regulator: core: Fix regualtor_ena_gpio_free not to access pin after freeing
[cascardo/linux.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49
50 #include "usb.h"
51
52
53 /*-------------------------------------------------------------------------*/
54
55 /*
56  * USB Host Controller Driver framework
57  *
58  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59  * HCD-specific behaviors/bugs.
60  *
61  * This does error checks, tracks devices and urbs, and delegates to a
62  * "hc_driver" only for code (and data) that really needs to know about
63  * hardware differences.  That includes root hub registers, i/o queues,
64  * and so on ... but as little else as possible.
65  *
66  * Shared code includes most of the "root hub" code (these are emulated,
67  * though each HC's hardware works differently) and PCI glue, plus request
68  * tracking overhead.  The HCD code should only block on spinlocks or on
69  * hardware handshaking; blocking on software events (such as other kernel
70  * threads releasing resources, or completing actions) is all generic.
71  *
72  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74  * only by the hub driver ... and that neither should be seen or used by
75  * usb client device drivers.
76  *
77  * Contributors of ideas or unattributed patches include: David Brownell,
78  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79  *
80  * HISTORY:
81  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
82  *              associated cleanup.  "usb_hcd" still != "usb_bus".
83  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
84  */
85
86 /*-------------------------------------------------------------------------*/
87
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92 /* host controllers we manage */
93 LIST_HEAD (usb_bus_list);
94 EXPORT_SYMBOL_GPL (usb_bus_list);
95
96 /* used when allocating bus numbers */
97 #define USB_MAXBUS              64
98 static DECLARE_BITMAP(busmap, USB_MAXBUS);
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118         return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124  * Sharable chunks of root hub code.
125  */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133         0x12,       /*  __u8  bLength; */
134         0x01,       /*  __u8  bDescriptorType; Device */
135         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
140         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153 static const u8 usb25_rh_dev_descriptor[18] = {
154         0x12,       /*  __u8  bLength; */
155         0x01,       /*  __u8  bDescriptorType; Device */
156         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
157
158         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
159         0x00,       /*  __u8  bDeviceSubClass; */
160         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
161         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
162
163         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
165         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167         0x03,       /*  __u8  iManufacturer; */
168         0x02,       /*  __u8  iProduct; */
169         0x01,       /*  __u8  iSerialNumber; */
170         0x01        /*  __u8  bNumConfigurations; */
171 };
172
173 /* usb 2.0 root hub device descriptor */
174 static const u8 usb2_rh_dev_descriptor[18] = {
175         0x12,       /*  __u8  bLength; */
176         0x01,       /*  __u8  bDescriptorType; Device */
177         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
178
179         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
180         0x00,       /*  __u8  bDeviceSubClass; */
181         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
183
184         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187
188         0x03,       /*  __u8  iManufacturer; */
189         0x02,       /*  __u8  iProduct; */
190         0x01,       /*  __u8  iSerialNumber; */
191         0x01        /*  __u8  bNumConfigurations; */
192 };
193
194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
195
196 /* usb 1.1 root hub device descriptor */
197 static const u8 usb11_rh_dev_descriptor[18] = {
198         0x12,       /*  __u8  bLength; */
199         0x01,       /*  __u8  bDescriptorType; Device */
200         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
201
202         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
203         0x00,       /*  __u8  bDeviceSubClass; */
204         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
205         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
206
207         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
208         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
209         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
210
211         0x03,       /*  __u8  iManufacturer; */
212         0x02,       /*  __u8  iProduct; */
213         0x01,       /*  __u8  iSerialNumber; */
214         0x01        /*  __u8  bNumConfigurations; */
215 };
216
217
218 /*-------------------------------------------------------------------------*/
219
220 /* Configuration descriptors for our root hubs */
221
222 static const u8 fs_rh_config_descriptor[] = {
223
224         /* one configuration */
225         0x09,       /*  __u8  bLength; */
226         0x02,       /*  __u8  bDescriptorType; Configuration */
227         0x19, 0x00, /*  __le16 wTotalLength; */
228         0x01,       /*  __u8  bNumInterfaces; (1) */
229         0x01,       /*  __u8  bConfigurationValue; */
230         0x00,       /*  __u8  iConfiguration; */
231         0xc0,       /*  __u8  bmAttributes;
232                                  Bit 7: must be set,
233                                      6: Self-powered,
234                                      5: Remote wakeup,
235                                      4..0: resvd */
236         0x00,       /*  __u8  MaxPower; */
237
238         /* USB 1.1:
239          * USB 2.0, single TT organization (mandatory):
240          *      one interface, protocol 0
241          *
242          * USB 2.0, multiple TT organization (optional):
243          *      two interfaces, protocols 1 (like single TT)
244          *      and 2 (multiple TT mode) ... config is
245          *      sometimes settable
246          *      NOT IMPLEMENTED
247          */
248
249         /* one interface */
250         0x09,       /*  __u8  if_bLength; */
251         0x04,       /*  __u8  if_bDescriptorType; Interface */
252         0x00,       /*  __u8  if_bInterfaceNumber; */
253         0x00,       /*  __u8  if_bAlternateSetting; */
254         0x01,       /*  __u8  if_bNumEndpoints; */
255         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
256         0x00,       /*  __u8  if_bInterfaceSubClass; */
257         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
258         0x00,       /*  __u8  if_iInterface; */
259
260         /* one endpoint (status change endpoint) */
261         0x07,       /*  __u8  ep_bLength; */
262         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
263         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
264         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
265         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
267 };
268
269 static const u8 hs_rh_config_descriptor[] = {
270
271         /* one configuration */
272         0x09,       /*  __u8  bLength; */
273         0x02,       /*  __u8  bDescriptorType; Configuration */
274         0x19, 0x00, /*  __le16 wTotalLength; */
275         0x01,       /*  __u8  bNumInterfaces; (1) */
276         0x01,       /*  __u8  bConfigurationValue; */
277         0x00,       /*  __u8  iConfiguration; */
278         0xc0,       /*  __u8  bmAttributes;
279                                  Bit 7: must be set,
280                                      6: Self-powered,
281                                      5: Remote wakeup,
282                                      4..0: resvd */
283         0x00,       /*  __u8  MaxPower; */
284
285         /* USB 1.1:
286          * USB 2.0, single TT organization (mandatory):
287          *      one interface, protocol 0
288          *
289          * USB 2.0, multiple TT organization (optional):
290          *      two interfaces, protocols 1 (like single TT)
291          *      and 2 (multiple TT mode) ... config is
292          *      sometimes settable
293          *      NOT IMPLEMENTED
294          */
295
296         /* one interface */
297         0x09,       /*  __u8  if_bLength; */
298         0x04,       /*  __u8  if_bDescriptorType; Interface */
299         0x00,       /*  __u8  if_bInterfaceNumber; */
300         0x00,       /*  __u8  if_bAlternateSetting; */
301         0x01,       /*  __u8  if_bNumEndpoints; */
302         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
303         0x00,       /*  __u8  if_bInterfaceSubClass; */
304         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
305         0x00,       /*  __u8  if_iInterface; */
306
307         /* one endpoint (status change endpoint) */
308         0x07,       /*  __u8  ep_bLength; */
309         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
310         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
311         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
312                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313                      * see hub.c:hub_configure() for details. */
314         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
315         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
316 };
317
318 static const u8 ss_rh_config_descriptor[] = {
319         /* one configuration */
320         0x09,       /*  __u8  bLength; */
321         0x02,       /*  __u8  bDescriptorType; Configuration */
322         0x1f, 0x00, /*  __le16 wTotalLength; */
323         0x01,       /*  __u8  bNumInterfaces; (1) */
324         0x01,       /*  __u8  bConfigurationValue; */
325         0x00,       /*  __u8  iConfiguration; */
326         0xc0,       /*  __u8  bmAttributes;
327                                  Bit 7: must be set,
328                                      6: Self-powered,
329                                      5: Remote wakeup,
330                                      4..0: resvd */
331         0x00,       /*  __u8  MaxPower; */
332
333         /* one interface */
334         0x09,       /*  __u8  if_bLength; */
335         0x04,       /*  __u8  if_bDescriptorType; Interface */
336         0x00,       /*  __u8  if_bInterfaceNumber; */
337         0x00,       /*  __u8  if_bAlternateSetting; */
338         0x01,       /*  __u8  if_bNumEndpoints; */
339         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
340         0x00,       /*  __u8  if_bInterfaceSubClass; */
341         0x00,       /*  __u8  if_bInterfaceProtocol; */
342         0x00,       /*  __u8  if_iInterface; */
343
344         /* one endpoint (status change endpoint) */
345         0x07,       /*  __u8  ep_bLength; */
346         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
347         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
348         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
349                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350                      * see hub.c:hub_configure() for details. */
351         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
352         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
353
354         /* one SuperSpeed endpoint companion descriptor */
355         0x06,        /* __u8 ss_bLength */
356         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
357         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
358         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
359         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
360 };
361
362 /* authorized_default behaviour:
363  * -1 is authorized for all devices except wireless (old behaviour)
364  * 0 is unauthorized for all devices
365  * 1 is authorized for all devices
366  */
367 static int authorized_default = -1;
368 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
369 MODULE_PARM_DESC(authorized_default,
370                 "Default USB device authorization: 0 is not authorized, 1 is "
371                 "authorized, -1 is authorized except for wireless USB (default, "
372                 "old behaviour");
373 /*-------------------------------------------------------------------------*/
374
375 /**
376  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
377  * @s: Null-terminated ASCII (actually ISO-8859-1) string
378  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
379  * @len: Length (in bytes; may be odd) of descriptor buffer.
380  *
381  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
382  * whichever is less.
383  *
384  * Note:
385  * USB String descriptors can contain at most 126 characters; input
386  * strings longer than that are truncated.
387  */
388 static unsigned
389 ascii2desc(char const *s, u8 *buf, unsigned len)
390 {
391         unsigned n, t = 2 + 2*strlen(s);
392
393         if (t > 254)
394                 t = 254;        /* Longest possible UTF string descriptor */
395         if (len > t)
396                 len = t;
397
398         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
399
400         n = len;
401         while (n--) {
402                 *buf++ = t;
403                 if (!n--)
404                         break;
405                 *buf++ = t >> 8;
406                 t = (unsigned char)*s++;
407         }
408         return len;
409 }
410
411 /**
412  * rh_string() - provides string descriptors for root hub
413  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
414  * @hcd: the host controller for this root hub
415  * @data: buffer for output packet
416  * @len: length of the provided buffer
417  *
418  * Produces either a manufacturer, product or serial number string for the
419  * virtual root hub device.
420  *
421  * Return: The number of bytes filled in: the length of the descriptor or
422  * of the provided buffer, whichever is less.
