cb6d13c39bee59f18d2dacbda2a90a5890385aea
[cascardo/linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
59                                  BTRFS_HEADER_FLAG_RELOC |\
60                                  BTRFS_SUPER_FLAG_ERROR |\
61                                  BTRFS_SUPER_FLAG_SEEDING |\
62                                  BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68                                     int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71                                       struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74                                         struct extent_io_tree *dirty_pages,
75                                         int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77                                        struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87         struct bio *bio;
88         bio_end_io_t *end_io;
89         void *private;
90         struct btrfs_fs_info *info;
91         int error;
92         enum btrfs_wq_endio_type metadata;
93         struct list_head list;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122         struct inode *inode;
123         struct bio *bio;
124         struct list_head list;
125         extent_submit_bio_hook_t *submit_bio_start;
126         extent_submit_bio_hook_t *submit_bio_done;
127         int rw;
128         int mirror_num;
129         unsigned long bio_flags;
130         /*
131          * bio_offset is optional, can be used if the pages in the bio
132          * can't tell us where in the file the bio should go
133          */
134         u64 bio_offset;
135         struct btrfs_work work;
136         int error;
137 };
138
139 /*
140  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
141  * eb, the lockdep key is determined by the btrfs_root it belongs to and
142  * the level the eb occupies in the tree.
143  *
144  * Different roots are used for different purposes and may nest inside each
145  * other and they require separate keysets.  As lockdep keys should be
146  * static, assign keysets according to the purpose of the root as indicated
147  * by btrfs_root->objectid.  This ensures that all special purpose roots
148  * have separate keysets.
149  *
150  * Lock-nesting across peer nodes is always done with the immediate parent
151  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
152  * subclass to avoid triggering lockdep warning in such cases.
153  *
154  * The key is set by the readpage_end_io_hook after the buffer has passed
155  * csum validation but before the pages are unlocked.  It is also set by
156  * btrfs_init_new_buffer on freshly allocated blocks.
157  *
158  * We also add a check to make sure the highest level of the tree is the
159  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
160  * needs update as well.
161  */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 #  error
165 # endif
166
167 static struct btrfs_lockdep_keyset {
168         u64                     id;             /* root objectid */
169         const char              *name_stem;     /* lock name stem */
170         char                    names[BTRFS_MAX_LEVEL + 1][20];
171         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
174         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
175         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
176         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
177         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
178         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
179         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
180         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
181         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
182         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
183         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
184         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
185         { .id = 0,                              .name_stem = "tree"     },
186 };
187
188 void __init btrfs_init_lockdep(void)
189 {
190         int i, j;
191
192         /* initialize lockdep class names */
193         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197                         snprintf(ks->names[j], sizeof(ks->names[j]),
198                                  "btrfs-%s-%02d", ks->name_stem, j);
199         }
200 }
201
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203                                     int level)
204 {
205         struct btrfs_lockdep_keyset *ks;
206
207         BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209         /* find the matching keyset, id 0 is the default entry */
210         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211                 if (ks->id == objectid)
212                         break;
213
214         lockdep_set_class_and_name(&eb->lock,
215                                    &ks->keys[level], ks->names[level]);
216 }
217
218 #endif
219
220 /*
221  * extents on the btree inode are pretty simple, there's one extent
222  * that covers the entire device
223  */
224 static struct extent_map *btree_get_extent(struct inode *inode,
225                 struct page *page, size_t pg_offset, u64 start, u64 len,
226                 int create)
227 {
228         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229         struct extent_map *em;
230         int ret;
231
232         read_lock(&em_tree->lock);
233         em = lookup_extent_mapping(em_tree, start, len);
234         if (em) {
235                 em->bdev =
236                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
237                 read_unlock(&em_tree->lock);
238                 goto out;
239         }
240         read_unlock(&em_tree->lock);
241
242         em = alloc_extent_map();
243         if (!em) {
244                 em = ERR_PTR(-ENOMEM);
245                 goto out;
246         }
247         em->start = 0;
248         em->len = (u64)-1;
249         em->block_len = (u64)-1;
250         em->block_start = 0;
251         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
252
253         write_lock(&em_tree->lock);
254         ret = add_extent_mapping(em_tree, em, 0);
255         if (ret == -EEXIST) {
256                 free_extent_map(em);
257                 em = lookup_extent_mapping(em_tree, start, len);
258                 if (!em)
259                         em = ERR_PTR(-EIO);
260         } else if (ret) {
261                 free_extent_map(em);
262                 em = ERR_PTR(ret);
263         }
264         write_unlock(&em_tree->lock);
265
266 out:
267         return em;
268 }
269
270 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
271 {
272         return btrfs_crc32c(seed, data, len);
273 }
274
275 void btrfs_csum_final(u32 crc, char *result)
276 {
277         put_unaligned_le32(~crc, result);
278 }
279
280 /*
281  * compute the csum for a btree block, and either verify it or write it
282  * into the csum field of the block.
283  */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285                            struct extent_buffer *buf,
286                            int verify)
287 {
288         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289         char *result = NULL;
290         unsigned long len;
291         unsigned long cur_len;
292         unsigned long offset = BTRFS_CSUM_SIZE;
293         char *kaddr;
294         unsigned long map_start;
295         unsigned long map_len;
296         int err;
297         u32 crc = ~(u32)0;
298         unsigned long inline_result;
299
300         len = buf->len - offset;
301         while (len > 0) {
302                 err = map_private_extent_buffer(buf, offset, 32,
303                                         &kaddr, &map_start, &map_len);
304                 if (err)
305                         return err;
306                 cur_len = min(len, map_len - (offset - map_start));
307                 crc = btrfs_csum_data(kaddr + offset - map_start,
308                                       crc, cur_len);
309                 len -= cur_len;
310                 offset += cur_len;
311         }
312         if (csum_size > sizeof(inline_result)) {
313                 result = kzalloc(csum_size, GFP_NOFS);
314                 if (!result)
315                         return -ENOMEM;
316         } else {
317                 result = (char *)&inline_result;
318         }
319
320         btrfs_csum_final(crc, result);
321
322         if (verify) {
323                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324                         u32 val;
325                         u32 found = 0;
326                         memcpy(&found, result, csum_size);
327
328                         read_extent_buffer(buf, &val, 0, csum_size);
329                         btrfs_warn_rl(fs_info,
330                                 "%s checksum verify failed on %llu wanted %X found %X "
331                                 "level %d",
332                                 fs_info->sb->s_id, buf->start,
333                                 val, found, btrfs_header_level(buf));
334                         if (result != (char *)&inline_result)
335                                 kfree(result);
336                         return -EUCLEAN;
337                 }
338         } else {
339                 write_extent_buffer(buf, result, 0, csum_size);
340         }
341         if (result != (char *)&inline_result)
342                 kfree(result);
343         return 0;
344 }
345
346 /*
347  * we can't consider a given block up to date unless the transid of the
348  * block matches the transid in the parent node's pointer.  This is how we
349  * detect blocks that either didn't get written at all or got written
350  * in the wrong place.
351  */
352 static int verify_parent_transid(struct extent_io_tree *io_tree,
353                                  struct extent_buffer *eb, u64 parent_transid,
354                                  int atomic)
355 {
356         struct extent_state *cached_state = NULL;
357         int ret;
358         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
359
360         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361                 return 0;
362
363         if (atomic)
364                 return -EAGAIN;
365
366         if (need_lock) {
367                 btrfs_tree_read_lock(eb);
368                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369         }
370
371         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
372                          &cached_state);
373         if (extent_buffer_uptodate(eb) &&
374             btrfs_header_generation(eb) == parent_transid) {
375                 ret = 0;
376                 goto out;
377         }
378         btrfs_err_rl(eb->fs_info,
379                 "parent transid verify failed on %llu wanted %llu found %llu",
380                         eb->start,
381                         parent_transid, btrfs_header_generation(eb));
382         ret = 1;
383
384         /*
385          * Things reading via commit roots that don't have normal protection,
386          * like send, can have a really old block in cache that may point at a
387          * block that has been freed and re-allocated.  So don't clear uptodate
388          * if we find an eb that is under IO (dirty/writeback) because we could
389          * end up reading in the stale data and then writing it back out and
390          * making everybody very sad.
391          */
392         if (!extent_buffer_under_io(eb))
393                 clear_extent_buffer_uptodate(eb);
394 out:
395         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396                              &cached_state, GFP_NOFS);
397         if (need_lock)
398                 btrfs_tree_read_unlock_blocking(eb);
399         return ret;
400 }
401
402 /*
403  * Return 0 if the superblock checksum type matches the checksum value of that
404  * algorithm. Pass the raw disk superblock data.
405  */
406 static int btrfs_check_super_csum(char *raw_disk_sb)
407 {
408         struct btrfs_super_block *disk_sb =
409                 (struct btrfs_super_block *)raw_disk_sb;
410         u16 csum_type = btrfs_super_csum_type(disk_sb);
411         int ret = 0;
412
413         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414                 u32 crc = ~(u32)0;
415                 const int csum_size = sizeof(crc);
416                 char result[csum_size];
417
418                 /*
419                  * The super_block structure does not span the whole
420                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421                  * is filled with zeros and is included in the checksum.
422                  */
423                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425                 btrfs_csum_final(crc, result);
426
427                 if (memcmp(raw_disk_sb, result, csum_size))
428                         ret = 1;
429         }
430
431         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
433                                 csum_type);
434                 ret = 1;
435         }
436
437         return ret;
438 }
439
440 /*
441  * helper to read a given tree block, doing retries as required when
442  * the checksums don't match and we have alternate mirrors to try.
443  */
444 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445                                           struct extent_buffer *eb,
446                                           u64 start, u64 parent_transid)
447 {
448         struct extent_io_tree *io_tree;
449         int failed = 0;
450         int ret;
451         int num_copies = 0;
452         int mirror_num = 0;
453         int failed_mirror = 0;
454
455         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457         while (1) {
458                 ret = read_extent_buffer_pages(io_tree, eb, start,
459                                                WAIT_COMPLETE,
460                                                btree_get_extent, mirror_num);
461                 if (!ret) {
462                         if (!verify_parent_transid(io_tree, eb,
463                                                    parent_transid, 0))
464                                 break;
465                         else
466                                 ret = -EIO;
467                 }
468
469                 /*
470                  * This buffer's crc is fine, but its contents are corrupted, so
471                  * there is no reason to read the other copies, they won't be
472                  * any less wrong.
473                  */
474                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
475                         break;
476
477                 num_copies = btrfs_num_copies(root->fs_info,
478                                               eb->start, eb->len);
479                 if (num_copies == 1)
480                         break;
481
482                 if (!failed_mirror) {
483                         failed = 1;
484                         failed_mirror = eb->read_mirror;
485                 }
486
487                 mirror_num++;
488                 if (mirror_num == failed_mirror)
489                         mirror_num++;
490
491                 if (mirror_num > num_copies)
492                         break;
493         }
494
495         if (failed && !ret && failed_mirror)
496                 repair_eb_io_failure(root, eb, failed_mirror);
497
498         return ret;
499 }
500
501 /*
502  * checksum a dirty tree block before IO.  This has extra checks to make sure
503  * we only fill in the checksum field in the first page of a multi-page block
504  */
505
506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
507 {
508         u64 start = page_offset(page);
509         u64 found_start;
510         struct extent_buffer *eb;
511
512         eb = (struct extent_buffer *)page->private;
513         if (page != eb->pages[0])
514                 return 0;
515
516         found_start = btrfs_header_bytenr(eb);
517         /*
518          * Please do not consolidate these warnings into a single if.
519          * It is useful to know what went wrong.
520          */
521         if (WARN_ON(found_start != start))
522                 return -EUCLEAN;
523         if (WARN_ON(!PageUptodate(page)))
524                 return -EUCLEAN;
525
526         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528
529         return csum_tree_block(fs_info, eb, 0);
530 }
531
532 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
533                                  struct extent_buffer *eb)
534 {
535         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
536         u8 fsid[BTRFS_UUID_SIZE];
537         int ret = 1;
538
539         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
540         while (fs_devices) {
541                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542                         ret = 0;
543                         break;
544                 }
545                 fs_devices = fs_devices->seed;
546         }
547         return ret;
548 }
549
550 #define CORRUPT(reason, eb, root, slot)                         \
551         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
552                    "root=%llu, slot=%d", reason,                        \
553                btrfs_header_bytenr(eb), root->objectid, slot)
554
555 static noinline int check_leaf(struct btrfs_root *root,
556                                struct extent_buffer *leaf)
557 {
558         struct btrfs_key key;
559         struct btrfs_key leaf_key;
560         u32 nritems = btrfs_header_nritems(leaf);
561         int slot;
562
563         if (nritems == 0)
564                 return 0;
565
566         /* Check the 0 item */
567         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
568             BTRFS_LEAF_DATA_SIZE(root)) {
569                 CORRUPT("invalid item offset size pair", leaf, root, 0);
570                 return -EIO;
571         }
572
573         /*
574          * Check to make sure each items keys are in the correct order and their
575          * offsets make sense.  We only have to loop through nritems-1 because
576          * we check the current slot against the next slot, which verifies the
577          * next slot's offset+size makes sense and that the current's slot
578          * offset is correct.
579          */
580         for (slot = 0; slot < nritems - 1; slot++) {
581                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
582                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
583
584                 /* Make sure the keys are in the right order */
585                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
586                         CORRUPT("bad key order", leaf, root, slot);
587                         return -EIO;
588                 }
589
590                 /*
591                  * Make sure the offset and ends are right, remember that the
592                  * item data starts at the end of the leaf and grows towards the
593                  * front.
594                  */
595                 if (btrfs_item_offset_nr(leaf, slot) !=
596                         btrfs_item_end_nr(leaf, slot + 1)) {
597                         CORRUPT("slot offset bad", leaf, root, slot);
598                         return -EIO;
599                 }
600
601                 /*
602                  * Check to make sure that we don't point outside of the leaf,
603                  * just in case all the items are consistent to each other, but
604                  * all point outside of the leaf.
605                  */
606                 if (btrfs_item_end_nr(leaf, slot) >
607                     BTRFS_LEAF_DATA_SIZE(root)) {
608                         CORRUPT("slot end outside of leaf", leaf, root, slot);
609                         return -EIO;
610                 }
611         }
612
613         return 0;
614 }
615
616 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
617                                       u64 phy_offset, struct page *page,
618                                       u64 start, u64 end, int mirror)
619 {
620         u64 found_start;
621         int found_level;
622         struct extent_buffer *eb;
623         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
624         struct btrfs_fs_info *fs_info = root->fs_info;
625         int ret = 0;
626         int reads_done;
627
628         if (!page->private)
629                 goto out;
630
631         eb = (struct extent_buffer *)page->private;
632
633         /* the pending IO might have been the only thing that kept this buffer
634          * in memory.  Make sure we have a ref for all this other checks
635          */
636         extent_buffer_get(eb);
637
638         reads_done = atomic_dec_and_test(&eb->io_pages);
639         if (!reads_done)
640                 goto err;
641
642         eb->read_mirror = mirror;
643         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
644                 ret = -EIO;
645                 goto err;
646         }
647
648         found_start = btrfs_header_bytenr(eb);
649         if (found_start != eb->start) {
650                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
651                              found_start, eb->start);
652                 ret = -EIO;
653                 goto err;
654         }
655         if (check_tree_block_fsid(fs_info, eb)) {
656                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
657                              eb->start);
658                 ret = -EIO;
659                 goto err;
660         }
661         found_level = btrfs_header_level(eb);
662         if (found_level >= BTRFS_MAX_LEVEL) {
663                 btrfs_err(fs_info, "bad tree block level %d",
664                           (int)btrfs_header_level(eb));
665                 ret = -EIO;
666                 goto err;
667         }
668
669         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
670                                        eb, found_level);
671
672         ret = csum_tree_block(fs_info, eb, 1);
673         if (ret)
674                 goto err;
675
676         /*
677          * If this is a leaf block and it is corrupt, set the corrupt bit so
678          * that we don't try and read the other copies of this block, just
679          * return -EIO.
680          */
681         if (found_level == 0 && check_leaf(root, eb)) {
682                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
683                 ret = -EIO;
684         }
685
686         if (!ret)
687                 set_extent_buffer_uptodate(eb);
688 err:
689         if (reads_done &&
690             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691                 btree_readahead_hook(fs_info, eb, eb->start, ret);
692
693         if (ret) {
694                 /*
695                  * our io error hook is going to dec the io pages
696                  * again, we have to make sure it has something
697                  * to decrement
698                  */
699                 atomic_inc(&eb->io_pages);
700                 clear_extent_buffer_uptodate(eb);
701         }
702         free_extent_buffer(eb);
703 out:
704         return ret;
705 }
706
707 static int btree_io_failed_hook(struct page *page, int failed_mirror)
708 {
709         struct extent_buffer *eb;
710
711         eb = (struct extent_buffer *)page->private;
712         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
713         eb->read_mirror = failed_mirror;
714         atomic_dec(&eb->io_pages);
715         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
716                 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
717         return -EIO;    /* we fixed nothing */
718 }
719
720 static void end_workqueue_bio(struct bio *bio)
721 {
722         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
723         struct btrfs_fs_info *fs_info;
724         struct btrfs_workqueue *wq;
725         btrfs_work_func_t func;
726
727         fs_info = end_io_wq->info;
728         end_io_wq->error = bio->bi_error;
729
730         if (bio->bi_rw & REQ_WRITE) {
731                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
732                         wq = fs_info->endio_meta_write_workers;
733                         func = btrfs_endio_meta_write_helper;
734                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
735                         wq = fs_info->endio_freespace_worker;
736                         func = btrfs_freespace_write_helper;
737                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
738                         wq = fs_info->endio_raid56_workers;
739                         func = btrfs_endio_raid56_helper;
740                 } else {
741                         wq = fs_info->endio_write_workers;
742                         func = btrfs_endio_write_helper;
743                 }
744         } else {
745                 if (unlikely(end_io_wq->metadata ==
746                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
747                         wq = fs_info->endio_repair_workers;
748                         func = btrfs_endio_repair_helper;
749                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
750                         wq = fs_info->endio_raid56_workers;
751                         func = btrfs_endio_raid56_helper;
752                 } else if (end_io_wq->metadata) {
753                         wq = fs_info->endio_meta_workers;
754                         func = btrfs_endio_meta_helper;
755                 } else {
756                         wq = fs_info->endio_workers;
757                         func = btrfs_endio_helper;
758                 }
759         }
760
761         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
762         btrfs_queue_work(wq, &end_io_wq->work);
763 }
764
765 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
766                         enum btrfs_wq_endio_type metadata)
767 {
768         struct btrfs_end_io_wq *end_io_wq;
769
770         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
771         if (!end_io_wq)
772                 return -ENOMEM;
773
774         end_io_wq->private = bio->bi_private;
775         end_io_wq->end_io = bio->bi_end_io;
776         end_io_wq->info = info;
777         end_io_wq->error = 0;
778         end_io_wq->bio = bio;
779         end_io_wq->metadata = metadata;
780
781         bio->bi_private = end_io_wq;
782         bio->bi_end_io = end_workqueue_bio;
783         return 0;
784 }
785
786 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
787 {
788         unsigned long limit = min_t(unsigned long,
789                                     info->thread_pool_size,
790                                     info->fs_devices->open_devices);
791         return 256 * limit;
792 }
793
794 static void run_one_async_start(struct btrfs_work *work)
795 {
796         struct async_submit_bio *async;
797         int ret;
798
799         async = container_of(work, struct  async_submit_bio, work);
800         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
801                                       async->mirror_num, async->bio_flags,
802                                       async->bio_offset);
803         if (ret)
804                 async->error = ret;
805 }
806
807 static void run_one_async_done(struct btrfs_work *work)
808 {
809         struct btrfs_fs_info *fs_info;
810         struct async_submit_bio *async;
811         int limit;
812
813         async = container_of(work, struct  async_submit_bio, work);
814         fs_info = BTRFS_I(async->inode)->root->fs_info;
815
816         limit = btrfs_async_submit_limit(fs_info);
817         limit = limit * 2 / 3;
818
819         /*
820          * atomic_dec_return implies a barrier for waitqueue_active
821          */
822         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
823             waitqueue_active(&fs_info->async_submit_wait))
824                 wake_up(&fs_info->async_submit_wait);
825
826         /* If an error occurred we just want to clean up the bio and move on */
827         if (async->error) {
828                 async->bio->bi_error = async->error;
829                 bio_endio(async->bio);
830                 return;
831         }
832
833         async->submit_bio_done(async->inode, async->rw, async->bio,
834                                async->mirror_num, async->bio_flags,
835                                async->bio_offset);
836 }
837
838 static void run_one_async_free(struct btrfs_work *work)
839 {
840         struct async_submit_bio *async;
841
842         async = container_of(work, struct  async_submit_bio, work);
843         kfree(async);
844 }
845
846 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
847                         int rw, struct bio *bio, int mirror_num,
848                         unsigned long bio_flags,
849                         u64 bio_offset,
850                         extent_submit_bio_hook_t *submit_bio_start,
851                         extent_submit_bio_hook_t *submit_bio_done)
852 {
853         struct async_submit_bio *async;
854
855         async = kmalloc(sizeof(*async), GFP_NOFS);
856         if (!async)
857                 return -ENOMEM;
858
859         async->inode = inode;
860         async->rw = rw;
861         async->bio = bio;
862         async->mirror_num = mirror_num;
863         async->submit_bio_start = submit_bio_start;
864         async->submit_bio_done = submit_bio_done;
865
866         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
867                         run_one_async_done, run_one_async_free);
868
869         async->bio_flags = bio_flags;
870         async->bio_offset = bio_offset;
871
872         async->error = 0;
873
874         atomic_inc(&fs_info->nr_async_submits);
875
876         if (rw & REQ_SYNC)
877                 btrfs_set_work_high_priority(&async->work);
878
879         btrfs_queue_work(fs_info->workers, &async->work);
880
881         while (atomic_read(&fs_info->async_submit_draining) &&
882               atomic_read(&fs_info->nr_async_submits)) {
883                 wait_event(fs_info->async_submit_wait,
884                            (atomic_read(&fs_info->nr_async_submits) == 0));
885         }
886
887         return 0;
888 }
889
890 static int btree_csum_one_bio(struct bio *bio)
891 {
892         struct bio_vec *bvec;
893         struct btrfs_root *root;
894         int i, ret = 0;
895
896         bio_for_each_segment_all(bvec, bio, i) {
897                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
898                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
899                 if (ret)
900                         break;
901         }
902
903         return ret;
904 }
905
906 static int __btree_submit_bio_start(struct inode *inode, int rw,
907                                     struct bio *bio, int mirror_num,
908                                     unsigned long bio_flags,
909                                     u64 bio_offset)
910 {
911         /*
912          * when we're called for a write, we're already in the async
913          * submission context.  Just jump into btrfs_map_bio
914          */
915         return btree_csum_one_bio(bio);
916 }
917
918 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
919                                  int mirror_num, unsigned long bio_flags,
920                                  u64 bio_offset)
921 {
922         int ret;
923
924         /*
925          * when we're called for a write, we're already in the async
926          * submission context.  Just jump into btrfs_map_bio
927          */
928         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
929         if (ret) {
930                 bio->bi_error = ret;
931                 bio_endio(bio);
932         }
933         return ret;
934 }
935
936 static int check_async_write(struct inode *inode, unsigned long bio_flags)
937 {
938         if (bio_flags & EXTENT_BIO_TREE_LOG)
939                 return 0;
940 #ifdef CONFIG_X86
941         if (static_cpu_has(X86_FEATURE_XMM4_2))
942                 return 0;
943 #endif
944         return 1;
945 }
946
947 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
948                                  int mirror_num, unsigned long bio_flags,
949                                  u64 bio_offset)
950 {
951         int async = check_async_write(inode, bio_flags);
952         int ret;
953
954         if (!(rw & REQ_WRITE)) {
955                 /*
956                  * called for a read, do the setup so that checksum validation
957                  * can happen in the async kernel threads
958                  */
959                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
960                                           bio, BTRFS_WQ_ENDIO_METADATA);
961                 if (ret)
962                         goto out_w_error;
963                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
964                                     mirror_num, 0);
965         } else if (!async) {
966                 ret = btree_csum_one_bio(bio);
967                 if (ret)
968                         goto out_w_error;
969                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
970                                     mirror_num, 0);
971         } else {
972                 /*
973                  * kthread helpers are used to submit writes so that
974                  * checksumming can happen in parallel across all CPUs
975                  */
976                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
977                                           inode, rw, bio, mirror_num, 0,
978                                           bio_offset,
979                                           __btree_submit_bio_start,
980                                           __btree_submit_bio_done);
981         }
982
983         if (ret)
984                 goto out_w_error;
985         return 0;
986
987 out_w_error:
988         bio->bi_error = ret;
989         bio_endio(bio);
990         return ret;
991 }
992
993 #ifdef CONFIG_MIGRATION
994 static int btree_migratepage(struct address_space *mapping,
995                         struct page *newpage, struct page *page,
996                         enum migrate_mode mode)
997 {
998         /*
999          * we can't safely write a btree page from here,
1000          * we haven't done the locking hook
1001          */
1002         if (PageDirty(page))
1003                 return -EAGAIN;
1004         /*
1005          * Buffers may be managed in a filesystem specific way.
1006          * We must have no buffers or drop them.
1007          */
1008         if (page_has_private(page) &&
1009             !try_to_release_page(page, GFP_KERNEL))
1010                 return -EAGAIN;
1011         return migrate_page(mapping, newpage, page, mode);
1012 }
1013 #endif
1014
1015
1016 static int btree_writepages(struct address_space *mapping,
1017                             struct writeback_control *wbc)
1018 {
1019         struct btrfs_fs_info *fs_info;
1020         int ret;
1021
1022         if (wbc->sync_mode == WB_SYNC_NONE) {
1023
1024                 if (wbc->for_kupdate)
1025                         return 0;
1026
1027                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028                 /* this is a bit racy, but that's ok */
1029                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030                                              BTRFS_DIRTY_METADATA_THRESH);
1031                 if (ret < 0)
1032                         return 0;
1033         }
1034         return btree_write_cache_pages(mapping, wbc);
1035 }
1036
1037 static int btree_readpage(struct file *file, struct page *page)
1038 {
1039         struct extent_io_tree *tree;
1040         tree = &BTRFS_I(page->mapping->host)->io_tree;
1041         return extent_read_full_page(tree, page, btree_get_extent, 0);
1042 }
1043
1044 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045 {
1046         if (PageWriteback(page) || PageDirty(page))
1047                 return 0;
1048
1049         return try_release_extent_buffer(page);
1050 }
1051
1052 static void btree_invalidatepage(struct page *page, unsigned int offset,
1053                                  unsigned int length)
1054 {
1055         struct extent_io_tree *tree;
1056         tree = &BTRFS_I(page->mapping->host)->io_tree;
1057         extent_invalidatepage(tree, page, offset);
1058         btree_releasepage(page, GFP_NOFS);
1059         if (PagePrivate(page)) {
1060                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061                            "page private not zero on page %llu",
1062                            (unsigned long long)page_offset(page));
1063                 ClearPagePrivate(page);
1064                 set_page_private(page, 0);
1065                 put_page(page);
1066         }
1067 }
1068
1069 static int btree_set_page_dirty(struct page *page)
1070 {
1071 #ifdef DEBUG
1072         struct extent_buffer *eb;
1073
1074         BUG_ON(!PagePrivate(page));
1075         eb = (struct extent_buffer *)page->private;
1076         BUG_ON(!eb);
1077         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078         BUG_ON(!atomic_read(&eb->refs));
1079         btrfs_assert_tree_locked(eb);
1080 #endif
1081         return __set_page_dirty_nobuffers(page);
1082 }
1083
1084 static const struct address_space_operations btree_aops = {
1085         .readpage       = btree_readpage,
1086         .writepages     = btree_writepages,
1087         .releasepage    = btree_releasepage,
1088         .invalidatepage = btree_invalidatepage,
1089 #ifdef CONFIG_MIGRATION
1090         .migratepage    = btree_migratepage,
1091 #endif
1092         .set_page_dirty = btree_set_page_dirty,
1093 };
1094
1095 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096 {
1097         struct extent_buffer *buf = NULL;
1098         struct inode *btree_inode = root->fs_info->btree_inode;
1099
1100         buf = btrfs_find_create_tree_block(root, bytenr);
1101         if (IS_ERR(buf))
1102                 return;
1103         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1105         free_extent_buffer(buf);
1106 }
1107
1108 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109                          int mirror_num, struct extent_buffer **eb)
1110 {
1111         struct extent_buffer *buf = NULL;
1112         struct inode *btree_inode = root->fs_info->btree_inode;
1113         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114         int ret;
1115
1116         buf = btrfs_find_create_tree_block(root, bytenr);
1117         if (IS_ERR(buf))
1118                 return 0;
1119
1120         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123                                        btree_get_extent, mirror_num);
1124         if (ret) {
1125                 free_extent_buffer(buf);
1126                 return ret;
1127         }
1128
1129         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130                 free_extent_buffer(buf);
1131                 return -EIO;
1132         } else if (extent_buffer_uptodate(buf)) {
1133                 *eb = buf;
1134         } else {
1135                 free_extent_buffer(buf);
1136         }
1137         return 0;
1138 }
1139
1140 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141                                             u64 bytenr)
1142 {
1143         return find_extent_buffer(fs_info, bytenr);
1144 }
1145
1146 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147                                                  u64 bytenr)
1148 {
1149         if (btrfs_test_is_dummy_root(root))
1150                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1151                                 root->nodesize);
1152         return alloc_extent_buffer(root->fs_info, bytenr);
1153 }
1154
1155
1156 int btrfs_write_tree_block(struct extent_buffer *buf)
1157 {
1158         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1159                                         buf->start + buf->len - 1);
1160 }
1161
1162 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1163 {
1164         return filemap_fdatawait_range(buf->pages[0]->mapping,
1165                                        buf->start, buf->start + buf->len - 1);
1166 }
1167
1168 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1169                                       u64 parent_transid)
1170 {
1171         struct extent_buffer *buf = NULL;
1172         int ret;
1173
1174         buf = btrfs_find_create_tree_block(root, bytenr);
1175         if (IS_ERR(buf))
1176                 return buf;
1177
1178         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1179         if (ret) {
1180                 free_extent_buffer(buf);
1181                 return ERR_PTR(ret);
1182         }
1183         return buf;
1184
1185 }
1186
1187 void clean_tree_block(struct btrfs_trans_handle *trans,
1188                       struct btrfs_fs_info *fs_info,
1189                       struct extent_buffer *buf)
1190 {
1191         if (btrfs_header_generation(buf) ==
1192             fs_info->running_transaction->transid) {
1193                 btrfs_assert_tree_locked(buf);
1194
1195                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1196                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1197                                              -buf->len,
1198                                              fs_info->dirty_metadata_batch);
1199                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1200                         btrfs_set_lock_blocking(buf);
1201                         clear_extent_buffer_dirty(buf);
1202                 }
1203         }
1204 }
1205
1206 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1207 {
1208         struct btrfs_subvolume_writers *writers;
1209         int ret;
1210
1211         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1212         if (!writers)
1213                 return ERR_PTR(-ENOMEM);
1214
1215         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1216         if (ret < 0) {
1217                 kfree(writers);
1218                 return ERR_PTR(ret);
1219         }
1220
1221         init_waitqueue_head(&writers->wait);
1222         return writers;
1223 }
1224
1225 static void
1226 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1227 {
1228         percpu_counter_destroy(&writers->counter);
1229         kfree(writers);
1230 }
1231
1232 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1233                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1234                          u64 objectid)
1235 {
1236         root->node = NULL;
1237         root->commit_root = NULL;
1238         root->sectorsize = sectorsize;
1239         root->nodesize = nodesize;
1240         root->stripesize = stripesize;
1241         root->state = 0;
1242         root->orphan_cleanup_state = 0;
1243
1244         root->objectid = objectid;
1245         root->last_trans = 0;
1246         root->highest_objectid = 0;
1247         root->nr_delalloc_inodes = 0;
1248         root->nr_ordered_extents = 0;
1249         root->name = NULL;
1250         root->inode_tree = RB_ROOT;
1251         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1252         root->block_rsv = NULL;
1253         root->orphan_block_rsv = NULL;
1254
1255         INIT_LIST_HEAD(&root->dirty_list);
1256         INIT_LIST_HEAD(&root->root_list);
1257         INIT_LIST_HEAD(&root->delalloc_inodes);
1258         INIT_LIST_HEAD(&root->delalloc_root);
1259         INIT_LIST_HEAD(&root->ordered_extents);
1260         INIT_LIST_HEAD(&root->ordered_root);
1261         INIT_LIST_HEAD(&root->logged_list[0]);
1262         INIT_LIST_HEAD(&root->logged_list[1]);
1263         spin_lock_init(&root->orphan_lock);
1264         spin_lock_init(&root->inode_lock);
1265         spin_lock_init(&root->delalloc_lock);
1266         spin_lock_init(&root->ordered_extent_lock);
1267         spin_lock_init(&root->accounting_lock);
1268         spin_lock_init(&root->log_extents_lock[0]);
1269         spin_lock_init(&root->log_extents_lock[1]);
1270         mutex_init(&root->objectid_mutex);
1271         mutex_init(&root->log_mutex);
1272         mutex_init(&root->ordered_extent_mutex);
1273         mutex_init(&root->delalloc_mutex);
1274         init_waitqueue_head(&root->log_writer_wait);
1275         init_waitqueue_head(&root->log_commit_wait[0]);
1276         init_waitqueue_head(&root->log_commit_wait[1]);
1277         INIT_LIST_HEAD(&root->log_ctxs[0]);
1278         INIT_LIST_HEAD(&root->log_ctxs[1]);
1279         atomic_set(&root->log_commit[0], 0);
1280         atomic_set(&root->log_commit[1], 0);
1281         atomic_set(&root->log_writers, 0);
1282         atomic_set(&root->log_batch, 0);
1283         atomic_set(&root->orphan_inodes, 0);
1284         atomic_set(&root->refs, 1);
1285         atomic_set(&root->will_be_snapshoted, 0);
1286         atomic_set(&root->qgroup_meta_rsv, 0);
1287         root->log_transid = 0;
1288         root->log_transid_committed = -1;
1289         root->last_log_commit = 0;
1290         if (fs_info)
1291                 extent_io_tree_init(&root->dirty_log_pages,
1292                                      fs_info->btree_inode->i_mapping);
1293
1294         memset(&root->root_key, 0, sizeof(root->root_key));
1295         memset(&root->root_item, 0, sizeof(root->root_item));
1296         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1297         if (fs_info)
1298                 root->defrag_trans_start = fs_info->generation;
1299         else
1300                 root->defrag_trans_start = 0;
1301         root->root_key.objectid = objectid;
1302         root->anon_dev = 0;
1303
1304         spin_lock_init(&root->root_item_lock);
1305 }
1306
1307 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1308                 gfp_t flags)
1309 {
1310         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1311         if (root)
1312                 root->fs_info = fs_info;
1313         return root;
1314 }
1315
1316 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1317 /* Should only be used by the testing infrastructure */
1318 struct btrfs_root *btrfs_alloc_dummy_root(u32 sectorsize, u32 nodesize)
1319 {
1320         struct btrfs_root *root;
1321
1322         root = btrfs_alloc_root(NULL, GFP_KERNEL);
1323         if (!root)
1324                 return ERR_PTR(-ENOMEM);
1325         /* We don't use the stripesize in selftest, set it as sectorsize */
1326         __setup_root(nodesize, sectorsize, sectorsize, root, NULL,
1327                         BTRFS_ROOT_TREE_OBJECTID);
1328         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1329         root->alloc_bytenr = 0;
1330
1331         return root;
1332 }
1333 #endif
1334
1335 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1336                                      struct btrfs_fs_info *fs_info,
1337                                      u64 objectid)
1338 {
1339         struct extent_buffer *leaf;
1340         struct btrfs_root *tree_root = fs_info->tree_root;
1341         struct btrfs_root *root;
1342         struct btrfs_key key;
1343         int ret = 0;
1344         uuid_le uuid;
1345
1346         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1347         if (!root)
1348                 return ERR_PTR(-ENOMEM);
1349
1350         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1351                 tree_root->stripesize, root, fs_info, objectid);
1352         root->root_key.objectid = objectid;
1353         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354         root->root_key.offset = 0;
1355
1356         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1357         if (IS_ERR(leaf)) {
1358                 ret = PTR_ERR(leaf);
1359                 leaf = NULL;
1360                 goto fail;
1361         }
1362
1363         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1364         btrfs_set_header_bytenr(leaf, leaf->start);
1365         btrfs_set_header_generation(leaf, trans->transid);
1366         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1367         btrfs_set_header_owner(leaf, objectid);
1368         root->node = leaf;
1369
1370         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1371                             BTRFS_FSID_SIZE);
1372         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1373                             btrfs_header_chunk_tree_uuid(leaf),
1374                             BTRFS_UUID_SIZE);
1375         btrfs_mark_buffer_dirty(leaf);
1376
1377         root->commit_root = btrfs_root_node(root);
1378         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1379
1380         root->root_item.flags = 0;
1381         root->root_item.byte_limit = 0;
1382         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1383         btrfs_set_root_generation(&root->root_item, trans->transid);
1384         btrfs_set_root_level(&root->root_item, 0);
1385         btrfs_set_root_refs(&root->root_item, 1);
1386         btrfs_set_root_used(&root->root_item, leaf->len);
1387         btrfs_set_root_last_snapshot(&root->root_item, 0);
1388         btrfs_set_root_dirid(&root->root_item, 0);
1389         uuid_le_gen(&uuid);
1390         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1391         root->root_item.drop_level = 0;
1392
1393         key.objectid = objectid;
1394         key.type = BTRFS_ROOT_ITEM_KEY;
1395         key.offset = 0;
1396         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1397         if (ret)
1398                 goto fail;
1399
1400         btrfs_tree_unlock(leaf);
1401
1402         return root;
1403
1404 fail:
1405         if (leaf) {
1406                 btrfs_tree_unlock(leaf);
1407                 free_extent_buffer(root->commit_root);
1408                 free_extent_buffer(leaf);
1409         }
1410         kfree(root);
1411
1412         return ERR_PTR(ret);
1413 }
1414
1415 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1416                                          struct btrfs_fs_info *fs_info)
1417 {
1418         struct btrfs_root *root;
1419         struct btrfs_root *tree_root = fs_info->tree_root;
1420         struct extent_buffer *leaf;
1421
1422         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1423         if (!root)
1424                 return ERR_PTR(-ENOMEM);
1425
1426         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1427                      tree_root->stripesize, root, fs_info,
1428                      BTRFS_TREE_LOG_OBJECTID);
1429
1430         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1431         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1432         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1433
1434         /*
1435          * DON'T set REF_COWS for log trees
1436          *
1437          * log trees do not get reference counted because they go away
1438          * before a real commit is actually done.  They do store pointers
1439          * to file data extents, and those reference counts still get
1440          * updated (along with back refs to the log tree).
1441          */
1442
1443         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1444                         NULL, 0, 0, 0);
1445         if (IS_ERR(leaf)) {
1446                 kfree(root);
1447                 return ERR_CAST(leaf);
1448         }
1449
1450         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1451         btrfs_set_header_bytenr(leaf, leaf->start);
1452         btrfs_set_header_generation(leaf, trans->transid);
1453         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1454         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1455         root->node = leaf;
1456
1457         write_extent_buffer(root->node, root->fs_info->fsid,
1458                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1459         btrfs_mark_buffer_dirty(root->node);
1460         btrfs_tree_unlock(root->node);
1461         return root;
1462 }
1463
1464 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1465                              struct btrfs_fs_info *fs_info)
1466 {
1467         struct btrfs_root *log_root;
1468
1469         log_root = alloc_log_tree(trans, fs_info);
1470         if (IS_ERR(log_root))
1471                 return PTR_ERR(log_root);
1472         WARN_ON(fs_info->log_root_tree);
1473         fs_info->log_root_tree = log_root;
1474         return 0;
1475 }
1476
1477 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1478                        struct btrfs_root *root)
1479 {
1480         struct btrfs_root *log_root;
1481         struct btrfs_inode_item *inode_item;
1482
1483         log_root = alloc_log_tree(trans, root->fs_info);
1484         if (IS_ERR(log_root))
1485                 return PTR_ERR(log_root);
1486
1487         log_root->last_trans = trans->transid;
1488         log_root->root_key.offset = root->root_key.objectid;
1489
1490         inode_item = &log_root->root_item.inode;
1491         btrfs_set_stack_inode_generation(inode_item, 1);
1492         btrfs_set_stack_inode_size(inode_item, 3);
1493         btrfs_set_stack_inode_nlink(inode_item, 1);
1494         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1495         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1496
1497         btrfs_set_root_node(&log_root->root_item, log_root->node);
1498
1499         WARN_ON(root->log_root);
1500         root->log_root = log_root;
1501         root->log_transid = 0;
1502         root->log_transid_committed = -1;
1503         root->last_log_commit = 0;
1504         return 0;
1505 }
1506
1507 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1508                                                struct btrfs_key *key)
1509 {
1510         struct btrfs_root *root;
1511         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1512         struct btrfs_path *path;
1513         u64 generation;
1514         int ret;
1515
1516         path = btrfs_alloc_path();
1517         if (!path)
1518                 return ERR_PTR(-ENOMEM);
1519
1520         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1521         if (!root) {
1522                 ret = -ENOMEM;
1523                 goto alloc_fail;
1524         }
1525
1526         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1527                 tree_root->stripesize, root, fs_info, key->objectid);
1528
1529         ret = btrfs_find_root(tree_root, key, path,
1530                               &root->root_item, &root->root_key);
1531         if (ret) {
1532                 if (ret > 0)
1533                         ret = -ENOENT;
1534                 goto find_fail;
1535         }
1536
1537         generation = btrfs_root_generation(&root->root_item);
1538         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1539                                      generation);
1540         if (IS_ERR(root->node)) {
1541                 ret = PTR_ERR(root->node);
1542                 goto find_fail;
1543         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1544                 ret = -EIO;
1545                 free_extent_buffer(root->node);
1546                 goto find_fail;
1547         }
1548         root->commit_root = btrfs_root_node(root);
1549 out:
1550         btrfs_free_path(path);
1551         return root;
1552
1553 find_fail:
1554         kfree(root);
1555 alloc_fail:
1556         root = ERR_PTR(ret);
1557         goto out;
1558 }
1559
1560 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1561                                       struct btrfs_key *location)
1562 {
1563         struct btrfs_root *root;
1564
1565         root = btrfs_read_tree_root(tree_root, location);
1566         if (IS_ERR(root))
1567                 return root;
1568
1569         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1570                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1571                 btrfs_check_and_init_root_item(&root->root_item);
1572         }
1573
1574         return root;
1575 }
1576
1577 int btrfs_init_fs_root(struct btrfs_root *root)
1578 {
1579         int ret;
1580         struct btrfs_subvolume_writers *writers;
1581
1582         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1583         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1584                                         GFP_NOFS);
1585         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1586                 ret = -ENOMEM;
1587                 goto fail;
1588         }
1589
1590         writers = btrfs_alloc_subvolume_writers();
1591         if (IS_ERR(writers)) {
1592                 ret = PTR_ERR(writers);
1593                 goto fail;
1594         }
1595         root->subv_writers = writers;
1596
1597         btrfs_init_free_ino_ctl(root);
1598         spin_lock_init(&root->ino_cache_lock);
1599         init_waitqueue_head(&root->ino_cache_wait);
1600
1601         ret = get_anon_bdev(&root->anon_dev);
1602         if (ret)
1603                 goto fail;
1604
1605         mutex_lock(&root->objectid_mutex);
1606         ret = btrfs_find_highest_objectid(root,
1607                                         &root->highest_objectid);
1608         if (ret) {
1609                 mutex_unlock(&root->objectid_mutex);
1610                 goto fail;
1611         }
1612
1613         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1614
1615         mutex_unlock(&root->objectid_mutex);
1616
1617         return 0;
1618 fail:
1619         /* the caller is responsible to call free_fs_root */
1620         return ret;
1621 }
1622
1623 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1624                                                u64 root_id)
1625 {
1626         struct btrfs_root *root;
1627
1628         spin_lock(&fs_info->fs_roots_radix_lock);
1629         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1630                                  (unsigned long)root_id);
1631         spin_unlock(&fs_info->fs_roots_radix_lock);
1632         return root;
1633 }
1634
1635 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1636                          struct btrfs_root *root)
1637 {
1638         int ret;
1639
1640         ret = radix_tree_preload(GFP_NOFS);
1641         if (ret)
1642                 return ret;
1643
1644         spin_lock(&fs_info->fs_roots_radix_lock);
1645         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1646                                 (unsigned long)root->root_key.objectid,
1647                                 root);
1648         if (ret == 0)
1649                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1650         spin_unlock(&fs_info->fs_roots_radix_lock);
1651         radix_tree_preload_end();
1652
1653         return ret;
1654 }
1655
1656 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1657                                      struct btrfs_key *location,
1658                                      bool check_ref)
1659 {
1660         struct btrfs_root *root;
1661         struct btrfs_path *path;
1662         struct btrfs_key key;
1663         int ret;
1664
1665         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1666                 return fs_info->tree_root;
1667         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1668                 return fs_info->extent_root;
1669         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1670                 return fs_info->chunk_root;
1671         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1672                 return fs_info->dev_root;
1673         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1674                 return fs_info->csum_root;
1675         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1676                 return fs_info->quota_root ? fs_info->quota_root :
1677                                              ERR_PTR(-ENOENT);
1678         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1679                 return fs_info->uuid_root ? fs_info->uuid_root :
1680                                             ERR_PTR(-ENOENT);
1681         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1682                 return fs_info->free_space_root ? fs_info->free_space_root :
1683                                                   ERR_PTR(-ENOENT);
1684 again:
1685         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1686         if (root) {
1687                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1688                         return ERR_PTR(-ENOENT);
1689                 return root;
1690         }
1691
1692         root = btrfs_read_fs_root(fs_info->tree_root, location);
1693         if (IS_ERR(root))
1694                 return root;
1695
1696         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1697                 ret = -ENOENT;
1698                 goto fail;
1699         }
1700
1701         ret = btrfs_init_fs_root(root);
1702         if (ret)
1703                 goto fail;
1704
1705         path = btrfs_alloc_path();
1706         if (!path) {
1707                 ret = -ENOMEM;
1708                 goto fail;
1709         }
1710         key.objectid = BTRFS_ORPHAN_OBJECTID;
1711         key.type = BTRFS_ORPHAN_ITEM_KEY;
1712         key.offset = location->objectid;
1713
1714         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1715         btrfs_free_path(path);
1716         if (ret < 0)
1717                 goto fail;
1718         if (ret == 0)
1719                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1720
1721         ret = btrfs_insert_fs_root(fs_info, root);
1722         if (ret) {
1723                 if (ret == -EEXIST) {
1724                         free_fs_root(root);
1725                         goto again;
1726                 }
1727                 goto fail;
1728         }
1729         return root;
1730 fail:
1731         free_fs_root(root);
1732         return ERR_PTR(ret);
1733 }
1734
1735 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1736 {
1737         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1738         int ret = 0;
1739         struct btrfs_device *device;
1740         struct backing_dev_info *bdi;
1741
1742         rcu_read_lock();
1743         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1744                 if (!device->bdev)
1745                         continue;
1746                 bdi = blk_get_backing_dev_info(device->bdev);
1747                 if (bdi_congested(bdi, bdi_bits)) {
1748                         ret = 1;
1749                         break;
1750                 }
1751         }
1752         rcu_read_unlock();
1753         return ret;
1754 }
1755
1756 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1757 {
1758         int err;
1759
1760         err = bdi_setup_and_register(bdi, "btrfs");
1761         if (err)
1762                 return err;
1763
1764         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1765         bdi->congested_fn       = btrfs_congested_fn;
1766         bdi->congested_data     = info;
1767         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1768         return 0;
1769 }
1770
1771 /*
1772  * called by the kthread helper functions to finally call the bio end_io
1773  * functions.  This is where read checksum verification actually happens
1774  */
1775 static void end_workqueue_fn(struct btrfs_work *work)
1776 {
1777         struct bio *bio;
1778         struct btrfs_end_io_wq *end_io_wq;
1779
1780         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1781         bio = end_io_wq->bio;
1782
1783         bio->bi_error = end_io_wq->error;
1784         bio->bi_private = end_io_wq->private;
1785         bio->bi_end_io = end_io_wq->end_io;
1786         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1787         bio_endio(bio);
1788 }
1789
1790 static int cleaner_kthread(void *arg)
1791 {
1792         struct btrfs_root *root = arg;
1793         int again;
1794         struct btrfs_trans_handle *trans;
1795
1796         do {
1797                 again = 0;
1798
1799                 /* Make the cleaner go to sleep early. */
1800                 if (btrfs_need_cleaner_sleep(root))
1801                         goto sleep;
1802
1803                 /*
1804                  * Do not do anything if we might cause open_ctree() to block
1805                  * before we have finished mounting the filesystem.
1806                  */
1807                 if (!root->fs_info->open)
1808                         goto sleep;
1809
1810                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1811                         goto sleep;
1812
1813                 /*
1814                  * Avoid the problem that we change the status of the fs
1815                  * during the above check and trylock.
1816                  */
1817                 if (btrfs_need_cleaner_sleep(root)) {
1818                         mutex_unlock(&root->fs_info->cleaner_mutex);
1819                         goto sleep;
1820                 }
1821
1822                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1823                 btrfs_run_delayed_iputs(root);
1824                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1825
1826                 again = btrfs_clean_one_deleted_snapshot(root);
1827                 mutex_unlock(&root->fs_info->cleaner_mutex);
1828
1829                 /*
1830                  * The defragger has dealt with the R/O remount and umount,
1831                  * needn't do anything special here.
1832                  */
1833                 btrfs_run_defrag_inodes(root->fs_info);
1834
1835                 /*
1836                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1837                  * with relocation (btrfs_relocate_chunk) and relocation
1838                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1839                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1840                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1841                  * unused block groups.
1842                  */
1843                 btrfs_delete_unused_bgs(root->fs_info);
1844 sleep:
1845                 if (!again) {
1846                         set_current_state(TASK_INTERRUPTIBLE);
1847                         if (!kthread_should_stop())
1848                                 schedule();
1849                         __set_current_state(TASK_RUNNING);
1850                 }
1851         } while (!kthread_should_stop());
1852
1853         /*
1854          * Transaction kthread is stopped before us and wakes us up.
1855          * However we might have started a new transaction and COWed some
1856          * tree blocks when deleting unused block groups for example. So
1857          * make sure we commit the transaction we started to have a clean
1858          * shutdown when evicting the btree inode - if it has dirty pages
1859          * when we do the final iput() on it, eviction will trigger a
1860          * writeback for it which will fail with null pointer dereferences
1861          * since work queues and other resources were already released and
1862          * destroyed by the time the iput/eviction/writeback is made.
1863          */
1864         trans = btrfs_attach_transaction(root);
1865         if (IS_ERR(trans)) {
1866                 if (PTR_ERR(trans) != -ENOENT)
1867                         btrfs_err(root->fs_info,
1868                                   "cleaner transaction attach returned %ld",
1869                                   PTR_ERR(trans));
1870         } else {
1871                 int ret;
1872
1873                 ret = btrfs_commit_transaction(trans, root);
1874                 if (ret)
1875                         btrfs_err(root->fs_info,
1876                                   "cleaner open transaction commit returned %d",
1877                                   ret);
1878         }
1879
1880         return 0;
1881 }
1882
1883 static int transaction_kthread(void *arg)
1884 {
1885         struct btrfs_root *root = arg;
1886         struct btrfs_trans_handle *trans;
1887         struct btrfs_transaction *cur;
1888         u64 transid;
1889         unsigned long now;
1890         unsigned long delay;
1891         bool cannot_commit;
1892
1893         do {
1894                 cannot_commit = false;
1895                 delay = HZ * root->fs_info->commit_interval;
1896                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1897
1898                 spin_lock(&root->fs_info->trans_lock);
1899                 cur = root->fs_info->running_transaction;
1900                 if (!cur) {
1901                         spin_unlock(&root->fs_info->trans_lock);
1902                         goto sleep;
1903                 }
1904
1905                 now = get_seconds();
1906                 if (cur->state < TRANS_STATE_BLOCKED &&
1907                     (now < cur->start_time ||
1908                      now - cur->start_time < root->fs_info->commit_interval)) {
1909                         spin_unlock(&root->fs_info->trans_lock);
1910                         delay = HZ * 5;
1911                         goto sleep;
1912                 }
1913                 transid = cur->transid;
1914                 spin_unlock(&root->fs_info->trans_lock);
1915
1916                 /* If the file system is aborted, this will always fail. */
1917                 trans = btrfs_attach_transaction(root);
1918                 if (IS_ERR(trans)) {
1919                         if (PTR_ERR(trans) != -ENOENT)
1920                                 cannot_commit = true;
1921                         goto sleep;
1922                 }
1923                 if (transid == trans->transid) {
1924                         btrfs_commit_transaction(trans, root);
1925                 } else {
1926                         btrfs_end_transaction(trans, root);
1927                 }
1928 sleep:
1929                 wake_up_process(root->fs_info->cleaner_kthread);
1930                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1931
1932                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1933                                       &root->fs_info->fs_state)))
1934                         btrfs_cleanup_transaction(root);
1935                 set_current_state(TASK_INTERRUPTIBLE);
1936                 if (!kthread_should_stop() &&
1937                                 (!btrfs_transaction_blocked(root->fs_info) ||
1938                                  cannot_commit))
1939                         schedule_timeout(delay);
1940                 __set_current_state(TASK_RUNNING);
1941         } while (!kthread_should_stop());
1942         return 0;
1943 }
1944
1945 /*
1946  * this will find the highest generation in the array of
1947  * root backups.  The index of the highest array is returned,
1948  * or -1 if we can't find anything.
1949  *
1950  * We check to make sure the array is valid by comparing the
1951  * generation of the latest  root in the array with the generation
1952  * in the super block.  If they don't match we pitch it.
1953  */
1954 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1955 {
1956         u64 cur;
1957         int newest_index = -1;
1958         struct btrfs_root_backup *root_backup;
1959         int i;
1960
1961         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1962                 root_backup = info->super_copy->super_roots + i;
1963                 cur = btrfs_backup_tree_root_gen(root_backup);
1964                 if (cur == newest_gen)
1965                         newest_index = i;
1966         }
1967
1968         /* check to see if we actually wrapped around */
1969         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1970                 root_backup = info->super_copy->super_roots;
1971                 cur = btrfs_backup_tree_root_gen(root_backup);
1972                 if (cur == newest_gen)
1973                         newest_index = 0;
1974         }
1975         return newest_index;
1976 }
1977
1978
1979 /*
1980  * find the oldest backup so we know where to store new entries
1981  * in the backup array.  This will set the backup_root_index
1982  * field in the fs_info struct
1983  */
1984 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1985                                      u64 newest_gen)
1986 {
1987         int newest_index = -1;
1988
1989         newest_index = find_newest_super_backup(info, newest_gen);
1990         /* if there was garbage in there, just move along */
1991         if (newest_index == -1) {
1992                 info->backup_root_index = 0;
1993         } else {
1994                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1995         }
1996 }
1997
1998 /*
1999  * copy all the root pointers into the super backup array.
2000  * this will bump the backup pointer by one when it is
2001  * done
2002  */
2003 static void backup_super_roots(struct btrfs_fs_info *info)
2004 {
2005         int next_backup;
2006         struct btrfs_root_backup *root_backup;
2007         int last_backup;
2008
2009         next_backup = info->backup_root_index;
2010         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2011                 BTRFS_NUM_BACKUP_ROOTS;
2012
2013         /*
2014          * just overwrite the last backup if we're at the same generation
2015          * this happens only at umount
2016          */
2017         root_backup = info->super_for_commit->super_roots + last_backup;
2018         if (btrfs_backup_tree_root_gen(root_backup) ==
2019             btrfs_header_generation(info->tree_root->node))
2020                 next_backup = last_backup;
2021
2022         root_backup = info->super_for_commit->super_roots + next_backup;
2023
2024         /*
2025          * make sure all of our padding and empty slots get zero filled
2026          * regardless of which ones we use today
2027          */
2028         memset(root_backup, 0, sizeof(*root_backup));
2029
2030         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2031
2032         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2033         btrfs_set_backup_tree_root_gen(root_backup,
2034                                btrfs_header_generation(info->tree_root->node));
2035
2036         btrfs_set_backup_tree_root_level(root_backup,
2037                                btrfs_header_level(info->tree_root->node));
2038
2039         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2040         btrfs_set_backup_chunk_root_gen(root_backup,
2041                                btrfs_header_generation(info->chunk_root->node));
2042         btrfs_set_backup_chunk_root_level(root_backup,
2043                                btrfs_header_level(info->chunk_root->node));
2044
2045         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2046         btrfs_set_backup_extent_root_gen(root_backup,
2047                                btrfs_header_generation(info->extent_root->node));
2048         btrfs_set_backup_extent_root_level(root_backup,
2049                                btrfs_header_level(info->extent_root->node));
2050
2051         /*
2052          * we might commit during log recovery, which happens before we set
2053          * the fs_root.  Make sure it is valid before we fill it in.
2054          */
2055         if (info->fs_root && info->fs_root->node) {
2056                 btrfs_set_backup_fs_root(root_backup,
2057                                          info->fs_root->node->start);
2058                 btrfs_set_backup_fs_root_gen(root_backup,
2059                                btrfs_header_generation(info->fs_root->node));
2060                 btrfs_set_backup_fs_root_level(root_backup,
2061                                btrfs_header_level(info->fs_root->node));
2062         }
2063
2064         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2065         btrfs_set_backup_dev_root_gen(root_backup,
2066                                btrfs_header_generation(info->dev_root->node));
2067         btrfs_set_backup_dev_root_level(root_backup,
2068                                        btrfs_header_level(info->dev_root->node));
2069
2070         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2071         btrfs_set_backup_csum_root_gen(root_backup,
2072                                btrfs_header_generation(info->csum_root->node));
2073         btrfs_set_backup_csum_root_level(root_backup,
2074                                btrfs_header_level(info->csum_root->node));
2075
2076         btrfs_set_backup_total_bytes(root_backup,
2077                              btrfs_super_total_bytes(info->super_copy));
2078         btrfs_set_backup_bytes_used(root_backup,
2079                              btrfs_super_bytes_used(info->super_copy));
2080         btrfs_set_backup_num_devices(root_backup,
2081                              btrfs_super_num_devices(info->super_copy));
2082
2083         /*
2084          * if we don't copy this out to the super_copy, it won't get remembered
2085          * for the next commit
2086          */
2087         memcpy(&info->super_copy->super_roots,
2088                &info->super_for_commit->super_roots,
2089                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2090 }
2091
2092 /*
2093  * this copies info out of the root backup array and back into
2094  * the in-memory super block.  It is meant to help iterate through
2095  * the array, so you send it the number of backups you've already
2096  * tried and the last backup index you used.
2097  *
2098  * this returns -1 when it has tried all the backups
2099  */
2100 static noinline int next_root_backup(struct btrfs_fs_info *info,
2101                                      struct btrfs_super_block *super,
2102                                      int *num_backups_tried, int *backup_index)
2103 {
2104         struct btrfs_root_backup *root_backup;
2105         int newest = *backup_index;
2106
2107         if (*num_backups_tried == 0) {
2108                 u64 gen = btrfs_super_generation(super);
2109
2110                 newest = find_newest_super_backup(info, gen);
2111                 if (newest == -1)
2112                         return -1;
2113
2114                 *backup_index = newest;
2115                 *num_backups_tried = 1;
2116         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2117                 /* we've tried all the backups, all done */
2118                 return -1;
2119         } else {
2120                 /* jump to the next oldest backup */
2121                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2122                         BTRFS_NUM_BACKUP_ROOTS;
2123                 *backup_index = newest;
2124                 *num_backups_tried += 1;
2125         }
2126         root_backup = super->super_roots + newest;
2127
2128         btrfs_set_super_generation(super,
2129                                    btrfs_backup_tree_root_gen(root_backup));
2130         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2131         btrfs_set_super_root_level(super,
2132                                    btrfs_backup_tree_root_level(root_backup));
2133         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2134
2135         /*
2136          * fixme: the total bytes and num_devices need to match or we should
2137          * need a fsck
2138          */
2139         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2140         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2141         return 0;
2142 }
2143
2144 /* helper to cleanup workers */
2145 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2146 {
2147         btrfs_destroy_workqueue(fs_info->fixup_workers);
2148         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2149         btrfs_destroy_workqueue(fs_info->workers);
2150         btrfs_destroy_workqueue(fs_info->endio_workers);
2151         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2152         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2153         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2154         btrfs_destroy_workqueue(fs_info->rmw_workers);
2155         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2156         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2157         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2158         btrfs_destroy_workqueue(fs_info->submit_workers);
2159         btrfs_destroy_workqueue(fs_info->delayed_workers);
2160         btrfs_destroy_workqueue(fs_info->caching_workers);
2161         btrfs_destroy_workqueue(fs_info->readahead_workers);
2162         btrfs_destroy_workqueue(fs_info->flush_workers);
2163         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2164         btrfs_destroy_workqueue(fs_info->extent_workers);
2165 }
2166
2167 static void free_root_extent_buffers(struct btrfs_root *root)
2168 {
2169         if (root) {
2170                 free_extent_buffer(root->node);
2171                 free_extent_buffer(root->commit_root);
2172                 root->node = NULL;
2173                 root->commit_root = NULL;
2174         }
2175 }
2176
2177 /* helper to cleanup tree roots */
2178 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2179 {
2180         free_root_extent_buffers(info->tree_root);
2181
2182         free_root_extent_buffers(info->dev_root);
2183         free_root_extent_buffers(info->extent_root);
2184         free_root_extent_buffers(info->csum_root);
2185         free_root_extent_buffers(info->quota_root);
2186         free_root_extent_buffers(info->uuid_root);
2187         if (chunk_root)
2188                 free_root_extent_buffers(info->chunk_root);
2189         free_root_extent_buffers(info->free_space_root);
2190 }
2191
2192 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2193 {
2194         int ret;
2195         struct btrfs_root *gang[8];
2196         int i;
2197
2198         while (!list_empty(&fs_info->dead_roots)) {
2199                 gang[0] = list_entry(fs_info->dead_roots.next,
2200                                      struct btrfs_root, root_list);
2201                 list_del(&gang[0]->root_list);
2202
2203                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2204                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2205                 } else {
2206                         free_extent_buffer(gang[0]->node);
2207                         free_extent_buffer(gang[0]->commit_root);
2208                         btrfs_put_fs_root(gang[0]);
2209                 }
2210         }
2211
2212         while (1) {
2213                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2214                                              (void **)gang, 0,
2215                                              ARRAY_SIZE(gang));
2216                 if (!ret)
2217                         break;
2218                 for (i = 0; i < ret; i++)
2219                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2220         }
2221
2222         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2223                 btrfs_free_log_root_tree(NULL, fs_info);
2224                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2225                                             fs_info->pinned_extents);
2226         }
2227 }
2228
2229 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2230 {
2231         mutex_init(&fs_info->scrub_lock);
2232         atomic_set(&fs_info->scrubs_running, 0);
2233         atomic_set(&fs_info->scrub_pause_req, 0);
2234         atomic_set(&fs_info->scrubs_paused, 0);
2235         atomic_set(&fs_info->scrub_cancel_req, 0);
2236         init_waitqueue_head(&fs_info->scrub_pause_wait);
2237         fs_info->scrub_workers_refcnt = 0;
2238 }
2239
2240 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2241 {
2242         spin_lock_init(&fs_info->balance_lock);
2243         mutex_init(&fs_info->balance_mutex);
2244         atomic_set(&fs_info->balance_running, 0);
2245         atomic_set(&fs_info->balance_pause_req, 0);
2246         atomic_set(&fs_info->balance_cancel_req, 0);
2247         fs_info->balance_ctl = NULL;
2248         init_waitqueue_head(&fs_info->balance_wait_q);
2249 }
2250
2251 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2252                                    struct btrfs_root *tree_root)
2253 {
2254         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2255         set_nlink(fs_info->btree_inode, 1);
2256         /*
2257          * we set the i_size on the btree inode to the max possible int.
2258          * the real end of the address space is determined by all of
2259          * the devices in the system
2260          */
2261         fs_info->btree_inode->i_size = OFFSET_MAX;
2262         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2263
2264         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2265         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2266                              fs_info->btree_inode->i_mapping);
2267         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2268         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2269
2270         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2271
2272         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2273         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2274                sizeof(struct btrfs_key));
2275         set_bit(BTRFS_INODE_DUMMY,
2276                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2277         btrfs_insert_inode_hash(fs_info->btree_inode);
2278 }
2279
2280 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2281 {
2282         fs_info->dev_replace.lock_owner = 0;
2283         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2284         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2285         rwlock_init(&fs_info->dev_replace.lock);
2286         atomic_set(&fs_info->dev_replace.read_locks, 0);
2287         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2288         init_waitqueue_head(&fs_info->replace_wait);
2289         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2290 }
2291
2292 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2293 {
2294         spin_lock_init(&fs_info->qgroup_lock);
2295         mutex_init(&fs_info->qgroup_ioctl_lock);
2296         fs_info->qgroup_tree = RB_ROOT;
2297         fs_info->qgroup_op_tree = RB_ROOT;
2298         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2299         fs_info->qgroup_seq = 1;
2300         fs_info->quota_enabled = 0;
2301         fs_info->pending_quota_state = 0;
2302         fs_info->qgroup_ulist = NULL;
2303         mutex_init(&fs_info->qgroup_rescan_lock);
2304 }
2305
2306 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2307                 struct btrfs_fs_devices *fs_devices)
2308 {
2309         int max_active = fs_info->thread_pool_size;
2310         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2311
2312         fs_info->workers =
2313                 btrfs_alloc_workqueue(fs_info, "worker",
2314                                       flags | WQ_HIGHPRI, max_active, 16);
2315
2316         fs_info->delalloc_workers =
2317                 btrfs_alloc_workqueue(fs_info, "delalloc",
2318                                       flags, max_active, 2);
2319
2320         fs_info->flush_workers =
2321                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2322                                       flags, max_active, 0);
2323
2324         fs_info->caching_workers =
2325                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2326
2327         /*
2328          * a higher idle thresh on the submit workers makes it much more
2329          * likely that bios will be send down in a sane order to the
2330          * devices
2331          */
2332         fs_info->submit_workers =
2333                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2334                                       min_t(u64, fs_devices->num_devices,
2335                                             max_active), 64);
2336
2337         fs_info->fixup_workers =
2338                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2339
2340         /*
2341          * endios are largely parallel and should have a very
2342          * low idle thresh
2343          */
2344         fs_info->endio_workers =
2345                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2346         fs_info->endio_meta_workers =
2347                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2348                                       max_active, 4);
2349         fs_info->endio_meta_write_workers =
2350                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2351                                       max_active, 2);
2352         fs_info->endio_raid56_workers =
2353                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2354                                       max_active, 4);
2355         fs_info->endio_repair_workers =
2356                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2357         fs_info->rmw_workers =
2358                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2359         fs_info->endio_write_workers =
2360                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2361                                       max_active, 2);
2362         fs_info->endio_freespace_worker =
2363                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2364                                       max_active, 0);
2365         fs_info->delayed_workers =
2366                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2367                                       max_active, 0);
2368         fs_info->readahead_workers =
2369                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2370                                       max_active, 2);
2371         fs_info->qgroup_rescan_workers =
2372                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2373         fs_info->extent_workers =
2374                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2375                                       min_t(u64, fs_devices->num_devices,
2376                                             max_active), 8);
2377
2378         if (!(fs_info->workers && fs_info->delalloc_workers &&
2379               fs_info->submit_workers && fs_info->flush_workers &&
2380               fs_info->endio_workers && fs_info->endio_meta_workers &&
2381               fs_info->endio_meta_write_workers &&
2382               fs_info->endio_repair_workers &&
2383               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2384               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2385               fs_info->caching_workers && fs_info->readahead_workers &&
2386               fs_info->fixup_workers && fs_info->delayed_workers &&
2387               fs_info->extent_workers &&
2388               fs_info->qgroup_rescan_workers)) {
2389                 return -ENOMEM;
2390         }
2391
2392         return 0;
2393 }
2394
2395 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2396                             struct btrfs_fs_devices *fs_devices)
2397 {
2398         int ret;
2399         struct btrfs_root *tree_root = fs_info->tree_root;
2400         struct btrfs_root *log_tree_root;
2401         struct btrfs_super_block *disk_super = fs_info->super_copy;
2402         u64 bytenr = btrfs_super_log_root(disk_super);
2403
2404         if (fs_devices->rw_devices == 0) {
2405                 btrfs_warn(fs_info, "log replay required on RO media");
2406                 return -EIO;
2407         }
2408
2409         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2410         if (!log_tree_root)
2411                 return -ENOMEM;
2412
2413         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2414                         tree_root->stripesize, log_tree_root, fs_info,
2415                         BTRFS_TREE_LOG_OBJECTID);
2416
2417         log_tree_root->node = read_tree_block(tree_root, bytenr,
2418                         fs_info->generation + 1);
2419         if (IS_ERR(log_tree_root->node)) {
2420                 btrfs_warn(fs_info, "failed to read log tree");
2421                 ret = PTR_ERR(log_tree_root->node);
2422                 kfree(log_tree_root);
2423                 return ret;
2424         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2425                 btrfs_err(fs_info, "failed to read log tree");
2426                 free_extent_buffer(log_tree_root->node);
2427                 kfree(log_tree_root);
2428                 return -EIO;
2429         }
2430         /* returns with log_tree_root freed on success */
2431         ret = btrfs_recover_log_trees(log_tree_root);
2432         if (ret) {
2433                 btrfs_handle_fs_error(tree_root->fs_info, ret,
2434                             "Failed to recover log tree");
2435                 free_extent_buffer(log_tree_root->node);
2436                 kfree(log_tree_root);
2437                 return ret;
2438         }
2439
2440         if (fs_info->sb->s_flags & MS_RDONLY) {
2441                 ret = btrfs_commit_super(tree_root);
2442                 if (ret)
2443                         return ret;
2444         }
2445
2446         return 0;
2447 }
2448
2449 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2450                             struct btrfs_root *tree_root)
2451 {
2452         struct btrfs_root *root;
2453         struct btrfs_key location;
2454         int ret;
2455
2456         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2457         location.type = BTRFS_ROOT_ITEM_KEY;
2458         location.offset = 0;
2459
2460         root = btrfs_read_tree_root(tree_root, &location);
2461         if (IS_ERR(root))
2462                 return PTR_ERR(root);
2463         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2464         fs_info->extent_root = root;
2465
2466         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2467         root = btrfs_read_tree_root(tree_root, &location);
2468         if (IS_ERR(root))
2469                 return PTR_ERR(root);
2470         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2471         fs_info->dev_root = root;
2472         btrfs_init_devices_late(fs_info);
2473
2474         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2475         root = btrfs_read_tree_root(tree_root, &location);
2476         if (IS_ERR(root))
2477                 return PTR_ERR(root);
2478         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2479         fs_info->csum_root = root;
2480
2481         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2482         root = btrfs_read_tree_root(tree_root, &location);
2483         if (!IS_ERR(root)) {
2484                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2485                 fs_info->quota_enabled = 1;
2486                 fs_info->pending_quota_state = 1;
2487                 fs_info->quota_root = root;
2488         }
2489
2490         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2491         root = btrfs_read_tree_root(tree_root, &location);
2492         if (IS_ERR(root)) {
2493                 ret = PTR_ERR(root);
2494                 if (ret != -ENOENT)
2495                         return ret;
2496         } else {
2497                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2498                 fs_info->uuid_root = root;
2499         }
2500
2501         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2502                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2503                 root = btrfs_read_tree_root(tree_root, &location);
2504                 if (IS_ERR(root))
2505                         return PTR_ERR(root);
2506                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2507                 fs_info->free_space_root = root;
2508         }
2509
2510         return 0;
2511 }
2512
2513 int open_ctree(struct super_block *sb,
2514                struct btrfs_fs_devices *fs_devices,
2515                char *options)
2516 {
2517         u32 sectorsize;
2518         u32 nodesize;
2519         u32 stripesize;
2520         u64 generation;
2521         u64 features;
2522         struct btrfs_key location;
2523         struct buffer_head *bh;
2524         struct btrfs_super_block *disk_super;
2525         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2526         struct btrfs_root *tree_root;
2527         struct btrfs_root *chunk_root;
2528         int ret;
2529         int err = -EINVAL;
2530         int num_backups_tried = 0;
2531         int backup_index = 0;
2532         int max_active;
2533
2534         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2535         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2536         if (!tree_root || !chunk_root) {
2537                 err = -ENOMEM;
2538                 goto fail;
2539         }
2540
2541         ret = init_srcu_struct(&fs_info->subvol_srcu);
2542         if (ret) {
2543                 err = ret;
2544                 goto fail;
2545         }
2546
2547         ret = setup_bdi(fs_info, &fs_info->bdi);
2548         if (ret) {
2549                 err = ret;
2550                 goto fail_srcu;
2551         }
2552
2553         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2554         if (ret) {
2555                 err = ret;
2556                 goto fail_bdi;
2557         }
2558         fs_info->dirty_metadata_batch = PAGE_SIZE *
2559                                         (1 + ilog2(nr_cpu_ids));
2560
2561         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2562         if (ret) {
2563                 err = ret;
2564                 goto fail_dirty_metadata_bytes;
2565         }
2566
2567         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2568         if (ret) {
2569                 err = ret;
2570                 goto fail_delalloc_bytes;
2571         }
2572
2573         fs_info->btree_inode = new_inode(sb);
2574         if (!fs_info->btree_inode) {
2575                 err = -ENOMEM;
2576                 goto fail_bio_counter;
2577         }
2578
2579         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2580
2581         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2582         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2583         INIT_LIST_HEAD(&fs_info->trans_list);
2584         INIT_LIST_HEAD(&fs_info->dead_roots);
2585         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2586         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2587         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2588         spin_lock_init(&fs_info->delalloc_root_lock);
2589         spin_lock_init(&fs_info->trans_lock);
2590         spin_lock_init(&fs_info->fs_roots_radix_lock);
2591         spin_lock_init(&fs_info->delayed_iput_lock);
2592         spin_lock_init(&fs_info->defrag_inodes_lock);
2593         spin_lock_init(&fs_info->free_chunk_lock);
2594         spin_lock_init(&fs_info->tree_mod_seq_lock);
2595         spin_lock_init(&fs_info->super_lock);
2596         spin_lock_init(&fs_info->qgroup_op_lock);
2597         spin_lock_init(&fs_info->buffer_lock);
2598         spin_lock_init(&fs_info->unused_bgs_lock);
2599         rwlock_init(&fs_info->tree_mod_log_lock);
2600         mutex_init(&fs_info->unused_bg_unpin_mutex);
2601         mutex_init(&fs_info->delete_unused_bgs_mutex);
2602         mutex_init(&fs_info->reloc_mutex);
2603         mutex_init(&fs_info->delalloc_root_mutex);
2604         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2605         seqlock_init(&fs_info->profiles_lock);
2606
2607         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2608         INIT_LIST_HEAD(&fs_info->space_info);
2609         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2610         INIT_LIST_HEAD(&fs_info->unused_bgs);
2611         btrfs_mapping_init(&fs_info->mapping_tree);
2612         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2613                              BTRFS_BLOCK_RSV_GLOBAL);
2614         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2615                              BTRFS_BLOCK_RSV_DELALLOC);
2616         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2617         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2618         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2619         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2620                              BTRFS_BLOCK_RSV_DELOPS);
2621         atomic_set(&fs_info->nr_async_submits, 0);
2622         atomic_set(&fs_info->async_delalloc_pages, 0);
2623         atomic_set(&fs_info->async_submit_draining, 0);
2624         atomic_set(&fs_info->nr_async_bios, 0);
2625         atomic_set(&fs_info->defrag_running, 0);
2626         atomic_set(&fs_info->qgroup_op_seq, 0);
2627         atomic_set(&fs_info->reada_works_cnt, 0);
2628         atomic64_set(&fs_info->tree_mod_seq, 0);
2629         fs_info->sb = sb;
2630         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2631         fs_info->metadata_ratio = 0;
2632         fs_info->defrag_inodes = RB_ROOT;
2633         fs_info->free_chunk_space = 0;
2634         fs_info->tree_mod_log = RB_ROOT;
2635         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2636         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2637         /* readahead state */
2638         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2639         spin_lock_init(&fs_info->reada_lock);
2640
2641         fs_info->thread_pool_size = min_t(unsigned long,
2642                                           num_online_cpus() + 2, 8);
2643
2644         INIT_LIST_HEAD(&fs_info->ordered_roots);
2645         spin_lock_init(&fs_info->ordered_root_lock);
2646         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2647                                         GFP_KERNEL);
2648         if (!fs_info->delayed_root) {
2649                 err = -ENOMEM;
2650                 goto fail_iput;
2651         }
2652         btrfs_init_delayed_root(fs_info->delayed_root);
2653
2654         btrfs_init_scrub(fs_info);
2655 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2656         fs_info->check_integrity_print_mask = 0;
2657 #endif
2658         btrfs_init_balance(fs_info);
2659         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2660
2661         sb->s_blocksize = 4096;
2662         sb->s_blocksize_bits = blksize_bits(4096);
2663         sb->s_bdi = &fs_info->bdi;
2664
2665         btrfs_init_btree_inode(fs_info, tree_root);
2666
2667         spin_lock_init(&fs_info->block_group_cache_lock);
2668         fs_info->block_group_cache_tree = RB_ROOT;
2669         fs_info->first_logical_byte = (u64)-1;
2670
2671         extent_io_tree_init(&fs_info->freed_extents[0],
2672                              fs_info->btree_inode->i_mapping);
2673         extent_io_tree_init(&fs_info->freed_extents[1],
2674                              fs_info->btree_inode->i_mapping);
2675         fs_info->pinned_extents = &fs_info->freed_extents[0];
2676         fs_info->do_barriers = 1;
2677
2678
2679         mutex_init(&fs_info->ordered_operations_mutex);
2680         mutex_init(&fs_info->tree_log_mutex);
2681         mutex_init(&fs_info->chunk_mutex);
2682         mutex_init(&fs_info->transaction_kthread_mutex);
2683         mutex_init(&fs_info->cleaner_mutex);
2684         mutex_init(&fs_info->volume_mutex);
2685         mutex_init(&fs_info->ro_block_group_mutex);
2686         init_rwsem(&fs_info->commit_root_sem);
2687         init_rwsem(&fs_info->cleanup_work_sem);
2688         init_rwsem(&fs_info->subvol_sem);
2689         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2690
2691         btrfs_init_dev_replace_locks(fs_info);
2692         btrfs_init_qgroup(fs_info);
2693
2694         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2695         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2696
2697         init_waitqueue_head(&fs_info->transaction_throttle);
2698         init_waitqueue_head(&fs_info->transaction_wait);
2699         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2700         init_waitqueue_head(&fs_info->async_submit_wait);
2701
2702         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2703
2704         ret = btrfs_alloc_stripe_hash_table(fs_info);
2705         if (ret) {
2706                 err = ret;
2707                 goto fail_alloc;
2708         }
2709
2710         __setup_root(4096, 4096, 4096, tree_root,
2711                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2712
2713         invalidate_bdev(fs_devices->latest_bdev);
2714
2715         /*
2716          * Read super block and check the signature bytes only
2717          */
2718         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2719         if (IS_ERR(bh)) {
2720                 err = PTR_ERR(bh);
2721                 goto fail_alloc;
2722         }
2723
2724         /*
2725          * We want to check superblock checksum, the type is stored inside.
2726          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2727          */
2728         if (btrfs_check_super_csum(bh->b_data)) {
2729                 btrfs_err(fs_info, "superblock checksum mismatch");
2730                 err = -EINVAL;
2731                 brelse(bh);
2732                 goto fail_alloc;
2733         }
2734
2735         /*
2736          * super_copy is zeroed at allocation time and we never touch the
2737          * following bytes up to INFO_SIZE, the checksum is calculated from
2738          * the whole block of INFO_SIZE
2739          */
2740         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2741         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2742                sizeof(*fs_info->super_for_commit));
2743         brelse(bh);
2744
2745         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2746
2747         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2748         if (ret) {
2749                 btrfs_err(fs_info, "superblock contains fatal errors");
2750                 err = -EINVAL;
2751                 goto fail_alloc;
2752         }
2753
2754         disk_super = fs_info->super_copy;
2755         if (!btrfs_super_root(disk_super))
2756                 goto fail_alloc;
2757
2758         /* check FS state, whether FS is broken. */
2759         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2760                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2761
2762         /*
2763          * run through our array of backup supers and setup
2764          * our ring pointer to the oldest one
2765          */
2766         generation = btrfs_super_generation(disk_super);
2767         find_oldest_super_backup(fs_info, generation);
2768
2769         /*
2770          * In the long term, we'll store the compression type in the super
2771          * block, and it'll be used for per file compression control.
2772          */
2773         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2774
2775         ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2776         if (ret) {
2777                 err = ret;
2778                 goto fail_alloc;
2779         }
2780
2781         features = btrfs_super_incompat_flags(disk_super) &
2782                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2783         if (features) {
2784                 btrfs_err(fs_info,
2785                     "cannot mount because of unsupported optional features (%llx)",
2786                     features);
2787                 err = -EINVAL;
2788                 goto fail_alloc;
2789         }
2790
2791         features = btrfs_super_incompat_flags(disk_super);
2792         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2793         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2794                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2795
2796         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2797                 btrfs_info(fs_info, "has skinny extents");
2798
2799         /*
2800          * flag our filesystem as having big metadata blocks if
2801          * they are bigger than the page size
2802          */
2803         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2804                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2805                         btrfs_info(fs_info,
2806                                 "flagging fs with big metadata feature");
2807                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2808         }
2809
2810         nodesize = btrfs_super_nodesize(disk_super);
2811         sectorsize = btrfs_super_sectorsize(disk_super);
2812         stripesize = sectorsize;
2813         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2814         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2815
2816         /*
2817          * mixed block groups end up with duplicate but slightly offset
2818          * extent buffers for the same range.  It leads to corruptions
2819          */
2820         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2821             (sectorsize != nodesize)) {
2822                 btrfs_err(fs_info,
2823 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2824                         nodesize, sectorsize);
2825                 goto fail_alloc;
2826         }
2827
2828         /*
2829          * Needn't use the lock because there is no other task which will
2830          * update the flag.
2831          */
2832         btrfs_set_super_incompat_flags(disk_super, features);
2833
2834         features = btrfs_super_compat_ro_flags(disk_super) &
2835                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2836         if (!(sb->s_flags & MS_RDONLY) && features) {
2837                 btrfs_err(fs_info,
2838         "cannot mount read-write because of unsupported optional features (%llx)",
2839                        features);
2840                 err = -EINVAL;
2841                 goto fail_alloc;
2842         }
2843
2844         max_active = fs_info->thread_pool_size;
2845
2846         ret = btrfs_init_workqueues(fs_info, fs_devices);
2847         if (ret) {
2848                 err = ret;
2849                 goto fail_sb_buffer;
2850         }
2851
2852         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2853         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2854                                     SZ_4M / PAGE_SIZE);
2855
2856         tree_root->nodesize = nodesize;
2857         tree_root->sectorsize = sectorsize;
2858         tree_root->stripesize = stripesize;
2859
2860         sb->s_blocksize = sectorsize;
2861         sb->s_blocksize_bits = blksize_bits(sectorsize);
2862
2863         mutex_lock(&fs_info->chunk_mutex);
2864         ret = btrfs_read_sys_array(tree_root);
2865         mutex_unlock(&fs_info->chunk_mutex);
2866         if (ret) {
2867                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2868                 goto fail_sb_buffer;
2869         }
2870
2871         generation = btrfs_super_chunk_root_generation(disk_super);
2872
2873         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2874                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2875
2876         chunk_root->node = read_tree_block(chunk_root,
2877                                            btrfs_super_chunk_root(disk_super),
2878                                            generation);
2879         if (IS_ERR(chunk_root->node) ||
2880             !extent_buffer_uptodate(chunk_root->node)) {
2881                 btrfs_err(fs_info, "failed to read chunk root");
2882                 if (!IS_ERR(chunk_root->node))
2883                         free_extent_buffer(chunk_root->node);
2884                 chunk_root->node = NULL;
2885                 goto fail_tree_roots;
2886         }
2887         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2888         chunk_root->commit_root = btrfs_root_node(chunk_root);
2889
2890         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2891            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2892
2893         ret = btrfs_read_chunk_tree(chunk_root);
2894         if (ret) {
2895                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2896                 goto fail_tree_roots;
2897         }
2898
2899         /*
2900          * keep the device that is marked to be the target device for the
2901          * dev_replace procedure
2902          */
2903         btrfs_close_extra_devices(fs_devices, 0);
2904
2905         if (!fs_devices->latest_bdev) {
2906                 btrfs_err(fs_info, "failed to read devices");
2907                 goto fail_tree_roots;
2908         }
2909
2910 retry_root_backup:
2911         generation = btrfs_super_generation(disk_super);
2912
2913         tree_root->node = read_tree_block(tree_root,
2914                                           btrfs_super_root(disk_super),
2915                                           generation);
2916         if (IS_ERR(tree_root->node) ||
2917             !extent_buffer_uptodate(tree_root->node)) {
2918                 btrfs_warn(fs_info, "failed to read tree root");
2919                 if (!IS_ERR(tree_root->node))
2920                         free_extent_buffer(tree_root->node);
2921                 tree_root->node = NULL;
2922                 goto recovery_tree_root;
2923         }
2924
2925         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2926         tree_root->commit_root = btrfs_root_node(tree_root);
2927         btrfs_set_root_refs(&tree_root->root_item, 1);
2928
2929         mutex_lock(&tree_root->objectid_mutex);
2930         ret = btrfs_find_highest_objectid(tree_root,
2931                                         &tree_root->highest_objectid);
2932         if (ret) {
2933                 mutex_unlock(&tree_root->objectid_mutex);
2934                 goto recovery_tree_root;
2935         }
2936
2937         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2938
2939         mutex_unlock(&tree_root->objectid_mutex);
2940
2941         ret = btrfs_read_roots(fs_info, tree_root);
2942         if (ret)
2943                 goto recovery_tree_root;
2944
2945         fs_info->generation = generation;
2946         fs_info->last_trans_committed = generation;
2947
2948         ret = btrfs_recover_balance(fs_info);
2949         if (ret) {
2950                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2951                 goto fail_block_groups;
2952         }
2953
2954         ret = btrfs_init_dev_stats(fs_info);
2955         if (ret) {
2956                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2957                 goto fail_block_groups;
2958         }
2959
2960         ret = btrfs_init_dev_replace(fs_info);
2961         if (ret) {
2962                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2963                 goto fail_block_groups;
2964         }
2965
2966         btrfs_close_extra_devices(fs_devices, 1);
2967
2968         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2969         if (ret) {
2970                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2971                                 ret);
2972                 goto fail_block_groups;
2973         }
2974
2975         ret = btrfs_sysfs_add_device(fs_devices);
2976         if (ret) {
2977                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2978                                 ret);
2979                 goto fail_fsdev_sysfs;
2980         }
2981
2982         ret = btrfs_sysfs_add_mounted(fs_info);
2983         if (ret) {
2984                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2985                 goto fail_fsdev_sysfs;
2986         }
2987
2988         ret = btrfs_init_space_info(fs_info);
2989         if (ret) {
2990                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2991                 goto fail_sysfs;
2992         }
2993
2994         ret = btrfs_read_block_groups(fs_info->extent_root);
2995         if (ret) {
2996                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2997                 goto fail_sysfs;
2998         }
2999         fs_info->num_tolerated_disk_barrier_failures =
3000                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3001         if (fs_info->fs_devices->missing_devices >
3002              fs_info->num_tolerated_disk_barrier_failures &&
3003             !(sb->s_flags & MS_RDONLY)) {
3004                 btrfs_warn(fs_info,
3005 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3006                         fs_info->fs_devices->missing_devices,
3007                         fs_info->num_tolerated_disk_barrier_failures);
3008                 goto fail_sysfs;
3009         }
3010
3011         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3012                                                "btrfs-cleaner");
3013         if (IS_ERR(fs_info->cleaner_kthread))
3014                 goto fail_sysfs;
3015
3016         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3017                                                    tree_root,
3018                                                    "btrfs-transaction");
3019         if (IS_ERR(fs_info->transaction_kthread))
3020                 goto fail_cleaner;
3021
3022         if (!btrfs_test_opt(tree_root, SSD) &&
3023             !btrfs_test_opt(tree_root, NOSSD) &&
3024             !fs_info->fs_devices->rotating) {
3025                 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3026                 btrfs_set_opt(fs_info->mount_opt, SSD);
3027         }
3028
3029         /*
3030          * Mount does not set all options immediately, we can do it now and do
3031          * not have to wait for transaction commit
3032          */
3033         btrfs_apply_pending_changes(fs_info);
3034
3035 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3036         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3037                 ret = btrfsic_mount(tree_root, fs_devices,
3038                                     btrfs_test_opt(tree_root,
3039                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3040                                     1 : 0,
3041                                     fs_info->check_integrity_print_mask);
3042                 if (ret)
3043                         btrfs_warn(fs_info,
3044                                 "failed to initialize integrity check module: %d",
3045                                 ret);
3046         }
3047 #endif
3048         ret = btrfs_read_qgroup_config(fs_info);
3049         if (ret)
3050                 goto fail_trans_kthread;
3051
3052         /* do not make disk changes in broken FS or nologreplay is given */
3053         if (btrfs_super_log_root(disk_super) != 0 &&
3054             !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3055                 ret = btrfs_replay_log(fs_info, fs_devices);
3056                 if (ret) {
3057                         err = ret;
3058                         goto fail_qgroup;
3059                 }
3060         }
3061
3062         ret = btrfs_find_orphan_roots(tree_root);
3063         if (ret)
3064                 goto fail_qgroup;
3065
3066         if (!(sb->s_flags & MS_RDONLY)) {
3067                 ret = btrfs_cleanup_fs_roots(fs_info);
3068                 if (ret)
3069                         goto fail_qgroup;
3070
3071                 mutex_lock(&fs_info->cleaner_mutex);
3072                 ret = btrfs_recover_relocation(tree_root);
3073                 mutex_unlock(&fs_info->cleaner_mutex);
3074                 if (ret < 0) {
3075                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3076                                         ret);
3077                         err = -EINVAL;
3078                         goto fail_qgroup;
3079                 }
3080         }
3081
3082         location.objectid = BTRFS_FS_TREE_OBJECTID;
3083         location.type = BTRFS_ROOT_ITEM_KEY;
3084         location.offset = 0;
3085
3086         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3087         if (IS_ERR(fs_info->fs_root)) {
3088                 err = PTR_ERR(fs_info->fs_root);
3089                 goto fail_qgroup;
3090         }
3091
3092         if (sb->s_flags & MS_RDONLY)
3093                 return 0;
3094
3095         if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3096             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3097                 btrfs_info(fs_info, "creating free space tree");
3098                 ret = btrfs_create_free_space_tree(fs_info);
3099                 if (ret) {
3100                         btrfs_warn(fs_info,
3101                                 "failed to create free space tree: %d", ret);
3102                         close_ctree(tree_root);
3103                         return ret;
3104                 }
3105         }
3106
3107         down_read(&fs_info->cleanup_work_sem);
3108         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3109             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3110                 up_read(&fs_info->cleanup_work_sem);
3111                 close_ctree(tree_root);
3112                 return ret;
3113         }
3114         up_read(&fs_info->cleanup_work_sem);
3115
3116         ret = btrfs_resume_balance_async(fs_info);
3117         if (ret) {
3118                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3119                 close_ctree(tree_root);
3120                 return ret;
3121         }
3122
3123         ret = btrfs_resume_dev_replace_async(fs_info);
3124         if (ret) {
3125                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3126                 close_ctree(tree_root);
3127                 return ret;
3128         }
3129
3130         btrfs_qgroup_rescan_resume(fs_info);
3131
3132         if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3133             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3134                 btrfs_info(fs_info, "clearing free space tree");
3135                 ret = btrfs_clear_free_space_tree(fs_info);
3136                 if (ret) {
3137                         btrfs_warn(fs_info,
3138                                 "failed to clear free space tree: %d", ret);
3139                         close_ctree(tree_root);
3140                         return ret;
3141                 }
3142         }
3143
3144         if (!fs_info->uuid_root) {
3145                 btrfs_info(fs_info, "creating UUID tree");
3146                 ret = btrfs_create_uuid_tree(fs_info);
3147                 if (ret) {
3148                         btrfs_warn(fs_info,
3149                                 "failed to create the UUID tree: %d", ret);
3150                         close_ctree(tree_root);
3151                         return ret;
3152                 }
3153         } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3154                    fs_info->generation !=
3155                                 btrfs_super_uuid_tree_generation(disk_super)) {
3156                 btrfs_info(fs_info, "checking UUID tree");
3157                 ret = btrfs_check_uuid_tree(fs_info);
3158                 if (ret) {
3159                         btrfs_warn(fs_info,
3160                                 "failed to check the UUID tree: %d", ret);
3161                         close_ctree(tree_root);
3162                         return ret;
3163                 }
3164         } else {
3165                 fs_info->update_uuid_tree_gen = 1;
3166         }
3167
3168         fs_info->open = 1;
3169
3170         /*
3171          * backuproot only affect mount behavior, and if open_ctree succeeded,
3172          * no need to keep the flag
3173          */
3174         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3175
3176         return 0;
3177
3178 fail_qgroup:
3179         btrfs_free_qgroup_config(fs_info);
3180 fail_trans_kthread:
3181         kthread_stop(fs_info->transaction_kthread);
3182         btrfs_cleanup_transaction(fs_info->tree_root);
3183         btrfs_free_fs_roots(fs_info);
3184 fail_cleaner:
3185         kthread_stop(fs_info->cleaner_kthread);
3186
3187         /*
3188          * make sure we're done with the btree inode before we stop our
3189          * kthreads
3190          */
3191         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3192
3193 fail_sysfs:
3194         btrfs_sysfs_remove_mounted(fs_info);
3195
3196 fail_fsdev_sysfs:
3197         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3198
3199 fail_block_groups:
3200         btrfs_put_block_group_cache(fs_info);
3201         btrfs_free_block_groups(fs_info);
3202
3203 fail_tree_roots:
3204         free_root_pointers(fs_info, 1);
3205         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3206
3207 fail_sb_buffer:
3208         btrfs_stop_all_workers(fs_info);
3209 fail_alloc:
3210 fail_iput:
3211         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3212
3213         iput(fs_info->btree_inode);
3214 fail_bio_counter:
3215         percpu_counter_destroy(&fs_info->bio_counter);
3216 fail_delalloc_bytes:
3217         percpu_counter_destroy(&fs_info->delalloc_bytes);
3218 fail_dirty_metadata_bytes:
3219         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3220 fail_bdi:
3221         bdi_destroy(&fs_info->bdi);
3222 fail_srcu:
3223         cleanup_srcu_struct(&fs_info->subvol_srcu);
3224 fail:
3225         btrfs_free_stripe_hash_table(fs_info);
3226         btrfs_close_devices(fs_info->fs_devices);
3227         return err;
3228
3229 recovery_tree_root:
3230         if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3231                 goto fail_tree_roots;
3232
3233         free_root_pointers(fs_info, 0);
3234
3235         /* don't use the log in recovery mode, it won't be valid */
3236         btrfs_set_super_log_root(disk_super, 0);
3237
3238         /* we can't trust the free space cache either */
3239         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3240
3241         ret = next_root_backup(fs_info, fs_info->super_copy,
3242                                &num_backups_tried, &backup_index);
3243         if (ret == -1)
3244                 goto fail_block_groups;
3245         goto retry_root_backup;
3246 }
3247
3248 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3249 {
3250         if (uptodate) {
3251                 set_buffer_uptodate(bh);
3252         } else {
3253                 struct btrfs_device *device = (struct btrfs_device *)
3254                         bh->b_private;
3255
3256                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3257                                 "lost page write due to IO error on %s",
3258                                           rcu_str_deref(device->name));
3259                 /* note, we don't set_buffer_write_io_error because we have
3260                  * our own ways of dealing with the IO errors
3261                  */
3262                 clear_buffer_uptodate(bh);
3263                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3264         }
3265         unlock_buffer(bh);
3266         put_bh(bh);
3267 }
3268
3269 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3270                         struct buffer_head **bh_ret)
3271 {
3272         struct buffer_head *bh;
3273         struct btrfs_super_block *super;
3274         u64 bytenr;
3275
3276         bytenr = btrfs_sb_offset(copy_num);
3277         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3278                 return -EINVAL;
3279
3280         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3281         /*
3282          * If we fail to read from the underlying devices, as of now
3283          * the best option we have is to mark it EIO.
3284          */
3285         if (!bh)
3286                 return -EIO;
3287
3288         super = (struct btrfs_super_block *)bh->b_data;
3289         if (btrfs_super_bytenr(super) != bytenr ||
3290                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3291                 brelse(bh);
3292                 return -EINVAL;
3293         }
3294
3295         *bh_ret = bh;
3296         return 0;
3297 }
3298
3299
3300 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3301 {
3302         struct buffer_head *bh;
3303         struct buffer_head *latest = NULL;
3304         struct btrfs_super_block *super;
3305         int i;
3306         u64 transid = 0;
3307         int ret = -EINVAL;
3308
3309         /* we would like to check all the supers, but that would make
3310          * a btrfs mount succeed after a mkfs from a different FS.
3311          * So, we need to add a special mount option to scan for
3312          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3313          */
3314         for (i = 0; i < 1; i++) {
3315                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3316                 if (ret)
3317                         continue;
3318
3319                 super = (struct btrfs_super_block *)bh->b_data;
3320
3321                 if (!latest || btrfs_super_generation(super) > transid) {
3322                         brelse(latest);
3323                         latest = bh;
3324                         transid = btrfs_super_generation(super);
3325                 } else {
3326                         brelse(bh);
3327                 }
3328         }
3329
3330         if (!latest)
3331                 return ERR_PTR(ret);
3332
3333         return latest;
3334 }
3335
3336 /*
3337  * this should be called twice, once with wait == 0 and
3338  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3339  * we write are pinned.
3340  *
3341  * They are released when wait == 1 is done.
3342  * max_mirrors must be the same for both runs, and it indicates how
3343  * many supers on this one device should be written.
3344  *
3345  * max_mirrors == 0 means to write them all.
3346  */
3347 static int write_dev_supers(struct btrfs_device *device,
3348                             struct btrfs_super_block *sb,
3349                             int do_barriers, int wait, int max_mirrors)
3350 {
3351         struct buffer_head *bh;
3352         int i;
3353         int ret;
3354         int errors = 0;
3355         u32 crc;
3356         u64 bytenr;
3357
3358         if (max_mirrors == 0)
3359                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3360
3361         for (i = 0; i < max_mirrors; i++) {
3362                 bytenr = btrfs_sb_offset(i);
3363                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3364                     device->commit_total_bytes)
3365                         break;
3366
3367                 if (wait) {
3368                         bh = __find_get_block(device->bdev, bytenr / 4096,
3369                                               BTRFS_SUPER_INFO_SIZE);
3370                         if (!bh) {
3371                                 errors++;
3372                                 continue;
3373                         }
3374                         wait_on_buffer(bh);
3375                         if (!buffer_uptodate(bh))
3376                                 errors++;
3377
3378                         /* drop our reference */
3379                         brelse(bh);
3380
3381                         /* drop the reference from the wait == 0 run */
3382                         brelse(bh);
3383                         continue;
3384                 } else {
3385                         btrfs_set_super_bytenr(sb, bytenr);
3386
3387                         crc = ~(u32)0;
3388                         crc = btrfs_csum_data((char *)sb +
3389                                               BTRFS_CSUM_SIZE, crc,
3390                                               BTRFS_SUPER_INFO_SIZE -
3391                                               BTRFS_CSUM_SIZE);
3392                         btrfs_csum_final(crc, sb->csum);
3393
3394                         /*
3395                          * one reference for us, and we leave it for the
3396                          * caller
3397                          */
3398                         bh = __getblk(device->bdev, bytenr / 4096,
3399                                       BTRFS_SUPER_INFO_SIZE);
3400                         if (!bh) {
3401                                 btrfs_err(device->dev_root->fs_info,
3402                                     "couldn't get super buffer head for bytenr %llu",
3403                                     bytenr);
3404                                 errors++;
3405                                 continue;
3406                         }
3407
3408                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3409
3410                         /* one reference for submit_bh */
3411                         get_bh(bh);
3412
3413                         set_buffer_uptodate(bh);
3414                         lock_buffer(bh);
3415                         bh->b_end_io = btrfs_end_buffer_write_sync;
3416                         bh->b_private = device;
3417                 }
3418
3419                 /*
3420                  * we fua the first super.  The others we allow
3421                  * to go down lazy.
3422                  */
3423                 if (i == 0)
3424                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3425                 else
3426                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3427                 if (ret)
3428                         errors++;
3429         }
3430         return errors < i ? 0 : -1;
3431 }
3432
3433 /*
3434  * endio for the write_dev_flush, this will wake anyone waiting
3435  * for the barrier when it is done
3436  */
3437 static void btrfs_end_empty_barrier(struct bio *bio)
3438 {
3439         if (bio->bi_private)
3440                 complete(bio->bi_private);
3441         bio_put(bio);
3442 }
3443
3444 /*
3445  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3446  * sent down.  With wait == 1, it waits for the previous flush.
3447  *
3448  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3449  * capable
3450  */
3451 static int write_dev_flush(struct btrfs_device *device, int wait)
3452 {
3453         struct bio *bio;
3454         int ret = 0;
3455
3456         if (device->nobarriers)
3457                 return 0;
3458
3459         if (wait) {
3460                 bio = device->flush_bio;
3461                 if (!bio)
3462                         return 0;
3463
3464                 wait_for_completion(&device->flush_wait);
3465
3466                 if (bio->bi_error) {
3467                         ret = bio->bi_error;
3468                         btrfs_dev_stat_inc_and_print(device,
3469                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3470                 }
3471
3472                 /* drop the reference from the wait == 0 run */
3473                 bio_put(bio);
3474                 device->flush_bio = NULL;
3475
3476                 return ret;
3477         }
3478
3479         /*
3480          * one reference for us, and we leave it for the
3481          * caller
3482          */
3483         device->flush_bio = NULL;
3484         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3485         if (!bio)
3486                 return -ENOMEM;
3487
3488         bio->bi_end_io = btrfs_end_empty_barrier;
3489         bio->bi_bdev = device->bdev;
3490         init_completion(&device->flush_wait);
3491         bio->bi_private = &device->flush_wait;
3492         device->flush_bio = bio;
3493
3494         bio_get(bio);
3495         btrfsic_submit_bio(WRITE_FLUSH, bio);
3496
3497         return 0;
3498 }
3499
3500 /*
3501  * send an empty flush down to each device in parallel,
3502  * then wait for them
3503  */
3504 static int barrier_all_devices(struct btrfs_fs_info *info)
3505 {
3506         struct list_head *head;
3507         struct btrfs_device *dev;
3508         int errors_send = 0;
3509         int errors_wait = 0;
3510         int ret;
3511
3512         /* send down all the barriers */
3513         head = &info->fs_devices->devices;
3514         list_for_each_entry_rcu(dev, head, dev_list) {
3515                 if (dev->missing)
3516                         continue;
3517                 if (!dev->bdev) {
3518                         errors_send++;
3519                         continue;
3520                 }
3521                 if (!dev->in_fs_metadata || !dev->writeable)
3522                         continue;
3523
3524                 ret = write_dev_flush(dev, 0);
3525                 if (ret)
3526                         errors_send++;
3527         }
3528
3529         /* wait for all the barriers */
3530         list_for_each_entry_rcu(dev, head, dev_list) {
3531                 if (dev->missing)
3532                         continue;
3533                 if (!dev->bdev) {
3534                         errors_wait++;
3535                         continue;
3536                 }
3537                 if (!dev->in_fs_metadata || !dev->writeable)
3538                         continue;
3539
3540                 ret = write_dev_flush(dev, 1);
3541                 if (ret)
3542                         errors_wait++;
3543         }
3544         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3545             errors_wait > info->num_tolerated_disk_barrier_failures)
3546                 return -EIO;
3547         return 0;
3548 }
3549
3550 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3551 {
3552         int raid_type;
3553         int min_tolerated = INT_MAX;
3554
3555         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3556             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3557                 min_tolerated = min(min_tolerated,
3558                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3559                                     tolerated_failures);
3560
3561         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3562                 if (raid_type == BTRFS_RAID_SINGLE)
3563                         continue;
3564                 if (!(flags & btrfs_raid_group[raid_type]))
3565                         continue;
3566                 min_tolerated = min(min_tolerated,
3567                                     btrfs_raid_array[raid_type].
3568                                     tolerated_failures);
3569         }
3570
3571         if (min_tolerated == INT_MAX) {
3572                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3573                 min_tolerated = 0;
3574         }
3575
3576         return min_tolerated;
3577 }
3578
3579 int btrfs_calc_num_tolerated_disk_barrier_failures(
3580         struct btrfs_fs_info *fs_info)
3581 {
3582         struct btrfs_ioctl_space_info space;
3583         struct btrfs_space_info *sinfo;
3584         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3585                        BTRFS_BLOCK_GROUP_SYSTEM,
3586                        BTRFS_BLOCK_GROUP_METADATA,
3587                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3588         int i;
3589         int c;
3590         int num_tolerated_disk_barrier_failures =
3591                 (int)fs_info->fs_devices->num_devices;
3592
3593         for (i = 0; i < ARRAY_SIZE(types); i++) {
3594                 struct btrfs_space_info *tmp;
3595
3596                 sinfo = NULL;
3597                 rcu_read_lock();
3598                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3599                         if (tmp->flags == types[i]) {
3600                                 sinfo = tmp;
3601                                 break;
3602                         }
3603                 }
3604                 rcu_read_unlock();
3605
3606                 if (!sinfo)
3607                         continue;
3608
3609                 down_read(&sinfo->groups_sem);
3610                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3611                         u64 flags;
3612
3613                         if (list_empty(&sinfo->block_groups[c]))
3614                                 continue;
3615
3616                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3617                                                    &space);
3618                         if (space.total_bytes == 0 || space.used_bytes == 0)
3619                                 continue;
3620                         flags = space.flags;
3621
3622                         num_tolerated_disk_barrier_failures = min(
3623                                 num_tolerated_disk_barrier_failures,
3624                                 btrfs_get_num_tolerated_disk_barrier_failures(
3625                                         flags));
3626                 }
3627                 up_read(&sinfo->groups_sem);
3628         }
3629
3630         return num_tolerated_disk_barrier_failures;
3631 }
3632
3633 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3634 {
3635         struct list_head *head;
3636         struct btrfs_device *dev;
3637         struct btrfs_super_block *sb;
3638         struct btrfs_dev_item *dev_item;
3639         int ret;
3640         int do_barriers;
3641         int max_errors;
3642         int total_errors = 0;
3643         u64 flags;
3644
3645         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3646         backup_super_roots(root->fs_info);
3647
3648         sb = root->fs_info->super_for_commit;
3649         dev_item = &sb->dev_item;
3650
3651         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3652         head = &root->fs_info->fs_devices->devices;
3653         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3654
3655         if (do_barriers) {
3656                 ret = barrier_all_devices(root->fs_info);
3657                 if (ret) {
3658                         mutex_unlock(
3659                                 &root->fs_info->fs_devices->device_list_mutex);
3660                         btrfs_handle_fs_error(root->fs_info, ret,
3661                                     "errors while submitting device barriers.");
3662                         return ret;
3663                 }
3664         }
3665
3666         list_for_each_entry_rcu(dev, head, dev_list) {
3667                 if (!dev->bdev) {
3668                         total_errors++;
3669                         continue;
3670                 }
3671                 if (!dev->in_fs_metadata || !dev->writeable)
3672                         continue;
3673
3674                 btrfs_set_stack_device_generation(dev_item, 0);
3675                 btrfs_set_stack_device_type(dev_item, dev->type);
3676                 btrfs_set_stack_device_id(dev_item, dev->devid);
3677                 btrfs_set_stack_device_total_bytes(dev_item,
3678                                                    dev->commit_total_bytes);
3679                 btrfs_set_stack_device_bytes_used(dev_item,
3680                                                   dev->commit_bytes_used);
3681                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3682                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3683                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3684                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3685                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3686
3687                 flags = btrfs_super_flags(sb);
3688                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3689
3690                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3691                 if (ret)
3692                         total_errors++;
3693         }
3694         if (total_errors > max_errors) {
3695                 btrfs_err(root->fs_info, "%d errors while writing supers",
3696                        total_errors);
3697                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3698
3699                 /* FUA is masked off if unsupported and can't be the reason */
3700                 btrfs_handle_fs_error(root->fs_info, -EIO,
3701                             "%d errors while writing supers", total_errors);
3702                 return -EIO;
3703         }
3704
3705         total_errors = 0;
3706         list_for_each_entry_rcu(dev, head, dev_list) {
3707                 if (!dev->bdev)
3708                         continue;
3709                 if (!dev->in_fs_metadata || !dev->writeable)
3710                         continue;
3711
3712                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3713                 if (ret)
3714                         total_errors++;
3715         }
3716         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3717         if (total_errors > max_errors) {
3718                 btrfs_handle_fs_error(root->fs_info, -EIO,
3719                             "%d errors while writing supers", total_errors);
3720                 return -EIO;
3721         }
3722         return 0;
3723 }
3724
3725 int write_ctree_super(struct btrfs_trans_handle *trans,
3726                       struct btrfs_root *root, int max_mirrors)
3727 {
3728         return write_all_supers(root, max_mirrors);
3729 }
3730
3731 /* Drop a fs root from the radix tree and free it. */
3732 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3733                                   struct btrfs_root *root)
3734 {
3735         spin_lock(&fs_info->fs_roots_radix_lock);
3736         radix_tree_delete(&fs_info->fs_roots_radix,
3737                           (unsigned long)root->root_key.objectid);
3738         spin_unlock(&fs_info->fs_roots_radix_lock);
3739
3740         if (btrfs_root_refs(&root->root_item) == 0)
3741                 synchronize_srcu(&fs_info->subvol_srcu);
3742
3743         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3744                 btrfs_free_log(NULL, root);
3745
3746         if (root->free_ino_pinned)
3747                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3748         if (root->free_ino_ctl)
3749                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3750         free_fs_root(root);
3751 }
3752
3753 static void free_fs_root(struct btrfs_root *root)
3754 {
3755         iput(root->ino_cache_inode);
3756         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3757         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3758         root->orphan_block_rsv = NULL;
3759         if (root->anon_dev)
3760                 free_anon_bdev(root->anon_dev);
3761         if (root->subv_writers)
3762                 btrfs_free_subvolume_writers(root->subv_writers);
3763         free_extent_buffer(root->node);
3764         free_extent_buffer(root->commit_root);
3765         kfree(root->free_ino_ctl);
3766         kfree(root->free_ino_pinned);
3767         kfree(root->name);
3768         btrfs_put_fs_root(root);
3769 }
3770
3771 void btrfs_free_fs_root(struct btrfs_root *root)
3772 {
3773         free_fs_root(root);
3774 }
3775
3776 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3777 {
3778         u64 root_objectid = 0;
3779         struct btrfs_root *gang[8];
3780         int i = 0;
3781         int err = 0;
3782         unsigned int ret = 0;
3783         int index;
3784
3785         while (1) {
3786                 index = srcu_read_lock(&fs_info->subvol_srcu);
3787                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3788                                              (void **)gang, root_objectid,
3789                                              ARRAY_SIZE(gang));
3790                 if (!ret) {
3791                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3792                         break;
3793                 }
3794                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3795
3796                 for (i = 0; i < ret; i++) {
3797                         /* Avoid to grab roots in dead_roots */
3798                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3799                                 gang[i] = NULL;
3800                                 continue;
3801                         }
3802                         /* grab all the search result for later use */
3803                         gang[i] = btrfs_grab_fs_root(gang[i]);
3804                 }
3805                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3806
3807                 for (i = 0; i < ret; i++) {
3808                         if (!gang[i])
3809                                 continue;
3810                         root_objectid = gang[i]->root_key.objectid;
3811                         err = btrfs_orphan_cleanup(gang[i]);
3812                         if (err)
3813                                 break;
3814                         btrfs_put_fs_root(gang[i]);
3815                 }
3816                 root_objectid++;
3817         }
3818
3819         /* release the uncleaned roots due to error */
3820         for (; i < ret; i++) {
3821                 if (gang[i])
3822                         btrfs_put_fs_root(gang[i]);
3823         }
3824         return err;
3825 }
3826
3827 int btrfs_commit_super(struct btrfs_root *root)
3828 {
3829         struct btrfs_trans_handle *trans;
3830
3831         mutex_lock(&root->fs_info->cleaner_mutex);
3832         btrfs_run_delayed_iputs(root);
3833         mutex_unlock(&root->fs_info->cleaner_mutex);
3834         wake_up_process(root->fs_info->cleaner_kthread);
3835
3836         /* wait until ongoing cleanup work done */
3837         down_write(&root->fs_info->cleanup_work_sem);
3838         up_write(&root->fs_info->cleanup_work_sem);
3839
3840         trans = btrfs_join_transaction(root);
3841         if (IS_ERR(trans))
3842                 return PTR_ERR(trans);
3843         return btrfs_commit_transaction(trans, root);
3844 }
3845
3846 void close_ctree(struct btrfs_root *root)
3847 {
3848         struct btrfs_fs_info *fs_info = root->fs_info;
3849         int ret;
3850
3851         fs_info->closing = 1;
3852         smp_mb();
3853
3854         /* wait for the qgroup rescan worker to stop */
3855         btrfs_qgroup_wait_for_completion(fs_info);
3856
3857         /* wait for the uuid_scan task to finish */
3858         down(&fs_info->uuid_tree_rescan_sem);
3859         /* avoid complains from lockdep et al., set sem back to initial state */
3860         up(&fs_info->uuid_tree_rescan_sem);
3861
3862         /* pause restriper - we want to resume on mount */
3863         btrfs_pause_balance(fs_info);
3864
3865         btrfs_dev_replace_suspend_for_unmount(fs_info);
3866
3867         btrfs_scrub_cancel(fs_info);
3868
3869         /* wait for any defraggers to finish */
3870         wait_event(fs_info->transaction_wait,
3871                    (atomic_read(&fs_info->defrag_running) == 0));
3872
3873         /* clear out the rbtree of defraggable inodes */
3874         btrfs_cleanup_defrag_inodes(fs_info);
3875
3876         cancel_work_sync(&fs_info->async_reclaim_work);
3877
3878         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3879                 /*
3880                  * If the cleaner thread is stopped and there are
3881                  * block groups queued for removal, the deletion will be
3882                  * skipped when we quit the cleaner thread.
3883                  */
3884                 btrfs_delete_unused_bgs(root->fs_info);
3885
3886                 ret = btrfs_commit_super(root);
3887                 if (ret)
3888                         btrfs_err(fs_info, "commit super ret %d", ret);
3889         }
3890
3891         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3892                 btrfs_error_commit_super(root);
3893
3894         kthread_stop(fs_info->transaction_kthread);
3895         kthread_stop(fs_info->cleaner_kthread);
3896
3897         fs_info->closing = 2;
3898         smp_mb();
3899
3900         btrfs_free_qgroup_config(fs_info);
3901
3902         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3903                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3904                        percpu_counter_sum(&fs_info->delalloc_bytes));
3905         }
3906
3907         btrfs_sysfs_remove_mounted(fs_info);
3908         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3909
3910         btrfs_free_fs_roots(fs_info);
3911
3912         btrfs_put_block_group_cache(fs_info);
3913
3914         btrfs_free_block_groups(fs_info);
3915
3916         /*
3917          * we must make sure there is not any read request to
3918          * submit after we stopping all workers.
3919          */
3920         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3921         btrfs_stop_all_workers(fs_info);
3922
3923         fs_info->open = 0;
3924         free_root_pointers(fs_info, 1);
3925
3926         iput(fs_info->btree_inode);
3927
3928 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3929         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3930                 btrfsic_unmount(root, fs_info->fs_devices);
3931 #endif
3932
3933         btrfs_close_devices(fs_info->fs_devices);
3934         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3935
3936         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3937         percpu_counter_destroy(&fs_info->delalloc_bytes);
3938         percpu_counter_destroy(&fs_info->bio_counter);
3939         bdi_destroy(&fs_info->bdi);
3940         cleanup_srcu_struct(&fs_info->subvol_srcu);
3941
3942         btrfs_free_stripe_hash_table(fs_info);
3943
3944         __btrfs_free_block_rsv(root->orphan_block_rsv);
3945         root->orphan_block_rsv = NULL;
3946
3947         lock_chunks(root);
3948         while (!list_empty(&fs_info->pinned_chunks)) {
3949                 struct extent_map *em;
3950
3951                 em = list_first_entry(&fs_info->pinned_chunks,
3952                                       struct extent_map, list);
3953                 list_del_init(&em->list);
3954                 free_extent_map(em);
3955         }
3956         unlock_chunks(root);
3957 }
3958
3959 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3960                           int atomic)
3961 {
3962         int ret;
3963         struct inode *btree_inode = buf->pages[0]->mapping->host;
3964
3965         ret = extent_buffer_uptodate(buf);
3966         if (!ret)
3967                 return ret;
3968
3969         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3970                                     parent_transid, atomic);
3971         if (ret == -EAGAIN)
3972                 return ret;
3973         return !ret;
3974 }
3975
3976 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3977 {
3978         struct btrfs_root *root;
3979         u64 transid = btrfs_header_generation(buf);
3980         int was_dirty;
3981
3982 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3983         /*
3984          * This is a fast path so only do this check if we have sanity tests
3985          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3986          * outside of the sanity tests.
3987          */
3988         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3989                 return;
3990 #endif
3991         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3992         btrfs_assert_tree_locked(buf);
3993         if (transid != root->fs_info->generation)
3994                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3995                        "found %llu running %llu\n",
3996                         buf->start, transid, root->fs_info->generation);
3997         was_dirty = set_extent_buffer_dirty(buf);
3998         if (!was_dirty)
3999                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4000                                      buf->len,
4001                                      root->fs_info->dirty_metadata_batch);
4002 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4003         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4004                 btrfs_print_leaf(root, buf);
4005                 ASSERT(0);
4006         }
4007 #endif
4008 }
4009
4010 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4011                                         int flush_delayed)
4012 {
4013         /*
4014          * looks as though older kernels can get into trouble with
4015          * this code, they end up stuck in balance_dirty_pages forever
4016          */
4017         int ret;
4018
4019         if (current->flags & PF_MEMALLOC)
4020                 return;
4021
4022         if (flush_delayed)
4023                 btrfs_balance_delayed_items(root);
4024
4025         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4026                                      BTRFS_DIRTY_METADATA_THRESH);
4027         if (ret > 0) {
4028                 balance_dirty_pages_ratelimited(
4029                                    root->fs_info->btree_inode->i_mapping);
4030         }
4031 }
4032
4033 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4034 {
4035         __btrfs_btree_balance_dirty(root, 1);
4036 }
4037
4038 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4039 {
4040         __btrfs_btree_balance_dirty(root, 0);
4041 }
4042
4043 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4044 {
4045         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4046         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4047 }
4048
4049 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4050                               int read_only)
4051 {
4052         struct btrfs_super_block *sb = fs_info->super_copy;
4053         u64 nodesize = btrfs_super_nodesize(sb);
4054         u64 sectorsize = btrfs_super_sectorsize(sb);
4055         int ret = 0;
4056
4057         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4058                 printk(KERN_ERR "BTRFS: no valid FS found\n");
4059                 ret = -EINVAL;
4060         }
4061         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4062                 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4063                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4064         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4065                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4066                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4067                 ret = -EINVAL;
4068         }
4069         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4070                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4071                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4072                 ret = -EINVAL;
4073         }
4074         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4075                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4076                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4077                 ret = -EINVAL;
4078         }
4079
4080         /*
4081          * Check sectorsize and nodesize first, other check will need it.
4082          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4083          */
4084         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4085             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4086                 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4087                 ret = -EINVAL;
4088         }
4089         /* Only PAGE SIZE is supported yet */
4090         if (sectorsize != PAGE_SIZE) {
4091                 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4092                                 sectorsize, PAGE_SIZE);
4093                 ret = -EINVAL;
4094         }
4095         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4096             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4097                 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4098                 ret = -EINVAL;
4099         }
4100         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4101                 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4102                                 le32_to_cpu(sb->__unused_leafsize),
4103                                 nodesize);
4104                 ret = -EINVAL;
4105         }
4106
4107         /* Root alignment check */
4108         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4109                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4110                                 btrfs_super_root(sb));
4111                 ret = -EINVAL;
4112         }
4113         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4114                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4115                                 btrfs_super_chunk_root(sb));
4116                 ret = -EINVAL;
4117         }
4118         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4119                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4120                                 btrfs_super_log_root(sb));
4121                 ret = -EINVAL;
4122         }
4123
4124         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4125                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4126                                 fs_info->fsid, sb->dev_item.fsid);
4127                 ret = -EINVAL;
4128         }
4129
4130         /*
4131          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4132          * done later
4133          */
4134         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4135                 btrfs_err(fs_info, "bytes_used is too small %llu",
4136                        btrfs_super_bytes_used(sb));
4137                 ret = -EINVAL;
4138         }
4139         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4140                 btrfs_err(fs_info, "invalid stripesize %u",
4141                        btrfs_super_stripesize(sb));
4142                 ret = -EINVAL;
4143         }
4144         if (btrfs_super_num_devices(sb) > (1UL << 31))
4145                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4146                                 btrfs_super_num_devices(sb));
4147         if (btrfs_super_num_devices(sb) == 0) {
4148                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4149                 ret = -EINVAL;
4150         }
4151
4152         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4153                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4154                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4155                 ret = -EINVAL;
4156         }
4157
4158         /*
4159          * Obvious sys_chunk_array corruptions, it must hold at least one key
4160          * and one chunk
4161          */
4162         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4163                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4164                                 btrfs_super_sys_array_size(sb),
4165                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4166                 ret = -EINVAL;
4167         }
4168         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4169                         + sizeof(struct btrfs_chunk)) {
4170                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4171                                 btrfs_super_sys_array_size(sb),
4172                                 sizeof(struct btrfs_disk_key)
4173                                 + sizeof(struct btrfs_chunk));
4174                 ret = -EINVAL;
4175         }
4176
4177         /*
4178          * The generation is a global counter, we'll trust it more than the others
4179          * but it's still possible that it's the one that's wrong.
4180          */
4181         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4182                 printk(KERN_WARNING
4183                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4184                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4185         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4186             && btrfs_super_cache_generation(sb) != (u64)-1)
4187                 printk(KERN_WARNING
4188                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4189                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4190
4191         return ret;
4192 }
4193
4194 static void btrfs_error_commit_super(struct btrfs_root *root)
4195 {
4196         mutex_lock(&root->fs_info->cleaner_mutex);
4197         btrfs_run_delayed_iputs(root);
4198         mutex_unlock(&root->fs_info->cleaner_mutex);
4199
4200         down_write(&root->fs_info->cleanup_work_sem);
4201         up_write(&root->fs_info->cleanup_work_sem);
4202
4203         /* cleanup FS via transaction */
4204         btrfs_cleanup_transaction(root);
4205 }
4206
4207 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4208 {
4209         struct btrfs_ordered_extent *ordered;
4210
4211         spin_lock(&root->ordered_extent_lock);
4212         /*
4213          * This will just short circuit the ordered completion stuff which will
4214          * make sure the ordered extent gets properly cleaned up.
4215          */
4216         list_for_each_entry(ordered, &root->ordered_extents,
4217                             root_extent_list)
4218                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4219         spin_unlock(&root->ordered_extent_lock);
4220 }
4221
4222 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4223 {
4224         struct btrfs_root *root;
4225         struct list_head splice;
4226
4227         INIT_LIST_HEAD(&splice);
4228
4229         spin_lock(&fs_info->ordered_root_lock);
4230         list_splice_init(&fs_info->ordered_roots, &splice);
4231         while (!list_empty(&splice)) {
4232                 root = list_first_entry(&splice, struct btrfs_root,
4233                                         ordered_root);
4234                 list_move_tail(&root->ordered_root,
4235                                &fs_info->ordered_roots);
4236
4237                 spin_unlock(&fs_info->ordered_root_lock);
4238                 btrfs_destroy_ordered_extents(root);
4239
4240                 cond_resched();
4241                 spin_lock(&fs_info->ordered_root_lock);
4242         }
4243         spin_unlock(&fs_info->ordered_root_lock);
4244 }
4245
4246 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4247                                       struct btrfs_root *root)
4248 {
4249         struct rb_node *node;
4250         struct btrfs_delayed_ref_root *delayed_refs;
4251         struct btrfs_delayed_ref_node *ref;
4252         int ret = 0;
4253
4254         delayed_refs = &trans->delayed_refs;
4255
4256         spin_lock(&delayed_refs->lock);
4257         if (atomic_read(&delayed_refs->num_entries) == 0) {
4258                 spin_unlock(&delayed_refs->lock);
4259                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4260                 return ret;
4261         }
4262
4263         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4264                 struct btrfs_delayed_ref_head *head;
4265                 struct btrfs_delayed_ref_node *tmp;
4266                 bool pin_bytes = false;
4267
4268                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4269                                 href_node);
4270                 if (!mutex_trylock(&head->mutex)) {
4271                         atomic_inc(&head->node.refs);
4272                         spin_unlock(&delayed_refs->lock);
4273
4274                         mutex_lock(&head->mutex);
4275                         mutex_unlock(&head->mutex);
4276                         btrfs_put_delayed_ref(&head->node);
4277                         spin_lock(&delayed_refs->lock);
4278                         continue;
4279                 }
4280                 spin_lock(&head->lock);
4281                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4282                                                  list) {
4283                         ref->in_tree = 0;
4284                         list_del(&ref->list);
4285                         atomic_dec(&delayed_refs->num_entries);
4286                         btrfs_put_delayed_ref(ref);
4287                 }
4288                 if (head->must_insert_reserved)
4289                         pin_bytes = true;
4290                 btrfs_free_delayed_extent_op(head->extent_op);
4291                 delayed_refs->num_heads--;
4292                 if (head->processing == 0)
4293                         delayed_refs->num_heads_ready--;
4294                 atomic_dec(&delayed_refs->num_entries);
4295                 head->node.in_tree = 0;
4296                 rb_erase(&head->href_node, &delayed_refs->href_root);
4297                 spin_unlock(&head->lock);
4298                 spin_unlock(&delayed_refs->lock);
4299                 mutex_unlock(&head->mutex);
4300
4301                 if (pin_bytes)
4302                         btrfs_pin_extent(root, head->node.bytenr,
4303                                          head->node.num_bytes, 1);
4304                 btrfs_put_delayed_ref(&head->node);
4305                 cond_resched();
4306                 spin_lock(&delayed_refs->lock);
4307         }
4308
4309         spin_unlock(&delayed_refs->lock);
4310
4311         return ret;
4312 }
4313
4314 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4315 {
4316         struct btrfs_inode *btrfs_inode;
4317         struct list_head splice;
4318
4319         INIT_LIST_HEAD(&splice);
4320
4321         spin_lock(&root->delalloc_lock);
4322         list_splice_init(&root->delalloc_inodes, &splice);
4323
4324         while (!list_empty(&splice)) {
4325                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4326                                                delalloc_inodes);
4327
4328                 list_del_init(&btrfs_inode->delalloc_inodes);
4329                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4330                           &btrfs_inode->runtime_flags);
4331                 spin_unlock(&root->delalloc_lock);
4332
4333                 btrfs_invalidate_inodes(btrfs_inode->root);
4334
4335                 spin_lock(&root->delalloc_lock);
4336         }
4337
4338         spin_unlock(&root->delalloc_lock);
4339 }
4340
4341 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4342 {
4343         struct btrfs_root *root;
4344         struct list_head splice;
4345
4346         INIT_LIST_HEAD(&splice);
4347
4348         spin_lock(&fs_info->delalloc_root_lock);
4349         list_splice_init(&fs_info->delalloc_roots, &splice);
4350         while (!list_empty(&splice)) {
4351                 root = list_first_entry(&splice, struct btrfs_root,
4352                                          delalloc_root);
4353                 list_del_init(&root->delalloc_root);
4354                 root = btrfs_grab_fs_root(root);
4355                 BUG_ON(!root);
4356                 spin_unlock(&fs_info->delalloc_root_lock);
4357
4358                 btrfs_destroy_delalloc_inodes(root);
4359                 btrfs_put_fs_root(root);
4360
4361                 spin_lock(&fs_info->delalloc_root_lock);
4362         }
4363         spin_unlock(&fs_info->delalloc_root_lock);
4364 }
4365
4366 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4367                                         struct extent_io_tree *dirty_pages,
4368                                         int mark)
4369 {
4370         int ret;
4371         struct extent_buffer *eb;
4372         u64 start = 0;
4373         u64 end;
4374
4375         while (1) {
4376                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4377                                             mark, NULL);
4378                 if (ret)
4379                         break;
4380
4381                 clear_extent_bits(dirty_pages, start, end, mark);
4382                 while (start <= end) {
4383                         eb = btrfs_find_tree_block(root->fs_info, start);
4384                         start += root->nodesize;
4385                         if (!eb)
4386                                 continue;
4387                         wait_on_extent_buffer_writeback(eb);
4388
4389                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4390                                                &eb->bflags))
4391                                 clear_extent_buffer_dirty(eb);
4392                         free_extent_buffer_stale(eb);
4393                 }
4394         }
4395
4396         return ret;
4397 }
4398
4399 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4400                                        struct extent_io_tree *pinned_extents)
4401 {
4402         struct extent_io_tree *unpin;
4403         u64 start;
4404         u64 end;
4405         int ret;
4406         bool loop = true;
4407
4408         unpin = pinned_extents;
4409 again:
4410         while (1) {
4411                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4412                                             EXTENT_DIRTY, NULL);
4413                 if (ret)
4414                         break;
4415
4416                 clear_extent_dirty(unpin, start, end);
4417                 btrfs_error_unpin_extent_range(root, start, end);
4418                 cond_resched();
4419         }
4420
4421         if (loop) {
4422                 if (unpin == &root->fs_info->freed_extents[0])
4423                         unpin = &root->fs_info->freed_extents[1];
4424                 else
4425                         unpin = &root->fs_info->freed_extents[0];
4426                 loop = false;
4427                 goto again;
4428         }
4429
4430         return 0;
4431 }
4432
4433 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4434                                    struct btrfs_root *root)
4435 {
4436         btrfs_destroy_delayed_refs(cur_trans, root);
4437
4438         cur_trans->state = TRANS_STATE_COMMIT_START;
4439         wake_up(&root->fs_info->transaction_blocked_wait);
4440
4441         cur_trans->state = TRANS_STATE_UNBLOCKED;
4442         wake_up(&root->fs_info->transaction_wait);
4443
4444         btrfs_destroy_delayed_inodes(root);
4445         btrfs_assert_delayed_root_empty(root);
4446
4447         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4448                                      EXTENT_DIRTY);
4449         btrfs_destroy_pinned_extent(root,
4450                                     root->fs_info->pinned_extents);
4451
4452         cur_trans->state =TRANS_STATE_COMPLETED;
4453         wake_up(&cur_trans->commit_wait);
4454
4455         /*
4456         memset(cur_trans, 0, sizeof(*cur_trans));
4457         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4458         */
4459 }
4460
4461 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4462 {
4463         struct btrfs_transaction *t;
4464
4465         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4466
4467         spin_lock(&root->fs_info->trans_lock);
4468         while (!list_empty(&root->fs_info->trans_list)) {
4469                 t = list_first_entry(&root->fs_info->trans_list,
4470                                      struct btrfs_transaction, list);
4471                 if (t->state >= TRANS_STATE_COMMIT_START) {
4472                         atomic_inc(&t->use_count);
4473                         spin_unlock(&root->fs_info->trans_lock);
4474                         btrfs_wait_for_commit(root, t->transid);
4475                         btrfs_put_transaction(t);
4476                         spin_lock(&root->fs_info->trans_lock);
4477                         continue;
4478                 }
4479                 if (t == root->fs_info->running_transaction) {
4480                         t->state = TRANS_STATE_COMMIT_DOING;
4481                         spin_unlock(&root->fs_info->trans_lock);
4482                         /*
4483                          * We wait for 0 num_writers since we don't hold a trans
4484                          * handle open currently for this transaction.
4485                          */
4486                         wait_event(t->writer_wait,
4487                                    atomic_read(&t->num_writers) == 0);
4488                 } else {
4489                         spin_unlock(&root->fs_info->trans_lock);
4490                 }
4491                 btrfs_cleanup_one_transaction(t, root);
4492
4493                 spin_lock(&root->fs_info->trans_lock);
4494                 if (t == root->fs_info->running_transaction)
4495                         root->fs_info->running_transaction = NULL;
4496                 list_del_init(&t->list);
4497                 spin_unlock(&root->fs_info->trans_lock);
4498
4499                 btrfs_put_transaction(t);
4500                 trace_btrfs_transaction_commit(root);
4501                 spin_lock(&root->fs_info->trans_lock);
4502         }
4503         spin_unlock(&root->fs_info->trans_lock);
4504         btrfs_destroy_all_ordered_extents(root->fs_info);
4505         btrfs_destroy_delayed_inodes(root);
4506         btrfs_assert_delayed_root_empty(root);
4507         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4508         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4509         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4510
4511         return 0;
4512 }
4513
4514 static const struct extent_io_ops btree_extent_io_ops = {
4515         .readpage_end_io_hook = btree_readpage_end_io_hook,
4516         .readpage_io_failed_hook = btree_io_failed_hook,
4517         .submit_bio_hook = btree_submit_bio_hook,
4518         /* note we're sharing with inode.c for the merge bio hook */
4519         .merge_bio_hook = btrfs_merge_bio_hook,
4520 };