arm/arm64: unexport restart handlers
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62                       u32 mask, u32 done, int usec)
63 {
64         u32     result;
65
66         do {
67                 result = readl(ptr);
68                 if (result == ~(u32)0)          /* card removed */
69                         return -ENODEV;
70                 result &= mask;
71                 if (result == done)
72                         return 0;
73                 udelay(1);
74                 usec--;
75         } while (usec > 0);
76         return -ETIMEDOUT;
77 }
78
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84         u32 halted;
85         u32 cmd;
86         u32 mask;
87
88         mask = ~(XHCI_IRQS);
89         halted = readl(&xhci->op_regs->status) & STS_HALT;
90         if (!halted)
91                 mask &= ~CMD_RUN;
92
93         cmd = readl(&xhci->op_regs->command);
94         cmd &= mask;
95         writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108         int ret;
109         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110         xhci_quiesce(xhci);
111
112         ret = xhci_handshake(xhci, &xhci->op_regs->status,
113                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114         if (!ret) {
115                 xhci->xhc_state |= XHCI_STATE_HALTED;
116                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117         } else
118                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119                                 XHCI_MAX_HALT_USEC);
120         return ret;
121 }
122
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128         u32 temp;
129         int ret;
130
131         temp = readl(&xhci->op_regs->command);
132         temp |= (CMD_RUN);
133         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134                         temp);
135         writel(temp, &xhci->op_regs->command);
136
137         /*
138          * Wait for the HCHalted Status bit to be 0 to indicate the host is
139          * running.
140          */
141         ret = xhci_handshake(xhci, &xhci->op_regs->status,
142                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
143         if (ret == -ETIMEDOUT)
144                 xhci_err(xhci, "Host took too long to start, "
145                                 "waited %u microseconds.\n",
146                                 XHCI_MAX_HALT_USEC);
147         if (!ret)
148                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
149         return ret;
150 }
151
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161         u32 command;
162         u32 state;
163         int ret, i;
164
165         state = readl(&xhci->op_regs->status);
166         if ((state & STS_HALT) == 0) {
167                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168                 return 0;
169         }
170
171         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172         command = readl(&xhci->op_regs->command);
173         command |= CMD_RESET;
174         writel(command, &xhci->op_regs->command);
175
176         ret = xhci_handshake(xhci, &xhci->op_regs->command,
177                         CMD_RESET, 0, 10 * 1000 * 1000);
178         if (ret)
179                 return ret;
180
181         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182                          "Wait for controller to be ready for doorbell rings");
183         /*
184          * xHCI cannot write to any doorbells or operational registers other
185          * than status until the "Controller Not Ready" flag is cleared.
186          */
187         ret = xhci_handshake(xhci, &xhci->op_regs->status,
188                         STS_CNR, 0, 10 * 1000 * 1000);
189
190         for (i = 0; i < 2; ++i) {
191                 xhci->bus_state[i].port_c_suspend = 0;
192                 xhci->bus_state[i].suspended_ports = 0;
193                 xhci->bus_state[i].resuming_ports = 0;
194         }
195
196         return ret;
197 }
198
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202         int i;
203
204         if (!xhci->msix_entries)
205                 return -EINVAL;
206
207         for (i = 0; i < xhci->msix_count; i++)
208                 if (xhci->msix_entries[i].vector)
209                         free_irq(xhci->msix_entries[i].vector,
210                                         xhci_to_hcd(xhci));
211         return 0;
212 }
213
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219         int ret;
220         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221
222         ret = pci_enable_msi(pdev);
223         if (ret) {
224                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225                                 "failed to allocate MSI entry");
226                 return ret;
227         }
228
229         ret = request_irq(pdev->irq, xhci_msi_irq,
230                                 0, "xhci_hcd", xhci_to_hcd(xhci));
231         if (ret) {
232                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233                                 "disable MSI interrupt");
234                 pci_disable_msi(pdev);
235         }
236
237         return ret;
238 }
239
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247         int ret;
248
249         /* return if using legacy interrupt */
250         if (xhci_to_hcd(xhci)->irq > 0)
251                 return;
252
253         ret = xhci_free_msi(xhci);
254         if (!ret)
255                 return;
256         if (pdev->irq > 0)
257                 free_irq(pdev->irq, xhci_to_hcd(xhci));
258
259         return;
260 }
261
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267         int i, ret = 0;
268         struct usb_hcd *hcd = xhci_to_hcd(xhci);
269         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270
271         /*
272          * calculate number of msi-x vectors supported.
273          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274          *   with max number of interrupters based on the xhci HCSPARAMS1.
275          * - num_online_cpus: maximum msi-x vectors per CPUs core.
276          *   Add additional 1 vector to ensure always available interrupt.
277          */
278         xhci->msix_count = min(num_online_cpus() + 1,
279                                 HCS_MAX_INTRS(xhci->hcs_params1));
280
281         xhci->msix_entries =
282                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283                                 GFP_KERNEL);
284         if (!xhci->msix_entries) {
285                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286                 return -ENOMEM;
287         }
288
289         for (i = 0; i < xhci->msix_count; i++) {
290                 xhci->msix_entries[i].entry = i;
291                 xhci->msix_entries[i].vector = 0;
292         }
293
294         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
295         if (ret) {
296                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297                                 "Failed to enable MSI-X");
298                 goto free_entries;
299         }
300
301         for (i = 0; i < xhci->msix_count; i++) {
302                 ret = request_irq(xhci->msix_entries[i].vector,
303                                 xhci_msi_irq,
304                                 0, "xhci_hcd", xhci_to_hcd(xhci));
305                 if (ret)
306                         goto disable_msix;
307         }
308
309         hcd->msix_enabled = 1;
310         return ret;
311
312 disable_msix:
313         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314         xhci_free_irq(xhci);
315         pci_disable_msix(pdev);
316 free_entries:
317         kfree(xhci->msix_entries);
318         xhci->msix_entries = NULL;
319         return ret;
320 }
321
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         if (xhci->quirks & XHCI_PLAT)
329                 return;
330
331         xhci_free_irq(xhci);
332
333         if (xhci->msix_entries) {
334                 pci_disable_msix(pdev);
335                 kfree(xhci->msix_entries);
336                 xhci->msix_entries = NULL;
337         } else {
338                 pci_disable_msi(pdev);
339         }
340
341         hcd->msix_enabled = 0;
342         return;
343 }
344
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347         int i;
348
349         if (xhci->msix_entries) {
350                 for (i = 0; i < xhci->msix_count; i++)
351                         synchronize_irq(xhci->msix_entries[i].vector);
352         }
353 }
354
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358         struct pci_dev  *pdev;
359         int ret;
360
361         /* The xhci platform device has set up IRQs through usb_add_hcd. */
362         if (xhci->quirks & XHCI_PLAT)
363                 return 0;
364
365         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366         /*
367          * Some Fresco Logic host controllers advertise MSI, but fail to
368          * generate interrupts.  Don't even try to enable MSI.
369          */
370         if (xhci->quirks & XHCI_BROKEN_MSI)
371                 goto legacy_irq;
372
373         /* unregister the legacy interrupt */
374         if (hcd->irq)
375                 free_irq(hcd->irq, hcd);
376         hcd->irq = 0;
377
378         ret = xhci_setup_msix(xhci);
379         if (ret)
380                 /* fall back to msi*/
381                 ret = xhci_setup_msi(xhci);
382
383         if (!ret)
384                 /* hcd->irq is 0, we have MSI */
385                 return 0;
386
387         if (!pdev->irq) {
388                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389                 return -EINVAL;
390         }
391
392  legacy_irq:
393         if (!strlen(hcd->irq_descr))
394                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395                          hcd->driver->description, hcd->self.busnum);
396
397         /* fall back to legacy interrupt*/
398         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399                         hcd->irq_descr, hcd);
400         if (ret) {
401                 xhci_err(xhci, "request interrupt %d failed\n",
402                                 pdev->irq);
403                 return ret;
404         }
405         hcd->irq = pdev->irq;
406         return 0;
407 }
408
409 #else
410
411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413         return 0;
414 }
415
416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
417 {
418 }
419
420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421 {
422 }
423
424 #endif
425
426 static void compliance_mode_recovery(unsigned long arg)
427 {
428         struct xhci_hcd *xhci;
429         struct usb_hcd *hcd;
430         u32 temp;
431         int i;
432
433         xhci = (struct xhci_hcd *)arg;
434
435         for (i = 0; i < xhci->num_usb3_ports; i++) {
436                 temp = readl(xhci->usb3_ports[i]);
437                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438                         /*
439                          * Compliance Mode Detected. Letting USB Core
440                          * handle the Warm Reset
441                          */
442                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443                                         "Compliance mode detected->port %d",
444                                         i + 1);
445                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446                                         "Attempting compliance mode recovery");
447                         hcd = xhci->shared_hcd;
448
449                         if (hcd->state == HC_STATE_SUSPENDED)
450                                 usb_hcd_resume_root_hub(hcd);
451
452                         usb_hcd_poll_rh_status(hcd);
453                 }
454         }
455
456         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457                 mod_timer(&xhci->comp_mode_recovery_timer,
458                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 }
460
461 /*
462  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463  * that causes ports behind that hardware to enter compliance mode sometimes.
464  * The quirk creates a timer that polls every 2 seconds the link state of
465  * each host controller's port and recovers it by issuing a Warm reset
466  * if Compliance mode is detected, otherwise the port will become "dead" (no
467  * device connections or disconnections will be detected anymore). Becasue no
468  * status event is generated when entering compliance mode (per xhci spec),
469  * this quirk is needed on systems that have the failing hardware installed.
470  */
471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472 {
473         xhci->port_status_u0 = 0;
474         init_timer(&xhci->comp_mode_recovery_timer);
475
476         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478         xhci->comp_mode_recovery_timer.expires = jiffies +
479                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480
481         set_timer_slack(&xhci->comp_mode_recovery_timer,
482                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483         add_timer(&xhci->comp_mode_recovery_timer);
484         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485                         "Compliance mode recovery timer initialized");
486 }
487
488 /*
489  * This function identifies the systems that have installed the SN65LVPE502CP
490  * USB3.0 re-driver and that need the Compliance Mode Quirk.
491  * Systems:
492  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493  */
494 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496         const char *dmi_product_name, *dmi_sys_vendor;
497
498         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500         if (!dmi_product_name || !dmi_sys_vendor)
501                 return false;
502
503         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504                 return false;
505
506         if (strstr(dmi_product_name, "Z420") ||
507                         strstr(dmi_product_name, "Z620") ||
508                         strstr(dmi_product_name, "Z820") ||
509                         strstr(dmi_product_name, "Z1 Workstation"))
510                 return true;
511
512         return false;
513 }
514
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519
520
521 /*
522  * Initialize memory for HCD and xHC (one-time init).
523  *
524  * Program the PAGESIZE register, initialize the device context array, create
525  * device contexts (?), set up a command ring segment (or two?), create event
526  * ring (one for now).
527  */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531         int retval = 0;
532
533         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534         spin_lock_init(&xhci->lock);
535         if (xhci->hci_version == 0x95 && link_quirk) {
536                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537                                 "QUIRK: Not clearing Link TRB chain bits.");
538                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539         } else {
540                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541                                 "xHCI doesn't need link TRB QUIRK");
542         }
543         retval = xhci_mem_init(xhci, GFP_KERNEL);
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545
546         /* Initializing Compliance Mode Recovery Data If Needed */
547         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549                 compliance_mode_recovery_timer_init(xhci);
550         }
551
552         return retval;
553 }
554
555 /*-------------------------------------------------------------------------*/
556
557
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560         if (xhci_start(xhci)) {
561                 xhci_halt(xhci);
562                 return -ENODEV;
563         }
564         xhci->shared_hcd->state = HC_STATE_RUNNING;
565         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566
567         if (xhci->quirks & XHCI_NEC_HOST)
568                 xhci_ring_cmd_db(xhci);
569
570         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571                         "Finished xhci_run for USB3 roothub");
572         return 0;
573 }
574
575 /*
576  * Start the HC after it was halted.
577  *
578  * This function is called by the USB core when the HC driver is added.
579  * Its opposite is xhci_stop().
580  *
581  * xhci_init() must be called once before this function can be called.
582  * Reset the HC, enable device slot contexts, program DCBAAP, and
583  * set command ring pointer and event ring pointer.
584  *
585  * Setup MSI-X vectors and enable interrupts.
586  */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589         u32 temp;
590         u64 temp_64;
591         int ret;
592         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593
594         /* Start the xHCI host controller running only after the USB 2.0 roothub
595          * is setup.
596          */
597
598         hcd->uses_new_polling = 1;
599         if (!usb_hcd_is_primary_hcd(hcd))
600                 return xhci_run_finished(xhci);
601
602         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603
604         ret = xhci_try_enable_msi(hcd);
605         if (ret)
606                 return ret;
607
608         xhci_dbg(xhci, "Command ring memory map follows:\n");
609         xhci_debug_ring(xhci, xhci->cmd_ring);
610         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611         xhci_dbg_cmd_ptrs(xhci);
612
613         xhci_dbg(xhci, "ERST memory map follows:\n");
614         xhci_dbg_erst(xhci, &xhci->erst);
615         xhci_dbg(xhci, "Event ring:\n");
616         xhci_debug_ring(xhci, xhci->event_ring);
617         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619         temp_64 &= ~ERST_PTR_MASK;
620         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622
623         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624                         "// Set the interrupt modulation register");
625         temp = readl(&xhci->ir_set->irq_control);
626         temp &= ~ER_IRQ_INTERVAL_MASK;
627         temp |= (u32) 160;
628         writel(temp, &xhci->ir_set->irq_control);
629
630         /* Set the HCD state before we enable the irqs */
631         temp = readl(&xhci->op_regs->command);
632         temp |= (CMD_EIE);
633         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634                         "// Enable interrupts, cmd = 0x%x.", temp);
635         writel(temp, &xhci->op_regs->command);
636
637         temp = readl(&xhci->ir_set->irq_pending);
638         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642         xhci_print_ir_set(xhci, 0);
643
644         if (xhci->quirks & XHCI_NEC_HOST) {
645                 struct xhci_command *command;
646                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
647                 if (!command)
648                         return -ENOMEM;
649                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
650                                 TRB_TYPE(TRB_NEC_GET_FW));
651         }
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653                         "Finished xhci_run for USB2 roothub");
654         return 0;
655 }
656
657 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
658 {
659         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
660
661         spin_lock_irq(&xhci->lock);
662         xhci_halt(xhci);
663
664         /* The shared_hcd is going to be deallocated shortly (the USB core only
665          * calls this function when allocation fails in usb_add_hcd(), or
666          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
667          */
668         xhci->shared_hcd = NULL;
669         spin_unlock_irq(&xhci->lock);
670 }
671
672 /*
673  * Stop xHCI driver.
674  *
675  * This function is called by the USB core when the HC driver is removed.
676  * Its opposite is xhci_run().
677  *
678  * Disable device contexts, disable IRQs, and quiesce the HC.
679  * Reset the HC, finish any completed transactions, and cleanup memory.
680  */
681 void xhci_stop(struct usb_hcd *hcd)
682 {
683         u32 temp;
684         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685
686         if (!usb_hcd_is_primary_hcd(hcd)) {
687                 xhci_only_stop_hcd(xhci->shared_hcd);
688                 return;
689         }
690
691         spin_lock_irq(&xhci->lock);
692         /* Make sure the xHC is halted for a USB3 roothub
693          * (xhci_stop() could be called as part of failed init).
694          */
695         xhci_halt(xhci);
696         xhci_reset(xhci);
697         spin_unlock_irq(&xhci->lock);
698
699         xhci_cleanup_msix(xhci);
700
701         /* Deleting Compliance Mode Recovery Timer */
702         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
703                         (!(xhci_all_ports_seen_u0(xhci)))) {
704                 del_timer_sync(&xhci->comp_mode_recovery_timer);
705                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
706                                 "%s: compliance mode recovery timer deleted",
707                                 __func__);
708         }
709
710         if (xhci->quirks & XHCI_AMD_PLL_FIX)
711                 usb_amd_dev_put();
712
713         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714                         "// Disabling event ring interrupts");
715         temp = readl(&xhci->op_regs->status);
716         writel(temp & ~STS_EINT, &xhci->op_regs->status);
717         temp = readl(&xhci->ir_set->irq_pending);
718         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
719         xhci_print_ir_set(xhci, 0);
720
721         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
722         xhci_mem_cleanup(xhci);
723         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724                         "xhci_stop completed - status = %x",
725                         readl(&xhci->op_regs->status));
726 }
727
728 /*
729  * Shutdown HC (not bus-specific)
730  *
731  * This is called when the machine is rebooting or halting.  We assume that the
732  * machine will be powered off, and the HC's internal state will be reset.
733  * Don't bother to free memory.
734  *
735  * This will only ever be called with the main usb_hcd (the USB3 roothub).
736  */
737 void xhci_shutdown(struct usb_hcd *hcd)
738 {
739         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740
741         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
742                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
743
744         spin_lock_irq(&xhci->lock);
745         xhci_halt(xhci);
746         /* Workaround for spurious wakeups at shutdown with HSW */
747         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748                 xhci_reset(xhci);
749         spin_unlock_irq(&xhci->lock);
750
751         xhci_cleanup_msix(xhci);
752
753         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754                         "xhci_shutdown completed - status = %x",
755                         readl(&xhci->op_regs->status));
756
757         /* Yet another workaround for spurious wakeups at shutdown with HSW */
758         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
759                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
760 }
761
762 #ifdef CONFIG_PM
763 static void xhci_save_registers(struct xhci_hcd *xhci)
764 {
765         xhci->s3.command = readl(&xhci->op_regs->command);
766         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
767         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
768         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
769         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
770         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
771         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
772         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
773         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
774 }
775
776 static void xhci_restore_registers(struct xhci_hcd *xhci)
777 {
778         writel(xhci->s3.command, &xhci->op_regs->command);
779         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
780         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
781         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
782         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
783         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
784         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
785         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
786         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
787 }
788
789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
790 {
791         u64     val_64;
792
793         /* step 2: initialize command ring buffer */
794         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
795         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
796                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
797                                       xhci->cmd_ring->dequeue) &
798                  (u64) ~CMD_RING_RSVD_BITS) |
799                 xhci->cmd_ring->cycle_state;
800         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
801                         "// Setting command ring address to 0x%llx",
802                         (long unsigned long) val_64);
803         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
804 }
805
806 /*
807  * The whole command ring must be cleared to zero when we suspend the host.
808  *
809  * The host doesn't save the command ring pointer in the suspend well, so we
810  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
811  * aligned, because of the reserved bits in the command ring dequeue pointer
812  * register.  Therefore, we can't just set the dequeue pointer back in the
813  * middle of the ring (TRBs are 16-byte aligned).
814  */
815 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
816 {
817         struct xhci_ring *ring;
818         struct xhci_segment *seg;
819
820         ring = xhci->cmd_ring;
821         seg = ring->deq_seg;
822         do {
823                 memset(seg->trbs, 0,
824                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
825                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
826                         cpu_to_le32(~TRB_CYCLE);
827                 seg = seg->next;
828         } while (seg != ring->deq_seg);
829
830         /* Reset the software enqueue and dequeue pointers */
831         ring->deq_seg = ring->first_seg;
832         ring->dequeue = ring->first_seg->trbs;
833         ring->enq_seg = ring->deq_seg;
834         ring->enqueue = ring->dequeue;
835
836         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
837         /*
838          * Ring is now zeroed, so the HW should look for change of ownership
839          * when the cycle bit is set to 1.
840          */
841         ring->cycle_state = 1;
842
843         /*
844          * Reset the hardware dequeue pointer.
845          * Yes, this will need to be re-written after resume, but we're paranoid
846          * and want to make sure the hardware doesn't access bogus memory
847          * because, say, the BIOS or an SMI started the host without changing
848          * the command ring pointers.
849          */
850         xhci_set_cmd_ring_deq(xhci);
851 }
852
853 /*
854  * Stop HC (not bus-specific)
855  *
856  * This is called when the machine transition into S3/S4 mode.
857  *
858  */
859 int xhci_suspend(struct xhci_hcd *xhci)
860 {
861         int                     rc = 0;
862         unsigned int            delay = XHCI_MAX_HALT_USEC;
863         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
864         u32                     command;
865
866         if (hcd->state != HC_STATE_SUSPENDED ||
867                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
868                 return -EINVAL;
869
870         /* Don't poll the roothubs on bus suspend. */
871         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
872         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
873         del_timer_sync(&hcd->rh_timer);
874
875         spin_lock_irq(&xhci->lock);
876         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
877         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
878         /* step 1: stop endpoint */
879         /* skipped assuming that port suspend has done */
880
881         /* step 2: clear Run/Stop bit */
882         command = readl(&xhci->op_regs->command);
883         command &= ~CMD_RUN;
884         writel(command, &xhci->op_regs->command);
885
886         /* Some chips from Fresco Logic need an extraordinary delay */
887         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
888
889         if (xhci_handshake(xhci, &xhci->op_regs->status,
890                       STS_HALT, STS_HALT, delay)) {
891                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
892                 spin_unlock_irq(&xhci->lock);
893                 return -ETIMEDOUT;
894         }
895         xhci_clear_command_ring(xhci);
896
897         /* step 3: save registers */
898         xhci_save_registers(xhci);
899
900         /* step 4: set CSS flag */
901         command = readl(&xhci->op_regs->command);
902         command |= CMD_CSS;
903         writel(command, &xhci->op_regs->command);
904         if (xhci_handshake(xhci, &xhci->op_regs->status,
905                                 STS_SAVE, 0, 10 * 1000)) {
906                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
907                 spin_unlock_irq(&xhci->lock);
908                 return -ETIMEDOUT;
909         }
910         spin_unlock_irq(&xhci->lock);
911
912         /*
913          * Deleting Compliance Mode Recovery Timer because the xHCI Host
914          * is about to be suspended.
915          */
916         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
917                         (!(xhci_all_ports_seen_u0(xhci)))) {
918                 del_timer_sync(&xhci->comp_mode_recovery_timer);
919                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
920                                 "%s: compliance mode recovery timer deleted",
921                                 __func__);
922         }
923
924         /* step 5: remove core well power */
925         /* synchronize irq when using MSI-X */
926         xhci_msix_sync_irqs(xhci);
927
928         return rc;
929 }
930
931 /*
932  * start xHC (not bus-specific)
933  *
934  * This is called when the machine transition from S3/S4 mode.
935  *
936  */
937 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
938 {
939         u32                     command, temp = 0, status;
940         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
941         struct usb_hcd          *secondary_hcd;
942         int                     retval = 0;
943         bool                    comp_timer_running = false;
944
945         /* Wait a bit if either of the roothubs need to settle from the
946          * transition into bus suspend.
947          */
948         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
949                         time_before(jiffies,
950                                 xhci->bus_state[1].next_statechange))
951                 msleep(100);
952
953         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
954         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
955
956         spin_lock_irq(&xhci->lock);
957         if (xhci->quirks & XHCI_RESET_ON_RESUME)
958                 hibernated = true;
959
960         if (!hibernated) {
961                 /* step 1: restore register */
962                 xhci_restore_registers(xhci);
963                 /* step 2: initialize command ring buffer */
964                 xhci_set_cmd_ring_deq(xhci);
965                 /* step 3: restore state and start state*/
966                 /* step 3: set CRS flag */
967                 command = readl(&xhci->op_regs->command);
968                 command |= CMD_CRS;
969                 writel(command, &xhci->op_regs->command);
970                 if (xhci_handshake(xhci, &xhci->op_regs->status,
971                               STS_RESTORE, 0, 10 * 1000)) {
972                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
973                         spin_unlock_irq(&xhci->lock);
974                         return -ETIMEDOUT;
975                 }
976                 temp = readl(&xhci->op_regs->status);
977         }
978
979         /* If restore operation fails, re-initialize the HC during resume */
980         if ((temp & STS_SRE) || hibernated) {
981
982                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
983                                 !(xhci_all_ports_seen_u0(xhci))) {
984                         del_timer_sync(&xhci->comp_mode_recovery_timer);
985                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
986                                 "Compliance Mode Recovery Timer deleted!");
987                 }
988
989                 /* Let the USB core know _both_ roothubs lost power. */
990                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
991                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
992
993                 xhci_dbg(xhci, "Stop HCD\n");
994                 xhci_halt(xhci);
995                 xhci_reset(xhci);
996                 spin_unlock_irq(&xhci->lock);
997                 xhci_cleanup_msix(xhci);
998
999                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1000                 temp = readl(&xhci->op_regs->status);
1001                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1002                 temp = readl(&xhci->ir_set->irq_pending);
1003                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1004                 xhci_print_ir_set(xhci, 0);
1005
1006                 xhci_dbg(xhci, "cleaning up memory\n");
1007                 xhci_mem_cleanup(xhci);
1008                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1009                             readl(&xhci->op_regs->status));
1010
1011                 /* USB core calls the PCI reinit and start functions twice:
1012                  * first with the primary HCD, and then with the secondary HCD.
1013                  * If we don't do the same, the host will never be started.
1014                  */
1015                 if (!usb_hcd_is_primary_hcd(hcd))
1016                         secondary_hcd = hcd;
1017                 else
1018                         secondary_hcd = xhci->shared_hcd;
1019
1020                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1021                 retval = xhci_init(hcd->primary_hcd);
1022                 if (retval)
1023                         return retval;
1024                 comp_timer_running = true;
1025
1026                 xhci_dbg(xhci, "Start the primary HCD\n");
1027                 retval = xhci_run(hcd->primary_hcd);
1028                 if (!retval) {
1029                         xhci_dbg(xhci, "Start the secondary HCD\n");
1030                         retval = xhci_run(secondary_hcd);
1031                 }
1032                 hcd->state = HC_STATE_SUSPENDED;
1033                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1034                 goto done;
1035         }
1036
1037         /* step 4: set Run/Stop bit */
1038         command = readl(&xhci->op_regs->command);
1039         command |= CMD_RUN;
1040         writel(command, &xhci->op_regs->command);
1041         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1042                   0, 250 * 1000);
1043
1044         /* step 5: walk topology and initialize portsc,
1045          * portpmsc and portli
1046          */
1047         /* this is done in bus_resume */
1048
1049         /* step 6: restart each of the previously
1050          * Running endpoints by ringing their doorbells
1051          */
1052
1053         spin_unlock_irq(&xhci->lock);
1054
1055  done:
1056         if (retval == 0) {
1057                 /* Resume root hubs only when have pending events. */
1058                 status = readl(&xhci->op_regs->status);
1059                 if (status & STS_EINT) {
1060                         usb_hcd_resume_root_hub(hcd);
1061                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1062                 }
1063         }
1064
1065         /*
1066          * If system is subject to the Quirk, Compliance Mode Timer needs to
1067          * be re-initialized Always after a system resume. Ports are subject
1068          * to suffer the Compliance Mode issue again. It doesn't matter if
1069          * ports have entered previously to U0 before system's suspension.
1070          */
1071         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1072                 compliance_mode_recovery_timer_init(xhci);
1073
1074         /* Re-enable port polling. */
1075         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1076         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1077         usb_hcd_poll_rh_status(hcd);
1078
1079         return retval;
1080 }
1081 #endif  /* CONFIG_PM */
1082
1083 /*-------------------------------------------------------------------------*/
1084
1085 /**
1086  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1087  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1088  * value to right shift 1 for the bitmask.
1089  *
1090  * Index  = (epnum * 2) + direction - 1,
1091  * where direction = 0 for OUT, 1 for IN.
1092  * For control endpoints, the IN index is used (OUT index is unused), so
1093  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1094  */
1095 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1096 {
1097         unsigned int index;
1098         if (usb_endpoint_xfer_control(desc))
1099                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1100         else
1101                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1102                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1103         return index;
1104 }
1105
1106 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1107  * address from the XHCI endpoint index.
1108  */
1109 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1110 {
1111         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1112         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1113         return direction | number;
1114 }
1115
1116 /* Find the flag for this endpoint (for use in the control context).  Use the
1117  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1118  * bit 1, etc.
1119  */
1120 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1121 {
1122         return 1 << (xhci_get_endpoint_index(desc) + 1);
1123 }
1124
1125 /* Find the flag for this endpoint (for use in the control context).  Use the
1126  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1127  * bit 1, etc.
1128  */
1129 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1130 {
1131         return 1 << (ep_index + 1);
1132 }
1133
1134 /* Compute the last valid endpoint context index.  Basically, this is the
1135  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1136  * we find the most significant bit set in the added contexts flags.
1137  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1138  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1139  */
1140 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1141 {
1142         return fls(added_ctxs) - 1;
1143 }
1144
1145 /* Returns 1 if the arguments are OK;
1146  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1147  */
1148 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1149                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1150                 const char *func) {
1151         struct xhci_hcd *xhci;
1152         struct xhci_virt_device *virt_dev;
1153
1154         if (!hcd || (check_ep && !ep) || !udev) {
1155                 pr_debug("xHCI %s called with invalid args\n", func);
1156                 return -EINVAL;
1157         }
1158         if (!udev->parent) {
1159                 pr_debug("xHCI %s called for root hub\n", func);
1160                 return 0;
1161         }
1162
1163         xhci = hcd_to_xhci(hcd);
1164         if (check_virt_dev) {
1165                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1166                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1167                                         func);
1168                         return -EINVAL;
1169                 }
1170
1171                 virt_dev = xhci->devs[udev->slot_id];
1172                 if (virt_dev->udev != udev) {
1173                         xhci_dbg(xhci, "xHCI %s called with udev and "
1174                                           "virt_dev does not match\n", func);
1175                         return -EINVAL;
1176                 }
1177         }
1178
1179         if (xhci->xhc_state & XHCI_STATE_HALTED)
1180                 return -ENODEV;
1181
1182         return 1;
1183 }
1184
1185 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1186                 struct usb_device *udev, struct xhci_command *command,
1187                 bool ctx_change, bool must_succeed);
1188
1189 /*
1190  * Full speed devices may have a max packet size greater than 8 bytes, but the
1191  * USB core doesn't know that until it reads the first 8 bytes of the
1192  * descriptor.  If the usb_device's max packet size changes after that point,
1193  * we need to issue an evaluate context command and wait on it.
1194  */
1195 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1196                 unsigned int ep_index, struct urb *urb)
1197 {
1198         struct xhci_container_ctx *out_ctx;
1199         struct xhci_input_control_ctx *ctrl_ctx;
1200         struct xhci_ep_ctx *ep_ctx;
1201         struct xhci_command *command;
1202         int max_packet_size;
1203         int hw_max_packet_size;
1204         int ret = 0;
1205
1206         out_ctx = xhci->devs[slot_id]->out_ctx;
1207         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1208         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1209         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1210         if (hw_max_packet_size != max_packet_size) {
1211                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1212                                 "Max Packet Size for ep 0 changed.");
1213                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1214                                 "Max packet size in usb_device = %d",
1215                                 max_packet_size);
1216                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1217                                 "Max packet size in xHCI HW = %d",
1218                                 hw_max_packet_size);
1219                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1220                                 "Issuing evaluate context command.");
1221
1222                 /* Set up the input context flags for the command */
1223                 /* FIXME: This won't work if a non-default control endpoint
1224                  * changes max packet sizes.
1225                  */
1226
1227                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1228                 if (!command)
1229                         return -ENOMEM;
1230
1231                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1232                 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
1233                 if (!ctrl_ctx) {
1234                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1235                                         __func__);
1236                         ret = -ENOMEM;
1237                         goto command_cleanup;
1238                 }
1239                 /* Set up the modified control endpoint 0 */
1240                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1241                                 xhci->devs[slot_id]->out_ctx, ep_index);
1242
1243                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1244                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1245                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1246
1247                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1248                 ctrl_ctx->drop_flags = 0;
1249
1250                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1251                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1252                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1253                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1254
1255                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1256                                 true, false);
1257
1258                 /* Clean up the input context for later use by bandwidth
1259                  * functions.
1260                  */
1261                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1262 command_cleanup:
1263                 kfree(command->completion);
1264                 kfree(command);
1265         }
1266         return ret;
1267 }
1268
1269 /*
1270  * non-error returns are a promise to giveback() the urb later
1271  * we drop ownership so next owner (or urb unlink) can get it
1272  */
1273 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1274 {
1275         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1276         struct xhci_td *buffer;
1277         unsigned long flags;
1278         int ret = 0;
1279         unsigned int slot_id, ep_index;
1280         struct urb_priv *urb_priv;
1281         int size, i;
1282
1283         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1284                                         true, true, __func__) <= 0)
1285                 return -EINVAL;
1286
1287         slot_id = urb->dev->slot_id;
1288         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1289
1290         if (!HCD_HW_ACCESSIBLE(hcd)) {
1291                 if (!in_interrupt())
1292                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1293                 ret = -ESHUTDOWN;
1294                 goto exit;
1295         }
1296
1297         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1298                 size = urb->number_of_packets;
1299         else
1300                 size = 1;
1301
1302         urb_priv = kzalloc(sizeof(struct urb_priv) +
1303                                   size * sizeof(struct xhci_td *), mem_flags);
1304         if (!urb_priv)
1305                 return -ENOMEM;
1306
1307         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1308         if (!buffer) {
1309                 kfree(urb_priv);
1310                 return -ENOMEM;
1311         }
1312
1313         for (i = 0; i < size; i++) {
1314                 urb_priv->td[i] = buffer;
1315                 buffer++;
1316         }
1317
1318         urb_priv->length = size;
1319         urb_priv->td_cnt = 0;
1320         urb->hcpriv = urb_priv;
1321
1322         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1323                 /* Check to see if the max packet size for the default control
1324                  * endpoint changed during FS device enumeration
1325                  */
1326                 if (urb->dev->speed == USB_SPEED_FULL) {
1327                         ret = xhci_check_maxpacket(xhci, slot_id,
1328                                         ep_index, urb);
1329                         if (ret < 0) {
1330                                 xhci_urb_free_priv(xhci, urb_priv);
1331                                 urb->hcpriv = NULL;
1332                                 return ret;
1333                         }
1334                 }
1335
1336                 /* We have a spinlock and interrupts disabled, so we must pass
1337                  * atomic context to this function, which may allocate memory.
1338                  */
1339                 spin_lock_irqsave(&xhci->lock, flags);
1340                 if (xhci->xhc_state & XHCI_STATE_DYING)
1341                         goto dying;
1342                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1343                                 slot_id, ep_index);
1344                 if (ret)
1345                         goto free_priv;
1346                 spin_unlock_irqrestore(&xhci->lock, flags);
1347         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1348                 spin_lock_irqsave(&xhci->lock, flags);
1349                 if (xhci->xhc_state & XHCI_STATE_DYING)
1350                         goto dying;
1351                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1352                                 EP_GETTING_STREAMS) {
1353                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1354                                         "is transitioning to using streams.\n");
1355                         ret = -EINVAL;
1356                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1357                                 EP_GETTING_NO_STREAMS) {
1358                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1359                                         "is transitioning to "
1360                                         "not having streams.\n");
1361                         ret = -EINVAL;
1362                 } else {
1363                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1364                                         slot_id, ep_index);
1365                 }
1366                 if (ret)
1367                         goto free_priv;
1368                 spin_unlock_irqrestore(&xhci->lock, flags);
1369         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1370                 spin_lock_irqsave(&xhci->lock, flags);
1371                 if (xhci->xhc_state & XHCI_STATE_DYING)
1372                         goto dying;
1373                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1374                                 slot_id, ep_index);
1375                 if (ret)
1376                         goto free_priv;
1377                 spin_unlock_irqrestore(&xhci->lock, flags);
1378         } else {
1379                 spin_lock_irqsave(&xhci->lock, flags);
1380                 if (xhci->xhc_state & XHCI_STATE_DYING)
1381                         goto dying;
1382                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1383                                 slot_id, ep_index);
1384                 if (ret)
1385                         goto free_priv;
1386                 spin_unlock_irqrestore(&xhci->lock, flags);
1387         }
1388 exit:
1389         return ret;
1390 dying:
1391         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1392                         "non-responsive xHCI host.\n",
1393                         urb->ep->desc.bEndpointAddress, urb);
1394         ret = -ESHUTDOWN;
1395 free_priv:
1396         xhci_urb_free_priv(xhci, urb_priv);
1397         urb->hcpriv = NULL;
1398         spin_unlock_irqrestore(&xhci->lock, flags);
1399         return ret;
1400 }
1401
1402 /* Get the right ring for the given URB.
1403  * If the endpoint supports streams, boundary check the URB's stream ID.
1404  * If the endpoint doesn't support streams, return the singular endpoint ring.
1405  */
1406 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1407                 struct urb *urb)
1408 {
1409         unsigned int slot_id;
1410         unsigned int ep_index;
1411         unsigned int stream_id;
1412         struct xhci_virt_ep *ep;
1413
1414         slot_id = urb->dev->slot_id;
1415         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1416         stream_id = urb->stream_id;
1417         ep = &xhci->devs[slot_id]->eps[ep_index];
1418         /* Common case: no streams */
1419         if (!(ep->ep_state & EP_HAS_STREAMS))
1420                 return ep->ring;
1421
1422         if (stream_id == 0) {
1423                 xhci_warn(xhci,
1424                                 "WARN: Slot ID %u, ep index %u has streams, "
1425                                 "but URB has no stream ID.\n",
1426                                 slot_id, ep_index);
1427                 return NULL;
1428         }
1429
1430         if (stream_id < ep->stream_info->num_streams)
1431                 return ep->stream_info->stream_rings[stream_id];
1432
1433         xhci_warn(xhci,
1434                         "WARN: Slot ID %u, ep index %u has "
1435                         "stream IDs 1 to %u allocated, "
1436                         "but stream ID %u is requested.\n",
1437                         slot_id, ep_index,
1438                         ep->stream_info->num_streams - 1,
1439                         stream_id);
1440         return NULL;
1441 }
1442
1443 /*
1444  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1445  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1446  * should pick up where it left off in the TD, unless a Set Transfer Ring
1447  * Dequeue Pointer is issued.
1448  *
1449  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1450  * the ring.  Since the ring is a contiguous structure, they can't be physically
1451  * removed.  Instead, there are two options:
1452  *
1453  *  1) If the HC is in the middle of processing the URB to be canceled, we
1454  *     simply move the ring's dequeue pointer past those TRBs using the Set
1455  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1456  *     when drivers timeout on the last submitted URB and attempt to cancel.
1457  *
1458  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1459  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1460  *     HC will need to invalidate the any TRBs it has cached after the stop
1461  *     endpoint command, as noted in the xHCI 0.95 errata.
1462  *
1463  *  3) The TD may have completed by the time the Stop Endpoint Command
1464  *     completes, so software needs to handle that case too.
1465  *
1466  * This function should protect against the TD enqueueing code ringing the
1467  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1468  * It also needs to account for multiple cancellations on happening at the same
1469  * time for the same endpoint.
1470  *
1471  * Note that this function can be called in any context, or so says
1472  * usb_hcd_unlink_urb()
1473  */
1474 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1475 {
1476         unsigned long flags;
1477         int ret, i;
1478         u32 temp;
1479         struct xhci_hcd *xhci;
1480         struct urb_priv *urb_priv;
1481         struct xhci_td *td;
1482         unsigned int ep_index;
1483         struct xhci_ring *ep_ring;
1484         struct xhci_virt_ep *ep;
1485         struct xhci_command *command;
1486
1487         xhci = hcd_to_xhci(hcd);
1488         spin_lock_irqsave(&xhci->lock, flags);
1489         /* Make sure the URB hasn't completed or been unlinked already */
1490         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1491         if (ret || !urb->hcpriv)
1492                 goto done;
1493         temp = readl(&xhci->op_regs->status);
1494         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1495                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1496                                 "HW died, freeing TD.");
1497                 urb_priv = urb->hcpriv;
1498                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1499                         td = urb_priv->td[i];
1500                         if (!list_empty(&td->td_list))
1501                                 list_del_init(&td->td_list);
1502                         if (!list_empty(&td->cancelled_td_list))
1503                                 list_del_init(&td->cancelled_td_list);
1504                 }
1505
1506                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1507                 spin_unlock_irqrestore(&xhci->lock, flags);
1508                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1509                 xhci_urb_free_priv(xhci, urb_priv);
1510                 return ret;
1511         }
1512         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1513                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1514                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1515                                 "Ep 0x%x: URB %p to be canceled on "
1516                                 "non-responsive xHCI host.",
1517                                 urb->ep->desc.bEndpointAddress, urb);
1518                 /* Let the stop endpoint command watchdog timer (which set this
1519                  * state) finish cleaning up the endpoint TD lists.  We must
1520                  * have caught it in the middle of dropping a lock and giving
1521                  * back an URB.
1522                  */
1523                 goto done;
1524         }
1525
1526         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1527         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1528         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1529         if (!ep_ring) {
1530                 ret = -EINVAL;
1531                 goto done;
1532         }
1533
1534         urb_priv = urb->hcpriv;
1535         i = urb_priv->td_cnt;
1536         if (i < urb_priv->length)
1537                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1538                                 "Cancel URB %p, dev %s, ep 0x%x, "
1539                                 "starting at offset 0x%llx",
1540                                 urb, urb->dev->devpath,
1541                                 urb->ep->desc.bEndpointAddress,
1542                                 (unsigned long long) xhci_trb_virt_to_dma(
1543                                         urb_priv->td[i]->start_seg,
1544                                         urb_priv->td[i]->first_trb));
1545
1546         for (; i < urb_priv->length; i++) {
1547                 td = urb_priv->td[i];
1548                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1549         }
1550
1551         /* Queue a stop endpoint command, but only if this is
1552          * the first cancellation to be handled.
1553          */
1554         if (!(ep->ep_state & EP_HALT_PENDING)) {
1555                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1556                 if (!command) {
1557                         ret = -ENOMEM;
1558                         goto done;
1559                 }
1560                 ep->ep_state |= EP_HALT_PENDING;
1561                 ep->stop_cmds_pending++;
1562                 ep->stop_cmd_timer.expires = jiffies +
1563                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1564                 add_timer(&ep->stop_cmd_timer);
1565                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1566                                          ep_index, 0);
1567                 xhci_ring_cmd_db(xhci);
1568         }
1569 done:
1570         spin_unlock_irqrestore(&xhci->lock, flags);
1571         return ret;
1572 }
1573
1574 /* Drop an endpoint from a new bandwidth configuration for this device.
1575  * Only one call to this function is allowed per endpoint before
1576  * check_bandwidth() or reset_bandwidth() must be called.
1577  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1578  * add the endpoint to the schedule with possibly new parameters denoted by a
1579  * different endpoint descriptor in usb_host_endpoint.
1580  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1581  * not allowed.
1582  *
1583  * The USB core will not allow URBs to be queued to an endpoint that is being
1584  * disabled, so there's no need for mutual exclusion to protect
1585  * the xhci->devs[slot_id] structure.
1586  */
1587 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1588                 struct usb_host_endpoint *ep)
1589 {
1590         struct xhci_hcd *xhci;
1591         struct xhci_container_ctx *in_ctx, *out_ctx;
1592         struct xhci_input_control_ctx *ctrl_ctx;
1593         unsigned int ep_index;
1594         struct xhci_ep_ctx *ep_ctx;
1595         u32 drop_flag;
1596         u32 new_add_flags, new_drop_flags;
1597         int ret;
1598
1599         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1600         if (ret <= 0)
1601                 return ret;
1602         xhci = hcd_to_xhci(hcd);
1603         if (xhci->xhc_state & XHCI_STATE_DYING)
1604                 return -ENODEV;
1605
1606         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1607         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1608         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1609                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1610                                 __func__, drop_flag);
1611                 return 0;
1612         }
1613
1614         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1615         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1616         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1617         if (!ctrl_ctx) {
1618                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1619                                 __func__);
1620                 return 0;
1621         }
1622
1623         ep_index = xhci_get_endpoint_index(&ep->desc);
1624         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1625         /* If the HC already knows the endpoint is disabled,
1626          * or the HCD has noted it is disabled, ignore this request
1627          */
1628         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1629              cpu_to_le32(EP_STATE_DISABLED)) ||
1630             le32_to_cpu(ctrl_ctx->drop_flags) &
1631             xhci_get_endpoint_flag(&ep->desc)) {
1632                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1633                                 __func__, ep);
1634                 return 0;
1635         }
1636
1637         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1638         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1639
1640         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1641         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1642
1643         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1644
1645         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1646                         (unsigned int) ep->desc.bEndpointAddress,
1647                         udev->slot_id,
1648                         (unsigned int) new_drop_flags,
1649                         (unsigned int) new_add_flags);
1650         return 0;
1651 }
1652
1653 /* Add an endpoint to a new possible bandwidth configuration for this device.
1654  * Only one call to this function is allowed per endpoint before
1655  * check_bandwidth() or reset_bandwidth() must be called.
1656  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1657  * add the endpoint to the schedule with possibly new parameters denoted by a
1658  * different endpoint descriptor in usb_host_endpoint.
1659  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1660  * not allowed.
1661  *
1662  * The USB core will not allow URBs to be queued to an endpoint until the
1663  * configuration or alt setting is installed in the device, so there's no need
1664  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1665  */
1666 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1667                 struct usb_host_endpoint *ep)
1668 {
1669         struct xhci_hcd *xhci;
1670         struct xhci_container_ctx *in_ctx, *out_ctx;
1671         unsigned int ep_index;
1672         struct xhci_input_control_ctx *ctrl_ctx;
1673         u32 added_ctxs;
1674         u32 new_add_flags, new_drop_flags;
1675         struct xhci_virt_device *virt_dev;
1676         int ret = 0;
1677
1678         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1679         if (ret <= 0) {
1680                 /* So we won't queue a reset ep command for a root hub */
1681                 ep->hcpriv = NULL;
1682                 return ret;
1683         }
1684         xhci = hcd_to_xhci(hcd);
1685         if (xhci->xhc_state & XHCI_STATE_DYING)
1686                 return -ENODEV;
1687
1688         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1689         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1690                 /* FIXME when we have to issue an evaluate endpoint command to
1691                  * deal with ep0 max packet size changing once we get the
1692                  * descriptors
1693                  */
1694                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1695                                 __func__, added_ctxs);
1696                 return 0;
1697         }
1698
1699         virt_dev = xhci->devs[udev->slot_id];
1700         in_ctx = virt_dev->in_ctx;
1701         out_ctx = virt_dev->out_ctx;
1702         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1703         if (!ctrl_ctx) {
1704                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1705                                 __func__);
1706                 return 0;
1707         }
1708
1709         ep_index = xhci_get_endpoint_index(&ep->desc);
1710         /* If this endpoint is already in use, and the upper layers are trying
1711          * to add it again without dropping it, reject the addition.
1712          */
1713         if (virt_dev->eps[ep_index].ring &&
1714                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1715                                 xhci_get_endpoint_flag(&ep->desc))) {
1716                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1717                                 "without dropping it.\n",
1718                                 (unsigned int) ep->desc.bEndpointAddress);
1719                 return -EINVAL;
1720         }
1721
1722         /* If the HCD has already noted the endpoint is enabled,
1723          * ignore this request.
1724          */
1725         if (le32_to_cpu(ctrl_ctx->add_flags) &
1726             xhci_get_endpoint_flag(&ep->desc)) {
1727                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1728                                 __func__, ep);
1729                 return 0;
1730         }
1731
1732         /*
1733          * Configuration and alternate setting changes must be done in
1734          * process context, not interrupt context (or so documenation
1735          * for usb_set_interface() and usb_set_configuration() claim).
1736          */
1737         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1738                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1739                                 __func__, ep->desc.bEndpointAddress);
1740                 return -ENOMEM;
1741         }
1742
1743         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1744         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1745
1746         /* If xhci_endpoint_disable() was called for this endpoint, but the
1747          * xHC hasn't been notified yet through the check_bandwidth() call,
1748          * this re-adds a new state for the endpoint from the new endpoint
1749          * descriptors.  We must drop and re-add this endpoint, so we leave the
1750          * drop flags alone.
1751          */
1752         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1753
1754         /* Store the usb_device pointer for later use */
1755         ep->hcpriv = udev;
1756
1757         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1758                         (unsigned int) ep->desc.bEndpointAddress,
1759                         udev->slot_id,
1760                         (unsigned int) new_drop_flags,
1761                         (unsigned int) new_add_flags);
1762         return 0;
1763 }
1764
1765 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1766 {
1767         struct xhci_input_control_ctx *ctrl_ctx;
1768         struct xhci_ep_ctx *ep_ctx;
1769         struct xhci_slot_ctx *slot_ctx;
1770         int i;
1771
1772         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1773         if (!ctrl_ctx) {
1774                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1775                                 __func__);
1776                 return;
1777         }
1778
1779         /* When a device's add flag and drop flag are zero, any subsequent
1780          * configure endpoint command will leave that endpoint's state
1781          * untouched.  Make sure we don't leave any old state in the input
1782          * endpoint contexts.
1783          */
1784         ctrl_ctx->drop_flags = 0;
1785         ctrl_ctx->add_flags = 0;
1786         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1787         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1788         /* Endpoint 0 is always valid */
1789         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1790         for (i = 1; i < 31; ++i) {
1791                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1792                 ep_ctx->ep_info = 0;
1793                 ep_ctx->ep_info2 = 0;
1794                 ep_ctx->deq = 0;
1795                 ep_ctx->tx_info = 0;
1796         }
1797 }
1798
1799 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1800                 struct usb_device *udev, u32 *cmd_status)
1801 {
1802         int ret;
1803
1804         switch (*cmd_status) {
1805         case COMP_CMD_ABORT:
1806         case COMP_CMD_STOP:
1807                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1808                 ret = -ETIME;
1809                 break;
1810         case COMP_ENOMEM:
1811                 dev_warn(&udev->dev,
1812                          "Not enough host controller resources for new device state.\n");
1813                 ret = -ENOMEM;
1814                 /* FIXME: can we allocate more resources for the HC? */
1815                 break;
1816         case COMP_BW_ERR:
1817         case COMP_2ND_BW_ERR:
1818                 dev_warn(&udev->dev,
1819                          "Not enough bandwidth for new device state.\n");
1820                 ret = -ENOSPC;
1821                 /* FIXME: can we go back to the old state? */
1822                 break;
1823         case COMP_TRB_ERR:
1824                 /* the HCD set up something wrong */
1825                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1826                                 "add flag = 1, "
1827                                 "and endpoint is not disabled.\n");
1828                 ret = -EINVAL;
1829                 break;
1830         case COMP_DEV_ERR:
1831                 dev_warn(&udev->dev,
1832                          "ERROR: Incompatible device for endpoint configure command.\n");
1833                 ret = -ENODEV;
1834                 break;
1835         case COMP_SUCCESS:
1836                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1837                                 "Successful Endpoint Configure command");
1838                 ret = 0;
1839                 break;
1840         default:
1841                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1842                                 *cmd_status);
1843                 ret = -EINVAL;
1844                 break;
1845         }
1846         return ret;
1847 }
1848
1849 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1850                 struct usb_device *udev, u32 *cmd_status)
1851 {
1852         int ret;
1853         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1854
1855         switch (*cmd_status) {
1856         case COMP_CMD_ABORT:
1857         case COMP_CMD_STOP:
1858                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1859                 ret = -ETIME;
1860                 break;
1861         case COMP_EINVAL:
1862                 dev_warn(&udev->dev,
1863                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1864                 ret = -EINVAL;
1865                 break;
1866         case COMP_EBADSLT:
1867                 dev_warn(&udev->dev,
1868                         "WARN: slot not enabled for evaluate context command.\n");
1869                 ret = -EINVAL;
1870                 break;
1871         case COMP_CTX_STATE:
1872                 dev_warn(&udev->dev,
1873                         "WARN: invalid context state for evaluate context command.\n");
1874                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1875                 ret = -EINVAL;
1876                 break;
1877         case COMP_DEV_ERR:
1878                 dev_warn(&udev->dev,
1879                         "ERROR: Incompatible device for evaluate context command.\n");
1880                 ret = -ENODEV;
1881                 break;
1882         case COMP_MEL_ERR:
1883                 /* Max Exit Latency too large error */
1884                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1885                 ret = -EINVAL;
1886                 break;
1887         case COMP_SUCCESS:
1888                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1889                                 "Successful evaluate context command");
1890                 ret = 0;
1891                 break;
1892         default:
1893                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1894                         *cmd_status);
1895                 ret = -EINVAL;
1896                 break;
1897         }
1898         return ret;
1899 }
1900
1901 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1902                 struct xhci_input_control_ctx *ctrl_ctx)
1903 {
1904         u32 valid_add_flags;
1905         u32 valid_drop_flags;
1906
1907         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1908          * (bit 1).  The default control endpoint is added during the Address
1909          * Device command and is never removed until the slot is disabled.
1910          */
1911         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1912         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1913
1914         /* Use hweight32 to count the number of ones in the add flags, or
1915          * number of endpoints added.  Don't count endpoints that are changed
1916          * (both added and dropped).
1917          */
1918         return hweight32(valid_add_flags) -
1919                 hweight32(valid_add_flags & valid_drop_flags);
1920 }
1921
1922 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1923                 struct xhci_input_control_ctx *ctrl_ctx)
1924 {
1925         u32 valid_add_flags;
1926         u32 valid_drop_flags;
1927
1928         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1929         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1930
1931         return hweight32(valid_drop_flags) -
1932                 hweight32(valid_add_flags & valid_drop_flags);
1933 }
1934
1935 /*
1936  * We need to reserve the new number of endpoints before the configure endpoint
1937  * command completes.  We can't subtract the dropped endpoints from the number
1938  * of active endpoints until the command completes because we can oversubscribe
1939  * the host in this case:
1940  *
1941  *  - the first configure endpoint command drops more endpoints than it adds
1942  *  - a second configure endpoint command that adds more endpoints is queued
1943  *  - the first configure endpoint command fails, so the config is unchanged
1944  *  - the second command may succeed, even though there isn't enough resources
1945  *
1946  * Must be called with xhci->lock held.
1947  */
1948 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1949                 struct xhci_input_control_ctx *ctrl_ctx)
1950 {
1951         u32 added_eps;
1952
1953         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1954         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1955                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1956                                 "Not enough ep ctxs: "
1957                                 "%u active, need to add %u, limit is %u.",
1958                                 xhci->num_active_eps, added_eps,
1959                                 xhci->limit_active_eps);
1960                 return -ENOMEM;
1961         }
1962         xhci->num_active_eps += added_eps;
1963         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1964                         "Adding %u ep ctxs, %u now active.", added_eps,
1965                         xhci->num_active_eps);
1966         return 0;
1967 }
1968
1969 /*
1970  * The configure endpoint was failed by the xHC for some other reason, so we
1971  * need to revert the resources that failed configuration would have used.
1972  *
1973  * Must be called with xhci->lock held.
1974  */
1975 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1976                 struct xhci_input_control_ctx *ctrl_ctx)
1977 {
1978         u32 num_failed_eps;
1979
1980         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1981         xhci->num_active_eps -= num_failed_eps;
1982         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1983                         "Removing %u failed ep ctxs, %u now active.",
1984                         num_failed_eps,
1985                         xhci->num_active_eps);
1986 }
1987
1988 /*
1989  * Now that the command has completed, clean up the active endpoint count by
1990  * subtracting out the endpoints that were dropped (but not changed).
1991  *
1992  * Must be called with xhci->lock held.
1993  */
1994 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1995                 struct xhci_input_control_ctx *ctrl_ctx)
1996 {
1997         u32 num_dropped_eps;
1998
1999         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2000         xhci->num_active_eps -= num_dropped_eps;
2001         if (num_dropped_eps)
2002                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2003                                 "Removing %u dropped ep ctxs, %u now active.",
2004                                 num_dropped_eps,
2005                                 xhci->num_active_eps);
2006 }
2007
2008 static unsigned int xhci_get_block_size(struct usb_device *udev)
2009 {
2010         switch (udev->speed) {
2011         case USB_SPEED_LOW:
2012         case USB_SPEED_FULL:
2013                 return FS_BLOCK;
2014         case USB_SPEED_HIGH:
2015                 return HS_BLOCK;
2016         case USB_SPEED_SUPER:
2017                 return SS_BLOCK;
2018         case USB_SPEED_UNKNOWN:
2019         case USB_SPEED_WIRELESS:
2020         default:
2021                 /* Should never happen */
2022                 return 1;
2023         }
2024 }
2025
2026 static unsigned int
2027 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2028 {
2029         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2030                 return LS_OVERHEAD;
2031         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2032                 return FS_OVERHEAD;
2033         return HS_OVERHEAD;
2034 }
2035
2036 /* If we are changing a LS/FS device under a HS hub,
2037  * make sure (if we are activating a new TT) that the HS bus has enough
2038  * bandwidth for this new TT.
2039  */
2040 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2041                 struct xhci_virt_device *virt_dev,
2042                 int old_active_eps)
2043 {
2044         struct xhci_interval_bw_table *bw_table;
2045         struct xhci_tt_bw_info *tt_info;
2046
2047         /* Find the bandwidth table for the root port this TT is attached to. */
2048         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2049         tt_info = virt_dev->tt_info;
2050         /* If this TT already had active endpoints, the bandwidth for this TT
2051          * has already been added.  Removing all periodic endpoints (and thus
2052          * making the TT enactive) will only decrease the bandwidth used.
2053          */
2054         if (old_active_eps)
2055                 return 0;
2056         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2057                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2058                         return -ENOMEM;
2059                 return 0;
2060         }
2061         /* Not sure why we would have no new active endpoints...
2062          *
2063          * Maybe because of an Evaluate Context change for a hub update or a
2064          * control endpoint 0 max packet size change?
2065          * FIXME: skip the bandwidth calculation in that case.
2066          */
2067         return 0;
2068 }
2069
2070 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2071                 struct xhci_virt_device *virt_dev)
2072 {
2073         unsigned int bw_reserved;
2074
2075         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2076         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2077                 return -ENOMEM;
2078
2079         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2080         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2081                 return -ENOMEM;
2082
2083         return 0;
2084 }
2085
2086 /*
2087  * This algorithm is a very conservative estimate of the worst-case scheduling
2088  * scenario for any one interval.  The hardware dynamically schedules the
2089  * packets, so we can't tell which microframe could be the limiting factor in
2090  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2091  *
2092  * Obviously, we can't solve an NP complete problem to find the minimum worst
2093  * case scenario.  Instead, we come up with an estimate that is no less than
2094  * the worst case bandwidth used for any one microframe, but may be an
2095  * over-estimate.
2096  *
2097  * We walk the requirements for each endpoint by interval, starting with the
2098  * smallest interval, and place packets in the schedule where there is only one
2099  * possible way to schedule packets for that interval.  In order to simplify
2100  * this algorithm, we record the largest max packet size for each interval, and
2101  * assume all packets will be that size.
2102  *
2103  * For interval 0, we obviously must schedule all packets for each interval.
2104  * The bandwidth for interval 0 is just the amount of data to be transmitted
2105  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2106  * the number of packets).
2107  *
2108  * For interval 1, we have two possible microframes to schedule those packets
2109  * in.  For this algorithm, if we can schedule the same number of packets for
2110  * each possible scheduling opportunity (each microframe), we will do so.  The
2111  * remaining number of packets will be saved to be transmitted in the gaps in
2112  * the next interval's scheduling sequence.
2113  *
2114  * As we move those remaining packets to be scheduled with interval 2 packets,
2115  * we have to double the number of remaining packets to transmit.  This is
2116  * because the intervals are actually powers of 2, and we would be transmitting
2117  * the previous interval's packets twice in this interval.  We also have to be
2118  * sure that when we look at the largest max packet size for this interval, we
2119  * also look at the largest max packet size for the remaining packets and take
2120  * the greater of the two.
2121  *
2122  * The algorithm continues to evenly distribute packets in each scheduling
2123  * opportunity, and push the remaining packets out, until we get to the last
2124  * interval.  Then those packets and their associated overhead are just added
2125  * to the bandwidth used.
2126  */
2127 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2128                 struct xhci_virt_device *virt_dev,
2129                 int old_active_eps)
2130 {
2131         unsigned int bw_reserved;
2132         unsigned int max_bandwidth;
2133         unsigned int bw_used;
2134         unsigned int block_size;
2135         struct xhci_interval_bw_table *bw_table;
2136         unsigned int packet_size = 0;
2137         unsigned int overhead = 0;
2138         unsigned int packets_transmitted = 0;
2139         unsigned int packets_remaining = 0;
2140         unsigned int i;
2141
2142         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2143                 return xhci_check_ss_bw(xhci, virt_dev);
2144
2145         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2146                 max_bandwidth = HS_BW_LIMIT;
2147                 /* Convert percent of bus BW reserved to blocks reserved */
2148                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2149         } else {
2150                 max_bandwidth = FS_BW_LIMIT;
2151                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2152         }
2153
2154         bw_table = virt_dev->bw_table;
2155         /* We need to translate the max packet size and max ESIT payloads into
2156          * the units the hardware uses.
2157          */
2158         block_size = xhci_get_block_size(virt_dev->udev);
2159
2160         /* If we are manipulating a LS/FS device under a HS hub, double check
2161          * that the HS bus has enough bandwidth if we are activing a new TT.
2162          */
2163         if (virt_dev->tt_info) {
2164                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165                                 "Recalculating BW for rootport %u",
2166                                 virt_dev->real_port);
2167                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2168                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2169                                         "newly activated TT.\n");
2170                         return -ENOMEM;
2171                 }
2172                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2173                                 "Recalculating BW for TT slot %u port %u",
2174                                 virt_dev->tt_info->slot_id,
2175                                 virt_dev->tt_info->ttport);
2176         } else {
2177                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2178                                 "Recalculating BW for rootport %u",
2179                                 virt_dev->real_port);
2180         }
2181
2182         /* Add in how much bandwidth will be used for interval zero, or the
2183          * rounded max ESIT payload + number of packets * largest overhead.
2184          */
2185         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2186                 bw_table->interval_bw[0].num_packets *
2187                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2188
2189         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2190                 unsigned int bw_added;
2191                 unsigned int largest_mps;
2192                 unsigned int interval_overhead;
2193
2194                 /*
2195                  * How many packets could we transmit in this interval?
2196                  * If packets didn't fit in the previous interval, we will need
2197                  * to transmit that many packets twice within this interval.
2198                  */
2199                 packets_remaining = 2 * packets_remaining +
2200                         bw_table->interval_bw[i].num_packets;
2201
2202                 /* Find the largest max packet size of this or the previous
2203                  * interval.
2204                  */
2205                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2206                         largest_mps = 0;
2207                 else {
2208                         struct xhci_virt_ep *virt_ep;
2209                         struct list_head *ep_entry;
2210
2211                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2212                         virt_ep = list_entry(ep_entry,
2213                                         struct xhci_virt_ep, bw_endpoint_list);
2214                         /* Convert to blocks, rounding up */
2215                         largest_mps = DIV_ROUND_UP(
2216                                         virt_ep->bw_info.max_packet_size,
2217                                         block_size);
2218                 }
2219                 if (largest_mps > packet_size)
2220                         packet_size = largest_mps;
2221
2222                 /* Use the larger overhead of this or the previous interval. */
2223                 interval_overhead = xhci_get_largest_overhead(
2224                                 &bw_table->interval_bw[i]);
2225                 if (interval_overhead > overhead)
2226                         overhead = interval_overhead;
2227
2228                 /* How many packets can we evenly distribute across
2229                  * (1 << (i + 1)) possible scheduling opportunities?
2230                  */
2231                 packets_transmitted = packets_remaining >> (i + 1);
2232
2233                 /* Add in the bandwidth used for those scheduled packets */
2234                 bw_added = packets_transmitted * (overhead + packet_size);
2235
2236                 /* How many packets do we have remaining to transmit? */
2237                 packets_remaining = packets_remaining % (1 << (i + 1));
2238
2239                 /* What largest max packet size should those packets have? */
2240                 /* If we've transmitted all packets, don't carry over the
2241                  * largest packet size.
2242                  */
2243                 if (packets_remaining == 0) {
2244                         packet_size = 0;
2245                         overhead = 0;
2246                 } else if (packets_transmitted > 0) {
2247                         /* Otherwise if we do have remaining packets, and we've
2248                          * scheduled some packets in this interval, take the
2249                          * largest max packet size from endpoints with this
2250                          * interval.
2251                          */
2252                         packet_size = largest_mps;
2253                         overhead = interval_overhead;
2254                 }
2255                 /* Otherwise carry over packet_size and overhead from the last
2256                  * time we had a remainder.
2257                  */
2258                 bw_used += bw_added;
2259                 if (bw_used > max_bandwidth) {
2260                         xhci_warn(xhci, "Not enough bandwidth. "
2261                                         "Proposed: %u, Max: %u\n",
2262                                 bw_used, max_bandwidth);
2263                         return -ENOMEM;
2264                 }
2265         }
2266         /*
2267          * Ok, we know we have some packets left over after even-handedly
2268          * scheduling interval 15.  We don't know which microframes they will
2269          * fit into, so we over-schedule and say they will be scheduled every
2270          * microframe.
2271          */
2272         if (packets_remaining > 0)
2273                 bw_used += overhead + packet_size;
2274
2275         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2276                 unsigned int port_index = virt_dev->real_port - 1;
2277
2278                 /* OK, we're manipulating a HS device attached to a
2279                  * root port bandwidth domain.  Include the number of active TTs
2280                  * in the bandwidth used.
2281                  */
2282                 bw_used += TT_HS_OVERHEAD *
2283                         xhci->rh_bw[port_index].num_active_tts;
2284         }
2285
2286         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2287                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2288                 "Available: %u " "percent",
2289                 bw_used, max_bandwidth, bw_reserved,
2290                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2291                 max_bandwidth);
2292
2293         bw_used += bw_reserved;
2294         if (bw_used > max_bandwidth) {
2295                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2296                                 bw_used, max_bandwidth);
2297                 return -ENOMEM;
2298         }
2299
2300         bw_table->bw_used = bw_used;
2301         return 0;
2302 }
2303
2304 static bool xhci_is_async_ep(unsigned int ep_type)
2305 {
2306         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2307                                         ep_type != ISOC_IN_EP &&
2308                                         ep_type != INT_IN_EP);
2309 }
2310
2311 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2312 {
2313         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2314 }
2315
2316 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2317 {
2318         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2319
2320         if (ep_bw->ep_interval == 0)
2321                 return SS_OVERHEAD_BURST +
2322                         (ep_bw->mult * ep_bw->num_packets *
2323                                         (SS_OVERHEAD + mps));
2324         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2325                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2326                                 1 << ep_bw->ep_interval);
2327
2328 }
2329
2330 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2331                 struct xhci_bw_info *ep_bw,
2332                 struct xhci_interval_bw_table *bw_table,
2333                 struct usb_device *udev,
2334                 struct xhci_virt_ep *virt_ep,
2335                 struct xhci_tt_bw_info *tt_info)
2336 {
2337         struct xhci_interval_bw *interval_bw;
2338         int normalized_interval;
2339
2340         if (xhci_is_async_ep(ep_bw->type))
2341                 return;
2342
2343         if (udev->speed == USB_SPEED_SUPER) {
2344                 if (xhci_is_sync_in_ep(ep_bw->type))
2345                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2346                                 xhci_get_ss_bw_consumed(ep_bw);
2347                 else
2348                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2349                                 xhci_get_ss_bw_consumed(ep_bw);
2350                 return;
2351         }
2352
2353         /* SuperSpeed endpoints never get added to intervals in the table, so
2354          * this check is only valid for HS/FS/LS devices.
2355          */
2356         if (list_empty(&virt_ep->bw_endpoint_list))
2357                 return;
2358         /* For LS/FS devices, we need to translate the interval expressed in
2359          * microframes to frames.
2360          */
2361         if (udev->speed == USB_SPEED_HIGH)
2362                 normalized_interval = ep_bw->ep_interval;
2363         else
2364                 normalized_interval = ep_bw->ep_interval - 3;
2365
2366         if (normalized_interval == 0)
2367                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2368         interval_bw = &bw_table->interval_bw[normalized_interval];
2369         interval_bw->num_packets -= ep_bw->num_packets;
2370         switch (udev->speed) {
2371         case USB_SPEED_LOW:
2372                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2373                 break;
2374         case USB_SPEED_FULL:
2375                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2376                 break;
2377         case USB_SPEED_HIGH:
2378                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2379                 break;
2380         case USB_SPEED_SUPER:
2381         case USB_SPEED_UNKNOWN:
2382         case USB_SPEED_WIRELESS:
2383                 /* Should never happen because only LS/FS/HS endpoints will get
2384                  * added to the endpoint list.
2385                  */
2386                 return;
2387         }
2388         if (tt_info)
2389                 tt_info->active_eps -= 1;
2390         list_del_init(&virt_ep->bw_endpoint_list);
2391 }
2392
2393 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2394                 struct xhci_bw_info *ep_bw,
2395                 struct xhci_interval_bw_table *bw_table,
2396                 struct usb_device *udev,
2397                 struct xhci_virt_ep *virt_ep,
2398                 struct xhci_tt_bw_info *tt_info)
2399 {
2400         struct xhci_interval_bw *interval_bw;
2401         struct xhci_virt_ep *smaller_ep;
2402         int normalized_interval;
2403
2404         if (xhci_is_async_ep(ep_bw->type))
2405                 return;
2406
2407         if (udev->speed == USB_SPEED_SUPER) {
2408                 if (xhci_is_sync_in_ep(ep_bw->type))
2409                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2410                                 xhci_get_ss_bw_consumed(ep_bw);
2411                 else
2412                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2413                                 xhci_get_ss_bw_consumed(ep_bw);
2414                 return;
2415         }
2416
2417         /* For LS/FS devices, we need to translate the interval expressed in
2418          * microframes to frames.
2419          */
2420         if (udev->speed == USB_SPEED_HIGH)
2421                 normalized_interval = ep_bw->ep_interval;
2422         else
2423                 normalized_interval = ep_bw->ep_interval - 3;
2424
2425         if (normalized_interval == 0)
2426                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2427         interval_bw = &bw_table->interval_bw[normalized_interval];
2428         interval_bw->num_packets += ep_bw->num_packets;
2429         switch (udev->speed) {
2430         case USB_SPEED_LOW:
2431                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2432                 break;
2433         case USB_SPEED_FULL:
2434                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2435                 break;
2436         case USB_SPEED_HIGH:
2437                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2438                 break;
2439         case USB_SPEED_SUPER:
2440         case USB_SPEED_UNKNOWN:
2441         case USB_SPEED_WIRELESS:
2442                 /* Should never happen because only LS/FS/HS endpoints will get
2443                  * added to the endpoint list.
2444                  */
2445                 return;
2446         }
2447
2448         if (tt_info)
2449                 tt_info->active_eps += 1;
2450         /* Insert the endpoint into the list, largest max packet size first. */
2451         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2452                         bw_endpoint_list) {
2453                 if (ep_bw->max_packet_size >=
2454                                 smaller_ep->bw_info.max_packet_size) {
2455                         /* Add the new ep before the smaller endpoint */
2456                         list_add_tail(&virt_ep->bw_endpoint_list,
2457                                         &smaller_ep->bw_endpoint_list);
2458                         return;
2459                 }
2460         }
2461         /* Add the new endpoint at the end of the list. */
2462         list_add_tail(&virt_ep->bw_endpoint_list,
2463                         &interval_bw->endpoints);
2464 }
2465
2466 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2467                 struct xhci_virt_device *virt_dev,
2468                 int old_active_eps)
2469 {
2470         struct xhci_root_port_bw_info *rh_bw_info;
2471         if (!virt_dev->tt_info)
2472                 return;
2473
2474         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2475         if (old_active_eps == 0 &&
2476                                 virt_dev->tt_info->active_eps != 0) {
2477                 rh_bw_info->num_active_tts += 1;
2478                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2479         } else if (old_active_eps != 0 &&
2480                                 virt_dev->tt_info->active_eps == 0) {
2481                 rh_bw_info->num_active_tts -= 1;
2482                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2483         }
2484 }
2485
2486 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2487                 struct xhci_virt_device *virt_dev,
2488                 struct xhci_container_ctx *in_ctx)
2489 {
2490         struct xhci_bw_info ep_bw_info[31];
2491         int i;
2492         struct xhci_input_control_ctx *ctrl_ctx;
2493         int old_active_eps = 0;
2494
2495         if (virt_dev->tt_info)
2496                 old_active_eps = virt_dev->tt_info->active_eps;
2497
2498         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2499         if (!ctrl_ctx) {
2500                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2501                                 __func__);
2502                 return -ENOMEM;
2503         }
2504
2505         for (i = 0; i < 31; i++) {
2506                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2507                         continue;
2508
2509                 /* Make a copy of the BW info in case we need to revert this */
2510                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2511                                 sizeof(ep_bw_info[i]));
2512                 /* Drop the endpoint from the interval table if the endpoint is
2513                  * being dropped or changed.
2514                  */
2515                 if (EP_IS_DROPPED(ctrl_ctx, i))
2516                         xhci_drop_ep_from_interval_table(xhci,
2517                                         &virt_dev->eps[i].bw_info,
2518                                         virt_dev->bw_table,
2519                                         virt_dev->udev,
2520                                         &virt_dev->eps[i],
2521                                         virt_dev->tt_info);
2522         }
2523         /* Overwrite the information stored in the endpoints' bw_info */
2524         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2525         for (i = 0; i < 31; i++) {
2526                 /* Add any changed or added endpoints to the interval table */
2527                 if (EP_IS_ADDED(ctrl_ctx, i))
2528                         xhci_add_ep_to_interval_table(xhci,
2529                                         &virt_dev->eps[i].bw_info,
2530                                         virt_dev->bw_table,
2531                                         virt_dev->udev,
2532                                         &virt_dev->eps[i],
2533                                         virt_dev->tt_info);
2534         }
2535
2536         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2537                 /* Ok, this fits in the bandwidth we have.
2538                  * Update the number of active TTs.
2539                  */
2540                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2541                 return 0;
2542         }
2543
2544         /* We don't have enough bandwidth for this, revert the stored info. */
2545         for (i = 0; i < 31; i++) {
2546                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2547                         continue;
2548
2549                 /* Drop the new copies of any added or changed endpoints from
2550                  * the interval table.
2551                  */
2552                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2553                         xhci_drop_ep_from_interval_table(xhci,
2554                                         &virt_dev->eps[i].bw_info,
2555                                         virt_dev->bw_table,
2556                                         virt_dev->udev,
2557                                         &virt_dev->eps[i],
2558                                         virt_dev->tt_info);
2559                 }
2560                 /* Revert the endpoint back to its old information */
2561                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2562                                 sizeof(ep_bw_info[i]));
2563                 /* Add any changed or dropped endpoints back into the table */
2564                 if (EP_IS_DROPPED(ctrl_ctx, i))
2565                         xhci_add_ep_to_interval_table(xhci,
2566                                         &virt_dev->eps[i].bw_info,
2567                                         virt_dev->bw_table,
2568                                         virt_dev->udev,
2569                                         &virt_dev->eps[i],
2570                                         virt_dev->tt_info);
2571         }
2572         return -ENOMEM;
2573 }
2574
2575
2576 /* Issue a configure endpoint command or evaluate context command
2577  * and wait for it to finish.
2578  */
2579 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2580                 struct usb_device *udev,
2581                 struct xhci_command *command,
2582                 bool ctx_change, bool must_succeed)
2583 {
2584         int ret;
2585         unsigned long flags;
2586         struct xhci_input_control_ctx *ctrl_ctx;
2587         struct xhci_virt_device *virt_dev;
2588
2589         if (!command)
2590                 return -EINVAL;
2591
2592         spin_lock_irqsave(&xhci->lock, flags);
2593         virt_dev = xhci->devs[udev->slot_id];
2594
2595         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2596         if (!ctrl_ctx) {
2597                 spin_unlock_irqrestore(&xhci->lock, flags);
2598                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2599                                 __func__);
2600                 return -ENOMEM;
2601         }
2602
2603         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2604                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2605                 spin_unlock_irqrestore(&xhci->lock, flags);
2606                 xhci_warn(xhci, "Not enough host resources, "
2607                                 "active endpoint contexts = %u\n",
2608                                 xhci->num_active_eps);
2609                 return -ENOMEM;
2610         }
2611         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2612             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2613                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2614                         xhci_free_host_resources(xhci, ctrl_ctx);
2615                 spin_unlock_irqrestore(&xhci->lock, flags);
2616                 xhci_warn(xhci, "Not enough bandwidth\n");
2617                 return -ENOMEM;
2618         }
2619
2620         if (!ctx_change)
2621                 ret = xhci_queue_configure_endpoint(xhci, command,
2622                                 command->in_ctx->dma,
2623                                 udev->slot_id, must_succeed);
2624         else
2625                 ret = xhci_queue_evaluate_context(xhci, command,
2626                                 command->in_ctx->dma,
2627                                 udev->slot_id, must_succeed);
2628         if (ret < 0) {
2629                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2630                         xhci_free_host_resources(xhci, ctrl_ctx);
2631                 spin_unlock_irqrestore(&xhci->lock, flags);
2632                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2633                                 "FIXME allocate a new ring segment");
2634                 return -ENOMEM;
2635         }
2636         xhci_ring_cmd_db(xhci);
2637         spin_unlock_irqrestore(&xhci->lock, flags);
2638
2639         /* Wait for the configure endpoint command to complete */
2640         wait_for_completion(command->completion);
2641
2642         if (!ctx_change)
2643                 ret = xhci_configure_endpoint_result(xhci, udev,
2644                                                      &command->status);
2645         else
2646                 ret = xhci_evaluate_context_result(xhci, udev,
2647                                                    &command->status);
2648
2649         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2650                 spin_lock_irqsave(&xhci->lock, flags);
2651                 /* If the command failed, remove the reserved resources.
2652                  * Otherwise, clean up the estimate to include dropped eps.
2653                  */
2654                 if (ret)
2655                         xhci_free_host_resources(xhci, ctrl_ctx);
2656                 else
2657                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2658                 spin_unlock_irqrestore(&xhci->lock, flags);
2659         }
2660         return ret;
2661 }
2662
2663 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2664         struct xhci_virt_device *vdev, int i)
2665 {
2666         struct xhci_virt_ep *ep = &vdev->eps[i];
2667
2668         if (ep->ep_state & EP_HAS_STREAMS) {
2669                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2670                                 xhci_get_endpoint_address(i));
2671                 xhci_free_stream_info(xhci, ep->stream_info);
2672                 ep->stream_info = NULL;
2673                 ep->ep_state &= ~EP_HAS_STREAMS;
2674         }
2675 }
2676
2677 /* Called after one or more calls to xhci_add_endpoint() or
2678  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2679  * to call xhci_reset_bandwidth().
2680  *
2681  * Since we are in the middle of changing either configuration or
2682  * installing a new alt setting, the USB core won't allow URBs to be
2683  * enqueued for any endpoint on the old config or interface.  Nothing
2684  * else should be touching the xhci->devs[slot_id] structure, so we
2685  * don't need to take the xhci->lock for manipulating that.
2686  */
2687 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2688 {
2689         int i;
2690         int ret = 0;
2691         struct xhci_hcd *xhci;
2692         struct xhci_virt_device *virt_dev;
2693         struct xhci_input_control_ctx *ctrl_ctx;
2694         struct xhci_slot_ctx *slot_ctx;
2695         struct xhci_command *command;
2696
2697         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2698         if (ret <= 0)
2699                 return ret;
2700         xhci = hcd_to_xhci(hcd);
2701         if (xhci->xhc_state & XHCI_STATE_DYING)
2702                 return -ENODEV;
2703
2704         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2705         virt_dev = xhci->devs[udev->slot_id];
2706
2707         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2708         if (!command)
2709                 return -ENOMEM;
2710
2711         command->in_ctx = virt_dev->in_ctx;
2712
2713         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2714         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2715         if (!ctrl_ctx) {
2716                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2717                                 __func__);
2718                 ret = -ENOMEM;
2719                 goto command_cleanup;
2720         }
2721         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2722         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2723         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2724
2725         /* Don't issue the command if there's no endpoints to update. */
2726         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2727             ctrl_ctx->drop_flags == 0) {
2728                 ret = 0;
2729                 goto command_cleanup;
2730         }
2731         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2732         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2733         for (i = 31; i >= 1; i--) {
2734                 __le32 le32 = cpu_to_le32(BIT(i));
2735
2736                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2737                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2738                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2739                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2740                         break;
2741                 }
2742         }
2743         xhci_dbg(xhci, "New Input Control Context:\n");
2744         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2745                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2746
2747         ret = xhci_configure_endpoint(xhci, udev, command,
2748                         false, false);
2749         if (ret)
2750                 /* Callee should call reset_bandwidth() */
2751                 goto command_cleanup;
2752
2753         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2754         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2755                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2756
2757         /* Free any rings that were dropped, but not changed. */
2758         for (i = 1; i < 31; ++i) {
2759                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2760                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2761                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2762                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2763                 }
2764         }
2765         xhci_zero_in_ctx(xhci, virt_dev);
2766         /*
2767          * Install any rings for completely new endpoints or changed endpoints,
2768          * and free or cache any old rings from changed endpoints.
2769          */
2770         for (i = 1; i < 31; ++i) {
2771                 if (!virt_dev->eps[i].new_ring)
2772                         continue;
2773                 /* Only cache or free the old ring if it exists.
2774                  * It may not if this is the first add of an endpoint.
2775                  */
2776                 if (virt_dev->eps[i].ring) {
2777                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2778                 }
2779                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2780                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2781                 virt_dev->eps[i].new_ring = NULL;
2782         }
2783 command_cleanup:
2784         kfree(command->completion);
2785         kfree(command);
2786
2787         return ret;
2788 }
2789
2790 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2791 {
2792         struct xhci_hcd *xhci;
2793         struct xhci_virt_device *virt_dev;
2794         int i, ret;
2795
2796         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2797         if (ret <= 0)
2798                 return;
2799         xhci = hcd_to_xhci(hcd);
2800
2801         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2802         virt_dev = xhci->devs[udev->slot_id];
2803         /* Free any rings allocated for added endpoints */
2804         for (i = 0; i < 31; ++i) {
2805                 if (virt_dev->eps[i].new_ring) {
2806                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2807                         virt_dev->eps[i].new_ring = NULL;
2808                 }
2809         }
2810         xhci_zero_in_ctx(xhci, virt_dev);
2811 }
2812
2813 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2814                 struct xhci_container_ctx *in_ctx,
2815                 struct xhci_container_ctx *out_ctx,
2816                 struct xhci_input_control_ctx *ctrl_ctx,
2817                 u32 add_flags, u32 drop_flags)
2818 {
2819         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2820         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2821         xhci_slot_copy(xhci, in_ctx, out_ctx);
2822         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2823
2824         xhci_dbg(xhci, "Input Context:\n");
2825         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2826 }
2827
2828 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2829                 unsigned int slot_id, unsigned int ep_index,
2830                 struct xhci_dequeue_state *deq_state)
2831 {
2832         struct xhci_input_control_ctx *ctrl_ctx;
2833         struct xhci_container_ctx *in_ctx;
2834         struct xhci_ep_ctx *ep_ctx;
2835         u32 added_ctxs;
2836         dma_addr_t addr;
2837
2838         in_ctx = xhci->devs[slot_id]->in_ctx;
2839         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2840         if (!ctrl_ctx) {
2841                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2842                                 __func__);
2843                 return;
2844         }
2845
2846         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2847                         xhci->devs[slot_id]->out_ctx, ep_index);
2848         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2849         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2850                         deq_state->new_deq_ptr);
2851         if (addr == 0) {
2852                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2853                                 "reset ep command\n");
2854                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2855                                 deq_state->new_deq_seg,
2856                                 deq_state->new_deq_ptr);
2857                 return;
2858         }
2859         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2860
2861         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2862         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2863                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2864                         added_ctxs, added_ctxs);
2865 }
2866
2867 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2868                 struct usb_device *udev, unsigned int ep_index)
2869 {
2870         struct xhci_dequeue_state deq_state;
2871         struct xhci_virt_ep *ep;
2872
2873         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2874                         "Cleaning up stalled endpoint ring");
2875         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876         /* We need to move the HW's dequeue pointer past this TD,
2877          * or it will attempt to resend it on the next doorbell ring.
2878          */
2879         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880                         ep_index, ep->stopped_stream, ep->stopped_td,
2881                         &deq_state);
2882
2883         /* HW with the reset endpoint quirk will use the saved dequeue state to
2884          * issue a configure endpoint command later.
2885          */
2886         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2887                 struct xhci_command *command;
2888                 /* Can't sleep if we're called from cleanup_halted_endpoint() */
2889                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2890                 if (!command)
2891                         return;
2892                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2893                                 "Queueing new dequeue state");
2894                 xhci_queue_new_dequeue_state(xhci, command, udev->slot_id,
2895                                 ep_index, ep->stopped_stream, &deq_state);
2896         } else {
2897                 /* Better hope no one uses the input context between now and the
2898                  * reset endpoint completion!
2899                  * XXX: No idea how this hardware will react when stream rings
2900                  * are enabled.
2901                  */
2902                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2903                                 "Setting up input context for "
2904                                 "configure endpoint command");
2905                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2906                                 ep_index, &deq_state);
2907         }
2908 }
2909
2910 /* Deal with stalled endpoints.  The core should have sent the control message
2911  * to clear the halt condition.  However, we need to make the xHCI hardware
2912  * reset its sequence number, since a device will expect a sequence number of
2913  * zero after the halt condition is cleared.
2914  * Context: in_interrupt
2915  */
2916 void xhci_endpoint_reset(struct usb_hcd *hcd,
2917                 struct usb_host_endpoint *ep)
2918 {
2919         struct xhci_hcd *xhci;
2920         struct usb_device *udev;
2921         unsigned int ep_index;
2922         unsigned long flags;
2923         int ret;
2924         struct xhci_virt_ep *virt_ep;
2925         struct xhci_command *command;
2926
2927         xhci = hcd_to_xhci(hcd);
2928         udev = (struct usb_device *) ep->hcpriv;
2929         /* Called with a root hub endpoint (or an endpoint that wasn't added
2930          * with xhci_add_endpoint()
2931          */
2932         if (!ep->hcpriv)
2933                 return;
2934         ep_index = xhci_get_endpoint_index(&ep->desc);
2935         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2936         if (!virt_ep->stopped_td) {
2937                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2938                         "Endpoint 0x%x not halted, refusing to reset.",
2939                         ep->desc.bEndpointAddress);
2940                 return;
2941         }
2942         if (usb_endpoint_xfer_control(&ep->desc)) {
2943                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2944                                 "Control endpoint stall already handled.");
2945                 return;
2946         }
2947
2948         command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2949         if (!command)
2950                 return;
2951
2952         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2953                         "Queueing reset endpoint command");
2954         spin_lock_irqsave(&xhci->lock, flags);
2955         ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index);
2956         /*
2957          * Can't change the ring dequeue pointer until it's transitioned to the
2958          * stopped state, which is only upon a successful reset endpoint
2959          * command.  Better hope that last command worked!
2960          */
2961         if (!ret) {
2962                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2963                 kfree(virt_ep->stopped_td);
2964                 xhci_ring_cmd_db(xhci);
2965         }
2966         virt_ep->stopped_td = NULL;
2967         virt_ep->stopped_stream = 0;
2968         spin_unlock_irqrestore(&xhci->lock, flags);
2969
2970         if (ret)
2971                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2972 }
2973
2974 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2975                 struct usb_device *udev, struct usb_host_endpoint *ep,
2976                 unsigned int slot_id)
2977 {
2978         int ret;
2979         unsigned int ep_index;
2980         unsigned int ep_state;
2981
2982         if (!ep)
2983                 return -EINVAL;
2984         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2985         if (ret <= 0)
2986                 return -EINVAL;
2987         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2988                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2989                                 " descriptor for ep 0x%x does not support streams\n",
2990                                 ep->desc.bEndpointAddress);
2991                 return -EINVAL;
2992         }
2993
2994         ep_index = xhci_get_endpoint_index(&ep->desc);
2995         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2996         if (ep_state & EP_HAS_STREAMS ||
2997                         ep_state & EP_GETTING_STREAMS) {
2998                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2999                                 "already has streams set up.\n",
3000                                 ep->desc.bEndpointAddress);
3001                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3002                                 "dynamic stream context array reallocation.\n");
3003                 return -EINVAL;
3004         }
3005         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3006                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3007                                 "endpoint 0x%x; URBs are pending.\n",
3008                                 ep->desc.bEndpointAddress);
3009                 return -EINVAL;
3010         }
3011         return 0;
3012 }
3013
3014 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3015                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3016 {
3017         unsigned int max_streams;
3018
3019         /* The stream context array size must be a power of two */
3020         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3021         /*
3022          * Find out how many primary stream array entries the host controller
3023          * supports.  Later we may use secondary stream arrays (similar to 2nd
3024          * level page entries), but that's an optional feature for xHCI host
3025          * controllers. xHCs must support at least 4 stream IDs.
3026          */
3027         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3028         if (*num_stream_ctxs > max_streams) {
3029                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3030                                 max_streams);
3031                 *num_stream_ctxs = max_streams;
3032                 *num_streams = max_streams;
3033         }
3034 }
3035
3036 /* Returns an error code if one of the endpoint already has streams.
3037  * This does not change any data structures, it only checks and gathers
3038  * information.
3039  */
3040 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3041                 struct usb_device *udev,
3042                 struct usb_host_endpoint **eps, unsigned int num_eps,
3043                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3044 {
3045         unsigned int max_streams;
3046         unsigned int endpoint_flag;
3047         int i;
3048         int ret;
3049
3050         for (i = 0; i < num_eps; i++) {
3051                 ret = xhci_check_streams_endpoint(xhci, udev,
3052                                 eps[i], udev->slot_id);
3053                 if (ret < 0)
3054                         return ret;
3055
3056                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3057                 if (max_streams < (*num_streams - 1)) {
3058                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3059                                         eps[i]->desc.bEndpointAddress,
3060                                         max_streams);
3061                         *num_streams = max_streams+1;
3062                 }
3063
3064                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3065                 if (*changed_ep_bitmask & endpoint_flag)
3066                         return -EINVAL;
3067                 *changed_ep_bitmask |= endpoint_flag;
3068         }
3069         return 0;
3070 }
3071
3072 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3073                 struct usb_device *udev,
3074                 struct usb_host_endpoint **eps, unsigned int num_eps)
3075 {
3076         u32 changed_ep_bitmask = 0;
3077         unsigned int slot_id;
3078         unsigned int ep_index;
3079         unsigned int ep_state;
3080         int i;
3081
3082         slot_id = udev->slot_id;
3083         if (!xhci->devs[slot_id])
3084                 return 0;
3085
3086         for (i = 0; i < num_eps; i++) {
3087                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3088                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3089                 /* Are streams already being freed for the endpoint? */
3090                 if (ep_state & EP_GETTING_NO_STREAMS) {
3091                         xhci_warn(xhci, "WARN Can't disable streams for "
3092                                         "endpoint 0x%x, "
3093                                         "streams are being disabled already\n",
3094                                         eps[i]->desc.bEndpointAddress);
3095                         return 0;
3096                 }
3097                 /* Are there actually any streams to free? */
3098                 if (!(ep_state & EP_HAS_STREAMS) &&
3099                                 !(ep_state & EP_GETTING_STREAMS)) {
3100                         xhci_warn(xhci, "WARN Can't disable streams for "
3101                                         "endpoint 0x%x, "
3102                                         "streams are already disabled!\n",
3103                                         eps[i]->desc.bEndpointAddress);
3104                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3105                                         "with non-streams endpoint\n");
3106                         return 0;
3107                 }
3108                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3109         }
3110         return changed_ep_bitmask;
3111 }
3112
3113 /*
3114  * The USB device drivers use this function (though the HCD interface in USB
3115  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3116  * coordinate mass storage command queueing across multiple endpoints (basically
3117  * a stream ID == a task ID).
3118  *
3119  * Setting up streams involves allocating the same size stream context array
3120  * for each endpoint and issuing a configure endpoint command for all endpoints.
3121  *
3122  * Don't allow the call to succeed if one endpoint only supports one stream
3123  * (which means it doesn't support streams at all).
3124  *
3125  * Drivers may get less stream IDs than they asked for, if the host controller
3126  * hardware or endpoints claim they can't support the number of requested
3127  * stream IDs.
3128  */
3129 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3130                 struct usb_host_endpoint **eps, unsigned int num_eps,
3131                 unsigned int num_streams, gfp_t mem_flags)
3132 {
3133         int i, ret;
3134         struct xhci_hcd *xhci;
3135         struct xhci_virt_device *vdev;
3136         struct xhci_command *config_cmd;
3137         struct xhci_input_control_ctx *ctrl_ctx;
3138         unsigned int ep_index;
3139         unsigned int num_stream_ctxs;
3140         unsigned long flags;
3141         u32 changed_ep_bitmask = 0;
3142
3143         if (!eps)
3144                 return -EINVAL;
3145
3146         /* Add one to the number of streams requested to account for
3147          * stream 0 that is reserved for xHCI usage.
3148          */
3149         num_streams += 1;
3150         xhci = hcd_to_xhci(hcd);
3151         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3152                         num_streams);
3153
3154         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3155         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3156                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3157                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3158                 return -ENOSYS;
3159         }
3160
3161         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3162         if (!config_cmd) {
3163                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3164                 return -ENOMEM;
3165         }
3166         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3167         if (!ctrl_ctx) {
3168                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3169                                 __func__);
3170                 xhci_free_command(xhci, config_cmd);
3171                 return -ENOMEM;
3172         }
3173
3174         /* Check to make sure all endpoints are not already configured for
3175          * streams.  While we're at it, find the maximum number of streams that
3176          * all the endpoints will support and check for duplicate endpoints.
3177          */
3178         spin_lock_irqsave(&xhci->lock, flags);
3179         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3180                         num_eps, &num_streams, &changed_ep_bitmask);
3181         if (ret < 0) {
3182                 xhci_free_command(xhci, config_cmd);
3183                 spin_unlock_irqrestore(&xhci->lock, flags);
3184                 return ret;
3185         }
3186         if (num_streams <= 1) {
3187                 xhci_warn(xhci, "WARN: endpoints can't handle "
3188                                 "more than one stream.\n");
3189                 xhci_free_command(xhci, config_cmd);
3190                 spin_unlock_irqrestore(&xhci->lock, flags);
3191                 return -EINVAL;
3192         }
3193         vdev = xhci->devs[udev->slot_id];
3194         /* Mark each endpoint as being in transition, so
3195          * xhci_urb_enqueue() will reject all URBs.
3196          */
3197         for (i = 0; i < num_eps; i++) {
3198                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3199                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3200         }
3201         spin_unlock_irqrestore(&xhci->lock, flags);
3202
3203         /* Setup internal data structures and allocate HW data structures for
3204          * streams (but don't install the HW structures in the input context
3205          * until we're sure all memory allocation succeeded).
3206          */
3207         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3208         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3209                         num_stream_ctxs, num_streams);
3210
3211         for (i = 0; i < num_eps; i++) {
3212                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3213                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3214                                 num_stream_ctxs,
3215                                 num_streams, mem_flags);
3216                 if (!vdev->eps[ep_index].stream_info)
3217                         goto cleanup;
3218                 /* Set maxPstreams in endpoint context and update deq ptr to
3219                  * point to stream context array. FIXME
3220                  */
3221         }
3222
3223         /* Set up the input context for a configure endpoint command. */
3224         for (i = 0; i < num_eps; i++) {
3225                 struct xhci_ep_ctx *ep_ctx;
3226
3227                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3228                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3229
3230                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3231                                 vdev->out_ctx, ep_index);
3232                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3233                                 vdev->eps[ep_index].stream_info);
3234         }
3235         /* Tell the HW to drop its old copy of the endpoint context info
3236          * and add the updated copy from the input context.
3237          */
3238         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3239                         vdev->out_ctx, ctrl_ctx,
3240                         changed_ep_bitmask, changed_ep_bitmask);
3241
3242         /* Issue and wait for the configure endpoint command */
3243         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3244                         false, false);
3245
3246         /* xHC rejected the configure endpoint command for some reason, so we
3247          * leave the old ring intact and free our internal streams data
3248          * structure.
3249          */
3250         if (ret < 0)
3251                 goto cleanup;
3252
3253         spin_lock_irqsave(&xhci->lock, flags);
3254         for (i = 0; i < num_eps; i++) {
3255                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3256                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3257                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3258                          udev->slot_id, ep_index);
3259                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3260         }
3261         xhci_free_command(xhci, config_cmd);
3262         spin_unlock_irqrestore(&xhci->lock, flags);
3263
3264         /* Subtract 1 for stream 0, which drivers can't use */
3265         return num_streams - 1;
3266
3267 cleanup:
3268         /* If it didn't work, free the streams! */
3269         for (i = 0; i < num_eps; i++) {
3270                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3271                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3272                 vdev->eps[ep_index].stream_info = NULL;
3273                 /* FIXME Unset maxPstreams in endpoint context and
3274                  * update deq ptr to point to normal string ring.
3275                  */
3276                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3277                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3278                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3279         }
3280         xhci_free_command(xhci, config_cmd);
3281         return -ENOMEM;
3282 }
3283
3284 /* Transition the endpoint from using streams to being a "normal" endpoint
3285  * without streams.
3286  *
3287  * Modify the endpoint context state, submit a configure endpoint command,
3288  * and free all endpoint rings for streams if that completes successfully.
3289  */
3290 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3291                 struct usb_host_endpoint **eps, unsigned int num_eps,
3292                 gfp_t mem_flags)
3293 {
3294         int i, ret;
3295         struct xhci_hcd *xhci;
3296         struct xhci_virt_device *vdev;
3297         struct xhci_command *command;
3298         struct xhci_input_control_ctx *ctrl_ctx;
3299         unsigned int ep_index;
3300         unsigned long flags;
3301         u32 changed_ep_bitmask;
3302
3303         xhci = hcd_to_xhci(hcd);
3304         vdev = xhci->devs[udev->slot_id];
3305
3306         /* Set up a configure endpoint command to remove the streams rings */
3307         spin_lock_irqsave(&xhci->lock, flags);
3308         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3309                         udev, eps, num_eps);
3310         if (changed_ep_bitmask == 0) {
3311                 spin_unlock_irqrestore(&xhci->lock, flags);
3312                 return -EINVAL;
3313         }
3314
3315         /* Use the xhci_command structure from the first endpoint.  We may have
3316          * allocated too many, but the driver may call xhci_free_streams() for
3317          * each endpoint it grouped into one call to xhci_alloc_streams().
3318          */
3319         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3320         command = vdev->eps[ep_index].stream_info->free_streams_command;
3321         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3322         if (!ctrl_ctx) {
3323                 spin_unlock_irqrestore(&xhci->lock, flags);
3324                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3325                                 __func__);
3326                 return -EINVAL;
3327         }
3328
3329         for (i = 0; i < num_eps; i++) {
3330                 struct xhci_ep_ctx *ep_ctx;
3331
3332                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3333                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3334                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3335                         EP_GETTING_NO_STREAMS;
3336
3337                 xhci_endpoint_copy(xhci, command->in_ctx,
3338                                 vdev->out_ctx, ep_index);
3339                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3340                                 &vdev->eps[ep_index]);
3341         }
3342         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3343                         vdev->out_ctx, ctrl_ctx,
3344                         changed_ep_bitmask, changed_ep_bitmask);
3345         spin_unlock_irqrestore(&xhci->lock, flags);
3346
3347         /* Issue and wait for the configure endpoint command,
3348          * which must succeed.
3349          */
3350         ret = xhci_configure_endpoint(xhci, udev, command,
3351                         false, true);
3352
3353         /* xHC rejected the configure endpoint command for some reason, so we
3354          * leave the streams rings intact.
3355          */
3356         if (ret < 0)
3357                 return ret;
3358
3359         spin_lock_irqsave(&xhci->lock, flags);
3360         for (i = 0; i < num_eps; i++) {
3361                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3362                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3363                 vdev->eps[ep_index].stream_info = NULL;
3364                 /* FIXME Unset maxPstreams in endpoint context and
3365                  * update deq ptr to point to normal string ring.
3366                  */
3367                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3368                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3369         }
3370         spin_unlock_irqrestore(&xhci->lock, flags);
3371
3372         return 0;
3373 }
3374
3375 /*
3376  * Deletes endpoint resources for endpoints that were active before a Reset
3377  * Device command, or a Disable Slot command.  The Reset Device command leaves
3378  * the control endpoint intact, whereas the Disable Slot command deletes it.
3379  *
3380  * Must be called with xhci->lock held.
3381  */
3382 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3383         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3384 {
3385         int i;
3386         unsigned int num_dropped_eps = 0;
3387         unsigned int drop_flags = 0;
3388
3389         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3390                 if (virt_dev->eps[i].ring) {
3391                         drop_flags |= 1 << i;
3392                         num_dropped_eps++;
3393                 }
3394         }
3395         xhci->num_active_eps -= num_dropped_eps;
3396         if (num_dropped_eps)
3397                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3398                                 "Dropped %u ep ctxs, flags = 0x%x, "
3399                                 "%u now active.",
3400                                 num_dropped_eps, drop_flags,
3401                                 xhci->num_active_eps);
3402 }
3403
3404 /*
3405  * This submits a Reset Device Command, which will set the device state to 0,
3406  * set the device address to 0, and disable all the endpoints except the default
3407  * control endpoint.  The USB core should come back and call
3408  * xhci_address_device(), and then re-set up the configuration.  If this is
3409  * called because of a usb_reset_and_verify_device(), then the old alternate
3410  * settings will be re-installed through the normal bandwidth allocation
3411  * functions.
3412  *
3413  * Wait for the Reset Device command to finish.  Remove all structures
3414  * associated with the endpoints that were disabled.  Clear the input device
3415  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3416  *
3417  * If the virt_dev to be reset does not exist or does not match the udev,
3418  * it means the device is lost, possibly due to the xHC restore error and
3419  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3420  * re-allocate the device.
3421  */
3422 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3423 {
3424         int ret, i;
3425         unsigned long flags;
3426         struct xhci_hcd *xhci;
3427         unsigned int slot_id;
3428         struct xhci_virt_device *virt_dev;
3429         struct xhci_command *reset_device_cmd;
3430         int last_freed_endpoint;
3431         struct xhci_slot_ctx *slot_ctx;
3432         int old_active_eps = 0;
3433
3434         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3435         if (ret <= 0)
3436                 return ret;
3437         xhci = hcd_to_xhci(hcd);
3438         slot_id = udev->slot_id;
3439         virt_dev = xhci->devs[slot_id];
3440         if (!virt_dev) {
3441                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3442                                 "not exist. Re-allocate the device\n", slot_id);
3443                 ret = xhci_alloc_dev(hcd, udev);
3444                 if (ret == 1)
3445                         return 0;
3446                 else
3447                         return -EINVAL;
3448         }
3449
3450         if (virt_dev->udev != udev) {
3451                 /* If the virt_dev and the udev does not match, this virt_dev
3452                  * may belong to another udev.
3453                  * Re-allocate the device.
3454                  */
3455                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3456                                 "not match the udev. Re-allocate the device\n",
3457                                 slot_id);
3458                 ret = xhci_alloc_dev(hcd, udev);
3459                 if (ret == 1)
3460                         return 0;
3461                 else
3462                         return -EINVAL;
3463         }
3464
3465         /* If device is not setup, there is no point in resetting it */
3466         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3467         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3468                                                 SLOT_STATE_DISABLED)
3469                 return 0;
3470
3471         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3472         /* Allocate the command structure that holds the struct completion.
3473          * Assume we're in process context, since the normal device reset
3474          * process has to wait for the device anyway.  Storage devices are
3475          * reset as part of error handling, so use GFP_NOIO instead of
3476          * GFP_KERNEL.
3477          */
3478         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3479         if (!reset_device_cmd) {
3480                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3481                 return -ENOMEM;
3482         }
3483
3484         /* Attempt to submit the Reset Device command to the command ring */
3485         spin_lock_irqsave(&xhci->lock, flags);
3486
3487         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3488         if (ret) {
3489                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3490                 spin_unlock_irqrestore(&xhci->lock, flags);
3491                 goto command_cleanup;
3492         }
3493         xhci_ring_cmd_db(xhci);
3494         spin_unlock_irqrestore(&xhci->lock, flags);
3495
3496         /* Wait for the Reset Device command to finish */
3497         wait_for_completion(reset_device_cmd->completion);
3498
3499         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3500          * unless we tried to reset a slot ID that wasn't enabled,
3501          * or the device wasn't in the addressed or configured state.
3502          */
3503         ret = reset_device_cmd->status;
3504         switch (ret) {
3505         case COMP_CMD_ABORT:
3506         case COMP_CMD_STOP:
3507                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3508                 ret = -ETIME;
3509                 goto command_cleanup;
3510         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3511         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3512                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3513                                 slot_id,
3514                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3515                 xhci_dbg(xhci, "Not freeing device rings.\n");
3516                 /* Don't treat this as an error.  May change my mind later. */
3517                 ret = 0;
3518                 goto command_cleanup;
3519         case COMP_SUCCESS:
3520                 xhci_dbg(xhci, "Successful reset device command.\n");
3521                 break;
3522         default:
3523                 if (xhci_is_vendor_info_code(xhci, ret))
3524                         break;
3525                 xhci_warn(xhci, "Unknown completion code %u for "
3526                                 "reset device command.\n", ret);
3527                 ret = -EINVAL;
3528                 goto command_cleanup;
3529         }
3530
3531         /* Free up host controller endpoint resources */
3532         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3533                 spin_lock_irqsave(&xhci->lock, flags);
3534                 /* Don't delete the default control endpoint resources */
3535                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3536                 spin_unlock_irqrestore(&xhci->lock, flags);
3537         }
3538
3539         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3540         last_freed_endpoint = 1;
3541         for (i = 1; i < 31; ++i) {
3542                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3543
3544                 if (ep->ep_state & EP_HAS_STREAMS) {
3545                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3546                                         xhci_get_endpoint_address(i));
3547                         xhci_free_stream_info(xhci, ep->stream_info);
3548                         ep->stream_info = NULL;
3549                         ep->ep_state &= ~EP_HAS_STREAMS;
3550                 }
3551
3552                 if (ep->ring) {
3553                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3554                         last_freed_endpoint = i;
3555                 }
3556                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3557                         xhci_drop_ep_from_interval_table(xhci,
3558                                         &virt_dev->eps[i].bw_info,
3559                                         virt_dev->bw_table,
3560                                         udev,
3561                                         &virt_dev->eps[i],
3562                                         virt_dev->tt_info);
3563                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3564         }
3565         /* If necessary, update the number of active TTs on this root port */
3566         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3567
3568         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3569         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3570         ret = 0;
3571
3572 command_cleanup:
3573         xhci_free_command(xhci, reset_device_cmd);
3574         return ret;
3575 }
3576
3577 /*
3578  * At this point, the struct usb_device is about to go away, the device has
3579  * disconnected, and all traffic has been stopped and the endpoints have been
3580  * disabled.  Free any HC data structures associated with that device.
3581  */
3582 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3583 {
3584         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3585         struct xhci_virt_device *virt_dev;
3586         unsigned long flags;
3587         u32 state;
3588         int i, ret;
3589         struct xhci_command *command;
3590
3591         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3592         if (!command)
3593                 return;
3594
3595 #ifndef CONFIG_USB_DEFAULT_PERSIST
3596         /*
3597          * We called pm_runtime_get_noresume when the device was attached.
3598          * Decrement the counter here to allow controller to runtime suspend
3599          * if no devices remain.
3600          */
3601         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3602                 pm_runtime_put_noidle(hcd->self.controller);
3603 #endif
3604
3605         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3606         /* If the host is halted due to driver unload, we still need to free the
3607          * device.
3608          */
3609         if (ret <= 0 && ret != -ENODEV) {
3610                 kfree(command);
3611                 return;
3612         }
3613
3614         virt_dev = xhci->devs[udev->slot_id];
3615
3616         /* Stop any wayward timer functions (which may grab the lock) */
3617         for (i = 0; i < 31; ++i) {
3618                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3619                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3620         }
3621
3622         spin_lock_irqsave(&xhci->lock, flags);
3623         /* Don't disable the slot if the host controller is dead. */
3624         state = readl(&xhci->op_regs->status);
3625         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3626                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3627                 xhci_free_virt_device(xhci, udev->slot_id);
3628                 spin_unlock_irqrestore(&xhci->lock, flags);
3629                 kfree(command);
3630                 return;
3631         }
3632
3633         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3634                                     udev->slot_id)) {
3635                 spin_unlock_irqrestore(&xhci->lock, flags);
3636                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3637                 return;
3638         }
3639         xhci_ring_cmd_db(xhci);
3640         spin_unlock_irqrestore(&xhci->lock, flags);
3641
3642         /*
3643          * Event command completion handler will free any data structures
3644          * associated with the slot.  XXX Can free sleep?
3645          */
3646 }
3647
3648 /*
3649  * Checks if we have enough host controller resources for the default control
3650  * endpoint.
3651  *
3652  * Must be called with xhci->lock held.
3653  */
3654 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3655 {
3656         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3657                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3658                                 "Not enough ep ctxs: "
3659                                 "%u active, need to add 1, limit is %u.",
3660                                 xhci->num_active_eps, xhci->limit_active_eps);
3661                 return -ENOMEM;
3662         }
3663         xhci->num_active_eps += 1;
3664         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3665                         "Adding 1 ep ctx, %u now active.",
3666                         xhci->num_active_eps);
3667         return 0;
3668 }
3669
3670
3671 /*
3672  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3673  * timed out, or allocating memory failed.  Returns 1 on success.
3674  */
3675 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3676 {
3677         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3678         unsigned long flags;
3679         int ret;
3680         struct xhci_command *command;
3681
3682         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3683         if (!command)
3684                 return 0;
3685
3686         spin_lock_irqsave(&xhci->lock, flags);
3687         command->completion = &xhci->addr_dev;
3688         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3689         if (ret) {
3690                 spin_unlock_irqrestore(&xhci->lock, flags);
3691                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3692                 kfree(command);
3693                 return 0;
3694         }
3695         xhci_ring_cmd_db(xhci);
3696         spin_unlock_irqrestore(&xhci->lock, flags);
3697
3698         wait_for_completion(command->completion);
3699
3700         if (!xhci->slot_id || command->status != COMP_SUCCESS) {
3701                 xhci_err(xhci, "Error while assigning device slot ID\n");
3702                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3703                                 HCS_MAX_SLOTS(
3704                                         readl(&xhci->cap_regs->hcs_params1)));
3705                 kfree(command);
3706                 return 0;
3707         }
3708
3709         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3710                 spin_lock_irqsave(&xhci->lock, flags);
3711                 ret = xhci_reserve_host_control_ep_resources(xhci);
3712                 if (ret) {
3713                         spin_unlock_irqrestore(&xhci->lock, flags);
3714                         xhci_warn(xhci, "Not enough host resources, "
3715                                         "active endpoint contexts = %u\n",
3716                                         xhci->num_active_eps);
3717                         goto disable_slot;
3718                 }
3719                 spin_unlock_irqrestore(&xhci->lock, flags);
3720         }
3721         /* Use GFP_NOIO, since this function can be called from
3722          * xhci_discover_or_reset_device(), which may be called as part of
3723          * mass storage driver error handling.
3724          */
3725         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3726                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3727                 goto disable_slot;
3728         }
3729         udev->slot_id = xhci->slot_id;
3730
3731 #ifndef CONFIG_USB_DEFAULT_PERSIST
3732         /*
3733          * If resetting upon resume, we can't put the controller into runtime
3734          * suspend if there is a device attached.
3735          */
3736         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3737                 pm_runtime_get_noresume(hcd->self.controller);
3738 #endif
3739
3740
3741         kfree(command);
3742         /* Is this a LS or FS device under a HS hub? */
3743         /* Hub or peripherial? */
3744         return 1;
3745
3746 disable_slot:
3747         /* Disable slot, if we can do it without mem alloc */
3748         spin_lock_irqsave(&xhci->lock, flags);
3749         command->completion = NULL;
3750         command->status = 0;
3751         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3752                                      udev->slot_id))
3753                 xhci_ring_cmd_db(xhci);
3754         spin_unlock_irqrestore(&xhci->lock, flags);
3755         return 0;
3756 }
3757
3758 /*
3759  * Issue an Address Device command and optionally send a corresponding
3760  * SetAddress request to the device.
3761  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3762  * we should only issue and wait on one address command at the same time.
3763  */
3764 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3765                              enum xhci_setup_dev setup)
3766 {
3767         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3768         unsigned long flags;
3769         struct xhci_virt_device *virt_dev;
3770         int ret = 0;
3771         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3772         struct xhci_slot_ctx *slot_ctx;
3773         struct xhci_input_control_ctx *ctrl_ctx;
3774         u64 temp_64;
3775         struct xhci_command *command;
3776
3777         if (!udev->slot_id) {
3778                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3779                                 "Bad Slot ID %d", udev->slot_id);
3780                 return -EINVAL;
3781         }
3782
3783         virt_dev = xhci->devs[udev->slot_id];
3784
3785         if (WARN_ON(!virt_dev)) {
3786                 /*
3787                  * In plug/unplug torture test with an NEC controller,
3788                  * a zero-dereference was observed once due to virt_dev = 0.
3789                  * Print useful debug rather than crash if it is observed again!
3790                  */
3791                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3792                         udev->slot_id);
3793                 return -EINVAL;
3794         }
3795
3796         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3797         if (!command)
3798                 return -ENOMEM;
3799
3800         command->in_ctx = virt_dev->in_ctx;
3801         command->completion = &xhci->addr_dev;
3802
3803         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3804         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3805         if (!ctrl_ctx) {
3806                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3807                                 __func__);
3808                 kfree(command);
3809                 return -EINVAL;
3810         }
3811         /*
3812          * If this is the first Set Address since device plug-in or
3813          * virt_device realloaction after a resume with an xHCI power loss,
3814          * then set up the slot context.
3815          */
3816         if (!slot_ctx->dev_info)
3817                 xhci_setup_addressable_virt_dev(xhci, udev);
3818         /* Otherwise, update the control endpoint ring enqueue pointer. */
3819         else
3820                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3821         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3822         ctrl_ctx->drop_flags = 0;
3823
3824         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3825         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3826         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3827                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3828
3829         spin_lock_irqsave(&xhci->lock, flags);
3830         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3831                                         udev->slot_id, setup);
3832         if (ret) {
3833                 spin_unlock_irqrestore(&xhci->lock, flags);
3834                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3835                                 "FIXME: allocate a command ring segment");
3836                 kfree(command);
3837                 return ret;
3838         }
3839         xhci_ring_cmd_db(xhci);
3840         spin_unlock_irqrestore(&xhci->lock, flags);
3841
3842         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3843         wait_for_completion(command->completion);
3844
3845         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3846          * the SetAddress() "recovery interval" required by USB and aborting the
3847          * command on a timeout.
3848          */
3849         switch (command->status) {
3850         case COMP_CMD_ABORT:
3851         case COMP_CMD_STOP:
3852                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3853                 ret = -ETIME;
3854                 break;
3855         case COMP_CTX_STATE:
3856         case COMP_EBADSLT:
3857                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3858                          act, udev->slot_id);
3859                 ret = -EINVAL;
3860                 break;
3861         case COMP_TX_ERR:
3862                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3863                 ret = -EPROTO;
3864                 break;
3865         case COMP_DEV_ERR:
3866                 dev_warn(&udev->dev,
3867                          "ERROR: Incompatible device for setup %s command\n", act);
3868                 ret = -ENODEV;
3869                 break;
3870         case COMP_SUCCESS:
3871                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3872                                "Successful setup %s command", act);
3873                 break;
3874         default:
3875                 xhci_err(xhci,
3876                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3877                          act, command->status);
3878                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3879                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3880                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3881                 ret = -EINVAL;
3882                 break;
3883         }
3884         if (ret) {
3885                 kfree(command);
3886                 return ret;
3887         }
3888         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3889         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3890                         "Op regs DCBAA ptr = %#016llx", temp_64);
3891         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3892                 "Slot ID %d dcbaa entry @%p = %#016llx",
3893                 udev->slot_id,
3894                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3895                 (unsigned long long)
3896                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3897         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3898                         "Output Context DMA address = %#08llx",
3899                         (unsigned long long)virt_dev->out_ctx->dma);
3900         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3901         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3902         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3903                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3904         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3905         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3906         /*
3907          * USB core uses address 1 for the roothubs, so we add one to the
3908          * address given back to us by the HC.
3909          */
3910         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3911         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3912                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3913         /* Zero the input context control for later use */
3914         ctrl_ctx->add_flags = 0;
3915         ctrl_ctx->drop_flags = 0;
3916
3917         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3918                        "Internal device address = %d",
3919                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3920         kfree(command);
3921         return 0;
3922 }
3923
3924 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3925 {
3926         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3927 }
3928
3929 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3930 {
3931         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3932 }
3933
3934 /*
3935  * Transfer the port index into real index in the HW port status
3936  * registers. Caculate offset between the port's PORTSC register
3937  * and port status base. Divide the number of per port register
3938  * to get the real index. The raw port number bases 1.
3939  */
3940 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3941 {
3942         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3943         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3944         __le32 __iomem *addr;
3945         int raw_port;
3946
3947         if (hcd->speed != HCD_USB3)
3948                 addr = xhci->usb2_ports[port1 - 1];
3949         else
3950                 addr = xhci->usb3_ports[port1 - 1];
3951
3952         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3953         return raw_port;
3954 }
3955
3956 /*
3957  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3958  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3959  */
3960 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3961                         struct usb_device *udev, u16 max_exit_latency)
3962 {
3963         struct xhci_virt_device *virt_dev;
3964         struct xhci_command *command;
3965         struct xhci_input_control_ctx *ctrl_ctx;
3966         struct xhci_slot_ctx *slot_ctx;
3967         unsigned long flags;
3968         int ret;
3969
3970         spin_lock_irqsave(&xhci->lock, flags);
3971         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3972                 spin_unlock_irqrestore(&xhci->lock, flags);
3973                 return 0;
3974         }
3975
3976         /* Attempt to issue an Evaluate Context command to change the MEL. */
3977         virt_dev = xhci->devs[udev->slot_id];
3978         command = xhci->lpm_command;
3979         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3980         if (!ctrl_ctx) {
3981                 spin_unlock_irqrestore(&xhci->lock, flags);
3982                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3983                                 __func__);
3984                 return -ENOMEM;
3985         }
3986
3987         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3988         spin_unlock_irqrestore(&xhci->lock, flags);
3989
3990         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3991         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3992         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3993         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3994
3995         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3996                         "Set up evaluate context for LPM MEL change.");
3997         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3998         xhci_dbg_ctx(xhci, command->in_ctx, 0);
3999
4000         /* Issue and wait for the evaluate context command. */
4001         ret = xhci_configure_endpoint(xhci, udev, command,
4002                         true, true);
4003         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4004         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4005
4006         if (!ret) {
4007                 spin_lock_irqsave(&xhci->lock, flags);
4008                 virt_dev->current_mel = max_exit_latency;
4009                 spin_unlock_irqrestore(&xhci->lock, flags);
4010         }
4011         return ret;
4012 }
4013
4014 #ifdef CONFIG_PM_RUNTIME
4015
4016 /* BESL to HIRD Encoding array for USB2 LPM */
4017 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4018         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4019
4020 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4021 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4022                                         struct usb_device *udev)
4023 {
4024         int u2del, besl, besl_host;
4025         int besl_device = 0;
4026         u32 field;
4027
4028         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4029         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4030
4031         if (field & USB_BESL_SUPPORT) {
4032                 for (besl_host = 0; besl_host < 16; besl_host++) {
4033                         if (xhci_besl_encoding[besl_host] >= u2del)
4034                                 break;
4035                 }
4036                 /* Use baseline BESL value as default */
4037                 if (field & USB_BESL_BASELINE_VALID)
4038                         besl_device = USB_GET_BESL_BASELINE(field);
4039                 else if (field & USB_BESL_DEEP_VALID)
4040                         besl_device = USB_GET_BESL_DEEP(field);
4041         } else {
4042                 if (u2del <= 50)
4043                         besl_host = 0;
4044                 else
4045                         besl_host = (u2del - 51) / 75 + 1;
4046         }
4047
4048         besl = besl_host + besl_device;
4049         if (besl > 15)
4050                 besl = 15;
4051
4052         return besl;
4053 }
4054
4055 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4056 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4057 {
4058         u32 field;
4059         int l1;
4060         int besld = 0;
4061         int hirdm = 0;
4062
4063         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4064
4065         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4066         l1 = udev->l1_params.timeout / 256;
4067
4068         /* device has preferred BESLD */
4069         if (field & USB_BESL_DEEP_VALID) {
4070                 besld = USB_GET_BESL_DEEP(field);
4071                 hirdm = 1;
4072         }
4073
4074         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4075 }
4076
4077 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4078                         struct usb_device *udev, int enable)
4079 {
4080         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4081         __le32 __iomem  **port_array;
4082         __le32 __iomem  *pm_addr, *hlpm_addr;
4083         u32             pm_val, hlpm_val, field;
4084         unsigned int    port_num;
4085         unsigned long   flags;
4086         int             hird, exit_latency;
4087         int             ret;
4088
4089         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4090                         !udev->lpm_capable)
4091                 return -EPERM;
4092
4093         if (!udev->parent || udev->parent->parent ||
4094                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4095                 return -EPERM;
4096
4097         if (udev->usb2_hw_lpm_capable != 1)
4098                 return -EPERM;
4099
4100         spin_lock_irqsave(&xhci->lock, flags);
4101
4102         port_array = xhci->usb2_ports;
4103         port_num = udev->portnum - 1;
4104         pm_addr = port_array[port_num] + PORTPMSC;
4105         pm_val = readl(pm_addr);
4106         hlpm_addr = port_array[port_num] + PORTHLPMC;
4107         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4108
4109         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4110                         enable ? "enable" : "disable", port_num + 1);
4111
4112         if (enable) {
4113                 /* Host supports BESL timeout instead of HIRD */
4114                 if (udev->usb2_hw_lpm_besl_capable) {
4115                         /* if device doesn't have a preferred BESL value use a
4116                          * default one which works with mixed HIRD and BESL
4117                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4118                          */
4119                         if ((field & USB_BESL_SUPPORT) &&
4120                             (field & USB_BESL_BASELINE_VALID))
4121                                 hird = USB_GET_BESL_BASELINE(field);
4122                         else
4123                                 hird = udev->l1_params.besl;
4124
4125                         exit_latency = xhci_besl_encoding[hird];
4126                         spin_unlock_irqrestore(&xhci->lock, flags);
4127
4128                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4129                          * input context for link powermanagement evaluate
4130                          * context commands. It is protected by hcd->bandwidth
4131                          * mutex and is shared by all devices. We need to set
4132                          * the max ext latency in USB 2 BESL LPM as well, so
4133                          * use the same mutex and xhci_change_max_exit_latency()
4134                          */
4135                         mutex_lock(hcd->bandwidth_mutex);
4136                         ret = xhci_change_max_exit_latency(xhci, udev,
4137                                                            exit_latency);
4138                         mutex_unlock(hcd->bandwidth_mutex);
4139
4140                         if (ret < 0)
4141                                 return ret;
4142                         spin_lock_irqsave(&xhci->lock, flags);
4143
4144                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4145                         writel(hlpm_val, hlpm_addr);
4146                         /* flush write */
4147                         readl(hlpm_addr);
4148                 } else {
4149                         hird = xhci_calculate_hird_besl(xhci, udev);
4150                 }
4151
4152                 pm_val &= ~PORT_HIRD_MASK;
4153                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4154                 writel(pm_val, pm_addr);
4155                 pm_val = readl(pm_addr);
4156                 pm_val |= PORT_HLE;
4157                 writel(pm_val, pm_addr);
4158                 /* flush write */
4159                 readl(pm_addr);
4160         } else {
4161                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4162                 writel(pm_val, pm_addr);
4163                 /* flush write */
4164                 readl(pm_addr);
4165                 if (udev->usb2_hw_lpm_besl_capable) {
4166                         spin_unlock_irqrestore(&xhci->lock, flags);
4167                         mutex_lock(hcd->bandwidth_mutex);
4168                         xhci_change_max_exit_latency(xhci, udev, 0);
4169                         mutex_unlock(hcd->bandwidth_mutex);
4170                         return 0;
4171                 }
4172         }
4173
4174         spin_unlock_irqrestore(&xhci->lock, flags);
4175         return 0;
4176 }
4177
4178 /* check if a usb2 port supports a given extened capability protocol
4179  * only USB2 ports extended protocol capability values are cached.
4180  * Return 1 if capability is supported
4181  */
4182 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4183                                            unsigned capability)
4184 {
4185         u32 port_offset, port_count;
4186         int i;
4187
4188         for (i = 0; i < xhci->num_ext_caps; i++) {
4189                 if (xhci->ext_caps[i] & capability) {
4190                         /* port offsets starts at 1 */
4191                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4192                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4193                         if (port >= port_offset &&
4194                             port < port_offset + port_count)
4195                                 return 1;
4196                 }
4197         }
4198         return 0;
4199 }
4200
4201 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4202 {
4203         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4204         int             portnum = udev->portnum - 1;
4205
4206         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4207                         !udev->lpm_capable)
4208                 return 0;
4209
4210         /* we only support lpm for non-hub device connected to root hub yet */
4211         if (!udev->parent || udev->parent->parent ||
4212                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4213                 return 0;
4214
4215         if (xhci->hw_lpm_support == 1 &&
4216                         xhci_check_usb2_port_capability(
4217                                 xhci, portnum, XHCI_HLC)) {
4218                 udev->usb2_hw_lpm_capable = 1;
4219                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4220                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4221                 if (xhci_check_usb2_port_capability(xhci, portnum,
4222                                         XHCI_BLC))
4223                         udev->usb2_hw_lpm_besl_capable = 1;
4224         }
4225
4226         return 0;
4227 }
4228
4229 #else
4230
4231 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4232                                 struct usb_device *udev, int enable)
4233 {
4234         return 0;
4235 }
4236
4237 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4238 {
4239         return 0;
4240 }
4241
4242 #endif /* CONFIG_PM_RUNTIME */
4243
4244 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4245
4246 #ifdef CONFIG_PM
4247 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4248 static unsigned long long xhci_service_interval_to_ns(
4249                 struct usb_endpoint_descriptor *desc)
4250 {
4251         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4252 }
4253
4254 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4255                 enum usb3_link_state state)
4256 {
4257         unsigned long long sel;
4258         unsigned long long pel;
4259         unsigned int max_sel_pel;
4260         char *state_name;
4261
4262         switch (state) {
4263         case USB3_LPM_U1:
4264                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4265                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4266                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4267                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4268                 state_name = "U1";
4269                 break;
4270         case USB3_LPM_U2:
4271                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4272                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4273                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4274                 state_name = "U2";
4275                 break;
4276         default:
4277                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4278                                 __func__);
4279                 return USB3_LPM_DISABLED;
4280         }
4281
4282         if (sel <= max_sel_pel && pel <= max_sel_pel)
4283                 return USB3_LPM_DEVICE_INITIATED;
4284
4285         if (sel > max_sel_pel)
4286                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4287                                 "due to long SEL %llu ms\n",
4288                                 state_name, sel);
4289         else
4290                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4291                                 "due to long PEL %llu ms\n",
4292                                 state_name, pel);
4293         return USB3_LPM_DISABLED;
4294 }
4295
4296 /* The U1 timeout should be the maximum of the following values:
4297  *  - For control endpoints, U1 system exit latency (SEL) * 3
4298  *  - For bulk endpoints, U1 SEL * 5
4299  *  - For interrupt endpoints:
4300  *    - Notification EPs, U1 SEL * 3
4301  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4302  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4303  */
4304 static unsigned long long xhci_calculate_intel_u1_timeout(
4305                 struct usb_device *udev,
4306                 struct usb_endpoint_descriptor *desc)
4307 {
4308         unsigned long long timeout_ns;
4309         int ep_type;
4310         int intr_type;
4311
4312         ep_type = usb_endpoint_type(desc);
4313         switch (ep_type) {
4314         case USB_ENDPOINT_XFER_CONTROL:
4315                 timeout_ns = udev->u1_params.sel * 3;
4316                 break;
4317         case USB_ENDPOINT_XFER_BULK:
4318                 timeout_ns = udev->u1_params.sel * 5;
4319                 break;
4320         case USB_ENDPOINT_XFER_INT:
4321                 intr_type = usb_endpoint_interrupt_type(desc);
4322                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4323                         timeout_ns = udev->u1_params.sel * 3;
4324                         break;
4325                 }
4326                 /* Otherwise the calculation is the same as isoc eps */
4327         case USB_ENDPOINT_XFER_ISOC:
4328                 timeout_ns = xhci_service_interval_to_ns(desc);
4329                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4330                 if (timeout_ns < udev->u1_params.sel * 2)
4331                         timeout_ns = udev->u1_params.sel * 2;
4332                 break;
4333         default:
4334                 return 0;
4335         }
4336
4337         return timeout_ns;
4338 }
4339
4340 /* Returns the hub-encoded U1 timeout value. */
4341 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4342                 struct usb_device *udev,
4343                 struct usb_endpoint_descriptor *desc)
4344 {
4345         unsigned long long timeout_ns;
4346
4347         if (xhci->quirks & XHCI_INTEL_HOST)
4348                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4349         else
4350                 timeout_ns = udev->u1_params.sel;
4351
4352         /* The U1 timeout is encoded in 1us intervals.
4353          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4354          */
4355         if (timeout_ns == USB3_LPM_DISABLED)
4356                 timeout_ns = 1;
4357         else
4358                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4359
4360         /* If the necessary timeout value is bigger than what we can set in the
4361          * USB 3.0 hub, we have to disable hub-initiated U1.
4362          */
4363         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4364                 return timeout_ns;
4365         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4366                         "due to long timeout %llu ms\n", timeout_ns);
4367         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4368 }
4369
4370 /* The U2 timeout should be the maximum of:
4371  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4372  *  - largest bInterval of any active periodic endpoint (to avoid going
4373  *    into lower power link states between intervals).
4374  *  - the U2 Exit Latency of the device
4375  */
4376 static unsigned long long xhci_calculate_intel_u2_timeout(
4377                 struct usb_device *udev,
4378                 struct usb_endpoint_descriptor *desc)
4379 {
4380         unsigned long long timeout_ns;
4381         unsigned long long u2_del_ns;
4382
4383         timeout_ns = 10 * 1000 * 1000;
4384
4385         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4386                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4387                 timeout_ns = xhci_service_interval_to_ns(desc);
4388
4389         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4390         if (u2_del_ns > timeout_ns)
4391                 timeout_ns = u2_del_ns;
4392
4393         return timeout_ns;
4394 }
4395
4396 /* Returns the hub-encoded U2 timeout value. */
4397 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4398                 struct usb_device *udev,
4399                 struct usb_endpoint_descriptor *desc)
4400 {
4401         unsigned long long timeout_ns;
4402
4403         if (xhci->quirks & XHCI_INTEL_HOST)
4404                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4405         else
4406                 timeout_ns = udev->u2_params.sel;
4407
4408         /* The U2 timeout is encoded in 256us intervals */
4409         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4410         /* If the necessary timeout value is bigger than what we can set in the
4411          * USB 3.0 hub, we have to disable hub-initiated U2.
4412          */
4413         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4414                 return timeout_ns;
4415         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4416                         "due to long timeout %llu ms\n", timeout_ns);
4417         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4418 }
4419
4420 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4421                 struct usb_device *udev,
4422                 struct usb_endpoint_descriptor *desc,
4423                 enum usb3_link_state state,
4424                 u16 *timeout)
4425 {
4426         if (state == USB3_LPM_U1)
4427                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4428         else if (state == USB3_LPM_U2)
4429                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4430
4431         return USB3_LPM_DISABLED;
4432 }
4433
4434 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4435                 struct usb_device *udev,
4436                 struct usb_endpoint_descriptor *desc,
4437                 enum usb3_link_state state,
4438                 u16 *timeout)
4439 {
4440         u16 alt_timeout;
4441
4442         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4443                 desc, state, timeout);
4444
4445         /* If we found we can't enable hub-initiated LPM, or
4446          * the U1 or U2 exit latency was too high to allow
4447          * device-initiated LPM as well, just stop searching.
4448          */
4449         if (alt_timeout == USB3_LPM_DISABLED ||
4450                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4451                 *timeout = alt_timeout;
4452                 return -E2BIG;
4453         }
4454         if (alt_timeout > *timeout)
4455                 *timeout = alt_timeout;
4456         return 0;
4457 }
4458
4459 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4460                 struct usb_device *udev,
4461                 struct usb_host_interface *alt,
4462                 enum usb3_link_state state,
4463                 u16 *timeout)
4464 {
4465         int j;
4466
4467         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4468                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4469                                         &alt->endpoint[j].desc, state, timeout))
4470                         return -E2BIG;
4471                 continue;
4472         }
4473         return 0;
4474 }
4475
4476 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4477                 enum usb3_link_state state)
4478 {
4479         struct usb_device *parent;
4480         unsigned int num_hubs;
4481
4482         if (state == USB3_LPM_U2)
4483                 return 0;
4484
4485         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4486         for (parent = udev->parent, num_hubs = 0; parent->parent;
4487                         parent = parent->parent)
4488                 num_hubs++;
4489
4490         if (num_hubs < 2)
4491                 return 0;
4492
4493         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4494                         " below second-tier hub.\n");
4495         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4496                         "to decrease power consumption.\n");
4497         return -E2BIG;
4498 }
4499
4500 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4501                 struct usb_device *udev,
4502                 enum usb3_link_state state)
4503 {
4504         if (xhci->quirks & XHCI_INTEL_HOST)
4505                 return xhci_check_intel_tier_policy(udev, state);
4506         else
4507                 return 0;
4508 }
4509
4510 /* Returns the U1 or U2 timeout that should be enabled.
4511  * If the tier check or timeout setting functions return with a non-zero exit
4512  * code, that means the timeout value has been finalized and we shouldn't look
4513  * at any more endpoints.
4514  */
4515 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4516                         struct usb_device *udev, enum usb3_link_state state)
4517 {
4518         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4519         struct usb_host_config *config;
4520         char *state_name;
4521         int i;
4522         u16 timeout = USB3_LPM_DISABLED;
4523
4524         if (state == USB3_LPM_U1)
4525                 state_name = "U1";
4526         else if (state == USB3_LPM_U2)
4527                 state_name = "U2";
4528         else {
4529                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4530                                 state);
4531                 return timeout;
4532         }
4533
4534         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4535                 return timeout;
4536
4537         /* Gather some information about the currently installed configuration
4538          * and alternate interface settings.
4539          */
4540         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4541                         state, &timeout))
4542                 return timeout;
4543
4544         config = udev->actconfig;
4545         if (!config)
4546                 return timeout;
4547
4548         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4549                 struct usb_driver *driver;
4550                 struct usb_interface *intf = config->interface[i];
4551
4552                 if (!intf)
4553                         continue;
4554
4555                 /* Check if any currently bound drivers want hub-initiated LPM
4556                  * disabled.
4557                  */
4558                 if (intf->dev.driver) {
4559                         driver = to_usb_driver(intf->dev.driver);
4560                         if (driver && driver->disable_hub_initiated_lpm) {
4561                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4562                                                 "at request of driver %s\n",
4563                                                 state_name, driver->name);
4564                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4565                         }
4566                 }
4567
4568                 /* Not sure how this could happen... */
4569                 if (!intf->cur_altsetting)
4570                         continue;
4571
4572                 if (xhci_update_timeout_for_interface(xhci, udev,
4573                                         intf->cur_altsetting,
4574                                         state, &timeout))
4575                         return timeout;
4576         }
4577         return timeout;
4578 }
4579
4580 static int calculate_max_exit_latency(struct usb_device *udev,
4581                 enum usb3_link_state state_changed,
4582                 u16 hub_encoded_timeout)
4583 {
4584         unsigned long long u1_mel_us = 0;
4585         unsigned long long u2_mel_us = 0;
4586         unsigned long long mel_us = 0;
4587         bool disabling_u1;
4588         bool disabling_u2;
4589         bool enabling_u1;
4590         bool enabling_u2;
4591
4592         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4593                         hub_encoded_timeout == USB3_LPM_DISABLED);
4594         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4595                         hub_encoded_timeout == USB3_LPM_DISABLED);
4596
4597         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4598                         hub_encoded_timeout != USB3_LPM_DISABLED);
4599         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4600                         hub_encoded_timeout != USB3_LPM_DISABLED);
4601
4602         /* If U1 was already enabled and we're not disabling it,
4603          * or we're going to enable U1, account for the U1 max exit latency.
4604          */
4605         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4606                         enabling_u1)
4607                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4608         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4609                         enabling_u2)
4610                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4611
4612         if (u1_mel_us > u2_mel_us)
4613                 mel_us = u1_mel_us;
4614         else
4615                 mel_us = u2_mel_us;
4616         /* xHCI host controller max exit latency field is only 16 bits wide. */
4617         if (mel_us > MAX_EXIT) {
4618                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4619                                 "is too big.\n", mel_us);
4620                 return -E2BIG;
4621         }
4622         return mel_us;
4623 }
4624
4625 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4626 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4627                         struct usb_device *udev, enum usb3_link_state state)
4628 {
4629         struct xhci_hcd *xhci;
4630         u16 hub_encoded_timeout;
4631         int mel;
4632         int ret;
4633
4634         xhci = hcd_to_xhci(hcd);
4635         /* The LPM timeout values are pretty host-controller specific, so don't
4636          * enable hub-initiated timeouts unless the vendor has provided
4637          * information about their timeout algorithm.
4638          */
4639         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4640                         !xhci->devs[udev->slot_id])
4641                 return USB3_LPM_DISABLED;
4642
4643         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4644         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4645         if (mel < 0) {
4646                 /* Max Exit Latency is too big, disable LPM. */
4647                 hub_encoded_timeout = USB3_LPM_DISABLED;
4648                 mel = 0;
4649         }
4650
4651         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4652         if (ret)
4653                 return ret;
4654         return hub_encoded_timeout;
4655 }
4656
4657 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4658                         struct usb_device *udev, enum usb3_link_state state)
4659 {
4660         struct xhci_hcd *xhci;
4661         u16 mel;
4662         int ret;
4663
4664         xhci = hcd_to_xhci(hcd);
4665         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4666                         !xhci->devs[udev->slot_id])
4667                 return 0;
4668
4669         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4670         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4671         if (ret)
4672                 return ret;
4673         return 0;
4674 }
4675 #else /* CONFIG_PM */
4676
4677 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4678                         struct usb_device *udev, enum usb3_link_state state)
4679 {
4680         return USB3_LPM_DISABLED;
4681 }
4682
4683 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4684                         struct usb_device *udev, enum usb3_link_state state)
4685 {
4686         return 0;
4687 }
4688 #endif  /* CONFIG_PM */
4689
4690 /*-------------------------------------------------------------------------*/
4691
4692 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4693  * internal data structures for the device.
4694  */
4695 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4696                         struct usb_tt *tt, gfp_t mem_flags)
4697 {
4698         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4699         struct xhci_virt_device *vdev;
4700         struct xhci_command *config_cmd;
4701         struct xhci_input_control_ctx *ctrl_ctx;
4702         struct xhci_slot_ctx *slot_ctx;
4703         unsigned long flags;
4704         unsigned think_time;
4705         int ret;
4706
4707         /* Ignore root hubs */
4708         if (!hdev->parent)
4709                 return 0;
4710
4711         vdev = xhci->devs[hdev->slot_id];
4712         if (!vdev) {
4713                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4714                 return -EINVAL;
4715         }
4716         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4717         if (!config_cmd) {
4718                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4719                 return -ENOMEM;
4720         }
4721         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4722         if (!ctrl_ctx) {
4723                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4724                                 __func__);
4725                 xhci_free_command(xhci, config_cmd);
4726                 return -ENOMEM;
4727         }
4728
4729         spin_lock_irqsave(&xhci->lock, flags);
4730         if (hdev->speed == USB_SPEED_HIGH &&
4731                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4732                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4733                 xhci_free_command(xhci, config_cmd);
4734                 spin_unlock_irqrestore(&xhci->lock, flags);
4735                 return -ENOMEM;
4736         }
4737
4738         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4739         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4740         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4741         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4742         if (tt->multi)
4743                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4744         if (xhci->hci_version > 0x95) {
4745                 xhci_dbg(xhci, "xHCI version %x needs hub "
4746                                 "TT think time and number of ports\n",
4747                                 (unsigned int) xhci->hci_version);
4748                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4749                 /* Set TT think time - convert from ns to FS bit times.
4750                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4751                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4752                  *
4753                  * xHCI 1.0: this field shall be 0 if the device is not a
4754                  * High-spped hub.
4755                  */
4756                 think_time = tt->think_time;
4757                 if (think_time != 0)
4758                         think_time = (think_time / 666) - 1;
4759                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4760                         slot_ctx->tt_info |=
4761                                 cpu_to_le32(TT_THINK_TIME(think_time));
4762         } else {
4763                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4764                                 "TT think time or number of ports\n",
4765                                 (unsigned int) xhci->hci_version);
4766         }
4767         slot_ctx->dev_state = 0;
4768         spin_unlock_irqrestore(&xhci->lock, flags);
4769
4770         xhci_dbg(xhci, "Set up %s for hub device.\n",
4771                         (xhci->hci_version > 0x95) ?
4772                         "configure endpoint" : "evaluate context");
4773         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4774         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4775
4776         /* Issue and wait for the configure endpoint or
4777          * evaluate context command.
4778          */
4779         if (xhci->hci_version > 0x95)
4780                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4781                                 false, false);
4782         else
4783                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4784                                 true, false);
4785
4786         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4787         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4788
4789         xhci_free_command(xhci, config_cmd);
4790         return ret;
4791 }
4792
4793 int xhci_get_frame(struct usb_hcd *hcd)
4794 {
4795         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4796         /* EHCI mods by the periodic size.  Why? */
4797         return readl(&xhci->run_regs->microframe_index) >> 3;
4798 }
4799
4800 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4801 {
4802         struct xhci_hcd         *xhci;
4803         struct device           *dev = hcd->self.controller;
4804         int                     retval;
4805
4806         /* Accept arbitrarily long scatter-gather lists */
4807         hcd->self.sg_tablesize = ~0;
4808
4809         /* support to build packet from discontinuous buffers */
4810         hcd->self.no_sg_constraint = 1;
4811
4812         /* XHCI controllers don't stop the ep queue on short packets :| */
4813         hcd->self.no_stop_on_short = 1;
4814
4815         if (usb_hcd_is_primary_hcd(hcd)) {
4816                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4817                 if (!xhci)
4818                         return -ENOMEM;
4819                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4820                 xhci->main_hcd = hcd;
4821                 /* Mark the first roothub as being USB 2.0.
4822                  * The xHCI driver will register the USB 3.0 roothub.
4823                  */
4824                 hcd->speed = HCD_USB2;
4825                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4826                 /*
4827                  * USB 2.0 roothub under xHCI has an integrated TT,
4828                  * (rate matching hub) as opposed to having an OHCI/UHCI
4829                  * companion controller.
4830                  */
4831                 hcd->has_tt = 1;
4832         } else {
4833                 /* xHCI private pointer was set in xhci_pci_probe for the second
4834                  * registered roothub.
4835                  */
4836                 return 0;
4837         }
4838
4839         xhci->cap_regs = hcd->regs;
4840         xhci->op_regs = hcd->regs +
4841                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4842         xhci->run_regs = hcd->regs +
4843                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4844         /* Cache read-only capability registers */
4845         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4846         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4847         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4848         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4849         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4850         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4851         xhci_print_registers(xhci);
4852
4853         xhci->quirks = quirks;
4854
4855         get_quirks(dev, xhci);
4856
4857         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4858          * success event after a short transfer. This quirk will ignore such
4859          * spurious event.
4860          */
4861         if (xhci->hci_version > 0x96)
4862                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4863
4864         /* Make sure the HC is halted. */
4865         retval = xhci_halt(xhci);
4866         if (retval)
4867                 goto error;
4868
4869         xhci_dbg(xhci, "Resetting HCD\n");
4870         /* Reset the internal HC memory state and registers. */
4871         retval = xhci_reset(xhci);
4872         if (retval)
4873                 goto error;
4874         xhci_dbg(xhci, "Reset complete\n");
4875
4876         /* Set dma_mask and coherent_dma_mask to 64-bits,
4877          * if xHC supports 64-bit addressing */
4878         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4879                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4880                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4881                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4882         }
4883
4884         xhci_dbg(xhci, "Calling HCD init\n");
4885         /* Initialize HCD and host controller data structures. */
4886         retval = xhci_init(hcd);
4887         if (retval)
4888                 goto error;
4889         xhci_dbg(xhci, "Called HCD init\n");
4890         return 0;
4891 error:
4892         kfree(xhci);
4893         return retval;
4894 }
4895
4896 MODULE_DESCRIPTION(DRIVER_DESC);
4897 MODULE_AUTHOR(DRIVER_AUTHOR);
4898 MODULE_LICENSE("GPL");
4899
4900 static int __init xhci_hcd_init(void)
4901 {
4902         int retval;
4903
4904         retval = xhci_register_pci();
4905         if (retval < 0) {
4906                 pr_debug("Problem registering PCI driver.\n");
4907                 return retval;
4908         }
4909         retval = xhci_register_plat();
4910         if (retval < 0) {
4911                 pr_debug("Problem registering platform driver.\n");
4912                 goto unreg_pci;
4913         }
4914         /*
4915          * Check the compiler generated sizes of structures that must be laid
4916          * out in specific ways for hardware access.
4917          */
4918         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4919         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4920         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4921         /* xhci_device_control has eight fields, and also
4922          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4923          */
4924         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4925         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4926         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4927         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4928         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4929         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4930         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4931         return 0;
4932 unreg_pci:
4933         xhci_unregister_pci();
4934         return retval;
4935 }
4936 module_init(xhci_hcd_init);
4937
4938 static void __exit xhci_hcd_cleanup(void)
4939 {
4940         xhci_unregister_pci();
4941         xhci_unregister_plat();
4942 }
4943 module_exit(xhci_hcd_cleanup);