423  */
424 static unsigned
425 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
426 {
427         char buf[100];
428         char const *s;
429         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
430
431         /* language ids */
432         switch (id) {
433         case 0:
434                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
435                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
436                 if (len > 4)
437                         len = 4;
438                 memcpy(data, langids, len);
439                 return len;
440         case 1:
441                 /* Serial number */
442                 s = hcd->self.bus_name;
443                 break;
444         case 2:
445                 /* Product name */
446                 s = hcd->product_desc;
447                 break;
448         case 3:
449                 /* Manufacturer */
450                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
451                         init_utsname()->release, hcd->driver->description);
452                 s = buf;
453                 break;
454         default:
455                 /* Can't happen; caller guarantees it */
456                 return 0;
457         }
458
459         return ascii2desc(s, data, len);
460 }
461
462
463 /* Root hub control transfers execute synchronously */
464 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
465 {
466         struct usb_ctrlrequest *cmd;
467         u16             typeReq, wValue, wIndex, wLength;
468         u8              *ubuf = urb->transfer_buffer;
469         unsigned        len = 0;
470         int             status;
471         u8              patch_wakeup = 0;
472         u8              patch_protocol = 0;
473         u16             tbuf_size;
474         u8              *tbuf = NULL;
475         const u8        *bufp;
476
477         might_sleep();
478
479         spin_lock_irq(&hcd_root_hub_lock);
480         status = usb_hcd_link_urb_to_ep(hcd, urb);
481         spin_unlock_irq(&hcd_root_hub_lock);
482         if (status)
483                 return status;
484         urb->hcpriv = hcd;      /* Indicate it's queued */
485
486         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
487         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
488         wValue   = le16_to_cpu (cmd->wValue);
489         wIndex   = le16_to_cpu (cmd->wIndex);
490         wLength  = le16_to_cpu (cmd->wLength);
491
492         if (wLength > urb->transfer_buffer_length)
493                 goto error;
494
495         /*
496          * tbuf should be at least as big as the
497          * USB hub descriptor.
498          */
499         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
500         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
501         if (!tbuf)
502                 return -ENOMEM;
503
504         bufp = tbuf;
505
506
507         urb->actual_length = 0;
508         switch (typeReq) {
509
510         /* DEVICE REQUESTS */
511
512         /* The root hub's remote wakeup enable bit is implemented using
513          * driver model wakeup flags.  If this system supports wakeup
514          * through USB, userspace may change the default "allow wakeup"
515          * policy through sysfs or these calls.
516          *
517          * Most root hubs support wakeup from downstream devices, for
518          * runtime power management (disabling USB clocks and reducing
519          * VBUS power usage).  However, not all of them do so; silicon,
520          * board, and BIOS bugs here are not uncommon, so these can't
521          * be treated quite like external hubs.
522          *
523          * Likewise, not all root hubs will pass wakeup events upstream,
524          * to wake up the whole system.  So don't assume root hub and
525          * controller capabilities are identical.
526          */
527
528         case DeviceRequest | USB_REQ_GET_STATUS:
529                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
530                                         << USB_DEVICE_REMOTE_WAKEUP)
531                                 | (1 << USB_DEVICE_SELF_POWERED);
532                 tbuf[1] = 0;
533                 len = 2;
534                 break;
535         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
536                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
537                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
538                 else
539                         goto error;
540                 break;
541         case DeviceOutRequest | USB_REQ_SET_FEATURE:
542                 if (device_can_wakeup(&hcd->self.root_hub->dev)
543                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
544                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
545                 else
546                         goto error;
547                 break;
548         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
549                 tbuf[0] = 1;
550                 len = 1;
551                         /* FALLTHROUGH */
552         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
553                 break;
554         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
555                 switch (wValue & 0xff00) {
556                 case USB_DT_DEVICE << 8:
557                         switch (hcd->speed) {
558                         case HCD_USB3:
559                                 bufp = usb3_rh_dev_descriptor;
560                                 break;
561                         case HCD_USB25:
562                                 bufp = usb25_rh_dev_descriptor;
563                                 break;
564                         case HCD_USB2:
565                                 bufp = usb2_rh_dev_descriptor;
566                                 break;
567                         case HCD_USB11:
568                                 bufp = usb11_rh_dev_descriptor;
569                                 break;
570                         default:
571                                 goto error;
572                         }
573                         len = 18;
574                         if (hcd->has_tt)
575                                 patch_protocol = 1;
576                         break;
577                 case USB_DT_CONFIG << 8:
578                         switch (hcd->speed) {
579                         case HCD_USB3:
580                                 bufp = ss_rh_config_descriptor;
581                                 len = sizeof ss_rh_config_descriptor;
582                                 break;
583                         case HCD_USB25:
584                         case HCD_USB2:
585                                 bufp = hs_rh_config_descriptor;
586                                 len = sizeof hs_rh_config_descriptor;
587                                 break;
588                         case HCD_USB11:
589                                 bufp = fs_rh_config_descriptor;
590                                 len = sizeof fs_rh_config_descriptor;
591                                 break;
592                         default:
593                                 goto error;
594                         }
595                         if (device_can_wakeup(&hcd->self.root_hub->dev))
596                                 patch_wakeup = 1;
597                         break;
598                 case USB_DT_STRING << 8:
599                         if ((wValue & 0xff) < 4)
600                                 urb->actual_length = rh_string(wValue & 0xff,
601                                                 hcd, ubuf, wLength);
602                         else /* unsupported IDs --> "protocol stall" */
603                                 goto error;
604                         break;
605                 case USB_DT_BOS << 8:
606                         goto nongeneric;
607                 default:
608                         goto error;
609                 }
610                 break;
611         case DeviceRequest | USB_REQ_GET_INTERFACE:
612                 tbuf[0] = 0;
613                 len = 1;
614                         /* FALLTHROUGH */
615         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
616                 break;
617         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
618                 /* wValue == urb->dev->devaddr */
619                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
620                         wValue);
621                 break;
622
623         /* INTERFACE REQUESTS (no defined feature/status flags) */
624
625         /* ENDPOINT REQUESTS */
626
627         case EndpointRequest | USB_REQ_GET_STATUS:
628                 /* ENDPOINT_HALT flag */
629                 tbuf[0] = 0;
630                 tbuf[1] = 0;
631                 len = 2;
632                         /* FALLTHROUGH */
633         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
634         case EndpointOutRequest | USB_REQ_SET_FEATURE:
635                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
636                 break;
637
638         /* CLASS REQUESTS (and errors) */
639
640         default:
641 nongeneric:
642                 /* non-generic request */
643                 switch (typeReq) {
644                 case GetHubStatus:
645                 case GetPortStatus:
646                         len = 4;
647                         break;
648                 case GetHubDescriptor:
649                         len = sizeof (struct usb_hub_descriptor);
650                         break;
651                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
652                         /* len is returned by hub_control */
653                         break;
654                 }
655                 status = hcd->driver->hub_control (hcd,
656                         typeReq, wValue, wIndex,
657                         tbuf, wLength);
658
659                 if (typeReq == GetHubDescriptor)
660                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
661                                 (struct usb_hub_descriptor *)tbuf);
662                 break;
663 error:
664                 /* "protocol stall" on error */
665                 status = -EPIPE;
666         }
667
668         if (status < 0) {
669                 len = 0;
670                 if (status != -EPIPE) {
671                         dev_dbg (hcd->self.controller,
672                                 "CTRL: TypeReq=0x%x val=0x%x "
673                                 "idx=0x%x len=%d ==> %d\n",
674                                 typeReq, wValue, wIndex,
675                                 wLength, status);
676                 }
677         } else if (status > 0) {
678                 /* hub_control may return the length of data copied. */
679                 len = status;
680                 status = 0;
681         }
682         if (len) {
683                 if (urb->transfer_buffer_length < len)
684                         len = urb->transfer_buffer_length;
685                 urb->actual_length = len;
686                 /* always USB_DIR_IN, toward host */
687                 memcpy (ubuf, bufp, len);
688
689                 /* report whether RH hardware supports remote wakeup */
690                 if (patch_wakeup &&
691                                 len > offsetof (struct usb_config_descriptor,
692                                                 bmAttributes))
693                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
694                                 |= USB_CONFIG_ATT_WAKEUP;
695
696                 /* report whether RH hardware has an integrated TT */
697                 if (patch_protocol &&
698                                 len > offsetof(struct usb_device_descriptor,
699                                                 bDeviceProtocol))
700                         ((struct usb_device_descriptor *) ubuf)->
701                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
702         }
703
704         kfree(tbuf);
705
706         /* any errors get returned through the urb completion */
707         spin_lock_irq(&hcd_root_hub_lock);
708         usb_hcd_unlink_urb_from_ep(hcd, urb);
709         usb_hcd_giveback_urb(hcd, urb, status);
710         spin_unlock_irq(&hcd_root_hub_lock);
711         return 0;
712 }
713
714 /*-------------------------------------------------------------------------*/
715
716 /*
717  * Root Hub interrupt transfers are polled using a timer if the
718  * driver requests it; otherwise the driver is responsible for
719  * calling usb_hcd_poll_rh_status() when an event occurs.
720  *
721  * Completions are called in_interrupt(), but they may or may not
722  * be in_irq().
723  */
724 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
725 {
726         struct urb      *urb;
727         int             length;
728         unsigned long   flags;
729         char            buffer[6];      /* Any root hubs with > 31 ports? */
730
731         if (unlikely(!hcd->rh_pollable))
732                 return;
733         if (!hcd->uses_new_polling && !hcd->status_urb)
734                 return;
735
736         length = hcd->driver->hub_status_data(hcd, buffer);
737         if (length > 0) {
738
739                 /* try to complete the status urb */
740                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
741                 urb = hcd->status_urb;
742                 if (urb) {
743                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
744                         hcd->status_urb = NULL;
745                         urb->actual_length = length;
746                         memcpy(urb->transfer_buffer, buffer, length);
747
748                         usb_hcd_unlink_urb_from_ep(hcd, urb);
749                         usb_hcd_giveback_urb(hcd, urb, 0);
750                 } else {
751                         length = 0;
752                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
753                 }
754                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
755         }
756
757         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
758          * exceed that limit if HZ is 100. The math is more clunky than
759          * maybe expected, this is to make sure that all timers for USB devices
760          * fire at the same time to give the CPU a break in between */
761         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
762                         (length == 0 && hcd->status_urb != NULL))
763                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764 }
765 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
766
767 /* timer callback */
768 static void rh_timer_func (unsigned long _hcd)
769 {
770         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
771 }
772
773 /*-------------------------------------------------------------------------*/
774
775 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
776 {
777         int             retval;
778         unsigned long   flags;
779         unsigned        len = 1 + (urb->dev->maxchild / 8);
780
781         spin_lock_irqsave (&hcd_root_hub_lock, flags);
782         if (hcd->status_urb || urb->transfer_buffer_length < len) {
783                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
784                 retval = -EINVAL;
785                 goto done;
786         }
787
788         retval = usb_hcd_link_urb_to_ep(hcd, urb);
789         if (retval)
790                 goto done;
791
792         hcd->status_urb = urb;
793         urb->hcpriv = hcd;      /* indicate it's queued */
794         if (!hcd->uses_new_polling)
795                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
796
797         /* If a status change has already occurred, report it ASAP */
798         else if (HCD_POLL_PENDING(hcd))
799                 mod_timer(&hcd->rh_timer, jiffies);
800         retval = 0;
801  done:
802         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
803         return retval;
804 }
805
806 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
807 {
808         if (usb_endpoint_xfer_int(&urb->ep->desc))
809                 return rh_queue_status (hcd, urb);
810         if (usb_endpoint_xfer_control(&urb->ep->desc))
811                 return rh_call_control (hcd, urb);
812         return -EINVAL;
813 }
814
815 /*-------------------------------------------------------------------------*/
816
817 /* Unlinks of root-hub control URBs are legal, but they don't do anything
818  * since these URBs always execute synchronously.
