Merge tag 'for-v3.6' of git://git.infradead.org/battery-2.6
[cascardo/linux.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44
45 #include "usb.h"
46
47
48 /*-------------------------------------------------------------------------*/
49
50 /*
51  * USB Host Controller Driver framework
52  *
53  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54  * HCD-specific behaviors/bugs.
55  *
56  * This does error checks, tracks devices and urbs, and delegates to a
57  * "hc_driver" only for code (and data) that really needs to know about
58  * hardware differences.  That includes root hub registers, i/o queues,
59  * and so on ... but as little else as possible.
60  *
61  * Shared code includes most of the "root hub" code (these are emulated,
62  * though each HC's hardware works differently) and PCI glue, plus request
63  * tracking overhead.  The HCD code should only block on spinlocks or on
64  * hardware handshaking; blocking on software events (such as other kernel
65  * threads releasing resources, or completing actions) is all generic.
66  *
67  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69  * only by the hub driver ... and that neither should be seen or used by
70  * usb client device drivers.
71  *
72  * Contributors of ideas or unattributed patches include: David Brownell,
73  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74  *
75  * HISTORY:
76  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
77  *              associated cleanup.  "usb_hcd" still != "usb_bus".
78  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
79  */
80
81 /*-------------------------------------------------------------------------*/
82
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS              64
93 struct usb_busmap {
94         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114 static inline int is_root_hub(struct usb_device *udev)
115 {
116         return (udev->parent == NULL);
117 }
118
119 /*-------------------------------------------------------------------------*/
120
121 /*
122  * Sharable chunks of root hub code.
123  */
124
125 /*-------------------------------------------------------------------------*/
126
127 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132         0x12,       /*  __u8  bLength; */
133         0x01,       /*  __u8  bDescriptorType; Device */
134         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135
136         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
137         0x00,       /*  __u8  bDeviceSubClass; */
138         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140
141         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
142         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144
145         0x03,       /*  __u8  iManufacturer; */
146         0x02,       /*  __u8  iProduct; */
147         0x01,       /*  __u8  iSerialNumber; */
148         0x01        /*  __u8  bNumConfigurations; */
149 };
150
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153         0x12,       /*  __u8  bLength; */
154         0x01,       /*  __u8  bDescriptorType; Device */
155         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
163         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176         0x12,       /*  __u8  bLength; */
177         0x01,       /*  __u8  bDescriptorType; Device */
178         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
179
180         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
181         0x00,       /*  __u8  bDeviceSubClass; */
182         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
183         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
184
185         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
186         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
187         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188
189         0x03,       /*  __u8  iManufacturer; */
190         0x02,       /*  __u8  iProduct; */
191         0x01,       /*  __u8  iSerialNumber; */
192         0x01        /*  __u8  bNumConfigurations; */
193 };
194
195
196 /*-------------------------------------------------------------------------*/
197
198 /* Configuration descriptors for our root hubs */
199
200 static const u8 fs_rh_config_descriptor [] = {
201
202         /* one configuration */
203         0x09,       /*  __u8  bLength; */
204         0x02,       /*  __u8  bDescriptorType; Configuration */
205         0x19, 0x00, /*  __le16 wTotalLength; */
206         0x01,       /*  __u8  bNumInterfaces; (1) */
207         0x01,       /*  __u8  bConfigurationValue; */
208         0x00,       /*  __u8  iConfiguration; */
209         0xc0,       /*  __u8  bmAttributes; 
210                                  Bit 7: must be set,
211                                      6: Self-powered,
212                                      5: Remote wakeup,
213                                      4..0: resvd */
214         0x00,       /*  __u8  MaxPower; */
215       
216         /* USB 1.1:
217          * USB 2.0, single TT organization (mandatory):
218          *      one interface, protocol 0
219          *
220          * USB 2.0, multiple TT organization (optional):
221          *      two interfaces, protocols 1 (like single TT)
222          *      and 2 (multiple TT mode) ... config is
223          *      sometimes settable
224          *      NOT IMPLEMENTED
225          */
226
227         /* one interface */
228         0x09,       /*  __u8  if_bLength; */
229         0x04,       /*  __u8  if_bDescriptorType; Interface */
230         0x00,       /*  __u8  if_bInterfaceNumber; */
231         0x00,       /*  __u8  if_bAlternateSetting; */
232         0x01,       /*  __u8  if_bNumEndpoints; */
233         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
234         0x00,       /*  __u8  if_bInterfaceSubClass; */
235         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
236         0x00,       /*  __u8  if_iInterface; */
237      
238         /* one endpoint (status change endpoint) */
239         0x07,       /*  __u8  ep_bLength; */
240         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
241         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
242         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
243         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246
247 static const u8 hs_rh_config_descriptor [] = {
248
249         /* one configuration */
250         0x09,       /*  __u8  bLength; */
251         0x02,       /*  __u8  bDescriptorType; Configuration */
252         0x19, 0x00, /*  __le16 wTotalLength; */
253         0x01,       /*  __u8  bNumInterfaces; (1) */
254         0x01,       /*  __u8  bConfigurationValue; */
255         0x00,       /*  __u8  iConfiguration; */
256         0xc0,       /*  __u8  bmAttributes; 
257                                  Bit 7: must be set,
258                                      6: Self-powered,
259                                      5: Remote wakeup,
260                                      4..0: resvd */
261         0x00,       /*  __u8  MaxPower; */
262       
263         /* USB 1.1:
264          * USB 2.0, single TT organization (mandatory):
265          *      one interface, protocol 0
266          *
267          * USB 2.0, multiple TT organization (optional):
268          *      two interfaces, protocols 1 (like single TT)
269          *      and 2 (multiple TT mode) ... config is
270          *      sometimes settable
271          *      NOT IMPLEMENTED
272          */
273
274         /* one interface */
275         0x09,       /*  __u8  if_bLength; */
276         0x04,       /*  __u8  if_bDescriptorType; Interface */
277         0x00,       /*  __u8  if_bInterfaceNumber; */
278         0x00,       /*  __u8  if_bAlternateSetting; */
279         0x01,       /*  __u8  if_bNumEndpoints; */
280         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
281         0x00,       /*  __u8  if_bInterfaceSubClass; */
282         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
283         0x00,       /*  __u8  if_iInterface; */
284      
285         /* one endpoint (status change endpoint) */
286         0x07,       /*  __u8  ep_bLength; */
287         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
288         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
289         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
290                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291                      * see hub.c:hub_configure() for details. */
292         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295
296 static const u8 ss_rh_config_descriptor[] = {
297         /* one configuration */
298         0x09,       /*  __u8  bLength; */
299         0x02,       /*  __u8  bDescriptorType; Configuration */
300         0x1f, 0x00, /*  __le16 wTotalLength; */
301         0x01,       /*  __u8  bNumInterfaces; (1) */
302         0x01,       /*  __u8  bConfigurationValue; */
303         0x00,       /*  __u8  iConfiguration; */
304         0xc0,       /*  __u8  bmAttributes;
305                                  Bit 7: must be set,
306                                      6: Self-powered,
307                                      5: Remote wakeup,
308                                      4..0: resvd */
309         0x00,       /*  __u8  MaxPower; */
310
311         /* one interface */
312         0x09,       /*  __u8  if_bLength; */
313         0x04,       /*  __u8  if_bDescriptorType; Interface */
314         0x00,       /*  __u8  if_bInterfaceNumber; */
315         0x00,       /*  __u8  if_bAlternateSetting; */
316         0x01,       /*  __u8  if_bNumEndpoints; */
317         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
318         0x00,       /*  __u8  if_bInterfaceSubClass; */
319         0x00,       /*  __u8  if_bInterfaceProtocol; */
320         0x00,       /*  __u8  if_iInterface; */
321
322         /* one endpoint (status change endpoint) */
323         0x07,       /*  __u8  ep_bLength; */
324         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
325         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
326         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
327                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328                      * see hub.c:hub_configure() for details. */
329         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
331
332         /* one SuperSpeed endpoint companion descriptor */
333         0x06,        /* __u8 ss_bLength */
334         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
337         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339
340 /* authorized_default behaviour:
341  * -1 is authorized for all devices except wireless (old behaviour)
342  * 0 is unauthorized for all devices
343  * 1 is authorized for all devices
344  */
345 static int authorized_default = -1;
346 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347 MODULE_PARM_DESC(authorized_default,
348                 "Default USB device authorization: 0 is not authorized, 1 is "
349                 "authorized, -1 is authorized except for wireless USB (default, "
350                 "old behaviour");
351 /*-------------------------------------------------------------------------*/
352
353 /**
354  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355  * @s: Null-terminated ASCII (actually ISO-8859-1) string
356  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357  * @len: Length (in bytes; may be odd) of descriptor buffer.
358  *
359  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360  * buflen, whichever is less.
361  *
362  * USB String descriptors can contain at most 126 characters; input
363  * strings longer than that are truncated.
364  */
365 static unsigned
366 ascii2desc(char const *s, u8 *buf, unsigned len)
367 {
368         unsigned n, t = 2 + 2*strlen(s);
369
370         if (t > 254)
371                 t = 254;        /* Longest possible UTF string descriptor */
372         if (len > t)
373                 len = t;
374
375         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
376
377         n = len;
378         while (n--) {
379                 *buf++ = t;
380                 if (!n--)
381                         break;
382                 *buf++ = t >> 8;
383                 t = (unsigned char)*s++;
384         }
385         return len;
386 }
387
388 /**
389  * rh_string() - provides string descriptors for root hub
390  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391  * @hcd: the host controller for this root hub
392  * @data: buffer for output packet
393  * @len: length of the provided buffer
394  *
395  * Produces either a manufacturer, product or serial number string for the
396  * virtual root hub device.
397  * Returns the number of bytes filled in: the length of the descriptor or
398  * of the provided buffer, whichever is less.
399  */
400 static unsigned
401 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402 {
403         char buf[100];
404         char const *s;
405         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406
407         // language ids
408         switch (id) {
409         case 0:
410                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412                 if (len > 4)
413                         len = 4;
414                 memcpy(data, langids, len);
415                 return len;
416         case 1:
417                 /* Serial number */
418                 s = hcd->self.bus_name;
419                 break;
420         case 2:
421                 /* Product name */
422                 s = hcd->product_desc;
423                 break;
424         case 3:
425                 /* Manufacturer */
426                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427                         init_utsname()->release, hcd->driver->description);
428                 s = buf;
429                 break;
430         default:
431                 /* Can't happen; caller guarantees it */
432                 return 0;
433         }
434
435         return ascii2desc(s, data, len);
436 }
437
438
439 /* Root hub control transfers execute synchronously */
440 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441 {
442         struct usb_ctrlrequest *cmd;
443         u16             typeReq, wValue, wIndex, wLength;
444         u8              *ubuf = urb->transfer_buffer;
445         /*
446          * tbuf should be as big as the BOS descriptor and
447          * the USB hub descriptor.
448          */
449         u8              tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE]
450                 __attribute__((aligned(4)));
451         const u8        *bufp = tbuf;
452         unsigned        len = 0;
453         int             status;
454         u8              patch_wakeup = 0;
455         u8              patch_protocol = 0;
456
457         might_sleep();
458
459         spin_lock_irq(&hcd_root_hub_lock);
460         status = usb_hcd_link_urb_to_ep(hcd, urb);
461         spin_unlock_irq(&hcd_root_hub_lock);
462         if (status)
463                 return status;
464         urb->hcpriv = hcd;      /* Indicate it's queued */
465
466         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
467         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
468         wValue   = le16_to_cpu (cmd->wValue);
469         wIndex   = le16_to_cpu (cmd->wIndex);
470         wLength  = le16_to_cpu (cmd->wLength);
471
472         if (wLength > urb->transfer_buffer_length)
473                 goto error;
474
475         urb->actual_length = 0;
476         switch (typeReq) {
477
478         /* DEVICE REQUESTS */
479
480         /* The root hub's remote wakeup enable bit is implemented using
481          * driver model wakeup flags.  If this system supports wakeup
482          * through USB, userspace may change the default "allow wakeup"
483          * policy through sysfs or these calls.
484          *
485          * Most root hubs support wakeup from downstream devices, for
486          * runtime power management (disabling USB clocks and reducing
487          * VBUS power usage).  However, not all of them do so; silicon,
488          * board, and BIOS bugs here are not uncommon, so these can't
489          * be treated quite like external hubs.
490          *
491          * Likewise, not all root hubs will pass wakeup events upstream,
492          * to wake up the whole system.  So don't assume root hub and
493          * controller capabilities are identical.
494          */
495
496         case DeviceRequest | USB_REQ_GET_STATUS:
497                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
498                                         << USB_DEVICE_REMOTE_WAKEUP)
499                                 | (1 << USB_DEVICE_SELF_POWERED);
500                 tbuf [1] = 0;
501                 len = 2;
502                 break;
503         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
504                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
505                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
506                 else
507                         goto error;
508                 break;
509         case DeviceOutRequest | USB_REQ_SET_FEATURE:
510                 if (device_can_wakeup(&hcd->self.root_hub->dev)
511                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
512                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
513                 else
514                         goto error;
515                 break;
516         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
517                 tbuf [0] = 1;
518                 len = 1;
519                         /* FALLTHROUGH */
520         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
521                 break;
522         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
523                 switch (wValue & 0xff00) {
524                 case USB_DT_DEVICE << 8:
525                         switch (hcd->speed) {
526                         case HCD_USB3:
527                                 bufp = usb3_rh_dev_descriptor;
528                                 break;
529                         case HCD_USB2:
530                                 bufp = usb2_rh_dev_descriptor;
531                                 break;
532                         case HCD_USB11:
533                                 bufp = usb11_rh_dev_descriptor;
534                                 break;
535                         default:
536                                 goto error;
537                         }
538                         len = 18;
539                         if (hcd->has_tt)
540                                 patch_protocol = 1;
541                         break;
542                 case USB_DT_CONFIG << 8:
543                         switch (hcd->speed) {
544                         case HCD_USB3:
545                                 bufp = ss_rh_config_descriptor;
546                                 len = sizeof ss_rh_config_descriptor;
547                                 break;
548                         case HCD_USB2:
549                                 bufp = hs_rh_config_descriptor;
550                                 len = sizeof hs_rh_config_descriptor;
551                                 break;
552                         case HCD_USB11:
553                                 bufp = fs_rh_config_descriptor;
554                                 len = sizeof fs_rh_config_descriptor;
555                                 break;
556                         default:
557                                 goto error;
558                         }
559                         if (device_can_wakeup(&hcd->self.root_hub->dev))
560                                 patch_wakeup = 1;
561                         break;
562                 case USB_DT_STRING << 8:
563                         if ((wValue & 0xff) < 4)
564                                 urb->actual_length = rh_string(wValue & 0xff,
565                                                 hcd, ubuf, wLength);
566                         else /* unsupported IDs --> "protocol stall" */
567                                 goto error;
568                         break;
569                 case USB_DT_BOS << 8:
570                         goto nongeneric;
571                 default:
572                         goto error;
573                 }
574                 break;
575         case DeviceRequest | USB_REQ_GET_INTERFACE:
576                 tbuf [0] = 0;
577                 len = 1;
578                         /* FALLTHROUGH */
579         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
580                 break;
581         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
582                 // wValue == urb->dev->devaddr
583                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
584                         wValue);
585                 break;
586
587         /* INTERFACE REQUESTS (no defined feature/status flags) */
588
589         /* ENDPOINT REQUESTS */
590
591         case EndpointRequest | USB_REQ_GET_STATUS:
592                 // ENDPOINT_HALT flag
593                 tbuf [0] = 0;
594                 tbuf [1] = 0;
595                 len = 2;
596                         /* FALLTHROUGH */
597         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
598         case EndpointOutRequest | USB_REQ_SET_FEATURE:
599                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
600                 break;
601
602         /* CLASS REQUESTS (and errors) */
603
604         default:
605 nongeneric:
606                 /* non-generic request */
607                 switch (typeReq) {
608                 case GetHubStatus:
609                 case GetPortStatus:
610                         len = 4;
611                         break;
612                 case GetHubDescriptor:
613                         len = sizeof (struct usb_hub_descriptor);
614                         break;
615                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
616                         /* len is returned by hub_control */
617                         break;
618                 }
619                 status = hcd->driver->hub_control (hcd,
620                         typeReq, wValue, wIndex,
621                         tbuf, wLength);
622                 break;
623 error:
624                 /* "protocol stall" on error */
625                 status = -EPIPE;
626         }
627
628         if (status < 0) {
629                 len = 0;
630                 if (status != -EPIPE) {
631                         dev_dbg (hcd->self.controller,
632                                 "CTRL: TypeReq=0x%x val=0x%x "
633                                 "idx=0x%x len=%d ==> %d\n",
634                                 typeReq, wValue, wIndex,
635                                 wLength, status);
636                 }
637         } else if (status > 0) {
638                 /* hub_control may return the length of data copied. */
639                 len = status;
640                 status = 0;
641         }
642         if (len) {
643                 if (urb->transfer_buffer_length < len)
644                         len = urb->transfer_buffer_length;
645                 urb->actual_length = len;
646                 // always USB_DIR_IN, toward host
647                 memcpy (ubuf, bufp, len);
648
649                 /* report whether RH hardware supports remote wakeup */
650                 if (patch_wakeup &&
651                                 len > offsetof (struct usb_config_descriptor,
652                                                 bmAttributes))
653                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
654                                 |= USB_CONFIG_ATT_WAKEUP;
655
656                 /* report whether RH hardware has an integrated TT */
657                 if (patch_protocol &&
658                                 len > offsetof(struct usb_device_descriptor,
659                                                 bDeviceProtocol))
660                         ((struct usb_device_descriptor *) ubuf)->
661                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
662         }
663
664         /* any errors get returned through the urb completion */
665         spin_lock_irq(&hcd_root_hub_lock);
666         usb_hcd_unlink_urb_from_ep(hcd, urb);
667
668         /* This peculiar use of spinlocks echoes what real HC drivers do.
669          * Avoiding calls to local_irq_disable/enable makes the code
670          * RT-friendly.
671          */
672         spin_unlock(&hcd_root_hub_lock);
673         usb_hcd_giveback_urb(hcd, urb, status);
674         spin_lock(&hcd_root_hub_lock);
675
676         spin_unlock_irq(&hcd_root_hub_lock);
677         return 0;
678 }
679
680 /*-------------------------------------------------------------------------*/
681
682 /*
683  * Root Hub interrupt transfers are polled using a timer if the
684  * driver requests it; otherwise the driver is responsible for
685  * calling usb_hcd_poll_rh_status() when an event occurs.
686  *
687  * Completions are called in_interrupt(), but they may or may not
688  * be in_irq().
689  */
690 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
691 {
692         struct urb      *urb;
693         int             length;
694         unsigned long   flags;
695         char            buffer[6];      /* Any root hubs with > 31 ports? */
696
697         if (unlikely(!hcd->rh_pollable))
698                 return;
699         if (!hcd->uses_new_polling && !hcd->status_urb)
700                 return;
701
702         length = hcd->driver->hub_status_data(hcd, buffer);
703         if (length > 0) {
704
705                 /* try to complete the status urb */
706                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
707                 urb = hcd->status_urb;
708                 if (urb) {
709                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
710                         hcd->status_urb = NULL;
711                         urb->actual_length = length;
712                         memcpy(urb->transfer_buffer, buffer, length);
713
714                         usb_hcd_unlink_urb_from_ep(hcd, urb);
715                         spin_unlock(&hcd_root_hub_lock);
716                         usb_hcd_giveback_urb(hcd, urb, 0);
717                         spin_lock(&hcd_root_hub_lock);
718                 } else {
719                         length = 0;
720                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
721                 }
722                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
723         }
724
725         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
726          * exceed that limit if HZ is 100. The math is more clunky than
727          * maybe expected, this is to make sure that all timers for USB devices
728          * fire at the same time to give the CPU a break in between */
729         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
730                         (length == 0 && hcd->status_urb != NULL))
731                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
732 }
733 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
734
735 /* timer callback */
736 static void rh_timer_func (unsigned long _hcd)
737 {
738         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
739 }
740
741 /*-------------------------------------------------------------------------*/
742
743 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
744 {
745         int             retval;
746         unsigned long   flags;
747         unsigned        len = 1 + (urb->dev->maxchild / 8);
748
749         spin_lock_irqsave (&hcd_root_hub_lock, flags);
750         if (hcd->status_urb || urb->transfer_buffer_length < len) {
751                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
752                 retval = -EINVAL;
753                 goto done;
754         }
755
756         retval = usb_hcd_link_urb_to_ep(hcd, urb);
757         if (retval)
758                 goto done;
759
760         hcd->status_urb = urb;
761         urb->hcpriv = hcd;      /* indicate it's queued */
762         if (!hcd->uses_new_polling)
763                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764
765         /* If a status change has already occurred, report it ASAP */
766         else if (HCD_POLL_PENDING(hcd))
767                 mod_timer(&hcd->rh_timer, jiffies);
768         retval = 0;
769  done:
770         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
771         return retval;
772 }
773
774 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
775 {
776         if (usb_endpoint_xfer_int(&urb->ep->desc))
777                 return rh_queue_status (hcd, urb);
778         if (usb_endpoint_xfer_control(&urb->ep->desc))
779                 return rh_call_control (hcd, urb);
780         return -EINVAL;
781 }
782
783 /*-------------------------------------------------------------------------*/
784
785 /* Unlinks of root-hub control URBs are legal, but they don't do anything
786  * since these URBs always execute synchronously.
787  */
788 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
789 {
790         unsigned long   flags;
791         int             rc;
792
793         spin_lock_irqsave(&hcd_root_hub_lock, flags);
794         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
795         if (rc)
796                 goto done;
797
798         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
799                 ;       /* Do nothing */
800
801         } else {                                /* Status URB */
802                 if (!hcd->uses_new_polling)
803                         del_timer (&hcd->rh_timer);
804                 if (urb == hcd->status_urb) {
805                         hcd->status_urb = NULL;
806                         usb_hcd_unlink_urb_from_ep(hcd, urb);
807
808                         spin_unlock(&hcd_root_hub_lock);
809                         usb_hcd_giveback_urb(hcd, urb, status);
810                         spin_lock(&hcd_root_hub_lock);
811                 }
812         }
813  done:
814         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
815         return rc;
816 }
817
818
819
820 /*
821  * Show & store the current value of authorized_default
822  */
823 static ssize_t usb_host_authorized_default_show(struct device *dev,
824                                                 struct device_attribute *attr,
825                                                 char *buf)
826 {
827         struct usb_device *rh_usb_dev = to_usb_device(dev);
828         struct usb_bus *usb_bus = rh_usb_dev->bus;
829         struct usb_hcd *usb_hcd;
830
831         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
832                 return -ENODEV;
833         usb_hcd = bus_to_hcd(usb_bus);
834         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
835 }
836
837 static ssize_t usb_host_authorized_default_store(struct device *dev,
838                                                  struct device_attribute *attr,
839                                                  const char *buf, size_t size)
840 {
841         ssize_t result;
842         unsigned val;
843         struct usb_device *rh_usb_dev = to_usb_device(dev);
844         struct usb_bus *usb_bus = rh_usb_dev->bus;
845         struct usb_hcd *usb_hcd;
846
847         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
848                 return -ENODEV;
849         usb_hcd = bus_to_hcd(usb_bus);
850         result = sscanf(buf, "%u\n", &val);
851         if (result == 1) {
852                 usb_hcd->authorized_default = val? 1 : 0;
853                 result = size;
854         }
855         else
856                 result = -EINVAL;
857         return result;
858 }
859
860 static DEVICE_ATTR(authorized_default, 0644,
861             usb_host_authorized_default_show,
862             usb_host_authorized_default_store);
863
864
865 /* Group all the USB bus attributes */
866 static struct attribute *usb_bus_attrs[] = {
867                 &dev_attr_authorized_default.attr,
868                 NULL,
869 };
870
871 static struct attribute_group usb_bus_attr_group = {
872         .name = NULL,   /* we want them in the same directory */
873         .attrs = usb_bus_attrs,
874 };
875
876
877
878 /*-------------------------------------------------------------------------*/
879
880 /**
881  * usb_bus_init - shared initialization code
882  * @bus: the bus structure being initialized
883  *
884  * This code is used to initialize a usb_bus structure, memory for which is
885  * separately managed.
886  */
887 static void usb_bus_init (struct usb_bus *bus)
888 {
889         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891         bus->devnum_next = 1;
892
893         bus->root_hub = NULL;
894         bus->busnum = -1;
895         bus->bandwidth_allocated = 0;
896         bus->bandwidth_int_reqs  = 0;
897         bus->bandwidth_isoc_reqs = 0;
898
899         INIT_LIST_HEAD (&bus->bus_list);
900 }
901
902 /*-------------------------------------------------------------------------*/
903
904 /**
905  * usb_register_bus - registers the USB host controller with the usb core
906  * @bus: pointer to the bus to register
907  * Context: !in_interrupt()
908  *
909  * Assigns a bus number, and links the controller into usbcore data
910  * structures so that it can be seen by scanning the bus list.
911  */
912 static int usb_register_bus(struct usb_bus *bus)
913 {
914         int result = -E2BIG;
915         int busnum;
916
917         mutex_lock(&usb_bus_list_lock);
918         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
919         if (busnum >= USB_MAXBUS) {
920                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
921                 goto error_find_busnum;
922         }
923         set_bit (busnum, busmap.busmap);
924         bus->busnum = busnum;
925
926         /* Add it to the local list of buses */
927         list_add (&bus->bus_list, &usb_bus_list);
928         mutex_unlock(&usb_bus_list_lock);
929
930         usb_notify_add_bus(bus);
931
932         dev_info (bus->controller, "new USB bus registered, assigned bus "
933                   "number %d\n", bus->busnum);
934         return 0;
935
936 error_find_busnum:
937         mutex_unlock(&usb_bus_list_lock);
938         return result;
939 }
940
941 /**
942  * usb_deregister_bus - deregisters the USB host controller
943  * @bus: pointer to the bus to deregister
944  * Context: !in_interrupt()
945  *
946  * Recycles the bus number, and unlinks the controller from usbcore data
947  * structures so that it won't be seen by scanning the bus list.
948  */
949 static void usb_deregister_bus (struct usb_bus *bus)
950 {
951         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
952
953         /*
954          * NOTE: make sure that all the devices are removed by the
955          * controller code, as well as having it call this when cleaning
956          * itself up
957          */
958         mutex_lock(&usb_bus_list_lock);
959         list_del (&bus->bus_list);
960         mutex_unlock(&usb_bus_list_lock);
961
962         usb_notify_remove_bus(bus);
963
964         clear_bit (bus->busnum, busmap.busmap);
965 }
966
967 /**
968  * register_root_hub - called by usb_add_hcd() to register a root hub
969  * @hcd: host controller for this root hub
970  *
971  * This function registers the root hub with the USB subsystem.  It sets up
972  * the device properly in the device tree and then calls usb_new_device()
973  * to register the usb device.  It also assigns the root hub's USB address
974  * (always 1).
975  */
976 static int register_root_hub(struct usb_hcd *hcd)
977 {
978         struct device *parent_dev = hcd->self.controller;
979         struct usb_device *usb_dev = hcd->self.root_hub;
980         const int devnum = 1;
981         int retval;
982
983         usb_dev->devnum = devnum;
984         usb_dev->bus->devnum_next = devnum + 1;
985         memset (&usb_dev->bus->devmap.devicemap, 0,
986                         sizeof usb_dev->bus->devmap.devicemap);
987         set_bit (devnum, usb_dev->bus->devmap.devicemap);
988         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
989
990         mutex_lock(&usb_bus_list_lock);
991
992         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
993         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
994         if (retval != sizeof usb_dev->descriptor) {
995                 mutex_unlock(&usb_bus_list_lock);
996                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
997                                 dev_name(&usb_dev->dev), retval);
998                 return (retval < 0) ? retval : -EMSGSIZE;
999         }
1000         if (usb_dev->speed == USB_SPEED_SUPER) {
1001                 retval = usb_get_bos_descriptor(usb_dev);
1002                 if (retval < 0) {
1003                         mutex_unlock(&usb_bus_list_lock);
1004                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1005                                         dev_name(&usb_dev->dev), retval);
1006                         return retval;
1007                 }
1008         }
1009
1010         retval = usb_new_device (usb_dev);
1011         if (retval) {
1012                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1013                                 dev_name(&usb_dev->dev), retval);
1014         }
1015         mutex_unlock(&usb_bus_list_lock);
1016
1017         if (retval == 0) {
1018                 spin_lock_irq (&hcd_root_hub_lock);
1019                 hcd->rh_registered = 1;
1020                 spin_unlock_irq (&hcd_root_hub_lock);
1021
1022                 /* Did the HC die before the root hub was registered? */
1023                 if (HCD_DEAD(hcd))
1024                         usb_hc_died (hcd);      /* This time clean up */
1025         }
1026
1027         return retval;
1028 }
1029
1030
1031 /*-------------------------------------------------------------------------*/
1032
1033 /**
1034  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1035  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1036  * @is_input: true iff the transaction sends data to the host
1037  * @isoc: true for isochronous transactions, false for interrupt ones
1038  * @bytecount: how many bytes in the transaction.
1039  *
1040  * Returns approximate bus time in nanoseconds for a periodic transaction.
1041  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1042  * scheduled in software, this function is only used for such scheduling.
1043  */
1044 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1045 {
1046         unsigned long   tmp;
1047
1048         switch (speed) {
1049         case USB_SPEED_LOW:     /* INTR only */
1050                 if (is_input) {
1051                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1052                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1053                 } else {
1054                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1055                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1056                 }
1057         case USB_SPEED_FULL:    /* ISOC or INTR */
1058                 if (isoc) {
1059                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1060                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1061                 } else {
1062                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1063                         return (9107L + BW_HOST_DELAY + tmp);
1064                 }
1065         case USB_SPEED_HIGH:    /* ISOC or INTR */
1066                 // FIXME adjust for input vs output
1067                 if (isoc)
1068                         tmp = HS_NSECS_ISO (bytecount);
1069                 else
1070                         tmp = HS_NSECS (bytecount);
1071                 return tmp;
1072         default:
1073                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1074                 return -1;
1075         }
1076 }
1077 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1078
1079
1080 /*-------------------------------------------------------------------------*/
1081
1082 /*
1083  * Generic HC operations.
1084  */
1085
1086 /*-------------------------------------------------------------------------*/
1087
1088 /**
1089  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1090  * @hcd: host controller to which @urb was submitted
1091  * @urb: URB being submitted
1092  *
1093  * Host controller drivers should call this routine in their enqueue()
1094  * method.  The HCD's private spinlock must be held and interrupts must
1095  * be disabled.  The actions carried out here are required for URB
1096  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1097  *
1098  * Returns 0 for no error, otherwise a negative error code (in which case
1099  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1100  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1101  * the private spinlock and returning.
1102  */
1103 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1104 {
1105         int             rc = 0;
1106
1107         spin_lock(&hcd_urb_list_lock);
1108
1109         /* Check that the URB isn't being killed */
1110         if (unlikely(atomic_read(&urb->reject))) {
1111                 rc = -EPERM;
1112                 goto done;
1113         }
1114
1115         if (unlikely(!urb->ep->enabled)) {
1116                 rc = -ENOENT;
1117                 goto done;
1118         }
1119
1120         if (unlikely(!urb->dev->can_submit)) {
1121                 rc = -EHOSTUNREACH;
1122                 goto done;
1123         }
1124
1125         /*
1126          * Check the host controller's state and add the URB to the
1127          * endpoint's queue.
1128          */
1129         if (HCD_RH_RUNNING(hcd)) {
1130                 urb->unlinked = 0;
1131                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1132         } else {
1133                 rc = -ESHUTDOWN;
1134                 goto done;
1135         }
1136  done:
1137         spin_unlock(&hcd_urb_list_lock);
1138         return rc;
1139 }
1140 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1141
1142 /**
1143  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1144  * @hcd: host controller to which @urb was submitted
1145  * @urb: URB being checked for unlinkability
1146  * @status: error code to store in @urb if the unlink succeeds
1147  *
1148  * Host controller drivers should call this routine in their dequeue()
1149  * method.  The HCD's private spinlock must be held and interrupts must
1150  * be disabled.  The actions carried out here are required for making
1151  * sure than an unlink is valid.
1152  *
1153  * Returns 0 for no error, otherwise a negative error code (in which case
1154  * the dequeue() method must fail).  The possible error codes are:
1155  *
1156  *      -EIDRM: @urb was not submitted or has already completed.
1157  *              The completion function may not have been called yet.
1158  *
1159  *      -EBUSY: @urb has already been unlinked.
1160  */
1161 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1162                 int status)
1163 {
1164         struct list_head        *tmp;
1165
1166         /* insist the urb is still queued */
1167         list_for_each(tmp, &urb->ep->urb_list) {
1168                 if (tmp == &urb->urb_list)
1169                         break;
1170         }
1171         if (tmp != &urb->urb_list)
1172                 return -EIDRM;
1173
1174         /* Any status except -EINPROGRESS means something already started to
1175          * unlink this URB from the hardware.  So there's no more work to do.
1176          */
1177         if (urb->unlinked)
1178                 return -EBUSY;
1179         urb->unlinked = status;
1180         return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1183
1184 /**
1185  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1186  * @hcd: host controller to which @urb was submitted
1187  * @urb: URB being unlinked
1188  *
1189  * Host controller drivers should call this routine before calling
1190  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1191  * interrupts must be disabled.  The actions carried out here are required
1192  * for URB completion.
1193  */
1194 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1195 {
1196         /* clear all state linking urb to this dev (and hcd) */
1197         spin_lock(&hcd_urb_list_lock);
1198         list_del_init(&urb->urb_list);
1199         spin_unlock(&hcd_urb_list_lock);
1200 }
1201 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1202
1203 /*
1204  * Some usb host controllers can only perform dma using a small SRAM area.
1205  * The usb core itself is however optimized for host controllers that can dma
1206  * using regular system memory - like pci devices doing bus mastering.
1207  *
1208  * To support host controllers with limited dma capabilites we provide dma
1209  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1210  * For this to work properly the host controller code must first use the
1211  * function dma_declare_coherent_memory() to point out which memory area
1212  * that should be used for dma allocations.
1213  *
1214  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1215  * dma using dma_alloc_coherent() which in turn allocates from the memory
1216  * area pointed out with dma_declare_coherent_memory().
1217  *
1218  * So, to summarize...
1219  *
1220  * - We need "local" memory, canonical example being
1221  *   a small SRAM on a discrete controller being the
1222  *   only memory that the controller can read ...
1223  *   (a) "normal" kernel memory is no good, and
1224  *   (b) there's not enough to share
1225  *
1226  * - The only *portable* hook for such stuff in the
1227  *   DMA framework is dma_declare_coherent_memory()
1228  *
1229  * - So we use that, even though the primary requirement
1230  *   is that the memory be "local" (hence addressible
1231  *   by that device), not "coherent".
1232  *
1233  */
1234
1235 static int hcd_alloc_coherent(struct usb_bus *bus,
1236                               gfp_t mem_flags, dma_addr_t *dma_handle,
1237                               void **vaddr_handle, size_t size,
1238                               enum dma_data_direction dir)
1239 {
1240         unsigned char *vaddr;
1241
1242         if (*vaddr_handle == NULL) {
1243                 WARN_ON_ONCE(1);
1244                 return -EFAULT;
1245         }
1246
1247         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1248                                  mem_flags, dma_handle);
1249         if (!vaddr)
1250                 return -ENOMEM;
1251
1252         /*
1253          * Store the virtual address of the buffer at the end
1254          * of the allocated dma buffer. The size of the buffer
1255          * may be uneven so use unaligned functions instead
1256          * of just rounding up. It makes sense to optimize for
1257          * memory footprint over access speed since the amount
1258          * of memory available for dma may be limited.
1259          */
1260         put_unaligned((unsigned long)*vaddr_handle,
1261                       (unsigned long *)(vaddr + size));
1262
1263         if (dir == DMA_TO_DEVICE)
1264                 memcpy(vaddr, *vaddr_handle, size);
1265
1266         *vaddr_handle = vaddr;
1267         return 0;
1268 }
1269
1270 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1271                               void **vaddr_handle, size_t size,
1272                               enum dma_data_direction dir)
1273 {
1274         unsigned char *vaddr = *vaddr_handle;
1275
1276         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1277
1278         if (dir == DMA_FROM_DEVICE)
1279                 memcpy(vaddr, *vaddr_handle, size);
1280
1281         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1282
1283         *vaddr_handle = vaddr;
1284         *dma_handle = 0;
1285 }
1286
1287 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1288 {
1289         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1290                 dma_unmap_single(hcd->self.controller,
1291                                 urb->setup_dma,
1292                                 sizeof(struct usb_ctrlrequest),
1293                                 DMA_TO_DEVICE);
1294         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1295                 hcd_free_coherent(urb->dev->bus,
1296                                 &urb->setup_dma,
1297                                 (void **) &urb->setup_packet,
1298                                 sizeof(struct usb_ctrlrequest),
1299                                 DMA_TO_DEVICE);
1300
1301         /* Make it safe to call this routine more than once */
1302         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1303 }
1304 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1305
1306 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1307 {
1308         if (hcd->driver->unmap_urb_for_dma)
1309                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1310         else
1311                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1312 }
1313
1314 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1315 {
1316         enum dma_data_direction dir;
1317
1318         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1319
1320         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1321         if (urb->transfer_flags & URB_DMA_MAP_SG)
1322                 dma_unmap_sg(hcd->self.controller,
1323                                 urb->sg,
1324                                 urb->num_sgs,
1325                                 dir);
1326         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1327                 dma_unmap_page(hcd->self.controller,
1328                                 urb->transfer_dma,
1329                                 urb->transfer_buffer_length,
1330                                 dir);
1331         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1332                 dma_unmap_single(hcd->self.controller,
1333                                 urb->transfer_dma,
1334                                 urb->transfer_buffer_length,
1335                                 dir);
1336         else if (urb->transfer_flags & URB_MAP_LOCAL)
1337                 hcd_free_coherent(urb->dev->bus,
1338                                 &urb->transfer_dma,
1339                                 &urb->transfer_buffer,
1340                                 urb->transfer_buffer_length,
1341                                 dir);
1342
1343         /* Make it safe to call this routine more than once */
1344         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1345                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1346 }
1347 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1348
1349 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1350                            gfp_t mem_flags)
1351 {
1352         if (hcd->driver->map_urb_for_dma)
1353                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1354         else
1355                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1356 }
1357
1358 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1359                             gfp_t mem_flags)
1360 {
1361         enum dma_data_direction dir;
1362         int ret = 0;
1363
1364         /* Map the URB's buffers for DMA access.
1365          * Lower level HCD code should use *_dma exclusively,
1366          * unless it uses pio or talks to another transport,
1367          * or uses the provided scatter gather list for bulk.
1368          */
1369
1370         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1371                 if (hcd->self.uses_pio_for_control)
1372                         return ret;
1373                 if (hcd->self.uses_dma) {
1374                         urb->setup_dma = dma_map_single(
1375                                         hcd->self.controller,
1376                                         urb->setup_packet,
1377                                         sizeof(struct usb_ctrlrequest),
1378                                         DMA_TO_DEVICE);
1379                         if (dma_mapping_error(hcd->self.controller,
1380                                                 urb->setup_dma))
1381                                 return -EAGAIN;
1382                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1383                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1384                         ret = hcd_alloc_coherent(
1385                                         urb->dev->bus, mem_flags,
1386                                         &urb->setup_dma,
1387                                         (void **)&urb->setup_packet,
1388                                         sizeof(struct usb_ctrlrequest),
1389                                         DMA_TO_DEVICE);
1390                         if (ret)
1391                                 return ret;
1392                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1393                 }
1394         }
1395
1396         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1397         if (urb->transfer_buffer_length != 0
1398             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1399                 if (hcd->self.uses_dma) {
1400                         if (urb->num_sgs) {
1401                                 int n;
1402
1403                                 /* We don't support sg for isoc transfers ! */
1404                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1405                                         WARN_ON(1);
1406                                         return -EINVAL;
1407                                 }
1408
1409                                 n = dma_map_sg(
1410                                                 hcd->self.controller,
1411                                                 urb->sg,
1412                                                 urb->num_sgs,
1413                                                 dir);
1414                                 if (n <= 0)
1415                                         ret = -EAGAIN;
1416                                 else
1417                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1418                                 urb->num_mapped_sgs = n;
1419                                 if (n != urb->num_sgs)
1420                                         urb->transfer_flags |=
1421                                                         URB_DMA_SG_COMBINED;
1422                         } else if (urb->sg) {
1423                                 struct scatterlist *sg = urb->sg;
1424                                 urb->transfer_dma = dma_map_page(
1425                                                 hcd->self.controller,
1426                                                 sg_page(sg),
1427                                                 sg->offset,
1428                                                 urb->transfer_buffer_length,
1429                                                 dir);
1430                                 if (dma_mapping_error(hcd->self.controller,
1431                                                 urb->transfer_dma))
1432                                         ret = -EAGAIN;
1433                                 else
1434                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1435                         } else {
1436                                 urb->transfer_dma = dma_map_single(
1437                                                 hcd->self.controller,
1438                                                 urb->transfer_buffer,
1439                                                 urb->transfer_buffer_length,
1440                                                 dir);
1441                                 if (dma_mapping_error(hcd->self.controller,
1442                                                 urb->transfer_dma))
1443                                         ret = -EAGAIN;
1444                                 else
1445                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1446                         }
1447                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1448                         ret = hcd_alloc_coherent(
1449                                         urb->dev->bus, mem_flags,
1450                                         &urb->transfer_dma,
1451                                         &urb->transfer_buffer,
1452                                         urb->transfer_buffer_length,
1453                                         dir);
1454                         if (ret == 0)
1455                                 urb->transfer_flags |= URB_MAP_LOCAL;
1456                 }
1457                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1458                                 URB_SETUP_MAP_LOCAL)))
1459                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1460         }
1461         return ret;
1462 }
1463 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1464
1465 /*-------------------------------------------------------------------------*/
1466
1467 /* may be called in any context with a valid urb->dev usecount
1468  * caller surrenders "ownership" of urb
1469  * expects usb_submit_urb() to have sanity checked and conditioned all
1470  * inputs in the urb
1471  */
1472 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1473 {
1474         int                     status;
1475         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1476
1477         /* increment urb's reference count as part of giving it to the HCD
1478          * (which will control it).  HCD guarantees that it either returns
1479          * an error or calls giveback(), but not both.
1480          */
1481         usb_get_urb(urb);
1482         atomic_inc(&urb->use_count);
1483         atomic_inc(&urb->dev->urbnum);
1484         usbmon_urb_submit(&hcd->self, urb);
1485
1486         /* NOTE requirements on root-hub callers (usbfs and the hub
1487          * driver, for now):  URBs' urb->transfer_buffer must be
1488          * valid and usb_buffer_{sync,unmap}() not be needed, since
1489          * they could clobber root hub response data.  Also, control
1490          * URBs must be submitted in process context with interrupts
1491          * enabled.
1492          */
1493
1494         if (is_root_hub(urb->dev)) {
1495                 status = rh_urb_enqueue(hcd, urb);
1496         } else {
1497                 status = map_urb_for_dma(hcd, urb, mem_flags);
1498                 if (likely(status == 0)) {
1499                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1500                         if (unlikely(status))
1501                                 unmap_urb_for_dma(hcd, urb);
1502                 }
1503         }
1504
1505         if (unlikely(status)) {
1506                 usbmon_urb_submit_error(&hcd->self, urb, status);
1507                 urb->hcpriv = NULL;
1508                 INIT_LIST_HEAD(&urb->urb_list);
1509                 atomic_dec(&urb->use_count);
1510                 atomic_dec(&urb->dev->urbnum);
1511                 if (atomic_read(&urb->reject))
1512                         wake_up(&usb_kill_urb_queue);
1513                 usb_put_urb(urb);
1514         }
1515         return status;
1516 }
1517
1518 /*-------------------------------------------------------------------------*/
1519
1520 /* this makes the hcd giveback() the urb more quickly, by kicking it
1521  * off hardware queues (which may take a while) and returning it as
1522  * soon as practical.  we've already set up the urb's return status,
1523  * but we can't know if the callback completed already.
1524  */
1525 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1526 {
1527         int             value;
1528
1529         if (is_root_hub(urb->dev))
1530                 value = usb_rh_urb_dequeue(hcd, urb, status);
1531         else {
1532
1533                 /* The only reason an HCD might fail this call is if
1534                  * it has not yet fully queued the urb to begin with.
1535                  * Such failures should be harmless. */
1536                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1537         }
1538         return value;
1539 }
1540
1541 /*
1542  * called in any context
1543  *
1544  * caller guarantees urb won't be recycled till both unlink()
1545  * and the urb's completion function return
1546  */
1547 int usb_hcd_unlink_urb (struct urb *urb, int status)
1548 {
1549         struct usb_hcd          *hcd;
1550         int                     retval = -EIDRM;
1551         unsigned long           flags;
1552
1553         /* Prevent the device and bus from going away while
1554          * the unlink is carried out.  If they are already gone
1555          * then urb->use_count must be 0, since disconnected
1556          * devices can't have any active URBs.
1557          */
1558         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1559         if (atomic_read(&urb->use_count) > 0) {
1560                 retval = 0;
1561                 usb_get_dev(urb->dev);
1562         }
1563         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1564         if (retval == 0) {
1565                 hcd = bus_to_hcd(urb->dev->bus);
1566                 retval = unlink1(hcd, urb, status);
1567                 usb_put_dev(urb->dev);
1568         }
1569
1570         if (retval == 0)
1571                 retval = -EINPROGRESS;
1572         else if (retval != -EIDRM && retval != -EBUSY)
1573                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1574                                 urb, retval);
1575         return retval;
1576 }
1577
1578 /*-------------------------------------------------------------------------*/
1579
1580 /**
1581  * usb_hcd_giveback_urb - return URB from HCD to device driver
1582  * @hcd: host controller returning the URB
1583  * @urb: urb being returned to the USB device driver.
1584  * @status: completion status code for the URB.
1585  * Context: in_interrupt()
1586  *
1587  * This hands the URB from HCD to its USB device driver, using its
1588  * completion function.  The HCD has freed all per-urb resources
1589  * (and is done using urb->hcpriv).  It also released all HCD locks;
1590  * the device driver won't cause problems if it frees, modifies,
1591  * or resubmits this URB.
1592  *
1593  * If @urb was unlinked, the value of @status will be overridden by
1594  * @urb->unlinked.  Erroneous short transfers are detected in case
1595  * the HCD hasn't checked for them.
1596  */
1597 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1598 {
1599         urb->hcpriv = NULL;
1600         if (unlikely(urb->unlinked))
1601                 status = urb->unlinked;
1602         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1603                         urb->actual_length < urb->transfer_buffer_length &&
1604                         !status))
1605                 status = -EREMOTEIO;
1606
1607         unmap_urb_for_dma(hcd, urb);
1608         usbmon_urb_complete(&hcd->self, urb, status);
1609         usb_unanchor_urb(urb);
1610
1611         /* pass ownership to the completion handler */
1612         urb->status = status;
1613         urb->complete (urb);
1614         atomic_dec (&urb->use_count);
1615         if (unlikely(atomic_read(&urb->reject)))
1616                 wake_up (&usb_kill_urb_queue);
1617         usb_put_urb (urb);
1618 }
1619 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1620
1621 /*-------------------------------------------------------------------------*/
1622
1623 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1624  * queue to drain completely.  The caller must first insure that no more
1625  * URBs can be submitted for this endpoint.
1626  */
1627 void usb_hcd_flush_endpoint(struct usb_device *udev,
1628                 struct usb_host_endpoint *ep)
1629 {
1630         struct usb_hcd          *hcd;
1631         struct urb              *urb;
1632
1633         if (!ep)
1634                 return;
1635         might_sleep();
1636         hcd = bus_to_hcd(udev->bus);
1637
1638         /* No more submits can occur */
1639         spin_lock_irq(&hcd_urb_list_lock);
1640 rescan:
1641         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1642                 int     is_in;
1643
1644                 if (urb->unlinked)
1645                         continue;
1646                 usb_get_urb (urb);
1647                 is_in = usb_urb_dir_in(urb);
1648                 spin_unlock(&hcd_urb_list_lock);
1649
1650                 /* kick hcd */
1651                 unlink1(hcd, urb, -ESHUTDOWN);
1652                 dev_dbg (hcd->self.controller,
1653                         "shutdown urb %p ep%d%s%s\n",
1654                         urb, usb_endpoint_num(&ep->desc),
1655                         is_in ? "in" : "out",
1656                         ({      char *s;
1657
1658                                  switch (usb_endpoint_type(&ep->desc)) {
1659                                  case USB_ENDPOINT_XFER_CONTROL:
1660                                         s = ""; break;
1661                                  case USB_ENDPOINT_XFER_BULK:
1662                                         s = "-bulk"; break;
1663                                  case USB_ENDPOINT_XFER_INT:
1664                                         s = "-intr"; break;
1665                                  default:
1666                                         s = "-iso"; break;
1667                                 };
1668                                 s;
1669                         }));
1670                 usb_put_urb (urb);
1671
1672                 /* list contents may have changed */
1673                 spin_lock(&hcd_urb_list_lock);
1674                 goto rescan;
1675         }
1676         spin_unlock_irq(&hcd_urb_list_lock);
1677
1678         /* Wait until the endpoint queue is completely empty */
1679         while (!list_empty (&ep->urb_list)) {
1680                 spin_lock_irq(&hcd_urb_list_lock);
1681
1682                 /* The list may have changed while we acquired the spinlock */
1683                 urb = NULL;
1684                 if (!list_empty (&ep->urb_list)) {
1685                         urb = list_entry (ep->urb_list.prev, struct urb,
1686                                         urb_list);
1687                         usb_get_urb (urb);
1688                 }
1689                 spin_unlock_irq(&hcd_urb_list_lock);
1690
1691                 if (urb) {
1692                         usb_kill_urb (urb);
1693                         usb_put_urb (urb);
1694                 }
1695         }
1696 }
1697
1698 /**
1699  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1700  *                              the bus bandwidth
1701  * @udev: target &usb_device
1702  * @new_config: new configuration to install
1703  * @cur_alt: the current alternate interface setting
1704  * @new_alt: alternate interface setting that is being installed
1705  *
1706  * To change configurations, pass in the new configuration in new_config,
1707  * and pass NULL for cur_alt and new_alt.
1708  *
1709  * To reset a device's configuration (put the device in the ADDRESSED state),
1710  * pass in NULL for new_config, cur_alt, and new_alt.
1711  *
1712  * To change alternate interface settings, pass in NULL for new_config,
1713  * pass in the current alternate interface setting in cur_alt,
1714  * and pass in the new alternate interface setting in new_alt.
1715  *
1716  * Returns an error if the requested bandwidth change exceeds the
1717  * bus bandwidth or host controller internal resources.
1718  */
1719 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1720                 struct usb_host_config *new_config,
1721                 struct usb_host_interface *cur_alt,
1722                 struct usb_host_interface *new_alt)
1723 {
1724         int num_intfs, i, j;
1725         struct usb_host_interface *alt = NULL;
1726         int ret = 0;
1727         struct usb_hcd *hcd;
1728         struct usb_host_endpoint *ep;
1729
1730         hcd = bus_to_hcd(udev->bus);
1731         if (!hcd->driver->check_bandwidth)
1732                 return 0;
1733
1734         /* Configuration is being removed - set configuration 0 */
1735         if (!new_config && !cur_alt) {
1736                 for (i = 1; i < 16; ++i) {
1737                         ep = udev->ep_out[i];
1738                         if (ep)
1739                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1740                         ep = udev->ep_in[i];
1741                         if (ep)
1742                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1743                 }
1744                 hcd->driver->check_bandwidth(hcd, udev);
1745                 return 0;
1746         }
1747         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1748          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1749          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1750          * ok to exclude it.
1751          */
1752         if (new_config) {
1753                 num_intfs = new_config->desc.bNumInterfaces;
1754                 /* Remove endpoints (except endpoint 0, which is always on the
1755                  * schedule) from the old config from the schedule
1756                  */
1757                 for (i = 1; i < 16; ++i) {
1758                         ep = udev->ep_out[i];
1759                         if (ep) {
1760                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1761                                 if (ret < 0)
1762                                         goto reset;
1763                         }
1764                         ep = udev->ep_in[i];
1765                         if (ep) {
1766                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1767                                 if (ret < 0)
1768                                         goto reset;
1769                         }
1770                 }
1771                 for (i = 0; i < num_intfs; ++i) {
1772                         struct usb_host_interface *first_alt;
1773                         int iface_num;
1774
1775                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1776                         iface_num = first_alt->desc.bInterfaceNumber;
1777                         /* Set up endpoints for alternate interface setting 0 */
1778                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1779                         if (!alt)
1780                                 /* No alt setting 0? Pick the first setting. */
1781                                 alt = first_alt;
1782
1783                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1784                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1785                                 if (ret < 0)
1786                                         goto reset;
1787                         }
1788                 }
1789         }
1790         if (cur_alt && new_alt) {
1791                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1792                                 cur_alt->desc.bInterfaceNumber);
1793
1794                 if (!iface)
1795                         return -EINVAL;
1796                 if (iface->resetting_device) {
1797                         /*
1798                          * The USB core just reset the device, so the xHCI host
1799                          * and the device will think alt setting 0 is installed.
1800                          * However, the USB core will pass in the alternate
1801                          * setting installed before the reset as cur_alt.  Dig
1802                          * out the alternate setting 0 structure, or the first
1803                          * alternate setting if a broken device doesn't have alt
1804                          * setting 0.
1805                          */
1806                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1807                         if (!cur_alt)
1808                                 cur_alt = &iface->altsetting[0];
1809                 }
1810
1811                 /* Drop all the endpoints in the current alt setting */
1812                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1813                         ret = hcd->driver->drop_endpoint(hcd, udev,
1814                                         &cur_alt->endpoint[i]);
1815                         if (ret < 0)
1816                                 goto reset;
1817                 }
1818                 /* Add all the endpoints in the new alt setting */
1819                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1820                         ret = hcd->driver->add_endpoint(hcd, udev,
1821                                         &new_alt->endpoint[i]);
1822                         if (ret < 0)
1823                                 goto reset;
1824                 }
1825         }
1826         ret = hcd->driver->check_bandwidth(hcd, udev);
1827 reset:
1828         if (ret < 0)
1829                 hcd->driver->reset_bandwidth(hcd, udev);
1830         return ret;
1831 }
1832
1833 /* Disables the endpoint: synchronizes with the hcd to make sure all
1834  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1835  * have been called previously.  Use for set_configuration, set_interface,
1836  * driver removal, physical disconnect.
1837  *
1838  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1839  * type, maxpacket size, toggle, halt status, and scheduling.
1840  */
1841 void usb_hcd_disable_endpoint(struct usb_device *udev,
1842                 struct usb_host_endpoint *ep)
1843 {
1844         struct usb_hcd          *hcd;
1845
1846         might_sleep();
1847         hcd = bus_to_hcd(udev->bus);
1848         if (hcd->driver->endpoint_disable)
1849                 hcd->driver->endpoint_disable(hcd, ep);
1850 }
1851
1852 /**
1853  * usb_hcd_reset_endpoint - reset host endpoint state
1854  * @udev: USB device.
1855  * @ep:   the endpoint to reset.
1856  *
1857  * Resets any host endpoint state such as the toggle bit, sequence
1858  * number and current window.
1859  */
1860 void usb_hcd_reset_endpoint(struct usb_device *udev,
1861                             struct usb_host_endpoint *ep)
1862 {
1863         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1864
1865         if (hcd->driver->endpoint_reset)
1866                 hcd->driver->endpoint_reset(hcd, ep);
1867         else {
1868                 int epnum = usb_endpoint_num(&ep->desc);
1869                 int is_out = usb_endpoint_dir_out(&ep->desc);
1870                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1871
1872                 usb_settoggle(udev, epnum, is_out, 0);
1873                 if (is_control)
1874                         usb_settoggle(udev, epnum, !is_out, 0);
1875         }
1876 }
1877
1878 /**
1879  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1880  * @interface:          alternate setting that includes all endpoints.
1881  * @eps:                array of endpoints that need streams.
1882  * @num_eps:            number of endpoints in the array.
1883  * @num_streams:        number of streams to allocate.
1884  * @mem_flags:          flags hcd should use to allocate memory.
1885  *
1886  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1887  * Drivers may queue multiple transfers to different stream IDs, which may
1888  * complete in a different order than they were queued.
1889  */
1890 int usb_alloc_streams(struct usb_interface *interface,
1891                 struct usb_host_endpoint **eps, unsigned int num_eps,
1892                 unsigned int num_streams, gfp_t mem_flags)
1893 {
1894         struct usb_hcd *hcd;
1895         struct usb_device *dev;
1896         int i;
1897
1898         dev = interface_to_usbdev(interface);
1899         hcd = bus_to_hcd(dev->bus);
1900         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1901                 return -EINVAL;
1902         if (dev->speed != USB_SPEED_SUPER)
1903                 return -EINVAL;
1904
1905         /* Streams only apply to bulk endpoints. */
1906         for (i = 0; i < num_eps; i++)
1907                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1908                         return -EINVAL;
1909
1910         return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1911                         num_streams, mem_flags);
1912 }
1913 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1914
1915 /**
1916  * usb_free_streams - free bulk endpoint stream IDs.
1917  * @interface:  alternate setting that includes all endpoints.
1918  * @eps:        array of endpoints to remove streams from.
1919  * @num_eps:    number of endpoints in the array.
1920  * @mem_flags:  flags hcd should use to allocate memory.
1921  *
1922  * Reverts a group of bulk endpoints back to not using stream IDs.
1923  * Can fail if we are given bad arguments, or HCD is broken.
1924  */
1925 void usb_free_streams(struct usb_interface *interface,
1926                 struct usb_host_endpoint **eps, unsigned int num_eps,
1927                 gfp_t mem_flags)
1928 {
1929         struct usb_hcd *hcd;
1930         struct usb_device *dev;
1931         int i;
1932
1933         dev = interface_to_usbdev(interface);
1934         hcd = bus_to_hcd(dev->bus);
1935         if (dev->speed != USB_SPEED_SUPER)
1936                 return;
1937
1938         /* Streams only apply to bulk endpoints. */
1939         for (i = 0; i < num_eps; i++)
1940                 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1941                         return;
1942
1943         hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1944 }
1945 EXPORT_SYMBOL_GPL(usb_free_streams);
1946
1947 /* Protect against drivers that try to unlink URBs after the device
1948  * is gone, by waiting until all unlinks for @udev are finished.
1949  * Since we don't currently track URBs by device, simply wait until
1950  * nothing is running in the locked region of usb_hcd_unlink_urb().
1951  */
1952 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1953 {
1954         spin_lock_irq(&hcd_urb_unlink_lock);
1955         spin_unlock_irq(&hcd_urb_unlink_lock);
1956 }
1957
1958 /*-------------------------------------------------------------------------*/
1959
1960 /* called in any context */
1961 int usb_hcd_get_frame_number (struct usb_device *udev)
1962 {
1963         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1964
1965         if (!HCD_RH_RUNNING(hcd))
1966                 return -ESHUTDOWN;
1967         return hcd->driver->get_frame_number (hcd);
1968 }
1969
1970 /*-------------------------------------------------------------------------*/
1971
1972 #ifdef  CONFIG_PM
1973
1974 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1975 {
1976         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1977         int             status;
1978         int             old_state = hcd->state;
1979
1980         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
1981                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
1982                         rhdev->do_remote_wakeup);
1983         if (HCD_DEAD(hcd)) {
1984                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1985                 return 0;
1986         }
1987
1988         if (!hcd->driver->bus_suspend) {
1989                 status = -ENOENT;
1990         } else {
1991                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1992                 hcd->state = HC_STATE_QUIESCING;
1993                 status = hcd->driver->bus_suspend(hcd);
1994         }
1995         if (status == 0) {
1996                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1997                 hcd->state = HC_STATE_SUSPENDED;
1998
1999                 /* Did we race with a root-hub wakeup event? */
2000                 if (rhdev->do_remote_wakeup) {
2001                         char    buffer[6];
2002
2003                         status = hcd->driver->hub_status_data(hcd, buffer);
2004                         if (status != 0) {
2005                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2006                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2007                                 status = -EBUSY;
2008                         }
2009                 }
2010         } else {
2011                 spin_lock_irq(&hcd_root_hub_lock);
2012                 if (!HCD_DEAD(hcd)) {
2013                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2014                         hcd->state = old_state;
2015                 }
2016                 spin_unlock_irq(&hcd_root_hub_lock);
2017                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2018                                 "suspend", status);
2019         }
2020         return status;
2021 }
2022
2023 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2024 {
2025         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2026         int             status;
2027         int             old_state = hcd->state;
2028
2029         dev_dbg(&rhdev->dev, "usb %sresume\n",
2030                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2031         if (HCD_DEAD(hcd)) {
2032                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2033                 return 0;
2034         }
2035         if (!hcd->driver->bus_resume)
2036                 return -ENOENT;
2037         if (HCD_RH_RUNNING(hcd))
2038                 return 0;
2039
2040         hcd->state = HC_STATE_RESUMING;
2041         status = hcd->driver->bus_resume(hcd);
2042         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2043         if (status == 0) {
2044                 /* TRSMRCY = 10 msec */
2045                 msleep(10);
2046                 spin_lock_irq(&hcd_root_hub_lock);
2047                 if (!HCD_DEAD(hcd)) {
2048                         usb_set_device_state(rhdev, rhdev->actconfig
2049                                         ? USB_STATE_CONFIGURED
2050                                         : USB_STATE_ADDRESS);
2051                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2052                         hcd->state = HC_STATE_RUNNING;
2053                 }
2054                 spin_unlock_irq(&hcd_root_hub_lock);
2055         } else {
2056                 hcd->state = old_state;
2057                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2058                                 "resume", status);
2059                 if (status != -ESHUTDOWN)
2060                         usb_hc_died(hcd);
2061         }
2062         return status;
2063 }
2064
2065 #endif  /* CONFIG_PM */
2066
2067 #ifdef  CONFIG_USB_SUSPEND
2068
2069 /* Workqueue routine for root-hub remote wakeup */
2070 static void hcd_resume_work(struct work_struct *work)
2071 {
2072         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2073         struct usb_device *udev = hcd->self.root_hub;
2074
2075         usb_lock_device(udev);
2076         usb_remote_wakeup(udev);
2077         usb_unlock_device(udev);
2078 }
2079
2080 /**
2081  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
2082  * @hcd: host controller for this root hub
2083  *
2084  * The USB host controller calls this function when its root hub is
2085  * suspended (with the remote wakeup feature enabled) and a remote
2086  * wakeup request is received.  The routine submits a workqueue request
2087  * to resume the root hub (that is, manage its downstream ports again).
2088  */
2089 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2090 {
2091         unsigned long flags;
2092
2093         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2094         if (hcd->rh_registered) {
2095                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2096                 queue_work(pm_wq, &hcd->wakeup_work);
2097         }
2098         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2099 }
2100 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2101
2102 #endif  /* CONFIG_USB_SUSPEND */
2103
2104 /*-------------------------------------------------------------------------*/
2105
2106 #ifdef  CONFIG_USB_OTG
2107
2108 /**
2109  * usb_bus_start_enum - start immediate enumeration (for OTG)
2110  * @bus: the bus (must use hcd framework)
2111  * @port_num: 1-based number of port; usually bus->otg_port
2112  * Context: in_interrupt()
2113  *
2114  * Starts enumeration, with an immediate reset followed later by
2115  * khubd identifying and possibly configuring the device.
2116  * This is needed by OTG controller drivers, where it helps meet
2117  * HNP protocol timing requirements for starting a port reset.
2118  */
2119 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2120 {
2121         struct usb_hcd          *hcd;
2122         int                     status = -EOPNOTSUPP;
2123
2124         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2125          * boards with root hubs hooked up to internal devices (instead of
2126          * just the OTG port) may need more attention to resetting...
2127          */
2128         hcd = container_of (bus, struct usb_hcd, self);
2129         if (port_num && hcd->driver->start_port_reset)
2130                 status = hcd->driver->start_port_reset(hcd, port_num);
2131
2132         /* run khubd shortly after (first) root port reset finishes;
2133          * it may issue others, until at least 50 msecs have passed.
2134          */
2135         if (status == 0)
2136                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2137         return status;
2138 }
2139 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2140
2141 #endif
2142
2143 /*-------------------------------------------------------------------------*/
2144
2145 /**
2146  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2147  * @irq: the IRQ being raised
2148  * @__hcd: pointer to the HCD whose IRQ is being signaled
2149  *
2150  * If the controller isn't HALTed, calls the driver's irq handler.
2151  * Checks whether the controller is now dead.
2152  */
2153 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2154 {
2155         struct usb_hcd          *hcd = __hcd;
2156         unsigned long           flags;
2157         irqreturn_t             rc;
2158
2159         /* IRQF_DISABLED doesn't work correctly with shared IRQs
2160          * when the first handler doesn't use it.  So let's just
2161          * assume it's never used.
2162          */
2163         local_irq_save(flags);
2164
2165         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2166                 rc = IRQ_NONE;
2167         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2168                 rc = IRQ_NONE;
2169         else
2170                 rc = IRQ_HANDLED;
2171
2172         local_irq_restore(flags);
2173         return rc;
2174 }
2175 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2176
2177 /*-------------------------------------------------------------------------*/
2178
2179 /**
2180  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2181  * @hcd: pointer to the HCD representing the controller
2182  *
2183  * This is called by bus glue to report a USB host controller that died
2184  * while operations may still have been pending.  It's called automatically
2185  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2186  *
2187  * Only call this function with the primary HCD.
2188  */
2189 void usb_hc_died (struct usb_hcd *hcd)
2190 {
2191         unsigned long flags;
2192
2193         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2194
2195         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2196         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2197         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2198         if (hcd->rh_registered) {
2199                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2200
2201                 /* make khubd clean up old urbs and devices */
2202                 usb_set_device_state (hcd->self.root_hub,
2203                                 USB_STATE_NOTATTACHED);
2204                 usb_kick_khubd (hcd->self.root_hub);
2205         }
2206         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2207                 hcd = hcd->shared_hcd;
2208                 if (hcd->rh_registered) {
2209                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2210
2211                         /* make khubd clean up old urbs and devices */
2212                         usb_set_device_state(hcd->self.root_hub,
2213                                         USB_STATE_NOTATTACHED);
2214                         usb_kick_khubd(hcd->self.root_hub);
2215                 }
2216         }
2217         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2218         /* Make sure that the other roothub is also deallocated. */
2219 }
2220 EXPORT_SYMBOL_GPL (usb_hc_died);
2221
2222 /*-------------------------------------------------------------------------*/
2223
2224 /**
2225  * usb_create_shared_hcd - create and initialize an HCD structure
2226  * @driver: HC driver that will use this hcd
2227  * @dev: device for this HC, stored in hcd->self.controller
2228  * @bus_name: value to store in hcd->self.bus_name
2229  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2230  *              PCI device.  Only allocate certain resources for the primary HCD
2231  * Context: !in_interrupt()
2232  *
2233  * Allocate a struct usb_hcd, with extra space at the end for the
2234  * HC driver's private data.  Initialize the generic members of the
2235  * hcd structure.
2236  *
2237  * If memory is unavailable, returns NULL.
2238  */
2239 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2240                 struct device *dev, const char *bus_name,
2241                 struct usb_hcd *primary_hcd)
2242 {
2243         struct usb_hcd *hcd;
2244
2245         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2246         if (!hcd) {
2247                 dev_dbg (dev, "hcd alloc failed\n");
2248                 return NULL;
2249         }
2250         if (primary_hcd == NULL) {
2251                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2252                                 GFP_KERNEL);
2253                 if (!hcd->bandwidth_mutex) {
2254                         kfree(hcd);
2255                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2256                         return NULL;
2257                 }
2258                 mutex_init(hcd->bandwidth_mutex);
2259                 dev_set_drvdata(dev, hcd);
2260         } else {
2261                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2262                 hcd->primary_hcd = primary_hcd;
2263                 primary_hcd->primary_hcd = primary_hcd;
2264                 hcd->shared_hcd = primary_hcd;
2265                 primary_hcd->shared_hcd = hcd;
2266         }
2267
2268         kref_init(&hcd->kref);
2269
2270         usb_bus_init(&hcd->self);
2271         hcd->self.controller = dev;
2272         hcd->self.bus_name = bus_name;
2273         hcd->self.uses_dma = (dev->dma_mask != NULL);
2274
2275         init_timer(&hcd->rh_timer);
2276         hcd->rh_timer.function = rh_timer_func;
2277         hcd->rh_timer.data = (unsigned long) hcd;
2278 #ifdef CONFIG_USB_SUSPEND
2279         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2280 #endif
2281
2282         hcd->driver = driver;
2283         hcd->speed = driver->flags & HCD_MASK;
2284         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2285                         "USB Host Controller";
2286         return hcd;
2287 }
2288 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2289
2290 /**
2291  * usb_create_hcd - create and initialize an HCD structure
2292  * @driver: HC driver that will use this hcd
2293  * @dev: device for this HC, stored in hcd->self.controller
2294  * @bus_name: value to store in hcd->self.bus_name
2295  * Context: !in_interrupt()
2296  *
2297  * Allocate a struct usb_hcd, with extra space at the end for the
2298  * HC driver's private data.  Initialize the generic members of the
2299  * hcd structure.
2300  *
2301  * If memory is unavailable, returns NULL.
2302  */
2303 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2304                 struct device *dev, const char *bus_name)
2305 {
2306         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2307 }
2308 EXPORT_SYMBOL_GPL(usb_create_hcd);
2309
2310 /*
2311  * Roothubs that share one PCI device must also share the bandwidth mutex.
2312  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2313  * deallocated.
2314  *
2315  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2316  * freed.  When hcd_release() is called for the non-primary HCD, set the
2317  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2318  * freed shortly).
2319  */
2320 static void hcd_release (struct kref *kref)
2321 {
2322         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2323
2324         if (usb_hcd_is_primary_hcd(hcd))
2325                 kfree(hcd->bandwidth_mutex);
2326         else
2327                 hcd->shared_hcd->shared_hcd = NULL;
2328         kfree(hcd);
2329 }
2330
2331 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2332 {
2333         if (hcd)
2334                 kref_get (&hcd->kref);
2335         return hcd;
2336 }
2337 EXPORT_SYMBOL_GPL(usb_get_hcd);
2338
2339 void usb_put_hcd (struct usb_hcd *hcd)
2340 {
2341         if (hcd)
2342                 kref_put (&hcd->kref, hcd_release);
2343 }
2344 EXPORT_SYMBOL_GPL(usb_put_hcd);
2345
2346 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2347 {
2348         if (!hcd->primary_hcd)
2349                 return 1;
2350         return hcd == hcd->primary_hcd;
2351 }
2352 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2353
2354 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2355                 unsigned int irqnum, unsigned long irqflags)
2356 {
2357         int retval;
2358
2359         if (hcd->driver->irq) {
2360
2361                 /* IRQF_DISABLED doesn't work as advertised when used together
2362                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
2363                  * interrupts we can remove it here.
2364                  */
2365                 if (irqflags & IRQF_SHARED)
2366                         irqflags &= ~IRQF_DISABLED;
2367
2368                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2369                                 hcd->driver->description, hcd->self.busnum);
2370                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2371                                 hcd->irq_descr, hcd);
2372                 if (retval != 0) {
2373                         dev_err(hcd->self.controller,
2374                                         "request interrupt %d failed\n",
2375                                         irqnum);
2376                         return retval;
2377                 }
2378                 hcd->irq = irqnum;
2379                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2380                                 (hcd->driver->flags & HCD_MEMORY) ?
2381                                         "io mem" : "io base",
2382                                         (unsigned long long)hcd->rsrc_start);
2383         } else {
2384                 hcd->irq = 0;
2385                 if (hcd->rsrc_start)
2386                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2387                                         (hcd->driver->flags & HCD_MEMORY) ?
2388                                         "io mem" : "io base",
2389                                         (unsigned long long)hcd->rsrc_start);
2390         }
2391         return 0;
2392 }
2393
2394 /**
2395  * usb_add_hcd - finish generic HCD structure initialization and register
2396  * @hcd: the usb_hcd structure to initialize
2397  * @irqnum: Interrupt line to allocate
2398  * @irqflags: Interrupt type flags
2399  *
2400  * Finish the remaining parts of generic HCD initialization: allocate the
2401  * buffers of consistent memory, register the bus, request the IRQ line,
2402  * and call the driver's reset() and start() routines.
2403  */
2404 int usb_add_hcd(struct usb_hcd *hcd,
2405                 unsigned int irqnum, unsigned long irqflags)
2406 {
2407         int retval;
2408         struct usb_device *rhdev;
2409
2410         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2411
2412         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2413         if (authorized_default < 0 || authorized_default > 1)
2414                 hcd->authorized_default = hcd->wireless? 0 : 1;
2415         else
2416                 hcd->authorized_default = authorized_default;
2417         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2418
2419         /* HC is in reset state, but accessible.  Now do the one-time init,
2420          * bottom up so that hcds can customize the root hubs before khubd
2421          * starts talking to them.  (Note, bus id is assigned early too.)
2422          */
2423         if ((retval = hcd_buffer_create(hcd)) != 0) {
2424                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2425                 return retval;
2426         }
2427
2428         if ((retval = usb_register_bus(&hcd->self)) < 0)
2429                 goto err_register_bus;
2430
2431         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2432                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2433                 retval = -ENOMEM;
2434                 goto err_allocate_root_hub;
2435         }
2436         hcd->self.root_hub = rhdev;
2437
2438         switch (hcd->speed) {
2439         case HCD_USB11:
2440                 rhdev->speed = USB_SPEED_FULL;
2441                 break;
2442         case HCD_USB2:
2443                 rhdev->speed = USB_SPEED_HIGH;
2444                 break;
2445         case HCD_USB3:
2446                 rhdev->speed = USB_SPEED_SUPER;
2447                 break;
2448         default:
2449                 retval = -EINVAL;
2450                 goto err_set_rh_speed;
2451         }
2452
2453         /* wakeup flag init defaults to "everything works" for root hubs,
2454          * but drivers can override it in reset() if needed, along with
2455          * recording the overall controller's system wakeup capability.
2456          */
2457         device_set_wakeup_capable(&rhdev->dev, 1);
2458
2459         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2460          * registered.  But since the controller can die at any time,
2461          * let's initialize the flag before touching the hardware.
2462          */
2463         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2464
2465         /* "reset" is misnamed; its role is now one-time init. the controller
2466          * should already have been reset (and boot firmware kicked off etc).
2467          */
2468         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2469                 dev_err(hcd->self.controller, "can't setup\n");
2470                 goto err_hcd_driver_setup;
2471         }
2472         hcd->rh_pollable = 1;
2473
2474         /* NOTE: root hub and controller capabilities may not be the same */
2475         if (device_can_wakeup(hcd->self.controller)
2476                         && device_can_wakeup(&hcd->self.root_hub->dev))
2477                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2478
2479         /* enable irqs just before we start the controller,
2480          * if the BIOS provides legacy PCI irqs.
2481          */
2482         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2483                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2484                 if (retval)
2485                         goto err_request_irq;
2486         }
2487
2488         hcd->state = HC_STATE_RUNNING;
2489         retval = hcd->driver->start(hcd);
2490         if (retval < 0) {
2491                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2492                 goto err_hcd_driver_start;
2493         }
2494
2495         /* starting here, usbcore will pay attention to this root hub */
2496         rhdev->bus_mA = min(500u, hcd->power_budget);
2497         if ((retval = register_root_hub(hcd)) != 0)
2498                 goto err_register_root_hub;
2499
2500         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2501         if (retval < 0) {
2502                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2503                        retval);
2504                 goto error_create_attr_group;
2505         }
2506         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2507                 usb_hcd_poll_rh_status(hcd);
2508
2509         /*
2510          * Host controllers don't generate their own wakeup requests;
2511          * they only forward requests from the root hub.  Therefore
2512          * controllers should always be enabled for remote wakeup.
2513          */
2514         device_wakeup_enable(hcd->self.controller);
2515         return retval;
2516
2517 error_create_attr_group:
2518         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2519         if (HC_IS_RUNNING(hcd->state))
2520                 hcd->state = HC_STATE_QUIESCING;
2521         spin_lock_irq(&hcd_root_hub_lock);
2522         hcd->rh_registered = 0;
2523         spin_unlock_irq(&hcd_root_hub_lock);
2524
2525 #ifdef CONFIG_USB_SUSPEND
2526         cancel_work_sync(&hcd->wakeup_work);
2527 #endif
2528         mutex_lock(&usb_bus_list_lock);
2529         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2530         mutex_unlock(&usb_bus_list_lock);
2531 err_register_root_hub:
2532         hcd->rh_pollable = 0;
2533         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2534         del_timer_sync(&hcd->rh_timer);
2535         hcd->driver->stop(hcd);
2536         hcd->state = HC_STATE_HALT;
2537         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2538         del_timer_sync(&hcd->rh_timer);
2539 err_hcd_driver_start:
2540         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2541                 free_irq(irqnum, hcd);
2542 err_request_irq:
2543 err_hcd_driver_setup:
2544 err_set_rh_speed:
2545         usb_put_dev(hcd->self.root_hub);
2546 err_allocate_root_hub:
2547         usb_deregister_bus(&hcd->self);
2548 err_register_bus:
2549         hcd_buffer_destroy(hcd);
2550         return retval;
2551
2552 EXPORT_SYMBOL_GPL(usb_add_hcd);
2553
2554 /**
2555  * usb_remove_hcd - shutdown processing for generic HCDs
2556  * @hcd: the usb_hcd structure to remove
2557  * Context: !in_interrupt()
2558  *
2559  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2560  * invoking the HCD's stop() method.
2561  */
2562 void usb_remove_hcd(struct usb_hcd *hcd)
2563 {
2564         struct usb_device *rhdev = hcd->self.root_hub;
2565
2566         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2567
2568         usb_get_dev(rhdev);
2569         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2570
2571         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2572         if (HC_IS_RUNNING (hcd->state))
2573                 hcd->state = HC_STATE_QUIESCING;
2574
2575         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2576         spin_lock_irq (&hcd_root_hub_lock);
2577         hcd->rh_registered = 0;
2578         spin_unlock_irq (&hcd_root_hub_lock);
2579
2580 #ifdef CONFIG_USB_SUSPEND
2581         cancel_work_sync(&hcd->wakeup_work);
2582 #endif
2583
2584         mutex_lock(&usb_bus_list_lock);
2585         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2586         mutex_unlock(&usb_bus_list_lock);
2587
2588         /* Prevent any more root-hub status calls from the timer.
2589          * The HCD might still restart the timer (if a port status change
2590          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2591          * the hub_status_data() callback.
2592          */
2593         hcd->rh_pollable = 0;
2594         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2595         del_timer_sync(&hcd->rh_timer);
2596
2597         hcd->driver->stop(hcd);
2598         hcd->state = HC_STATE_HALT;
2599
2600         /* In case the HCD restarted the timer, stop it again. */
2601         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2602         del_timer_sync(&hcd->rh_timer);
2603
2604         if (usb_hcd_is_primary_hcd(hcd)) {
2605                 if (hcd->irq > 0)
2606                         free_irq(hcd->irq, hcd);
2607         }
2608
2609         usb_put_dev(hcd->self.root_hub);
2610         usb_deregister_bus(&hcd->self);
2611         hcd_buffer_destroy(hcd);
2612 }
2613 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2614
2615 void
2616 usb_hcd_platform_shutdown(struct platform_device* dev)
2617 {
2618         struct usb_hcd *hcd = platform_get_drvdata(dev);
2619
2620         if (hcd->driver->shutdown)
2621                 hcd->driver->shutdown(hcd);
2622 }
2623 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2624
2625 /*-------------------------------------------------------------------------*/
2626
2627 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2628
2629 struct usb_mon_operations *mon_ops;
2630
2631 /*
2632  * The registration is unlocked.
2633  * We do it this way because we do not want to lock in hot paths.
2634  *
2635  * Notice that the code is minimally error-proof. Because usbmon needs
2636  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2637  */
2638  
2639 int usb_mon_register (struct usb_mon_operations *ops)
2640 {
2641
2642         if (mon_ops)
2643                 return -EBUSY;
2644
2645         mon_ops = ops;
2646         mb();
2647         return 0;
2648 }
2649 EXPORT_SYMBOL_GPL (usb_mon_register);
2650
2651 void usb_mon_deregister (void)
2652 {
2653
2654         if (mon_ops == NULL) {
2655                 printk(KERN_ERR "USB: monitor was not registered\n");
2656                 return;
2657         }
2658         mon_ops = NULL;
2659         mb();
2660 }
2661 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2662
2663 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */