ops->break_ctl(tty, -1);
2623                 if (retval)
2624                         goto out;
2625                 if (!signal_pending(current))
2626                         msleep_interruptible(duration);
2627                 retval = tty->ops->break_ctl(tty, 0);
2628 out:
2629                 tty_write_unlock(tty);
2630                 if (signal_pending(current))
2631                         retval = -EINTR;
2632         }
2633         return retval;
2634 }
2635
2636 /**
2637  *      tty_tiocmget            -       get modem status
2638  *      @tty: tty device
2639  *      @file: user file pointer
2640  *      @p: pointer to result
2641  *
2642  *      Obtain the modem status bits from the tty driver if the feature
2643  *      is supported. Return -EINVAL if it is not available.
2644  *
2645  *      Locking: none (up to the driver)
2646  */
2647
2648 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2649 {
2650         int retval = -EINVAL;
2651
2652         if (tty->ops->tiocmget) {
2653                 retval = tty->ops->tiocmget(tty);
2654
2655                 if (retval >= 0)
2656                         retval = put_user(retval, p);
2657         }
2658         return retval;
2659 }
2660
2661 /**
2662  *      tty_tiocmset            -       set modem status
2663  *      @tty: tty device
2664  *      @cmd: command - clear bits, set bits or set all
2665  *      @p: pointer to desired bits
2666  *
2667  *      Set the modem status bits from the tty driver if the feature
2668  *      is supported. Return -EINVAL if it is not available.
2669  *
2670  *      Locking: none (up to the driver)
2671  */
2672
2673 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2674              unsigned __user *p)
2675 {
2676         int retval;
2677         unsigned int set, clear, val;
2678
2679         if (tty->ops->tiocmset == NULL)
2680                 return -EINVAL;
2681
2682         retval = get_user(val, p);
2683         if (retval)
2684                 return retval;
2685         set = clear = 0;
2686         switch (cmd) {
2687         case TIOCMBIS:
2688                 set = val;
2689                 break;
2690         case TIOCMBIC:
2691                 clear = val;
2692                 break;
2693         case TIOCMSET:
2694                 set = val;
2695                 clear = ~val;
2696                 break;
2697         }
2698         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2699         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2700         return tty->ops->tiocmset(tty, set, clear);
2701 }
2702
2703 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2704 {
2705         int retval = -EINVAL;
2706         struct serial_icounter_struct icount;
2707         memset(&icount, 0, sizeof(icount));
2708         if (tty->ops->get_icount)
2709                 retval = tty->ops->get_icount(tty, &icount);
2710         if (retval != 0)
2711                 return retval;
2712         if (copy_to_user(arg, &icount, sizeof(icount)))
2713                 return -EFAULT;
2714         return 0;
2715 }
2716
2717 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2718 {
2719         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2720             tty->driver->subtype == PTY_TYPE_MASTER)
2721                 tty = tty->link;
2722         return tty;
2723 }
2724 EXPORT_SYMBOL(tty_pair_get_tty);
2725
2726 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2727 {
2728         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2729             tty->driver->subtype == PTY_TYPE_MASTER)
2730             return tty;
2731         return tty->link;
2732 }
2733 EXPORT_SYMBOL(tty_pair_get_pty);
2734
2735 /*
2736  * Split this up, as gcc can choke on it otherwise..
2737  */
2738 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2739 {
2740         struct tty_struct *tty = file_tty(file);
2741         struct tty_struct *real_tty;
2742         void __user *p = (void __user *)arg;
2743         int retval;
2744         struct tty_ldisc *ld;
2745
2746         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2747                 return -EINVAL;
2748
2749         real_tty = tty_pair_get_tty(tty);
2750
2751         /*
2752          * Factor out some common prep work
2753          */
2754         switch (cmd) {
2755         case TIOCSETD:
2756         case TIOCSBRK:
2757         case TIOCCBRK:
2758         case TCSBRK:
2759         case TCSBRKP:
2760                 retval = tty_check_change(tty);
2761                 if (retval)
2762                         return retval;
2763                 if (cmd != TIOCCBRK) {
2764                         tty_wait_until_sent(tty, 0);
2765                         if (signal_pending(current))
2766                                 return -EINTR;
2767                 }
2768                 break;
2769         }
2770
2771         /*
2772          *      Now do the stuff.
2773          */
2774         switch (cmd) {
2775         case TIOCSTI:
2776                 return tiocsti(tty, p);
2777         case TIOCGWINSZ:
2778                 return tiocgwinsz(real_tty, p);
2779         case TIOCSWINSZ:
2780                 return tiocswinsz(real_tty, p);
2781         case TIOCCONS:
2782                 return real_tty != tty ? -EINVAL : tioccons(file);
2783         case FIONBIO:
2784                 return fionbio(file, p);
2785         case TIOCEXCL:
2786                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2787                 return 0;
2788         case TIOCNXCL:
2789                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2790                 return 0;
2791         case TIOCGEXCL:
2792         {
2793                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2794                 return put_user(excl, (int __user *)p);
2795         }
2796         case TIOCNOTTY:
2797                 if (current->signal->tty != tty)
2798                         return -ENOTTY;
2799                 no_tty();
2800                 return 0;
2801         case TIOCSCTTY:
2802                 return tiocsctty(tty, arg);
2803         case TIOCGPGRP:
2804                 return tiocgpgrp(tty, real_tty, p);
2805         case TIOCSPGRP:
2806                 return tiocspgrp(tty, real_tty, p);
2807         case TIOCGSID:
2808                 return tiocgsid(tty, real_tty, p);
2809         case TIOCGETD:
2810                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2811         case TIOCSETD:
2812                 return tiocsetd(tty, p);
2813         case TIOCVHANGUP:
2814                 if (!capable(CAP_SYS_ADMIN))
2815                         return -EPERM;
2816                 tty_vhangup(tty);
2817                 return 0;
2818         case TIOCGDEV:
2819         {
2820                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2821                 return put_user(ret, (unsigned int __user *)p);
2822         }
2823         /*
2824          * Break handling
2825          */
2826         case TIOCSBRK:  /* Turn break on, unconditionally */
2827                 if (tty->ops->break_ctl)
2828                         return tty->ops->break_ctl(tty, -1);
2829                 return 0;
2830         case TIOCCBRK:  /* Turn break off, unconditionally */
2831                 if (tty->ops->break_ctl)
2832                         return tty->ops->break_ctl(tty, 0);
2833                 return 0;
2834         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2835                 /* non-zero arg means wait for all output data
2836                  * to be sent (performed above) but don't send break.
2837                  * This is used by the tcdrain() termios function.
2838                  */
2839                 if (!arg)
2840                         return send_break(tty, 250);
2841                 return 0;
2842         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2843                 return send_break(tty, arg ? arg*100 : 250);
2844
2845         case TIOCMGET:
2846                 return tty_tiocmget(tty, p);
2847         case TIOCMSET:
2848         case TIOCMBIC:
2849         case TIOCMBIS:
2850                 return tty_tiocmset(tty, cmd, p);
2851         case TIOCGICOUNT:
2852                 retval = tty_tiocgicount(tty, p);
2853                 /* For the moment allow fall through to the old method */
2854                 if (retval != -EINVAL)
2855                         return retval;
2856                 break;
2857         case TCFLSH:
2858                 switch (arg) {
2859                 case TCIFLUSH:
2860                 case TCIOFLUSH:
2861                 /* flush tty buffer and allow ldisc to process ioctl */
2862                         tty_buffer_flush(tty);
2863                         break;
2864                 }
2865                 break;
2866         }
2867         if (tty->ops->ioctl) {
2868                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2869                 if (retval != -ENOIOCTLCMD)
2870                         return retval;
2871         }
2872         ld = tty_ldisc_ref_wait(tty);
2873         retval = -EINVAL;
2874         if (ld->ops->ioctl) {
2875                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2876                 if (retval == -ENOIOCTLCMD)
2877                         retval = -ENOTTY;
2878         }
2879         tty_ldisc_deref(ld);
2880         return retval;
2881 }
2882
2883 #ifdef CONFIG_COMPAT
2884 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2885                                 unsigned long arg)
2886 {
2887         struct tty_struct *tty = file_tty(file);
2888         struct tty_ldisc *ld;
2889         int retval = -ENOIOCTLCMD;
2890
2891         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2892                 return -EINVAL;
2893
2894         if (tty->ops->compat_ioctl) {
2895                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2896                 if (retval != -ENOIOCTLCMD)
2897                         return retval;
2898         }
2899
2900         ld = tty_ldisc_ref_wait(tty);
2901         if (ld->ops->compat_ioctl)
2902                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2903         else
2904                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2905         tty_ldisc_deref(ld);
2906
2907         return retval;
2908 }
2909 #endif
2910
2911 static int this_tty(const void *t, struct file *file, unsigned fd)
2912 {
2913         if (likely(file->f_op->read != tty_read))
2914                 return 0;
2915         return file_tty(file) != t ? 0 : fd + 1;
2916 }
2917         
2918 /*
2919  * This implements the "Secure Attention Key" ---  the idea is to
2920  * prevent trojan horses by killing all processes associated with this
2921  * tty when the user hits the "Secure Attention Key".  Required for
2922  * super-paranoid applications --- see the Orange Book for more details.
2923  *
2924  * This code could be nicer; ideally it should send a HUP, wait a few
2925  * seconds, then send a INT, and then a KILL signal.  But you then
2926  * have to coordinate with the init process, since all processes associated
2927  * with the current tty must be dead before the new getty is allowed
2928  * to spawn.
2929  *
2930  * Now, if it would be correct ;-/ The current code has a nasty hole -
2931  * it doesn't catch files in flight. We may send the descriptor to ourselves
2932  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2933  *
2934  * Nasty bug: do_SAK is being called in interrupt context.  This can
2935  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2936  */
2937 void __do_SAK(struct tty_struct *tty)
2938 {
2939 #ifdef TTY_SOFT_SAK
2940         tty_hangup(tty);
2941 #else
2942         struct task_struct *g, *p;
2943         struct pid *session;
2944         int             i;
2945
2946         if (!tty)
2947                 return;
2948         session = tty->session;
2949
2950         tty_ldisc_flush(tty);
2951
2952         tty_driver_flush_buffer(tty);
2953
2954         read_lock(&tasklist_lock);
2955         /* Kill the entire session */
2956         do_each_pid_task(session, PIDTYPE_SID, p) {
2957                 printk(KERN_NOTICE "SAK: killed process %d"
2958                         " (%s): task_session(p)==tty->session\n",
2959                         task_pid_nr(p), p->comm);
2960                 send_sig(SIGKILL, p, 1);
2961         } while_each_pid_task(session, PIDTYPE_SID, p);
2962         /* Now kill any processes that happen to have the
2963          * tty open.
2964          */
2965         do_each_thread(g, p) {
2966                 if (p->signal->tty == tty) {
2967                         printk(KERN_NOTICE "SAK: killed process %d"
2968                             " (%s): task_session(p)==tty->session\n",
2969                             task_pid_nr(p), p->comm);
2970                         send_sig(SIGKILL, p, 1);
2971                         continue;
2972                 }
2973                 task_lock(p);
2974                 i = iterate_fd(p->files, 0, this_tty, tty);
2975                 if (i != 0) {
2976                         printk(KERN_NOTICE "SAK: killed process %d"
2977                             " (%s): fd#%d opened to the tty\n",
2978                                     task_pid_nr(p), p->comm, i - 1);
2979                         force_sig(SIGKILL, p);
2980                 }
2981                 task_unlock(p);
2982         } while_each_thread(g, p);
2983         read_unlock(&tasklist_lock);
2984 #endif
2985 }
2986
2987 static void do_SAK_work(struct work_struct *work)
2988 {
2989         struct tty_struct *tty =
2990                 container_of(work, struct tty_struct, SAK_work);
2991         __do_SAK(tty);
2992 }
2993
2994 /*
2995  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2996  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2997  * the values which we write to it will be identical to the values which it
2998  * already has. --akpm
2999  */
3000 void do_SAK(struct tty_struct *tty)
3001 {
3002         if (!tty)
3003                 return;
3004         schedule_work(&tty->SAK_work);
3005 }
3006
3007 EXPORT_SYMBOL(do_SAK);
3008
3009 static int dev_match_devt(struct device *dev, const void *data)
3010 {
3011         const dev_t *devt = data;
3012         return dev->devt == *devt;
3013 }
3014
3015 /* Must put_device() after it's unused! */
3016 static struct device *tty_get_device(struct tty_struct *tty)
3017 {
3018         dev_t devt = tty_devnum(tty);
3019         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3020 }
3021
3022
3023 /**
3024  *      alloc_tty_struct
3025  *
3026  *      This subroutine allocates and initializes a tty structure.
3027  *
3028  *      Locking: none - tty in question is not exposed at this point
3029  */
3030
3031 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3032 {
3033         struct tty_struct *tty;
3034
3035         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3036         if (!tty)
3037                 return NULL;
3038
3039         kref_init(&tty->kref);
3040         tty->magic = TTY_MAGIC;
3041         tty_ldisc_init(tty);
3042         tty->session = NULL;
3043         tty->pgrp = NULL;
3044         mutex_init(&tty->legacy_mutex);
3045         mutex_init(&tty->throttle_mutex);
3046         init_rwsem(&tty->termios_rwsem);
3047         mutex_init(&tty->winsize_mutex);
3048         init_ldsem(&tty->ldisc_sem);
3049         init_waitqueue_head(&tty->write_wait);
3050         init_waitqueue_head(&tty->read_wait);
3051         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3052         mutex_init(&tty->atomic_write_lock);
3053         spin_lock_init(&tty->ctrl_lock);
3054         spin_lock_init(&tty->flow_lock);
3055         INIT_LIST_HEAD(&tty->tty_files);
3056         INIT_WORK(&tty->SAK_work, do_SAK_work);
3057
3058         tty->driver = driver;
3059         tty->ops = driver->ops;
3060         tty->index = idx;
3061         tty_line_name(driver, idx, tty->name);
3062         tty->dev = tty_get_device(tty);
3063
3064         return tty;
3065 }
3066
3067 /**
3068  *      deinitialize_tty_struct
3069  *      @tty: tty to deinitialize
3070  *
3071  *      This subroutine deinitializes a tty structure that has been newly
3072  *      allocated but tty_release cannot be called on that yet.
3073  *
3074  *      Locking: none - tty in question must not be exposed at this point
3075  */
3076 void deinitialize_tty_struct(struct tty_struct *tty)
3077 {
3078         tty_ldisc_deinit(tty);
3079 }
3080
3081 /**
3082  *      tty_put_char    -       write one character to a tty
3083  *      @tty: tty
3084  *      @ch: character
3085  *
3086  *      Write one byte to the tty using the provided put_char method
3087  *      if present. Returns the number of characters successfully output.
3088  *
3089  *      Note: the specific put_char operation in the driver layer may go
3090  *      away soon. Don't call it directly, use this method
3091  */
3092
3093 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3094 {
3095         if (tty->ops->put_char)
3096                 return tty->ops->put_char(tty, ch);
3097         return tty->ops->write(tty, &ch, 1);
3098 }
3099 EXPORT_SYMBOL_GPL(tty_put_char);
3100
3101 struct class *tty_class;
3102
3103 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3104                 unsigned int index, unsigned int count)
3105 {
3106         /* init here, since reused cdevs cause crashes */
3107         cdev_init(&driver->cdevs[index], &tty_fops);
3108         driver->cdevs[index].owner = driver->owner;
3109         return cdev_add(&driver->cdevs[index], dev, count);
3110 }
3111
3112 /**
3113  *      tty_register_device - register a tty device
3114  *      @driver: the tty driver that describes the tty device
3115  *      @index: the index in the tty driver for this tty device
3116  *      @device: a struct device that is associated with this tty device.
3117  *              This field is optional, if there is no known struct device
3118  *              for this tty device it can be set to NULL safely.
3119  *
3120  *      Returns a pointer to the struct device for this tty device
3121  *      (or ERR_PTR(-EFOO) on error).
3122  *
3123  *      This call is required to be made to register an individual tty device
3124  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3125  *      that bit is not set, this function should not be called by a tty
3126  *      driver.
3127  *
3128  *      Locking: ??
3129  */
3130
3131 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3132                                    struct device *device)
3133 {
3134         return tty_register_device_attr(driver, index, device, NULL, NULL);
3135 }
3136 EXPORT_SYMBOL(tty_register_device);
3137
3138 static void tty_device_create_release(struct device *dev)
3139 {
3140         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3141         kfree(dev);
3142 }
3143
3144 /**
3145  *      tty_register_device_attr - register a tty device
3146  *      @driver: the tty driver that describes the tty device
3147  *      @index: the index in the tty driver for this tty device
3148  *      @device: a struct device that is associated with this tty device.
3149  *              This field is optional, if there is no known struct device
3150  *              for this tty device it can be set to NULL safely.
3151  *      @drvdata: Driver data to be set to device.
3152  *      @attr_grp: Attribute group to be set on device.
3153  *
3154  *      Returns a pointer to the struct device for this tty device
3155  *      (or ERR_PTR(-EFOO) on error).
3156  *
3157  *      This call is required to be made to register an individual tty device
3158  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3159  *      that bit is not set, this function should not be called by a tty
3160  *      driver.
3161  *
3162  *      Locking: ??
3163  */
3164 struct device *tty_register_device_attr(struct tty_driver *driver,
3165                                    unsigned index, struct device *device,
3166                                    void *drvdata,
3167                                    const struct attribute_group **attr_grp)
3168 {
3169         char name[64];
3170         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3171         struct device *dev = NULL;
3172         int retval = -ENODEV;
3173         bool cdev = false;
3174
3175         if (index >= driver->num) {
3176                 printk(KERN_ERR "Attempt to register invalid tty line number "
3177                        " (%d).\n", index);
3178                 return ERR_PTR(-EINVAL);
3179         }
3180
3181         if (driver->type == TTY_DRIVER_TYPE_PTY)
3182                 pty_line_name(driver, index, name);
3183         else
3184                 tty_line_name(driver, index, name);
3185
3186         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3187                 retval = tty_cdev_add(driver, devt, index, 1);
3188                 if (retval)
3189                         goto error;
3190                 cdev = true;
3191         }
3192
3193         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3194         if (!dev) {
3195                 retval = -ENOMEM;
3196                 goto error;
3197         }
3198
3199         dev->devt = devt;
3200         dev->class = tty_class;
3201         dev->parent = device;
3202         dev->release = tty_device_create_release;
3203         dev_set_name(dev, "%s", name);
3204         dev->groups = attr_grp;
3205         dev_set_drvdata(dev, drvdata);
3206
3207         retval = device_register(dev);
3208         if (retval)
3209                 goto error;
3210
3211         return dev;
3212
3213 error:
3214         put_device(dev);
3215         if (cdev)
3216                 cdev_del(&driver->cdevs[index]);
3217         return ERR_PTR(retval);
3218 }
3219 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3220
3221 /**
3222  *      tty_unregister_device - unregister a tty device
3223  *      @driver: the tty driver that describes the tty device
3224  *      @index: the index in the tty driver for this tty device
3225  *
3226  *      If a tty device is registered with a call to tty_register_device() then
3227  *      this function must be called when the tty device is gone.
3228  *
3229  *      Locking: ??
3230  */
3231
3232 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3233 {
3234         device_destroy(tty_class,
3235                 MKDEV(driver->major, driver->minor_start) + index);
3236         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3237                 cdev_del(&driver->cdevs[index]);
3238 }
3239 EXPORT_SYMBOL(tty_unregister_device);
3240
3241 /**
3242  * __tty_alloc_driver -- allocate tty driver
3243  * @lines: count of lines this driver can handle at most
3244  * @owner: module which is repsonsible for this driver
3245  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3246  *
3247  * This should not be called directly, some of the provided macros should be
3248  * used instead. Use IS_ERR and friends on @retval.
3249  */
3250 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3251                 unsigned long flags)
3252 {
3253         struct tty_driver *driver;
3254         unsigned int cdevs = 1;
3255         int err;
3256
3257         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3258                 return ERR_PTR(-EINVAL);
3259
3260         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3261         if (!driver)
3262                 return ERR_PTR(-ENOMEM);
3263
3264         kref_init(&driver->kref);
3265         driver->magic = TTY_DRIVER_MAGIC;
3266         driver->num = lines;
3267         driver->owner = owner;
3268         driver->flags = flags;
3269
3270         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3271                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3272                                 GFP_KERNEL);
3273                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3274                                 GFP_KERNEL);
3275                 if (!driver->ttys || !driver->termios) {
3276                         err = -ENOMEM;
3277                         goto err_free_all;
3278                 }
3279         }
3280
3281         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3282                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3283                                 GFP_KERNEL);
3284                 if (!driver->ports) {
3285                         err = -ENOMEM;
3286                         goto err_free_all;
3287                 }
3288                 cdevs = lines;
3289         }
3290
3291         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3292         if (!driver->cdevs) {
3293                 err = -ENOMEM;
3294                 goto err_free_all;
3295         }
3296
3297         return driver;
3298 err_free_all:
3299         kfree(driver->ports);
3300         kfree(driver->ttys);
3301         kfree(driver->termios);
3302         kfree(driver);
3303         return ERR_PTR(err);
3304 }
3305 EXPORT_SYMBOL(__tty_alloc_driver);
3306
3307 static void destruct_tty_driver(struct kref *kref)
3308 {
3309         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3310         int i;
3311         struct ktermios *tp;
3312
3313         if (driver->flags & TTY_DRIVER_INSTALLED) {
3314                 /*
3315                  * Free the termios and termios_locked structures because
3316                  * we don't want to get memory leaks when modular tty
3317                  * drivers are removed from the kernel.
3318                  */
3319                 for (i = 0; i < driver->num; i++) {
3320                         tp = driver->termios[i];
3321                         if (tp) {
3322                                 driver->termios[i] = NULL;
3323                                 kfree(tp);
3324                         }
3325                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3326                                 tty_unregister_device(driver, i);
3327                 }
3328                 proc_tty_unregister_driver(driver);
3329                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3330                         cdev_del(&driver->cdevs[0]);
3331         }
3332         kfree(driver->cdevs);
3333         kfree(driver->ports);
3334         kfree(driver->termios);
3335         kfree(driver->ttys);
3336         kfree(driver);
3337 }
3338
3339 void tty_driver_kref_put(struct tty_driver *driver)
3340 {
3341         kref_put(&driver->kref, destruct_tty_driver);
3342 }
3343 EXPORT_SYMBOL(tty_driver_kref_put);
3344
3345 void tty_set_operations(struct tty_driver *driver,
3346                         const struct tty_operations *op)
3347 {
3348         driver->ops = op;
3349 };
3350 EXPORT_SYMBOL(tty_set_operations);
3351
3352 void put_tty_driver(struct tty_driver *d)
3353 {
3354         tty_driver_kref_put(d);
3355 }
3356 EXPORT_SYMBOL(put_tty_driver);
3357
3358 /*
3359  * Called by a tty driver to register itself.
3360  */
3361 int tty_register_driver(struct tty_driver *driver)
3362 {
3363         int error;
3364         int i;
3365         dev_t dev;
3366         struct device *d;
3367
3368         if (!driver->major) {
3369                 error = alloc_chrdev_region(&dev, driver->minor_start,
3370                                                 driver->num, driver->name);
3371                 if (!error) {
3372                         driver->major = MAJOR(dev);
3373                         driver->minor_start = MINOR(dev);
3374                 }
3375         } else {
3376                 dev = MKDEV(driver->major, driver->minor_start);
3377                 error = register_chrdev_region(dev, driver->num, driver->name);
3378         }
3379         if (error < 0)
3380                 goto err;
3381
3382         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3383                 error = tty_cdev_add(driver, dev, 0, driver->num);
3384                 if (error)
3385                         goto err_unreg_char;
3386         }
3387
3388         mutex_lock(&tty_mutex);
3389         list_add(&driver->tty_drivers, &tty_drivers);
3390         mutex_unlock(&tty_mutex);
3391
3392         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3393                 for (i = 0; i < driver->num; i++) {
3394                         d = tty_register_device(driver, i, NULL);
3395                         if (IS_ERR(d)) {
3396                                 error = PTR_ERR(d);
3397                                 goto err_unreg_devs;
3398                         }
3399                 }
3400         }
3401         proc_tty_register_driver(driver);
3402         driver->flags |= TTY_DRIVER_INSTALLED;
3403         return 0;
3404
3405 err_unreg_devs:
3406         for (i--; i >= 0; i--)
3407                 tty_unregister_device(driver, i);
3408
3409         mutex_lock(&tty_mutex);
3410         list_del(&driver->tty_drivers);
3411         mutex_unlock(&tty_mutex);
3412
3413 err_unreg_char:
3414         unregister_chrdev_region(dev, driver->num);
3415 err:
3416         return error;
3417 }
3418 EXPORT_SYMBOL(tty_register_driver);
3419
3420 /*
3421  * Called by a tty driver to unregister itself.
3422  */
3423 int tty_unregister_driver(struct tty_driver *driver)
3424 {
3425 #if 0
3426         /* FIXME */
3427         if (driver->refcount)
3428                 return -EBUSY;
3429 #endif
3430         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3431                                 driver->num);
3432         mutex_lock(&tty_mutex);
3433         list_del(&driver->tty_drivers);
3434         mutex_unlock(&tty_mutex);
3435         return 0;
3436 }
3437
3438 EXPORT_SYMBOL(tty_unregister_driver);
3439
3440 dev_t tty_devnum(struct tty_struct *tty)
3441 {
3442         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3443 }
3444 EXPORT_SYMBOL(tty_devnum);
3445
3446 void proc_clear_tty(struct task_struct *p)
3447 {
3448         unsigned long flags;
3449         struct tty_struct *tty;
3450         spin_lock_irqsave(&p->sighand->siglock, flags);
3451         tty = p->signal->tty;
3452         p->signal->tty = NULL;
3453         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3454         tty_kref_put(tty);
3455 }
3456
3457 /* Called under the sighand lock */
3458
3459 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3460 {
3461         if (tty) {
3462                 unsigned long flags;
3463                 /* We should not have a session or pgrp to put here but.... */
3464                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3465                 put_pid(tty->session);
3466                 put_pid(tty->pgrp);
3467                 tty->pgrp = get_pid(task_pgrp(tsk));
3468                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3469                 tty->session = get_pid(task_session(tsk));
3470                 if (tsk->signal->tty) {
3471                         printk(KERN_DEBUG "tty not NULL!!\n");
3472                         tty_kref_put(tsk->signal->tty);
3473                 }
3474         }
3475         put_pid(tsk->signal->tty_old_pgrp);
3476         tsk->signal->tty = tty_kref_get(tty);
3477         tsk->signal->tty_old_pgrp = NULL;
3478 }
3479
3480 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3481 {
3482         spin_lock_irq(&tsk->sighand->siglock);
3483         __proc_set_tty(tsk, tty);
3484         spin_unlock_irq(&tsk->sighand->siglock);
3485 }
3486
3487 struct tty_struct *get_current_tty(void)
3488 {
3489         struct tty_struct *tty;
3490         unsigned long flags;
3491
3492         spin_lock_irqsave(&current->sighand->siglock, flags);
3493         tty = tty_kref_get(current->signal->tty);
3494         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3495         return tty;
3496 }
3497 EXPORT_SYMBOL_GPL(get_current_tty);
3498
3499 void tty_default_fops(struct file_operations *fops)
3500 {
3501         *fops = tty_fops;
3502 }
3503
3504 /*
3505  * Initialize the console device. This is called *early*, so
3506  * we can't necessarily depend on lots of kernel help here.
3507  * Just do some early initializations, and do the complex setup
3508  * later.
3509  */
3510 void __init console_init(void)
3511 {
3512         initcall_t *call;
3513
3514         /* Setup the default TTY line discipline. */
3515         tty_ldisc_begin();
3516
3517         /*
3518          * set up the console device so that later boot sequences can
3519          * inform about problems etc..
3520          */
3521         call = __con_initcall_start;
3522         while (call < __con_initcall_end) {
3523                 (*call)();
3524                 call++;
3525         }
3526 }
3527
3528 static char *tty_devnode(struct device *dev, umode_t *mode)
3529 {
3530         if (!mode)
3531                 return NULL;
3532         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3533             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3534                 *mode = 0666;
3535         return NULL;
3536 }
3537
3538 static int __init tty_class_init(void)
3539 {
3540         tty_class = class_create(THIS_MODULE, "tty");
3541         if (IS_ERR(tty_class))
3542                 return PTR_ERR(tty_class);
3543         tty_class->devnode = tty_devnode;
3544         return 0;
3545 }
3546
3547 postcore_initcall(tty_class_init);
3548
3549 /* 3/2004 jmc: why do these devices exist? */
3550 static struct cdev tty_cdev, console_cdev;
3551
3552 static ssize_t show_cons_active(struct device *dev,
3553                                 struct device_attribute *attr, char *buf)
3554 {
3555         struct console *cs[16];
3556         int i = 0;
3557         struct console *c;
3558         ssize_t count = 0;
3559
3560         console_lock();
3561         for_each_console(c) {
3562                 if (!c->device)
3563                         continue;
3564                 if (!c->write)
3565                         continue;
3566                 if ((c->flags & CON_ENABLED) == 0)
3567                         continue;
3568                 cs[i++] = c;
3569                 if (i >= ARRAY_SIZE(cs))
3570                         break;
3571         }
3572         while (i--) {
3573                 int index = cs[i]->index;
3574                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3575
3576                 /* don't resolve tty0 as some programs depend on it */
3577                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3578                         count += tty_line_name(drv, index, buf + count);
3579                 else
3580                         count += sprintf(buf + count, "%s%d",
3581                                          cs[i]->name, cs[i]->index);
3582
3583                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3584         }
3585         console_unlock();
3586
3587         return count;
3588 }
3589 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3590
3591 static struct device *consdev;
3592
3593 void console_sysfs_notify(void)
3594 {
3595         if (consdev)
3596                 sysfs_notify(&consdev->kobj, NULL, "active");
3597 }
3598
3599 /*
3600  * Ok, now we can initialize the rest of the tty devices and can count
3601  * on memory allocations, interrupts etc..
3602  */
3603 int __init tty_init(void)
3604 {
3605         cdev_init(&tty_cdev, &tty_fops);
3606         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3607             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3608                 panic("Couldn't register /dev/tty driver\n");
3609         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3610
3611         cdev_init(&console_cdev, &console_fops);
3612         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3613             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3614                 panic("Couldn't register /dev/console driver\n");
3615         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3616                               "console");
3617         if (IS_ERR(consdev))
3618                 consdev = NULL;
3619         else
3620                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3621
3622 #ifdef CONFIG_VT
3623         vty_init(&console_fops);
3624 #endif
3625         return 0;
3626 }
3627