819  */
820 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
821 {
822         unsigned long   flags;
823         int             rc;
824
825         spin_lock_irqsave(&hcd_root_hub_lock, flags);
826         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
827         if (rc)
828                 goto done;
829
830         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
831                 ;       /* Do nothing */
832
833         } else {                                /* Status URB */
834                 if (!hcd->uses_new_polling)
835                         del_timer (&hcd->rh_timer);
836                 if (urb == hcd->status_urb) {
837                         hcd->status_urb = NULL;
838                         usb_hcd_unlink_urb_from_ep(hcd, urb);
839                         usb_hcd_giveback_urb(hcd, urb, status);
840                 }
841         }
842  done:
843         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
844         return rc;
845 }
846
847
848
849 /*
850  * Show & store the current value of authorized_default
851  */
852 static ssize_t authorized_default_show(struct device *dev,
853                                        struct device_attribute *attr, char *buf)
854 {
855         struct usb_device *rh_usb_dev = to_usb_device(dev);
856         struct usb_bus *usb_bus = rh_usb_dev->bus;
857         struct usb_hcd *usb_hcd;
858
859         usb_hcd = bus_to_hcd(usb_bus);
860         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
861 }
862
863 static ssize_t authorized_default_store(struct device *dev,
864                                         struct device_attribute *attr,
865                                         const char *buf, size_t size)
866 {
867         ssize_t result;
868         unsigned val;
869         struct usb_device *rh_usb_dev = to_usb_device(dev);
870         struct usb_bus *usb_bus = rh_usb_dev->bus;
871         struct usb_hcd *usb_hcd;
872
873         usb_hcd = bus_to_hcd(usb_bus);
874         result = sscanf(buf, "%u\n", &val);
875         if (result == 1) {
876                 usb_hcd->authorized_default = val ? 1 : 0;
877                 result = size;
878         } else {
879                 result = -EINVAL;
880         }
881         return result;
882 }
883 static DEVICE_ATTR_RW(authorized_default);
884
885 /* Group all the USB bus attributes */
886 static struct attribute *usb_bus_attrs[] = {
887                 &dev_attr_authorized_default.attr,
888                 NULL,
889 };
890
891 static struct attribute_group usb_bus_attr_group = {
892         .name = NULL,   /* we want them in the same directory */
893         .attrs = usb_bus_attrs,
894 };
895
896
897
898 /*-------------------------------------------------------------------------*/
899
900 /**
901  * usb_bus_init - shared initialization code
902  * @bus: the bus structure being initialized
903  *
904  * This code is used to initialize a usb_bus structure, memory for which is
905  * separately managed.
906  */
907 static void usb_bus_init (struct usb_bus *bus)
908 {
909         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
910
911         bus->devnum_next = 1;
912
913         bus->root_hub = NULL;
914         bus->busnum = -1;
915         bus->bandwidth_allocated = 0;
916         bus->bandwidth_int_reqs  = 0;
917         bus->bandwidth_isoc_reqs = 0;
918         mutex_init(&bus->usb_address0_mutex);
919
920         INIT_LIST_HEAD (&bus->bus_list);
921 }
922
923 /*-------------------------------------------------------------------------*/
924
925 /**
926  * usb_register_bus - registers the USB host controller with the usb core
927  * @bus: pointer to the bus to register
928  * Context: !in_interrupt()
929  *
930  * Assigns a bus number, and links the controller into usbcore data
931  * structures so that it can be seen by scanning the bus list.
932  *
933  * Return: 0 if successful. A negative error code otherwise.
934  */
935 static int usb_register_bus(struct usb_bus *bus)
936 {
937         int result = -E2BIG;
938         int busnum;
939
940         mutex_lock(&usb_bus_list_lock);
941         busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
942         if (busnum >= USB_MAXBUS) {
943                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
944                 goto error_find_busnum;
945         }
946         set_bit(busnum, busmap);
947         bus->busnum = busnum;
948
949         /* Add it to the local list of buses */
950         list_add (&bus->bus_list, &usb_bus_list);
951         mutex_unlock(&usb_bus_list_lock);
952
953         usb_notify_add_bus(bus);
954
955         dev_info (bus->controller, "new USB bus registered, assigned bus "
956                   "number %d\n", bus->busnum);
957         return 0;
958
959 error_find_busnum:
960         mutex_unlock(&usb_bus_list_lock);
961         return result;
962 }
963
964 /**
965  * usb_deregister_bus - deregisters the USB host controller
966  * @bus: pointer to the bus to deregister
967  * Context: !in_interrupt()
968  *
969  * Recycles the bus number, and unlinks the controller from usbcore data
970  * structures so that it won't be seen by scanning the bus list.
971  */
972 static void usb_deregister_bus (struct usb_bus *bus)
973 {
974         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
975
976         /*
977          * NOTE: make sure that all the devices are removed by the
978          * controller code, as well as having it call this when cleaning
979          * itself up
980          */
981         mutex_lock(&usb_bus_list_lock);
982         list_del (&bus->bus_list);
983         mutex_unlock(&usb_bus_list_lock);
984
985         usb_notify_remove_bus(bus);
986
987         clear_bit(bus->busnum, busmap);
988 }
989
990 /**
991  * register_root_hub - called by usb_add_hcd() to register a root hub
992  * @hcd: host controller for this root hub
993  *
994  * This function registers the root hub with the USB subsystem.  It sets up
995  * the device properly in the device tree and then calls usb_new_device()
996  * to register the usb device.  It also assigns the root hub's USB address
997  * (always 1).
998  *
999  * Return: 0 if successful. A negative error code otherwise.
1000  */
1001 static int register_root_hub(struct usb_hcd *hcd)
1002 {
1003         struct device *parent_dev = hcd->self.controller;
1004         struct usb_device *usb_dev = hcd->self.root_hub;
1005         const int devnum = 1;
1006         int retval;
1007
1008         usb_dev->devnum = devnum;
1009         usb_dev->bus->devnum_next = devnum + 1;
1010         memset (&usb_dev->bus->devmap.devicemap, 0,
1011                         sizeof usb_dev->bus->devmap.devicemap);
1012         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1013         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1014
1015         mutex_lock(&usb_bus_list_lock);
1016
1017         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1018         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1019         if (retval != sizeof usb_dev->descriptor) {
1020                 mutex_unlock(&usb_bus_list_lock);
1021                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1022                                 dev_name(&usb_dev->dev), retval);
1023                 return (retval < 0) ? retval : -EMSGSIZE;
1024         }
1025         if (usb_dev->speed == USB_SPEED_SUPER) {
1026                 retval = usb_get_bos_descriptor(usb_dev);
1027                 if (retval < 0) {
1028                         mutex_unlock(&usb_bus_list_lock);
1029                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1030                                         dev_name(&usb_dev->dev), retval);
1031                         return retval;
1032                 }
1033         }
1034
1035         retval = usb_new_device (usb_dev);
1036         if (retval) {
1037                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1038                                 dev_name(&usb_dev->dev), retval);
1039         } else {
1040                 spin_lock_irq (&hcd_root_hub_lock);
1041                 hcd->rh_registered = 1;
1042                 spin_unlock_irq (&hcd_root_hub_lock);
1043
1044                 /* Did the HC die before the root hub was registered? */
1045                 if (HCD_DEAD(hcd))
1046                         usb_hc_died (hcd);      /* This time clean up */
1047         }
1048         mutex_unlock(&usb_bus_list_lock);
1049
1050         return retval;
1051 }
1052
1053 /*
1054  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1055  * @bus: the bus which the root hub belongs to
1056  * @portnum: the port which is being resumed
1057  *
1058  * HCDs should call this function when they know that a resume signal is
1059  * being sent to a root-hub port.  The root hub will be prevented from
1060  * going into autosuspend until usb_hcd_end_port_resume() is called.
1061  *
1062  * The bus's private lock must be held by the caller.
1063  */
1064 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1065 {
1066         unsigned bit = 1 << portnum;
1067
1068         if (!(bus->resuming_ports & bit)) {
1069                 bus->resuming_ports |= bit;
1070                 pm_runtime_get_noresume(&bus->root_hub->dev);
1071         }
1072 }
1073 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1074
1075 /*
1076  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1077  * @bus: the bus which the root hub belongs to
1078  * @portnum: the port which is being resumed
1079  *
1080  * HCDs should call this function when they know that a resume signal has
1081  * stopped being sent to a root-hub port.  The root hub will be allowed to
1082  * autosuspend again.
1083  *
1084  * The bus's private lock must be held by the caller.
1085  */
1086 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1087 {
1088         unsigned bit = 1 << portnum;
1089
1090         if (bus->resuming_ports & bit) {
1091                 bus->resuming_ports &= ~bit;
1092                 pm_runtime_put_noidle(&bus->root_hub->dev);
1093         }
1094 }
1095 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1096
1097 /*-------------------------------------------------------------------------*/
1098
1099 /**
1100  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1101  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1102  * @is_input: true iff the transaction sends data to the host
1103  * @isoc: true for isochronous transactions, false for interrupt ones
1104  * @bytecount: how many bytes in the transaction.
1105  *
1106  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1107  *
1108  * Note:
1109  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1110  * scheduled in software, this function is only used for such scheduling.
1111  */
1112 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1113 {
1114         unsigned long   tmp;
1115
1116         switch (speed) {
1117         case USB_SPEED_LOW:     /* INTR only */
1118                 if (is_input) {
1119                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1120                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1121                 } else {
1122                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1123                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1124                 }
1125         case USB_SPEED_FULL:    /* ISOC or INTR */
1126                 if (isoc) {
1127                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1128                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1129                 } else {
1130                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1131                         return 9107L + BW_HOST_DELAY + tmp;
1132                 }
1133         case USB_SPEED_HIGH:    /* ISOC or INTR */
1134                 /* FIXME adjust for input vs output */
1135                 if (isoc)
1136                         tmp = HS_NSECS_ISO (bytecount);
1137                 else
1138                         tmp = HS_NSECS (bytecount);
1139                 return tmp;
1140         default:
1141                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1142                 return -1;
1143         }
1144 }
1145 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1146
1147
1148 /*-------------------------------------------------------------------------*/
1149
1150 /*
1151  * Generic HC operations.
1152  */
1153
1154 /*-------------------------------------------------------------------------*/
1155
1156 /**
1157  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1158  * @hcd: host controller to which @urb was submitted
1159  * @urb: URB being submitted
1160  *
1161  * Host controller drivers should call this routine in their enqueue()
1162  * method.  The HCD's private spinlock must be held and interrupts must
1163  * be disabled.  The actions carried out here are required for URB
1164  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1165  *
1166  * Return: 0 for no error, otherwise a negative error code (in which case
1167  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1168  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1169  * the private spinlock and returning.
1170  */
1171 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1172 {
1173         int             rc = 0;
1174
1175         spin_lock(&hcd_urb_list_lock);
1176
1177         /* Check that the URB isn't being killed */
1178         if (unlikely(atomic_read(&urb->reject))) {
1179                 rc = -EPERM;
1180                 goto done;
1181         }
1182
1183         if (unlikely(!urb->ep->enabled)) {
1184                 rc = -ENOENT;
1185                 goto done;
1186         }
1187
1188         if (unlikely(!urb->dev->can_submit)) {
1189                 rc = -EHOSTUNREACH;
1190                 goto done;
1191         }
1192
1193         /*
1194          * Check the host controller's state and add the URB to the
1195          * endpoint's queue.
1196          */
1197         if (HCD_RH_RUNNING(hcd)) {
1198                 urb->unlinked = 0;
1199                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1200         } else {
1201                 rc = -ESHUTDOWN;
1202                 goto done;
1203         }
1204  done:
1205         spin_unlock(&hcd_urb_list_lock);
1206         return rc;
1207 }
1208 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1209
1210 /**
1211  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1212  * @hcd: host controller to which @urb was submitted
1213  * @urb: URB being checked for unlinkability
1214  * @status: error code to store in @urb if the unlink succeeds
1215  *
1216  * Host controller drivers should call this routine in their dequeue()
1217  * method.  The HCD's private spinlock must be held and interrupts must
1218  * be disabled.  The actions carried out here are required for making
1219  * sure than an unlink is valid.
1220  *
1221  * Return: 0 for no error, otherwise a negative error code (in which case
1222  * the dequeue() method must fail).  The possible error codes are:
1223  *
1224  *      -EIDRM: @urb was not submitted or has already completed.
1225  *              The completion function may not have been called yet.
1226  *
1227  *      -EBUSY: @urb has already been unlinked.
1228  */
1229 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1230                 int status)
1231 {
1232         struct list_head        *tmp;
1233
1234         /* insist the urb is still queued */
1235         list_for_each(tmp, &urb->ep->urb_list) {
1236                 if (tmp == &urb->urb_list)
1237                         break;
1238         }
1239         if (tmp != &urb->urb_list)
1240                 return -EIDRM;
1241
1242         /* Any status except -EINPROGRESS means something already started to
1243          * unlink this URB from the hardware.  So there's no more work to do.
1244          */
1245         if (urb->unlinked)
1246                 return -EBUSY;
1247         urb->unlinked = status;
1248         return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1251
1252 /**
1253  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1254  * @hcd: host controller to which @urb was submitted
1255  * @urb: URB being unlinked
1256  *
1257  * Host controller drivers should call this routine before calling
1258  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1259  * interrupts must be disabled.  The actions carried out here are required
1260  * for URB completion.
1261  */
1262 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1263 {
1264         /* clear all state linking urb to this dev (and hcd) */
1265         spin_lock(&hcd_urb_list_lock);
1266         list_del_init(&urb->urb_list);
1267         spin_unlock(&hcd_urb_list_lock);
1268 }
1269 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1270
1271 /*
1272  * Some usb host controllers can only perform dma using a small SRAM area.
1273  * The usb core itself is however optimized for host controllers that can dma
1274  * using regular system memory - like pci devices doing bus mastering.
1275  *
1276  * To support host controllers with limited dma capabilities we provide dma
1277  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1278  * For this to work properly the host controller code must first use the
1279  * function dma_declare_coherent_memory() to point out which memory area
1280  * that should be used for dma allocations.
1281  *
1282  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1283  * dma using dma_alloc_coherent() which in turn allocates from the memory
1284  * area pointed out with dma_declare_coherent_memory().
1285  *
1286  * So, to summarize...
1287  *
1288  * - We need "local" memory, canonical example being
1289  *   a small SRAM on a discrete controller being the
1290  *   only memory that the controller can read ...
1291  *   (a) "normal" kernel memory is no good, and
1292  *   (b) there's not enough to share
1293  *
1294  * - The only *portable* hook for such stuff in the
1295  *   DMA framework is dma_declare_coherent_memory()
1296  *
1297  * - So we use that, even though the primary requirement
1298  *   is that the memory be "local" (hence addressable
1299  *   by that device), not "coherent".
1300  *
1301  */
1302
1303 static int hcd_alloc_coherent(struct usb_bus *bus,
1304                               gfp_t mem_flags, dma_addr_t *dma_handle,
1305                               void **vaddr_handle, size_t size,
1306                               enum dma_data_direction dir)
1307 {
1308         unsigned char *vaddr;
1309
1310         if (*vaddr_handle == NULL) {
1311                 WARN_ON_ONCE(1);
1312                 return -EFAULT;
1313         }
1314
1315         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1316                                  mem_flags, dma_handle);
1317         if (!vaddr)
1318                 return -ENOMEM;
1319
1320         /*
1321          * Store the virtual address of the buffer at the end
1322          * of the allocated dma buffer. The size of the buffer
1323          * may be uneven so use unaligned functions instead
1324          * of just rounding up. It makes sense to optimize for
1325          * memory footprint over access speed since the amount
1326          * of memory available for dma may be limited.
1327          */
1328         put_unaligned((unsigned long)*vaddr_handle,
1329                       (unsigned long *)(vaddr + size));
1330
1331         if (dir == DMA_TO_DEVICE)
1332                 memcpy(vaddr, *vaddr_handle, size);
1333
1334         *vaddr_handle = vaddr;
1335         return 0;
1336 }
1337
1338 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1339                               void **vaddr_handle, size_t size,
1340                               enum dma_data_direction dir)
1341 {
1342         unsigned char *vaddr = *vaddr_handle;
1343
1344         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1345
1346         if (dir == DMA_FROM_DEVICE)
1347                 memcpy(vaddr, *vaddr_handle, size);
1348
1349         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1350
1351         *vaddr_handle = vaddr;
1352         *dma_handle = 0;
1353 }
1354
1355 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1356 {
1357         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1358                 dma_unmap_single(hcd->self.controller,
1359                                 urb->setup_dma,
1360                                 sizeof(struct usb_ctrlrequest),
1361                                 DMA_TO_DEVICE);
1362         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1363                 hcd_free_coherent(urb->dev->bus,
1364                                 &urb->setup_dma,
1365                                 (void **) &urb->setup_packet,
1366                                 sizeof(struct usb_ctrlrequest),
1367                                 DMA_TO_DEVICE);
1368
1369         /* Make it safe to call this routine more than once */
1370         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1371 }
1372 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1373
1374 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1375 {
1376         if (hcd->driver->unmap_urb_for_dma)
1377                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1378         else
1379                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1380 }
1381
1382 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1383 {
1384         enum dma_data_direction dir;
1385
1386         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1387
1388         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1389         if (urb->transfer_flags & URB_DMA_MAP_SG)
1390                 dma_unmap_sg(hcd->self.controller,
1391                                 urb->sg,
1392                                 urb->num_sgs,
1393                                 dir);
1394         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1395                 dma_unmap_page(hcd->self.controller,
1396                                 urb->transfer_dma,
1397                                 urb->transfer_buffer_length,
1398                                 dir);
1399         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1400                 dma_unmap_single(hcd->self.controller,
1401                                 urb->transfer_dma,
1402                                 urb->transfer_buffer_length,
1403                                 dir);
1404         else if (urb->transfer_flags & URB_MAP_LOCAL)
1405                 hcd_free_coherent(urb->dev->bus,
1406                                 &urb->transfer_dma,
1407                                 &urb->transfer_buffer,
1408                                 urb->transfer_buffer_length,
1409                                 dir);
1410
1411         /* Make it safe to call this routine more than once */
1412         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1413                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1414 }
1415 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1416
1417 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1418                            gfp_t mem_flags)
1419 {
1420         if (hcd->driver->map_urb_for_dma)
1421                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1422         else
1423                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1424 }
1425
1426 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1427                             gfp_t mem_flags)
1428 {
1429         enum dma_data_direction dir;
1430         int ret = 0;
1431
1432         /* Map the URB's buffers for DMA access.
1433          * Lower level HCD code should use *_dma exclusively,
1434          * unless it uses pio or talks to another transport,
1435          * or uses the provided scatter gather list for bulk.
1436          */
1437
1438         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1439                 if (hcd->self.uses_pio_for_control)
1440                         return ret;
1441                 if (hcd->self.uses_dma) {
1442                         urb->setup_dma = dma_map_single(
1443                                         hcd->self.controller,
1444                                         urb->setup_packet,
1445                                         sizeof(struct usb_ctrlrequest),
1446                                         DMA_TO_DEVICE);
1447                         if (dma_mapping_error(hcd->self.controller,
1448                                                 urb->setup_dma))
1449                                 return -EAGAIN;
1450                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1451                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1452                         ret = hcd_alloc_coherent(
1453                                         urb->dev->bus, mem_flags,
1454                                         &urb->setup_dma,
1455                                         (void **)&urb->setup_packet,
1456                                         sizeof(struct usb_ctrlrequest),
1457                                         DMA_TO_DEVICE);
1458                         if (ret)
1459                                 return ret;
1460                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1461                 }
1462         }
1463
1464         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1465         if (urb->transfer_buffer_length != 0
1466             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1467                 if (hcd->self.uses_dma) {
1468                         if (urb->num_sgs) {
1469                                 int n;
1470
1471                                 /* We don't support sg for isoc transfers ! */
1472                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1473                                         WARN_ON(1);
1474                                         return -EINVAL;
1475                                 }
1476
1477                                 n = dma_map_sg(
1478                                                 hcd->self.controller,
1479                                                 urb->sg,
1480                                                 urb->num_sgs,
1481                                                 dir);
1482                                 if (n <= 0)
1483                                         ret = -EAGAIN;
1484                                 else
1485                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1486                                 urb->num_mapped_sgs = n;
1487                                 if (n != urb->num_sgs)
1488                                         urb->transfer_flags |=
1489                                                         URB_DMA_SG_COMBINED;
1490                         } else if (urb->sg) {
1491                                 struct scatterlist *sg = urb->sg;
1492                                 urb->transfer_dma = dma_map_page(
1493                                                 hcd->self.controller,
1494                                                 sg_page(sg),
1495                                                 sg->offset,
1496                                                 urb->transfer_buffer_length,
1497                                                 dir);
1498                                 if (dma_mapping_error(hcd->self.controller,
1499                                                 urb->transfer_dma))
1500                                         ret = -EAGAIN;
1501                                 else
1502                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1503                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1504                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1505                                 ret = -EAGAIN;
1506                         } else {
1507                                 urb->transfer_dma = dma_map_single(
1508                                                 hcd->self.controller,
1509                                                 urb->transfer_buffer,
1510                                                 urb->transfer_buffer_length,
1511                                                 dir);
1512                                 if (dma_mapping_error(hcd->self.controller,
1513                                                 urb->transfer_dma))
1514                                         ret = -EAGAIN;
1515                                 else
1516                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1517                         }
1518                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1519                         ret = hcd_alloc_coherent(
1520                                         urb->dev->bus, mem_flags,
1521                                         &urb->transfer_dma,
1522                                         &urb->transfer_buffer,
1523                                         urb->transfer_buffer_length,
1524                                         dir);
1525                         if (ret == 0)
1526                                 urb->transfer_flags |= URB_MAP_LOCAL;
1527                 }
1528                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1529                                 URB_SETUP_MAP_LOCAL)))
1530                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1531         }
1532         return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1535
1536 /*-------------------------------------------------------------------------*/
1537
1538 /* may be called in any context with a valid urb->dev usecount
1539  * caller surrenders "ownership" of urb
1540  * expects usb_submit_urb() to have sanity checked and conditioned all
1541  * inputs in the urb
1542  */
1543 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1544 {
1545         int                     status;
1546         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1547
1548         /* increment urb's reference count as part of giving it to the HCD
1549          * (which will control it).  HCD guarantees that it either returns
1550          * an error or calls giveback(), but not both.
1551          */
1552         usb_get_urb(urb);
1553         atomic_inc(&urb->use_count);
1554         atomic_inc(&urb->dev->urbnum);
1555         usbmon_urb_submit(&hcd->self, urb);
1556
1557         /* NOTE requirements on root-hub callers (usbfs and the hub
1558          * driver, for now):  URBs' urb->transfer_buffer must be
1559          * valid and usb_buffer_{sync,unmap}() not be needed, since
1560          * they could clobber root hub response data.  Also, control
1561          * URBs must be submitted in process context with interrupts
1562          * enabled.
1563          */
1564
1565         if (is_root_hub(urb->dev)) {
1566                 status = rh_urb_enqueue(hcd, urb);
1567         } else {
1568                 status = map_urb_for_dma(hcd, urb, mem_flags);
1569                 if (likely(status == 0)) {
1570                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1571                         if (unlikely(status))
1572                                 unmap_urb_for_dma(hcd, urb);
1573                 }
1574         }
1575
1576         if (unlikely(status)) {
1577                 usbmon_urb_submit_error(&hcd->self, urb, status);
1578                 urb->hcpriv = NULL;
1579                 INIT_LIST_HEAD(&urb->urb_list);
1580                 atomic_dec(&urb->use_count);
1581                 atomic_dec(&urb->dev->urbnum);
1582                 if (atomic_read(&urb->reject))
1583                         wake_up(&usb_kill_urb_queue);
1584                 usb_put_urb(urb);
1585         }
1586         return status;
1587 }
1588
1589 /*-------------------------------------------------------------------------*/
1590
1591 /* this makes the hcd giveback() the urb more quickly, by kicking it
1592  * off hardware queues (which may take a while) and returning it as
1593  * soon as practical.  we've already set up the urb's return status,
1594  * but we can't know if the callback completed already.
1595  */
1596 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1597 {
1598         int             value;
1599
1600         if (is_root_hub(urb->dev))
1601                 value = usb_rh_urb_dequeue(hcd, urb, status);
1602         else {
1603
1604                 /* The only reason an HCD might fail this call is if
1605                  * it has not yet fully queued the urb to begin with.
1606                  * Such failures should be harmless. */
1607                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1608         }
1609         return value;
1610 }
1611
1612 /*
1613  * called in any context
1614  *
1615  * caller guarantees urb won't be recycled till both unlink()
1616  * and the urb's completion function return
1617  */
1618 int usb_hcd_unlink_urb (struct urb *urb, int status)
1619 {
1620         struct usb_hcd          *hcd;
1621         int                     retval = -EIDRM;
1622         unsigned long           flags;
1623
1624         /* Prevent the device and bus from going away while
1625          * the unlink is carried out.  If they are already gone
1626          * then urb->use_count must be 0, since disconnected
1627          * devices can't have any active URBs.
1628          */
1629         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1630         if (atomic_read(&urb->use_count) > 0) {
1631                 retval = 0;
1632                 usb_get_dev(urb->dev);
1633         }
1634         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1635         if (retval == 0) {
1636                 hcd = bus_to_hcd(urb->dev->bus);
1637                 retval = unlink1(hcd, urb, status);
1638                 usb_put_dev(urb->dev);
1639         }
1640
1641         if (retval == 0)
1642                 retval = -EINPROGRESS;
1643         else if (retval != -EIDRM && retval != -EBUSY)
1644                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1645                                 urb, retval);
1646         return retval;
1647 }
1648
1649 /*-------------------------------------------------------------------------*/
1650
1651 static void __usb_hcd_giveback_urb(struct urb *urb)
1652 {
1653         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1654         struct usb_anchor *anchor = urb->anchor;
1655         int status = urb->unlinked;
1656         unsigned long flags;
1657
1658         urb->hcpriv = NULL;
1659         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1660             urb->actual_length < urb->transfer_buffer_length &&
1661             !status))
1662                 status = -EREMOTEIO;
1663
1664         unmap_urb_for_dma(hcd, urb);
1665         usbmon_urb_complete(&hcd->self, urb, status);
1666         usb_anchor_suspend_wakeups(anchor);
1667         usb_unanchor_urb(urb);
1668         if (likely(status == 0))
1669                 usb_led_activity(USB_LED_EVENT_HOST);
1670
1671         /* pass ownership to the completion handler */
1672         urb->status = status;
1673
1674         /*
1675          * We disable local IRQs here avoid possible deadlock because
1676          * drivers may call spin_lock() to hold lock which might be
1677          * acquired in one hard interrupt handler.
1678          *
1679          * The local_irq_save()/local_irq_restore() around complete()
1680          * will be removed if current USB drivers have been cleaned up
1681          * and no one may trigger the above deadlock situation when
1682          * running complete() in tasklet.
1683          */
1684         local_irq_save(flags);
1685         urb->complete(urb);
1686         local_irq_restore(flags);
1687
1688         usb_anchor_resume_wakeups(anchor);
1689         atomic_dec(&urb->use_count);
1690         if (unlikely(atomic_read(&urb->reject)))
1691                 wake_up(&usb_kill_urb_queue);
1692         usb_put_urb(urb);
1693 }
1694
1695 static void usb_giveback_urb_bh(unsigned long param)
1696 {
1697         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1698         struct list_head local_list;
1699
1700         spin_lock_irq(&bh->lock);
1701         bh->running = true;
1702  restart:
1703         list_replace_init(&bh->head, &local_list);
1704         spin_unlock_irq(&bh->lock);
1705
1706         while (!list_empty(&local_list)) {
1707                 struct urb *urb;
1708
1709                 urb = list_entry(local_list.next, struct urb, urb_list);
1710                 list_del_init(&urb->urb_list);
1711                 bh->completing_ep = urb->ep;
1712                 __usb_hcd_giveback_urb(urb);
1713                 bh->completing_ep = NULL;
1714         }
1715
1716         /* check if there are new URBs to giveback */
1717         spin_lock_irq(&bh->lock);
1718         if (!list_empty(&bh->head))
1719                 goto restart;
1720         bh->running = false;
1721         spin_unlock_irq(&bh->lock);
1722 }
1723
1724 /**
1725  * usb_hcd_giveback_urb - return URB from HCD to device driver
1726  * @hcd: host controller returning the URB
1727  * @urb: urb being returned to the USB device driver.
1728  * @status: completion status code for the URB.
1729  * Context: in_interrupt()
1730  *
1731  * This hands the URB from HCD to its USB device driver, using its
1732  * completion function.  The HCD has freed all per-urb resources
1733  * (and is done using urb->hcpriv).  It also released all HCD locks;
1734  * the device driver won't cause problems if it frees, modifies,
1735  * or resubmits this URB.
1736  *
1737  * If @urb was unlinked, the value of @status will be overridden by
1738  * @urb->unlinked.  Erroneous short transfers are detected in case
1739  * the HCD hasn't checked for them.
1740  */
1741 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1742 {
1743         struct giveback_urb_bh *bh;
1744         bool running, high_prio_bh;
1745
1746         /* pass status to tasklet via unlinked */
1747         if (likely(!urb->unlinked))
1748                 urb->unlinked = status;
1749
1750         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1751                 __usb_hcd_giveback_urb(urb);
1752                 return;
1753         }
1754
1755         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1756                 bh = &hcd->high_prio_bh;
1757                 high_prio_bh = true;
1758         } else {
1759                 bh = &hcd->low_prio_bh;
1760                 high_prio_bh = false;
1761         }
1762
1763         spin_lock(&bh->lock);
1764         list_add_tail(&urb->urb_list, &bh->head);
1765         running = bh->running;
1766         spin_unlock(&bh->lock);
1767
1768         if (running)
1769                 ;
1770         else if (high_prio_bh)
1771                 tasklet_hi_schedule(&bh->bh);
1772         else
1773                 tasklet_schedule(&bh->bh);
1774 }
1775 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1776
1777 /*-------------------------------------------------------------------------*/
1778
1779 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1780  * queue to drain completely.  The caller must first insure that no more
1781  * URBs can be submitted for this endpoint.
1782  */
1783 void usb_hcd_flush_endpoint(struct usb_device *udev,
1784                 struct usb_host_endpoint *ep)
1785 {
1786         struct usb_hcd          *hcd;
1787         struct urb              *urb;
1788
1789         if (!ep)
1790                 return;
1791         might_sleep();
1792         hcd = bus_to_hcd(udev->bus);
1793
1794         /* No more submits can occur */
1795         spin_lock_irq(&hcd_urb_list_lock);
1796 rescan:
1797         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1798                 int     is_in;
1799
1800                 if (urb->unlinked)
1801                         continue;
1802                 usb_get_urb (urb);
1803                 is_in = usb_urb_dir_in(urb);
1804                 spin_unlock(&hcd_urb_list_lock);
1805
1806                 /* kick hcd */
1807                 unlink1(hcd, urb, -ESHUTDOWN);
1808                 dev_dbg (hcd->self.controller,
1809                         "shutdown urb %p ep%d%s%s\n",
1810                         urb, usb_endpoint_num(&ep->desc),
1811                         is_in ? "in" : "out",
1812                         ({      char *s;
1813
1814                                  switch (usb_endpoint_type(&ep->desc)) {
1815                                  case USB_ENDPOINT_XFER_CONTROL:
1816                                         s = ""; break;
1817                                  case USB_ENDPOINT_XFER_BULK:
1818                                         s = "-bulk"; break;
1819                                  case USB_ENDPOINT_XFER_INT:
1820                                         s = "-intr"; break;
1821                                  default:
1822                                         s = "-iso"; break;
1823                                 };
1824                                 s;
1825                         }));
1826                 usb_put_urb (urb);
1827
1828                 /* list contents may have changed */
1829                 spin_lock(&hcd_urb_list_lock);
1830                 goto rescan;
1831         }
1832         spin_unlock_irq(&hcd_urb_list_lock);
1833
1834         /* Wait until the endpoint queue is completely empty */
1835         while (!list_empty (&ep->urb_list)) {
1836                 spin_lock_irq(&hcd_urb_list_lock);
1837
1838                 /* The list may have changed while we acquired the spinlock */
1839                 urb = NULL;
1840                 if (!list_empty (&ep->urb_list)) {
1841                         urb = list_entry (ep->urb_list.prev, struct urb,
1842                                         urb_list);
1843                         usb_get_urb (urb);
1844                 }
1845                 spin_unlock_irq(&hcd_urb_list_lock);
1846
1847                 if (urb) {
1848                         usb_kill_urb (urb);
1849                         usb_put_urb (urb);
1850                 }
1851         }
1852 }
1853
1854 /**
1855  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1856  *                              the bus bandwidth
1857  * @udev: target &usb_device
1858  * @new_config: new configuration to install
1859  * @cur_alt: the current alternate interface setting
1860  * @new_alt: alternate interface setting that is being installed
1861  *
1862  * To change configurations, pass in the new configuration in new_config,
1863  * and pass NULL for cur_alt and new_alt.
1864  *
1865  * To reset a device's configuration (put the device in the ADDRESSED state),
1866  * pass in NULL for new_config, cur_alt, and new_alt.
1867  *
1868  * To change alternate interface settings, pass in NULL for new_config,
1869  * pass in the current alternate interface setting in cur_alt,
1870  * and pass in the new alternate interface setting in new_alt.
1871  *
1872  * Return: An error if the requested bandwidth change exceeds the
1873  * bus bandwidth or host controller internal resources.
1874  */
1875 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1876                 struct usb_host_config *new_config,
1877                 struct usb_host_interface *cur_alt,
1878                 struct usb_host_interface *new_alt)
1879 {
1880         int num_intfs, i, j;
1881         struct usb_host_interface *alt = NULL;
1882         int ret = 0;
1883         struct usb_hcd *hcd;
1884         struct usb_host_endpoint *ep;
1885
1886         hcd = bus_to_hcd(udev->bus);
1887         if (!hcd->driver->check_bandwidth)
1888                 return 0;
1889
1890         /* Configuration is being removed - set configuration 0 */
1891         if (!new_config && !cur_alt) {
1892                 for (i = 1; i < 16; ++i) {
1893                         ep = udev->ep_out[i];
1894                         if (ep)
1895                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1896                         ep = udev->ep_in[i];
1897                         if (ep)
1898                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1899                 }
1900                 hcd->driver->check_bandwidth(hcd, udev);
1901                 return 0;
1902         }
1903         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1904          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1905          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1906          * ok to exclude it.
1907          */
1908         if (new_config) {
1909                 num_intfs = new_config->desc.bNumInterfaces;
1910                 /* Remove endpoints (except endpoint 0, which is always on the
1911                  * schedule) from the old config from the schedule
1912                  */
1913                 for (i = 1; i < 16; ++i) {
1914                         ep = udev->ep_out[i];
1915                         if (ep) {
1916                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1917                                 if (ret < 0)
1918                                         goto reset;
1919                         }
1920                         ep = udev->ep_in[i];
1921                         if (ep) {
1922                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1923                                 if (ret < 0)
1924                                         goto reset;
1925                         }
1926                 }
1927                 for (i = 0; i < num_intfs; ++i) {
1928                         struct usb_host_interface *first_alt;
1929                         int iface_num;
1930
1931                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1932                         iface_num = first_alt->desc.bInterfaceNumber;
1933                         /* Set up endpoints for alternate interface setting 0 */
1934                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1935                         if (!alt)
1936                                 /* No alt setting 0? Pick the first setting. */
1937                                 alt = first_alt;
1938
1939                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1940                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1941                                 if (ret < 0)
1942                                         goto reset;
1943                         }
1944                 }
1945         }
1946         if (cur_alt && new_alt) {
1947                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1948                                 cur_alt->desc.bInterfaceNumber);
1949
1950                 if (!iface)
1951                         return -EINVAL;
1952                 if (iface->resetting_device) {
1953                         /*
1954                          * The USB core just reset the device, so the xHCI host
1955                          * and the device will think alt setting 0 is installed.
1956                          * However, the USB core will pass in the alternate
1957                          * setting installed before the reset as cur_alt.  Dig
1958                          * out the alternate setting 0 structure, or the first
1959                          * alternate setting if a broken device doesn't have alt
1960                          * setting 0.
1961                          */
1962                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1963                         if (!cur_alt)
1964                                 cur_alt = &iface->altsetting[0];
1965                 }
1966
1967                 /* Drop all the endpoints in the current alt setting */
1968                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1969                         ret = hcd->driver->drop_endpoint(hcd, udev,
1970                                         &cur_alt->endpoint[i]);
1971                         if (ret < 0)
1972                                 goto reset;
1973                 }
1974                 /* Add all the endpoints in the new alt setting */
1975                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1976                         ret = hcd->driver->add_endpoint(hcd, udev,
1977                                         &new_alt->endpoint[i]);
1978                         if (ret < 0)
1979                                 goto reset;
1980                 }
1981         }
1982         ret = hcd->driver->check_bandwidth(hcd, udev);
1983 reset:
1984         if (ret < 0)
1985                 hcd->driver->reset_bandwidth(hcd, udev);
1986         return ret;
1987 }
1988
1989 /* Disables the endpoint: synchronizes with the hcd to make sure all
1990  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1991  * have been called previously.  Use for set_configuration, set_interface,
1992  * driver removal, physical disconnect.
1993  *
1994  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1995  * type, maxpacket size, toggle, halt status, and scheduling.
1996  */
1997 void usb_hcd_disable_endpoint(struct usb_device *udev,
1998                 struct usb_host_endpoint *ep)
1999 {
2000         struct usb_hcd          *hcd;
2001
2002         might_sleep();
2003         hcd = bus_to_hcd(udev->bus);
2004         if (hcd->driver->endpoint_disable)
2005                 hcd->driver->endpoint_disable(hcd, ep);
2006 }
2007
2008 /**
2009  * usb_hcd_reset_endpoint - reset host endpoint state
2010  * @udev: USB device.
2011  * @ep:   the endpoint to reset.
2012  *
2013  * Resets any host endpoint state such as the toggle bit, sequence
2014  * number and current window.
2015  */
2016 void usb_hcd_reset_endpoint(struct usb_device *udev,
2017                             struct usb_host_endpoint *ep)
2018 {
2019         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2020
2021         if (hcd->driver->endpoint_reset)
2022                 hcd->driver->endpoint_reset(hcd, ep);
2023         else {
2024                 int epnum = usb_endpoint_num(&ep->desc);
2025                 int is_out = usb_endpoint_dir_out(&ep->desc);
2026                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2027
2028                 usb_settoggle(udev, epnum, is_out, 0);
2029                 if (is_control)
2030                         usb_settoggle(udev, epnum, !is_out, 0);
2031         }
2032 }
2033
2034 /**
2035  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2036  * @interface:          alternate setting that includes all endpoints.
2037  * @eps:                array of endpoints that need streams.
2038  * @num_eps:            number of endpoints in the array.
2039  * @num_streams:        number of streams to allocate.
2040  * @mem_flags:          flags hcd should use to allocate memory.
2041  *
2042  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2043  * Drivers may queue multiple transfers to different stream IDs, which may
2044  * complete in a different order than they were queued.
2045  *
2046  * Return: On success, the number of allocated streams. On failure, a negative
2047  * error code.
2048  */
2049 int usb_alloc_streams(struct usb_interface *interface,
2050                 struct usb_host_endpoint **eps, unsigned int num_eps,
2051                 unsigned int num_streams, gfp_t mem_flags)
2052 {
2053         struct usb_hcd *hcd;
2054         struct usb_device *dev;
2055         int i, ret;
2056
2057         dev = interface_to_usbdev(interface);
2058         hcd = bus_to_hcd(dev->bus);
2059         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2060                 return -EINVAL;
2061         if (dev->speed != USB_SPEED_SUPER)
2062                 return -EINVAL;
2063
2064         for (i = 0; i < num_eps; i++) {
2065                 /* Streams only apply to bulk endpoints. */
2066                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2067                         return -EINVAL;
2068                 /* Re-alloc is not allowed */
2069                 if (eps[i]->streams)
2070                         return -EINVAL;
2071         }
2072
2073         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2074                         num_streams, mem_flags);
2075         if (ret < 0)
2076                 return ret;
2077
2078         for (i = 0; i < num_eps; i++)
2079                 eps[i]->streams = ret;
2080
2081         return ret;
2082 }
2083 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2084
2085 /**
2086  * usb_free_streams - free bulk endpoint stream IDs.
2087  * @interface:  alternate setting that includes all endpoints.
2088  * @eps:        array of endpoints to remove streams from.
2089  * @num_eps:    number of endpoints in the array.
2090  * @mem_flags:  flags hcd should use to allocate memory.
2091  *
2092  * Reverts a group of bulk endpoints back to not using stream IDs.
2093  * Can fail if we are given bad arguments, or HCD is broken.
2094  *
2095  * Return: 0 on success. On failure, a negative error code.
2096  */
2097 int usb_free_streams(struct usb_interface *interface,
2098                 struct usb_host_endpoint **eps, unsigned int num_eps,
2099                 gfp_t mem_flags)
2100 {
2101         struct usb_hcd *hcd;
2102         struct usb_device *dev;
2103         int i, ret;
2104
2105         dev = interface_to_usbdev(interface);
2106         hcd = bus_to_hcd(dev->bus);
2107         if (dev->speed != USB_SPEED_SUPER)
2108                 return -EINVAL;
2109
2110         /* Double-free is not allowed */
2111         for (i = 0; i < num_eps; i++)
2112                 if (!eps[i] || !eps[i]->streams)
2113                         return -EINVAL;
2114
2115         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2116         if (ret < 0)
2117                 return ret;
2118
2119         for (i = 0; i < num_eps; i++)
2120                 eps[i]->streams = 0;
2121
2122         return ret;
2123 }
2124 EXPORT_SYMBOL_GPL(usb_free_streams);
2125
2126 /* Protect against drivers that try to unlink URBs after the device
2127  * is gone, by waiting until all unlinks for @udev are finished.
2128  * Since we don't currently track URBs by device, simply wait until
2129  * nothing is running in the locked region of usb_hcd_unlink_urb().
2130  */
2131 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2132 {
2133         spin_lock_irq(&hcd_urb_unlink_lock);
2134         spin_unlock_irq(&hcd_urb_unlink_lock);
2135 }
2136
2137 /*-------------------------------------------------------------------------*/
2138
2139 /* called in any context */
2140 int usb_hcd_get_frame_number (struct usb_device *udev)
2141 {
2142         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2143
2144         if (!HCD_RH_RUNNING(hcd))
2145                 return -ESHUTDOWN;
2146         return hcd->driver->get_frame_number (hcd);
2147 }
2148
2149 /*-------------------------------------------------------------------------*/
2150
2151 #ifdef  CONFIG_PM
2152
2153 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2154 {
2155         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2156         int             status;
2157         int             old_state = hcd->state;
2158
2159         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2160                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2161                         rhdev->do_remote_wakeup);
2162         if (HCD_DEAD(hcd)) {
2163                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2164                 return 0;
2165         }
2166
2167         if (!hcd->driver->bus_suspend) {
2168                 status = -ENOENT;
2169         } else {
2170                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2171                 hcd->state = HC_STATE_QUIESCING;
2172                 status = hcd->driver->bus_suspend(hcd);
2173         }
2174         if (status == 0) {
2175                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2176                 hcd->state = HC_STATE_SUSPENDED;
2177
2178                 /* Did we race with a root-hub wakeup event? */
2179                 if (rhdev->do_remote_wakeup) {
2180                         char    buffer[6];
2181
2182                         status = hcd->driver->hub_status_data(hcd, buffer);
2183                         if (status != 0) {
2184                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2185                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2186                                 status = -EBUSY;
2187                         }
2188                 }
2189         } else {
2190                 spin_lock_irq(&hcd_root_hub_lock);
2191                 if (!HCD_DEAD(hcd)) {
2192                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2193                         hcd->state = old_state;
2194                 }
2195                 spin_unlock_irq(&hcd_root_hub_lock);
2196                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2197                                 "suspend", status);
2198         }
2199         return status;
2200 }
2201
2202 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2203 {
2204         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2205         int             status;
2206         int             old_state = hcd->state;
2207
2208         dev_dbg(&rhdev->dev, "usb %sresume\n",
2209                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2210         if (HCD_DEAD(hcd)) {
2211                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2212                 return 0;
2213         }
2214         if (!hcd->driver->bus_resume)
2215                 return -ENOENT;
2216         if (HCD_RH_RUNNING(hcd))
2217                 return 0;
2218
2219         hcd->state = HC_STATE_RESUMING;
2220         status = hcd->driver->bus_resume(hcd);
2221         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2222         if (status == 0) {
2223                 struct usb_device *udev;
2224                 int port1;
2225
2226                 spin_lock_irq(&hcd_root_hub_lock);
2227                 if (!HCD_DEAD(hcd)) {
2228                         usb_set_device_state(rhdev, rhdev->actconfig
2229                                         ? USB_STATE_CONFIGURED
2230                                         : USB_STATE_ADDRESS);
2231                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2232                         hcd->state = HC_STATE_RUNNING;
2233                 }
2234                 spin_unlock_irq(&hcd_root_hub_lock);
2235
2236                 /*
2237                  * Check whether any of the enabled ports on the root hub are
2238                  * unsuspended.  If they are then a TRSMRCY delay is needed
2239                  * (this is what the USB-2 spec calls a "global resume").
2240                  * Otherwise we can skip the delay.
2241                  */
2242                 usb_hub_for_each_child(rhdev, port1, udev) {
2243                         if (udev->state != USB_STATE_NOTATTACHED &&
2244                                         !udev->port_is_suspended) {
2245                                 usleep_range(10000, 11000);     /* TRSMRCY */
2246                                 break;
2247                         }
2248                 }
2249         } else {
2250                 hcd->state = old_state;
2251                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2252                                 "resume", status);
2253                 if (status != -ESHUTDOWN)
2254                         usb_hc_died(hcd);
2255         }
2256         return status;
2257 }
2258
2259 #endif  /* CONFIG_PM */
2260
2261 #ifdef  CONFIG_PM_RUNTIME
2262
2263 /* Workqueue routine for root-hub remote wakeup */
2264 static void hcd_resume_work(struct work_struct *work)
2265 {
2266         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2267         struct usb_device *udev = hcd->self.root_hub;
2268
2269         usb_remote_wakeup(udev);
2270 }
2271
2272 /**
2273  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2274  * @hcd: host controller for this root hub
2275  *
2276  * The USB host controller calls this function when its root hub is
2277  * suspended (with the remote wakeup feature enabled) and a remote
2278  * wakeup request is received.  The routine submits a workqueue request
2279  * to resume the root hub (that is, manage its downstream ports again).
2280  */
2281 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2282 {
2283         unsigned long flags;
2284
2285         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2286         if (hcd->rh_registered) {
2287                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2288                 queue_work(pm_wq, &hcd->wakeup_work);
2289         }
2290         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2291 }
2292 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2293
2294 #endif  /* CONFIG_PM_RUNTIME */
2295
2296 /*-------------------------------------------------------------------------*/
2297
2298 #ifdef  CONFIG_USB_OTG
2299
2300 /**
2301  * usb_bus_start_enum - start immediate enumeration (for OTG)
2302  * @bus: the bus (must use hcd framework)
2303  * @port_num: 1-based number of port; usually bus->otg_port
2304  * Context: in_interrupt()
2305  *
2306  * Starts enumeration, with an immediate reset followed later by
2307  * hub_wq identifying and possibly configuring the device.
2308  * This is needed by OTG controller drivers, where it helps meet
2309  * HNP protocol timing requirements for starting a port reset.
2310  *
2311  * Return: 0 if successful.
2312  */
2313 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2314 {
2315         struct usb_hcd          *hcd;
2316         int                     status = -EOPNOTSUPP;
2317
2318         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2319          * boards with root hubs hooked up to internal devices (instead of
2320          * just the OTG port) may need more attention to resetting...
2321          */
2322         hcd = container_of (bus, struct usb_hcd, self);
2323         if (port_num && hcd->driver->start_port_reset)
2324                 status = hcd->driver->start_port_reset(hcd, port_num);
2325
2326         /* allocate hub_wq shortly after (first) root port reset finishes;
2327          * it may issue others, until at least 50 msecs have passed.
2328          */
2329         if (status == 0)
2330                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2331         return status;
2332 }
2333 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2334
2335 #endif
2336
2337 /*-------------------------------------------------------------------------*/
2338
2339 /**
2340  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2341  * @irq: the IRQ being raised
2342  * @__hcd: pointer to the HCD whose IRQ is being signaled
2343  *
2344  * If the controller isn't HALTed, calls the driver's irq handler.
2345  * Checks whether the controller is now dead.
2346  *
2347  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2348  */
2349 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2350 {
2351         struct usb_hcd          *hcd = __hcd;
2352         irqreturn_t             rc;
2353
2354         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2355                 rc = IRQ_NONE;
2356         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2357                 rc = IRQ_NONE;
2358         else
2359                 rc = IRQ_HANDLED;
2360
2361         return rc;
2362 }
2363 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2364
2365 /*-------------------------------------------------------------------------*/
2366
2367 /**
2368  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2369  * @hcd: pointer to the HCD representing the controller
2370  *
2371  * This is called by bus glue to report a USB host controller that died
2372  * while operations may still have been pending.  It's called automatically
2373  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2374  *
2375  * Only call this function with the primary HCD.
2376  */
2377 void usb_hc_died (struct usb_hcd *hcd)
2378 {
2379         unsigned long flags;
2380
2381         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2382
2383         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2384         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2385         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2386         if (hcd->rh_registered) {
2387                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2388
2389                 /* make hub_wq clean up old urbs and devices */
2390                 usb_set_device_state (hcd->self.root_hub,
2391                                 USB_STATE_NOTATTACHED);
2392                 usb_kick_hub_wq(hcd->self.root_hub);
2393         }
2394         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2395                 hcd = hcd->shared_hcd;
2396                 if (hcd->rh_registered) {
2397                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2398
2399                         /* make hub_wq clean up old urbs and devices */
2400                         usb_set_device_state(hcd->self.root_hub,
2401                                         USB_STATE_NOTATTACHED);
2402                         usb_kick_hub_wq(hcd->self.root_hub);
2403                 }
2404         }
2405         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2406         /* Make sure that the other roothub is also deallocated. */
2407 }
2408 EXPORT_SYMBOL_GPL (usb_hc_died);
2409
2410 /*-------------------------------------------------------------------------*/
2411
2412 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2413 {
2414
2415         spin_lock_init(&bh->lock);
2416         INIT_LIST_HEAD(&bh->head);
2417         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2418 }
2419
2420 /**
2421  * usb_create_shared_hcd - create and initialize an HCD structure
2422  * @driver: HC driver that will use this hcd
2423  * @dev: device for this HC, stored in hcd->self.controller
2424  * @bus_name: value to store in hcd->self.bus_name
2425  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2426  *              PCI device.  Only allocate certain resources for the primary HCD
2427  * Context: !in_interrupt()
2428  *
2429  * Allocate a struct usb_hcd, with extra space at the end for the
2430  * HC driver's private data.  Initialize the generic members of the
2431  * hcd structure.
2432  *
2433  * Return: On success, a pointer to the created and initialized HCD structure.
2434  * On failure (e.g. if memory is unavailable), %NULL.
2435  */
2436 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2437                 struct device *dev, const char *bus_name,
2438                 struct usb_hcd *primary_hcd)
2439 {
2440         struct usb_hcd *hcd;
2441
2442         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2443         if (!hcd) {
2444                 dev_dbg (dev, "hcd alloc failed\n");
2445                 return NULL;
2446         }
2447         if (primary_hcd == NULL) {
2448                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2449                                 GFP_KERNEL);
2450                 if (!hcd->bandwidth_mutex) {
2451                         kfree(hcd);
2452                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2453                         return NULL;
2454                 }
2455                 mutex_init(hcd->bandwidth_mutex);
2456                 dev_set_drvdata(dev, hcd);
2457         } else {
2458                 mutex_lock(&usb_port_peer_mutex);
2459                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2460                 hcd->primary_hcd = primary_hcd;
2461                 primary_hcd->primary_hcd = primary_hcd;
2462                 hcd->shared_hcd = primary_hcd;
2463                 primary_hcd->shared_hcd = hcd;
2464                 mutex_unlock(&usb_port_peer_mutex);
2465         }
2466
2467         kref_init(&hcd->kref);
2468
2469         usb_bus_init(&hcd->self);
2470         hcd->self.controller = dev;
2471         hcd->self.bus_name = bus_name;
2472         hcd->self.uses_dma = (dev->dma_mask != NULL);
2473
2474         init_timer(&hcd->rh_timer);
2475         hcd->rh_timer.function = rh_timer_func;
2476         hcd->rh_timer.data = (unsigned long) hcd;
2477 #ifdef CONFIG_PM_RUNTIME
2478         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2479 #endif
2480
2481         hcd->driver = driver;
2482         hcd->speed = driver->flags & HCD_MASK;
2483         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2484                         "USB Host Controller";
2485         return hcd;
2486 }
2487 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2488
2489 /**
2490  * usb_create_hcd - create and initialize an HCD structure
2491  * @driver: HC driver that will use this hcd
2492  * @dev: device for this HC, stored in hcd->self.controller
2493  * @bus_name: value to store in hcd->self.bus_name
2494  * Context: !in_interrupt()
2495  *
2496  * Allocate a struct usb_hcd, with extra space at the end for the
2497  * HC driver's private data.  Initialize the generic members of the
2498  * hcd structure.
2499  *
2500  * Return: On success, a pointer to the created and initialized HCD
2501  * structure. On failure (e.g. if memory is unavailable), %NULL.
2502  */
2503 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2504                 struct device *dev, const char *bus_name)
2505 {
2506         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2507 }
2508 EXPORT_SYMBOL_GPL(usb_create_hcd);
2509
2510 /*
2511  * Roothubs that share one PCI device must also share the bandwidth mutex.
2512  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2513  * deallocated.
2514  *
2515  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2516  * freed.  When hcd_release() is called for either hcd in a peer set
2517  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2518  * block new peering attempts
2519  */
2520 static void hcd_release(struct kref *kref)
2521 {
2522         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2523
2524         mutex_lock(&usb_port_peer_mutex);
2525         if (usb_hcd_is_primary_hcd(hcd))
2526                 kfree(hcd->bandwidth_mutex);
2527         if (hcd->shared_hcd) {
2528                 struct usb_hcd *peer = hcd->shared_hcd;
2529
2530                 peer->shared_hcd = NULL;
2531                 if (peer->primary_hcd == hcd)
2532                         peer->primary_hcd = NULL;
2533         }
2534         mutex_unlock(&usb_port_peer_mutex);
2535         kfree(hcd);
2536 }
2537
2538 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2539 {
2540         if (hcd)
2541                 kref_get (&hcd->kref);
2542         return hcd;
2543 }
2544 EXPORT_SYMBOL_GPL(usb_get_hcd);
2545
2546 void usb_put_hcd (struct usb_hcd *hcd)
2547 {
2548         if (hcd)
2549                 kref_put (&hcd->kref, hcd_release);
2550 }
2551 EXPORT_SYMBOL_GPL(usb_put_hcd);
2552
2553 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2554 {
2555         if (!hcd->primary_hcd)
2556                 return 1;
2557         return hcd == hcd->primary_hcd;
2558 }
2559 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2560
2561 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2562 {
2563         if (!hcd->driver->find_raw_port_number)
2564                 return port1;
2565
2566         return hcd->driver->find_raw_port_number(hcd, port1);
2567 }
2568
2569 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2570                 unsigned int irqnum, unsigned long irqflags)
2571 {
2572         int retval;
2573
2574         if (hcd->driver->irq) {
2575
2576                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2577                                 hcd->driver->description, hcd->self.busnum);
2578                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2579                                 hcd->irq_descr, hcd);
2580                 if (retval != 0) {
2581                         dev_err(hcd->self.controller,
2582                                         "request interrupt %d failed\n",
2583                                         irqnum);
2584                         return retval;
2585                 }
2586                 hcd->irq = irqnum;
2587                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2588                                 (hcd->driver->flags & HCD_MEMORY) ?
2589                                         "io mem" : "io base",
2590                                         (unsigned long long)hcd->rsrc_start);
2591         } else {
2592                 hcd->irq = 0;
2593                 if (hcd->rsrc_start)
2594                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2595                                         (hcd->driver->flags & HCD_MEMORY) ?
2596                                         "io mem" : "io base",
2597                                         (unsigned long long)hcd->rsrc_start);
2598         }
2599         return 0;
2600 }
2601
2602 /*
2603  * Before we free this root hub, flush in-flight peering attempts
2604  * and disable peer lookups
2605  */
2606 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2607 {
2608         struct usb_device *rhdev;
2609
2610         mutex_lock(&usb_port_peer_mutex);
2611         rhdev = hcd->self.root_hub;
2612         hcd->self.root_hub = NULL;
2613         mutex_unlock(&usb_port_peer_mutex);
2614         usb_put_dev(rhdev);
2615 }
2616
2617 /**
2618  * usb_add_hcd - finish generic HCD structure initialization and register
2619  * @hcd: the usb_hcd structure to initialize
2620  * @irqnum: Interrupt line to allocate
2621  * @irqflags: Interrupt type flags
2622  *
2623  * Finish the remaining parts of generic HCD initialization: allocate the
2624  * buffers of consistent memory, register the bus, request the IRQ line,
2625  * and call the driver's reset() and start() routines.
2626  */
2627 int usb_add_hcd(struct usb_hcd *hcd,
2628                 unsigned int irqnum, unsigned long irqflags)
2629 {
2630         int retval;
2631         struct usb_device *rhdev;
2632
2633         if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2634                 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2635
2636                 if (IS_ERR(phy)) {
2637                         retval = PTR_ERR(phy);
2638                         if (retval == -EPROBE_DEFER)
2639                                 return retval;
2640                 } else {
2641                         retval = usb_phy_init(phy);
2642                         if (retval) {
2643                                 usb_put_phy(phy);
2644                                 return retval;
2645                         }
2646                         hcd->usb_phy = phy;
2647                         hcd->remove_phy = 1;
2648                 }
2649         }
2650
2651         if (IS_ENABLED(CONFIG_GENERIC_PHY)) {
2652                 struct phy *phy = phy_get(hcd->self.controller, "usb");
2653
2654                 if (IS_ERR(phy)) {
2655                         retval = PTR_ERR(phy);
2656                         if (retval == -EPROBE_DEFER)
2657                                 goto err_phy;
2658                 } else {
2659                         retval = phy_init(phy);
2660                         if (retval) {
2661                                 phy_put(phy);
2662                                 goto err_phy;
2663                         }
2664                         retval = phy_power_on(phy);
2665                         if (retval) {
2666                                 phy_exit(phy);
2667                                 phy_put(phy);
2668                                 goto err_phy;
2669                         }
2670                         hcd->phy = phy;
2671                 }
2672         }
2673
2674         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2675
2676         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2677         if (authorized_default < 0 || authorized_default > 1)
2678                 hcd->authorized_default = hcd->wireless ? 0 : 1;
2679         else
2680                 hcd->authorized_default = authorized_default;
2681         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2682
2683         /* HC is in reset state, but accessible.  Now do the one-time init,
2684          * bottom up so that hcds can customize the root hubs before hub_wq
2685          * starts talking to them.  (Note, bus id is assigned early too.)
2686          */
2687         if ((retval = hcd_buffer_create(hcd)) != 0) {
2688                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2689                 goto err_create_buf;
2690         }
2691
2692         if ((retval = usb_register_bus(&hcd->self)) < 0)
2693                 goto err_register_bus;
2694
2695         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2696                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2697                 retval = -ENOMEM;
2698                 goto err_allocate_root_hub;
2699         }
2700         mutex_lock(&usb_port_peer_mutex);
2701         hcd->self.root_hub = rhdev;
2702         mutex_unlock(&usb_port_peer_mutex);
2703
2704         switch (hcd->speed) {
2705         case HCD_USB11:
2706                 rhdev->speed = USB_SPEED_FULL;
2707                 break;
2708         case HCD_USB2:
2709                 rhdev->speed = USB_SPEED_HIGH;
2710                 break;
2711         case HCD_USB25:
2712                 rhdev->speed = USB_SPEED_WIRELESS;
2713                 break;
2714         case HCD_USB3:
2715                 rhdev->speed = USB_SPEED_SUPER;
2716                 break;
2717         default:
2718                 retval = -EINVAL;
2719                 goto err_set_rh_speed;
2720         }
2721
2722         /* wakeup flag init defaults to "everything works" for root hubs,
2723          * but drivers can override it in reset() if needed, along with
2724          * recording the overall controller's system wakeup capability.
2725          */
2726         device_set_wakeup_capable(&rhdev->dev, 1);
2727
2728         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2729          * registered.  But since the controller can die at any time,
2730          * let's initialize the flag before touching the hardware.
2731          */
2732         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2733
2734         /* "reset" is misnamed; its role is now one-time init. the controller
2735          * should already have been reset (and boot firmware kicked off etc).
2736          */
2737         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2738                 dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2739                 goto err_hcd_driver_setup;
2740         }
2741         hcd->rh_pollable = 1;
2742
2743         /* NOTE: root hub and controller capabilities may not be the same */
2744         if (device_can_wakeup(hcd->self.controller)
2745                         && device_can_wakeup(&hcd->self.root_hub->dev))
2746                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2747
2748         /* initialize tasklets */
2749         init_giveback_urb_bh(&hcd->high_prio_bh);
2750         init_giveback_urb_bh(&hcd->low_prio_bh);
2751
2752         /* enable irqs just before we start the controller,
2753          * if the BIOS provides legacy PCI irqs.
2754          */
2755         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2756                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2757                 if (retval)
2758                         goto err_request_irq;
2759         }
2760
2761         hcd->state = HC_STATE_RUNNING;
2762         retval = hcd->driver->start(hcd);
2763         if (retval < 0) {
2764                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2765                 goto err_hcd_driver_start;
2766         }
2767
2768         /* starting here, usbcore will pay attention to this root hub */
2769         if ((retval = register_root_hub(hcd)) != 0)
2770                 goto err_register_root_hub;
2771
2772         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2773         if (retval < 0) {
2774                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2775                        retval);
2776                 goto error_create_attr_group;
2777         }
2778         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2779                 usb_hcd_poll_rh_status(hcd);
2780
2781         return retval;
2782
2783 error_create_attr_group:
2784         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2785         if (HC_IS_RUNNING(hcd->state))
2786                 hcd->state = HC_STATE_QUIESCING;
2787         spin_lock_irq(&hcd_root_hub_lock);
2788         hcd->rh_registered = 0;
2789         spin_unlock_irq(&hcd_root_hub_lock);
2790
2791 #ifdef CONFIG_PM_RUNTIME
2792         cancel_work_sync(&hcd->wakeup_work);
2793 #endif
2794         mutex_lock(&usb_bus_list_lock);
2795         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2796         mutex_unlock(&usb_bus_list_lock);
2797 err_register_root_hub:
2798         hcd->rh_pollable = 0;
2799         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2800         del_timer_sync(&hcd->rh_timer);
2801         hcd->driver->stop(hcd);
2802         hcd->state = HC_STATE_HALT;
2803         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2804         del_timer_sync(&hcd->rh_timer);
2805 err_hcd_driver_start:
2806         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2807                 free_irq(irqnum, hcd);
2808 err_request_irq:
2809 err_hcd_driver_setup:
2810 err_set_rh_speed:
2811         usb_put_invalidate_rhdev(hcd);
2812 err_allocate_root_hub:
2813         usb_deregister_bus(&hcd->self);
2814 err_register_bus:
2815         hcd_buffer_destroy(hcd);
2816 err_create_buf:
2817         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->phy) {
2818                 phy_power_off(hcd->phy);
2819                 phy_exit(hcd->phy);
2820                 phy_put(hcd->phy);
2821                 hcd->phy = NULL;
2822         }
2823 err_phy:
2824         if (hcd->remove_phy && hcd->usb_phy) {
2825                 usb_phy_shutdown(hcd->usb_phy);
2826                 usb_put_phy(hcd->usb_phy);
2827                 hcd->usb_phy = NULL;
2828         }
2829         return retval;
2830 }
2831 EXPORT_SYMBOL_GPL(usb_add_hcd);
2832
2833 /**
2834  * usb_remove_hcd - shutdown processing for generic HCDs
2835  * @hcd: the usb_hcd structure to remove
2836  * Context: !in_interrupt()
2837  *
2838  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2839  * invoking the HCD's stop() method.
2840  */
2841 void usb_remove_hcd(struct usb_hcd *hcd)
2842 {
2843         struct usb_device *rhdev = hcd->self.root_hub;
2844
2845         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2846
2847         usb_get_dev(rhdev);
2848         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2849
2850         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2851         if (HC_IS_RUNNING (hcd->state))
2852                 hcd->state = HC_STATE_QUIESCING;
2853
2854         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2855         spin_lock_irq (&hcd_root_hub_lock);
2856         hcd->rh_registered = 0;
2857         spin_unlock_irq (&hcd_root_hub_lock);
2858
2859 #ifdef CONFIG_PM_RUNTIME
2860         cancel_work_sync(&hcd->wakeup_work);
2861 #endif
2862
2863         mutex_lock(&usb_bus_list_lock);
2864         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2865         mutex_unlock(&usb_bus_list_lock);
2866
2867         /*
2868          * tasklet_kill() isn't needed here because:
2869          * - driver's disconnect() called from usb_disconnect() should
2870          *   make sure its URBs are completed during the disconnect()
2871          *   callback
2872          *
2873          * - it is too late to run complete() here since driver may have
2874          *   been removed already now
2875          */
2876
2877         /* Prevent any more root-hub status calls from the timer.
2878          * The HCD might still restart the timer (if a port status change
2879          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2880          * the hub_status_data() callback.
2881          */
2882         hcd->rh_pollable = 0;
2883         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2884         del_timer_sync(&hcd->rh_timer);
2885
2886         hcd->driver->stop(hcd);
2887         hcd->state = HC_STATE_HALT;
2888
2889         /* In case the HCD restarted the timer, stop it again. */
2890         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2891         del_timer_sync(&hcd->rh_timer);
2892
2893         if (usb_hcd_is_primary_hcd(hcd)) {
2894                 if (hcd->irq > 0)
2895                         free_irq(hcd->irq, hcd);
2896         }
2897
2898         usb_deregister_bus(&hcd->self);
2899         hcd_buffer_destroy(hcd);
2900
2901         if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->phy) {
2902                 phy_power_off(hcd->phy);
2903                 phy_exit(hcd->phy);
2904                 phy_put(hcd->phy);
2905                 hcd->phy = NULL;
2906         }
2907         if (hcd->remove_phy && hcd->usb_phy) {
2908                 usb_phy_shutdown(hcd->usb_phy);
2909                 usb_put_phy(hcd->usb_phy);
2910                 hcd->usb_phy = NULL;
2911         }
2912
2913         usb_put_invalidate_rhdev(hcd);
2914 }
2915 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2916
2917 void
2918 usb_hcd_platform_shutdown(struct platform_device *dev)
2919 {
2920         struct usb_hcd *hcd = platform_get_drvdata(dev);
2921
2922         if (hcd->driver->shutdown)
2923                 hcd->driver->shutdown(hcd);
2924 }
2925 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2926
2927 /*-------------------------------------------------------------------------*/
2928
2929 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2930
2931 struct usb_mon_operations *mon_ops;
2932
2933 /*
2934  * The registration is unlocked.
2935  * We do it this way because we do not want to lock in hot paths.
2936  *
2937  * Notice that the code is minimally error-proof. Because usbmon needs
2938  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2939  */
2940
2941 int usb_mon_register (struct usb_mon_operations *ops)
2942 {
2943
2944         if (mon_ops)
2945                 return -EBUSY;
2946
2947         mon_ops = ops;
2948         mb();
2949         return 0;
2950 }
2951 EXPORT_SYMBOL_GPL (usb_mon_register);
2952
2953 void usb_mon_deregister (void)
2954 {
2955
2956         if (mon_ops == NULL) {
2957                 printk(KERN_ERR "USB: monitor was not registered\n");
2958                 return;
2959         }
2960         mon_ops = NULL;
2961         mb();
2962 }
2963 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2964
2965 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */