perf/x86/intel/uncore: Add Knights Mill CPUID
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (!ret) {
117                 xhci->xhc_state |= XHCI_STATE_HALTED;
118                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119         } else
120                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121                                 XHCI_MAX_HALT_USEC);
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170         if ((state & STS_HALT) == 0) {
171                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172                 return 0;
173         }
174
175         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176         command = readl(&xhci->op_regs->command);
177         command |= CMD_RESET;
178         writel(command, &xhci->op_regs->command);
179
180         /* Existing Intel xHCI controllers require a delay of 1 mS,
181          * after setting the CMD_RESET bit, and before accessing any
182          * HC registers. This allows the HC to complete the
183          * reset operation and be ready for HC register access.
184          * Without this delay, the subsequent HC register access,
185          * may result in a system hang very rarely.
186          */
187         if (xhci->quirks & XHCI_INTEL_HOST)
188                 udelay(1000);
189
190         ret = xhci_handshake(&xhci->op_regs->command,
191                         CMD_RESET, 0, 10 * 1000 * 1000);
192         if (ret)
193                 return ret;
194
195         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
196                          "Wait for controller to be ready for doorbell rings");
197         /*
198          * xHCI cannot write to any doorbells or operational registers other
199          * than status until the "Controller Not Ready" flag is cleared.
200          */
201         ret = xhci_handshake(&xhci->op_regs->status,
202                         STS_CNR, 0, 10 * 1000 * 1000);
203
204         for (i = 0; i < 2; ++i) {
205                 xhci->bus_state[i].port_c_suspend = 0;
206                 xhci->bus_state[i].suspended_ports = 0;
207                 xhci->bus_state[i].resuming_ports = 0;
208         }
209
210         return ret;
211 }
212
213 #ifdef CONFIG_PCI
214 static int xhci_free_msi(struct xhci_hcd *xhci)
215 {
216         int i;
217
218         if (!xhci->msix_entries)
219                 return -EINVAL;
220
221         for (i = 0; i < xhci->msix_count; i++)
222                 if (xhci->msix_entries[i].vector)
223                         free_irq(xhci->msix_entries[i].vector,
224                                         xhci_to_hcd(xhci));
225         return 0;
226 }
227
228 /*
229  * Set up MSI
230  */
231 static int xhci_setup_msi(struct xhci_hcd *xhci)
232 {
233         int ret;
234         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235
236         ret = pci_enable_msi(pdev);
237         if (ret) {
238                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239                                 "failed to allocate MSI entry");
240                 return ret;
241         }
242
243         ret = request_irq(pdev->irq, xhci_msi_irq,
244                                 0, "xhci_hcd", xhci_to_hcd(xhci));
245         if (ret) {
246                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247                                 "disable MSI interrupt");
248                 pci_disable_msi(pdev);
249         }
250
251         return ret;
252 }
253
254 /*
255  * Free IRQs
256  * free all IRQs request
257  */
258 static void xhci_free_irq(struct xhci_hcd *xhci)
259 {
260         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
261         int ret;
262
263         /* return if using legacy interrupt */
264         if (xhci_to_hcd(xhci)->irq > 0)
265                 return;
266
267         ret = xhci_free_msi(xhci);
268         if (!ret)
269                 return;
270         if (pdev->irq > 0)
271                 free_irq(pdev->irq, xhci_to_hcd(xhci));
272
273         return;
274 }
275
276 /*
277  * Set up MSI-X
278  */
279 static int xhci_setup_msix(struct xhci_hcd *xhci)
280 {
281         int i, ret = 0;
282         struct usb_hcd *hcd = xhci_to_hcd(xhci);
283         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284
285         /*
286          * calculate number of msi-x vectors supported.
287          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288          *   with max number of interrupters based on the xhci HCSPARAMS1.
289          * - num_online_cpus: maximum msi-x vectors per CPUs core.
290          *   Add additional 1 vector to ensure always available interrupt.
291          */
292         xhci->msix_count = min(num_online_cpus() + 1,
293                                 HCS_MAX_INTRS(xhci->hcs_params1));
294
295         xhci->msix_entries =
296                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
297                                 GFP_KERNEL);
298         if (!xhci->msix_entries)
299                 return -ENOMEM;
300
301         for (i = 0; i < xhci->msix_count; i++) {
302                 xhci->msix_entries[i].entry = i;
303                 xhci->msix_entries[i].vector = 0;
304         }
305
306         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
307         if (ret) {
308                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
309                                 "Failed to enable MSI-X");
310                 goto free_entries;
311         }
312
313         for (i = 0; i < xhci->msix_count; i++) {
314                 ret = request_irq(xhci->msix_entries[i].vector,
315                                 xhci_msi_irq,
316                                 0, "xhci_hcd", xhci_to_hcd(xhci));
317                 if (ret)
318                         goto disable_msix;
319         }
320
321         hcd->msix_enabled = 1;
322         return ret;
323
324 disable_msix:
325         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
326         xhci_free_irq(xhci);
327         pci_disable_msix(pdev);
328 free_entries:
329         kfree(xhci->msix_entries);
330         xhci->msix_entries = NULL;
331         return ret;
332 }
333
334 /* Free any IRQs and disable MSI-X */
335 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
336 {
337         struct usb_hcd *hcd = xhci_to_hcd(xhci);
338         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
339
340         if (xhci->quirks & XHCI_PLAT)
341                 return;
342
343         xhci_free_irq(xhci);
344
345         if (xhci->msix_entries) {
346                 pci_disable_msix(pdev);
347                 kfree(xhci->msix_entries);
348                 xhci->msix_entries = NULL;
349         } else {
350                 pci_disable_msi(pdev);
351         }
352
353         hcd->msix_enabled = 0;
354         return;
355 }
356
357 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
358 {
359         int i;
360
361         if (xhci->msix_entries) {
362                 for (i = 0; i < xhci->msix_count; i++)
363                         synchronize_irq(xhci->msix_entries[i].vector);
364         }
365 }
366
367 static int xhci_try_enable_msi(struct usb_hcd *hcd)
368 {
369         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
370         struct pci_dev  *pdev;
371         int ret;
372
373         /* The xhci platform device has set up IRQs through usb_add_hcd. */
374         if (xhci->quirks & XHCI_PLAT)
375                 return 0;
376
377         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
378         /*
379          * Some Fresco Logic host controllers advertise MSI, but fail to
380          * generate interrupts.  Don't even try to enable MSI.
381          */
382         if (xhci->quirks & XHCI_BROKEN_MSI)
383                 goto legacy_irq;
384
385         /* unregister the legacy interrupt */
386         if (hcd->irq)
387                 free_irq(hcd->irq, hcd);
388         hcd->irq = 0;
389
390         ret = xhci_setup_msix(xhci);
391         if (ret)
392                 /* fall back to msi*/
393                 ret = xhci_setup_msi(xhci);
394
395         if (!ret)
396                 /* hcd->irq is 0, we have MSI */
397                 return 0;
398
399         if (!pdev->irq) {
400                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
401                 return -EINVAL;
402         }
403
404  legacy_irq:
405         if (!strlen(hcd->irq_descr))
406                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
407                          hcd->driver->description, hcd->self.busnum);
408
409         /* fall back to legacy interrupt*/
410         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
411                         hcd->irq_descr, hcd);
412         if (ret) {
413                 xhci_err(xhci, "request interrupt %d failed\n",
414                                 pdev->irq);
415                 return ret;
416         }
417         hcd->irq = pdev->irq;
418         return 0;
419 }
420
421 #else
422
423 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
424 {
425         return 0;
426 }
427
428 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
429 {
430 }
431
432 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
433 {
434 }
435
436 #endif
437
438 static void compliance_mode_recovery(unsigned long arg)
439 {
440         struct xhci_hcd *xhci;
441         struct usb_hcd *hcd;
442         u32 temp;
443         int i;
444
445         xhci = (struct xhci_hcd *)arg;
446
447         for (i = 0; i < xhci->num_usb3_ports; i++) {
448                 temp = readl(xhci->usb3_ports[i]);
449                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
450                         /*
451                          * Compliance Mode Detected. Letting USB Core
452                          * handle the Warm Reset
453                          */
454                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
455                                         "Compliance mode detected->port %d",
456                                         i + 1);
457                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
458                                         "Attempting compliance mode recovery");
459                         hcd = xhci->shared_hcd;
460
461                         if (hcd->state == HC_STATE_SUSPENDED)
462                                 usb_hcd_resume_root_hub(hcd);
463
464                         usb_hcd_poll_rh_status(hcd);
465                 }
466         }
467
468         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
469                 mod_timer(&xhci->comp_mode_recovery_timer,
470                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
471 }
472
473 /*
474  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
475  * that causes ports behind that hardware to enter compliance mode sometimes.
476  * The quirk creates a timer that polls every 2 seconds the link state of
477  * each host controller's port and recovers it by issuing a Warm reset
478  * if Compliance mode is detected, otherwise the port will become "dead" (no
479  * device connections or disconnections will be detected anymore). Becasue no
480  * status event is generated when entering compliance mode (per xhci spec),
481  * this quirk is needed on systems that have the failing hardware installed.
482  */
483 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
484 {
485         xhci->port_status_u0 = 0;
486         setup_timer(&xhci->comp_mode_recovery_timer,
487                     compliance_mode_recovery, (unsigned long)xhci);
488         xhci->comp_mode_recovery_timer.expires = jiffies +
489                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
490
491         add_timer(&xhci->comp_mode_recovery_timer);
492         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
493                         "Compliance mode recovery timer initialized");
494 }
495
496 /*
497  * This function identifies the systems that have installed the SN65LVPE502CP
498  * USB3.0 re-driver and that need the Compliance Mode Quirk.
499  * Systems:
500  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
501  */
502 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
503 {
504         const char *dmi_product_name, *dmi_sys_vendor;
505
506         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
507         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
508         if (!dmi_product_name || !dmi_sys_vendor)
509                 return false;
510
511         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
512                 return false;
513
514         if (strstr(dmi_product_name, "Z420") ||
515                         strstr(dmi_product_name, "Z620") ||
516                         strstr(dmi_product_name, "Z820") ||
517                         strstr(dmi_product_name, "Z1 Workstation"))
518                 return true;
519
520         return false;
521 }
522
523 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
524 {
525         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
526 }
527
528
529 /*
530  * Initialize memory for HCD and xHC (one-time init).
531  *
532  * Program the PAGESIZE register, initialize the device context array, create
533  * device contexts (?), set up a command ring segment (or two?), create event
534  * ring (one for now).
535  */
536 int xhci_init(struct usb_hcd *hcd)
537 {
538         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
539         int retval = 0;
540
541         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
542         spin_lock_init(&xhci->lock);
543         if (xhci->hci_version == 0x95 && link_quirk) {
544                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
545                                 "QUIRK: Not clearing Link TRB chain bits.");
546                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
547         } else {
548                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
549                                 "xHCI doesn't need link TRB QUIRK");
550         }
551         retval = xhci_mem_init(xhci, GFP_KERNEL);
552         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
553
554         /* Initializing Compliance Mode Recovery Data If Needed */
555         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
556                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
557                 compliance_mode_recovery_timer_init(xhci);
558         }
559
560         return retval;
561 }
562
563 /*-------------------------------------------------------------------------*/
564
565
566 static int xhci_run_finished(struct xhci_hcd *xhci)
567 {
568         if (xhci_start(xhci)) {
569                 xhci_halt(xhci);
570                 return -ENODEV;
571         }
572         xhci->shared_hcd->state = HC_STATE_RUNNING;
573         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
574
575         if (xhci->quirks & XHCI_NEC_HOST)
576                 xhci_ring_cmd_db(xhci);
577
578         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
579                         "Finished xhci_run for USB3 roothub");
580         return 0;
581 }
582
583 /*
584  * Start the HC after it was halted.
585  *
586  * This function is called by the USB core when the HC driver is added.
587  * Its opposite is xhci_stop().
588  *
589  * xhci_init() must be called once before this function can be called.
590  * Reset the HC, enable device slot contexts, program DCBAAP, and
591  * set command ring pointer and event ring pointer.
592  *
593  * Setup MSI-X vectors and enable interrupts.
594  */
595 int xhci_run(struct usb_hcd *hcd)
596 {
597         u32 temp;
598         u64 temp_64;
599         int ret;
600         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
601
602         /* Start the xHCI host controller running only after the USB 2.0 roothub
603          * is setup.
604          */
605
606         hcd->uses_new_polling = 1;
607         if (!usb_hcd_is_primary_hcd(hcd))
608                 return xhci_run_finished(xhci);
609
610         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
611
612         ret = xhci_try_enable_msi(hcd);
613         if (ret)
614                 return ret;
615
616         xhci_dbg(xhci, "Command ring memory map follows:\n");
617         xhci_debug_ring(xhci, xhci->cmd_ring);
618         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
619         xhci_dbg_cmd_ptrs(xhci);
620
621         xhci_dbg(xhci, "ERST memory map follows:\n");
622         xhci_dbg_erst(xhci, &xhci->erst);
623         xhci_dbg(xhci, "Event ring:\n");
624         xhci_debug_ring(xhci, xhci->event_ring);
625         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
626         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
627         temp_64 &= ~ERST_PTR_MASK;
628         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
629                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
630
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "// Set the interrupt modulation register");
633         temp = readl(&xhci->ir_set->irq_control);
634         temp &= ~ER_IRQ_INTERVAL_MASK;
635         /*
636          * the increment interval is 8 times as much as that defined
637          * in xHCI spec on MTK's controller
638          */
639         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
640         writel(temp, &xhci->ir_set->irq_control);
641
642         /* Set the HCD state before we enable the irqs */
643         temp = readl(&xhci->op_regs->command);
644         temp |= (CMD_EIE);
645         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
646                         "// Enable interrupts, cmd = 0x%x.", temp);
647         writel(temp, &xhci->op_regs->command);
648
649         temp = readl(&xhci->ir_set->irq_pending);
650         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
651                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
652                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
653         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
654         xhci_print_ir_set(xhci, 0);
655
656         if (xhci->quirks & XHCI_NEC_HOST) {
657                 struct xhci_command *command;
658                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
659                 if (!command)
660                         return -ENOMEM;
661                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
662                                 TRB_TYPE(TRB_NEC_GET_FW));
663         }
664         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
665                         "Finished xhci_run for USB2 roothub");
666         return 0;
667 }
668 EXPORT_SYMBOL_GPL(xhci_run);
669
670 /*
671  * Stop xHCI driver.
672  *
673  * This function is called by the USB core when the HC driver is removed.
674  * Its opposite is xhci_run().
675  *
676  * Disable device contexts, disable IRQs, and quiesce the HC.
677  * Reset the HC, finish any completed transactions, and cleanup memory.
678  */
679 void xhci_stop(struct usb_hcd *hcd)
680 {
681         u32 temp;
682         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
683
684         mutex_lock(&xhci->mutex);
685
686         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
687                 spin_lock_irq(&xhci->lock);
688
689                 xhci->xhc_state |= XHCI_STATE_HALTED;
690                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
691                 xhci_halt(xhci);
692                 xhci_reset(xhci);
693
694                 spin_unlock_irq(&xhci->lock);
695         }
696
697         if (!usb_hcd_is_primary_hcd(hcd)) {
698                 mutex_unlock(&xhci->mutex);
699                 return;
700         }
701
702         xhci_cleanup_msix(xhci);
703
704         /* Deleting Compliance Mode Recovery Timer */
705         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706                         (!(xhci_all_ports_seen_u0(xhci)))) {
707                 del_timer_sync(&xhci->comp_mode_recovery_timer);
708                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709                                 "%s: compliance mode recovery timer deleted",
710                                 __func__);
711         }
712
713         if (xhci->quirks & XHCI_AMD_PLL_FIX)
714                 usb_amd_dev_put();
715
716         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717                         "// Disabling event ring interrupts");
718         temp = readl(&xhci->op_regs->status);
719         writel(temp & ~STS_EINT, &xhci->op_regs->status);
720         temp = readl(&xhci->ir_set->irq_pending);
721         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722         xhci_print_ir_set(xhci, 0);
723
724         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725         xhci_mem_cleanup(xhci);
726         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727                         "xhci_stop completed - status = %x",
728                         readl(&xhci->op_regs->status));
729         mutex_unlock(&xhci->mutex);
730 }
731
732 /*
733  * Shutdown HC (not bus-specific)
734  *
735  * This is called when the machine is rebooting or halting.  We assume that the
736  * machine will be powered off, and the HC's internal state will be reset.
737  * Don't bother to free memory.
738  *
739  * This will only ever be called with the main usb_hcd (the USB3 roothub).
740  */
741 void xhci_shutdown(struct usb_hcd *hcd)
742 {
743         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
744
745         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
746                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
747
748         spin_lock_irq(&xhci->lock);
749         xhci_halt(xhci);
750         /* Workaround for spurious wakeups at shutdown with HSW */
751         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
752                 xhci_reset(xhci);
753         spin_unlock_irq(&xhci->lock);
754
755         xhci_cleanup_msix(xhci);
756
757         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758                         "xhci_shutdown completed - status = %x",
759                         readl(&xhci->op_regs->status));
760
761         /* Yet another workaround for spurious wakeups at shutdown with HSW */
762         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
763                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
764 }
765
766 #ifdef CONFIG_PM
767 static void xhci_save_registers(struct xhci_hcd *xhci)
768 {
769         xhci->s3.command = readl(&xhci->op_regs->command);
770         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
771         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
772         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
773         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
774         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
775         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
776         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
777         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
778 }
779
780 static void xhci_restore_registers(struct xhci_hcd *xhci)
781 {
782         writel(xhci->s3.command, &xhci->op_regs->command);
783         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
784         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
785         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
786         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
787         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
788         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
789         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
790         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
791 }
792
793 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
794 {
795         u64     val_64;
796
797         /* step 2: initialize command ring buffer */
798         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
799         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
800                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
801                                       xhci->cmd_ring->dequeue) &
802                  (u64) ~CMD_RING_RSVD_BITS) |
803                 xhci->cmd_ring->cycle_state;
804         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
805                         "// Setting command ring address to 0x%llx",
806                         (long unsigned long) val_64);
807         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
808 }
809
810 /*
811  * The whole command ring must be cleared to zero when we suspend the host.
812  *
813  * The host doesn't save the command ring pointer in the suspend well, so we
814  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
815  * aligned, because of the reserved bits in the command ring dequeue pointer
816  * register.  Therefore, we can't just set the dequeue pointer back in the
817  * middle of the ring (TRBs are 16-byte aligned).
818  */
819 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
820 {
821         struct xhci_ring *ring;
822         struct xhci_segment *seg;
823
824         ring = xhci->cmd_ring;
825         seg = ring->deq_seg;
826         do {
827                 memset(seg->trbs, 0,
828                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
829                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
830                         cpu_to_le32(~TRB_CYCLE);
831                 seg = seg->next;
832         } while (seg != ring->deq_seg);
833
834         /* Reset the software enqueue and dequeue pointers */
835         ring->deq_seg = ring->first_seg;
836         ring->dequeue = ring->first_seg->trbs;
837         ring->enq_seg = ring->deq_seg;
838         ring->enqueue = ring->dequeue;
839
840         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
841         /*
842          * Ring is now zeroed, so the HW should look for change of ownership
843          * when the cycle bit is set to 1.
844          */
845         ring->cycle_state = 1;
846
847         /*
848          * Reset the hardware dequeue pointer.
849          * Yes, this will need to be re-written after resume, but we're paranoid
850          * and want to make sure the hardware doesn't access bogus memory
851          * because, say, the BIOS or an SMI started the host without changing
852          * the command ring pointers.
853          */
854         xhci_set_cmd_ring_deq(xhci);
855 }
856
857 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
858 {
859         int port_index;
860         __le32 __iomem **port_array;
861         unsigned long flags;
862         u32 t1, t2;
863
864         spin_lock_irqsave(&xhci->lock, flags);
865
866         /* disble usb3 ports Wake bits*/
867         port_index = xhci->num_usb3_ports;
868         port_array = xhci->usb3_ports;
869         while (port_index--) {
870                 t1 = readl(port_array[port_index]);
871                 t1 = xhci_port_state_to_neutral(t1);
872                 t2 = t1 & ~PORT_WAKE_BITS;
873                 if (t1 != t2)
874                         writel(t2, port_array[port_index]);
875         }
876
877         /* disble usb2 ports Wake bits*/
878         port_index = xhci->num_usb2_ports;
879         port_array = xhci->usb2_ports;
880         while (port_index--) {
881                 t1 = readl(port_array[port_index]);
882                 t1 = xhci_port_state_to_neutral(t1);
883                 t2 = t1 & ~PORT_WAKE_BITS;
884                 if (t1 != t2)
885                         writel(t2, port_array[port_index]);
886         }
887
888         spin_unlock_irqrestore(&xhci->lock, flags);
889 }
890
891 /*
892  * Stop HC (not bus-specific)
893  *
894  * This is called when the machine transition into S3/S4 mode.
895  *
896  */
897 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
898 {
899         int                     rc = 0;
900         unsigned int            delay = XHCI_MAX_HALT_USEC;
901         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
902         u32                     command;
903
904         if (!hcd->state)
905                 return 0;
906
907         if (hcd->state != HC_STATE_SUSPENDED ||
908                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
909                 return -EINVAL;
910
911         /* Clear root port wake on bits if wakeup not allowed. */
912         if (!do_wakeup)
913                 xhci_disable_port_wake_on_bits(xhci);
914
915         /* Don't poll the roothubs on bus suspend. */
916         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
917         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918         del_timer_sync(&hcd->rh_timer);
919         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
920         del_timer_sync(&xhci->shared_hcd->rh_timer);
921
922         spin_lock_irq(&xhci->lock);
923         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
924         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
925         /* step 1: stop endpoint */
926         /* skipped assuming that port suspend has done */
927
928         /* step 2: clear Run/Stop bit */
929         command = readl(&xhci->op_regs->command);
930         command &= ~CMD_RUN;
931         writel(command, &xhci->op_regs->command);
932
933         /* Some chips from Fresco Logic need an extraordinary delay */
934         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
935
936         if (xhci_handshake(&xhci->op_regs->status,
937                       STS_HALT, STS_HALT, delay)) {
938                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
939                 spin_unlock_irq(&xhci->lock);
940                 return -ETIMEDOUT;
941         }
942         xhci_clear_command_ring(xhci);
943
944         /* step 3: save registers */
945         xhci_save_registers(xhci);
946
947         /* step 4: set CSS flag */
948         command = readl(&xhci->op_regs->command);
949         command |= CMD_CSS;
950         writel(command, &xhci->op_regs->command);
951         if (xhci_handshake(&xhci->op_regs->status,
952                                 STS_SAVE, 0, 10 * 1000)) {
953                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
954                 spin_unlock_irq(&xhci->lock);
955                 return -ETIMEDOUT;
956         }
957         spin_unlock_irq(&xhci->lock);
958
959         /*
960          * Deleting Compliance Mode Recovery Timer because the xHCI Host
961          * is about to be suspended.
962          */
963         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
964                         (!(xhci_all_ports_seen_u0(xhci)))) {
965                 del_timer_sync(&xhci->comp_mode_recovery_timer);
966                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
967                                 "%s: compliance mode recovery timer deleted",
968                                 __func__);
969         }
970
971         /* step 5: remove core well power */
972         /* synchronize irq when using MSI-X */
973         xhci_msix_sync_irqs(xhci);
974
975         return rc;
976 }
977 EXPORT_SYMBOL_GPL(xhci_suspend);
978
979 /*
980  * start xHC (not bus-specific)
981  *
982  * This is called when the machine transition from S3/S4 mode.
983  *
984  */
985 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
986 {
987         u32                     command, temp = 0, status;
988         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
989         struct usb_hcd          *secondary_hcd;
990         int                     retval = 0;
991         bool                    comp_timer_running = false;
992
993         if (!hcd->state)
994                 return 0;
995
996         /* Wait a bit if either of the roothubs need to settle from the
997          * transition into bus suspend.
998          */
999         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1000                         time_before(jiffies,
1001                                 xhci->bus_state[1].next_statechange))
1002                 msleep(100);
1003
1004         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1005         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1006
1007         spin_lock_irq(&xhci->lock);
1008         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1009                 hibernated = true;
1010
1011         if (!hibernated) {
1012                 /* step 1: restore register */
1013                 xhci_restore_registers(xhci);
1014                 /* step 2: initialize command ring buffer */
1015                 xhci_set_cmd_ring_deq(xhci);
1016                 /* step 3: restore state and start state*/
1017                 /* step 3: set CRS flag */
1018                 command = readl(&xhci->op_regs->command);
1019                 command |= CMD_CRS;
1020                 writel(command, &xhci->op_regs->command);
1021                 if (xhci_handshake(&xhci->op_regs->status,
1022                               STS_RESTORE, 0, 10 * 1000)) {
1023                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024                         spin_unlock_irq(&xhci->lock);
1025                         return -ETIMEDOUT;
1026                 }
1027                 temp = readl(&xhci->op_regs->status);
1028         }
1029
1030         /* If restore operation fails, re-initialize the HC during resume */
1031         if ((temp & STS_SRE) || hibernated) {
1032
1033                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1034                                 !(xhci_all_ports_seen_u0(xhci))) {
1035                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1036                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1037                                 "Compliance Mode Recovery Timer deleted!");
1038                 }
1039
1040                 /* Let the USB core know _both_ roothubs lost power. */
1041                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1042                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1043
1044                 xhci_dbg(xhci, "Stop HCD\n");
1045                 xhci_halt(xhci);
1046                 xhci_reset(xhci);
1047                 spin_unlock_irq(&xhci->lock);
1048                 xhci_cleanup_msix(xhci);
1049
1050                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1051                 temp = readl(&xhci->op_regs->status);
1052                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1053                 temp = readl(&xhci->ir_set->irq_pending);
1054                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1055                 xhci_print_ir_set(xhci, 0);
1056
1057                 xhci_dbg(xhci, "cleaning up memory\n");
1058                 xhci_mem_cleanup(xhci);
1059                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1060                             readl(&xhci->op_regs->status));
1061
1062                 /* USB core calls the PCI reinit and start functions twice:
1063                  * first with the primary HCD, and then with the secondary HCD.
1064                  * If we don't do the same, the host will never be started.
1065                  */
1066                 if (!usb_hcd_is_primary_hcd(hcd))
1067                         secondary_hcd = hcd;
1068                 else
1069                         secondary_hcd = xhci->shared_hcd;
1070
1071                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1072                 retval = xhci_init(hcd->primary_hcd);
1073                 if (retval)
1074                         return retval;
1075                 comp_timer_running = true;
1076
1077                 xhci_dbg(xhci, "Start the primary HCD\n");
1078                 retval = xhci_run(hcd->primary_hcd);
1079                 if (!retval) {
1080                         xhci_dbg(xhci, "Start the secondary HCD\n");
1081                         retval = xhci_run(secondary_hcd);
1082                 }
1083                 hcd->state = HC_STATE_SUSPENDED;
1084                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1085                 goto done;
1086         }
1087
1088         /* step 4: set Run/Stop bit */
1089         command = readl(&xhci->op_regs->command);
1090         command |= CMD_RUN;
1091         writel(command, &xhci->op_regs->command);
1092         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1093                   0, 250 * 1000);
1094
1095         /* step 5: walk topology and initialize portsc,
1096          * portpmsc and portli
1097          */
1098         /* this is done in bus_resume */
1099
1100         /* step 6: restart each of the previously
1101          * Running endpoints by ringing their doorbells
1102          */
1103
1104         spin_unlock_irq(&xhci->lock);
1105
1106  done:
1107         if (retval == 0) {
1108                 /* Resume root hubs only when have pending events. */
1109                 status = readl(&xhci->op_regs->status);
1110                 if (status & STS_EINT) {
1111                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1112                         usb_hcd_resume_root_hub(hcd);
1113                 }
1114         }
1115
1116         /*
1117          * If system is subject to the Quirk, Compliance Mode Timer needs to
1118          * be re-initialized Always after a system resume. Ports are subject
1119          * to suffer the Compliance Mode issue again. It doesn't matter if
1120          * ports have entered previously to U0 before system's suspension.
1121          */
1122         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1123                 compliance_mode_recovery_timer_init(xhci);
1124
1125         /* Re-enable port polling. */
1126         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1127         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1128         usb_hcd_poll_rh_status(xhci->shared_hcd);
1129         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1130         usb_hcd_poll_rh_status(hcd);
1131
1132         return retval;
1133 }
1134 EXPORT_SYMBOL_GPL(xhci_resume);
1135 #endif  /* CONFIG_PM */
1136
1137 /*-------------------------------------------------------------------------*/
1138
1139 /**
1140  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1141  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1142  * value to right shift 1 for the bitmask.
1143  *
1144  * Index  = (epnum * 2) + direction - 1,
1145  * where direction = 0 for OUT, 1 for IN.
1146  * For control endpoints, the IN index is used (OUT index is unused), so
1147  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1148  */
1149 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1150 {
1151         unsigned int index;
1152         if (usb_endpoint_xfer_control(desc))
1153                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1154         else
1155                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1156                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1157         return index;
1158 }
1159
1160 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1161  * address from the XHCI endpoint index.
1162  */
1163 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1164 {
1165         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1166         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1167         return direction | number;
1168 }
1169
1170 /* Find the flag for this endpoint (for use in the control context).  Use the
1171  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1172  * bit 1, etc.
1173  */
1174 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1175 {
1176         return 1 << (xhci_get_endpoint_index(desc) + 1);
1177 }
1178
1179 /* Find the flag for this endpoint (for use in the control context).  Use the
1180  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1181  * bit 1, etc.
1182  */
1183 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1184 {
1185         return 1 << (ep_index + 1);
1186 }
1187
1188 /* Compute the last valid endpoint context index.  Basically, this is the
1189  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1190  * we find the most significant bit set in the added contexts flags.
1191  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1192  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1193  */
1194 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1195 {
1196         return fls(added_ctxs) - 1;
1197 }
1198
1199 /* Returns 1 if the arguments are OK;
1200  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1201  */
1202 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1203                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1204                 const char *func) {
1205         struct xhci_hcd *xhci;
1206         struct xhci_virt_device *virt_dev;
1207
1208         if (!hcd || (check_ep && !ep) || !udev) {
1209                 pr_debug("xHCI %s called with invalid args\n", func);
1210                 return -EINVAL;
1211         }
1212         if (!udev->parent) {
1213                 pr_debug("xHCI %s called for root hub\n", func);
1214                 return 0;
1215         }
1216
1217         xhci = hcd_to_xhci(hcd);
1218         if (check_virt_dev) {
1219                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1220                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1221                                         func);
1222                         return -EINVAL;
1223                 }
1224
1225                 virt_dev = xhci->devs[udev->slot_id];
1226                 if (virt_dev->udev != udev) {
1227                         xhci_dbg(xhci, "xHCI %s called with udev and "
1228                                           "virt_dev does not match\n", func);
1229                         return -EINVAL;
1230                 }
1231         }
1232
1233         if (xhci->xhc_state & XHCI_STATE_HALTED)
1234                 return -ENODEV;
1235
1236         return 1;
1237 }
1238
1239 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1240                 struct usb_device *udev, struct xhci_command *command,
1241                 bool ctx_change, bool must_succeed);
1242
1243 /*
1244  * Full speed devices may have a max packet size greater than 8 bytes, but the
1245  * USB core doesn't know that until it reads the first 8 bytes of the
1246  * descriptor.  If the usb_device's max packet size changes after that point,
1247  * we need to issue an evaluate context command and wait on it.
1248  */
1249 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1250                 unsigned int ep_index, struct urb *urb)
1251 {
1252         struct xhci_container_ctx *out_ctx;
1253         struct xhci_input_control_ctx *ctrl_ctx;
1254         struct xhci_ep_ctx *ep_ctx;
1255         struct xhci_command *command;
1256         int max_packet_size;
1257         int hw_max_packet_size;
1258         int ret = 0;
1259
1260         out_ctx = xhci->devs[slot_id]->out_ctx;
1261         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1262         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1263         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1264         if (hw_max_packet_size != max_packet_size) {
1265                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1266                                 "Max Packet Size for ep 0 changed.");
1267                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1268                                 "Max packet size in usb_device = %d",
1269                                 max_packet_size);
1270                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1271                                 "Max packet size in xHCI HW = %d",
1272                                 hw_max_packet_size);
1273                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1274                                 "Issuing evaluate context command.");
1275
1276                 /* Set up the input context flags for the command */
1277                 /* FIXME: This won't work if a non-default control endpoint
1278                  * changes max packet sizes.
1279                  */
1280
1281                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1282                 if (!command)
1283                         return -ENOMEM;
1284
1285                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1286                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1287                 if (!ctrl_ctx) {
1288                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1289                                         __func__);
1290                         ret = -ENOMEM;
1291                         goto command_cleanup;
1292                 }
1293                 /* Set up the modified control endpoint 0 */
1294                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1295                                 xhci->devs[slot_id]->out_ctx, ep_index);
1296
1297                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1298                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1299                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1300
1301                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1302                 ctrl_ctx->drop_flags = 0;
1303
1304                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1305                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1306                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1307                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1308
1309                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1310                                 true, false);
1311
1312                 /* Clean up the input context for later use by bandwidth
1313                  * functions.
1314                  */
1315                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1316 command_cleanup:
1317                 kfree(command->completion);
1318                 kfree(command);
1319         }
1320         return ret;
1321 }
1322
1323 /*
1324  * non-error returns are a promise to giveback() the urb later
1325  * we drop ownership so next owner (or urb unlink) can get it
1326  */
1327 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1328 {
1329         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1330         struct xhci_td *buffer;
1331         unsigned long flags;
1332         int ret = 0;
1333         unsigned int slot_id, ep_index;
1334         struct urb_priv *urb_priv;
1335         int size, i;
1336
1337         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1338                                         true, true, __func__) <= 0)
1339                 return -EINVAL;
1340
1341         slot_id = urb->dev->slot_id;
1342         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1343
1344         if (!HCD_HW_ACCESSIBLE(hcd)) {
1345                 if (!in_interrupt())
1346                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1347                 ret = -ESHUTDOWN;
1348                 goto exit;
1349         }
1350
1351         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1352                 size = urb->number_of_packets;
1353         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1354             urb->transfer_buffer_length > 0 &&
1355             urb->transfer_flags & URB_ZERO_PACKET &&
1356             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1357                 size = 2;
1358         else
1359                 size = 1;
1360
1361         urb_priv = kzalloc(sizeof(struct urb_priv) +
1362                                   size * sizeof(struct xhci_td *), mem_flags);
1363         if (!urb_priv)
1364                 return -ENOMEM;
1365
1366         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1367         if (!buffer) {
1368                 kfree(urb_priv);
1369                 return -ENOMEM;
1370         }
1371
1372         for (i = 0; i < size; i++) {
1373                 urb_priv->td[i] = buffer;
1374                 buffer++;
1375         }
1376
1377         urb_priv->length = size;
1378         urb_priv->td_cnt = 0;
1379         urb->hcpriv = urb_priv;
1380
1381         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1382                 /* Check to see if the max packet size for the default control
1383                  * endpoint changed during FS device enumeration
1384                  */
1385                 if (urb->dev->speed == USB_SPEED_FULL) {
1386                         ret = xhci_check_maxpacket(xhci, slot_id,
1387                                         ep_index, urb);
1388                         if (ret < 0) {
1389                                 xhci_urb_free_priv(urb_priv);
1390                                 urb->hcpriv = NULL;
1391                                 return ret;
1392                         }
1393                 }
1394
1395                 /* We have a spinlock and interrupts disabled, so we must pass
1396                  * atomic context to this function, which may allocate memory.
1397                  */
1398                 spin_lock_irqsave(&xhci->lock, flags);
1399                 if (xhci->xhc_state & XHCI_STATE_DYING)
1400                         goto dying;
1401                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1402                                 slot_id, ep_index);
1403                 if (ret)
1404                         goto free_priv;
1405                 spin_unlock_irqrestore(&xhci->lock, flags);
1406         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1407                 spin_lock_irqsave(&xhci->lock, flags);
1408                 if (xhci->xhc_state & XHCI_STATE_DYING)
1409                         goto dying;
1410                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411                                 EP_GETTING_STREAMS) {
1412                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413                                         "is transitioning to using streams.\n");
1414                         ret = -EINVAL;
1415                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416                                 EP_GETTING_NO_STREAMS) {
1417                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418                                         "is transitioning to "
1419                                         "not having streams.\n");
1420                         ret = -EINVAL;
1421                 } else {
1422                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1423                                         slot_id, ep_index);
1424                 }
1425                 if (ret)
1426                         goto free_priv;
1427                 spin_unlock_irqrestore(&xhci->lock, flags);
1428         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1429                 spin_lock_irqsave(&xhci->lock, flags);
1430                 if (xhci->xhc_state & XHCI_STATE_DYING)
1431                         goto dying;
1432                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1433                                 slot_id, ep_index);
1434                 if (ret)
1435                         goto free_priv;
1436                 spin_unlock_irqrestore(&xhci->lock, flags);
1437         } else {
1438                 spin_lock_irqsave(&xhci->lock, flags);
1439                 if (xhci->xhc_state & XHCI_STATE_DYING)
1440                         goto dying;
1441                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1442                                 slot_id, ep_index);
1443                 if (ret)
1444                         goto free_priv;
1445                 spin_unlock_irqrestore(&xhci->lock, flags);
1446         }
1447 exit:
1448         return ret;
1449 dying:
1450         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1451                         "non-responsive xHCI host.\n",
1452                         urb->ep->desc.bEndpointAddress, urb);
1453         ret = -ESHUTDOWN;
1454 free_priv:
1455         xhci_urb_free_priv(urb_priv);
1456         urb->hcpriv = NULL;
1457         spin_unlock_irqrestore(&xhci->lock, flags);
1458         return ret;
1459 }
1460
1461 /*
1462  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1463  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1464  * should pick up where it left off in the TD, unless a Set Transfer Ring
1465  * Dequeue Pointer is issued.
1466  *
1467  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1468  * the ring.  Since the ring is a contiguous structure, they can't be physically
1469  * removed.  Instead, there are two options:
1470  *
1471  *  1) If the HC is in the middle of processing the URB to be canceled, we
1472  *     simply move the ring's dequeue pointer past those TRBs using the Set
1473  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1474  *     when drivers timeout on the last submitted URB and attempt to cancel.
1475  *
1476  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1477  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1478  *     HC will need to invalidate the any TRBs it has cached after the stop
1479  *     endpoint command, as noted in the xHCI 0.95 errata.
1480  *
1481  *  3) The TD may have completed by the time the Stop Endpoint Command
1482  *     completes, so software needs to handle that case too.
1483  *
1484  * This function should protect against the TD enqueueing code ringing the
1485  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1486  * It also needs to account for multiple cancellations on happening at the same
1487  * time for the same endpoint.
1488  *
1489  * Note that this function can be called in any context, or so says
1490  * usb_hcd_unlink_urb()
1491  */
1492 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1493 {
1494         unsigned long flags;
1495         int ret, i;
1496         u32 temp;
1497         struct xhci_hcd *xhci;
1498         struct urb_priv *urb_priv;
1499         struct xhci_td *td;
1500         unsigned int ep_index;
1501         struct xhci_ring *ep_ring;
1502         struct xhci_virt_ep *ep;
1503         struct xhci_command *command;
1504
1505         xhci = hcd_to_xhci(hcd);
1506         spin_lock_irqsave(&xhci->lock, flags);
1507         /* Make sure the URB hasn't completed or been unlinked already */
1508         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1509         if (ret || !urb->hcpriv)
1510                 goto done;
1511         temp = readl(&xhci->op_regs->status);
1512         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1513                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1514                                 "HW died, freeing TD.");
1515                 urb_priv = urb->hcpriv;
1516                 for (i = urb_priv->td_cnt;
1517                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1518                      i++) {
1519                         td = urb_priv->td[i];
1520                         if (!list_empty(&td->td_list))
1521                                 list_del_init(&td->td_list);
1522                         if (!list_empty(&td->cancelled_td_list))
1523                                 list_del_init(&td->cancelled_td_list);
1524                 }
1525
1526                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1527                 spin_unlock_irqrestore(&xhci->lock, flags);
1528                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1529                 xhci_urb_free_priv(urb_priv);
1530                 return ret;
1531         }
1532         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1533                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1534                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1535                                 "Ep 0x%x: URB %p to be canceled on "
1536                                 "non-responsive xHCI host.",
1537                                 urb->ep->desc.bEndpointAddress, urb);
1538                 /* Let the stop endpoint command watchdog timer (which set this
1539                  * state) finish cleaning up the endpoint TD lists.  We must
1540                  * have caught it in the middle of dropping a lock and giving
1541                  * back an URB.
1542                  */
1543                 goto done;
1544         }
1545
1546         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1547         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1548         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1549         if (!ep_ring) {
1550                 ret = -EINVAL;
1551                 goto done;
1552         }
1553
1554         urb_priv = urb->hcpriv;
1555         i = urb_priv->td_cnt;
1556         if (i < urb_priv->length)
1557                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1558                                 "Cancel URB %p, dev %s, ep 0x%x, "
1559                                 "starting at offset 0x%llx",
1560                                 urb, urb->dev->devpath,
1561                                 urb->ep->desc.bEndpointAddress,
1562                                 (unsigned long long) xhci_trb_virt_to_dma(
1563                                         urb_priv->td[i]->start_seg,
1564                                         urb_priv->td[i]->first_trb));
1565
1566         for (; i < urb_priv->length; i++) {
1567                 td = urb_priv->td[i];
1568                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1569         }
1570
1571         /* Queue a stop endpoint command, but only if this is
1572          * the first cancellation to be handled.
1573          */
1574         if (!(ep->ep_state & EP_HALT_PENDING)) {
1575                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1576                 if (!command) {
1577                         ret = -ENOMEM;
1578                         goto done;
1579                 }
1580                 ep->ep_state |= EP_HALT_PENDING;
1581                 ep->stop_cmds_pending++;
1582                 ep->stop_cmd_timer.expires = jiffies +
1583                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1584                 add_timer(&ep->stop_cmd_timer);
1585                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1586                                          ep_index, 0);
1587                 xhci_ring_cmd_db(xhci);
1588         }
1589 done:
1590         spin_unlock_irqrestore(&xhci->lock, flags);
1591         return ret;
1592 }
1593
1594 /* Drop an endpoint from a new bandwidth configuration for this device.
1595  * Only one call to this function is allowed per endpoint before
1596  * check_bandwidth() or reset_bandwidth() must be called.
1597  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1598  * add the endpoint to the schedule with possibly new parameters denoted by a
1599  * different endpoint descriptor in usb_host_endpoint.
1600  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1601  * not allowed.
1602  *
1603  * The USB core will not allow URBs to be queued to an endpoint that is being
1604  * disabled, so there's no need for mutual exclusion to protect
1605  * the xhci->devs[slot_id] structure.
1606  */
1607 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1608                 struct usb_host_endpoint *ep)
1609 {
1610         struct xhci_hcd *xhci;
1611         struct xhci_container_ctx *in_ctx, *out_ctx;
1612         struct xhci_input_control_ctx *ctrl_ctx;
1613         unsigned int ep_index;
1614         struct xhci_ep_ctx *ep_ctx;
1615         u32 drop_flag;
1616         u32 new_add_flags, new_drop_flags;
1617         int ret;
1618
1619         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1620         if (ret <= 0)
1621                 return ret;
1622         xhci = hcd_to_xhci(hcd);
1623         if (xhci->xhc_state & XHCI_STATE_DYING)
1624                 return -ENODEV;
1625
1626         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1627         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1628         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1629                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1630                                 __func__, drop_flag);
1631                 return 0;
1632         }
1633
1634         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1635         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1636         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1637         if (!ctrl_ctx) {
1638                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1639                                 __func__);
1640                 return 0;
1641         }
1642
1643         ep_index = xhci_get_endpoint_index(&ep->desc);
1644         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1645         /* If the HC already knows the endpoint is disabled,
1646          * or the HCD has noted it is disabled, ignore this request
1647          */
1648         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1649              cpu_to_le32(EP_STATE_DISABLED)) ||
1650             le32_to_cpu(ctrl_ctx->drop_flags) &
1651             xhci_get_endpoint_flag(&ep->desc)) {
1652                 /* Do not warn when called after a usb_device_reset */
1653                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1654                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1655                                   __func__, ep);
1656                 return 0;
1657         }
1658
1659         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1660         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1661
1662         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1663         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1664
1665         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1666
1667         if (xhci->quirks & XHCI_MTK_HOST)
1668                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1669
1670         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1671                         (unsigned int) ep->desc.bEndpointAddress,
1672                         udev->slot_id,
1673                         (unsigned int) new_drop_flags,
1674                         (unsigned int) new_add_flags);
1675         return 0;
1676 }
1677
1678 /* Add an endpoint to a new possible bandwidth configuration for this device.
1679  * Only one call to this function is allowed per endpoint before
1680  * check_bandwidth() or reset_bandwidth() must be called.
1681  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1682  * add the endpoint to the schedule with possibly new parameters denoted by a
1683  * different endpoint descriptor in usb_host_endpoint.
1684  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1685  * not allowed.
1686  *
1687  * The USB core will not allow URBs to be queued to an endpoint until the
1688  * configuration or alt setting is installed in the device, so there's no need
1689  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1690  */
1691 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1692                 struct usb_host_endpoint *ep)
1693 {
1694         struct xhci_hcd *xhci;
1695         struct xhci_container_ctx *in_ctx;
1696         unsigned int ep_index;
1697         struct xhci_input_control_ctx *ctrl_ctx;
1698         u32 added_ctxs;
1699         u32 new_add_flags, new_drop_flags;
1700         struct xhci_virt_device *virt_dev;
1701         int ret = 0;
1702
1703         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1704         if (ret <= 0) {
1705                 /* So we won't queue a reset ep command for a root hub */
1706                 ep->hcpriv = NULL;
1707                 return ret;
1708         }
1709         xhci = hcd_to_xhci(hcd);
1710         if (xhci->xhc_state & XHCI_STATE_DYING)
1711                 return -ENODEV;
1712
1713         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1714         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1715                 /* FIXME when we have to issue an evaluate endpoint command to
1716                  * deal with ep0 max packet size changing once we get the
1717                  * descriptors
1718                  */
1719                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1720                                 __func__, added_ctxs);
1721                 return 0;
1722         }
1723
1724         virt_dev = xhci->devs[udev->slot_id];
1725         in_ctx = virt_dev->in_ctx;
1726         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1727         if (!ctrl_ctx) {
1728                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1729                                 __func__);
1730                 return 0;
1731         }
1732
1733         ep_index = xhci_get_endpoint_index(&ep->desc);
1734         /* If this endpoint is already in use, and the upper layers are trying
1735          * to add it again without dropping it, reject the addition.
1736          */
1737         if (virt_dev->eps[ep_index].ring &&
1738                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1739                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1740                                 "without dropping it.\n",
1741                                 (unsigned int) ep->desc.bEndpointAddress);
1742                 return -EINVAL;
1743         }
1744
1745         /* If the HCD has already noted the endpoint is enabled,
1746          * ignore this request.
1747          */
1748         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1749                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1750                                 __func__, ep);
1751                 return 0;
1752         }
1753
1754         /*
1755          * Configuration and alternate setting changes must be done in
1756          * process context, not interrupt context (or so documenation
1757          * for usb_set_interface() and usb_set_configuration() claim).
1758          */
1759         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1760                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1761                                 __func__, ep->desc.bEndpointAddress);
1762                 return -ENOMEM;
1763         }
1764
1765         if (xhci->quirks & XHCI_MTK_HOST) {
1766                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1767                 if (ret < 0) {
1768                         xhci_free_or_cache_endpoint_ring(xhci,
1769                                 virt_dev, ep_index);
1770                         return ret;
1771                 }
1772         }
1773
1774         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1775         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1776
1777         /* If xhci_endpoint_disable() was called for this endpoint, but the
1778          * xHC hasn't been notified yet through the check_bandwidth() call,
1779          * this re-adds a new state for the endpoint from the new endpoint
1780          * descriptors.  We must drop and re-add this endpoint, so we leave the
1781          * drop flags alone.
1782          */
1783         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1784
1785         /* Store the usb_device pointer for later use */
1786         ep->hcpriv = udev;
1787
1788         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1789                         (unsigned int) ep->desc.bEndpointAddress,
1790                         udev->slot_id,
1791                         (unsigned int) new_drop_flags,
1792                         (unsigned int) new_add_flags);
1793         return 0;
1794 }
1795
1796 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1797 {
1798         struct xhci_input_control_ctx *ctrl_ctx;
1799         struct xhci_ep_ctx *ep_ctx;
1800         struct xhci_slot_ctx *slot_ctx;
1801         int i;
1802
1803         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1804         if (!ctrl_ctx) {
1805                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1806                                 __func__);
1807                 return;
1808         }
1809
1810         /* When a device's add flag and drop flag are zero, any subsequent
1811          * configure endpoint command will leave that endpoint's state
1812          * untouched.  Make sure we don't leave any old state in the input
1813          * endpoint contexts.
1814          */
1815         ctrl_ctx->drop_flags = 0;
1816         ctrl_ctx->add_flags = 0;
1817         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1818         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1819         /* Endpoint 0 is always valid */
1820         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1821         for (i = 1; i < 31; ++i) {
1822                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1823                 ep_ctx->ep_info = 0;
1824                 ep_ctx->ep_info2 = 0;
1825                 ep_ctx->deq = 0;
1826                 ep_ctx->tx_info = 0;
1827         }
1828 }
1829
1830 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1831                 struct usb_device *udev, u32 *cmd_status)
1832 {
1833         int ret;
1834
1835         switch (*cmd_status) {
1836         case COMP_CMD_ABORT:
1837         case COMP_CMD_STOP:
1838                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1839                 ret = -ETIME;
1840                 break;
1841         case COMP_ENOMEM:
1842                 dev_warn(&udev->dev,
1843                          "Not enough host controller resources for new device state.\n");
1844                 ret = -ENOMEM;
1845                 /* FIXME: can we allocate more resources for the HC? */
1846                 break;
1847         case COMP_BW_ERR:
1848         case COMP_2ND_BW_ERR:
1849                 dev_warn(&udev->dev,
1850                          "Not enough bandwidth for new device state.\n");
1851                 ret = -ENOSPC;
1852                 /* FIXME: can we go back to the old state? */
1853                 break;
1854         case COMP_TRB_ERR:
1855                 /* the HCD set up something wrong */
1856                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1857                                 "add flag = 1, "
1858                                 "and endpoint is not disabled.\n");
1859                 ret = -EINVAL;
1860                 break;
1861         case COMP_DEV_ERR:
1862                 dev_warn(&udev->dev,
1863                          "ERROR: Incompatible device for endpoint configure command.\n");
1864                 ret = -ENODEV;
1865                 break;
1866         case COMP_SUCCESS:
1867                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1868                                 "Successful Endpoint Configure command");
1869                 ret = 0;
1870                 break;
1871         default:
1872                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1873                                 *cmd_status);
1874                 ret = -EINVAL;
1875                 break;
1876         }
1877         return ret;
1878 }
1879
1880 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1881                 struct usb_device *udev, u32 *cmd_status)
1882 {
1883         int ret;
1884         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1885
1886         switch (*cmd_status) {
1887         case COMP_CMD_ABORT:
1888         case COMP_CMD_STOP:
1889                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1890                 ret = -ETIME;
1891                 break;
1892         case COMP_EINVAL:
1893                 dev_warn(&udev->dev,
1894                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1895                 ret = -EINVAL;
1896                 break;
1897         case COMP_EBADSLT:
1898                 dev_warn(&udev->dev,
1899                         "WARN: slot not enabled for evaluate context command.\n");
1900                 ret = -EINVAL;
1901                 break;
1902         case COMP_CTX_STATE:
1903                 dev_warn(&udev->dev,
1904                         "WARN: invalid context state for evaluate context command.\n");
1905                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1906                 ret = -EINVAL;
1907                 break;
1908         case COMP_DEV_ERR:
1909                 dev_warn(&udev->dev,
1910                         "ERROR: Incompatible device for evaluate context command.\n");
1911                 ret = -ENODEV;
1912                 break;
1913         case COMP_MEL_ERR:
1914                 /* Max Exit Latency too large error */
1915                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1916                 ret = -EINVAL;
1917                 break;
1918         case COMP_SUCCESS:
1919                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1920                                 "Successful evaluate context command");
1921                 ret = 0;
1922                 break;
1923         default:
1924                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1925                         *cmd_status);
1926                 ret = -EINVAL;
1927                 break;
1928         }
1929         return ret;
1930 }
1931
1932 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1933                 struct xhci_input_control_ctx *ctrl_ctx)
1934 {
1935         u32 valid_add_flags;
1936         u32 valid_drop_flags;
1937
1938         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1939          * (bit 1).  The default control endpoint is added during the Address
1940          * Device command and is never removed until the slot is disabled.
1941          */
1942         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1943         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1944
1945         /* Use hweight32 to count the number of ones in the add flags, or
1946          * number of endpoints added.  Don't count endpoints that are changed
1947          * (both added and dropped).
1948          */
1949         return hweight32(valid_add_flags) -
1950                 hweight32(valid_add_flags & valid_drop_flags);
1951 }
1952
1953 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1954                 struct xhci_input_control_ctx *ctrl_ctx)
1955 {
1956         u32 valid_add_flags;
1957         u32 valid_drop_flags;
1958
1959         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1960         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1961
1962         return hweight32(valid_drop_flags) -
1963                 hweight32(valid_add_flags & valid_drop_flags);
1964 }
1965
1966 /*
1967  * We need to reserve the new number of endpoints before the configure endpoint
1968  * command completes.  We can't subtract the dropped endpoints from the number
1969  * of active endpoints until the command completes because we can oversubscribe
1970  * the host in this case:
1971  *
1972  *  - the first configure endpoint command drops more endpoints than it adds
1973  *  - a second configure endpoint command that adds more endpoints is queued
1974  *  - the first configure endpoint command fails, so the config is unchanged
1975  *  - the second command may succeed, even though there isn't enough resources
1976  *
1977  * Must be called with xhci->lock held.
1978  */
1979 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1980                 struct xhci_input_control_ctx *ctrl_ctx)
1981 {
1982         u32 added_eps;
1983
1984         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1985         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1986                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1987                                 "Not enough ep ctxs: "
1988                                 "%u active, need to add %u, limit is %u.",
1989                                 xhci->num_active_eps, added_eps,
1990                                 xhci->limit_active_eps);
1991                 return -ENOMEM;
1992         }
1993         xhci->num_active_eps += added_eps;
1994         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1995                         "Adding %u ep ctxs, %u now active.", added_eps,
1996                         xhci->num_active_eps);
1997         return 0;
1998 }
1999
2000 /*
2001  * The configure endpoint was failed by the xHC for some other reason, so we
2002  * need to revert the resources that failed configuration would have used.
2003  *
2004  * Must be called with xhci->lock held.
2005  */
2006 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2007                 struct xhci_input_control_ctx *ctrl_ctx)
2008 {
2009         u32 num_failed_eps;
2010
2011         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2012         xhci->num_active_eps -= num_failed_eps;
2013         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2014                         "Removing %u failed ep ctxs, %u now active.",
2015                         num_failed_eps,
2016                         xhci->num_active_eps);
2017 }
2018
2019 /*
2020  * Now that the command has completed, clean up the active endpoint count by
2021  * subtracting out the endpoints that were dropped (but not changed).
2022  *
2023  * Must be called with xhci->lock held.
2024  */
2025 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2026                 struct xhci_input_control_ctx *ctrl_ctx)
2027 {
2028         u32 num_dropped_eps;
2029
2030         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2031         xhci->num_active_eps -= num_dropped_eps;
2032         if (num_dropped_eps)
2033                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2034                                 "Removing %u dropped ep ctxs, %u now active.",
2035                                 num_dropped_eps,
2036                                 xhci->num_active_eps);
2037 }
2038
2039 static unsigned int xhci_get_block_size(struct usb_device *udev)
2040 {
2041         switch (udev->speed) {
2042         case USB_SPEED_LOW:
2043         case USB_SPEED_FULL:
2044                 return FS_BLOCK;
2045         case USB_SPEED_HIGH:
2046                 return HS_BLOCK;
2047         case USB_SPEED_SUPER:
2048         case USB_SPEED_SUPER_PLUS:
2049                 return SS_BLOCK;
2050         case USB_SPEED_UNKNOWN:
2051         case USB_SPEED_WIRELESS:
2052         default:
2053                 /* Should never happen */
2054                 return 1;
2055         }
2056 }
2057
2058 static unsigned int
2059 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2060 {
2061         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2062                 return LS_OVERHEAD;
2063         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2064                 return FS_OVERHEAD;
2065         return HS_OVERHEAD;
2066 }
2067
2068 /* If we are changing a LS/FS device under a HS hub,
2069  * make sure (if we are activating a new TT) that the HS bus has enough
2070  * bandwidth for this new TT.
2071  */
2072 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2073                 struct xhci_virt_device *virt_dev,
2074                 int old_active_eps)
2075 {
2076         struct xhci_interval_bw_table *bw_table;
2077         struct xhci_tt_bw_info *tt_info;
2078
2079         /* Find the bandwidth table for the root port this TT is attached to. */
2080         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2081         tt_info = virt_dev->tt_info;
2082         /* If this TT already had active endpoints, the bandwidth for this TT
2083          * has already been added.  Removing all periodic endpoints (and thus
2084          * making the TT enactive) will only decrease the bandwidth used.
2085          */
2086         if (old_active_eps)
2087                 return 0;
2088         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2089                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2090                         return -ENOMEM;
2091                 return 0;
2092         }
2093         /* Not sure why we would have no new active endpoints...
2094          *
2095          * Maybe because of an Evaluate Context change for a hub update or a
2096          * control endpoint 0 max packet size change?
2097          * FIXME: skip the bandwidth calculation in that case.
2098          */
2099         return 0;
2100 }
2101
2102 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2103                 struct xhci_virt_device *virt_dev)
2104 {
2105         unsigned int bw_reserved;
2106
2107         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2108         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2109                 return -ENOMEM;
2110
2111         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2112         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2113                 return -ENOMEM;
2114
2115         return 0;
2116 }
2117
2118 /*
2119  * This algorithm is a very conservative estimate of the worst-case scheduling
2120  * scenario for any one interval.  The hardware dynamically schedules the
2121  * packets, so we can't tell which microframe could be the limiting factor in
2122  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2123  *
2124  * Obviously, we can't solve an NP complete problem to find the minimum worst
2125  * case scenario.  Instead, we come up with an estimate that is no less than
2126  * the worst case bandwidth used for any one microframe, but may be an
2127  * over-estimate.
2128  *
2129  * We walk the requirements for each endpoint by interval, starting with the
2130  * smallest interval, and place packets in the schedule where there is only one
2131  * possible way to schedule packets for that interval.  In order to simplify
2132  * this algorithm, we record the largest max packet size for each interval, and
2133  * assume all packets will be that size.
2134  *
2135  * For interval 0, we obviously must schedule all packets for each interval.
2136  * The bandwidth for interval 0 is just the amount of data to be transmitted
2137  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2138  * the number of packets).
2139  *
2140  * For interval 1, we have two possible microframes to schedule those packets
2141  * in.  For this algorithm, if we can schedule the same number of packets for
2142  * each possible scheduling opportunity (each microframe), we will do so.  The
2143  * remaining number of packets will be saved to be transmitted in the gaps in
2144  * the next interval's scheduling sequence.
2145  *
2146  * As we move those remaining packets to be scheduled with interval 2 packets,
2147  * we have to double the number of remaining packets to transmit.  This is
2148  * because the intervals are actually powers of 2, and we would be transmitting
2149  * the previous interval's packets twice in this interval.  We also have to be
2150  * sure that when we look at the largest max packet size for this interval, we
2151  * also look at the largest max packet size for the remaining packets and take
2152  * the greater of the two.
2153  *
2154  * The algorithm continues to evenly distribute packets in each scheduling
2155  * opportunity, and push the remaining packets out, until we get to the last
2156  * interval.  Then those packets and their associated overhead are just added
2157  * to the bandwidth used.
2158  */
2159 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2160                 struct xhci_virt_device *virt_dev,
2161                 int old_active_eps)
2162 {
2163         unsigned int bw_reserved;
2164         unsigned int max_bandwidth;
2165         unsigned int bw_used;
2166         unsigned int block_size;
2167         struct xhci_interval_bw_table *bw_table;
2168         unsigned int packet_size = 0;
2169         unsigned int overhead = 0;
2170         unsigned int packets_transmitted = 0;
2171         unsigned int packets_remaining = 0;
2172         unsigned int i;
2173
2174         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2175                 return xhci_check_ss_bw(xhci, virt_dev);
2176
2177         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2178                 max_bandwidth = HS_BW_LIMIT;
2179                 /* Convert percent of bus BW reserved to blocks reserved */
2180                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2181         } else {
2182                 max_bandwidth = FS_BW_LIMIT;
2183                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2184         }
2185
2186         bw_table = virt_dev->bw_table;
2187         /* We need to translate the max packet size and max ESIT payloads into
2188          * the units the hardware uses.
2189          */
2190         block_size = xhci_get_block_size(virt_dev->udev);
2191
2192         /* If we are manipulating a LS/FS device under a HS hub, double check
2193          * that the HS bus has enough bandwidth if we are activing a new TT.
2194          */
2195         if (virt_dev->tt_info) {
2196                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2197                                 "Recalculating BW for rootport %u",
2198                                 virt_dev->real_port);
2199                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2200                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2201                                         "newly activated TT.\n");
2202                         return -ENOMEM;
2203                 }
2204                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2205                                 "Recalculating BW for TT slot %u port %u",
2206                                 virt_dev->tt_info->slot_id,
2207                                 virt_dev->tt_info->ttport);
2208         } else {
2209                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2210                                 "Recalculating BW for rootport %u",
2211                                 virt_dev->real_port);
2212         }
2213
2214         /* Add in how much bandwidth will be used for interval zero, or the
2215          * rounded max ESIT payload + number of packets * largest overhead.
2216          */
2217         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2218                 bw_table->interval_bw[0].num_packets *
2219                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2220
2221         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2222                 unsigned int bw_added;
2223                 unsigned int largest_mps;
2224                 unsigned int interval_overhead;
2225
2226                 /*
2227                  * How many packets could we transmit in this interval?
2228                  * If packets didn't fit in the previous interval, we will need
2229                  * to transmit that many packets twice within this interval.
2230                  */
2231                 packets_remaining = 2 * packets_remaining +
2232                         bw_table->interval_bw[i].num_packets;
2233
2234                 /* Find the largest max packet size of this or the previous
2235                  * interval.
2236                  */
2237                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2238                         largest_mps = 0;
2239                 else {
2240                         struct xhci_virt_ep *virt_ep;
2241                         struct list_head *ep_entry;
2242
2243                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2244                         virt_ep = list_entry(ep_entry,
2245                                         struct xhci_virt_ep, bw_endpoint_list);
2246                         /* Convert to blocks, rounding up */
2247                         largest_mps = DIV_ROUND_UP(
2248                                         virt_ep->bw_info.max_packet_size,
2249                                         block_size);
2250                 }
2251                 if (largest_mps > packet_size)
2252                         packet_size = largest_mps;
2253
2254                 /* Use the larger overhead of this or the previous interval. */
2255                 interval_overhead = xhci_get_largest_overhead(
2256                                 &bw_table->interval_bw[i]);
2257                 if (interval_overhead > overhead)
2258                         overhead = interval_overhead;
2259
2260                 /* How many packets can we evenly distribute across
2261                  * (1 << (i + 1)) possible scheduling opportunities?
2262                  */
2263                 packets_transmitted = packets_remaining >> (i + 1);
2264
2265                 /* Add in the bandwidth used for those scheduled packets */
2266                 bw_added = packets_transmitted * (overhead + packet_size);
2267
2268                 /* How many packets do we have remaining to transmit? */
2269                 packets_remaining = packets_remaining % (1 << (i + 1));
2270
2271                 /* What largest max packet size should those packets have? */
2272                 /* If we've transmitted all packets, don't carry over the
2273                  * largest packet size.
2274                  */
2275                 if (packets_remaining == 0) {
2276                         packet_size = 0;
2277                         overhead = 0;
2278                 } else if (packets_transmitted > 0) {
2279                         /* Otherwise if we do have remaining packets, and we've
2280                          * scheduled some packets in this interval, take the
2281                          * largest max packet size from endpoints with this
2282                          * interval.
2283                          */
2284                         packet_size = largest_mps;
2285                         overhead = interval_overhead;
2286                 }
2287                 /* Otherwise carry over packet_size and overhead from the last
2288                  * time we had a remainder.
2289                  */
2290                 bw_used += bw_added;
2291                 if (bw_used > max_bandwidth) {
2292                         xhci_warn(xhci, "Not enough bandwidth. "
2293                                         "Proposed: %u, Max: %u\n",
2294                                 bw_used, max_bandwidth);
2295                         return -ENOMEM;
2296                 }
2297         }
2298         /*
2299          * Ok, we know we have some packets left over after even-handedly
2300          * scheduling interval 15.  We don't know which microframes they will
2301          * fit into, so we over-schedule and say they will be scheduled every
2302          * microframe.
2303          */
2304         if (packets_remaining > 0)
2305                 bw_used += overhead + packet_size;
2306
2307         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2308                 unsigned int port_index = virt_dev->real_port - 1;
2309
2310                 /* OK, we're manipulating a HS device attached to a
2311                  * root port bandwidth domain.  Include the number of active TTs
2312                  * in the bandwidth used.
2313                  */
2314                 bw_used += TT_HS_OVERHEAD *
2315                         xhci->rh_bw[port_index].num_active_tts;
2316         }
2317
2318         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2319                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2320                 "Available: %u " "percent",
2321                 bw_used, max_bandwidth, bw_reserved,
2322                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2323                 max_bandwidth);
2324
2325         bw_used += bw_reserved;
2326         if (bw_used > max_bandwidth) {
2327                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2328                                 bw_used, max_bandwidth);
2329                 return -ENOMEM;
2330         }
2331
2332         bw_table->bw_used = bw_used;
2333         return 0;
2334 }
2335
2336 static bool xhci_is_async_ep(unsigned int ep_type)
2337 {
2338         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2339                                         ep_type != ISOC_IN_EP &&
2340                                         ep_type != INT_IN_EP);
2341 }
2342
2343 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2344 {
2345         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2346 }
2347
2348 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2349 {
2350         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2351
2352         if (ep_bw->ep_interval == 0)
2353                 return SS_OVERHEAD_BURST +
2354                         (ep_bw->mult * ep_bw->num_packets *
2355                                         (SS_OVERHEAD + mps));
2356         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2357                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2358                                 1 << ep_bw->ep_interval);
2359
2360 }
2361
2362 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2363                 struct xhci_bw_info *ep_bw,
2364                 struct xhci_interval_bw_table *bw_table,
2365                 struct usb_device *udev,
2366                 struct xhci_virt_ep *virt_ep,
2367                 struct xhci_tt_bw_info *tt_info)
2368 {
2369         struct xhci_interval_bw *interval_bw;
2370         int normalized_interval;
2371
2372         if (xhci_is_async_ep(ep_bw->type))
2373                 return;
2374
2375         if (udev->speed >= USB_SPEED_SUPER) {
2376                 if (xhci_is_sync_in_ep(ep_bw->type))
2377                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2378                                 xhci_get_ss_bw_consumed(ep_bw);
2379                 else
2380                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2381                                 xhci_get_ss_bw_consumed(ep_bw);
2382                 return;
2383         }
2384
2385         /* SuperSpeed endpoints never get added to intervals in the table, so
2386          * this check is only valid for HS/FS/LS devices.
2387          */
2388         if (list_empty(&virt_ep->bw_endpoint_list))
2389                 return;
2390         /* For LS/FS devices, we need to translate the interval expressed in
2391          * microframes to frames.
2392          */
2393         if (udev->speed == USB_SPEED_HIGH)
2394                 normalized_interval = ep_bw->ep_interval;
2395         else
2396                 normalized_interval = ep_bw->ep_interval - 3;
2397
2398         if (normalized_interval == 0)
2399                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2400         interval_bw = &bw_table->interval_bw[normalized_interval];
2401         interval_bw->num_packets -= ep_bw->num_packets;
2402         switch (udev->speed) {
2403         case USB_SPEED_LOW:
2404                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2405                 break;
2406         case USB_SPEED_FULL:
2407                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2408                 break;
2409         case USB_SPEED_HIGH:
2410                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2411                 break;
2412         case USB_SPEED_SUPER:
2413         case USB_SPEED_SUPER_PLUS:
2414         case USB_SPEED_UNKNOWN:
2415         case USB_SPEED_WIRELESS:
2416                 /* Should never happen because only LS/FS/HS endpoints will get
2417                  * added to the endpoint list.
2418                  */
2419                 return;
2420         }
2421         if (tt_info)
2422                 tt_info->active_eps -= 1;
2423         list_del_init(&virt_ep->bw_endpoint_list);
2424 }
2425
2426 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2427                 struct xhci_bw_info *ep_bw,
2428                 struct xhci_interval_bw_table *bw_table,
2429                 struct usb_device *udev,
2430                 struct xhci_virt_ep *virt_ep,
2431                 struct xhci_tt_bw_info *tt_info)
2432 {
2433         struct xhci_interval_bw *interval_bw;
2434         struct xhci_virt_ep *smaller_ep;
2435         int normalized_interval;
2436
2437         if (xhci_is_async_ep(ep_bw->type))
2438                 return;
2439
2440         if (udev->speed == USB_SPEED_SUPER) {
2441                 if (xhci_is_sync_in_ep(ep_bw->type))
2442                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2443                                 xhci_get_ss_bw_consumed(ep_bw);
2444                 else
2445                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2446                                 xhci_get_ss_bw_consumed(ep_bw);
2447                 return;
2448         }
2449
2450         /* For LS/FS devices, we need to translate the interval expressed in
2451          * microframes to frames.
2452          */
2453         if (udev->speed == USB_SPEED_HIGH)
2454                 normalized_interval = ep_bw->ep_interval;
2455         else
2456                 normalized_interval = ep_bw->ep_interval - 3;
2457
2458         if (normalized_interval == 0)
2459                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2460         interval_bw = &bw_table->interval_bw[normalized_interval];
2461         interval_bw->num_packets += ep_bw->num_packets;
2462         switch (udev->speed) {
2463         case USB_SPEED_LOW:
2464                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2465                 break;
2466         case USB_SPEED_FULL:
2467                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2468                 break;
2469         case USB_SPEED_HIGH:
2470                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2471                 break;
2472         case USB_SPEED_SUPER:
2473         case USB_SPEED_SUPER_PLUS:
2474         case USB_SPEED_UNKNOWN:
2475         case USB_SPEED_WIRELESS:
2476                 /* Should never happen because only LS/FS/HS endpoints will get
2477                  * added to the endpoint list.
2478                  */
2479                 return;
2480         }
2481
2482         if (tt_info)
2483                 tt_info->active_eps += 1;
2484         /* Insert the endpoint into the list, largest max packet size first. */
2485         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2486                         bw_endpoint_list) {
2487                 if (ep_bw->max_packet_size >=
2488                                 smaller_ep->bw_info.max_packet_size) {
2489                         /* Add the new ep before the smaller endpoint */
2490                         list_add_tail(&virt_ep->bw_endpoint_list,
2491                                         &smaller_ep->bw_endpoint_list);
2492                         return;
2493                 }
2494         }
2495         /* Add the new endpoint at the end of the list. */
2496         list_add_tail(&virt_ep->bw_endpoint_list,
2497                         &interval_bw->endpoints);
2498 }
2499
2500 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2501                 struct xhci_virt_device *virt_dev,
2502                 int old_active_eps)
2503 {
2504         struct xhci_root_port_bw_info *rh_bw_info;
2505         if (!virt_dev->tt_info)
2506                 return;
2507
2508         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2509         if (old_active_eps == 0 &&
2510                                 virt_dev->tt_info->active_eps != 0) {
2511                 rh_bw_info->num_active_tts += 1;
2512                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2513         } else if (old_active_eps != 0 &&
2514                                 virt_dev->tt_info->active_eps == 0) {
2515                 rh_bw_info->num_active_tts -= 1;
2516                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2517         }
2518 }
2519
2520 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2521                 struct xhci_virt_device *virt_dev,
2522                 struct xhci_container_ctx *in_ctx)
2523 {
2524         struct xhci_bw_info ep_bw_info[31];
2525         int i;
2526         struct xhci_input_control_ctx *ctrl_ctx;
2527         int old_active_eps = 0;
2528
2529         if (virt_dev->tt_info)
2530                 old_active_eps = virt_dev->tt_info->active_eps;
2531
2532         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2533         if (!ctrl_ctx) {
2534                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2535                                 __func__);
2536                 return -ENOMEM;
2537         }
2538
2539         for (i = 0; i < 31; i++) {
2540                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2541                         continue;
2542
2543                 /* Make a copy of the BW info in case we need to revert this */
2544                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2545                                 sizeof(ep_bw_info[i]));
2546                 /* Drop the endpoint from the interval table if the endpoint is
2547                  * being dropped or changed.
2548                  */
2549                 if (EP_IS_DROPPED(ctrl_ctx, i))
2550                         xhci_drop_ep_from_interval_table(xhci,
2551                                         &virt_dev->eps[i].bw_info,
2552                                         virt_dev->bw_table,
2553                                         virt_dev->udev,
2554                                         &virt_dev->eps[i],
2555                                         virt_dev->tt_info);
2556         }
2557         /* Overwrite the information stored in the endpoints' bw_info */
2558         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2559         for (i = 0; i < 31; i++) {
2560                 /* Add any changed or added endpoints to the interval table */
2561                 if (EP_IS_ADDED(ctrl_ctx, i))
2562                         xhci_add_ep_to_interval_table(xhci,
2563                                         &virt_dev->eps[i].bw_info,
2564                                         virt_dev->bw_table,
2565                                         virt_dev->udev,
2566                                         &virt_dev->eps[i],
2567                                         virt_dev->tt_info);
2568         }
2569
2570         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2571                 /* Ok, this fits in the bandwidth we have.
2572                  * Update the number of active TTs.
2573                  */
2574                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2575                 return 0;
2576         }
2577
2578         /* We don't have enough bandwidth for this, revert the stored info. */
2579         for (i = 0; i < 31; i++) {
2580                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2581                         continue;
2582
2583                 /* Drop the new copies of any added or changed endpoints from
2584                  * the interval table.
2585                  */
2586                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2587                         xhci_drop_ep_from_interval_table(xhci,
2588                                         &virt_dev->eps[i].bw_info,
2589                                         virt_dev->bw_table,
2590                                         virt_dev->udev,
2591                                         &virt_dev->eps[i],
2592                                         virt_dev->tt_info);
2593                 }
2594                 /* Revert the endpoint back to its old information */
2595                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2596                                 sizeof(ep_bw_info[i]));
2597                 /* Add any changed or dropped endpoints back into the table */
2598                 if (EP_IS_DROPPED(ctrl_ctx, i))
2599                         xhci_add_ep_to_interval_table(xhci,
2600                                         &virt_dev->eps[i].bw_info,
2601                                         virt_dev->bw_table,
2602                                         virt_dev->udev,
2603                                         &virt_dev->eps[i],
2604                                         virt_dev->tt_info);
2605         }
2606         return -ENOMEM;
2607 }
2608
2609
2610 /* Issue a configure endpoint command or evaluate context command
2611  * and wait for it to finish.
2612  */
2613 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2614                 struct usb_device *udev,
2615                 struct xhci_command *command,
2616                 bool ctx_change, bool must_succeed)
2617 {
2618         int ret;
2619         unsigned long flags;
2620         struct xhci_input_control_ctx *ctrl_ctx;
2621         struct xhci_virt_device *virt_dev;
2622
2623         if (!command)
2624                 return -EINVAL;
2625
2626         spin_lock_irqsave(&xhci->lock, flags);
2627         virt_dev = xhci->devs[udev->slot_id];
2628
2629         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2630         if (!ctrl_ctx) {
2631                 spin_unlock_irqrestore(&xhci->lock, flags);
2632                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2633                                 __func__);
2634                 return -ENOMEM;
2635         }
2636
2637         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2638                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2639                 spin_unlock_irqrestore(&xhci->lock, flags);
2640                 xhci_warn(xhci, "Not enough host resources, "
2641                                 "active endpoint contexts = %u\n",
2642                                 xhci->num_active_eps);
2643                 return -ENOMEM;
2644         }
2645         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2646             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2647                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2648                         xhci_free_host_resources(xhci, ctrl_ctx);
2649                 spin_unlock_irqrestore(&xhci->lock, flags);
2650                 xhci_warn(xhci, "Not enough bandwidth\n");
2651                 return -ENOMEM;
2652         }
2653
2654         if (!ctx_change)
2655                 ret = xhci_queue_configure_endpoint(xhci, command,
2656                                 command->in_ctx->dma,
2657                                 udev->slot_id, must_succeed);
2658         else
2659                 ret = xhci_queue_evaluate_context(xhci, command,
2660                                 command->in_ctx->dma,
2661                                 udev->slot_id, must_succeed);
2662         if (ret < 0) {
2663                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2664                         xhci_free_host_resources(xhci, ctrl_ctx);
2665                 spin_unlock_irqrestore(&xhci->lock, flags);
2666                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2667                                 "FIXME allocate a new ring segment");
2668                 return -ENOMEM;
2669         }
2670         xhci_ring_cmd_db(xhci);
2671         spin_unlock_irqrestore(&xhci->lock, flags);
2672
2673         /* Wait for the configure endpoint command to complete */
2674         wait_for_completion(command->completion);
2675
2676         if (!ctx_change)
2677                 ret = xhci_configure_endpoint_result(xhci, udev,
2678                                                      &command->status);
2679         else
2680                 ret = xhci_evaluate_context_result(xhci, udev,
2681                                                    &command->status);
2682
2683         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2684                 spin_lock_irqsave(&xhci->lock, flags);
2685                 /* If the command failed, remove the reserved resources.
2686                  * Otherwise, clean up the estimate to include dropped eps.
2687                  */
2688                 if (ret)
2689                         xhci_free_host_resources(xhci, ctrl_ctx);
2690                 else
2691                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2692                 spin_unlock_irqrestore(&xhci->lock, flags);
2693         }
2694         return ret;
2695 }
2696
2697 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2698         struct xhci_virt_device *vdev, int i)
2699 {
2700         struct xhci_virt_ep *ep = &vdev->eps[i];
2701
2702         if (ep->ep_state & EP_HAS_STREAMS) {
2703                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2704                                 xhci_get_endpoint_address(i));
2705                 xhci_free_stream_info(xhci, ep->stream_info);
2706                 ep->stream_info = NULL;
2707                 ep->ep_state &= ~EP_HAS_STREAMS;
2708         }
2709 }
2710
2711 /* Called after one or more calls to xhci_add_endpoint() or
2712  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2713  * to call xhci_reset_bandwidth().
2714  *
2715  * Since we are in the middle of changing either configuration or
2716  * installing a new alt setting, the USB core won't allow URBs to be
2717  * enqueued for any endpoint on the old config or interface.  Nothing
2718  * else should be touching the xhci->devs[slot_id] structure, so we
2719  * don't need to take the xhci->lock for manipulating that.
2720  */
2721 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2722 {
2723         int i;
2724         int ret = 0;
2725         struct xhci_hcd *xhci;
2726         struct xhci_virt_device *virt_dev;
2727         struct xhci_input_control_ctx *ctrl_ctx;
2728         struct xhci_slot_ctx *slot_ctx;
2729         struct xhci_command *command;
2730
2731         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2732         if (ret <= 0)
2733                 return ret;
2734         xhci = hcd_to_xhci(hcd);
2735         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2736                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2737                 return -ENODEV;
2738
2739         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2740         virt_dev = xhci->devs[udev->slot_id];
2741
2742         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2743         if (!command)
2744                 return -ENOMEM;
2745
2746         command->in_ctx = virt_dev->in_ctx;
2747
2748         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2749         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2750         if (!ctrl_ctx) {
2751                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2752                                 __func__);
2753                 ret = -ENOMEM;
2754                 goto command_cleanup;
2755         }
2756         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2757         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2758         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2759
2760         /* Don't issue the command if there's no endpoints to update. */
2761         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2762             ctrl_ctx->drop_flags == 0) {
2763                 ret = 0;
2764                 goto command_cleanup;
2765         }
2766         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2767         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2768         for (i = 31; i >= 1; i--) {
2769                 __le32 le32 = cpu_to_le32(BIT(i));
2770
2771                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2772                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2773                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2774                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2775                         break;
2776                 }
2777         }
2778         xhci_dbg(xhci, "New Input Control Context:\n");
2779         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2780                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2781
2782         ret = xhci_configure_endpoint(xhci, udev, command,
2783                         false, false);
2784         if (ret)
2785                 /* Callee should call reset_bandwidth() */
2786                 goto command_cleanup;
2787
2788         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2789         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2790                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2791
2792         /* Free any rings that were dropped, but not changed. */
2793         for (i = 1; i < 31; ++i) {
2794                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2795                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2796                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2797                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2798                 }
2799         }
2800         xhci_zero_in_ctx(xhci, virt_dev);
2801         /*
2802          * Install any rings for completely new endpoints or changed endpoints,
2803          * and free or cache any old rings from changed endpoints.
2804          */
2805         for (i = 1; i < 31; ++i) {
2806                 if (!virt_dev->eps[i].new_ring)
2807                         continue;
2808                 /* Only cache or free the old ring if it exists.
2809                  * It may not if this is the first add of an endpoint.
2810                  */
2811                 if (virt_dev->eps[i].ring) {
2812                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2813                 }
2814                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2815                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2816                 virt_dev->eps[i].new_ring = NULL;
2817         }
2818 command_cleanup:
2819         kfree(command->completion);
2820         kfree(command);
2821
2822         return ret;
2823 }
2824
2825 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2826 {
2827         struct xhci_hcd *xhci;
2828         struct xhci_virt_device *virt_dev;
2829         int i, ret;
2830
2831         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2832         if (ret <= 0)
2833                 return;
2834         xhci = hcd_to_xhci(hcd);
2835
2836         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2837         virt_dev = xhci->devs[udev->slot_id];
2838         /* Free any rings allocated for added endpoints */
2839         for (i = 0; i < 31; ++i) {
2840                 if (virt_dev->eps[i].new_ring) {
2841                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2842                         virt_dev->eps[i].new_ring = NULL;
2843                 }
2844         }
2845         xhci_zero_in_ctx(xhci, virt_dev);
2846 }
2847
2848 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2849                 struct xhci_container_ctx *in_ctx,
2850                 struct xhci_container_ctx *out_ctx,
2851                 struct xhci_input_control_ctx *ctrl_ctx,
2852                 u32 add_flags, u32 drop_flags)
2853 {
2854         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2855         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2856         xhci_slot_copy(xhci, in_ctx, out_ctx);
2857         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2858
2859         xhci_dbg(xhci, "Input Context:\n");
2860         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2861 }
2862
2863 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2864                 unsigned int slot_id, unsigned int ep_index,
2865                 struct xhci_dequeue_state *deq_state)
2866 {
2867         struct xhci_input_control_ctx *ctrl_ctx;
2868         struct xhci_container_ctx *in_ctx;
2869         struct xhci_ep_ctx *ep_ctx;
2870         u32 added_ctxs;
2871         dma_addr_t addr;
2872
2873         in_ctx = xhci->devs[slot_id]->in_ctx;
2874         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2875         if (!ctrl_ctx) {
2876                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2877                                 __func__);
2878                 return;
2879         }
2880
2881         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2882                         xhci->devs[slot_id]->out_ctx, ep_index);
2883         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2884         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2885                         deq_state->new_deq_ptr);
2886         if (addr == 0) {
2887                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2888                                 "reset ep command\n");
2889                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2890                                 deq_state->new_deq_seg,
2891                                 deq_state->new_deq_ptr);
2892                 return;
2893         }
2894         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2895
2896         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2897         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2898                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2899                         added_ctxs, added_ctxs);
2900 }
2901
2902 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2903                         unsigned int ep_index, struct xhci_td *td)
2904 {
2905         struct xhci_dequeue_state deq_state;
2906         struct xhci_virt_ep *ep;
2907         struct usb_device *udev = td->urb->dev;
2908
2909         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2910                         "Cleaning up stalled endpoint ring");
2911         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2912         /* We need to move the HW's dequeue pointer past this TD,
2913          * or it will attempt to resend it on the next doorbell ring.
2914          */
2915         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2916                         ep_index, ep->stopped_stream, td, &deq_state);
2917
2918         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2919                 return;
2920
2921         /* HW with the reset endpoint quirk will use the saved dequeue state to
2922          * issue a configure endpoint command later.
2923          */
2924         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2925                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2926                                 "Queueing new dequeue state");
2927                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2928                                 ep_index, ep->stopped_stream, &deq_state);
2929         } else {
2930                 /* Better hope no one uses the input context between now and the
2931                  * reset endpoint completion!
2932                  * XXX: No idea how this hardware will react when stream rings
2933                  * are enabled.
2934                  */
2935                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2936                                 "Setting up input context for "
2937                                 "configure endpoint command");
2938                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2939                                 ep_index, &deq_state);
2940         }
2941 }
2942
2943 /* Called when clearing halted device. The core should have sent the control
2944  * message to clear the device halt condition. The host side of the halt should
2945  * already be cleared with a reset endpoint command issued when the STALL tx
2946  * event was received.
2947  *
2948  * Context: in_interrupt
2949  */
2950
2951 void xhci_endpoint_reset(struct usb_hcd *hcd,
2952                 struct usb_host_endpoint *ep)
2953 {
2954         struct xhci_hcd *xhci;
2955
2956         xhci = hcd_to_xhci(hcd);
2957
2958         /*
2959          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2960          * The Reset Endpoint Command may only be issued to endpoints in the
2961          * Halted state. If software wishes reset the Data Toggle or Sequence
2962          * Number of an endpoint that isn't in the Halted state, then software
2963          * may issue a Configure Endpoint Command with the Drop and Add bits set
2964          * for the target endpoint. that is in the Stopped state.
2965          */
2966
2967         /* For now just print debug to follow the situation */
2968         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2969                  ep->desc.bEndpointAddress);
2970 }
2971
2972 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2973                 struct usb_device *udev, struct usb_host_endpoint *ep,
2974                 unsigned int slot_id)
2975 {
2976         int ret;
2977         unsigned int ep_index;
2978         unsigned int ep_state;
2979
2980         if (!ep)
2981                 return -EINVAL;
2982         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2983         if (ret <= 0)
2984                 return -EINVAL;
2985         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2986                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2987                                 " descriptor for ep 0x%x does not support streams\n",
2988                                 ep->desc.bEndpointAddress);
2989                 return -EINVAL;
2990         }
2991
2992         ep_index = xhci_get_endpoint_index(&ep->desc);
2993         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2994         if (ep_state & EP_HAS_STREAMS ||
2995                         ep_state & EP_GETTING_STREAMS) {
2996                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2997                                 "already has streams set up.\n",
2998                                 ep->desc.bEndpointAddress);
2999                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3000                                 "dynamic stream context array reallocation.\n");
3001                 return -EINVAL;
3002         }
3003         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3004                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3005                                 "endpoint 0x%x; URBs are pending.\n",
3006                                 ep->desc.bEndpointAddress);
3007                 return -EINVAL;
3008         }
3009         return 0;
3010 }
3011
3012 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3013                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3014 {
3015         unsigned int max_streams;
3016
3017         /* The stream context array size must be a power of two */
3018         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3019         /*
3020          * Find out how many primary stream array entries the host controller
3021          * supports.  Later we may use secondary stream arrays (similar to 2nd
3022          * level page entries), but that's an optional feature for xHCI host
3023          * controllers. xHCs must support at least 4 stream IDs.
3024          */
3025         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3026         if (*num_stream_ctxs > max_streams) {
3027                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3028                                 max_streams);
3029                 *num_stream_ctxs = max_streams;
3030                 *num_streams = max_streams;
3031         }
3032 }
3033
3034 /* Returns an error code if one of the endpoint already has streams.
3035  * This does not change any data structures, it only checks and gathers
3036  * information.
3037  */
3038 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3039                 struct usb_device *udev,
3040                 struct usb_host_endpoint **eps, unsigned int num_eps,
3041                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3042 {
3043         unsigned int max_streams;
3044         unsigned int endpoint_flag;
3045         int i;
3046         int ret;
3047
3048         for (i = 0; i < num_eps; i++) {
3049                 ret = xhci_check_streams_endpoint(xhci, udev,
3050                                 eps[i], udev->slot_id);
3051                 if (ret < 0)
3052                         return ret;
3053
3054                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3055                 if (max_streams < (*num_streams - 1)) {
3056                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3057                                         eps[i]->desc.bEndpointAddress,
3058                                         max_streams);
3059                         *num_streams = max_streams+1;
3060                 }
3061
3062                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3063                 if (*changed_ep_bitmask & endpoint_flag)
3064                         return -EINVAL;
3065                 *changed_ep_bitmask |= endpoint_flag;
3066         }
3067         return 0;
3068 }
3069
3070 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3071                 struct usb_device *udev,
3072                 struct usb_host_endpoint **eps, unsigned int num_eps)
3073 {
3074         u32 changed_ep_bitmask = 0;
3075         unsigned int slot_id;
3076         unsigned int ep_index;
3077         unsigned int ep_state;
3078         int i;
3079
3080         slot_id = udev->slot_id;
3081         if (!xhci->devs[slot_id])
3082                 return 0;
3083
3084         for (i = 0; i < num_eps; i++) {
3085                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3086                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3087                 /* Are streams already being freed for the endpoint? */
3088                 if (ep_state & EP_GETTING_NO_STREAMS) {
3089                         xhci_warn(xhci, "WARN Can't disable streams for "
3090                                         "endpoint 0x%x, "
3091                                         "streams are being disabled already\n",
3092                                         eps[i]->desc.bEndpointAddress);
3093                         return 0;
3094                 }
3095                 /* Are there actually any streams to free? */
3096                 if (!(ep_state & EP_HAS_STREAMS) &&
3097                                 !(ep_state & EP_GETTING_STREAMS)) {
3098                         xhci_warn(xhci, "WARN Can't disable streams for "
3099                                         "endpoint 0x%x, "
3100                                         "streams are already disabled!\n",
3101                                         eps[i]->desc.bEndpointAddress);
3102                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3103                                         "with non-streams endpoint\n");
3104                         return 0;
3105                 }
3106                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3107         }
3108         return changed_ep_bitmask;
3109 }
3110
3111 /*
3112  * The USB device drivers use this function (through the HCD interface in USB
3113  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3114  * coordinate mass storage command queueing across multiple endpoints (basically
3115  * a stream ID == a task ID).
3116  *
3117  * Setting up streams involves allocating the same size stream context array
3118  * for each endpoint and issuing a configure endpoint command for all endpoints.
3119  *
3120  * Don't allow the call to succeed if one endpoint only supports one stream
3121  * (which means it doesn't support streams at all).
3122  *
3123  * Drivers may get less stream IDs than they asked for, if the host controller
3124  * hardware or endpoints claim they can't support the number of requested
3125  * stream IDs.
3126  */
3127 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3128                 struct usb_host_endpoint **eps, unsigned int num_eps,
3129                 unsigned int num_streams, gfp_t mem_flags)
3130 {
3131         int i, ret;
3132         struct xhci_hcd *xhci;
3133         struct xhci_virt_device *vdev;
3134         struct xhci_command *config_cmd;
3135         struct xhci_input_control_ctx *ctrl_ctx;
3136         unsigned int ep_index;
3137         unsigned int num_stream_ctxs;
3138         unsigned int max_packet;
3139         unsigned long flags;
3140         u32 changed_ep_bitmask = 0;
3141
3142         if (!eps)
3143                 return -EINVAL;
3144
3145         /* Add one to the number of streams requested to account for
3146          * stream 0 that is reserved for xHCI usage.
3147          */
3148         num_streams += 1;
3149         xhci = hcd_to_xhci(hcd);
3150         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3151                         num_streams);
3152
3153         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3154         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3155                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3156                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3157                 return -ENOSYS;
3158         }
3159
3160         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3161         if (!config_cmd) {
3162                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3163                 return -ENOMEM;
3164         }
3165         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3166         if (!ctrl_ctx) {
3167                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3168                                 __func__);
3169                 xhci_free_command(xhci, config_cmd);
3170                 return -ENOMEM;
3171         }
3172
3173         /* Check to make sure all endpoints are not already configured for
3174          * streams.  While we're at it, find the maximum number of streams that
3175          * all the endpoints will support and check for duplicate endpoints.
3176          */
3177         spin_lock_irqsave(&xhci->lock, flags);
3178         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3179                         num_eps, &num_streams, &changed_ep_bitmask);
3180         if (ret < 0) {
3181                 xhci_free_command(xhci, config_cmd);
3182                 spin_unlock_irqrestore(&xhci->lock, flags);
3183                 return ret;
3184         }
3185         if (num_streams <= 1) {
3186                 xhci_warn(xhci, "WARN: endpoints can't handle "
3187                                 "more than one stream.\n");
3188                 xhci_free_command(xhci, config_cmd);
3189                 spin_unlock_irqrestore(&xhci->lock, flags);
3190                 return -EINVAL;
3191         }
3192         vdev = xhci->devs[udev->slot_id];
3193         /* Mark each endpoint as being in transition, so
3194          * xhci_urb_enqueue() will reject all URBs.
3195          */
3196         for (i = 0; i < num_eps; i++) {
3197                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3198                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3199         }
3200         spin_unlock_irqrestore(&xhci->lock, flags);
3201
3202         /* Setup internal data structures and allocate HW data structures for
3203          * streams (but don't install the HW structures in the input context
3204          * until we're sure all memory allocation succeeded).
3205          */
3206         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3207         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3208                         num_stream_ctxs, num_streams);
3209
3210         for (i = 0; i < num_eps; i++) {
3211                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3212                 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
3213                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3214                                 num_stream_ctxs,
3215                                 num_streams,
3216                                 max_packet, mem_flags);
3217                 if (!vdev->eps[ep_index].stream_info)
3218                         goto cleanup;
3219                 /* Set maxPstreams in endpoint context and update deq ptr to
3220                  * point to stream context array. FIXME
3221                  */
3222         }
3223
3224         /* Set up the input context for a configure endpoint command. */
3225         for (i = 0; i < num_eps; i++) {
3226                 struct xhci_ep_ctx *ep_ctx;
3227
3228                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3229                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3230
3231                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3232                                 vdev->out_ctx, ep_index);
3233                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3234                                 vdev->eps[ep_index].stream_info);
3235         }
3236         /* Tell the HW to drop its old copy of the endpoint context info
3237          * and add the updated copy from the input context.
3238          */
3239         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3240                         vdev->out_ctx, ctrl_ctx,
3241                         changed_ep_bitmask, changed_ep_bitmask);
3242
3243         /* Issue and wait for the configure endpoint command */
3244         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3245                         false, false);
3246
3247         /* xHC rejected the configure endpoint command for some reason, so we
3248          * leave the old ring intact and free our internal streams data
3249          * structure.
3250          */
3251         if (ret < 0)
3252                 goto cleanup;
3253
3254         spin_lock_irqsave(&xhci->lock, flags);
3255         for (i = 0; i < num_eps; i++) {
3256                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3257                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3258                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3259                          udev->slot_id, ep_index);
3260                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3261         }
3262         xhci_free_command(xhci, config_cmd);
3263         spin_unlock_irqrestore(&xhci->lock, flags);
3264
3265         /* Subtract 1 for stream 0, which drivers can't use */
3266         return num_streams - 1;
3267
3268 cleanup:
3269         /* If it didn't work, free the streams! */
3270         for (i = 0; i < num_eps; i++) {
3271                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3272                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3273                 vdev->eps[ep_index].stream_info = NULL;
3274                 /* FIXME Unset maxPstreams in endpoint context and
3275                  * update deq ptr to point to normal string ring.
3276                  */
3277                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3278                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3279                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3280         }
3281         xhci_free_command(xhci, config_cmd);
3282         return -ENOMEM;
3283 }
3284
3285 /* Transition the endpoint from using streams to being a "normal" endpoint
3286  * without streams.
3287  *
3288  * Modify the endpoint context state, submit a configure endpoint command,
3289  * and free all endpoint rings for streams if that completes successfully.
3290  */
3291 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3292                 struct usb_host_endpoint **eps, unsigned int num_eps,
3293                 gfp_t mem_flags)
3294 {
3295         int i, ret;
3296         struct xhci_hcd *xhci;
3297         struct xhci_virt_device *vdev;
3298         struct xhci_command *command;
3299         struct xhci_input_control_ctx *ctrl_ctx;
3300         unsigned int ep_index;
3301         unsigned long flags;
3302         u32 changed_ep_bitmask;
3303
3304         xhci = hcd_to_xhci(hcd);
3305         vdev = xhci->devs[udev->slot_id];
3306
3307         /* Set up a configure endpoint command to remove the streams rings */
3308         spin_lock_irqsave(&xhci->lock, flags);
3309         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3310                         udev, eps, num_eps);
3311         if (changed_ep_bitmask == 0) {
3312                 spin_unlock_irqrestore(&xhci->lock, flags);
3313                 return -EINVAL;
3314         }
3315
3316         /* Use the xhci_command structure from the first endpoint.  We may have
3317          * allocated too many, but the driver may call xhci_free_streams() for
3318          * each endpoint it grouped into one call to xhci_alloc_streams().
3319          */
3320         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3321         command = vdev->eps[ep_index].stream_info->free_streams_command;
3322         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3323         if (!ctrl_ctx) {
3324                 spin_unlock_irqrestore(&xhci->lock, flags);
3325                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3326                                 __func__);
3327                 return -EINVAL;
3328         }
3329
3330         for (i = 0; i < num_eps; i++) {
3331                 struct xhci_ep_ctx *ep_ctx;
3332
3333                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3334                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3335                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3336                         EP_GETTING_NO_STREAMS;
3337
3338                 xhci_endpoint_copy(xhci, command->in_ctx,
3339                                 vdev->out_ctx, ep_index);
3340                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3341                                 &vdev->eps[ep_index]);
3342         }
3343         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3344                         vdev->out_ctx, ctrl_ctx,
3345                         changed_ep_bitmask, changed_ep_bitmask);
3346         spin_unlock_irqrestore(&xhci->lock, flags);
3347
3348         /* Issue and wait for the configure endpoint command,
3349          * which must succeed.
3350          */
3351         ret = xhci_configure_endpoint(xhci, udev, command,
3352                         false, true);
3353
3354         /* xHC rejected the configure endpoint command for some reason, so we
3355          * leave the streams rings intact.
3356          */
3357         if (ret < 0)
3358                 return ret;
3359
3360         spin_lock_irqsave(&xhci->lock, flags);
3361         for (i = 0; i < num_eps; i++) {
3362                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3363                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3364                 vdev->eps[ep_index].stream_info = NULL;
3365                 /* FIXME Unset maxPstreams in endpoint context and
3366                  * update deq ptr to point to normal string ring.
3367                  */
3368                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3369                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3370         }
3371         spin_unlock_irqrestore(&xhci->lock, flags);
3372
3373         return 0;
3374 }
3375
3376 /*
3377  * Deletes endpoint resources for endpoints that were active before a Reset
3378  * Device command, or a Disable Slot command.  The Reset Device command leaves
3379  * the control endpoint intact, whereas the Disable Slot command deletes it.
3380  *
3381  * Must be called with xhci->lock held.
3382  */
3383 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3384         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3385 {
3386         int i;
3387         unsigned int num_dropped_eps = 0;
3388         unsigned int drop_flags = 0;
3389
3390         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3391                 if (virt_dev->eps[i].ring) {
3392                         drop_flags |= 1 << i;
3393                         num_dropped_eps++;
3394                 }
3395         }
3396         xhci->num_active_eps -= num_dropped_eps;
3397         if (num_dropped_eps)
3398                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3399                                 "Dropped %u ep ctxs, flags = 0x%x, "
3400                                 "%u now active.",
3401                                 num_dropped_eps, drop_flags,
3402                                 xhci->num_active_eps);
3403 }
3404
3405 /*
3406  * This submits a Reset Device Command, which will set the device state to 0,
3407  * set the device address to 0, and disable all the endpoints except the default
3408  * control endpoint.  The USB core should come back and call
3409  * xhci_address_device(), and then re-set up the configuration.  If this is
3410  * called because of a usb_reset_and_verify_device(), then the old alternate
3411  * settings will be re-installed through the normal bandwidth allocation
3412  * functions.
3413  *
3414  * Wait for the Reset Device command to finish.  Remove all structures
3415  * associated with the endpoints that were disabled.  Clear the input device
3416  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3417  *
3418  * If the virt_dev to be reset does not exist or does not match the udev,
3419  * it means the device is lost, possibly due to the xHC restore error and
3420  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3421  * re-allocate the device.
3422  */
3423 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3424 {
3425         int ret, i;
3426         unsigned long flags;
3427         struct xhci_hcd *xhci;
3428         unsigned int slot_id;
3429         struct xhci_virt_device *virt_dev;
3430         struct xhci_command *reset_device_cmd;
3431         int last_freed_endpoint;
3432         struct xhci_slot_ctx *slot_ctx;
3433         int old_active_eps = 0;
3434
3435         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3436         if (ret <= 0)
3437                 return ret;
3438         xhci = hcd_to_xhci(hcd);
3439         slot_id = udev->slot_id;
3440         virt_dev = xhci->devs[slot_id];
3441         if (!virt_dev) {
3442                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3443                                 "not exist. Re-allocate the device\n", slot_id);
3444                 ret = xhci_alloc_dev(hcd, udev);
3445                 if (ret == 1)
3446                         return 0;
3447                 else
3448                         return -EINVAL;
3449         }
3450
3451         if (virt_dev->tt_info)
3452                 old_active_eps = virt_dev->tt_info->active_eps;
3453
3454         if (virt_dev->udev != udev) {
3455                 /* If the virt_dev and the udev does not match, this virt_dev
3456                  * may belong to another udev.
3457                  * Re-allocate the device.
3458                  */
3459                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3460                                 "not match the udev. Re-allocate the device\n",
3461                                 slot_id);
3462                 ret = xhci_alloc_dev(hcd, udev);
3463                 if (ret == 1)
3464                         return 0;
3465                 else
3466                         return -EINVAL;
3467         }
3468
3469         /* If device is not setup, there is no point in resetting it */
3470         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3471         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3472                                                 SLOT_STATE_DISABLED)
3473                 return 0;
3474
3475         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3476         /* Allocate the command structure that holds the struct completion.
3477          * Assume we're in process context, since the normal device reset
3478          * process has to wait for the device anyway.  Storage devices are
3479          * reset as part of error handling, so use GFP_NOIO instead of
3480          * GFP_KERNEL.
3481          */
3482         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3483         if (!reset_device_cmd) {
3484                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3485                 return -ENOMEM;
3486         }
3487
3488         /* Attempt to submit the Reset Device command to the command ring */
3489         spin_lock_irqsave(&xhci->lock, flags);
3490
3491         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3492         if (ret) {
3493                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3494                 spin_unlock_irqrestore(&xhci->lock, flags);
3495                 goto command_cleanup;
3496         }
3497         xhci_ring_cmd_db(xhci);
3498         spin_unlock_irqrestore(&xhci->lock, flags);
3499
3500         /* Wait for the Reset Device command to finish */
3501         wait_for_completion(reset_device_cmd->completion);
3502
3503         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3504          * unless we tried to reset a slot ID that wasn't enabled,
3505          * or the device wasn't in the addressed or configured state.
3506          */
3507         ret = reset_device_cmd->status;
3508         switch (ret) {
3509         case COMP_CMD_ABORT:
3510         case COMP_CMD_STOP:
3511                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3512                 ret = -ETIME;
3513                 goto command_cleanup;
3514         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3515         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3516                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3517                                 slot_id,
3518                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3519                 xhci_dbg(xhci, "Not freeing device rings.\n");
3520                 /* Don't treat this as an error.  May change my mind later. */
3521                 ret = 0;
3522                 goto command_cleanup;
3523         case COMP_SUCCESS:
3524                 xhci_dbg(xhci, "Successful reset device command.\n");
3525                 break;
3526         default:
3527                 if (xhci_is_vendor_info_code(xhci, ret))
3528                         break;
3529                 xhci_warn(xhci, "Unknown completion code %u for "
3530                                 "reset device command.\n", ret);
3531                 ret = -EINVAL;
3532                 goto command_cleanup;
3533         }
3534
3535         /* Free up host controller endpoint resources */
3536         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3537                 spin_lock_irqsave(&xhci->lock, flags);
3538                 /* Don't delete the default control endpoint resources */
3539                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3540                 spin_unlock_irqrestore(&xhci->lock, flags);
3541         }
3542
3543         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3544         last_freed_endpoint = 1;
3545         for (i = 1; i < 31; ++i) {
3546                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3547
3548                 if (ep->ep_state & EP_HAS_STREAMS) {
3549                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3550                                         xhci_get_endpoint_address(i));
3551                         xhci_free_stream_info(xhci, ep->stream_info);
3552                         ep->stream_info = NULL;
3553                         ep->ep_state &= ~EP_HAS_STREAMS;
3554                 }
3555
3556                 if (ep->ring) {
3557                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3558                         last_freed_endpoint = i;
3559                 }
3560                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3561                         xhci_drop_ep_from_interval_table(xhci,
3562                                         &virt_dev->eps[i].bw_info,
3563                                         virt_dev->bw_table,
3564                                         udev,
3565                                         &virt_dev->eps[i],
3566                                         virt_dev->tt_info);
3567                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3568         }
3569         /* If necessary, update the number of active TTs on this root port */
3570         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3571
3572         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3573         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3574         ret = 0;
3575
3576 command_cleanup:
3577         xhci_free_command(xhci, reset_device_cmd);
3578         return ret;
3579 }
3580
3581 /*
3582  * At this point, the struct usb_device is about to go away, the device has
3583  * disconnected, and all traffic has been stopped and the endpoints have been
3584  * disabled.  Free any HC data structures associated with that device.
3585  */
3586 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3587 {
3588         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3589         struct xhci_virt_device *virt_dev;
3590         unsigned long flags;
3591         u32 state;
3592         int i, ret;
3593         struct xhci_command *command;
3594
3595         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3596         if (!command)
3597                 return;
3598
3599 #ifndef CONFIG_USB_DEFAULT_PERSIST
3600         /*
3601          * We called pm_runtime_get_noresume when the device was attached.
3602          * Decrement the counter here to allow controller to runtime suspend
3603          * if no devices remain.
3604          */
3605         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3606                 pm_runtime_put_noidle(hcd->self.controller);
3607 #endif
3608
3609         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3610         /* If the host is halted due to driver unload, we still need to free the
3611          * device.
3612          */
3613         if (ret <= 0 && ret != -ENODEV) {
3614                 kfree(command);
3615                 return;
3616         }
3617
3618         virt_dev = xhci->devs[udev->slot_id];
3619
3620         /* Stop any wayward timer functions (which may grab the lock) */
3621         for (i = 0; i < 31; ++i) {
3622                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3623                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3624         }
3625
3626         spin_lock_irqsave(&xhci->lock, flags);
3627         /* Don't disable the slot if the host controller is dead. */
3628         state = readl(&xhci->op_regs->status);
3629         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3630                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3631                 xhci_free_virt_device(xhci, udev->slot_id);
3632                 spin_unlock_irqrestore(&xhci->lock, flags);
3633                 kfree(command);
3634                 return;
3635         }
3636
3637         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3638                                     udev->slot_id)) {
3639                 spin_unlock_irqrestore(&xhci->lock, flags);
3640                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3641                 return;
3642         }
3643         xhci_ring_cmd_db(xhci);
3644         spin_unlock_irqrestore(&xhci->lock, flags);
3645
3646         /*
3647          * Event command completion handler will free any data structures
3648          * associated with the slot.  XXX Can free sleep?
3649          */
3650 }
3651
3652 /*
3653  * Checks if we have enough host controller resources for the default control
3654  * endpoint.
3655  *
3656  * Must be called with xhci->lock held.
3657  */
3658 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3659 {
3660         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3661                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3662                                 "Not enough ep ctxs: "
3663                                 "%u active, need to add 1, limit is %u.",
3664                                 xhci->num_active_eps, xhci->limit_active_eps);
3665                 return -ENOMEM;
3666         }
3667         xhci->num_active_eps += 1;
3668         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3669                         "Adding 1 ep ctx, %u now active.",
3670                         xhci->num_active_eps);
3671         return 0;
3672 }
3673
3674
3675 /*
3676  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3677  * timed out, or allocating memory failed.  Returns 1 on success.
3678  */
3679 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3680 {
3681         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3682         unsigned long flags;
3683         int ret, slot_id;
3684         struct xhci_command *command;
3685
3686         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3687         if (!command)
3688                 return 0;
3689
3690         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3691         mutex_lock(&xhci->mutex);
3692         spin_lock_irqsave(&xhci->lock, flags);
3693         command->completion = &xhci->addr_dev;
3694         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3695         if (ret) {
3696                 spin_unlock_irqrestore(&xhci->lock, flags);
3697                 mutex_unlock(&xhci->mutex);
3698                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3699                 kfree(command);
3700                 return 0;
3701         }
3702         xhci_ring_cmd_db(xhci);
3703         spin_unlock_irqrestore(&xhci->lock, flags);
3704
3705         wait_for_completion(command->completion);
3706         slot_id = xhci->slot_id;
3707         mutex_unlock(&xhci->mutex);
3708
3709         if (!slot_id || command->status != COMP_SUCCESS) {
3710                 xhci_err(xhci, "Error while assigning device slot ID\n");
3711                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3712                                 HCS_MAX_SLOTS(
3713                                         readl(&xhci->cap_regs->hcs_params1)));
3714                 kfree(command);
3715                 return 0;
3716         }
3717
3718         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3719                 spin_lock_irqsave(&xhci->lock, flags);
3720                 ret = xhci_reserve_host_control_ep_resources(xhci);
3721                 if (ret) {
3722                         spin_unlock_irqrestore(&xhci->lock, flags);
3723                         xhci_warn(xhci, "Not enough host resources, "
3724                                         "active endpoint contexts = %u\n",
3725                                         xhci->num_active_eps);
3726                         goto disable_slot;
3727                 }
3728                 spin_unlock_irqrestore(&xhci->lock, flags);
3729         }
3730         /* Use GFP_NOIO, since this function can be called from
3731          * xhci_discover_or_reset_device(), which may be called as part of
3732          * mass storage driver error handling.
3733          */
3734         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3735                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3736                 goto disable_slot;
3737         }
3738         udev->slot_id = slot_id;
3739
3740 #ifndef CONFIG_USB_DEFAULT_PERSIST
3741         /*
3742          * If resetting upon resume, we can't put the controller into runtime
3743          * suspend if there is a device attached.
3744          */
3745         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3746                 pm_runtime_get_noresume(hcd->self.controller);
3747 #endif
3748
3749
3750         kfree(command);
3751         /* Is this a LS or FS device under a HS hub? */
3752         /* Hub or peripherial? */
3753         return 1;
3754
3755 disable_slot:
3756         /* Disable slot, if we can do it without mem alloc */
3757         spin_lock_irqsave(&xhci->lock, flags);
3758         command->completion = NULL;
3759         command->status = 0;
3760         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3761                                      udev->slot_id))
3762                 xhci_ring_cmd_db(xhci);
3763         spin_unlock_irqrestore(&xhci->lock, flags);
3764         return 0;
3765 }
3766
3767 /*
3768  * Issue an Address Device command and optionally send a corresponding
3769  * SetAddress request to the device.
3770  */
3771 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3772                              enum xhci_setup_dev setup)
3773 {
3774         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3775         unsigned long flags;
3776         struct xhci_virt_device *virt_dev;
3777         int ret = 0;
3778         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3779         struct xhci_slot_ctx *slot_ctx;
3780         struct xhci_input_control_ctx *ctrl_ctx;
3781         u64 temp_64;
3782         struct xhci_command *command = NULL;
3783
3784         mutex_lock(&xhci->mutex);
3785
3786         if (xhci->xhc_state)    /* dying, removing or halted */
3787                 goto out;
3788
3789         if (!udev->slot_id) {
3790                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3791                                 "Bad Slot ID %d", udev->slot_id);
3792                 ret = -EINVAL;
3793                 goto out;
3794         }
3795
3796         virt_dev = xhci->devs[udev->slot_id];
3797
3798         if (WARN_ON(!virt_dev)) {
3799                 /*
3800                  * In plug/unplug torture test with an NEC controller,
3801                  * a zero-dereference was observed once due to virt_dev = 0.
3802                  * Print useful debug rather than crash if it is observed again!
3803                  */
3804                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3805                         udev->slot_id);
3806                 ret = -EINVAL;
3807                 goto out;
3808         }
3809
3810         if (setup == SETUP_CONTEXT_ONLY) {
3811                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3812                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3813                     SLOT_STATE_DEFAULT) {
3814                         xhci_dbg(xhci, "Slot already in default state\n");
3815                         goto out;
3816                 }
3817         }
3818
3819         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3820         if (!command) {
3821                 ret = -ENOMEM;
3822                 goto out;
3823         }
3824
3825         command->in_ctx = virt_dev->in_ctx;
3826         command->completion = &xhci->addr_dev;
3827
3828         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3829         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3830         if (!ctrl_ctx) {
3831                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3832                                 __func__);
3833                 ret = -EINVAL;
3834                 goto out;
3835         }
3836         /*
3837          * If this is the first Set Address since device plug-in or
3838          * virt_device realloaction after a resume with an xHCI power loss,
3839          * then set up the slot context.
3840          */
3841         if (!slot_ctx->dev_info)
3842                 xhci_setup_addressable_virt_dev(xhci, udev);
3843         /* Otherwise, update the control endpoint ring enqueue pointer. */
3844         else
3845                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3846         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3847         ctrl_ctx->drop_flags = 0;
3848
3849         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3850         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3851         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3852                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3853
3854         spin_lock_irqsave(&xhci->lock, flags);
3855         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3856                                         udev->slot_id, setup);
3857         if (ret) {
3858                 spin_unlock_irqrestore(&xhci->lock, flags);
3859                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3860                                 "FIXME: allocate a command ring segment");
3861                 goto out;
3862         }
3863         xhci_ring_cmd_db(xhci);
3864         spin_unlock_irqrestore(&xhci->lock, flags);
3865
3866         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3867         wait_for_completion(command->completion);
3868
3869         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3870          * the SetAddress() "recovery interval" required by USB and aborting the
3871          * command on a timeout.
3872          */
3873         switch (command->status) {
3874         case COMP_CMD_ABORT:
3875         case COMP_CMD_STOP:
3876                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3877                 ret = -ETIME;
3878                 break;
3879         case COMP_CTX_STATE:
3880         case COMP_EBADSLT:
3881                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3882                          act, udev->slot_id);
3883                 ret = -EINVAL;
3884                 break;
3885         case COMP_TX_ERR:
3886                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3887                 ret = -EPROTO;
3888                 break;
3889         case COMP_DEV_ERR:
3890                 dev_warn(&udev->dev,
3891                          "ERROR: Incompatible device for setup %s command\n", act);
3892                 ret = -ENODEV;
3893                 break;
3894         case COMP_SUCCESS:
3895                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3896                                "Successful setup %s command", act);
3897                 break;
3898         default:
3899                 xhci_err(xhci,
3900                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3901                          act, command->status);
3902                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3903                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3904                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3905                 ret = -EINVAL;
3906                 break;
3907         }
3908         if (ret)
3909                 goto out;
3910         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3911         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3912                         "Op regs DCBAA ptr = %#016llx", temp_64);
3913         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3914                 "Slot ID %d dcbaa entry @%p = %#016llx",
3915                 udev->slot_id,
3916                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3917                 (unsigned long long)
3918                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3919         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3920                         "Output Context DMA address = %#08llx",
3921                         (unsigned long long)virt_dev->out_ctx->dma);
3922         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3923         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3924         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3925                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3926         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3927         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3928         /*
3929          * USB core uses address 1 for the roothubs, so we add one to the
3930          * address given back to us by the HC.
3931          */
3932         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3933         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3934                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3935         /* Zero the input context control for later use */
3936         ctrl_ctx->add_flags = 0;
3937         ctrl_ctx->drop_flags = 0;
3938
3939         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3940                        "Internal device address = %d",
3941                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3942 out:
3943         mutex_unlock(&xhci->mutex);
3944         kfree(command);
3945         return ret;
3946 }
3947
3948 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3949 {
3950         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3951 }
3952
3953 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3954 {
3955         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3956 }
3957
3958 /*
3959  * Transfer the port index into real index in the HW port status
3960  * registers. Caculate offset between the port's PORTSC register
3961  * and port status base. Divide the number of per port register
3962  * to get the real index. The raw port number bases 1.
3963  */
3964 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3965 {
3966         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3967         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3968         __le32 __iomem *addr;
3969         int raw_port;
3970
3971         if (hcd->speed < HCD_USB3)
3972                 addr = xhci->usb2_ports[port1 - 1];
3973         else
3974                 addr = xhci->usb3_ports[port1 - 1];
3975
3976         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3977         return raw_port;
3978 }
3979
3980 /*
3981  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3982  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3983  */
3984 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3985                         struct usb_device *udev, u16 max_exit_latency)
3986 {
3987         struct xhci_virt_device *virt_dev;
3988         struct xhci_command *command;
3989         struct xhci_input_control_ctx *ctrl_ctx;
3990         struct xhci_slot_ctx *slot_ctx;
3991         unsigned long flags;
3992         int ret;
3993
3994         spin_lock_irqsave(&xhci->lock, flags);
3995
3996         virt_dev = xhci->devs[udev->slot_id];
3997
3998         /*
3999          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4000          * xHC was re-initialized. Exit latency will be set later after
4001          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4002          */
4003
4004         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4005                 spin_unlock_irqrestore(&xhci->lock, flags);
4006                 return 0;
4007         }
4008
4009         /* Attempt to issue an Evaluate Context command to change the MEL. */
4010         command = xhci->lpm_command;
4011         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4012         if (!ctrl_ctx) {
4013                 spin_unlock_irqrestore(&xhci->lock, flags);
4014                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4015                                 __func__);
4016                 return -ENOMEM;
4017         }
4018
4019         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4020         spin_unlock_irqrestore(&xhci->lock, flags);
4021
4022         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4023         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4024         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4025         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4026         slot_ctx->dev_state = 0;
4027
4028         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4029                         "Set up evaluate context for LPM MEL change.");
4030         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4031         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4032
4033         /* Issue and wait for the evaluate context command. */
4034         ret = xhci_configure_endpoint(xhci, udev, command,
4035                         true, true);
4036         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4037         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4038
4039         if (!ret) {
4040                 spin_lock_irqsave(&xhci->lock, flags);
4041                 virt_dev->current_mel = max_exit_latency;
4042                 spin_unlock_irqrestore(&xhci->lock, flags);
4043         }
4044         return ret;
4045 }
4046
4047 #ifdef CONFIG_PM
4048
4049 /* BESL to HIRD Encoding array for USB2 LPM */
4050 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4051         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4052
4053 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4054 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4055                                         struct usb_device *udev)
4056 {
4057         int u2del, besl, besl_host;
4058         int besl_device = 0;
4059         u32 field;
4060
4061         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4062         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4063
4064         if (field & USB_BESL_SUPPORT) {
4065                 for (besl_host = 0; besl_host < 16; besl_host++) {
4066                         if (xhci_besl_encoding[besl_host] >= u2del)
4067                                 break;
4068                 }
4069                 /* Use baseline BESL value as default */
4070                 if (field & USB_BESL_BASELINE_VALID)
4071                         besl_device = USB_GET_BESL_BASELINE(field);
4072                 else if (field & USB_BESL_DEEP_VALID)
4073                         besl_device = USB_GET_BESL_DEEP(field);
4074         } else {
4075                 if (u2del <= 50)
4076                         besl_host = 0;
4077                 else
4078                         besl_host = (u2del - 51) / 75 + 1;
4079         }
4080
4081         besl = besl_host + besl_device;
4082         if (besl > 15)
4083                 besl = 15;
4084
4085         return besl;
4086 }
4087
4088 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4089 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4090 {
4091         u32 field;
4092         int l1;
4093         int besld = 0;
4094         int hirdm = 0;
4095
4096         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4097
4098         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4099         l1 = udev->l1_params.timeout / 256;
4100
4101         /* device has preferred BESLD */
4102         if (field & USB_BESL_DEEP_VALID) {
4103                 besld = USB_GET_BESL_DEEP(field);
4104                 hirdm = 1;
4105         }
4106
4107         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4108 }
4109
4110 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4111                         struct usb_device *udev, int enable)
4112 {
4113         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4114         __le32 __iomem  **port_array;
4115         __le32 __iomem  *pm_addr, *hlpm_addr;
4116         u32             pm_val, hlpm_val, field;
4117         unsigned int    port_num;
4118         unsigned long   flags;
4119         int             hird, exit_latency;
4120         int             ret;
4121
4122         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4123                         !udev->lpm_capable)
4124                 return -EPERM;
4125
4126         if (!udev->parent || udev->parent->parent ||
4127                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4128                 return -EPERM;
4129
4130         if (udev->usb2_hw_lpm_capable != 1)
4131                 return -EPERM;
4132
4133         spin_lock_irqsave(&xhci->lock, flags);
4134
4135         port_array = xhci->usb2_ports;
4136         port_num = udev->portnum - 1;
4137         pm_addr = port_array[port_num] + PORTPMSC;
4138         pm_val = readl(pm_addr);
4139         hlpm_addr = port_array[port_num] + PORTHLPMC;
4140         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4141
4142         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4143                         enable ? "enable" : "disable", port_num + 1);
4144
4145         if (enable) {
4146                 /* Host supports BESL timeout instead of HIRD */
4147                 if (udev->usb2_hw_lpm_besl_capable) {
4148                         /* if device doesn't have a preferred BESL value use a
4149                          * default one which works with mixed HIRD and BESL
4150                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4151                          */
4152                         if ((field & USB_BESL_SUPPORT) &&
4153                             (field & USB_BESL_BASELINE_VALID))
4154                                 hird = USB_GET_BESL_BASELINE(field);
4155                         else
4156                                 hird = udev->l1_params.besl;
4157
4158                         exit_latency = xhci_besl_encoding[hird];
4159                         spin_unlock_irqrestore(&xhci->lock, flags);
4160
4161                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4162                          * input context for link powermanagement evaluate
4163                          * context commands. It is protected by hcd->bandwidth
4164                          * mutex and is shared by all devices. We need to set
4165                          * the max ext latency in USB 2 BESL LPM as well, so
4166                          * use the same mutex and xhci_change_max_exit_latency()
4167                          */
4168                         mutex_lock(hcd->bandwidth_mutex);
4169                         ret = xhci_change_max_exit_latency(xhci, udev,
4170                                                            exit_latency);
4171                         mutex_unlock(hcd->bandwidth_mutex);
4172
4173                         if (ret < 0)
4174                                 return ret;
4175                         spin_lock_irqsave(&xhci->lock, flags);
4176
4177                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4178                         writel(hlpm_val, hlpm_addr);
4179                         /* flush write */
4180                         readl(hlpm_addr);
4181                 } else {
4182                         hird = xhci_calculate_hird_besl(xhci, udev);
4183                 }
4184
4185                 pm_val &= ~PORT_HIRD_MASK;
4186                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4187                 writel(pm_val, pm_addr);
4188                 pm_val = readl(pm_addr);
4189                 pm_val |= PORT_HLE;
4190                 writel(pm_val, pm_addr);
4191                 /* flush write */
4192                 readl(pm_addr);
4193         } else {
4194                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4195                 writel(pm_val, pm_addr);
4196                 /* flush write */
4197                 readl(pm_addr);
4198                 if (udev->usb2_hw_lpm_besl_capable) {
4199                         spin_unlock_irqrestore(&xhci->lock, flags);
4200                         mutex_lock(hcd->bandwidth_mutex);
4201                         xhci_change_max_exit_latency(xhci, udev, 0);
4202                         mutex_unlock(hcd->bandwidth_mutex);
4203                         return 0;
4204                 }
4205         }
4206
4207         spin_unlock_irqrestore(&xhci->lock, flags);
4208         return 0;
4209 }
4210
4211 /* check if a usb2 port supports a given extened capability protocol
4212  * only USB2 ports extended protocol capability values are cached.
4213  * Return 1 if capability is supported
4214  */
4215 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4216                                            unsigned capability)
4217 {
4218         u32 port_offset, port_count;
4219         int i;
4220
4221         for (i = 0; i < xhci->num_ext_caps; i++) {
4222                 if (xhci->ext_caps[i] & capability) {
4223                         /* port offsets starts at 1 */
4224                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4225                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4226                         if (port >= port_offset &&
4227                             port < port_offset + port_count)
4228                                 return 1;
4229                 }
4230         }
4231         return 0;
4232 }
4233
4234 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4235 {
4236         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4237         int             portnum = udev->portnum - 1;
4238
4239         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4240                         !udev->lpm_capable)
4241                 return 0;
4242
4243         /* we only support lpm for non-hub device connected to root hub yet */
4244         if (!udev->parent || udev->parent->parent ||
4245                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4246                 return 0;
4247
4248         if (xhci->hw_lpm_support == 1 &&
4249                         xhci_check_usb2_port_capability(
4250                                 xhci, portnum, XHCI_HLC)) {
4251                 udev->usb2_hw_lpm_capable = 1;
4252                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4253                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4254                 if (xhci_check_usb2_port_capability(xhci, portnum,
4255                                         XHCI_BLC))
4256                         udev->usb2_hw_lpm_besl_capable = 1;
4257         }
4258
4259         return 0;
4260 }
4261
4262 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4263
4264 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4265 static unsigned long long xhci_service_interval_to_ns(
4266                 struct usb_endpoint_descriptor *desc)
4267 {
4268         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4269 }
4270
4271 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4272                 enum usb3_link_state state)
4273 {
4274         unsigned long long sel;
4275         unsigned long long pel;
4276         unsigned int max_sel_pel;
4277         char *state_name;
4278
4279         switch (state) {
4280         case USB3_LPM_U1:
4281                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4282                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4283                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4284                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4285                 state_name = "U1";
4286                 break;
4287         case USB3_LPM_U2:
4288                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4289                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4290                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4291                 state_name = "U2";
4292                 break;
4293         default:
4294                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4295                                 __func__);
4296                 return USB3_LPM_DISABLED;
4297         }
4298
4299         if (sel <= max_sel_pel && pel <= max_sel_pel)
4300                 return USB3_LPM_DEVICE_INITIATED;
4301
4302         if (sel > max_sel_pel)
4303                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4304                                 "due to long SEL %llu ms\n",
4305                                 state_name, sel);
4306         else
4307                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4308                                 "due to long PEL %llu ms\n",
4309                                 state_name, pel);
4310         return USB3_LPM_DISABLED;
4311 }
4312
4313 /* The U1 timeout should be the maximum of the following values:
4314  *  - For control endpoints, U1 system exit latency (SEL) * 3
4315  *  - For bulk endpoints, U1 SEL * 5
4316  *  - For interrupt endpoints:
4317  *    - Notification EPs, U1 SEL * 3
4318  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4319  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4320  */
4321 static unsigned long long xhci_calculate_intel_u1_timeout(
4322                 struct usb_device *udev,
4323                 struct usb_endpoint_descriptor *desc)
4324 {
4325         unsigned long long timeout_ns;
4326         int ep_type;
4327         int intr_type;
4328
4329         ep_type = usb_endpoint_type(desc);
4330         switch (ep_type) {
4331         case USB_ENDPOINT_XFER_CONTROL:
4332                 timeout_ns = udev->u1_params.sel * 3;
4333                 break;
4334         case USB_ENDPOINT_XFER_BULK:
4335                 timeout_ns = udev->u1_params.sel * 5;
4336                 break;
4337         case USB_ENDPOINT_XFER_INT:
4338                 intr_type = usb_endpoint_interrupt_type(desc);
4339                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4340                         timeout_ns = udev->u1_params.sel * 3;
4341                         break;
4342                 }
4343                 /* Otherwise the calculation is the same as isoc eps */
4344         case USB_ENDPOINT_XFER_ISOC:
4345                 timeout_ns = xhci_service_interval_to_ns(desc);
4346                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4347                 if (timeout_ns < udev->u1_params.sel * 2)
4348                         timeout_ns = udev->u1_params.sel * 2;
4349                 break;
4350         default:
4351                 return 0;
4352         }
4353
4354         return timeout_ns;
4355 }
4356
4357 /* Returns the hub-encoded U1 timeout value. */
4358 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4359                 struct usb_device *udev,
4360                 struct usb_endpoint_descriptor *desc)
4361 {
4362         unsigned long long timeout_ns;
4363
4364         if (xhci->quirks & XHCI_INTEL_HOST)
4365                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4366         else
4367                 timeout_ns = udev->u1_params.sel;
4368
4369         /* The U1 timeout is encoded in 1us intervals.
4370          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4371          */
4372         if (timeout_ns == USB3_LPM_DISABLED)
4373                 timeout_ns = 1;
4374         else
4375                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4376
4377         /* If the necessary timeout value is bigger than what we can set in the
4378          * USB 3.0 hub, we have to disable hub-initiated U1.
4379          */
4380         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4381                 return timeout_ns;
4382         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4383                         "due to long timeout %llu ms\n", timeout_ns);
4384         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4385 }
4386
4387 /* The U2 timeout should be the maximum of:
4388  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4389  *  - largest bInterval of any active periodic endpoint (to avoid going
4390  *    into lower power link states between intervals).
4391  *  - the U2 Exit Latency of the device
4392  */
4393 static unsigned long long xhci_calculate_intel_u2_timeout(
4394                 struct usb_device *udev,
4395                 struct usb_endpoint_descriptor *desc)
4396 {
4397         unsigned long long timeout_ns;
4398         unsigned long long u2_del_ns;
4399
4400         timeout_ns = 10 * 1000 * 1000;
4401
4402         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4403                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4404                 timeout_ns = xhci_service_interval_to_ns(desc);
4405
4406         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4407         if (u2_del_ns > timeout_ns)
4408                 timeout_ns = u2_del_ns;
4409
4410         return timeout_ns;
4411 }
4412
4413 /* Returns the hub-encoded U2 timeout value. */
4414 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4415                 struct usb_device *udev,
4416                 struct usb_endpoint_descriptor *desc)
4417 {
4418         unsigned long long timeout_ns;
4419
4420         if (xhci->quirks & XHCI_INTEL_HOST)
4421                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4422         else
4423                 timeout_ns = udev->u2_params.sel;
4424
4425         /* The U2 timeout is encoded in 256us intervals */
4426         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4427         /* If the necessary timeout value is bigger than what we can set in the
4428          * USB 3.0 hub, we have to disable hub-initiated U2.
4429          */
4430         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4431                 return timeout_ns;
4432         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4433                         "due to long timeout %llu ms\n", timeout_ns);
4434         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4435 }
4436
4437 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4438                 struct usb_device *udev,
4439                 struct usb_endpoint_descriptor *desc,
4440                 enum usb3_link_state state,
4441                 u16 *timeout)
4442 {
4443         if (state == USB3_LPM_U1)
4444                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4445         else if (state == USB3_LPM_U2)
4446                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4447
4448         return USB3_LPM_DISABLED;
4449 }
4450
4451 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4452                 struct usb_device *udev,
4453                 struct usb_endpoint_descriptor *desc,
4454                 enum usb3_link_state state,
4455                 u16 *timeout)
4456 {
4457         u16 alt_timeout;
4458
4459         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4460                 desc, state, timeout);
4461
4462         /* If we found we can't enable hub-initiated LPM, or
4463          * the U1 or U2 exit latency was too high to allow
4464          * device-initiated LPM as well, just stop searching.
4465          */
4466         if (alt_timeout == USB3_LPM_DISABLED ||
4467                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4468                 *timeout = alt_timeout;
4469                 return -E2BIG;
4470         }
4471         if (alt_timeout > *timeout)
4472                 *timeout = alt_timeout;
4473         return 0;
4474 }
4475
4476 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4477                 struct usb_device *udev,
4478                 struct usb_host_interface *alt,
4479                 enum usb3_link_state state,
4480                 u16 *timeout)
4481 {
4482         int j;
4483
4484         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4485                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4486                                         &alt->endpoint[j].desc, state, timeout))
4487                         return -E2BIG;
4488                 continue;
4489         }
4490         return 0;
4491 }
4492
4493 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4494                 enum usb3_link_state state)
4495 {
4496         struct usb_device *parent;
4497         unsigned int num_hubs;
4498
4499         if (state == USB3_LPM_U2)
4500                 return 0;
4501
4502         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4503         for (parent = udev->parent, num_hubs = 0; parent->parent;
4504                         parent = parent->parent)
4505                 num_hubs++;
4506
4507         if (num_hubs < 2)
4508                 return 0;
4509
4510         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4511                         " below second-tier hub.\n");
4512         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4513                         "to decrease power consumption.\n");
4514         return -E2BIG;
4515 }
4516
4517 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4518                 struct usb_device *udev,
4519                 enum usb3_link_state state)
4520 {
4521         if (xhci->quirks & XHCI_INTEL_HOST)
4522                 return xhci_check_intel_tier_policy(udev, state);
4523         else
4524                 return 0;
4525 }
4526
4527 /* Returns the U1 or U2 timeout that should be enabled.
4528  * If the tier check or timeout setting functions return with a non-zero exit
4529  * code, that means the timeout value has been finalized and we shouldn't look
4530  * at any more endpoints.
4531  */
4532 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4533                         struct usb_device *udev, enum usb3_link_state state)
4534 {
4535         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4536         struct usb_host_config *config;
4537         char *state_name;
4538         int i;
4539         u16 timeout = USB3_LPM_DISABLED;
4540
4541         if (state == USB3_LPM_U1)
4542                 state_name = "U1";
4543         else if (state == USB3_LPM_U2)
4544                 state_name = "U2";
4545         else {
4546                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4547                                 state);
4548                 return timeout;
4549         }
4550
4551         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4552                 return timeout;
4553
4554         /* Gather some information about the currently installed configuration
4555          * and alternate interface settings.
4556          */
4557         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4558                         state, &timeout))
4559                 return timeout;
4560
4561         config = udev->actconfig;
4562         if (!config)
4563                 return timeout;
4564
4565         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4566                 struct usb_driver *driver;
4567                 struct usb_interface *intf = config->interface[i];
4568
4569                 if (!intf)
4570                         continue;
4571
4572                 /* Check if any currently bound drivers want hub-initiated LPM
4573                  * disabled.
4574                  */
4575                 if (intf->dev.driver) {
4576                         driver = to_usb_driver(intf->dev.driver);
4577                         if (driver && driver->disable_hub_initiated_lpm) {
4578                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4579                                                 "at request of driver %s\n",
4580                                                 state_name, driver->name);
4581                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4582                         }
4583                 }
4584
4585                 /* Not sure how this could happen... */
4586                 if (!intf->cur_altsetting)
4587                         continue;
4588
4589                 if (xhci_update_timeout_for_interface(xhci, udev,
4590                                         intf->cur_altsetting,
4591                                         state, &timeout))
4592                         return timeout;
4593         }
4594         return timeout;
4595 }
4596
4597 static int calculate_max_exit_latency(struct usb_device *udev,
4598                 enum usb3_link_state state_changed,
4599                 u16 hub_encoded_timeout)
4600 {
4601         unsigned long long u1_mel_us = 0;
4602         unsigned long long u2_mel_us = 0;
4603         unsigned long long mel_us = 0;
4604         bool disabling_u1;
4605         bool disabling_u2;
4606         bool enabling_u1;
4607         bool enabling_u2;
4608
4609         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4610                         hub_encoded_timeout == USB3_LPM_DISABLED);
4611         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4612                         hub_encoded_timeout == USB3_LPM_DISABLED);
4613
4614         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4615                         hub_encoded_timeout != USB3_LPM_DISABLED);
4616         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4617                         hub_encoded_timeout != USB3_LPM_DISABLED);
4618
4619         /* If U1 was already enabled and we're not disabling it,
4620          * or we're going to enable U1, account for the U1 max exit latency.
4621          */
4622         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4623                         enabling_u1)
4624                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4625         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4626                         enabling_u2)
4627                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4628
4629         if (u1_mel_us > u2_mel_us)
4630                 mel_us = u1_mel_us;
4631         else
4632                 mel_us = u2_mel_us;
4633         /* xHCI host controller max exit latency field is only 16 bits wide. */
4634         if (mel_us > MAX_EXIT) {
4635                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4636                                 "is too big.\n", mel_us);
4637                 return -E2BIG;
4638         }
4639         return mel_us;
4640 }
4641
4642 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4643 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4644                         struct usb_device *udev, enum usb3_link_state state)
4645 {
4646         struct xhci_hcd *xhci;
4647         u16 hub_encoded_timeout;
4648         int mel;
4649         int ret;
4650
4651         xhci = hcd_to_xhci(hcd);
4652         /* The LPM timeout values are pretty host-controller specific, so don't
4653          * enable hub-initiated timeouts unless the vendor has provided
4654          * information about their timeout algorithm.
4655          */
4656         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4657                         !xhci->devs[udev->slot_id])
4658                 return USB3_LPM_DISABLED;
4659
4660         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4661         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4662         if (mel < 0) {
4663                 /* Max Exit Latency is too big, disable LPM. */
4664                 hub_encoded_timeout = USB3_LPM_DISABLED;
4665                 mel = 0;
4666         }
4667
4668         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4669         if (ret)
4670                 return ret;
4671         return hub_encoded_timeout;
4672 }
4673
4674 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4675                         struct usb_device *udev, enum usb3_link_state state)
4676 {
4677         struct xhci_hcd *xhci;
4678         u16 mel;
4679
4680         xhci = hcd_to_xhci(hcd);
4681         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4682                         !xhci->devs[udev->slot_id])
4683                 return 0;
4684
4685         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4686         return xhci_change_max_exit_latency(xhci, udev, mel);
4687 }
4688 #else /* CONFIG_PM */
4689
4690 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4691                                 struct usb_device *udev, int enable)
4692 {
4693         return 0;
4694 }
4695
4696 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4697 {
4698         return 0;
4699 }
4700
4701 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4702                         struct usb_device *udev, enum usb3_link_state state)
4703 {
4704         return USB3_LPM_DISABLED;
4705 }
4706
4707 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4708                         struct usb_device *udev, enum usb3_link_state state)
4709 {
4710         return 0;
4711 }
4712 #endif  /* CONFIG_PM */
4713
4714 /*-------------------------------------------------------------------------*/
4715
4716 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4717  * internal data structures for the device.
4718  */
4719 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4720                         struct usb_tt *tt, gfp_t mem_flags)
4721 {
4722         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4723         struct xhci_virt_device *vdev;
4724         struct xhci_command *config_cmd;
4725         struct xhci_input_control_ctx *ctrl_ctx;
4726         struct xhci_slot_ctx *slot_ctx;
4727         unsigned long flags;
4728         unsigned think_time;
4729         int ret;
4730
4731         /* Ignore root hubs */
4732         if (!hdev->parent)
4733                 return 0;
4734
4735         vdev = xhci->devs[hdev->slot_id];
4736         if (!vdev) {
4737                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4738                 return -EINVAL;
4739         }
4740         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4741         if (!config_cmd) {
4742                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4743                 return -ENOMEM;
4744         }
4745         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4746         if (!ctrl_ctx) {
4747                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4748                                 __func__);
4749                 xhci_free_command(xhci, config_cmd);
4750                 return -ENOMEM;
4751         }
4752
4753         spin_lock_irqsave(&xhci->lock, flags);
4754         if (hdev->speed == USB_SPEED_HIGH &&
4755                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4756                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4757                 xhci_free_command(xhci, config_cmd);
4758                 spin_unlock_irqrestore(&xhci->lock, flags);
4759                 return -ENOMEM;
4760         }
4761
4762         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4763         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4764         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4765         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4766         /*
4767          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4768          * but it may be already set to 1 when setup an xHCI virtual
4769          * device, so clear it anyway.
4770          */
4771         if (tt->multi)
4772                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4773         else if (hdev->speed == USB_SPEED_FULL)
4774                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4775
4776         if (xhci->hci_version > 0x95) {
4777                 xhci_dbg(xhci, "xHCI version %x needs hub "
4778                                 "TT think time and number of ports\n",
4779                                 (unsigned int) xhci->hci_version);
4780                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4781                 /* Set TT think time - convert from ns to FS bit times.
4782                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4783                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4784                  *
4785                  * xHCI 1.0: this field shall be 0 if the device is not a
4786                  * High-spped hub.
4787                  */
4788                 think_time = tt->think_time;
4789                 if (think_time != 0)
4790                         think_time = (think_time / 666) - 1;
4791                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4792                         slot_ctx->tt_info |=
4793                                 cpu_to_le32(TT_THINK_TIME(think_time));
4794         } else {
4795                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4796                                 "TT think time or number of ports\n",
4797                                 (unsigned int) xhci->hci_version);
4798         }
4799         slot_ctx->dev_state = 0;
4800         spin_unlock_irqrestore(&xhci->lock, flags);
4801
4802         xhci_dbg(xhci, "Set up %s for hub device.\n",
4803                         (xhci->hci_version > 0x95) ?
4804                         "configure endpoint" : "evaluate context");
4805         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4806         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4807
4808         /* Issue and wait for the configure endpoint or
4809          * evaluate context command.
4810          */
4811         if (xhci->hci_version > 0x95)
4812                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4813                                 false, false);
4814         else
4815                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4816                                 true, false);
4817
4818         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4819         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4820
4821         xhci_free_command(xhci, config_cmd);
4822         return ret;
4823 }
4824
4825 int xhci_get_frame(struct usb_hcd *hcd)
4826 {
4827         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4828         /* EHCI mods by the periodic size.  Why? */
4829         return readl(&xhci->run_regs->microframe_index) >> 3;
4830 }
4831
4832 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4833 {
4834         struct xhci_hcd         *xhci;
4835         struct device           *dev = hcd->self.controller;
4836         int                     retval;
4837
4838         /* Accept arbitrarily long scatter-gather lists */
4839         hcd->self.sg_tablesize = ~0;
4840
4841         /* support to build packet from discontinuous buffers */
4842         hcd->self.no_sg_constraint = 1;
4843
4844         /* XHCI controllers don't stop the ep queue on short packets :| */
4845         hcd->self.no_stop_on_short = 1;
4846
4847         xhci = hcd_to_xhci(hcd);
4848
4849         if (usb_hcd_is_primary_hcd(hcd)) {
4850                 xhci->main_hcd = hcd;
4851                 /* Mark the first roothub as being USB 2.0.
4852                  * The xHCI driver will register the USB 3.0 roothub.
4853                  */
4854                 hcd->speed = HCD_USB2;
4855                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4856                 /*
4857                  * USB 2.0 roothub under xHCI has an integrated TT,
4858                  * (rate matching hub) as opposed to having an OHCI/UHCI
4859                  * companion controller.
4860                  */
4861                 hcd->has_tt = 1;
4862         } else {
4863                 if (xhci->sbrn == 0x31) {
4864                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4865                         hcd->speed = HCD_USB31;
4866                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4867                 }
4868                 /* xHCI private pointer was set in xhci_pci_probe for the second
4869                  * registered roothub.
4870                  */
4871                 return 0;
4872         }
4873
4874         mutex_init(&xhci->mutex);
4875         xhci->cap_regs = hcd->regs;
4876         xhci->op_regs = hcd->regs +
4877                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4878         xhci->run_regs = hcd->regs +
4879                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4880         /* Cache read-only capability registers */
4881         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4882         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4883         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4884         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4885         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4886         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4887         if (xhci->hci_version > 0x100)
4888                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4889         xhci_print_registers(xhci);
4890
4891         xhci->quirks |= quirks;
4892
4893         get_quirks(dev, xhci);
4894
4895         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4896          * success event after a short transfer. This quirk will ignore such
4897          * spurious event.
4898          */
4899         if (xhci->hci_version > 0x96)
4900                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4901
4902         /* Make sure the HC is halted. */
4903         retval = xhci_halt(xhci);
4904         if (retval)
4905                 return retval;
4906
4907         xhci_dbg(xhci, "Resetting HCD\n");
4908         /* Reset the internal HC memory state and registers. */
4909         retval = xhci_reset(xhci);
4910         if (retval)
4911                 return retval;
4912         xhci_dbg(xhci, "Reset complete\n");
4913
4914         /*
4915          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4916          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4917          * address memory pointers actually. So, this driver clears the AC64
4918          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4919          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4920          */
4921         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4922                 xhci->hcc_params &= ~BIT(0);
4923
4924         /* Set dma_mask and coherent_dma_mask to 64-bits,
4925          * if xHC supports 64-bit addressing */
4926         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4927                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4928                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4929                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4930         } else {
4931                 /*
4932                  * This is to avoid error in cases where a 32-bit USB
4933                  * controller is used on a 64-bit capable system.
4934                  */
4935                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4936                 if (retval)
4937                         return retval;
4938                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4939                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4940         }
4941
4942         xhci_dbg(xhci, "Calling HCD init\n");
4943         /* Initialize HCD and host controller data structures. */
4944         retval = xhci_init(hcd);
4945         if (retval)
4946                 return retval;
4947         xhci_dbg(xhci, "Called HCD init\n");
4948
4949         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4950                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4951
4952         return 0;
4953 }
4954 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4955
4956 static const struct hc_driver xhci_hc_driver = {
4957         .description =          "xhci-hcd",
4958         .product_desc =         "xHCI Host Controller",
4959         .hcd_priv_size =        sizeof(struct xhci_hcd),
4960
4961         /*
4962          * generic hardware linkage
4963          */
4964         .irq =                  xhci_irq,
4965         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4966
4967         /*
4968          * basic lifecycle operations
4969          */
4970         .reset =                NULL, /* set in xhci_init_driver() */
4971         .start =                xhci_run,
4972         .stop =                 xhci_stop,
4973         .shutdown =             xhci_shutdown,
4974
4975         /*
4976          * managing i/o requests and associated device resources
4977          */
4978         .urb_enqueue =          xhci_urb_enqueue,
4979         .urb_dequeue =          xhci_urb_dequeue,
4980         .alloc_dev =            xhci_alloc_dev,
4981         .free_dev =             xhci_free_dev,
4982         .alloc_streams =        xhci_alloc_streams,
4983         .free_streams =         xhci_free_streams,
4984         .add_endpoint =         xhci_add_endpoint,
4985         .drop_endpoint =        xhci_drop_endpoint,
4986         .endpoint_reset =       xhci_endpoint_reset,
4987         .check_bandwidth =      xhci_check_bandwidth,
4988         .reset_bandwidth =      xhci_reset_bandwidth,
4989         .address_device =       xhci_address_device,
4990         .enable_device =        xhci_enable_device,
4991         .update_hub_device =    xhci_update_hub_device,
4992         .reset_device =         xhci_discover_or_reset_device,
4993
4994         /*
4995          * scheduling support
4996          */
4997         .get_frame_number =     xhci_get_frame,
4998
4999         /*
5000          * root hub support
5001          */
5002         .hub_control =          xhci_hub_control,
5003         .hub_status_data =      xhci_hub_status_data,
5004         .bus_suspend =          xhci_bus_suspend,
5005         .bus_resume =           xhci_bus_resume,
5006
5007         /*
5008          * call back when device connected and addressed
5009          */
5010         .update_device =        xhci_update_device,
5011         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5012         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5013         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5014         .find_raw_port_number = xhci_find_raw_port_number,
5015 };
5016
5017 void xhci_init_driver(struct hc_driver *drv,
5018                       const struct xhci_driver_overrides *over)
5019 {
5020         BUG_ON(!over);
5021
5022         /* Copy the generic table to drv then apply the overrides */
5023         *drv = xhci_hc_driver;
5024
5025         if (over) {
5026                 drv->hcd_priv_size += over->extra_priv_size;
5027                 if (over->reset)
5028                         drv->reset = over->reset;
5029                 if (over->start)
5030                         drv->start = over->start;
5031         }
5032 }
5033 EXPORT_SYMBOL_GPL(xhci_init_driver);
5034
5035 MODULE_DESCRIPTION(DRIVER_DESC);
5036 MODULE_AUTHOR(DRIVER_AUTHOR);
5037 MODULE_LICENSE("GPL");
5038
5039 static int __init xhci_hcd_init(void)
5040 {
5041         /*
5042          * Check the compiler generated sizes of structures that must be laid
5043          * out in specific ways for hardware access.
5044          */
5045         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5046         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5047         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5048         /* xhci_device_control has eight fields, and also
5049          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5050          */
5051         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5052         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5053         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5054         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5055         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5056         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5057         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5058
5059         if (usb_disabled())
5060                 return -ENODEV;
5061
5062         return 0;
5063 }
5064
5065 /*
5066  * If an init function is provided, an exit function must also be provided
5067  * to allow module unload.
5068  */
5069 static void __exit xhci_hcd_fini(void) { }
5070
5071 module_init(xhci_hcd_init);
5072 module_exit(xhci_hcd_fini);