Merge tag 'usb-3.17-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[cascardo/linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49  * xhci_handshake - spin reading hc until handshake completes or fails
50  * @ptr: address of hc register to be read
51  * @mask: bits to look at in result of read
52  * @done: value of those bits when handshake succeeds
53  * @usec: timeout in microseconds
54  *
55  * Returns negative errno, or zero on success
56  *
57  * Success happens when the "mask" bits have the specified value (hardware
58  * handshake done).  There are two failure modes:  "usec" have passed (major
59  * hardware flakeout), or the register reads as all-ones (hardware removed).
60  */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62                       u32 mask, u32 done, int usec)
63 {
64         u32     result;
65
66         do {
67                 result = readl(ptr);
68                 if (result == ~(u32)0)          /* card removed */
69                         return -ENODEV;
70                 result &= mask;
71                 if (result == done)
72                         return 0;
73                 udelay(1);
74                 usec--;
75         } while (usec > 0);
76         return -ETIMEDOUT;
77 }
78
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84         u32 halted;
85         u32 cmd;
86         u32 mask;
87
88         mask = ~(XHCI_IRQS);
89         halted = readl(&xhci->op_regs->status) & STS_HALT;
90         if (!halted)
91                 mask &= ~CMD_RUN;
92
93         cmd = readl(&xhci->op_regs->command);
94         cmd &= mask;
95         writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108         int ret;
109         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110         xhci_quiesce(xhci);
111
112         ret = xhci_handshake(xhci, &xhci->op_regs->status,
113                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114         if (!ret) {
115                 xhci->xhc_state |= XHCI_STATE_HALTED;
116                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117         } else
118                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119                                 XHCI_MAX_HALT_USEC);
120         return ret;
121 }
122
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128         u32 temp;
129         int ret;
130
131         temp = readl(&xhci->op_regs->command);
132         temp |= (CMD_RUN);
133         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134                         temp);
135         writel(temp, &xhci->op_regs->command);
136
137         /*
138          * Wait for the HCHalted Status bit to be 0 to indicate the host is
139          * running.
140          */
141         ret = xhci_handshake(xhci, &xhci->op_regs->status,
142                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
143         if (ret == -ETIMEDOUT)
144                 xhci_err(xhci, "Host took too long to start, "
145                                 "waited %u microseconds.\n",
146                                 XHCI_MAX_HALT_USEC);
147         if (!ret)
148                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
149         return ret;
150 }
151
152 /*
153  * Reset a halted HC.
154  *
155  * This resets pipelines, timers, counters, state machines, etc.
156  * Transactions will be terminated immediately, and operational registers
157  * will be set to their defaults.
158  */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161         u32 command;
162         u32 state;
163         int ret, i;
164
165         state = readl(&xhci->op_regs->status);
166         if ((state & STS_HALT) == 0) {
167                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168                 return 0;
169         }
170
171         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172         command = readl(&xhci->op_regs->command);
173         command |= CMD_RESET;
174         writel(command, &xhci->op_regs->command);
175
176         ret = xhci_handshake(xhci, &xhci->op_regs->command,
177                         CMD_RESET, 0, 10 * 1000 * 1000);
178         if (ret)
179                 return ret;
180
181         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182                          "Wait for controller to be ready for doorbell rings");
183         /*
184          * xHCI cannot write to any doorbells or operational registers other
185          * than status until the "Controller Not Ready" flag is cleared.
186          */
187         ret = xhci_handshake(xhci, &xhci->op_regs->status,
188                         STS_CNR, 0, 10 * 1000 * 1000);
189
190         for (i = 0; i < 2; ++i) {
191                 xhci->bus_state[i].port_c_suspend = 0;
192                 xhci->bus_state[i].suspended_ports = 0;
193                 xhci->bus_state[i].resuming_ports = 0;
194         }
195
196         return ret;
197 }
198
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202         int i;
203
204         if (!xhci->msix_entries)
205                 return -EINVAL;
206
207         for (i = 0; i < xhci->msix_count; i++)
208                 if (xhci->msix_entries[i].vector)
209                         free_irq(xhci->msix_entries[i].vector,
210                                         xhci_to_hcd(xhci));
211         return 0;
212 }
213
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219         int ret;
220         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221
222         ret = pci_enable_msi(pdev);
223         if (ret) {
224                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225                                 "failed to allocate MSI entry");
226                 return ret;
227         }
228
229         ret = request_irq(pdev->irq, xhci_msi_irq,
230                                 0, "xhci_hcd", xhci_to_hcd(xhci));
231         if (ret) {
232                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233                                 "disable MSI interrupt");
234                 pci_disable_msi(pdev);
235         }
236
237         return ret;
238 }
239
240 /*
241  * Free IRQs
242  * free all IRQs request
243  */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247         int ret;
248
249         /* return if using legacy interrupt */
250         if (xhci_to_hcd(xhci)->irq > 0)
251                 return;
252
253         ret = xhci_free_msi(xhci);
254         if (!ret)
255                 return;
256         if (pdev->irq > 0)
257                 free_irq(pdev->irq, xhci_to_hcd(xhci));
258
259         return;
260 }
261
262 /*
263  * Set up MSI-X
264  */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267         int i, ret = 0;
268         struct usb_hcd *hcd = xhci_to_hcd(xhci);
269         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270
271         /*
272          * calculate number of msi-x vectors supported.
273          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274          *   with max number of interrupters based on the xhci HCSPARAMS1.
275          * - num_online_cpus: maximum msi-x vectors per CPUs core.
276          *   Add additional 1 vector to ensure always available interrupt.
277          */
278         xhci->msix_count = min(num_online_cpus() + 1,
279                                 HCS_MAX_INTRS(xhci->hcs_params1));
280
281         xhci->msix_entries =
282                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283                                 GFP_KERNEL);
284         if (!xhci->msix_entries) {
285                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286                 return -ENOMEM;
287         }
288
289         for (i = 0; i < xhci->msix_count; i++) {
290                 xhci->msix_entries[i].entry = i;
291                 xhci->msix_entries[i].vector = 0;
292         }
293
294         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
295         if (ret) {
296                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297                                 "Failed to enable MSI-X");
298                 goto free_entries;
299         }
300
301         for (i = 0; i < xhci->msix_count; i++) {
302                 ret = request_irq(xhci->msix_entries[i].vector,
303                                 xhci_msi_irq,
304                                 0, "xhci_hcd", xhci_to_hcd(xhci));
305                 if (ret)
306                         goto disable_msix;
307         }
308
309         hcd->msix_enabled = 1;
310         return ret;
311
312 disable_msix:
313         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314         xhci_free_irq(xhci);
315         pci_disable_msix(pdev);
316 free_entries:
317         kfree(xhci->msix_entries);
318         xhci->msix_entries = NULL;
319         return ret;
320 }
321
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         if (xhci->quirks & XHCI_PLAT)
329                 return;
330
331         xhci_free_irq(xhci);
332
333         if (xhci->msix_entries) {
334                 pci_disable_msix(pdev);
335                 kfree(xhci->msix_entries);
336                 xhci->msix_entries = NULL;
337         } else {
338                 pci_disable_msi(pdev);
339         }
340
341         hcd->msix_enabled = 0;
342         return;
343 }
344
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347         int i;
348
349         if (xhci->msix_entries) {
350                 for (i = 0; i < xhci->msix_count; i++)
351                         synchronize_irq(xhci->msix_entries[i].vector);
352         }
353 }
354
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358         struct pci_dev  *pdev;
359         int ret;
360
361         /* The xhci platform device has set up IRQs through usb_add_hcd. */
362         if (xhci->quirks & XHCI_PLAT)
363                 return 0;
364
365         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366         /*
367          * Some Fresco Logic host controllers advertise MSI, but fail to
368          * generate interrupts.  Don't even try to enable MSI.
369          */
370         if (xhci->quirks & XHCI_BROKEN_MSI)
371                 goto legacy_irq;
372
373         /* unregister the legacy interrupt */
374         if (hcd->irq)
375                 free_irq(hcd->irq, hcd);
376         hcd->irq = 0;
377
378         ret = xhci_setup_msix(xhci);
379         if (ret)
380                 /* fall back to msi*/
381                 ret = xhci_setup_msi(xhci);
382
383         if (!ret)
384                 /* hcd->irq is 0, we have MSI */
385                 return 0;
386
387         if (!pdev->irq) {
388                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389                 return -EINVAL;
390         }
391
392  legacy_irq:
393         if (!strlen(hcd->irq_descr))
394                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395                          hcd->driver->description, hcd->self.busnum);
396
397         /* fall back to legacy interrupt*/
398         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399                         hcd->irq_descr, hcd);
400         if (ret) {
401                 xhci_err(xhci, "request interrupt %d failed\n",
402                                 pdev->irq);
403                 return ret;
404         }
405         hcd->irq = pdev->irq;
406         return 0;
407 }
408
409 #else
410
411 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413         return 0;
414 }
415
416 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
417 {
418 }
419
420 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421 {
422 }
423
424 #endif
425
426 static void compliance_mode_recovery(unsigned long arg)
427 {
428         struct xhci_hcd *xhci;
429         struct usb_hcd *hcd;
430         u32 temp;
431         int i;
432
433         xhci = (struct xhci_hcd *)arg;
434
435         for (i = 0; i < xhci->num_usb3_ports; i++) {
436                 temp = readl(xhci->usb3_ports[i]);
437                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438                         /*
439                          * Compliance Mode Detected. Letting USB Core
440                          * handle the Warm Reset
441                          */
442                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443                                         "Compliance mode detected->port %d",
444                                         i + 1);
445                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446                                         "Attempting compliance mode recovery");
447                         hcd = xhci->shared_hcd;
448
449                         if (hcd->state == HC_STATE_SUSPENDED)
450                                 usb_hcd_resume_root_hub(hcd);
451
452                         usb_hcd_poll_rh_status(hcd);
453                 }
454         }
455
456         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457                 mod_timer(&xhci->comp_mode_recovery_timer,
458                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 }
460
461 /*
462  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463  * that causes ports behind that hardware to enter compliance mode sometimes.
464  * The quirk creates a timer that polls every 2 seconds the link state of
465  * each host controller's port and recovers it by issuing a Warm reset
466  * if Compliance mode is detected, otherwise the port will become "dead" (no
467  * device connections or disconnections will be detected anymore). Becasue no
468  * status event is generated when entering compliance mode (per xhci spec),
469  * this quirk is needed on systems that have the failing hardware installed.
470  */
471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472 {
473         xhci->port_status_u0 = 0;
474         init_timer(&xhci->comp_mode_recovery_timer);
475
476         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478         xhci->comp_mode_recovery_timer.expires = jiffies +
479                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480
481         set_timer_slack(&xhci->comp_mode_recovery_timer,
482                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483         add_timer(&xhci->comp_mode_recovery_timer);
484         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485                         "Compliance mode recovery timer initialized");
486 }
487
488 /*
489  * This function identifies the systems that have installed the SN65LVPE502CP
490  * USB3.0 re-driver and that need the Compliance Mode Quirk.
491  * Systems:
492  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493  */
494 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496         const char *dmi_product_name, *dmi_sys_vendor;
497
498         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500         if (!dmi_product_name || !dmi_sys_vendor)
501                 return false;
502
503         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504                 return false;
505
506         if (strstr(dmi_product_name, "Z420") ||
507                         strstr(dmi_product_name, "Z620") ||
508                         strstr(dmi_product_name, "Z820") ||
509                         strstr(dmi_product_name, "Z1 Workstation"))
510                 return true;
511
512         return false;
513 }
514
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519
520
521 /*
522  * Initialize memory for HCD and xHC (one-time init).
523  *
524  * Program the PAGESIZE register, initialize the device context array, create
525  * device contexts (?), set up a command ring segment (or two?), create event
526  * ring (one for now).
527  */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531         int retval = 0;
532
533         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534         spin_lock_init(&xhci->lock);
535         if (xhci->hci_version == 0x95 && link_quirk) {
536                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537                                 "QUIRK: Not clearing Link TRB chain bits.");
538                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539         } else {
540                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541                                 "xHCI doesn't need link TRB QUIRK");
542         }
543         retval = xhci_mem_init(xhci, GFP_KERNEL);
544         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545
546         /* Initializing Compliance Mode Recovery Data If Needed */
547         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549                 compliance_mode_recovery_timer_init(xhci);
550         }
551
552         return retval;
553 }
554
555 /*-------------------------------------------------------------------------*/
556
557
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560         if (xhci_start(xhci)) {
561                 xhci_halt(xhci);
562                 return -ENODEV;
563         }
564         xhci->shared_hcd->state = HC_STATE_RUNNING;
565         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566
567         if (xhci->quirks & XHCI_NEC_HOST)
568                 xhci_ring_cmd_db(xhci);
569
570         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571                         "Finished xhci_run for USB3 roothub");
572         return 0;
573 }
574
575 /*
576  * Start the HC after it was halted.
577  *
578  * This function is called by the USB core when the HC driver is added.
579  * Its opposite is xhci_stop().
580  *
581  * xhci_init() must be called once before this function can be called.
582  * Reset the HC, enable device slot contexts, program DCBAAP, and
583  * set command ring pointer and event ring pointer.
584  *
585  * Setup MSI-X vectors and enable interrupts.
586  */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589         u32 temp;
590         u64 temp_64;
591         int ret;
592         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593
594         /* Start the xHCI host controller running only after the USB 2.0 roothub
595          * is setup.
596          */
597
598         hcd->uses_new_polling = 1;
599         if (!usb_hcd_is_primary_hcd(hcd))
600                 return xhci_run_finished(xhci);
601
602         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603
604         ret = xhci_try_enable_msi(hcd);
605         if (ret)
606                 return ret;
607
608         xhci_dbg(xhci, "Command ring memory map follows:\n");
609         xhci_debug_ring(xhci, xhci->cmd_ring);
610         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611         xhci_dbg_cmd_ptrs(xhci);
612
613         xhci_dbg(xhci, "ERST memory map follows:\n");
614         xhci_dbg_erst(xhci, &xhci->erst);
615         xhci_dbg(xhci, "Event ring:\n");
616         xhci_debug_ring(xhci, xhci->event_ring);
617         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619         temp_64 &= ~ERST_PTR_MASK;
620         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622
623         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624                         "// Set the interrupt modulation register");
625         temp = readl(&xhci->ir_set->irq_control);
626         temp &= ~ER_IRQ_INTERVAL_MASK;
627         temp |= (u32) 160;
628         writel(temp, &xhci->ir_set->irq_control);
629
630         /* Set the HCD state before we enable the irqs */
631         temp = readl(&xhci->op_regs->command);
632         temp |= (CMD_EIE);
633         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634                         "// Enable interrupts, cmd = 0x%x.", temp);
635         writel(temp, &xhci->op_regs->command);
636
637         temp = readl(&xhci->ir_set->irq_pending);
638         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642         xhci_print_ir_set(xhci, 0);
643
644         if (xhci->quirks & XHCI_NEC_HOST) {
645                 struct xhci_command *command;
646                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
647                 if (!command)
648                         return -ENOMEM;
649                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
650                                 TRB_TYPE(TRB_NEC_GET_FW));
651         }
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
653                         "Finished xhci_run for USB2 roothub");
654         return 0;
655 }
656
657 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
658 {
659         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
660
661         spin_lock_irq(&xhci->lock);
662         xhci_halt(xhci);
663
664         /* The shared_hcd is going to be deallocated shortly (the USB core only
665          * calls this function when allocation fails in usb_add_hcd(), or
666          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
667          */
668         xhci->shared_hcd = NULL;
669         spin_unlock_irq(&xhci->lock);
670 }
671
672 /*
673  * Stop xHCI driver.
674  *
675  * This function is called by the USB core when the HC driver is removed.
676  * Its opposite is xhci_run().
677  *
678  * Disable device contexts, disable IRQs, and quiesce the HC.
679  * Reset the HC, finish any completed transactions, and cleanup memory.
680  */
681 void xhci_stop(struct usb_hcd *hcd)
682 {
683         u32 temp;
684         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685
686         if (!usb_hcd_is_primary_hcd(hcd)) {
687                 xhci_only_stop_hcd(xhci->shared_hcd);
688                 return;
689         }
690
691         spin_lock_irq(&xhci->lock);
692         /* Make sure the xHC is halted for a USB3 roothub
693          * (xhci_stop() could be called as part of failed init).
694          */
695         xhci_halt(xhci);
696         xhci_reset(xhci);
697         spin_unlock_irq(&xhci->lock);
698
699         xhci_cleanup_msix(xhci);
700
701         /* Deleting Compliance Mode Recovery Timer */
702         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
703                         (!(xhci_all_ports_seen_u0(xhci)))) {
704                 del_timer_sync(&xhci->comp_mode_recovery_timer);
705                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
706                                 "%s: compliance mode recovery timer deleted",
707                                 __func__);
708         }
709
710         if (xhci->quirks & XHCI_AMD_PLL_FIX)
711                 usb_amd_dev_put();
712
713         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714                         "// Disabling event ring interrupts");
715         temp = readl(&xhci->op_regs->status);
716         writel(temp & ~STS_EINT, &xhci->op_regs->status);
717         temp = readl(&xhci->ir_set->irq_pending);
718         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
719         xhci_print_ir_set(xhci, 0);
720
721         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
722         xhci_mem_cleanup(xhci);
723         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
724                         "xhci_stop completed - status = %x",
725                         readl(&xhci->op_regs->status));
726 }
727
728 /*
729  * Shutdown HC (not bus-specific)
730  *
731  * This is called when the machine is rebooting or halting.  We assume that the
732  * machine will be powered off, and the HC's internal state will be reset.
733  * Don't bother to free memory.
734  *
735  * This will only ever be called with the main usb_hcd (the USB3 roothub).
736  */
737 void xhci_shutdown(struct usb_hcd *hcd)
738 {
739         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
740
741         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
742                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
743
744         spin_lock_irq(&xhci->lock);
745         xhci_halt(xhci);
746         /* Workaround for spurious wakeups at shutdown with HSW */
747         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
748                 xhci_reset(xhci);
749         spin_unlock_irq(&xhci->lock);
750
751         xhci_cleanup_msix(xhci);
752
753         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754                         "xhci_shutdown completed - status = %x",
755                         readl(&xhci->op_regs->status));
756
757         /* Yet another workaround for spurious wakeups at shutdown with HSW */
758         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
759                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
760 }
761
762 #ifdef CONFIG_PM
763 static void xhci_save_registers(struct xhci_hcd *xhci)
764 {
765         xhci->s3.command = readl(&xhci->op_regs->command);
766         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
767         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
768         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
769         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
770         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
771         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
772         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
773         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
774 }
775
776 static void xhci_restore_registers(struct xhci_hcd *xhci)
777 {
778         writel(xhci->s3.command, &xhci->op_regs->command);
779         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
780         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
781         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
782         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
783         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
784         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
785         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
786         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
787 }
788
789 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
790 {
791         u64     val_64;
792
793         /* step 2: initialize command ring buffer */
794         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
795         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
796                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
797                                       xhci->cmd_ring->dequeue) &
798                  (u64) ~CMD_RING_RSVD_BITS) |
799                 xhci->cmd_ring->cycle_state;
800         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
801                         "// Setting command ring address to 0x%llx",
802                         (long unsigned long) val_64);
803         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
804 }
805
806 /*
807  * The whole command ring must be cleared to zero when we suspend the host.
808  *
809  * The host doesn't save the command ring pointer in the suspend well, so we
810  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
811  * aligned, because of the reserved bits in the command ring dequeue pointer
812  * register.  Therefore, we can't just set the dequeue pointer back in the
813  * middle of the ring (TRBs are 16-byte aligned).
814  */
815 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
816 {
817         struct xhci_ring *ring;
818         struct xhci_segment *seg;
819
820         ring = xhci->cmd_ring;
821         seg = ring->deq_seg;
822         do {
823                 memset(seg->trbs, 0,
824                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
825                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
826                         cpu_to_le32(~TRB_CYCLE);
827                 seg = seg->next;
828         } while (seg != ring->deq_seg);
829
830         /* Reset the software enqueue and dequeue pointers */
831         ring->deq_seg = ring->first_seg;
832         ring->dequeue = ring->first_seg->trbs;
833         ring->enq_seg = ring->deq_seg;
834         ring->enqueue = ring->dequeue;
835
836         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
837         /*
838          * Ring is now zeroed, so the HW should look for change of ownership
839          * when the cycle bit is set to 1.
840          */
841         ring->cycle_state = 1;
842
843         /*
844          * Reset the hardware dequeue pointer.
845          * Yes, this will need to be re-written after resume, but we're paranoid
846          * and want to make sure the hardware doesn't access bogus memory
847          * because, say, the BIOS or an SMI started the host without changing
848          * the command ring pointers.
849          */
850         xhci_set_cmd_ring_deq(xhci);
851 }
852
853 /*
854  * Stop HC (not bus-specific)
855  *
856  * This is called when the machine transition into S3/S4 mode.
857  *
858  */
859 int xhci_suspend(struct xhci_hcd *xhci)
860 {
861         int                     rc = 0;
862         unsigned int            delay = XHCI_MAX_HALT_USEC;
863         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
864         u32                     command;
865
866         if (hcd->state != HC_STATE_SUSPENDED ||
867                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
868                 return -EINVAL;
869
870         /* Don't poll the roothubs on bus suspend. */
871         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
872         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
873         del_timer_sync(&hcd->rh_timer);
874
875         spin_lock_irq(&xhci->lock);
876         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
877         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
878         /* step 1: stop endpoint */
879         /* skipped assuming that port suspend has done */
880
881         /* step 2: clear Run/Stop bit */
882         command = readl(&xhci->op_regs->command);
883         command &= ~CMD_RUN;
884         writel(command, &xhci->op_regs->command);
885
886         /* Some chips from Fresco Logic need an extraordinary delay */
887         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
888
889         if (xhci_handshake(xhci, &xhci->op_regs->status,
890                       STS_HALT, STS_HALT, delay)) {
891                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
892                 spin_unlock_irq(&xhci->lock);
893                 return -ETIMEDOUT;
894         }
895         xhci_clear_command_ring(xhci);
896
897         /* step 3: save registers */
898         xhci_save_registers(xhci);
899
900         /* step 4: set CSS flag */
901         command = readl(&xhci->op_regs->command);
902         command |= CMD_CSS;
903         writel(command, &xhci->op_regs->command);
904         if (xhci_handshake(xhci, &xhci->op_regs->status,
905                                 STS_SAVE, 0, 10 * 1000)) {
906                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
907                 spin_unlock_irq(&xhci->lock);
908                 return -ETIMEDOUT;
909         }
910         spin_unlock_irq(&xhci->lock);
911
912         /*
913          * Deleting Compliance Mode Recovery Timer because the xHCI Host
914          * is about to be suspended.
915          */
916         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
917                         (!(xhci_all_ports_seen_u0(xhci)))) {
918                 del_timer_sync(&xhci->comp_mode_recovery_timer);
919                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
920                                 "%s: compliance mode recovery timer deleted",
921                                 __func__);
922         }
923
924         /* step 5: remove core well power */
925         /* synchronize irq when using MSI-X */
926         xhci_msix_sync_irqs(xhci);
927
928         return rc;
929 }
930
931 /*
932  * start xHC (not bus-specific)
933  *
934  * This is called when the machine transition from S3/S4 mode.
935  *
936  */
937 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
938 {
939         u32                     command, temp = 0, status;
940         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
941         struct usb_hcd          *secondary_hcd;
942         int                     retval = 0;
943         bool                    comp_timer_running = false;
944
945         /* Wait a bit if either of the roothubs need to settle from the
946          * transition into bus suspend.
947          */
948         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
949                         time_before(jiffies,
950                                 xhci->bus_state[1].next_statechange))
951                 msleep(100);
952
953         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
954         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
955
956         spin_lock_irq(&xhci->lock);
957         if (xhci->quirks & XHCI_RESET_ON_RESUME)
958                 hibernated = true;
959
960         if (!hibernated) {
961                 /* step 1: restore register */
962                 xhci_restore_registers(xhci);
963                 /* step 2: initialize command ring buffer */
964                 xhci_set_cmd_ring_deq(xhci);
965                 /* step 3: restore state and start state*/
966                 /* step 3: set CRS flag */
967                 command = readl(&xhci->op_regs->command);
968                 command |= CMD_CRS;
969                 writel(command, &xhci->op_regs->command);
970                 if (xhci_handshake(xhci, &xhci->op_regs->status,
971                               STS_RESTORE, 0, 10 * 1000)) {
972                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
973                         spin_unlock_irq(&xhci->lock);
974                         return -ETIMEDOUT;
975                 }
976                 temp = readl(&xhci->op_regs->status);
977         }
978
979         /* If restore operation fails, re-initialize the HC during resume */
980         if ((temp & STS_SRE) || hibernated) {
981
982                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
983                                 !(xhci_all_ports_seen_u0(xhci))) {
984                         del_timer_sync(&xhci->comp_mode_recovery_timer);
985                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
986                                 "Compliance Mode Recovery Timer deleted!");
987                 }
988
989                 /* Let the USB core know _both_ roothubs lost power. */
990                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
991                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
992
993                 xhci_dbg(xhci, "Stop HCD\n");
994                 xhci_halt(xhci);
995                 xhci_reset(xhci);
996                 spin_unlock_irq(&xhci->lock);
997                 xhci_cleanup_msix(xhci);
998
999                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1000                 temp = readl(&xhci->op_regs->status);
1001                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1002                 temp = readl(&xhci->ir_set->irq_pending);
1003                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1004                 xhci_print_ir_set(xhci, 0);
1005
1006                 xhci_dbg(xhci, "cleaning up memory\n");
1007                 xhci_mem_cleanup(xhci);
1008                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1009                             readl(&xhci->op_regs->status));
1010
1011                 /* USB core calls the PCI reinit and start functions twice:
1012                  * first with the primary HCD, and then with the secondary HCD.
1013                  * If we don't do the same, the host will never be started.
1014                  */
1015                 if (!usb_hcd_is_primary_hcd(hcd))
1016                         secondary_hcd = hcd;
1017                 else
1018                         secondary_hcd = xhci->shared_hcd;
1019
1020                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1021                 retval = xhci_init(hcd->primary_hcd);
1022                 if (retval)
1023                         return retval;
1024                 comp_timer_running = true;
1025
1026                 xhci_dbg(xhci, "Start the primary HCD\n");
1027                 retval = xhci_run(hcd->primary_hcd);
1028                 if (!retval) {
1029                         xhci_dbg(xhci, "Start the secondary HCD\n");
1030                         retval = xhci_run(secondary_hcd);
1031                 }
1032                 hcd->state = HC_STATE_SUSPENDED;
1033                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1034                 goto done;
1035         }
1036
1037         /* step 4: set Run/Stop bit */
1038         command = readl(&xhci->op_regs->command);
1039         command |= CMD_RUN;
1040         writel(command, &xhci->op_regs->command);
1041         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1042                   0, 250 * 1000);
1043
1044         /* step 5: walk topology and initialize portsc,
1045          * portpmsc and portli
1046          */
1047         /* this is done in bus_resume */
1048
1049         /* step 6: restart each of the previously
1050          * Running endpoints by ringing their doorbells
1051          */
1052
1053         spin_unlock_irq(&xhci->lock);
1054
1055  done:
1056         if (retval == 0) {
1057                 /* Resume root hubs only when have pending events. */
1058                 status = readl(&xhci->op_regs->status);
1059                 if (status & STS_EINT) {
1060                         usb_hcd_resume_root_hub(hcd);
1061                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1062                 }
1063         }
1064
1065         /*
1066          * If system is subject to the Quirk, Compliance Mode Timer needs to
1067          * be re-initialized Always after a system resume. Ports are subject
1068          * to suffer the Compliance Mode issue again. It doesn't matter if
1069          * ports have entered previously to U0 before system's suspension.
1070          */
1071         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1072                 compliance_mode_recovery_timer_init(xhci);
1073
1074         /* Re-enable port polling. */
1075         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1076         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1077         usb_hcd_poll_rh_status(hcd);
1078
1079         return retval;
1080 }
1081 #endif  /* CONFIG_PM */
1082
1083 /*-------------------------------------------------------------------------*/
1084
1085 /**
1086  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1087  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1088  * value to right shift 1 for the bitmask.
1089  *
1090  * Index  = (epnum * 2) + direction - 1,
1091  * where direction = 0 for OUT, 1 for IN.
1092  * For control endpoints, the IN index is used (OUT index is unused), so
1093  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1094  */
1095 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1096 {
1097         unsigned int index;
1098         if (usb_endpoint_xfer_control(desc))
1099                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1100         else
1101                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1102                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1103         return index;
1104 }
1105
1106 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1107  * address from the XHCI endpoint index.
1108  */
1109 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1110 {
1111         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1112         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1113         return direction | number;
1114 }
1115
1116 /* Find the flag for this endpoint (for use in the control context).  Use the
1117  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1118  * bit 1, etc.
1119  */
1120 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1121 {
1122         return 1 << (xhci_get_endpoint_index(desc) + 1);
1123 }
1124
1125 /* Find the flag for this endpoint (for use in the control context).  Use the
1126  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1127  * bit 1, etc.
1128  */
1129 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1130 {
1131         return 1 << (ep_index + 1);
1132 }
1133
1134 /* Compute the last valid endpoint context index.  Basically, this is the
1135  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1136  * we find the most significant bit set in the added contexts flags.
1137  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1138  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1139  */
1140 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1141 {
1142         return fls(added_ctxs) - 1;
1143 }
1144
1145 /* Returns 1 if the arguments are OK;
1146  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1147  */
1148 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1149                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1150                 const char *func) {
1151         struct xhci_hcd *xhci;
1152         struct xhci_virt_device *virt_dev;
1153
1154         if (!hcd || (check_ep && !ep) || !udev) {
1155                 pr_debug("xHCI %s called with invalid args\n", func);
1156                 return -EINVAL;
1157         }
1158         if (!udev->parent) {
1159                 pr_debug("xHCI %s called for root hub\n", func);
1160                 return 0;
1161         }
1162
1163         xhci = hcd_to_xhci(hcd);
1164         if (check_virt_dev) {
1165                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1166                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1167                                         func);
1168                         return -EINVAL;
1169                 }
1170
1171                 virt_dev = xhci->devs[udev->slot_id];
1172                 if (virt_dev->udev != udev) {
1173                         xhci_dbg(xhci, "xHCI %s called with udev and "
1174                                           "virt_dev does not match\n", func);
1175                         return -EINVAL;
1176                 }
1177         }
1178
1179         if (xhci->xhc_state & XHCI_STATE_HALTED)
1180                 return -ENODEV;
1181
1182         return 1;
1183 }
1184
1185 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1186                 struct usb_device *udev, struct xhci_command *command,
1187                 bool ctx_change, bool must_succeed);
1188
1189 /*
1190  * Full speed devices may have a max packet size greater than 8 bytes, but the
1191  * USB core doesn't know that until it reads the first 8 bytes of the
1192  * descriptor.  If the usb_device's max packet size changes after that point,
1193  * we need to issue an evaluate context command and wait on it.
1194  */
1195 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1196                 unsigned int ep_index, struct urb *urb)
1197 {
1198         struct xhci_container_ctx *out_ctx;
1199         struct xhci_input_control_ctx *ctrl_ctx;
1200         struct xhci_ep_ctx *ep_ctx;
1201         struct xhci_command *command;
1202         int max_packet_size;
1203         int hw_max_packet_size;
1204         int ret = 0;
1205
1206         out_ctx = xhci->devs[slot_id]->out_ctx;
1207         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1208         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1209         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1210         if (hw_max_packet_size != max_packet_size) {
1211                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1212                                 "Max Packet Size for ep 0 changed.");
1213                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1214                                 "Max packet size in usb_device = %d",
1215                                 max_packet_size);
1216                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1217                                 "Max packet size in xHCI HW = %d",
1218                                 hw_max_packet_size);
1219                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1220                                 "Issuing evaluate context command.");
1221
1222                 /* Set up the input context flags for the command */
1223                 /* FIXME: This won't work if a non-default control endpoint
1224                  * changes max packet sizes.
1225                  */
1226
1227                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1228                 if (!command)
1229                         return -ENOMEM;
1230
1231                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1232                 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
1233                 if (!ctrl_ctx) {
1234                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1235                                         __func__);
1236                         ret = -ENOMEM;
1237                         goto command_cleanup;
1238                 }
1239                 /* Set up the modified control endpoint 0 */
1240                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1241                                 xhci->devs[slot_id]->out_ctx, ep_index);
1242
1243                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1244                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1245                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1246
1247                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1248                 ctrl_ctx->drop_flags = 0;
1249
1250                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1251                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1252                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1253                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1254
1255                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1256                                 true, false);
1257
1258                 /* Clean up the input context for later use by bandwidth
1259                  * functions.
1260                  */
1261                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1262 command_cleanup:
1263                 kfree(command->completion);
1264                 kfree(command);
1265         }
1266         return ret;
1267 }
1268
1269 /*
1270  * non-error returns are a promise to giveback() the urb later
1271  * we drop ownership so next owner (or urb unlink) can get it
1272  */
1273 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1274 {
1275         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1276         struct xhci_td *buffer;
1277         unsigned long flags;
1278         int ret = 0;
1279         unsigned int slot_id, ep_index;
1280         struct urb_priv *urb_priv;
1281         int size, i;
1282
1283         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1284                                         true, true, __func__) <= 0)
1285                 return -EINVAL;
1286
1287         slot_id = urb->dev->slot_id;
1288         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1289
1290         if (!HCD_HW_ACCESSIBLE(hcd)) {
1291                 if (!in_interrupt())
1292                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1293                 ret = -ESHUTDOWN;
1294                 goto exit;
1295         }
1296
1297         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1298                 size = urb->number_of_packets;
1299         else
1300                 size = 1;
1301
1302         urb_priv = kzalloc(sizeof(struct urb_priv) +
1303                                   size * sizeof(struct xhci_td *), mem_flags);
1304         if (!urb_priv)
1305                 return -ENOMEM;
1306
1307         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1308         if (!buffer) {
1309                 kfree(urb_priv);
1310                 return -ENOMEM;
1311         }
1312
1313         for (i = 0; i < size; i++) {
1314                 urb_priv->td[i] = buffer;
1315                 buffer++;
1316         }
1317
1318         urb_priv->length = size;
1319         urb_priv->td_cnt = 0;
1320         urb->hcpriv = urb_priv;
1321
1322         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1323                 /* Check to see if the max packet size for the default control
1324                  * endpoint changed during FS device enumeration
1325                  */
1326                 if (urb->dev->speed == USB_SPEED_FULL) {
1327                         ret = xhci_check_maxpacket(xhci, slot_id,
1328                                         ep_index, urb);
1329                         if (ret < 0) {
1330                                 xhci_urb_free_priv(xhci, urb_priv);
1331                                 urb->hcpriv = NULL;
1332                                 return ret;
1333                         }
1334                 }
1335
1336                 /* We have a spinlock and interrupts disabled, so we must pass
1337                  * atomic context to this function, which may allocate memory.
1338                  */
1339                 spin_lock_irqsave(&xhci->lock, flags);
1340                 if (xhci->xhc_state & XHCI_STATE_DYING)
1341                         goto dying;
1342                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1343                                 slot_id, ep_index);
1344                 if (ret)
1345                         goto free_priv;
1346                 spin_unlock_irqrestore(&xhci->lock, flags);
1347         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1348                 spin_lock_irqsave(&xhci->lock, flags);
1349                 if (xhci->xhc_state & XHCI_STATE_DYING)
1350                         goto dying;
1351                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1352                                 EP_GETTING_STREAMS) {
1353                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1354                                         "is transitioning to using streams.\n");
1355                         ret = -EINVAL;
1356                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1357                                 EP_GETTING_NO_STREAMS) {
1358                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1359                                         "is transitioning to "
1360                                         "not having streams.\n");
1361                         ret = -EINVAL;
1362                 } else {
1363                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1364                                         slot_id, ep_index);
1365                 }
1366                 if (ret)
1367                         goto free_priv;
1368                 spin_unlock_irqrestore(&xhci->lock, flags);
1369         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1370                 spin_lock_irqsave(&xhci->lock, flags);
1371                 if (xhci->xhc_state & XHCI_STATE_DYING)
1372                         goto dying;
1373                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1374                                 slot_id, ep_index);
1375                 if (ret)
1376                         goto free_priv;
1377                 spin_unlock_irqrestore(&xhci->lock, flags);
1378         } else {
1379                 spin_lock_irqsave(&xhci->lock, flags);
1380                 if (xhci->xhc_state & XHCI_STATE_DYING)
1381                         goto dying;
1382                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1383                                 slot_id, ep_index);
1384                 if (ret)
1385                         goto free_priv;
1386                 spin_unlock_irqrestore(&xhci->lock, flags);
1387         }
1388 exit:
1389         return ret;
1390 dying:
1391         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1392                         "non-responsive xHCI host.\n",
1393                         urb->ep->desc.bEndpointAddress, urb);
1394         ret = -ESHUTDOWN;
1395 free_priv:
1396         xhci_urb_free_priv(xhci, urb_priv);
1397         urb->hcpriv = NULL;
1398         spin_unlock_irqrestore(&xhci->lock, flags);
1399         return ret;
1400 }
1401
1402 /* Get the right ring for the given URB.
1403  * If the endpoint supports streams, boundary check the URB's stream ID.
1404  * If the endpoint doesn't support streams, return the singular endpoint ring.
1405  */
1406 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1407                 struct urb *urb)
1408 {
1409         unsigned int slot_id;
1410         unsigned int ep_index;
1411         unsigned int stream_id;
1412         struct xhci_virt_ep *ep;
1413
1414         slot_id = urb->dev->slot_id;
1415         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1416         stream_id = urb->stream_id;
1417         ep = &xhci->devs[slot_id]->eps[ep_index];
1418         /* Common case: no streams */
1419         if (!(ep->ep_state & EP_HAS_STREAMS))
1420                 return ep->ring;
1421
1422         if (stream_id == 0) {
1423                 xhci_warn(xhci,
1424                                 "WARN: Slot ID %u, ep index %u has streams, "
1425                                 "but URB has no stream ID.\n",
1426                                 slot_id, ep_index);
1427                 return NULL;
1428         }
1429
1430         if (stream_id < ep->stream_info->num_streams)
1431                 return ep->stream_info->stream_rings[stream_id];
1432
1433         xhci_warn(xhci,
1434                         "WARN: Slot ID %u, ep index %u has "
1435                         "stream IDs 1 to %u allocated, "
1436                         "but stream ID %u is requested.\n",
1437                         slot_id, ep_index,
1438                         ep->stream_info->num_streams - 1,
1439                         stream_id);
1440         return NULL;
1441 }
1442
1443 /*
1444  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1445  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1446  * should pick up where it left off in the TD, unless a Set Transfer Ring
1447  * Dequeue Pointer is issued.
1448  *
1449  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1450  * the ring.  Since the ring is a contiguous structure, they can't be physically
1451  * removed.  Instead, there are two options:
1452  *
1453  *  1) If the HC is in the middle of processing the URB to be canceled, we
1454  *     simply move the ring's dequeue pointer past those TRBs using the Set
1455  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1456  *     when drivers timeout on the last submitted URB and attempt to cancel.
1457  *
1458  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1459  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1460  *     HC will need to invalidate the any TRBs it has cached after the stop
1461  *     endpoint command, as noted in the xHCI 0.95 errata.
1462  *
1463  *  3) The TD may have completed by the time the Stop Endpoint Command
1464  *     completes, so software needs to handle that case too.
1465  *
1466  * This function should protect against the TD enqueueing code ringing the
1467  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1468  * It also needs to account for multiple cancellations on happening at the same
1469  * time for the same endpoint.
1470  *
1471  * Note that this function can be called in any context, or so says
1472  * usb_hcd_unlink_urb()
1473  */
1474 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1475 {
1476         unsigned long flags;
1477         int ret, i;
1478         u32 temp;
1479         struct xhci_hcd *xhci;
1480         struct urb_priv *urb_priv;
1481         struct xhci_td *td;
1482         unsigned int ep_index;
1483         struct xhci_ring *ep_ring;
1484         struct xhci_virt_ep *ep;
1485         struct xhci_command *command;
1486
1487         xhci = hcd_to_xhci(hcd);
1488         spin_lock_irqsave(&xhci->lock, flags);
1489         /* Make sure the URB hasn't completed or been unlinked already */
1490         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1491         if (ret || !urb->hcpriv)
1492                 goto done;
1493         temp = readl(&xhci->op_regs->status);
1494         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1495                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1496                                 "HW died, freeing TD.");
1497                 urb_priv = urb->hcpriv;
1498                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1499                         td = urb_priv->td[i];
1500                         if (!list_empty(&td->td_list))
1501                                 list_del_init(&td->td_list);
1502                         if (!list_empty(&td->cancelled_td_list))
1503                                 list_del_init(&td->cancelled_td_list);
1504                 }
1505
1506                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1507                 spin_unlock_irqrestore(&xhci->lock, flags);
1508                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1509                 xhci_urb_free_priv(xhci, urb_priv);
1510                 return ret;
1511         }
1512         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1513                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1514                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1515                                 "Ep 0x%x: URB %p to be canceled on "
1516                                 "non-responsive xHCI host.",
1517                                 urb->ep->desc.bEndpointAddress, urb);
1518                 /* Let the stop endpoint command watchdog timer (which set this
1519                  * state) finish cleaning up the endpoint TD lists.  We must
1520                  * have caught it in the middle of dropping a lock and giving
1521                  * back an URB.
1522                  */
1523                 goto done;
1524         }
1525
1526         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1527         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1528         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1529         if (!ep_ring) {
1530                 ret = -EINVAL;
1531                 goto done;
1532         }
1533
1534         urb_priv = urb->hcpriv;
1535         i = urb_priv->td_cnt;
1536         if (i < urb_priv->length)
1537                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1538                                 "Cancel URB %p, dev %s, ep 0x%x, "
1539                                 "starting at offset 0x%llx",
1540                                 urb, urb->dev->devpath,
1541                                 urb->ep->desc.bEndpointAddress,
1542                                 (unsigned long long) xhci_trb_virt_to_dma(
1543                                         urb_priv->td[i]->start_seg,
1544                                         urb_priv->td[i]->first_trb));
1545
1546         for (; i < urb_priv->length; i++) {
1547                 td = urb_priv->td[i];
1548                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1549         }
1550
1551         /* Queue a stop endpoint command, but only if this is
1552          * the first cancellation to be handled.
1553          */
1554         if (!(ep->ep_state & EP_HALT_PENDING)) {
1555                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1556                 if (!command) {
1557                         ret = -ENOMEM;
1558                         goto done;
1559                 }
1560                 ep->ep_state |= EP_HALT_PENDING;
1561                 ep->stop_cmds_pending++;
1562                 ep->stop_cmd_timer.expires = jiffies +
1563                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1564                 add_timer(&ep->stop_cmd_timer);
1565                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1566                                          ep_index, 0);
1567                 xhci_ring_cmd_db(xhci);
1568         }
1569 done:
1570         spin_unlock_irqrestore(&xhci->lock, flags);
1571         return ret;
1572 }
1573
1574 /* Drop an endpoint from a new bandwidth configuration for this device.
1575  * Only one call to this function is allowed per endpoint before
1576  * check_bandwidth() or reset_bandwidth() must be called.
1577  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1578  * add the endpoint to the schedule with possibly new parameters denoted by a
1579  * different endpoint descriptor in usb_host_endpoint.
1580  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1581  * not allowed.
1582  *
1583  * The USB core will not allow URBs to be queued to an endpoint that is being
1584  * disabled, so there's no need for mutual exclusion to protect
1585  * the xhci->devs[slot_id] structure.
1586  */
1587 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1588                 struct usb_host_endpoint *ep)
1589 {
1590         struct xhci_hcd *xhci;
1591         struct xhci_container_ctx *in_ctx, *out_ctx;
1592         struct xhci_input_control_ctx *ctrl_ctx;
1593         unsigned int ep_index;
1594         struct xhci_ep_ctx *ep_ctx;
1595         u32 drop_flag;
1596         u32 new_add_flags, new_drop_flags;
1597         int ret;
1598
1599         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1600         if (ret <= 0)
1601                 return ret;
1602         xhci = hcd_to_xhci(hcd);
1603         if (xhci->xhc_state & XHCI_STATE_DYING)
1604                 return -ENODEV;
1605
1606         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1607         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1608         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1609                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1610                                 __func__, drop_flag);
1611                 return 0;
1612         }
1613
1614         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1615         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1616         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1617         if (!ctrl_ctx) {
1618                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1619                                 __func__);
1620                 return 0;
1621         }
1622
1623         ep_index = xhci_get_endpoint_index(&ep->desc);
1624         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1625         /* If the HC already knows the endpoint is disabled,
1626          * or the HCD has noted it is disabled, ignore this request
1627          */
1628         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1629              cpu_to_le32(EP_STATE_DISABLED)) ||
1630             le32_to_cpu(ctrl_ctx->drop_flags) &
1631             xhci_get_endpoint_flag(&ep->desc)) {
1632                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1633                                 __func__, ep);
1634                 return 0;
1635         }
1636
1637         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1638         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1639
1640         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1641         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1642
1643         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1644
1645         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1646                         (unsigned int) ep->desc.bEndpointAddress,
1647                         udev->slot_id,
1648                         (unsigned int) new_drop_flags,
1649                         (unsigned int) new_add_flags);
1650         return 0;
1651 }
1652
1653 /* Add an endpoint to a new possible bandwidth configuration for this device.
1654  * Only one call to this function is allowed per endpoint before
1655  * check_bandwidth() or reset_bandwidth() must be called.
1656  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1657  * add the endpoint to the schedule with possibly new parameters denoted by a
1658  * different endpoint descriptor in usb_host_endpoint.
1659  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1660  * not allowed.
1661  *
1662  * The USB core will not allow URBs to be queued to an endpoint until the
1663  * configuration or alt setting is installed in the device, so there's no need
1664  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1665  */
1666 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1667                 struct usb_host_endpoint *ep)
1668 {
1669         struct xhci_hcd *xhci;
1670         struct xhci_container_ctx *in_ctx, *out_ctx;
1671         unsigned int ep_index;
1672         struct xhci_input_control_ctx *ctrl_ctx;
1673         u32 added_ctxs;
1674         u32 new_add_flags, new_drop_flags;
1675         struct xhci_virt_device *virt_dev;
1676         int ret = 0;
1677
1678         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1679         if (ret <= 0) {
1680                 /* So we won't queue a reset ep command for a root hub */
1681                 ep->hcpriv = NULL;
1682                 return ret;
1683         }
1684         xhci = hcd_to_xhci(hcd);
1685         if (xhci->xhc_state & XHCI_STATE_DYING)
1686                 return -ENODEV;
1687
1688         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1689         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1690                 /* FIXME when we have to issue an evaluate endpoint command to
1691                  * deal with ep0 max packet size changing once we get the
1692                  * descriptors
1693                  */
1694                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1695                                 __func__, added_ctxs);
1696                 return 0;
1697         }
1698
1699         virt_dev = xhci->devs[udev->slot_id];
1700         in_ctx = virt_dev->in_ctx;
1701         out_ctx = virt_dev->out_ctx;
1702         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1703         if (!ctrl_ctx) {
1704                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1705                                 __func__);
1706                 return 0;
1707         }
1708
1709         ep_index = xhci_get_endpoint_index(&ep->desc);
1710         /* If this endpoint is already in use, and the upper layers are trying
1711          * to add it again without dropping it, reject the addition.
1712          */
1713         if (virt_dev->eps[ep_index].ring &&
1714                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1715                                 xhci_get_endpoint_flag(&ep->desc))) {
1716                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1717                                 "without dropping it.\n",
1718                                 (unsigned int) ep->desc.bEndpointAddress);
1719                 return -EINVAL;
1720         }
1721
1722         /* If the HCD has already noted the endpoint is enabled,
1723          * ignore this request.
1724          */
1725         if (le32_to_cpu(ctrl_ctx->add_flags) &
1726             xhci_get_endpoint_flag(&ep->desc)) {
1727                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1728                                 __func__, ep);
1729                 return 0;
1730         }
1731
1732         /*
1733          * Configuration and alternate setting changes must be done in
1734          * process context, not interrupt context (or so documenation
1735          * for usb_set_interface() and usb_set_configuration() claim).
1736          */
1737         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1738                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1739                                 __func__, ep->desc.bEndpointAddress);
1740                 return -ENOMEM;
1741         }
1742
1743         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1744         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1745
1746         /* If xhci_endpoint_disable() was called for this endpoint, but the
1747          * xHC hasn't been notified yet through the check_bandwidth() call,
1748          * this re-adds a new state for the endpoint from the new endpoint
1749          * descriptors.  We must drop and re-add this endpoint, so we leave the
1750          * drop flags alone.
1751          */
1752         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1753
1754         /* Store the usb_device pointer for later use */
1755         ep->hcpriv = udev;
1756
1757         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1758                         (unsigned int) ep->desc.bEndpointAddress,
1759                         udev->slot_id,
1760                         (unsigned int) new_drop_flags,
1761                         (unsigned int) new_add_flags);
1762         return 0;
1763 }
1764
1765 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1766 {
1767         struct xhci_input_control_ctx *ctrl_ctx;
1768         struct xhci_ep_ctx *ep_ctx;
1769         struct xhci_slot_ctx *slot_ctx;
1770         int i;
1771
1772         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1773         if (!ctrl_ctx) {
1774                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1775                                 __func__);
1776                 return;
1777         }
1778
1779         /* When a device's add flag and drop flag are zero, any subsequent
1780          * configure endpoint command will leave that endpoint's state
1781          * untouched.  Make sure we don't leave any old state in the input
1782          * endpoint contexts.
1783          */
1784         ctrl_ctx->drop_flags = 0;
1785         ctrl_ctx->add_flags = 0;
1786         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1787         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1788         /* Endpoint 0 is always valid */
1789         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1790         for (i = 1; i < 31; ++i) {
1791                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1792                 ep_ctx->ep_info = 0;
1793                 ep_ctx->ep_info2 = 0;
1794                 ep_ctx->deq = 0;
1795                 ep_ctx->tx_info = 0;
1796         }
1797 }
1798
1799 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1800                 struct usb_device *udev, u32 *cmd_status)
1801 {
1802         int ret;
1803
1804         switch (*cmd_status) {
1805         case COMP_CMD_ABORT:
1806         case COMP_CMD_STOP:
1807                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1808                 ret = -ETIME;
1809                 break;
1810         case COMP_ENOMEM:
1811                 dev_warn(&udev->dev,
1812                          "Not enough host controller resources for new device state.\n");
1813                 ret = -ENOMEM;
1814                 /* FIXME: can we allocate more resources for the HC? */
1815                 break;
1816         case COMP_BW_ERR:
1817         case COMP_2ND_BW_ERR:
1818                 dev_warn(&udev->dev,
1819                          "Not enough bandwidth for new device state.\n");
1820                 ret = -ENOSPC;
1821                 /* FIXME: can we go back to the old state? */
1822                 break;
1823         case COMP_TRB_ERR:
1824                 /* the HCD set up something wrong */
1825                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1826                                 "add flag = 1, "
1827                                 "and endpoint is not disabled.\n");
1828                 ret = -EINVAL;
1829                 break;
1830         case COMP_DEV_ERR:
1831                 dev_warn(&udev->dev,
1832                          "ERROR: Incompatible device for endpoint configure command.\n");
1833                 ret = -ENODEV;
1834                 break;
1835         case COMP_SUCCESS:
1836                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1837                                 "Successful Endpoint Configure command");
1838                 ret = 0;
1839                 break;
1840         default:
1841                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1842                                 *cmd_status);
1843                 ret = -EINVAL;
1844                 break;
1845         }
1846         return ret;
1847 }
1848
1849 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1850                 struct usb_device *udev, u32 *cmd_status)
1851 {
1852         int ret;
1853         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1854
1855         switch (*cmd_status) {
1856         case COMP_CMD_ABORT:
1857         case COMP_CMD_STOP:
1858                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1859                 ret = -ETIME;
1860                 break;
1861         case COMP_EINVAL:
1862                 dev_warn(&udev->dev,
1863                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1864                 ret = -EINVAL;
1865                 break;
1866         case COMP_EBADSLT:
1867                 dev_warn(&udev->dev,
1868                         "WARN: slot not enabled for evaluate context command.\n");
1869                 ret = -EINVAL;
1870                 break;
1871         case COMP_CTX_STATE:
1872                 dev_warn(&udev->dev,
1873                         "WARN: invalid context state for evaluate context command.\n");
1874                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1875                 ret = -EINVAL;
1876                 break;
1877         case COMP_DEV_ERR:
1878                 dev_warn(&udev->dev,
1879                         "ERROR: Incompatible device for evaluate context command.\n");
1880                 ret = -ENODEV;
1881                 break;
1882         case COMP_MEL_ERR:
1883                 /* Max Exit Latency too large error */
1884                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1885                 ret = -EINVAL;
1886                 break;
1887         case COMP_SUCCESS:
1888                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1889                                 "Successful evaluate context command");
1890                 ret = 0;
1891                 break;
1892         default:
1893                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1894                         *cmd_status);
1895                 ret = -EINVAL;
1896                 break;
1897         }
1898         return ret;
1899 }
1900
1901 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1902                 struct xhci_input_control_ctx *ctrl_ctx)
1903 {
1904         u32 valid_add_flags;
1905         u32 valid_drop_flags;
1906
1907         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1908          * (bit 1).  The default control endpoint is added during the Address
1909          * Device command and is never removed until the slot is disabled.
1910          */
1911         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1912         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1913
1914         /* Use hweight32 to count the number of ones in the add flags, or
1915          * number of endpoints added.  Don't count endpoints that are changed
1916          * (both added and dropped).
1917          */
1918         return hweight32(valid_add_flags) -
1919                 hweight32(valid_add_flags & valid_drop_flags);
1920 }
1921
1922 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1923                 struct xhci_input_control_ctx *ctrl_ctx)
1924 {
1925         u32 valid_add_flags;
1926         u32 valid_drop_flags;
1927
1928         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1929         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1930
1931         return hweight32(valid_drop_flags) -
1932                 hweight32(valid_add_flags & valid_drop_flags);
1933 }
1934
1935 /*
1936  * We need to reserve the new number of endpoints before the configure endpoint
1937  * command completes.  We can't subtract the dropped endpoints from the number
1938  * of active endpoints until the command completes because we can oversubscribe
1939  * the host in this case:
1940  *
1941  *  - the first configure endpoint command drops more endpoints than it adds
1942  *  - a second configure endpoint command that adds more endpoints is queued
1943  *  - the first configure endpoint command fails, so the config is unchanged
1944  *  - the second command may succeed, even though there isn't enough resources
1945  *
1946  * Must be called with xhci->lock held.
1947  */
1948 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1949                 struct xhci_input_control_ctx *ctrl_ctx)
1950 {
1951         u32 added_eps;
1952
1953         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1954         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1955                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1956                                 "Not enough ep ctxs: "
1957                                 "%u active, need to add %u, limit is %u.",
1958                                 xhci->num_active_eps, added_eps,
1959                                 xhci->limit_active_eps);
1960                 return -ENOMEM;
1961         }
1962         xhci->num_active_eps += added_eps;
1963         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1964                         "Adding %u ep ctxs, %u now active.", added_eps,
1965                         xhci->num_active_eps);
1966         return 0;
1967 }
1968
1969 /*
1970  * The configure endpoint was failed by the xHC for some other reason, so we
1971  * need to revert the resources that failed configuration would have used.
1972  *
1973  * Must be called with xhci->lock held.
1974  */
1975 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1976                 struct xhci_input_control_ctx *ctrl_ctx)
1977 {
1978         u32 num_failed_eps;
1979
1980         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1981         xhci->num_active_eps -= num_failed_eps;
1982         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1983                         "Removing %u failed ep ctxs, %u now active.",
1984                         num_failed_eps,
1985                         xhci->num_active_eps);
1986 }
1987
1988 /*
1989  * Now that the command has completed, clean up the active endpoint count by
1990  * subtracting out the endpoints that were dropped (but not changed).
1991  *
1992  * Must be called with xhci->lock held.
1993  */
1994 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1995                 struct xhci_input_control_ctx *ctrl_ctx)
1996 {
1997         u32 num_dropped_eps;
1998
1999         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2000         xhci->num_active_eps -= num_dropped_eps;
2001         if (num_dropped_eps)
2002                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2003                                 "Removing %u dropped ep ctxs, %u now active.",
2004                                 num_dropped_eps,
2005                                 xhci->num_active_eps);
2006 }
2007
2008 static unsigned int xhci_get_block_size(struct usb_device *udev)
2009 {
2010         switch (udev->speed) {
2011         case USB_SPEED_LOW:
2012         case USB_SPEED_FULL:
2013                 return FS_BLOCK;
2014         case USB_SPEED_HIGH:
2015                 return HS_BLOCK;
2016         case USB_SPEED_SUPER:
2017                 return SS_BLOCK;
2018         case USB_SPEED_UNKNOWN:
2019         case USB_SPEED_WIRELESS:
2020         default:
2021                 /* Should never happen */
2022                 return 1;
2023         }
2024 }
2025
2026 static unsigned int
2027 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2028 {
2029         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2030                 return LS_OVERHEAD;
2031         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2032                 return FS_OVERHEAD;
2033         return HS_OVERHEAD;
2034 }
2035
2036 /* If we are changing a LS/FS device under a HS hub,
2037  * make sure (if we are activating a new TT) that the HS bus has enough
2038  * bandwidth for this new TT.
2039  */
2040 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2041                 struct xhci_virt_device *virt_dev,
2042                 int old_active_eps)
2043 {
2044         struct xhci_interval_bw_table *bw_table;
2045         struct xhci_tt_bw_info *tt_info;
2046
2047         /* Find the bandwidth table for the root port this TT is attached to. */
2048         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2049         tt_info = virt_dev->tt_info;
2050         /* If this TT already had active endpoints, the bandwidth for this TT
2051          * has already been added.  Removing all periodic endpoints (and thus
2052          * making the TT enactive) will only decrease the bandwidth used.
2053          */
2054         if (old_active_eps)
2055                 return 0;
2056         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2057                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2058                         return -ENOMEM;
2059                 return 0;
2060         }
2061         /* Not sure why we would have no new active endpoints...
2062          *
2063          * Maybe because of an Evaluate Context change for a hub update or a
2064          * control endpoint 0 max packet size change?
2065          * FIXME: skip the bandwidth calculation in that case.
2066          */
2067         return 0;
2068 }
2069
2070 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2071                 struct xhci_virt_device *virt_dev)
2072 {
2073         unsigned int bw_reserved;
2074
2075         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2076         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2077                 return -ENOMEM;
2078
2079         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2080         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2081                 return -ENOMEM;
2082
2083         return 0;
2084 }
2085
2086 /*
2087  * This algorithm is a very conservative estimate of the worst-case scheduling
2088  * scenario for any one interval.  The hardware dynamically schedules the
2089  * packets, so we can't tell which microframe could be the limiting factor in
2090  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2091  *
2092  * Obviously, we can't solve an NP complete problem to find the minimum worst
2093  * case scenario.  Instead, we come up with an estimate that is no less than
2094  * the worst case bandwidth used for any one microframe, but may be an
2095  * over-estimate.
2096  *
2097  * We walk the requirements for each endpoint by interval, starting with the
2098  * smallest interval, and place packets in the schedule where there is only one
2099  * possible way to schedule packets for that interval.  In order to simplify
2100  * this algorithm, we record the largest max packet size for each interval, and
2101  * assume all packets will be that size.
2102  *
2103  * For interval 0, we obviously must schedule all packets for each interval.
2104  * The bandwidth for interval 0 is just the amount of data to be transmitted
2105  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2106  * the number of packets).
2107  *
2108  * For interval 1, we have two possible microframes to schedule those packets
2109  * in.  For this algorithm, if we can schedule the same number of packets for
2110  * each possible scheduling opportunity (each microframe), we will do so.  The
2111  * remaining number of packets will be saved to be transmitted in the gaps in
2112  * the next interval's scheduling sequence.
2113  *
2114  * As we move those remaining packets to be scheduled with interval 2 packets,
2115  * we have to double the number of remaining packets to transmit.  This is
2116  * because the intervals are actually powers of 2, and we would be transmitting
2117  * the previous interval's packets twice in this interval.  We also have to be
2118  * sure that when we look at the largest max packet size for this interval, we
2119  * also look at the largest max packet size for the remaining packets and take
2120  * the greater of the two.
2121  *
2122  * The algorithm continues to evenly distribute packets in each scheduling
2123  * opportunity, and push the remaining packets out, until we get to the last
2124  * interval.  Then those packets and their associated overhead are just added
2125  * to the bandwidth used.
2126  */
2127 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2128                 struct xhci_virt_device *virt_dev,
2129                 int old_active_eps)
2130 {
2131         unsigned int bw_reserved;
2132         unsigned int max_bandwidth;
2133         unsigned int bw_used;
2134         unsigned int block_size;
2135         struct xhci_interval_bw_table *bw_table;
2136         unsigned int packet_size = 0;
2137         unsigned int overhead = 0;
2138         unsigned int packets_transmitted = 0;
2139         unsigned int packets_remaining = 0;
2140         unsigned int i;
2141
2142         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2143                 return xhci_check_ss_bw(xhci, virt_dev);
2144
2145         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2146                 max_bandwidth = HS_BW_LIMIT;
2147                 /* Convert percent of bus BW reserved to blocks reserved */
2148                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2149         } else {
2150                 max_bandwidth = FS_BW_LIMIT;
2151                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2152         }
2153
2154         bw_table = virt_dev->bw_table;
2155         /* We need to translate the max packet size and max ESIT payloads into
2156          * the units the hardware uses.
2157          */
2158         block_size = xhci_get_block_size(virt_dev->udev);
2159
2160         /* If we are manipulating a LS/FS device under a HS hub, double check
2161          * that the HS bus has enough bandwidth if we are activing a new TT.
2162          */
2163         if (virt_dev->tt_info) {
2164                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165                                 "Recalculating BW for rootport %u",
2166                                 virt_dev->real_port);
2167                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2168                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2169                                         "newly activated TT.\n");
2170                         return -ENOMEM;
2171                 }
2172                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2173                                 "Recalculating BW for TT slot %u port %u",
2174                                 virt_dev->tt_info->slot_id,
2175                                 virt_dev->tt_info->ttport);
2176         } else {
2177                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2178                                 "Recalculating BW for rootport %u",
2179                                 virt_dev->real_port);
2180         }
2181
2182         /* Add in how much bandwidth will be used for interval zero, or the
2183          * rounded max ESIT payload + number of packets * largest overhead.
2184          */
2185         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2186                 bw_table->interval_bw[0].num_packets *
2187                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2188
2189         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2190                 unsigned int bw_added;
2191                 unsigned int largest_mps;
2192                 unsigned int interval_overhead;
2193
2194                 /*
2195                  * How many packets could we transmit in this interval?
2196                  * If packets didn't fit in the previous interval, we will need
2197                  * to transmit that many packets twice within this interval.
2198                  */
2199                 packets_remaining = 2 * packets_remaining +
2200                         bw_table->interval_bw[i].num_packets;
2201
2202                 /* Find the largest max packet size of this or the previous
2203                  * interval.
2204                  */
2205                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2206                         largest_mps = 0;
2207                 else {
2208                         struct xhci_virt_ep *virt_ep;
2209                         struct list_head *ep_entry;
2210
2211                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2212                         virt_ep = list_entry(ep_entry,
2213                                         struct xhci_virt_ep, bw_endpoint_list);
2214                         /* Convert to blocks, rounding up */
2215                         largest_mps = DIV_ROUND_UP(
2216                                         virt_ep->bw_info.max_packet_size,
2217                                         block_size);
2218                 }
2219                 if (largest_mps > packet_size)
2220                         packet_size = largest_mps;
2221
2222                 /* Use the larger overhead of this or the previous interval. */
2223                 interval_overhead = xhci_get_largest_overhead(
2224                                 &bw_table->interval_bw[i]);
2225                 if (interval_overhead > overhead)
2226                         overhead = interval_overhead;
2227
2228                 /* How many packets can we evenly distribute across
2229                  * (1 << (i + 1)) possible scheduling opportunities?
2230                  */
2231                 packets_transmitted = packets_remaining >> (i + 1);
2232
2233                 /* Add in the bandwidth used for those scheduled packets */
2234                 bw_added = packets_transmitted * (overhead + packet_size);
2235
2236                 /* How many packets do we have remaining to transmit? */
2237                 packets_remaining = packets_remaining % (1 << (i + 1));
2238
2239                 /* What largest max packet size should those packets have? */
2240                 /* If we've transmitted all packets, don't carry over the
2241                  * largest packet size.
2242                  */
2243                 if (packets_remaining == 0) {
2244                         packet_size = 0;
2245                         overhead = 0;
2246                 } else if (packets_transmitted > 0) {
2247                         /* Otherwise if we do have remaining packets, and we've
2248                          * scheduled some packets in this interval, take the
2249                          * largest max packet size from endpoints with this
2250                          * interval.
2251                          */
2252                         packet_size = largest_mps;
2253                         overhead = interval_overhead;
2254                 }
2255                 /* Otherwise carry over packet_size and overhead from the last
2256                  * time we had a remainder.
2257                  */
2258                 bw_used += bw_added;
2259                 if (bw_used > max_bandwidth) {
2260                         xhci_warn(xhci, "Not enough bandwidth. "
2261                                         "Proposed: %u, Max: %u\n",
2262                                 bw_used, max_bandwidth);
2263                         return -ENOMEM;
2264                 }
2265         }
2266         /*
2267          * Ok, we know we have some packets left over after even-handedly
2268          * scheduling interval 15.  We don't know which microframes they will
2269          * fit into, so we over-schedule and say they will be scheduled every
2270          * microframe.
2271          */
2272         if (packets_remaining > 0)
2273                 bw_used += overhead + packet_size;
2274
2275         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2276                 unsigned int port_index = virt_dev->real_port - 1;
2277
2278                 /* OK, we're manipulating a HS device attached to a
2279                  * root port bandwidth domain.  Include the number of active TTs
2280                  * in the bandwidth used.
2281                  */
2282                 bw_used += TT_HS_OVERHEAD *
2283                         xhci->rh_bw[port_index].num_active_tts;
2284         }
2285
2286         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2287                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2288                 "Available: %u " "percent",
2289                 bw_used, max_bandwidth, bw_reserved,
2290                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2291                 max_bandwidth);
2292
2293         bw_used += bw_reserved;
2294         if (bw_used > max_bandwidth) {
2295                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2296                                 bw_used, max_bandwidth);
2297                 return -ENOMEM;
2298         }
2299
2300         bw_table->bw_used = bw_used;
2301         return 0;
2302 }
2303
2304 static bool xhci_is_async_ep(unsigned int ep_type)
2305 {
2306         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2307                                         ep_type != ISOC_IN_EP &&
2308                                         ep_type != INT_IN_EP);
2309 }
2310
2311 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2312 {
2313         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2314 }
2315
2316 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2317 {
2318         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2319
2320         if (ep_bw->ep_interval == 0)
2321                 return SS_OVERHEAD_BURST +
2322                         (ep_bw->mult * ep_bw->num_packets *
2323                                         (SS_OVERHEAD + mps));
2324         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2325                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2326                                 1 << ep_bw->ep_interval);
2327
2328 }
2329
2330 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2331                 struct xhci_bw_info *ep_bw,
2332                 struct xhci_interval_bw_table *bw_table,
2333                 struct usb_device *udev,
2334                 struct xhci_virt_ep *virt_ep,
2335                 struct xhci_tt_bw_info *tt_info)
2336 {
2337         struct xhci_interval_bw *interval_bw;
2338         int normalized_interval;
2339
2340         if (xhci_is_async_ep(ep_bw->type))
2341                 return;
2342
2343         if (udev->speed == USB_SPEED_SUPER) {
2344                 if (xhci_is_sync_in_ep(ep_bw->type))
2345                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2346                                 xhci_get_ss_bw_consumed(ep_bw);
2347                 else
2348                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2349                                 xhci_get_ss_bw_consumed(ep_bw);
2350                 return;
2351         }
2352
2353         /* SuperSpeed endpoints never get added to intervals in the table, so
2354          * this check is only valid for HS/FS/LS devices.
2355          */
2356         if (list_empty(&virt_ep->bw_endpoint_list))
2357                 return;
2358         /* For LS/FS devices, we need to translate the interval expressed in
2359          * microframes to frames.
2360          */
2361         if (udev->speed == USB_SPEED_HIGH)
2362                 normalized_interval = ep_bw->ep_interval;
2363         else
2364                 normalized_interval = ep_bw->ep_interval - 3;
2365
2366         if (normalized_interval == 0)
2367                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2368         interval_bw = &bw_table->interval_bw[normalized_interval];
2369         interval_bw->num_packets -= ep_bw->num_packets;
2370         switch (udev->speed) {
2371         case USB_SPEED_LOW:
2372                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2373                 break;
2374         case USB_SPEED_FULL:
2375                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2376                 break;
2377         case USB_SPEED_HIGH:
2378                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2379                 break;
2380         case USB_SPEED_SUPER:
2381         case USB_SPEED_UNKNOWN:
2382         case USB_SPEED_WIRELESS:
2383                 /* Should never happen because only LS/FS/HS endpoints will get
2384                  * added to the endpoint list.
2385                  */
2386                 return;
2387         }
2388         if (tt_info)
2389                 tt_info->active_eps -= 1;
2390         list_del_init(&virt_ep->bw_endpoint_list);
2391 }
2392
2393 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2394                 struct xhci_bw_info *ep_bw,
2395                 struct xhci_interval_bw_table *bw_table,
2396                 struct usb_device *udev,
2397                 struct xhci_virt_ep *virt_ep,
2398                 struct xhci_tt_bw_info *tt_info)
2399 {
2400         struct xhci_interval_bw *interval_bw;
2401         struct xhci_virt_ep *smaller_ep;
2402         int normalized_interval;
2403
2404         if (xhci_is_async_ep(ep_bw->type))
2405                 return;
2406
2407         if (udev->speed == USB_SPEED_SUPER) {
2408                 if (xhci_is_sync_in_ep(ep_bw->type))
2409                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2410                                 xhci_get_ss_bw_consumed(ep_bw);
2411                 else
2412                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2413                                 xhci_get_ss_bw_consumed(ep_bw);
2414                 return;
2415         }
2416
2417         /* For LS/FS devices, we need to translate the interval expressed in
2418          * microframes to frames.
2419          */
2420         if (udev->speed == USB_SPEED_HIGH)
2421                 normalized_interval = ep_bw->ep_interval;
2422         else
2423                 normalized_interval = ep_bw->ep_interval - 3;
2424
2425         if (normalized_interval == 0)
2426                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2427         interval_bw = &bw_table->interval_bw[normalized_interval];
2428         interval_bw->num_packets += ep_bw->num_packets;
2429         switch (udev->speed) {
2430         case USB_SPEED_LOW:
2431                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2432                 break;
2433         case USB_SPEED_FULL:
2434                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2435                 break;
2436         case USB_SPEED_HIGH:
2437                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2438                 break;
2439         case USB_SPEED_SUPER:
2440         case USB_SPEED_UNKNOWN:
2441         case USB_SPEED_WIRELESS:
2442                 /* Should never happen because only LS/FS/HS endpoints will get
2443                  * added to the endpoint list.
2444                  */
2445                 return;
2446         }
2447
2448         if (tt_info)
2449                 tt_info->active_eps += 1;
2450         /* Insert the endpoint into the list, largest max packet size first. */
2451         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2452                         bw_endpoint_list) {
2453                 if (ep_bw->max_packet_size >=
2454                                 smaller_ep->bw_info.max_packet_size) {
2455                         /* Add the new ep before the smaller endpoint */
2456                         list_add_tail(&virt_ep->bw_endpoint_list,
2457                                         &smaller_ep->bw_endpoint_list);
2458                         return;
2459                 }
2460         }
2461         /* Add the new endpoint at the end of the list. */
2462         list_add_tail(&virt_ep->bw_endpoint_list,
2463                         &interval_bw->endpoints);
2464 }
2465
2466 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2467                 struct xhci_virt_device *virt_dev,
2468                 int old_active_eps)
2469 {
2470         struct xhci_root_port_bw_info *rh_bw_info;
2471         if (!virt_dev->tt_info)
2472                 return;
2473
2474         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2475         if (old_active_eps == 0 &&
2476                                 virt_dev->tt_info->active_eps != 0) {
2477                 rh_bw_info->num_active_tts += 1;
2478                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2479         } else if (old_active_eps != 0 &&
2480                                 virt_dev->tt_info->active_eps == 0) {
2481                 rh_bw_info->num_active_tts -= 1;
2482                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2483         }
2484 }
2485
2486 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2487                 struct xhci_virt_device *virt_dev,
2488                 struct xhci_container_ctx *in_ctx)
2489 {
2490         struct xhci_bw_info ep_bw_info[31];
2491         int i;
2492         struct xhci_input_control_ctx *ctrl_ctx;
2493         int old_active_eps = 0;
2494
2495         if (virt_dev->tt_info)
2496                 old_active_eps = virt_dev->tt_info->active_eps;
2497
2498         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2499         if (!ctrl_ctx) {
2500                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2501                                 __func__);
2502                 return -ENOMEM;
2503         }
2504
2505         for (i = 0; i < 31; i++) {
2506                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2507                         continue;
2508
2509                 /* Make a copy of the BW info in case we need to revert this */
2510                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2511                                 sizeof(ep_bw_info[i]));
2512                 /* Drop the endpoint from the interval table if the endpoint is
2513                  * being dropped or changed.
2514                  */
2515                 if (EP_IS_DROPPED(ctrl_ctx, i))
2516                         xhci_drop_ep_from_interval_table(xhci,
2517                                         &virt_dev->eps[i].bw_info,
2518                                         virt_dev->bw_table,
2519                                         virt_dev->udev,
2520                                         &virt_dev->eps[i],
2521                                         virt_dev->tt_info);
2522         }
2523         /* Overwrite the information stored in the endpoints' bw_info */
2524         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2525         for (i = 0; i < 31; i++) {
2526                 /* Add any changed or added endpoints to the interval table */
2527                 if (EP_IS_ADDED(ctrl_ctx, i))
2528                         xhci_add_ep_to_interval_table(xhci,
2529                                         &virt_dev->eps[i].bw_info,
2530                                         virt_dev->bw_table,
2531                                         virt_dev->udev,
2532                                         &virt_dev->eps[i],
2533                                         virt_dev->tt_info);
2534         }
2535
2536         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2537                 /* Ok, this fits in the bandwidth we have.
2538                  * Update the number of active TTs.
2539                  */
2540                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2541                 return 0;
2542         }
2543
2544         /* We don't have enough bandwidth for this, revert the stored info. */
2545         for (i = 0; i < 31; i++) {
2546                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2547                         continue;
2548
2549                 /* Drop the new copies of any added or changed endpoints from
2550                  * the interval table.
2551                  */
2552                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2553                         xhci_drop_ep_from_interval_table(xhci,
2554                                         &virt_dev->eps[i].bw_info,
2555                                         virt_dev->bw_table,
2556                                         virt_dev->udev,
2557                                         &virt_dev->eps[i],
2558                                         virt_dev->tt_info);
2559                 }
2560                 /* Revert the endpoint back to its old information */
2561                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2562                                 sizeof(ep_bw_info[i]));
2563                 /* Add any changed or dropped endpoints back into the table */
2564                 if (EP_IS_DROPPED(ctrl_ctx, i))
2565                         xhci_add_ep_to_interval_table(xhci,
2566                                         &virt_dev->eps[i].bw_info,
2567                                         virt_dev->bw_table,
2568                                         virt_dev->udev,
2569                                         &virt_dev->eps[i],
2570                                         virt_dev->tt_info);
2571         }
2572         return -ENOMEM;
2573 }
2574
2575
2576 /* Issue a configure endpoint command or evaluate context command
2577  * and wait for it to finish.
2578  */
2579 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2580                 struct usb_device *udev,
2581                 struct xhci_command *command,
2582                 bool ctx_change, bool must_succeed)
2583 {
2584         int ret;
2585         unsigned long flags;
2586         struct xhci_input_control_ctx *ctrl_ctx;
2587         struct xhci_virt_device *virt_dev;
2588
2589         if (!command)
2590                 return -EINVAL;
2591
2592         spin_lock_irqsave(&xhci->lock, flags);
2593         virt_dev = xhci->devs[udev->slot_id];
2594
2595         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2596         if (!ctrl_ctx) {
2597                 spin_unlock_irqrestore(&xhci->lock, flags);
2598                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2599                                 __func__);
2600                 return -ENOMEM;
2601         }
2602
2603         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2604                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2605                 spin_unlock_irqrestore(&xhci->lock, flags);
2606                 xhci_warn(xhci, "Not enough host resources, "
2607                                 "active endpoint contexts = %u\n",
2608                                 xhci->num_active_eps);
2609                 return -ENOMEM;
2610         }
2611         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2612             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2613                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2614                         xhci_free_host_resources(xhci, ctrl_ctx);
2615                 spin_unlock_irqrestore(&xhci->lock, flags);
2616                 xhci_warn(xhci, "Not enough bandwidth\n");
2617                 return -ENOMEM;
2618         }
2619
2620         if (!ctx_change)
2621                 ret = xhci_queue_configure_endpoint(xhci, command,
2622                                 command->in_ctx->dma,
2623                                 udev->slot_id, must_succeed);
2624         else
2625                 ret = xhci_queue_evaluate_context(xhci, command,
2626                                 command->in_ctx->dma,
2627                                 udev->slot_id, must_succeed);
2628         if (ret < 0) {
2629                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2630                         xhci_free_host_resources(xhci, ctrl_ctx);
2631                 spin_unlock_irqrestore(&xhci->lock, flags);
2632                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2633                                 "FIXME allocate a new ring segment");
2634                 return -ENOMEM;
2635         }
2636         xhci_ring_cmd_db(xhci);
2637         spin_unlock_irqrestore(&xhci->lock, flags);
2638
2639         /* Wait for the configure endpoint command to complete */
2640         wait_for_completion(command->completion);
2641
2642         if (!ctx_change)
2643                 ret = xhci_configure_endpoint_result(xhci, udev,
2644                                                      &command->status);
2645         else
2646                 ret = xhci_evaluate_context_result(xhci, udev,
2647                                                    &command->status);
2648
2649         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2650                 spin_lock_irqsave(&xhci->lock, flags);
2651                 /* If the command failed, remove the reserved resources.
2652                  * Otherwise, clean up the estimate to include dropped eps.
2653                  */
2654                 if (ret)
2655                         xhci_free_host_resources(xhci, ctrl_ctx);
2656                 else
2657                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2658                 spin_unlock_irqrestore(&xhci->lock, flags);
2659         }
2660         return ret;
2661 }
2662
2663 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2664         struct xhci_virt_device *vdev, int i)
2665 {
2666         struct xhci_virt_ep *ep = &vdev->eps[i];
2667
2668         if (ep->ep_state & EP_HAS_STREAMS) {
2669                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2670                                 xhci_get_endpoint_address(i));
2671                 xhci_free_stream_info(xhci, ep->stream_info);
2672                 ep->stream_info = NULL;
2673                 ep->ep_state &= ~EP_HAS_STREAMS;
2674         }
2675 }
2676
2677 /* Called after one or more calls to xhci_add_endpoint() or
2678  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2679  * to call xhci_reset_bandwidth().
2680  *
2681  * Since we are in the middle of changing either configuration or
2682  * installing a new alt setting, the USB core won't allow URBs to be
2683  * enqueued for any endpoint on the old config or interface.  Nothing
2684  * else should be touching the xhci->devs[slot_id] structure, so we
2685  * don't need to take the xhci->lock for manipulating that.
2686  */
2687 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2688 {
2689         int i;
2690         int ret = 0;
2691         struct xhci_hcd *xhci;
2692         struct xhci_virt_device *virt_dev;
2693         struct xhci_input_control_ctx *ctrl_ctx;
2694         struct xhci_slot_ctx *slot_ctx;
2695         struct xhci_command *command;
2696
2697         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2698         if (ret <= 0)
2699                 return ret;
2700         xhci = hcd_to_xhci(hcd);
2701         if (xhci->xhc_state & XHCI_STATE_DYING)
2702                 return -ENODEV;
2703
2704         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2705         virt_dev = xhci->devs[udev->slot_id];
2706
2707         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2708         if (!command)
2709                 return -ENOMEM;
2710
2711         command->in_ctx = virt_dev->in_ctx;
2712
2713         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2714         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
2715         if (!ctrl_ctx) {
2716                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2717                                 __func__);
2718                 ret = -ENOMEM;
2719                 goto command_cleanup;
2720         }
2721         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2722         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2723         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2724
2725         /* Don't issue the command if there's no endpoints to update. */
2726         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2727             ctrl_ctx->drop_flags == 0) {
2728                 ret = 0;
2729                 goto command_cleanup;
2730         }
2731         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2732         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2733         for (i = 31; i >= 1; i--) {
2734                 __le32 le32 = cpu_to_le32(BIT(i));
2735
2736                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2737                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2738                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2739                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2740                         break;
2741                 }
2742         }
2743         xhci_dbg(xhci, "New Input Control Context:\n");
2744         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2745                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2746
2747         ret = xhci_configure_endpoint(xhci, udev, command,
2748                         false, false);
2749         if (ret)
2750                 /* Callee should call reset_bandwidth() */
2751                 goto command_cleanup;
2752
2753         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2754         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2755                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2756
2757         /* Free any rings that were dropped, but not changed. */
2758         for (i = 1; i < 31; ++i) {
2759                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2760                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2761                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2762                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2763                 }
2764         }
2765         xhci_zero_in_ctx(xhci, virt_dev);
2766         /*
2767          * Install any rings for completely new endpoints or changed endpoints,
2768          * and free or cache any old rings from changed endpoints.
2769          */
2770         for (i = 1; i < 31; ++i) {
2771                 if (!virt_dev->eps[i].new_ring)
2772                         continue;
2773                 /* Only cache or free the old ring if it exists.
2774                  * It may not if this is the first add of an endpoint.
2775                  */
2776                 if (virt_dev->eps[i].ring) {
2777                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2778                 }
2779                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2780                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2781                 virt_dev->eps[i].new_ring = NULL;
2782         }
2783 command_cleanup:
2784         kfree(command->completion);
2785         kfree(command);
2786
2787         return ret;
2788 }
2789
2790 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2791 {
2792         struct xhci_hcd *xhci;
2793         struct xhci_virt_device *virt_dev;
2794         int i, ret;
2795
2796         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2797         if (ret <= 0)
2798                 return;
2799         xhci = hcd_to_xhci(hcd);
2800
2801         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2802         virt_dev = xhci->devs[udev->slot_id];
2803         /* Free any rings allocated for added endpoints */
2804         for (i = 0; i < 31; ++i) {
2805                 if (virt_dev->eps[i].new_ring) {
2806                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2807                         virt_dev->eps[i].new_ring = NULL;
2808                 }
2809         }
2810         xhci_zero_in_ctx(xhci, virt_dev);
2811 }
2812
2813 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2814                 struct xhci_container_ctx *in_ctx,
2815                 struct xhci_container_ctx *out_ctx,
2816                 struct xhci_input_control_ctx *ctrl_ctx,
2817                 u32 add_flags, u32 drop_flags)
2818 {
2819         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2820         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2821         xhci_slot_copy(xhci, in_ctx, out_ctx);
2822         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2823
2824         xhci_dbg(xhci, "Input Context:\n");
2825         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2826 }
2827
2828 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2829                 unsigned int slot_id, unsigned int ep_index,
2830                 struct xhci_dequeue_state *deq_state)
2831 {
2832         struct xhci_input_control_ctx *ctrl_ctx;
2833         struct xhci_container_ctx *in_ctx;
2834         struct xhci_ep_ctx *ep_ctx;
2835         u32 added_ctxs;
2836         dma_addr_t addr;
2837
2838         in_ctx = xhci->devs[slot_id]->in_ctx;
2839         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2840         if (!ctrl_ctx) {
2841                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2842                                 __func__);
2843                 return;
2844         }
2845
2846         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2847                         xhci->devs[slot_id]->out_ctx, ep_index);
2848         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2849         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2850                         deq_state->new_deq_ptr);
2851         if (addr == 0) {
2852                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2853                                 "reset ep command\n");
2854                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2855                                 deq_state->new_deq_seg,
2856                                 deq_state->new_deq_ptr);
2857                 return;
2858         }
2859         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2860
2861         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2862         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2863                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2864                         added_ctxs, added_ctxs);
2865 }
2866
2867 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2868                 struct usb_device *udev, unsigned int ep_index)
2869 {
2870         struct xhci_dequeue_state deq_state;
2871         struct xhci_virt_ep *ep;
2872
2873         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2874                         "Cleaning up stalled endpoint ring");
2875         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876         /* We need to move the HW's dequeue pointer past this TD,
2877          * or it will attempt to resend it on the next doorbell ring.
2878          */
2879         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880                         ep_index, ep->stopped_stream, ep->stopped_td,
2881                         &deq_state);
2882
2883         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2884                 return;
2885
2886         /* HW with the reset endpoint quirk will use the saved dequeue state to
2887          * issue a configure endpoint command later.
2888          */
2889         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2890                 struct xhci_command *command;
2891                 /* Can't sleep if we're called from cleanup_halted_endpoint() */
2892                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2893                 if (!command)
2894                         return;
2895                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2896                                 "Queueing new dequeue state");
2897                 xhci_queue_new_dequeue_state(xhci, command, udev->slot_id,
2898                                 ep_index, ep->stopped_stream, &deq_state);
2899         } else {
2900                 /* Better hope no one uses the input context between now and the
2901                  * reset endpoint completion!
2902                  * XXX: No idea how this hardware will react when stream rings
2903                  * are enabled.
2904                  */
2905                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2906                                 "Setting up input context for "
2907                                 "configure endpoint command");
2908                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2909                                 ep_index, &deq_state);
2910         }
2911 }
2912
2913 /* Deal with stalled endpoints.  The core should have sent the control message
2914  * to clear the halt condition.  However, we need to make the xHCI hardware
2915  * reset its sequence number, since a device will expect a sequence number of
2916  * zero after the halt condition is cleared.
2917  * Context: in_interrupt
2918  */
2919 void xhci_endpoint_reset(struct usb_hcd *hcd,
2920                 struct usb_host_endpoint *ep)
2921 {
2922         struct xhci_hcd *xhci;
2923         struct usb_device *udev;
2924         unsigned int ep_index;
2925         unsigned long flags;
2926         int ret;
2927         struct xhci_virt_ep *virt_ep;
2928         struct xhci_command *command;
2929
2930         xhci = hcd_to_xhci(hcd);
2931         udev = (struct usb_device *) ep->hcpriv;
2932         /* Called with a root hub endpoint (or an endpoint that wasn't added
2933          * with xhci_add_endpoint()
2934          */
2935         if (!ep->hcpriv)
2936                 return;
2937         ep_index = xhci_get_endpoint_index(&ep->desc);
2938         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2939         if (!virt_ep->stopped_td) {
2940                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2941                         "Endpoint 0x%x not halted, refusing to reset.",
2942                         ep->desc.bEndpointAddress);
2943                 return;
2944         }
2945         if (usb_endpoint_xfer_control(&ep->desc)) {
2946                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2947                                 "Control endpoint stall already handled.");
2948                 return;
2949         }
2950
2951         command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
2952         if (!command)
2953                 return;
2954
2955         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2956                         "Queueing reset endpoint command");
2957         spin_lock_irqsave(&xhci->lock, flags);
2958         ret = xhci_queue_reset_ep(xhci, command, udev->slot_id, ep_index);
2959         /*
2960          * Can't change the ring dequeue pointer until it's transitioned to the
2961          * stopped state, which is only upon a successful reset endpoint
2962          * command.  Better hope that last command worked!
2963          */
2964         if (!ret) {
2965                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2966                 kfree(virt_ep->stopped_td);
2967                 xhci_ring_cmd_db(xhci);
2968         }
2969         virt_ep->stopped_td = NULL;
2970         virt_ep->stopped_stream = 0;
2971         spin_unlock_irqrestore(&xhci->lock, flags);
2972
2973         if (ret)
2974                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2975 }
2976
2977 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2978                 struct usb_device *udev, struct usb_host_endpoint *ep,
2979                 unsigned int slot_id)
2980 {
2981         int ret;
2982         unsigned int ep_index;
2983         unsigned int ep_state;
2984
2985         if (!ep)
2986                 return -EINVAL;
2987         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2988         if (ret <= 0)
2989                 return -EINVAL;
2990         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2991                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2992                                 " descriptor for ep 0x%x does not support streams\n",
2993                                 ep->desc.bEndpointAddress);
2994                 return -EINVAL;
2995         }
2996
2997         ep_index = xhci_get_endpoint_index(&ep->desc);
2998         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2999         if (ep_state & EP_HAS_STREAMS ||
3000                         ep_state & EP_GETTING_STREAMS) {
3001                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3002                                 "already has streams set up.\n",
3003                                 ep->desc.bEndpointAddress);
3004                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3005                                 "dynamic stream context array reallocation.\n");
3006                 return -EINVAL;
3007         }
3008         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3009                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3010                                 "endpoint 0x%x; URBs are pending.\n",
3011                                 ep->desc.bEndpointAddress);
3012                 return -EINVAL;
3013         }
3014         return 0;
3015 }
3016
3017 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3018                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3019 {
3020         unsigned int max_streams;
3021
3022         /* The stream context array size must be a power of two */
3023         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3024         /*
3025          * Find out how many primary stream array entries the host controller
3026          * supports.  Later we may use secondary stream arrays (similar to 2nd
3027          * level page entries), but that's an optional feature for xHCI host
3028          * controllers. xHCs must support at least 4 stream IDs.
3029          */
3030         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3031         if (*num_stream_ctxs > max_streams) {
3032                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3033                                 max_streams);
3034                 *num_stream_ctxs = max_streams;
3035                 *num_streams = max_streams;
3036         }
3037 }
3038
3039 /* Returns an error code if one of the endpoint already has streams.
3040  * This does not change any data structures, it only checks and gathers
3041  * information.
3042  */
3043 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3044                 struct usb_device *udev,
3045                 struct usb_host_endpoint **eps, unsigned int num_eps,
3046                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3047 {
3048         unsigned int max_streams;
3049         unsigned int endpoint_flag;
3050         int i;
3051         int ret;
3052
3053         for (i = 0; i < num_eps; i++) {
3054                 ret = xhci_check_streams_endpoint(xhci, udev,
3055                                 eps[i], udev->slot_id);
3056                 if (ret < 0)
3057                         return ret;
3058
3059                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3060                 if (max_streams < (*num_streams - 1)) {
3061                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3062                                         eps[i]->desc.bEndpointAddress,
3063                                         max_streams);
3064                         *num_streams = max_streams+1;
3065                 }
3066
3067                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3068                 if (*changed_ep_bitmask & endpoint_flag)
3069                         return -EINVAL;
3070                 *changed_ep_bitmask |= endpoint_flag;
3071         }
3072         return 0;
3073 }
3074
3075 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3076                 struct usb_device *udev,
3077                 struct usb_host_endpoint **eps, unsigned int num_eps)
3078 {
3079         u32 changed_ep_bitmask = 0;
3080         unsigned int slot_id;
3081         unsigned int ep_index;
3082         unsigned int ep_state;
3083         int i;
3084
3085         slot_id = udev->slot_id;
3086         if (!xhci->devs[slot_id])
3087                 return 0;
3088
3089         for (i = 0; i < num_eps; i++) {
3090                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3091                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3092                 /* Are streams already being freed for the endpoint? */
3093                 if (ep_state & EP_GETTING_NO_STREAMS) {
3094                         xhci_warn(xhci, "WARN Can't disable streams for "
3095                                         "endpoint 0x%x, "
3096                                         "streams are being disabled already\n",
3097                                         eps[i]->desc.bEndpointAddress);
3098                         return 0;
3099                 }
3100                 /* Are there actually any streams to free? */
3101                 if (!(ep_state & EP_HAS_STREAMS) &&
3102                                 !(ep_state & EP_GETTING_STREAMS)) {
3103                         xhci_warn(xhci, "WARN Can't disable streams for "
3104                                         "endpoint 0x%x, "
3105                                         "streams are already disabled!\n",
3106                                         eps[i]->desc.bEndpointAddress);
3107                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3108                                         "with non-streams endpoint\n");
3109                         return 0;
3110                 }
3111                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3112         }
3113         return changed_ep_bitmask;
3114 }
3115
3116 /*
3117  * The USB device drivers use this function (though the HCD interface in USB
3118  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3119  * coordinate mass storage command queueing across multiple endpoints (basically
3120  * a stream ID == a task ID).
3121  *
3122  * Setting up streams involves allocating the same size stream context array
3123  * for each endpoint and issuing a configure endpoint command for all endpoints.
3124  *
3125  * Don't allow the call to succeed if one endpoint only supports one stream
3126  * (which means it doesn't support streams at all).
3127  *
3128  * Drivers may get less stream IDs than they asked for, if the host controller
3129  * hardware or endpoints claim they can't support the number of requested
3130  * stream IDs.
3131  */
3132 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3133                 struct usb_host_endpoint **eps, unsigned int num_eps,
3134                 unsigned int num_streams, gfp_t mem_flags)
3135 {
3136         int i, ret;
3137         struct xhci_hcd *xhci;
3138         struct xhci_virt_device *vdev;
3139         struct xhci_command *config_cmd;
3140         struct xhci_input_control_ctx *ctrl_ctx;
3141         unsigned int ep_index;
3142         unsigned int num_stream_ctxs;
3143         unsigned long flags;
3144         u32 changed_ep_bitmask = 0;
3145
3146         if (!eps)
3147                 return -EINVAL;
3148
3149         /* Add one to the number of streams requested to account for
3150          * stream 0 that is reserved for xHCI usage.
3151          */
3152         num_streams += 1;
3153         xhci = hcd_to_xhci(hcd);
3154         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3155                         num_streams);
3156
3157         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3158         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3159                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3160                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3161                 return -ENOSYS;
3162         }
3163
3164         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3165         if (!config_cmd) {
3166                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3167                 return -ENOMEM;
3168         }
3169         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3170         if (!ctrl_ctx) {
3171                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3172                                 __func__);
3173                 xhci_free_command(xhci, config_cmd);
3174                 return -ENOMEM;
3175         }
3176
3177         /* Check to make sure all endpoints are not already configured for
3178          * streams.  While we're at it, find the maximum number of streams that
3179          * all the endpoints will support and check for duplicate endpoints.
3180          */
3181         spin_lock_irqsave(&xhci->lock, flags);
3182         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3183                         num_eps, &num_streams, &changed_ep_bitmask);
3184         if (ret < 0) {
3185                 xhci_free_command(xhci, config_cmd);
3186                 spin_unlock_irqrestore(&xhci->lock, flags);
3187                 return ret;
3188         }
3189         if (num_streams <= 1) {
3190                 xhci_warn(xhci, "WARN: endpoints can't handle "
3191                                 "more than one stream.\n");
3192                 xhci_free_command(xhci, config_cmd);
3193                 spin_unlock_irqrestore(&xhci->lock, flags);
3194                 return -EINVAL;
3195         }
3196         vdev = xhci->devs[udev->slot_id];
3197         /* Mark each endpoint as being in transition, so
3198          * xhci_urb_enqueue() will reject all URBs.
3199          */
3200         for (i = 0; i < num_eps; i++) {
3201                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3203         }
3204         spin_unlock_irqrestore(&xhci->lock, flags);
3205
3206         /* Setup internal data structures and allocate HW data structures for
3207          * streams (but don't install the HW structures in the input context
3208          * until we're sure all memory allocation succeeded).
3209          */
3210         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3211         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3212                         num_stream_ctxs, num_streams);
3213
3214         for (i = 0; i < num_eps; i++) {
3215                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3216                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3217                                 num_stream_ctxs,
3218                                 num_streams, mem_flags);
3219                 if (!vdev->eps[ep_index].stream_info)
3220                         goto cleanup;
3221                 /* Set maxPstreams in endpoint context and update deq ptr to
3222                  * point to stream context array. FIXME
3223                  */
3224         }
3225
3226         /* Set up the input context for a configure endpoint command. */
3227         for (i = 0; i < num_eps; i++) {
3228                 struct xhci_ep_ctx *ep_ctx;
3229
3230                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3231                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3232
3233                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3234                                 vdev->out_ctx, ep_index);
3235                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3236                                 vdev->eps[ep_index].stream_info);
3237         }
3238         /* Tell the HW to drop its old copy of the endpoint context info
3239          * and add the updated copy from the input context.
3240          */
3241         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3242                         vdev->out_ctx, ctrl_ctx,
3243                         changed_ep_bitmask, changed_ep_bitmask);
3244
3245         /* Issue and wait for the configure endpoint command */
3246         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3247                         false, false);
3248
3249         /* xHC rejected the configure endpoint command for some reason, so we
3250          * leave the old ring intact and free our internal streams data
3251          * structure.
3252          */
3253         if (ret < 0)
3254                 goto cleanup;
3255
3256         spin_lock_irqsave(&xhci->lock, flags);
3257         for (i = 0; i < num_eps; i++) {
3258                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3259                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3260                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3261                          udev->slot_id, ep_index);
3262                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3263         }
3264         xhci_free_command(xhci, config_cmd);
3265         spin_unlock_irqrestore(&xhci->lock, flags);
3266
3267         /* Subtract 1 for stream 0, which drivers can't use */
3268         return num_streams - 1;
3269
3270 cleanup:
3271         /* If it didn't work, free the streams! */
3272         for (i = 0; i < num_eps; i++) {
3273                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3274                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3275                 vdev->eps[ep_index].stream_info = NULL;
3276                 /* FIXME Unset maxPstreams in endpoint context and
3277                  * update deq ptr to point to normal string ring.
3278                  */
3279                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3280                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3281                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3282         }
3283         xhci_free_command(xhci, config_cmd);
3284         return -ENOMEM;
3285 }
3286
3287 /* Transition the endpoint from using streams to being a "normal" endpoint
3288  * without streams.
3289  *
3290  * Modify the endpoint context state, submit a configure endpoint command,
3291  * and free all endpoint rings for streams if that completes successfully.
3292  */
3293 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3294                 struct usb_host_endpoint **eps, unsigned int num_eps,
3295                 gfp_t mem_flags)
3296 {
3297         int i, ret;
3298         struct xhci_hcd *xhci;
3299         struct xhci_virt_device *vdev;
3300         struct xhci_command *command;
3301         struct xhci_input_control_ctx *ctrl_ctx;
3302         unsigned int ep_index;
3303         unsigned long flags;
3304         u32 changed_ep_bitmask;
3305
3306         xhci = hcd_to_xhci(hcd);
3307         vdev = xhci->devs[udev->slot_id];
3308
3309         /* Set up a configure endpoint command to remove the streams rings */
3310         spin_lock_irqsave(&xhci->lock, flags);
3311         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3312                         udev, eps, num_eps);
3313         if (changed_ep_bitmask == 0) {
3314                 spin_unlock_irqrestore(&xhci->lock, flags);
3315                 return -EINVAL;
3316         }
3317
3318         /* Use the xhci_command structure from the first endpoint.  We may have
3319          * allocated too many, but the driver may call xhci_free_streams() for
3320          * each endpoint it grouped into one call to xhci_alloc_streams().
3321          */
3322         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3323         command = vdev->eps[ep_index].stream_info->free_streams_command;
3324         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3325         if (!ctrl_ctx) {
3326                 spin_unlock_irqrestore(&xhci->lock, flags);
3327                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3328                                 __func__);
3329                 return -EINVAL;
3330         }
3331
3332         for (i = 0; i < num_eps; i++) {
3333                 struct xhci_ep_ctx *ep_ctx;
3334
3335                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3336                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3337                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3338                         EP_GETTING_NO_STREAMS;
3339
3340                 xhci_endpoint_copy(xhci, command->in_ctx,
3341                                 vdev->out_ctx, ep_index);
3342                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3343                                 &vdev->eps[ep_index]);
3344         }
3345         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3346                         vdev->out_ctx, ctrl_ctx,
3347                         changed_ep_bitmask, changed_ep_bitmask);
3348         spin_unlock_irqrestore(&xhci->lock, flags);
3349
3350         /* Issue and wait for the configure endpoint command,
3351          * which must succeed.
3352          */
3353         ret = xhci_configure_endpoint(xhci, udev, command,
3354                         false, true);
3355
3356         /* xHC rejected the configure endpoint command for some reason, so we
3357          * leave the streams rings intact.
3358          */
3359         if (ret < 0)
3360                 return ret;
3361
3362         spin_lock_irqsave(&xhci->lock, flags);
3363         for (i = 0; i < num_eps; i++) {
3364                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3365                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3366                 vdev->eps[ep_index].stream_info = NULL;
3367                 /* FIXME Unset maxPstreams in endpoint context and
3368                  * update deq ptr to point to normal string ring.
3369                  */
3370                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3371                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3372         }
3373         spin_unlock_irqrestore(&xhci->lock, flags);
3374
3375         return 0;
3376 }
3377
3378 /*
3379  * Deletes endpoint resources for endpoints that were active before a Reset
3380  * Device command, or a Disable Slot command.  The Reset Device command leaves
3381  * the control endpoint intact, whereas the Disable Slot command deletes it.
3382  *
3383  * Must be called with xhci->lock held.
3384  */
3385 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3386         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3387 {
3388         int i;
3389         unsigned int num_dropped_eps = 0;
3390         unsigned int drop_flags = 0;
3391
3392         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3393                 if (virt_dev->eps[i].ring) {
3394                         drop_flags |= 1 << i;
3395                         num_dropped_eps++;
3396                 }
3397         }
3398         xhci->num_active_eps -= num_dropped_eps;
3399         if (num_dropped_eps)
3400                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3401                                 "Dropped %u ep ctxs, flags = 0x%x, "
3402                                 "%u now active.",
3403                                 num_dropped_eps, drop_flags,
3404                                 xhci->num_active_eps);
3405 }
3406
3407 /*
3408  * This submits a Reset Device Command, which will set the device state to 0,
3409  * set the device address to 0, and disable all the endpoints except the default
3410  * control endpoint.  The USB core should come back and call
3411  * xhci_address_device(), and then re-set up the configuration.  If this is
3412  * called because of a usb_reset_and_verify_device(), then the old alternate
3413  * settings will be re-installed through the normal bandwidth allocation
3414  * functions.
3415  *
3416  * Wait for the Reset Device command to finish.  Remove all structures
3417  * associated with the endpoints that were disabled.  Clear the input device
3418  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3419  *
3420  * If the virt_dev to be reset does not exist or does not match the udev,
3421  * it means the device is lost, possibly due to the xHC restore error and
3422  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3423  * re-allocate the device.
3424  */
3425 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3426 {
3427         int ret, i;
3428         unsigned long flags;
3429         struct xhci_hcd *xhci;
3430         unsigned int slot_id;
3431         struct xhci_virt_device *virt_dev;
3432         struct xhci_command *reset_device_cmd;
3433         int last_freed_endpoint;
3434         struct xhci_slot_ctx *slot_ctx;
3435         int old_active_eps = 0;
3436
3437         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3438         if (ret <= 0)
3439                 return ret;
3440         xhci = hcd_to_xhci(hcd);
3441         slot_id = udev->slot_id;
3442         virt_dev = xhci->devs[slot_id];
3443         if (!virt_dev) {
3444                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3445                                 "not exist. Re-allocate the device\n", slot_id);
3446                 ret = xhci_alloc_dev(hcd, udev);
3447                 if (ret == 1)
3448                         return 0;
3449                 else
3450                         return -EINVAL;
3451         }
3452
3453         if (virt_dev->udev != udev) {
3454                 /* If the virt_dev and the udev does not match, this virt_dev
3455                  * may belong to another udev.
3456                  * Re-allocate the device.
3457                  */
3458                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3459                                 "not match the udev. Re-allocate the device\n",
3460                                 slot_id);
3461                 ret = xhci_alloc_dev(hcd, udev);
3462                 if (ret == 1)
3463                         return 0;
3464                 else
3465                         return -EINVAL;
3466         }
3467
3468         /* If device is not setup, there is no point in resetting it */
3469         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3470         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3471                                                 SLOT_STATE_DISABLED)
3472                 return 0;
3473
3474         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3475         /* Allocate the command structure that holds the struct completion.
3476          * Assume we're in process context, since the normal device reset
3477          * process has to wait for the device anyway.  Storage devices are
3478          * reset as part of error handling, so use GFP_NOIO instead of
3479          * GFP_KERNEL.
3480          */
3481         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3482         if (!reset_device_cmd) {
3483                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3484                 return -ENOMEM;
3485         }
3486
3487         /* Attempt to submit the Reset Device command to the command ring */
3488         spin_lock_irqsave(&xhci->lock, flags);
3489
3490         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3491         if (ret) {
3492                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3493                 spin_unlock_irqrestore(&xhci->lock, flags);
3494                 goto command_cleanup;
3495         }
3496         xhci_ring_cmd_db(xhci);
3497         spin_unlock_irqrestore(&xhci->lock, flags);
3498
3499         /* Wait for the Reset Device command to finish */
3500         wait_for_completion(reset_device_cmd->completion);
3501
3502         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3503          * unless we tried to reset a slot ID that wasn't enabled,
3504          * or the device wasn't in the addressed or configured state.
3505          */
3506         ret = reset_device_cmd->status;
3507         switch (ret) {
3508         case COMP_CMD_ABORT:
3509         case COMP_CMD_STOP:
3510                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3511                 ret = -ETIME;
3512                 goto command_cleanup;
3513         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3514         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3515                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3516                                 slot_id,
3517                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3518                 xhci_dbg(xhci, "Not freeing device rings.\n");
3519                 /* Don't treat this as an error.  May change my mind later. */
3520                 ret = 0;
3521                 goto command_cleanup;
3522         case COMP_SUCCESS:
3523                 xhci_dbg(xhci, "Successful reset device command.\n");
3524                 break;
3525         default:
3526                 if (xhci_is_vendor_info_code(xhci, ret))
3527                         break;
3528                 xhci_warn(xhci, "Unknown completion code %u for "
3529                                 "reset device command.\n", ret);
3530                 ret = -EINVAL;
3531                 goto command_cleanup;
3532         }
3533
3534         /* Free up host controller endpoint resources */
3535         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3536                 spin_lock_irqsave(&xhci->lock, flags);
3537                 /* Don't delete the default control endpoint resources */
3538                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3539                 spin_unlock_irqrestore(&xhci->lock, flags);
3540         }
3541
3542         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3543         last_freed_endpoint = 1;
3544         for (i = 1; i < 31; ++i) {
3545                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3546
3547                 if (ep->ep_state & EP_HAS_STREAMS) {
3548                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3549                                         xhci_get_endpoint_address(i));
3550                         xhci_free_stream_info(xhci, ep->stream_info);
3551                         ep->stream_info = NULL;
3552                         ep->ep_state &= ~EP_HAS_STREAMS;
3553                 }
3554
3555                 if (ep->ring) {
3556                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3557                         last_freed_endpoint = i;
3558                 }
3559                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3560                         xhci_drop_ep_from_interval_table(xhci,
3561                                         &virt_dev->eps[i].bw_info,
3562                                         virt_dev->bw_table,
3563                                         udev,
3564                                         &virt_dev->eps[i],
3565                                         virt_dev->tt_info);
3566                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3567         }
3568         /* If necessary, update the number of active TTs on this root port */
3569         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3570
3571         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3572         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3573         ret = 0;
3574
3575 command_cleanup:
3576         xhci_free_command(xhci, reset_device_cmd);
3577         return ret;
3578 }
3579
3580 /*
3581  * At this point, the struct usb_device is about to go away, the device has
3582  * disconnected, and all traffic has been stopped and the endpoints have been
3583  * disabled.  Free any HC data structures associated with that device.
3584  */
3585 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3586 {
3587         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3588         struct xhci_virt_device *virt_dev;
3589         unsigned long flags;
3590         u32 state;
3591         int i, ret;
3592         struct xhci_command *command;
3593
3594         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3595         if (!command)
3596                 return;
3597
3598 #ifndef CONFIG_USB_DEFAULT_PERSIST
3599         /*
3600          * We called pm_runtime_get_noresume when the device was attached.
3601          * Decrement the counter here to allow controller to runtime suspend
3602          * if no devices remain.
3603          */
3604         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3605                 pm_runtime_put_noidle(hcd->self.controller);
3606 #endif
3607
3608         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3609         /* If the host is halted due to driver unload, we still need to free the
3610          * device.
3611          */
3612         if (ret <= 0 && ret != -ENODEV) {
3613                 kfree(command);
3614                 return;
3615         }
3616
3617         virt_dev = xhci->devs[udev->slot_id];
3618
3619         /* Stop any wayward timer functions (which may grab the lock) */
3620         for (i = 0; i < 31; ++i) {
3621                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3622                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3623         }
3624
3625         spin_lock_irqsave(&xhci->lock, flags);
3626         /* Don't disable the slot if the host controller is dead. */
3627         state = readl(&xhci->op_regs->status);
3628         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3629                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3630                 xhci_free_virt_device(xhci, udev->slot_id);
3631                 spin_unlock_irqrestore(&xhci->lock, flags);
3632                 kfree(command);
3633                 return;
3634         }
3635
3636         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3637                                     udev->slot_id)) {
3638                 spin_unlock_irqrestore(&xhci->lock, flags);
3639                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3640                 return;
3641         }
3642         xhci_ring_cmd_db(xhci);
3643         spin_unlock_irqrestore(&xhci->lock, flags);
3644
3645         /*
3646          * Event command completion handler will free any data structures
3647          * associated with the slot.  XXX Can free sleep?
3648          */
3649 }
3650
3651 /*
3652  * Checks if we have enough host controller resources for the default control
3653  * endpoint.
3654  *
3655  * Must be called with xhci->lock held.
3656  */
3657 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3658 {
3659         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3660                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3661                                 "Not enough ep ctxs: "
3662                                 "%u active, need to add 1, limit is %u.",
3663                                 xhci->num_active_eps, xhci->limit_active_eps);
3664                 return -ENOMEM;
3665         }
3666         xhci->num_active_eps += 1;
3667         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3668                         "Adding 1 ep ctx, %u now active.",
3669                         xhci->num_active_eps);
3670         return 0;
3671 }
3672
3673
3674 /*
3675  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3676  * timed out, or allocating memory failed.  Returns 1 on success.
3677  */
3678 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3679 {
3680         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3681         unsigned long flags;
3682         int ret;
3683         struct xhci_command *command;
3684
3685         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3686         if (!command)
3687                 return 0;
3688
3689         spin_lock_irqsave(&xhci->lock, flags);
3690         command->completion = &xhci->addr_dev;
3691         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3692         if (ret) {
3693                 spin_unlock_irqrestore(&xhci->lock, flags);
3694                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3695                 kfree(command);
3696                 return 0;
3697         }
3698         xhci_ring_cmd_db(xhci);
3699         spin_unlock_irqrestore(&xhci->lock, flags);
3700
3701         wait_for_completion(command->completion);
3702
3703         if (!xhci->slot_id || command->status != COMP_SUCCESS) {
3704                 xhci_err(xhci, "Error while assigning device slot ID\n");
3705                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3706                                 HCS_MAX_SLOTS(
3707                                         readl(&xhci->cap_regs->hcs_params1)));
3708                 kfree(command);
3709                 return 0;
3710         }
3711
3712         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3713                 spin_lock_irqsave(&xhci->lock, flags);
3714                 ret = xhci_reserve_host_control_ep_resources(xhci);
3715                 if (ret) {
3716                         spin_unlock_irqrestore(&xhci->lock, flags);
3717                         xhci_warn(xhci, "Not enough host resources, "
3718                                         "active endpoint contexts = %u\n",
3719                                         xhci->num_active_eps);
3720                         goto disable_slot;
3721                 }
3722                 spin_unlock_irqrestore(&xhci->lock, flags);
3723         }
3724         /* Use GFP_NOIO, since this function can be called from
3725          * xhci_discover_or_reset_device(), which may be called as part of
3726          * mass storage driver error handling.
3727          */
3728         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3729                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3730                 goto disable_slot;
3731         }
3732         udev->slot_id = xhci->slot_id;
3733
3734 #ifndef CONFIG_USB_DEFAULT_PERSIST
3735         /*
3736          * If resetting upon resume, we can't put the controller into runtime
3737          * suspend if there is a device attached.
3738          */
3739         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3740                 pm_runtime_get_noresume(hcd->self.controller);
3741 #endif
3742
3743
3744         kfree(command);
3745         /* Is this a LS or FS device under a HS hub? */
3746         /* Hub or peripherial? */
3747         return 1;
3748
3749 disable_slot:
3750         /* Disable slot, if we can do it without mem alloc */
3751         spin_lock_irqsave(&xhci->lock, flags);
3752         command->completion = NULL;
3753         command->status = 0;
3754         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3755                                      udev->slot_id))
3756                 xhci_ring_cmd_db(xhci);
3757         spin_unlock_irqrestore(&xhci->lock, flags);
3758         return 0;
3759 }
3760
3761 /*
3762  * Issue an Address Device command and optionally send a corresponding
3763  * SetAddress request to the device.
3764  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3765  * we should only issue and wait on one address command at the same time.
3766  */
3767 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3768                              enum xhci_setup_dev setup)
3769 {
3770         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3771         unsigned long flags;
3772         struct xhci_virt_device *virt_dev;
3773         int ret = 0;
3774         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3775         struct xhci_slot_ctx *slot_ctx;
3776         struct xhci_input_control_ctx *ctrl_ctx;
3777         u64 temp_64;
3778         struct xhci_command *command;
3779
3780         if (!udev->slot_id) {
3781                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3782                                 "Bad Slot ID %d", udev->slot_id);
3783                 return -EINVAL;
3784         }
3785
3786         virt_dev = xhci->devs[udev->slot_id];
3787
3788         if (WARN_ON(!virt_dev)) {
3789                 /*
3790                  * In plug/unplug torture test with an NEC controller,
3791                  * a zero-dereference was observed once due to virt_dev = 0.
3792                  * Print useful debug rather than crash if it is observed again!
3793                  */
3794                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3795                         udev->slot_id);
3796                 return -EINVAL;
3797         }
3798
3799         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3800         if (!command)
3801                 return -ENOMEM;
3802
3803         command->in_ctx = virt_dev->in_ctx;
3804         command->completion = &xhci->addr_dev;
3805
3806         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3807         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3808         if (!ctrl_ctx) {
3809                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3810                                 __func__);
3811                 kfree(command);
3812                 return -EINVAL;
3813         }
3814         /*
3815          * If this is the first Set Address since device plug-in or
3816          * virt_device realloaction after a resume with an xHCI power loss,
3817          * then set up the slot context.
3818          */
3819         if (!slot_ctx->dev_info)
3820                 xhci_setup_addressable_virt_dev(xhci, udev);
3821         /* Otherwise, update the control endpoint ring enqueue pointer. */
3822         else
3823                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3824         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3825         ctrl_ctx->drop_flags = 0;
3826
3827         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3828         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3829         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3830                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3831
3832         spin_lock_irqsave(&xhci->lock, flags);
3833         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3834                                         udev->slot_id, setup);
3835         if (ret) {
3836                 spin_unlock_irqrestore(&xhci->lock, flags);
3837                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3838                                 "FIXME: allocate a command ring segment");
3839                 kfree(command);
3840                 return ret;
3841         }
3842         xhci_ring_cmd_db(xhci);
3843         spin_unlock_irqrestore(&xhci->lock, flags);
3844
3845         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3846         wait_for_completion(command->completion);
3847
3848         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3849          * the SetAddress() "recovery interval" required by USB and aborting the
3850          * command on a timeout.
3851          */
3852         switch (command->status) {
3853         case COMP_CMD_ABORT:
3854         case COMP_CMD_STOP:
3855                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3856                 ret = -ETIME;
3857                 break;
3858         case COMP_CTX_STATE:
3859         case COMP_EBADSLT:
3860                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3861                          act, udev->slot_id);
3862                 ret = -EINVAL;
3863                 break;
3864         case COMP_TX_ERR:
3865                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3866                 ret = -EPROTO;
3867                 break;
3868         case COMP_DEV_ERR:
3869                 dev_warn(&udev->dev,
3870                          "ERROR: Incompatible device for setup %s command\n", act);
3871                 ret = -ENODEV;
3872                 break;
3873         case COMP_SUCCESS:
3874                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875                                "Successful setup %s command", act);
3876                 break;
3877         default:
3878                 xhci_err(xhci,
3879                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3880                          act, command->status);
3881                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3882                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3883                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3884                 ret = -EINVAL;
3885                 break;
3886         }
3887         if (ret) {
3888                 kfree(command);
3889                 return ret;
3890         }
3891         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3892         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3893                         "Op regs DCBAA ptr = %#016llx", temp_64);
3894         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3895                 "Slot ID %d dcbaa entry @%p = %#016llx",
3896                 udev->slot_id,
3897                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3898                 (unsigned long long)
3899                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3900         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3901                         "Output Context DMA address = %#08llx",
3902                         (unsigned long long)virt_dev->out_ctx->dma);
3903         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3904         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3905         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3906                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3907         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3908         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3909         /*
3910          * USB core uses address 1 for the roothubs, so we add one to the
3911          * address given back to us by the HC.
3912          */
3913         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3914         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3915                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3916         /* Zero the input context control for later use */
3917         ctrl_ctx->add_flags = 0;
3918         ctrl_ctx->drop_flags = 0;
3919
3920         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3921                        "Internal device address = %d",
3922                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3923         kfree(command);
3924         return 0;
3925 }
3926
3927 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3928 {
3929         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3930 }
3931
3932 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3933 {
3934         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3935 }
3936
3937 /*
3938  * Transfer the port index into real index in the HW port status
3939  * registers. Caculate offset between the port's PORTSC register
3940  * and port status base. Divide the number of per port register
3941  * to get the real index. The raw port number bases 1.
3942  */
3943 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3944 {
3945         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3946         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3947         __le32 __iomem *addr;
3948         int raw_port;
3949
3950         if (hcd->speed != HCD_USB3)
3951                 addr = xhci->usb2_ports[port1 - 1];
3952         else
3953                 addr = xhci->usb3_ports[port1 - 1];
3954
3955         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3956         return raw_port;
3957 }
3958
3959 /*
3960  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3961  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3962  */
3963 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3964                         struct usb_device *udev, u16 max_exit_latency)
3965 {
3966         struct xhci_virt_device *virt_dev;
3967         struct xhci_command *command;
3968         struct xhci_input_control_ctx *ctrl_ctx;
3969         struct xhci_slot_ctx *slot_ctx;
3970         unsigned long flags;
3971         int ret;
3972
3973         spin_lock_irqsave(&xhci->lock, flags);
3974         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3975                 spin_unlock_irqrestore(&xhci->lock, flags);
3976                 return 0;
3977         }
3978
3979         /* Attempt to issue an Evaluate Context command to change the MEL. */
3980         virt_dev = xhci->devs[udev->slot_id];
3981         command = xhci->lpm_command;
3982         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3983         if (!ctrl_ctx) {
3984                 spin_unlock_irqrestore(&xhci->lock, flags);
3985                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3986                                 __func__);
3987                 return -ENOMEM;
3988         }
3989
3990         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3991         spin_unlock_irqrestore(&xhci->lock, flags);
3992
3993         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3994         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3995         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3996         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3997
3998         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3999                         "Set up evaluate context for LPM MEL change.");
4000         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4001         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4002
4003         /* Issue and wait for the evaluate context command. */
4004         ret = xhci_configure_endpoint(xhci, udev, command,
4005                         true, true);
4006         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4007         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4008
4009         if (!ret) {
4010                 spin_lock_irqsave(&xhci->lock, flags);
4011                 virt_dev->current_mel = max_exit_latency;
4012                 spin_unlock_irqrestore(&xhci->lock, flags);
4013         }
4014         return ret;
4015 }
4016
4017 #ifdef CONFIG_PM_RUNTIME
4018
4019 /* BESL to HIRD Encoding array for USB2 LPM */
4020 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4021         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4022
4023 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4024 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4025                                         struct usb_device *udev)
4026 {
4027         int u2del, besl, besl_host;
4028         int besl_device = 0;
4029         u32 field;
4030
4031         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4032         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4033
4034         if (field & USB_BESL_SUPPORT) {
4035                 for (besl_host = 0; besl_host < 16; besl_host++) {
4036                         if (xhci_besl_encoding[besl_host] >= u2del)
4037                                 break;
4038                 }
4039                 /* Use baseline BESL value as default */
4040                 if (field & USB_BESL_BASELINE_VALID)
4041                         besl_device = USB_GET_BESL_BASELINE(field);
4042                 else if (field & USB_BESL_DEEP_VALID)
4043                         besl_device = USB_GET_BESL_DEEP(field);
4044         } else {
4045                 if (u2del <= 50)
4046                         besl_host = 0;
4047                 else
4048                         besl_host = (u2del - 51) / 75 + 1;
4049         }
4050
4051         besl = besl_host + besl_device;
4052         if (besl > 15)
4053                 besl = 15;
4054
4055         return besl;
4056 }
4057
4058 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4059 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4060 {
4061         u32 field;
4062         int l1;
4063         int besld = 0;
4064         int hirdm = 0;
4065
4066         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4067
4068         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4069         l1 = udev->l1_params.timeout / 256;
4070
4071         /* device has preferred BESLD */
4072         if (field & USB_BESL_DEEP_VALID) {
4073                 besld = USB_GET_BESL_DEEP(field);
4074                 hirdm = 1;
4075         }
4076
4077         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4078 }
4079
4080 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4081                         struct usb_device *udev, int enable)
4082 {
4083         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4084         __le32 __iomem  **port_array;
4085         __le32 __iomem  *pm_addr, *hlpm_addr;
4086         u32             pm_val, hlpm_val, field;
4087         unsigned int    port_num;
4088         unsigned long   flags;
4089         int             hird, exit_latency;
4090         int             ret;
4091
4092         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4093                         !udev->lpm_capable)
4094                 return -EPERM;
4095
4096         if (!udev->parent || udev->parent->parent ||
4097                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4098                 return -EPERM;
4099
4100         if (udev->usb2_hw_lpm_capable != 1)
4101                 return -EPERM;
4102
4103         spin_lock_irqsave(&xhci->lock, flags);
4104
4105         port_array = xhci->usb2_ports;
4106         port_num = udev->portnum - 1;
4107         pm_addr = port_array[port_num] + PORTPMSC;
4108         pm_val = readl(pm_addr);
4109         hlpm_addr = port_array[port_num] + PORTHLPMC;
4110         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4111
4112         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4113                         enable ? "enable" : "disable", port_num + 1);
4114
4115         if (enable) {
4116                 /* Host supports BESL timeout instead of HIRD */
4117                 if (udev->usb2_hw_lpm_besl_capable) {
4118                         /* if device doesn't have a preferred BESL value use a
4119                          * default one which works with mixed HIRD and BESL
4120                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4121                          */
4122                         if ((field & USB_BESL_SUPPORT) &&
4123                             (field & USB_BESL_BASELINE_VALID))
4124                                 hird = USB_GET_BESL_BASELINE(field);
4125                         else
4126                                 hird = udev->l1_params.besl;
4127
4128                         exit_latency = xhci_besl_encoding[hird];
4129                         spin_unlock_irqrestore(&xhci->lock, flags);
4130
4131                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4132                          * input context for link powermanagement evaluate
4133                          * context commands. It is protected by hcd->bandwidth
4134                          * mutex and is shared by all devices. We need to set
4135                          * the max ext latency in USB 2 BESL LPM as well, so
4136                          * use the same mutex and xhci_change_max_exit_latency()
4137                          */
4138                         mutex_lock(hcd->bandwidth_mutex);
4139                         ret = xhci_change_max_exit_latency(xhci, udev,
4140                                                            exit_latency);
4141                         mutex_unlock(hcd->bandwidth_mutex);
4142
4143                         if (ret < 0)
4144                                 return ret;
4145                         spin_lock_irqsave(&xhci->lock, flags);
4146
4147                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4148                         writel(hlpm_val, hlpm_addr);
4149                         /* flush write */
4150                         readl(hlpm_addr);
4151                 } else {
4152                         hird = xhci_calculate_hird_besl(xhci, udev);
4153                 }
4154
4155                 pm_val &= ~PORT_HIRD_MASK;
4156                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4157                 writel(pm_val, pm_addr);
4158                 pm_val = readl(pm_addr);
4159                 pm_val |= PORT_HLE;
4160                 writel(pm_val, pm_addr);
4161                 /* flush write */
4162                 readl(pm_addr);
4163         } else {
4164                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4165                 writel(pm_val, pm_addr);
4166                 /* flush write */
4167                 readl(pm_addr);
4168                 if (udev->usb2_hw_lpm_besl_capable) {
4169                         spin_unlock_irqrestore(&xhci->lock, flags);
4170                         mutex_lock(hcd->bandwidth_mutex);
4171                         xhci_change_max_exit_latency(xhci, udev, 0);
4172                         mutex_unlock(hcd->bandwidth_mutex);
4173                         return 0;
4174                 }
4175         }
4176
4177         spin_unlock_irqrestore(&xhci->lock, flags);
4178         return 0;
4179 }
4180
4181 /* check if a usb2 port supports a given extened capability protocol
4182  * only USB2 ports extended protocol capability values are cached.
4183  * Return 1 if capability is supported
4184  */
4185 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4186                                            unsigned capability)
4187 {
4188         u32 port_offset, port_count;
4189         int i;
4190
4191         for (i = 0; i < xhci->num_ext_caps; i++) {
4192                 if (xhci->ext_caps[i] & capability) {
4193                         /* port offsets starts at 1 */
4194                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4195                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4196                         if (port >= port_offset &&
4197                             port < port_offset + port_count)
4198                                 return 1;
4199                 }
4200         }
4201         return 0;
4202 }
4203
4204 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4205 {
4206         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4207         int             portnum = udev->portnum - 1;
4208
4209         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4210                         !udev->lpm_capable)
4211                 return 0;
4212
4213         /* we only support lpm for non-hub device connected to root hub yet */
4214         if (!udev->parent || udev->parent->parent ||
4215                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4216                 return 0;
4217
4218         if (xhci->hw_lpm_support == 1 &&
4219                         xhci_check_usb2_port_capability(
4220                                 xhci, portnum, XHCI_HLC)) {
4221                 udev->usb2_hw_lpm_capable = 1;
4222                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4223                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4224                 if (xhci_check_usb2_port_capability(xhci, portnum,
4225                                         XHCI_BLC))
4226                         udev->usb2_hw_lpm_besl_capable = 1;
4227         }
4228
4229         return 0;
4230 }
4231
4232 #else
4233
4234 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4235                                 struct usb_device *udev, int enable)
4236 {
4237         return 0;
4238 }
4239
4240 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4241 {
4242         return 0;
4243 }
4244
4245 #endif /* CONFIG_PM_RUNTIME */
4246
4247 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4248
4249 #ifdef CONFIG_PM
4250 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4251 static unsigned long long xhci_service_interval_to_ns(
4252                 struct usb_endpoint_descriptor *desc)
4253 {
4254         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4255 }
4256
4257 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4258                 enum usb3_link_state state)
4259 {
4260         unsigned long long sel;
4261         unsigned long long pel;
4262         unsigned int max_sel_pel;
4263         char *state_name;
4264
4265         switch (state) {
4266         case USB3_LPM_U1:
4267                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4268                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4269                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4270                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4271                 state_name = "U1";
4272                 break;
4273         case USB3_LPM_U2:
4274                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4275                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4276                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4277                 state_name = "U2";
4278                 break;
4279         default:
4280                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4281                                 __func__);
4282                 return USB3_LPM_DISABLED;
4283         }
4284
4285         if (sel <= max_sel_pel && pel <= max_sel_pel)
4286                 return USB3_LPM_DEVICE_INITIATED;
4287
4288         if (sel > max_sel_pel)
4289                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4290                                 "due to long SEL %llu ms\n",
4291                                 state_name, sel);
4292         else
4293                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4294                                 "due to long PEL %llu ms\n",
4295                                 state_name, pel);
4296         return USB3_LPM_DISABLED;
4297 }
4298
4299 /* The U1 timeout should be the maximum of the following values:
4300  *  - For control endpoints, U1 system exit latency (SEL) * 3
4301  *  - For bulk endpoints, U1 SEL * 5
4302  *  - For interrupt endpoints:
4303  *    - Notification EPs, U1 SEL * 3
4304  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4305  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4306  */
4307 static unsigned long long xhci_calculate_intel_u1_timeout(
4308                 struct usb_device *udev,
4309                 struct usb_endpoint_descriptor *desc)
4310 {
4311         unsigned long long timeout_ns;
4312         int ep_type;
4313         int intr_type;
4314
4315         ep_type = usb_endpoint_type(desc);
4316         switch (ep_type) {
4317         case USB_ENDPOINT_XFER_CONTROL:
4318                 timeout_ns = udev->u1_params.sel * 3;
4319                 break;
4320         case USB_ENDPOINT_XFER_BULK:
4321                 timeout_ns = udev->u1_params.sel * 5;
4322                 break;
4323         case USB_ENDPOINT_XFER_INT:
4324                 intr_type = usb_endpoint_interrupt_type(desc);
4325                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4326                         timeout_ns = udev->u1_params.sel * 3;
4327                         break;
4328                 }
4329                 /* Otherwise the calculation is the same as isoc eps */
4330         case USB_ENDPOINT_XFER_ISOC:
4331                 timeout_ns = xhci_service_interval_to_ns(desc);
4332                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4333                 if (timeout_ns < udev->u1_params.sel * 2)
4334                         timeout_ns = udev->u1_params.sel * 2;
4335                 break;
4336         default:
4337                 return 0;
4338         }
4339
4340         return timeout_ns;
4341 }
4342
4343 /* Returns the hub-encoded U1 timeout value. */
4344 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4345                 struct usb_device *udev,
4346                 struct usb_endpoint_descriptor *desc)
4347 {
4348         unsigned long long timeout_ns;
4349
4350         if (xhci->quirks & XHCI_INTEL_HOST)
4351                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4352         else
4353                 timeout_ns = udev->u1_params.sel;
4354
4355         /* The U1 timeout is encoded in 1us intervals.
4356          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4357          */
4358         if (timeout_ns == USB3_LPM_DISABLED)
4359                 timeout_ns = 1;
4360         else
4361                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4362
4363         /* If the necessary timeout value is bigger than what we can set in the
4364          * USB 3.0 hub, we have to disable hub-initiated U1.
4365          */
4366         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4367                 return timeout_ns;
4368         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4369                         "due to long timeout %llu ms\n", timeout_ns);
4370         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4371 }
4372
4373 /* The U2 timeout should be the maximum of:
4374  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4375  *  - largest bInterval of any active periodic endpoint (to avoid going
4376  *    into lower power link states between intervals).
4377  *  - the U2 Exit Latency of the device
4378  */
4379 static unsigned long long xhci_calculate_intel_u2_timeout(
4380                 struct usb_device *udev,
4381                 struct usb_endpoint_descriptor *desc)
4382 {
4383         unsigned long long timeout_ns;
4384         unsigned long long u2_del_ns;
4385
4386         timeout_ns = 10 * 1000 * 1000;
4387
4388         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4389                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4390                 timeout_ns = xhci_service_interval_to_ns(desc);
4391
4392         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4393         if (u2_del_ns > timeout_ns)
4394                 timeout_ns = u2_del_ns;
4395
4396         return timeout_ns;
4397 }
4398
4399 /* Returns the hub-encoded U2 timeout value. */
4400 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4401                 struct usb_device *udev,
4402                 struct usb_endpoint_descriptor *desc)
4403 {
4404         unsigned long long timeout_ns;
4405
4406         if (xhci->quirks & XHCI_INTEL_HOST)
4407                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4408         else
4409                 timeout_ns = udev->u2_params.sel;
4410
4411         /* The U2 timeout is encoded in 256us intervals */
4412         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4413         /* If the necessary timeout value is bigger than what we can set in the
4414          * USB 3.0 hub, we have to disable hub-initiated U2.
4415          */
4416         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4417                 return timeout_ns;
4418         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4419                         "due to long timeout %llu ms\n", timeout_ns);
4420         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4421 }
4422
4423 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4424                 struct usb_device *udev,
4425                 struct usb_endpoint_descriptor *desc,
4426                 enum usb3_link_state state,
4427                 u16 *timeout)
4428 {
4429         if (state == USB3_LPM_U1)
4430                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4431         else if (state == USB3_LPM_U2)
4432                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4433
4434         return USB3_LPM_DISABLED;
4435 }
4436
4437 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4438                 struct usb_device *udev,
4439                 struct usb_endpoint_descriptor *desc,
4440                 enum usb3_link_state state,
4441                 u16 *timeout)
4442 {
4443         u16 alt_timeout;
4444
4445         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4446                 desc, state, timeout);
4447
4448         /* If we found we can't enable hub-initiated LPM, or
4449          * the U1 or U2 exit latency was too high to allow
4450          * device-initiated LPM as well, just stop searching.
4451          */
4452         if (alt_timeout == USB3_LPM_DISABLED ||
4453                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4454                 *timeout = alt_timeout;
4455                 return -E2BIG;
4456         }
4457         if (alt_timeout > *timeout)
4458                 *timeout = alt_timeout;
4459         return 0;
4460 }
4461
4462 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4463                 struct usb_device *udev,
4464                 struct usb_host_interface *alt,
4465                 enum usb3_link_state state,
4466                 u16 *timeout)
4467 {
4468         int j;
4469
4470         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4471                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4472                                         &alt->endpoint[j].desc, state, timeout))
4473                         return -E2BIG;
4474                 continue;
4475         }
4476         return 0;
4477 }
4478
4479 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4480                 enum usb3_link_state state)
4481 {
4482         struct usb_device *parent;
4483         unsigned int num_hubs;
4484
4485         if (state == USB3_LPM_U2)
4486                 return 0;
4487
4488         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4489         for (parent = udev->parent, num_hubs = 0; parent->parent;
4490                         parent = parent->parent)
4491                 num_hubs++;
4492
4493         if (num_hubs < 2)
4494                 return 0;
4495
4496         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4497                         " below second-tier hub.\n");
4498         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4499                         "to decrease power consumption.\n");
4500         return -E2BIG;
4501 }
4502
4503 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4504                 struct usb_device *udev,
4505                 enum usb3_link_state state)
4506 {
4507         if (xhci->quirks & XHCI_INTEL_HOST)
4508                 return xhci_check_intel_tier_policy(udev, state);
4509         else
4510                 return 0;
4511 }
4512
4513 /* Returns the U1 or U2 timeout that should be enabled.
4514  * If the tier check or timeout setting functions return with a non-zero exit
4515  * code, that means the timeout value has been finalized and we shouldn't look
4516  * at any more endpoints.
4517  */
4518 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4519                         struct usb_device *udev, enum usb3_link_state state)
4520 {
4521         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4522         struct usb_host_config *config;
4523         char *state_name;
4524         int i;
4525         u16 timeout = USB3_LPM_DISABLED;
4526
4527         if (state == USB3_LPM_U1)
4528                 state_name = "U1";
4529         else if (state == USB3_LPM_U2)
4530                 state_name = "U2";
4531         else {
4532                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4533                                 state);
4534                 return timeout;
4535         }
4536
4537         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4538                 return timeout;
4539
4540         /* Gather some information about the currently installed configuration
4541          * and alternate interface settings.
4542          */
4543         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4544                         state, &timeout))
4545                 return timeout;
4546
4547         config = udev->actconfig;
4548         if (!config)
4549                 return timeout;
4550
4551         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4552                 struct usb_driver *driver;
4553                 struct usb_interface *intf = config->interface[i];
4554
4555                 if (!intf)
4556                         continue;
4557
4558                 /* Check if any currently bound drivers want hub-initiated LPM
4559                  * disabled.
4560                  */
4561                 if (intf->dev.driver) {
4562                         driver = to_usb_driver(intf->dev.driver);
4563                         if (driver && driver->disable_hub_initiated_lpm) {
4564                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4565                                                 "at request of driver %s\n",
4566                                                 state_name, driver->name);
4567                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4568                         }
4569                 }
4570
4571                 /* Not sure how this could happen... */
4572                 if (!intf->cur_altsetting)
4573                         continue;
4574
4575                 if (xhci_update_timeout_for_interface(xhci, udev,
4576                                         intf->cur_altsetting,
4577                                         state, &timeout))
4578                         return timeout;
4579         }
4580         return timeout;
4581 }
4582
4583 static int calculate_max_exit_latency(struct usb_device *udev,
4584                 enum usb3_link_state state_changed,
4585                 u16 hub_encoded_timeout)
4586 {
4587         unsigned long long u1_mel_us = 0;
4588         unsigned long long u2_mel_us = 0;
4589         unsigned long long mel_us = 0;
4590         bool disabling_u1;
4591         bool disabling_u2;
4592         bool enabling_u1;
4593         bool enabling_u2;
4594
4595         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4596                         hub_encoded_timeout == USB3_LPM_DISABLED);
4597         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4598                         hub_encoded_timeout == USB3_LPM_DISABLED);
4599
4600         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4601                         hub_encoded_timeout != USB3_LPM_DISABLED);
4602         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4603                         hub_encoded_timeout != USB3_LPM_DISABLED);
4604
4605         /* If U1 was already enabled and we're not disabling it,
4606          * or we're going to enable U1, account for the U1 max exit latency.
4607          */
4608         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4609                         enabling_u1)
4610                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4611         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4612                         enabling_u2)
4613                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4614
4615         if (u1_mel_us > u2_mel_us)
4616                 mel_us = u1_mel_us;
4617         else
4618                 mel_us = u2_mel_us;
4619         /* xHCI host controller max exit latency field is only 16 bits wide. */
4620         if (mel_us > MAX_EXIT) {
4621                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4622                                 "is too big.\n", mel_us);
4623                 return -E2BIG;
4624         }
4625         return mel_us;
4626 }
4627
4628 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4629 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4630                         struct usb_device *udev, enum usb3_link_state state)
4631 {
4632         struct xhci_hcd *xhci;
4633         u16 hub_encoded_timeout;
4634         int mel;
4635         int ret;
4636
4637         xhci = hcd_to_xhci(hcd);
4638         /* The LPM timeout values are pretty host-controller specific, so don't
4639          * enable hub-initiated timeouts unless the vendor has provided
4640          * information about their timeout algorithm.
4641          */
4642         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4643                         !xhci->devs[udev->slot_id])
4644                 return USB3_LPM_DISABLED;
4645
4646         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4647         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4648         if (mel < 0) {
4649                 /* Max Exit Latency is too big, disable LPM. */
4650                 hub_encoded_timeout = USB3_LPM_DISABLED;
4651                 mel = 0;
4652         }
4653
4654         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4655         if (ret)
4656                 return ret;
4657         return hub_encoded_timeout;
4658 }
4659
4660 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4661                         struct usb_device *udev, enum usb3_link_state state)
4662 {
4663         struct xhci_hcd *xhci;
4664         u16 mel;
4665         int ret;
4666
4667         xhci = hcd_to_xhci(hcd);
4668         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4669                         !xhci->devs[udev->slot_id])
4670                 return 0;
4671
4672         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4673         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4674         if (ret)
4675                 return ret;
4676         return 0;
4677 }
4678 #else /* CONFIG_PM */
4679
4680 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4681                         struct usb_device *udev, enum usb3_link_state state)
4682 {
4683         return USB3_LPM_DISABLED;
4684 }
4685
4686 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4687                         struct usb_device *udev, enum usb3_link_state state)
4688 {
4689         return 0;
4690 }
4691 #endif  /* CONFIG_PM */
4692
4693 /*-------------------------------------------------------------------------*/
4694
4695 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4696  * internal data structures for the device.
4697  */
4698 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4699                         struct usb_tt *tt, gfp_t mem_flags)
4700 {
4701         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4702         struct xhci_virt_device *vdev;
4703         struct xhci_command *config_cmd;
4704         struct xhci_input_control_ctx *ctrl_ctx;
4705         struct xhci_slot_ctx *slot_ctx;
4706         unsigned long flags;
4707         unsigned think_time;
4708         int ret;
4709
4710         /* Ignore root hubs */
4711         if (!hdev->parent)
4712                 return 0;
4713
4714         vdev = xhci->devs[hdev->slot_id];
4715         if (!vdev) {
4716                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4717                 return -EINVAL;
4718         }
4719         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4720         if (!config_cmd) {
4721                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4722                 return -ENOMEM;
4723         }
4724         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4725         if (!ctrl_ctx) {
4726                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4727                                 __func__);
4728                 xhci_free_command(xhci, config_cmd);
4729                 return -ENOMEM;
4730         }
4731
4732         spin_lock_irqsave(&xhci->lock, flags);
4733         if (hdev->speed == USB_SPEED_HIGH &&
4734                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4735                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4736                 xhci_free_command(xhci, config_cmd);
4737                 spin_unlock_irqrestore(&xhci->lock, flags);
4738                 return -ENOMEM;
4739         }
4740
4741         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4742         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4743         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4744         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4745         if (tt->multi)
4746                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4747         if (xhci->hci_version > 0x95) {
4748                 xhci_dbg(xhci, "xHCI version %x needs hub "
4749                                 "TT think time and number of ports\n",
4750                                 (unsigned int) xhci->hci_version);
4751                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4752                 /* Set TT think time - convert from ns to FS bit times.
4753                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4754                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4755                  *
4756                  * xHCI 1.0: this field shall be 0 if the device is not a
4757                  * High-spped hub.
4758                  */
4759                 think_time = tt->think_time;
4760                 if (think_time != 0)
4761                         think_time = (think_time / 666) - 1;
4762                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4763                         slot_ctx->tt_info |=
4764                                 cpu_to_le32(TT_THINK_TIME(think_time));
4765         } else {
4766                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4767                                 "TT think time or number of ports\n",
4768                                 (unsigned int) xhci->hci_version);
4769         }
4770         slot_ctx->dev_state = 0;
4771         spin_unlock_irqrestore(&xhci->lock, flags);
4772
4773         xhci_dbg(xhci, "Set up %s for hub device.\n",
4774                         (xhci->hci_version > 0x95) ?
4775                         "configure endpoint" : "evaluate context");
4776         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4777         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4778
4779         /* Issue and wait for the configure endpoint or
4780          * evaluate context command.
4781          */
4782         if (xhci->hci_version > 0x95)
4783                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4784                                 false, false);
4785         else
4786                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4787                                 true, false);
4788
4789         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4790         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4791
4792         xhci_free_command(xhci, config_cmd);
4793         return ret;
4794 }
4795
4796 int xhci_get_frame(struct usb_hcd *hcd)
4797 {
4798         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4799         /* EHCI mods by the periodic size.  Why? */
4800         return readl(&xhci->run_regs->microframe_index) >> 3;
4801 }
4802
4803 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4804 {
4805         struct xhci_hcd         *xhci;
4806         struct device           *dev = hcd->self.controller;
4807         int                     retval;
4808
4809         /* Accept arbitrarily long scatter-gather lists */
4810         hcd->self.sg_tablesize = ~0;
4811
4812         /* support to build packet from discontinuous buffers */
4813         hcd->self.no_sg_constraint = 1;
4814
4815         /* XHCI controllers don't stop the ep queue on short packets :| */
4816         hcd->self.no_stop_on_short = 1;
4817
4818         if (usb_hcd_is_primary_hcd(hcd)) {
4819                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4820                 if (!xhci)
4821                         return -ENOMEM;
4822                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4823                 xhci->main_hcd = hcd;
4824                 /* Mark the first roothub as being USB 2.0.
4825                  * The xHCI driver will register the USB 3.0 roothub.
4826                  */
4827                 hcd->speed = HCD_USB2;
4828                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4829                 /*
4830                  * USB 2.0 roothub under xHCI has an integrated TT,
4831                  * (rate matching hub) as opposed to having an OHCI/UHCI
4832                  * companion controller.
4833                  */
4834                 hcd->has_tt = 1;
4835         } else {
4836                 /* xHCI private pointer was set in xhci_pci_probe for the second
4837                  * registered roothub.
4838                  */
4839                 return 0;
4840         }
4841
4842         xhci->cap_regs = hcd->regs;
4843         xhci->op_regs = hcd->regs +
4844                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4845         xhci->run_regs = hcd->regs +
4846                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4847         /* Cache read-only capability registers */
4848         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4849         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4850         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4851         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4852         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4853         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4854         xhci_print_registers(xhci);
4855
4856         xhci->quirks = quirks;
4857
4858         get_quirks(dev, xhci);
4859
4860         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4861          * success event after a short transfer. This quirk will ignore such
4862          * spurious event.
4863          */
4864         if (xhci->hci_version > 0x96)
4865                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4866
4867         /* Make sure the HC is halted. */
4868         retval = xhci_halt(xhci);
4869         if (retval)
4870                 goto error;
4871
4872         xhci_dbg(xhci, "Resetting HCD\n");
4873         /* Reset the internal HC memory state and registers. */
4874         retval = xhci_reset(xhci);
4875         if (retval)
4876                 goto error;
4877         xhci_dbg(xhci, "Reset complete\n");
4878
4879         /* Set dma_mask and coherent_dma_mask to 64-bits,
4880          * if xHC supports 64-bit addressing */
4881         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4882                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4883                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4884                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4885         }
4886
4887         xhci_dbg(xhci, "Calling HCD init\n");
4888         /* Initialize HCD and host controller data structures. */
4889         retval = xhci_init(hcd);
4890         if (retval)
4891                 goto error;
4892         xhci_dbg(xhci, "Called HCD init\n");
4893         return 0;
4894 error:
4895         kfree(xhci);
4896         return retval;
4897 }
4898
4899 MODULE_DESCRIPTION(DRIVER_DESC);
4900 MODULE_AUTHOR(DRIVER_AUTHOR);
4901 MODULE_LICENSE("GPL");
4902
4903 static int __init xhci_hcd_init(void)
4904 {
4905         int retval;
4906
4907         retval = xhci_register_pci();
4908         if (retval < 0) {
4909                 pr_debug("Problem registering PCI driver.\n");
4910                 return retval;
4911         }
4912         retval = xhci_register_plat();
4913         if (retval < 0) {
4914                 pr_debug("Problem registering platform driver.\n");
4915                 goto unreg_pci;
4916         }
4917         /*
4918          * Check the compiler generated sizes of structures that must be laid
4919          * out in specific ways for hardware access.
4920          */
4921         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4922         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4923         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4924         /* xhci_device_control has eight fields, and also
4925          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4926          */
4927         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4928         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4929         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4930         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4931         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4932         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4933         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4934         return 0;
4935 unreg_pci:
4936         xhci_unregister_pci();
4937         return retval;
4938 }
4939 module_init(xhci_hcd_init);
4940
4941 static void __exit xhci_hcd_cleanup(void)
4942 {
4943         xhci_unregister_pci();
4944         xhci_unregister_plat();
4945 }
4946 module_exit(xhci_hcd_cleanup);