Merge remote-tracking branch 'upstream' into next
[cascardo/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27
28 static LIST_HEAD(buffers);
29 static LIST_HEAD(states);
30
31 #define LEAK_DEBUG 0
32 #if LEAK_DEBUG
33 static DEFINE_SPINLOCK(leak_lock);
34 #endif
35
36 #define BUFFER_LRU_MAX 64
37
38 struct tree_entry {
39         u64 start;
40         u64 end;
41         struct rb_node rb_node;
42 };
43
44 struct extent_page_data {
45         struct bio *bio;
46         struct extent_io_tree *tree;
47         get_extent_t *get_extent;
48
49         /* tells writepage not to lock the state bits for this range
50          * it still does the unlocking
51          */
52         unsigned int extent_locked:1;
53
54         /* tells the submit_bio code to use a WRITE_SYNC */
55         unsigned int sync_io:1;
56 };
57
58 static noinline void flush_write_bio(void *data);
59 static inline struct btrfs_fs_info *
60 tree_fs_info(struct extent_io_tree *tree)
61 {
62         return btrfs_sb(tree->mapping->host->i_sb);
63 }
64
65 int __init extent_io_init(void)
66 {
67         extent_state_cache = kmem_cache_create("extent_state",
68                         sizeof(struct extent_state), 0,
69                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
70         if (!extent_state_cache)
71                 return -ENOMEM;
72
73         extent_buffer_cache = kmem_cache_create("extent_buffers",
74                         sizeof(struct extent_buffer), 0,
75                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
76         if (!extent_buffer_cache)
77                 goto free_state_cache;
78         return 0;
79
80 free_state_cache:
81         kmem_cache_destroy(extent_state_cache);
82         return -ENOMEM;
83 }
84
85 void extent_io_exit(void)
86 {
87         struct extent_state *state;
88         struct extent_buffer *eb;
89
90         while (!list_empty(&states)) {
91                 state = list_entry(states.next, struct extent_state, leak_list);
92                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93                        "state %lu in tree %p refs %d\n",
94                        (unsigned long long)state->start,
95                        (unsigned long long)state->end,
96                        state->state, state->tree, atomic_read(&state->refs));
97                 list_del(&state->leak_list);
98                 kmem_cache_free(extent_state_cache, state);
99
100         }
101
102         while (!list_empty(&buffers)) {
103                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
104                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105                        "refs %d\n", (unsigned long long)eb->start,
106                        eb->len, atomic_read(&eb->refs));
107                 list_del(&eb->leak_list);
108                 kmem_cache_free(extent_buffer_cache, eb);
109         }
110         if (extent_state_cache)
111                 kmem_cache_destroy(extent_state_cache);
112         if (extent_buffer_cache)
113                 kmem_cache_destroy(extent_buffer_cache);
114 }
115
116 void extent_io_tree_init(struct extent_io_tree *tree,
117                          struct address_space *mapping)
118 {
119         tree->state = RB_ROOT;
120         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
121         tree->ops = NULL;
122         tree->dirty_bytes = 0;
123         spin_lock_init(&tree->lock);
124         spin_lock_init(&tree->buffer_lock);
125         tree->mapping = mapping;
126 }
127
128 static struct extent_state *alloc_extent_state(gfp_t mask)
129 {
130         struct extent_state *state;
131 #if LEAK_DEBUG
132         unsigned long flags;
133 #endif
134
135         state = kmem_cache_alloc(extent_state_cache, mask);
136         if (!state)
137                 return state;
138         state->state = 0;
139         state->private = 0;
140         state->tree = NULL;
141 #if LEAK_DEBUG
142         spin_lock_irqsave(&leak_lock, flags);
143         list_add(&state->leak_list, &states);
144         spin_unlock_irqrestore(&leak_lock, flags);
145 #endif
146         atomic_set(&state->refs, 1);
147         init_waitqueue_head(&state->wq);
148         trace_alloc_extent_state(state, mask, _RET_IP_);
149         return state;
150 }
151
152 void free_extent_state(struct extent_state *state)
153 {
154         if (!state)
155                 return;
156         if (atomic_dec_and_test(&state->refs)) {
157 #if LEAK_DEBUG
158                 unsigned long flags;
159 #endif
160                 WARN_ON(state->tree);
161 #if LEAK_DEBUG
162                 spin_lock_irqsave(&leak_lock, flags);
163                 list_del(&state->leak_list);
164                 spin_unlock_irqrestore(&leak_lock, flags);
165 #endif
166                 trace_free_extent_state(state, _RET_IP_);
167                 kmem_cache_free(extent_state_cache, state);
168         }
169 }
170
171 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
172                                    struct rb_node *node)
173 {
174         struct rb_node **p = &root->rb_node;
175         struct rb_node *parent = NULL;
176         struct tree_entry *entry;
177
178         while (*p) {
179                 parent = *p;
180                 entry = rb_entry(parent, struct tree_entry, rb_node);
181
182                 if (offset < entry->start)
183                         p = &(*p)->rb_left;
184                 else if (offset > entry->end)
185                         p = &(*p)->rb_right;
186                 else
187                         return parent;
188         }
189
190         rb_link_node(node, parent, p);
191         rb_insert_color(node, root);
192         return NULL;
193 }
194
195 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
196                                      struct rb_node **prev_ret,
197                                      struct rb_node **next_ret)
198 {
199         struct rb_root *root = &tree->state;
200         struct rb_node *n = root->rb_node;
201         struct rb_node *prev = NULL;
202         struct rb_node *orig_prev = NULL;
203         struct tree_entry *entry;
204         struct tree_entry *prev_entry = NULL;
205
206         while (n) {
207                 entry = rb_entry(n, struct tree_entry, rb_node);
208                 prev = n;
209                 prev_entry = entry;
210
211                 if (offset < entry->start)
212                         n = n->rb_left;
213                 else if (offset > entry->end)
214                         n = n->rb_right;
215                 else
216                         return n;
217         }
218
219         if (prev_ret) {
220                 orig_prev = prev;
221                 while (prev && offset > prev_entry->end) {
222                         prev = rb_next(prev);
223                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224                 }
225                 *prev_ret = prev;
226                 prev = orig_prev;
227         }
228
229         if (next_ret) {
230                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
231                 while (prev && offset < prev_entry->start) {
232                         prev = rb_prev(prev);
233                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
234                 }
235                 *next_ret = prev;
236         }
237         return NULL;
238 }
239
240 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
241                                           u64 offset)
242 {
243         struct rb_node *prev = NULL;
244         struct rb_node *ret;
245
246         ret = __etree_search(tree, offset, &prev, NULL);
247         if (!ret)
248                 return prev;
249         return ret;
250 }
251
252 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
253                      struct extent_state *other)
254 {
255         if (tree->ops && tree->ops->merge_extent_hook)
256                 tree->ops->merge_extent_hook(tree->mapping->host, new,
257                                              other);
258 }
259
260 /*
261  * utility function to look for merge candidates inside a given range.
262  * Any extents with matching state are merged together into a single
263  * extent in the tree.  Extents with EXTENT_IO in their state field
264  * are not merged because the end_io handlers need to be able to do
265  * operations on them without sleeping (or doing allocations/splits).
266  *
267  * This should be called with the tree lock held.
268  */
269 static void merge_state(struct extent_io_tree *tree,
270                         struct extent_state *state)
271 {
272         struct extent_state *other;
273         struct rb_node *other_node;
274
275         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
276                 return;
277
278         other_node = rb_prev(&state->rb_node);
279         if (other_node) {
280                 other = rb_entry(other_node, struct extent_state, rb_node);
281                 if (other->end == state->start - 1 &&
282                     other->state == state->state) {
283                         merge_cb(tree, state, other);
284                         state->start = other->start;
285                         other->tree = NULL;
286                         rb_erase(&other->rb_node, &tree->state);
287                         free_extent_state(other);
288                 }
289         }
290         other_node = rb_next(&state->rb_node);
291         if (other_node) {
292                 other = rb_entry(other_node, struct extent_state, rb_node);
293                 if (other->start == state->end + 1 &&
294                     other->state == state->state) {
295                         merge_cb(tree, state, other);
296                         state->end = other->end;
297                         other->tree = NULL;
298                         rb_erase(&other->rb_node, &tree->state);
299                         free_extent_state(other);
300                 }
301         }
302 }
303
304 static void set_state_cb(struct extent_io_tree *tree,
305                          struct extent_state *state, int *bits)
306 {
307         if (tree->ops && tree->ops->set_bit_hook)
308                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
309 }
310
311 static void clear_state_cb(struct extent_io_tree *tree,
312                            struct extent_state *state, int *bits)
313 {
314         if (tree->ops && tree->ops->clear_bit_hook)
315                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
316 }
317
318 static void set_state_bits(struct extent_io_tree *tree,
319                            struct extent_state *state, int *bits);
320
321 /*
322  * insert an extent_state struct into the tree.  'bits' are set on the
323  * struct before it is inserted.
324  *
325  * This may return -EEXIST if the extent is already there, in which case the
326  * state struct is freed.
327  *
328  * The tree lock is not taken internally.  This is a utility function and
329  * probably isn't what you want to call (see set/clear_extent_bit).
330  */
331 static int insert_state(struct extent_io_tree *tree,
332                         struct extent_state *state, u64 start, u64 end,
333                         int *bits)
334 {
335         struct rb_node *node;
336
337         if (end < start) {
338                 printk(KERN_ERR "btrfs end < start %llu %llu\n",
339                        (unsigned long long)end,
340                        (unsigned long long)start);
341                 WARN_ON(1);
342         }
343         state->start = start;
344         state->end = end;
345
346         set_state_bits(tree, state, bits);
347
348         node = tree_insert(&tree->state, end, &state->rb_node);
349         if (node) {
350                 struct extent_state *found;
351                 found = rb_entry(node, struct extent_state, rb_node);
352                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
353                        "%llu %llu\n", (unsigned long long)found->start,
354                        (unsigned long long)found->end,
355                        (unsigned long long)start, (unsigned long long)end);
356                 return -EEXIST;
357         }
358         state->tree = tree;
359         merge_state(tree, state);
360         return 0;
361 }
362
363 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
364                      u64 split)
365 {
366         if (tree->ops && tree->ops->split_extent_hook)
367                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
368 }
369
370 /*
371  * split a given extent state struct in two, inserting the preallocated
372  * struct 'prealloc' as the newly created second half.  'split' indicates an
373  * offset inside 'orig' where it should be split.
374  *
375  * Before calling,
376  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
377  * are two extent state structs in the tree:
378  * prealloc: [orig->start, split - 1]
379  * orig: [ split, orig->end ]
380  *
381  * The tree locks are not taken by this function. They need to be held
382  * by the caller.
383  */
384 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
385                        struct extent_state *prealloc, u64 split)
386 {
387         struct rb_node *node;
388
389         split_cb(tree, orig, split);
390
391         prealloc->start = orig->start;
392         prealloc->end = split - 1;
393         prealloc->state = orig->state;
394         orig->start = split;
395
396         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397         if (node) {
398                 free_extent_state(prealloc);
399                 return -EEXIST;
400         }
401         prealloc->tree = tree;
402         return 0;
403 }
404
405 static struct extent_state *next_state(struct extent_state *state)
406 {
407         struct rb_node *next = rb_next(&state->rb_node);
408         if (next)
409                 return rb_entry(next, struct extent_state, rb_node);
410         else
411                 return NULL;
412 }
413
414 /*
415  * utility function to clear some bits in an extent state struct.
416  * it will optionally wake up any one waiting on this state (wake == 1).
417  *
418  * If no bits are set on the state struct after clearing things, the
419  * struct is freed and removed from the tree
420  */
421 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
422                                             struct extent_state *state,
423                                             int *bits, int wake)
424 {
425         struct extent_state *next;
426         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
427
428         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
429                 u64 range = state->end - state->start + 1;
430                 WARN_ON(range > tree->dirty_bytes);
431                 tree->dirty_bytes -= range;
432         }
433         clear_state_cb(tree, state, bits);
434         state->state &= ~bits_to_clear;
435         if (wake)
436                 wake_up(&state->wq);
437         if (state->state == 0) {
438                 next = next_state(state);
439                 if (state->tree) {
440                         rb_erase(&state->rb_node, &tree->state);
441                         state->tree = NULL;
442                         free_extent_state(state);
443                 } else {
444                         WARN_ON(1);
445                 }
446         } else {
447                 merge_state(tree, state);
448                 next = next_state(state);
449         }
450         return next;
451 }
452
453 static struct extent_state *
454 alloc_extent_state_atomic(struct extent_state *prealloc)
455 {
456         if (!prealloc)
457                 prealloc = alloc_extent_state(GFP_ATOMIC);
458
459         return prealloc;
460 }
461
462 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
463 {
464         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
465                     "Extent tree was modified by another "
466                     "thread while locked.");
467 }
468
469 /*
470  * clear some bits on a range in the tree.  This may require splitting
471  * or inserting elements in the tree, so the gfp mask is used to
472  * indicate which allocations or sleeping are allowed.
473  *
474  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
475  * the given range from the tree regardless of state (ie for truncate).
476  *
477  * the range [start, end] is inclusive.
478  *
479  * This takes the tree lock, and returns 0 on success and < 0 on error.
480  */
481 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
482                      int bits, int wake, int delete,
483                      struct extent_state **cached_state,
484                      gfp_t mask)
485 {
486         struct extent_state *state;
487         struct extent_state *cached;
488         struct extent_state *prealloc = NULL;
489         struct rb_node *node;
490         u64 last_end;
491         int err;
492         int clear = 0;
493
494         if (delete)
495                 bits |= ~EXTENT_CTLBITS;
496         bits |= EXTENT_FIRST_DELALLOC;
497
498         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
499                 clear = 1;
500 again:
501         if (!prealloc && (mask & __GFP_WAIT)) {
502                 prealloc = alloc_extent_state(mask);
503                 if (!prealloc)
504                         return -ENOMEM;
505         }
506
507         spin_lock(&tree->lock);
508         if (cached_state) {
509                 cached = *cached_state;
510
511                 if (clear) {
512                         *cached_state = NULL;
513                         cached_state = NULL;
514                 }
515
516                 if (cached && cached->tree && cached->start <= start &&
517                     cached->end > start) {
518                         if (clear)
519                                 atomic_dec(&cached->refs);
520                         state = cached;
521                         goto hit_next;
522                 }
523                 if (clear)
524                         free_extent_state(cached);
525         }
526         /*
527          * this search will find the extents that end after
528          * our range starts
529          */
530         node = tree_search(tree, start);
531         if (!node)
532                 goto out;
533         state = rb_entry(node, struct extent_state, rb_node);
534 hit_next:
535         if (state->start > end)
536                 goto out;
537         WARN_ON(state->end < start);
538         last_end = state->end;
539
540         /* the state doesn't have the wanted bits, go ahead */
541         if (!(state->state & bits)) {
542                 state = next_state(state);
543                 goto next;
544         }
545
546         /*
547          *     | ---- desired range ---- |
548          *  | state | or
549          *  | ------------- state -------------- |
550          *
551          * We need to split the extent we found, and may flip
552          * bits on second half.
553          *
554          * If the extent we found extends past our range, we
555          * just split and search again.  It'll get split again
556          * the next time though.
557          *
558          * If the extent we found is inside our range, we clear
559          * the desired bit on it.
560          */
561
562         if (state->start < start) {
563                 prealloc = alloc_extent_state_atomic(prealloc);
564                 BUG_ON(!prealloc);
565                 err = split_state(tree, state, prealloc, start);
566                 if (err)
567                         extent_io_tree_panic(tree, err);
568
569                 prealloc = NULL;
570                 if (err)
571                         goto out;
572                 if (state->end <= end) {
573                         state = clear_state_bit(tree, state, &bits, wake);
574                         goto next;
575                 }
576                 goto search_again;
577         }
578         /*
579          * | ---- desired range ---- |
580          *                        | state |
581          * We need to split the extent, and clear the bit
582          * on the first half
583          */
584         if (state->start <= end && state->end > end) {
585                 prealloc = alloc_extent_state_atomic(prealloc);
586                 BUG_ON(!prealloc);
587                 err = split_state(tree, state, prealloc, end + 1);
588                 if (err)
589                         extent_io_tree_panic(tree, err);
590
591                 if (wake)
592                         wake_up(&state->wq);
593
594                 clear_state_bit(tree, prealloc, &bits, wake);
595
596                 prealloc = NULL;
597                 goto out;
598         }
599
600         state = clear_state_bit(tree, state, &bits, wake);
601 next:
602         if (last_end == (u64)-1)
603                 goto out;
604         start = last_end + 1;
605         if (start <= end && state && !need_resched())
606                 goto hit_next;
607         goto search_again;
608
609 out:
610         spin_unlock(&tree->lock);
611         if (prealloc)
612                 free_extent_state(prealloc);
613
614         return 0;
615
616 search_again:
617         if (start > end)
618                 goto out;
619         spin_unlock(&tree->lock);
620         if (mask & __GFP_WAIT)
621                 cond_resched();
622         goto again;
623 }
624
625 static void wait_on_state(struct extent_io_tree *tree,
626                           struct extent_state *state)
627                 __releases(tree->lock)
628                 __acquires(tree->lock)
629 {
630         DEFINE_WAIT(wait);
631         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
632         spin_unlock(&tree->lock);
633         schedule();
634         spin_lock(&tree->lock);
635         finish_wait(&state->wq, &wait);
636 }
637
638 /*
639  * waits for one or more bits to clear on a range in the state tree.
640  * The range [start, end] is inclusive.
641  * The tree lock is taken by this function
642  */
643 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
644 {
645         struct extent_state *state;
646         struct rb_node *node;
647
648         spin_lock(&tree->lock);
649 again:
650         while (1) {
651                 /*
652                  * this search will find all the extents that end after
653                  * our range starts
654                  */
655                 node = tree_search(tree, start);
656                 if (!node)
657                         break;
658
659                 state = rb_entry(node, struct extent_state, rb_node);
660
661                 if (state->start > end)
662                         goto out;
663
664                 if (state->state & bits) {
665                         start = state->start;
666                         atomic_inc(&state->refs);
667                         wait_on_state(tree, state);
668                         free_extent_state(state);
669                         goto again;
670                 }
671                 start = state->end + 1;
672
673                 if (start > end)
674                         break;
675
676                 cond_resched_lock(&tree->lock);
677         }
678 out:
679         spin_unlock(&tree->lock);
680 }
681
682 static void set_state_bits(struct extent_io_tree *tree,
683                            struct extent_state *state,
684                            int *bits)
685 {
686         int bits_to_set = *bits & ~EXTENT_CTLBITS;
687
688         set_state_cb(tree, state, bits);
689         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
690                 u64 range = state->end - state->start + 1;
691                 tree->dirty_bytes += range;
692         }
693         state->state |= bits_to_set;
694 }
695
696 static void cache_state(struct extent_state *state,
697                         struct extent_state **cached_ptr)
698 {
699         if (cached_ptr && !(*cached_ptr)) {
700                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
701                         *cached_ptr = state;
702                         atomic_inc(&state->refs);
703                 }
704         }
705 }
706
707 static void uncache_state(struct extent_state **cached_ptr)
708 {
709         if (cached_ptr && (*cached_ptr)) {
710                 struct extent_state *state = *cached_ptr;
711                 *cached_ptr = NULL;
712                 free_extent_state(state);
713         }
714 }
715
716 /*
717  * set some bits on a range in the tree.  This may require allocations or
718  * sleeping, so the gfp mask is used to indicate what is allowed.
719  *
720  * If any of the exclusive bits are set, this will fail with -EEXIST if some
721  * part of the range already has the desired bits set.  The start of the
722  * existing range is returned in failed_start in this case.
723  *
724  * [start, end] is inclusive This takes the tree lock.
725  */
726
727 static int __must_check
728 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
729                  int bits, int exclusive_bits, u64 *failed_start,
730                  struct extent_state **cached_state, gfp_t mask)
731 {
732         struct extent_state *state;
733         struct extent_state *prealloc = NULL;
734         struct rb_node *node;
735         int err = 0;
736         u64 last_start;
737         u64 last_end;
738
739         bits |= EXTENT_FIRST_DELALLOC;
740 again:
741         if (!prealloc && (mask & __GFP_WAIT)) {
742                 prealloc = alloc_extent_state(mask);
743                 BUG_ON(!prealloc);
744         }
745
746         spin_lock(&tree->lock);
747         if (cached_state && *cached_state) {
748                 state = *cached_state;
749                 if (state->start <= start && state->end > start &&
750                     state->tree) {
751                         node = &state->rb_node;
752                         goto hit_next;
753                 }
754         }
755         /*
756          * this search will find all the extents that end after
757          * our range starts.
758          */
759         node = tree_search(tree, start);
760         if (!node) {
761                 prealloc = alloc_extent_state_atomic(prealloc);
762                 BUG_ON(!prealloc);
763                 err = insert_state(tree, prealloc, start, end, &bits);
764                 if (err)
765                         extent_io_tree_panic(tree, err);
766
767                 prealloc = NULL;
768                 goto out;
769         }
770         state = rb_entry(node, struct extent_state, rb_node);
771 hit_next:
772         last_start = state->start;
773         last_end = state->end;
774
775         /*
776          * | ---- desired range ---- |
777          * | state |
778          *
779          * Just lock what we found and keep going
780          */
781         if (state->start == start && state->end <= end) {
782                 if (state->state & exclusive_bits) {
783                         *failed_start = state->start;
784                         err = -EEXIST;
785                         goto out;
786                 }
787
788                 set_state_bits(tree, state, &bits);
789                 cache_state(state, cached_state);
790                 merge_state(tree, state);
791                 if (last_end == (u64)-1)
792                         goto out;
793                 start = last_end + 1;
794                 state = next_state(state);
795                 if (start < end && state && state->start == start &&
796                     !need_resched())
797                         goto hit_next;
798                 goto search_again;
799         }
800
801         /*
802          *     | ---- desired range ---- |
803          * | state |
804          *   or
805          * | ------------- state -------------- |
806          *
807          * We need to split the extent we found, and may flip bits on
808          * second half.
809          *
810          * If the extent we found extends past our
811          * range, we just split and search again.  It'll get split
812          * again the next time though.
813          *
814          * If the extent we found is inside our range, we set the
815          * desired bit on it.
816          */
817         if (state->start < start) {
818                 if (state->state & exclusive_bits) {
819                         *failed_start = start;
820                         err = -EEXIST;
821                         goto out;
822                 }
823
824                 prealloc = alloc_extent_state_atomic(prealloc);
825                 BUG_ON(!prealloc);
826                 err = split_state(tree, state, prealloc, start);
827                 if (err)
828                         extent_io_tree_panic(tree, err);
829
830                 prealloc = NULL;
831                 if (err)
832                         goto out;
833                 if (state->end <= end) {
834                         set_state_bits(tree, state, &bits);
835                         cache_state(state, cached_state);
836                         merge_state(tree, state);
837                         if (last_end == (u64)-1)
838                                 goto out;
839                         start = last_end + 1;
840                         state = next_state(state);
841                         if (start < end && state && state->start == start &&
842                             !need_resched())
843                                 goto hit_next;
844                 }
845                 goto search_again;
846         }
847         /*
848          * | ---- desired range ---- |
849          *     | state | or               | state |
850          *
851          * There's a hole, we need to insert something in it and
852          * ignore the extent we found.
853          */
854         if (state->start > start) {
855                 u64 this_end;
856                 if (end < last_start)
857                         this_end = end;
858                 else
859                         this_end = last_start - 1;
860
861                 prealloc = alloc_extent_state_atomic(prealloc);
862                 BUG_ON(!prealloc);
863
864                 /*
865                  * Avoid to free 'prealloc' if it can be merged with
866                  * the later extent.
867                  */
868                 err = insert_state(tree, prealloc, start, this_end,
869                                    &bits);
870                 if (err)
871                         extent_io_tree_panic(tree, err);
872
873                 cache_state(prealloc, cached_state);
874                 prealloc = NULL;
875                 start = this_end + 1;
876                 goto search_again;
877         }
878         /*
879          * | ---- desired range ---- |
880          *                        | state |
881          * We need to split the extent, and set the bit
882          * on the first half
883          */
884         if (state->start <= end && state->end > end) {
885                 if (state->state & exclusive_bits) {
886                         *failed_start = start;
887                         err = -EEXIST;
888                         goto out;
889                 }
890
891                 prealloc = alloc_extent_state_atomic(prealloc);
892                 BUG_ON(!prealloc);
893                 err = split_state(tree, state, prealloc, end + 1);
894                 if (err)
895                         extent_io_tree_panic(tree, err);
896
897                 set_state_bits(tree, prealloc, &bits);
898                 cache_state(prealloc, cached_state);
899                 merge_state(tree, prealloc);
900                 prealloc = NULL;
901                 goto out;
902         }
903
904         goto search_again;
905
906 out:
907         spin_unlock(&tree->lock);
908         if (prealloc)
909                 free_extent_state(prealloc);
910
911         return err;
912
913 search_again:
914         if (start > end)
915                 goto out;
916         spin_unlock(&tree->lock);
917         if (mask & __GFP_WAIT)
918                 cond_resched();
919         goto again;
920 }
921
922 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
923                    u64 *failed_start, struct extent_state **cached_state,
924                    gfp_t mask)
925 {
926         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
927                                 cached_state, mask);
928 }
929
930
931 /**
932  * convert_extent_bit - convert all bits in a given range from one bit to
933  *                      another
934  * @tree:       the io tree to search
935  * @start:      the start offset in bytes
936  * @end:        the end offset in bytes (inclusive)
937  * @bits:       the bits to set in this range
938  * @clear_bits: the bits to clear in this range
939  * @mask:       the allocation mask
940  *
941  * This will go through and set bits for the given range.  If any states exist
942  * already in this range they are set with the given bit and cleared of the
943  * clear_bits.  This is only meant to be used by things that are mergeable, ie
944  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
945  * boundary bits like LOCK.
946  */
947 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
948                        int bits, int clear_bits, gfp_t mask)
949 {
950         struct extent_state *state;
951         struct extent_state *prealloc = NULL;
952         struct rb_node *node;
953         int err = 0;
954         u64 last_start;
955         u64 last_end;
956
957 again:
958         if (!prealloc && (mask & __GFP_WAIT)) {
959                 prealloc = alloc_extent_state(mask);
960                 if (!prealloc)
961                         return -ENOMEM;
962         }
963
964         spin_lock(&tree->lock);
965         /*
966          * this search will find all the extents that end after
967          * our range starts.
968          */
969         node = tree_search(tree, start);
970         if (!node) {
971                 prealloc = alloc_extent_state_atomic(prealloc);
972                 if (!prealloc) {
973                         err = -ENOMEM;
974                         goto out;
975                 }
976                 err = insert_state(tree, prealloc, start, end, &bits);
977                 prealloc = NULL;
978                 if (err)
979                         extent_io_tree_panic(tree, err);
980                 goto out;
981         }
982         state = rb_entry(node, struct extent_state, rb_node);
983 hit_next:
984         last_start = state->start;
985         last_end = state->end;
986
987         /*
988          * | ---- desired range ---- |
989          * | state |
990          *
991          * Just lock what we found and keep going
992          */
993         if (state->start == start && state->end <= end) {
994                 set_state_bits(tree, state, &bits);
995                 state = clear_state_bit(tree, state, &clear_bits, 0);
996                 if (last_end == (u64)-1)
997                         goto out;
998                 start = last_end + 1;
999                 if (start < end && state && state->start == start &&
1000                     !need_resched())
1001                         goto hit_next;
1002                 goto search_again;
1003         }
1004
1005         /*
1006          *     | ---- desired range ---- |
1007          * | state |
1008          *   or
1009          * | ------------- state -------------- |
1010          *
1011          * We need to split the extent we found, and may flip bits on
1012          * second half.
1013          *
1014          * If the extent we found extends past our
1015          * range, we just split and search again.  It'll get split
1016          * again the next time though.
1017          *
1018          * If the extent we found is inside our range, we set the
1019          * desired bit on it.
1020          */
1021         if (state->start < start) {
1022                 prealloc = alloc_extent_state_atomic(prealloc);
1023                 if (!prealloc) {
1024                         err = -ENOMEM;
1025                         goto out;
1026                 }
1027                 err = split_state(tree, state, prealloc, start);
1028                 if (err)
1029                         extent_io_tree_panic(tree, err);
1030                 prealloc = NULL;
1031                 if (err)
1032                         goto out;
1033                 if (state->end <= end) {
1034                         set_state_bits(tree, state, &bits);
1035                         state = clear_state_bit(tree, state, &clear_bits, 0);
1036                         if (last_end == (u64)-1)
1037                                 goto out;
1038                         start = last_end + 1;
1039                         if (start < end && state && state->start == start &&
1040                             !need_resched())
1041                                 goto hit_next;
1042                 }
1043                 goto search_again;
1044         }
1045         /*
1046          * | ---- desired range ---- |
1047          *     | state | or               | state |
1048          *
1049          * There's a hole, we need to insert something in it and
1050          * ignore the extent we found.
1051          */
1052         if (state->start > start) {
1053                 u64 this_end;
1054                 if (end < last_start)
1055                         this_end = end;
1056                 else
1057                         this_end = last_start - 1;
1058
1059                 prealloc = alloc_extent_state_atomic(prealloc);
1060                 if (!prealloc) {
1061                         err = -ENOMEM;
1062                         goto out;
1063                 }
1064
1065                 /*
1066                  * Avoid to free 'prealloc' if it can be merged with
1067                  * the later extent.
1068                  */
1069                 err = insert_state(tree, prealloc, start, this_end,
1070                                    &bits);
1071                 if (err)
1072                         extent_io_tree_panic(tree, err);
1073                 prealloc = NULL;
1074                 start = this_end + 1;
1075                 goto search_again;
1076         }
1077         /*
1078          * | ---- desired range ---- |
1079          *                        | state |
1080          * We need to split the extent, and set the bit
1081          * on the first half
1082          */
1083         if (state->start <= end && state->end > end) {
1084                 prealloc = alloc_extent_state_atomic(prealloc);
1085                 if (!prealloc) {
1086                         err = -ENOMEM;
1087                         goto out;
1088                 }
1089
1090                 err = split_state(tree, state, prealloc, end + 1);
1091                 if (err)
1092                         extent_io_tree_panic(tree, err);
1093
1094                 set_state_bits(tree, prealloc, &bits);
1095                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1096                 prealloc = NULL;
1097                 goto out;
1098         }
1099
1100         goto search_again;
1101
1102 out:
1103         spin_unlock(&tree->lock);
1104         if (prealloc)
1105                 free_extent_state(prealloc);
1106
1107         return err;
1108
1109 search_again:
1110         if (start > end)
1111                 goto out;
1112         spin_unlock(&tree->lock);
1113         if (mask & __GFP_WAIT)
1114                 cond_resched();
1115         goto again;
1116 }
1117
1118 /* wrappers around set/clear extent bit */
1119 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1120                      gfp_t mask)
1121 {
1122         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1123                               NULL, mask);
1124 }
1125
1126 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1127                     int bits, gfp_t mask)
1128 {
1129         return set_extent_bit(tree, start, end, bits, NULL,
1130                               NULL, mask);
1131 }
1132
1133 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1134                       int bits, gfp_t mask)
1135 {
1136         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1137 }
1138
1139 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1140                         struct extent_state **cached_state, gfp_t mask)
1141 {
1142         return set_extent_bit(tree, start, end,
1143                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1144                               NULL, cached_state, mask);
1145 }
1146
1147 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1148                        gfp_t mask)
1149 {
1150         return clear_extent_bit(tree, start, end,
1151                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1152                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1153 }
1154
1155 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1156                      gfp_t mask)
1157 {
1158         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1159                               NULL, mask);
1160 }
1161
1162 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1163                         struct extent_state **cached_state, gfp_t mask)
1164 {
1165         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1166                               cached_state, mask);
1167 }
1168
1169 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1170                           struct extent_state **cached_state, gfp_t mask)
1171 {
1172         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1173                                 cached_state, mask);
1174 }
1175
1176 /*
1177  * either insert or lock state struct between start and end use mask to tell
1178  * us if waiting is desired.
1179  */
1180 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1181                      int bits, struct extent_state **cached_state)
1182 {
1183         int err;
1184         u64 failed_start;
1185         while (1) {
1186                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1187                                        EXTENT_LOCKED, &failed_start,
1188                                        cached_state, GFP_NOFS);
1189                 if (err == -EEXIST) {
1190                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1191                         start = failed_start;
1192                 } else
1193                         break;
1194                 WARN_ON(start > end);
1195         }
1196         return err;
1197 }
1198
1199 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1200 {
1201         return lock_extent_bits(tree, start, end, 0, NULL);
1202 }
1203
1204 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1205 {
1206         int err;
1207         u64 failed_start;
1208
1209         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1210                                &failed_start, NULL, GFP_NOFS);
1211         if (err == -EEXIST) {
1212                 if (failed_start > start)
1213                         clear_extent_bit(tree, start, failed_start - 1,
1214                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1215                 return 0;
1216         }
1217         return 1;
1218 }
1219
1220 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1221                          struct extent_state **cached, gfp_t mask)
1222 {
1223         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1224                                 mask);
1225 }
1226
1227 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1228 {
1229         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1230                                 GFP_NOFS);
1231 }
1232
1233 /*
1234  * helper function to set both pages and extents in the tree writeback
1235  */
1236 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1237 {
1238         unsigned long index = start >> PAGE_CACHE_SHIFT;
1239         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1240         struct page *page;
1241
1242         while (index <= end_index) {
1243                 page = find_get_page(tree->mapping, index);
1244                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1245                 set_page_writeback(page);
1246                 page_cache_release(page);
1247                 index++;
1248         }
1249         return 0;
1250 }
1251
1252 /* find the first state struct with 'bits' set after 'start', and
1253  * return it.  tree->lock must be held.  NULL will returned if
1254  * nothing was found after 'start'
1255  */
1256 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1257                                                  u64 start, int bits)
1258 {
1259         struct rb_node *node;
1260         struct extent_state *state;
1261
1262         /*
1263          * this search will find all the extents that end after
1264          * our range starts.
1265          */
1266         node = tree_search(tree, start);
1267         if (!node)
1268                 goto out;
1269
1270         while (1) {
1271                 state = rb_entry(node, struct extent_state, rb_node);
1272                 if (state->end >= start && (state->state & bits))
1273                         return state;
1274
1275                 node = rb_next(node);
1276                 if (!node)
1277                         break;
1278         }
1279 out:
1280         return NULL;
1281 }
1282
1283 /*
1284  * find the first offset in the io tree with 'bits' set. zero is
1285  * returned if we find something, and *start_ret and *end_ret are
1286  * set to reflect the state struct that was found.
1287  *
1288  * If nothing was found, 1 is returned. If found something, return 0.
1289  */
1290 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1291                           u64 *start_ret, u64 *end_ret, int bits)
1292 {
1293         struct extent_state *state;
1294         int ret = 1;
1295
1296         spin_lock(&tree->lock);
1297         state = find_first_extent_bit_state(tree, start, bits);
1298         if (state) {
1299                 *start_ret = state->start;
1300                 *end_ret = state->end;
1301                 ret = 0;
1302         }
1303         spin_unlock(&tree->lock);
1304         return ret;
1305 }
1306
1307 /*
1308  * find a contiguous range of bytes in the file marked as delalloc, not
1309  * more than 'max_bytes'.  start and end are used to return the range,
1310  *
1311  * 1 is returned if we find something, 0 if nothing was in the tree
1312  */
1313 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1314                                         u64 *start, u64 *end, u64 max_bytes,
1315                                         struct extent_state **cached_state)
1316 {
1317         struct rb_node *node;
1318         struct extent_state *state;
1319         u64 cur_start = *start;
1320         u64 found = 0;
1321         u64 total_bytes = 0;
1322
1323         spin_lock(&tree->lock);
1324
1325         /*
1326          * this search will find all the extents that end after
1327          * our range starts.
1328          */
1329         node = tree_search(tree, cur_start);
1330         if (!node) {
1331                 if (!found)
1332                         *end = (u64)-1;
1333                 goto out;
1334         }
1335
1336         while (1) {
1337                 state = rb_entry(node, struct extent_state, rb_node);
1338                 if (found && (state->start != cur_start ||
1339                               (state->state & EXTENT_BOUNDARY))) {
1340                         goto out;
1341                 }
1342                 if (!(state->state & EXTENT_DELALLOC)) {
1343                         if (!found)
1344                                 *end = state->end;
1345                         goto out;
1346                 }
1347                 if (!found) {
1348                         *start = state->start;
1349                         *cached_state = state;
1350                         atomic_inc(&state->refs);
1351                 }
1352                 found++;
1353                 *end = state->end;
1354                 cur_start = state->end + 1;
1355                 node = rb_next(node);
1356                 if (!node)
1357                         break;
1358                 total_bytes += state->end - state->start + 1;
1359                 if (total_bytes >= max_bytes)
1360                         break;
1361         }
1362 out:
1363         spin_unlock(&tree->lock);
1364         return found;
1365 }
1366
1367 static noinline void __unlock_for_delalloc(struct inode *inode,
1368                                            struct page *locked_page,
1369                                            u64 start, u64 end)
1370 {
1371         int ret;
1372         struct page *pages[16];
1373         unsigned long index = start >> PAGE_CACHE_SHIFT;
1374         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1375         unsigned long nr_pages = end_index - index + 1;
1376         int i;
1377
1378         if (index == locked_page->index && end_index == index)
1379                 return;
1380
1381         while (nr_pages > 0) {
1382                 ret = find_get_pages_contig(inode->i_mapping, index,
1383                                      min_t(unsigned long, nr_pages,
1384                                      ARRAY_SIZE(pages)), pages);
1385                 for (i = 0; i < ret; i++) {
1386                         if (pages[i] != locked_page)
1387                                 unlock_page(pages[i]);
1388                         page_cache_release(pages[i]);
1389                 }
1390                 nr_pages -= ret;
1391                 index += ret;
1392                 cond_resched();
1393         }
1394 }
1395
1396 static noinline int lock_delalloc_pages(struct inode *inode,
1397                                         struct page *locked_page,
1398                                         u64 delalloc_start,
1399                                         u64 delalloc_end)
1400 {
1401         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1402         unsigned long start_index = index;
1403         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1404         unsigned long pages_locked = 0;
1405         struct page *pages[16];
1406         unsigned long nrpages;
1407         int ret;
1408         int i;
1409
1410         /* the caller is responsible for locking the start index */
1411         if (index == locked_page->index && index == end_index)
1412                 return 0;
1413
1414         /* skip the page at the start index */
1415         nrpages = end_index - index + 1;
1416         while (nrpages > 0) {
1417                 ret = find_get_pages_contig(inode->i_mapping, index,
1418                                      min_t(unsigned long,
1419                                      nrpages, ARRAY_SIZE(pages)), pages);
1420                 if (ret == 0) {
1421                         ret = -EAGAIN;
1422                         goto done;
1423                 }
1424                 /* now we have an array of pages, lock them all */
1425                 for (i = 0; i < ret; i++) {
1426                         /*
1427                          * the caller is taking responsibility for
1428                          * locked_page
1429                          */
1430                         if (pages[i] != locked_page) {
1431                                 lock_page(pages[i]);
1432                                 if (!PageDirty(pages[i]) ||
1433                                     pages[i]->mapping != inode->i_mapping) {
1434                                         ret = -EAGAIN;
1435                                         unlock_page(pages[i]);
1436                                         page_cache_release(pages[i]);
1437                                         goto done;
1438                                 }
1439                         }
1440                         page_cache_release(pages[i]);
1441                         pages_locked++;
1442                 }
1443                 nrpages -= ret;
1444                 index += ret;
1445                 cond_resched();
1446         }
1447         ret = 0;
1448 done:
1449         if (ret && pages_locked) {
1450                 __unlock_for_delalloc(inode, locked_page,
1451                               delalloc_start,
1452                               ((u64)(start_index + pages_locked - 1)) <<
1453                               PAGE_CACHE_SHIFT);
1454         }
1455         return ret;
1456 }
1457
1458 /*
1459  * find a contiguous range of bytes in the file marked as delalloc, not
1460  * more than 'max_bytes'.  start and end are used to return the range,
1461  *
1462  * 1 is returned if we find something, 0 if nothing was in the tree
1463  */
1464 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1465                                              struct extent_io_tree *tree,
1466                                              struct page *locked_page,
1467                                              u64 *start, u64 *end,
1468                                              u64 max_bytes)
1469 {
1470         u64 delalloc_start;
1471         u64 delalloc_end;
1472         u64 found;
1473         struct extent_state *cached_state = NULL;
1474         int ret;
1475         int loops = 0;
1476
1477 again:
1478         /* step one, find a bunch of delalloc bytes starting at start */
1479         delalloc_start = *start;
1480         delalloc_end = 0;
1481         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1482                                     max_bytes, &cached_state);
1483         if (!found || delalloc_end <= *start) {
1484                 *start = delalloc_start;
1485                 *end = delalloc_end;
1486                 free_extent_state(cached_state);
1487                 return found;
1488         }
1489
1490         /*
1491          * start comes from the offset of locked_page.  We have to lock
1492          * pages in order, so we can't process delalloc bytes before
1493          * locked_page
1494          */
1495         if (delalloc_start < *start)
1496                 delalloc_start = *start;
1497
1498         /*
1499          * make sure to limit the number of pages we try to lock down
1500          * if we're looping.
1501          */
1502         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1503                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1504
1505         /* step two, lock all the pages after the page that has start */
1506         ret = lock_delalloc_pages(inode, locked_page,
1507                                   delalloc_start, delalloc_end);
1508         if (ret == -EAGAIN) {
1509                 /* some of the pages are gone, lets avoid looping by
1510                  * shortening the size of the delalloc range we're searching
1511                  */
1512                 free_extent_state(cached_state);
1513                 if (!loops) {
1514                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1515                         max_bytes = PAGE_CACHE_SIZE - offset;
1516                         loops = 1;
1517                         goto again;
1518                 } else {
1519                         found = 0;
1520                         goto out_failed;
1521                 }
1522         }
1523         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1524
1525         /* step three, lock the state bits for the whole range */
1526         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1527
1528         /* then test to make sure it is all still delalloc */
1529         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1530                              EXTENT_DELALLOC, 1, cached_state);
1531         if (!ret) {
1532                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1533                                      &cached_state, GFP_NOFS);
1534                 __unlock_for_delalloc(inode, locked_page,
1535                               delalloc_start, delalloc_end);
1536                 cond_resched();
1537                 goto again;
1538         }
1539         free_extent_state(cached_state);
1540         *start = delalloc_start;
1541         *end = delalloc_end;
1542 out_failed:
1543         return found;
1544 }
1545
1546 int extent_clear_unlock_delalloc(struct inode *inode,
1547                                 struct extent_io_tree *tree,
1548                                 u64 start, u64 end, struct page *locked_page,
1549                                 unsigned long op)
1550 {
1551         int ret;
1552         struct page *pages[16];
1553         unsigned long index = start >> PAGE_CACHE_SHIFT;
1554         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1555         unsigned long nr_pages = end_index - index + 1;
1556         int i;
1557         int clear_bits = 0;
1558
1559         if (op & EXTENT_CLEAR_UNLOCK)
1560                 clear_bits |= EXTENT_LOCKED;
1561         if (op & EXTENT_CLEAR_DIRTY)
1562                 clear_bits |= EXTENT_DIRTY;
1563
1564         if (op & EXTENT_CLEAR_DELALLOC)
1565                 clear_bits |= EXTENT_DELALLOC;
1566
1567         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1568         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1569                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1570                     EXTENT_SET_PRIVATE2)))
1571                 return 0;
1572
1573         while (nr_pages > 0) {
1574                 ret = find_get_pages_contig(inode->i_mapping, index,
1575                                      min_t(unsigned long,
1576                                      nr_pages, ARRAY_SIZE(pages)), pages);
1577                 for (i = 0; i < ret; i++) {
1578
1579                         if (op & EXTENT_SET_PRIVATE2)
1580                                 SetPagePrivate2(pages[i]);
1581
1582                         if (pages[i] == locked_page) {
1583                                 page_cache_release(pages[i]);
1584                                 continue;
1585                         }
1586                         if (op & EXTENT_CLEAR_DIRTY)
1587                                 clear_page_dirty_for_io(pages[i]);
1588                         if (op & EXTENT_SET_WRITEBACK)
1589                                 set_page_writeback(pages[i]);
1590                         if (op & EXTENT_END_WRITEBACK)
1591                                 end_page_writeback(pages[i]);
1592                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1593                                 unlock_page(pages[i]);
1594                         page_cache_release(pages[i]);
1595                 }
1596                 nr_pages -= ret;
1597                 index += ret;
1598                 cond_resched();
1599         }
1600         return 0;
1601 }
1602
1603 /*
1604  * count the number of bytes in the tree that have a given bit(s)
1605  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1606  * cached.  The total number found is returned.
1607  */
1608 u64 count_range_bits(struct extent_io_tree *tree,
1609                      u64 *start, u64 search_end, u64 max_bytes,
1610                      unsigned long bits, int contig)
1611 {
1612         struct rb_node *node;
1613         struct extent_state *state;
1614         u64 cur_start = *start;
1615         u64 total_bytes = 0;
1616         u64 last = 0;
1617         int found = 0;
1618
1619         if (search_end <= cur_start) {
1620                 WARN_ON(1);
1621                 return 0;
1622         }
1623
1624         spin_lock(&tree->lock);
1625         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1626                 total_bytes = tree->dirty_bytes;
1627                 goto out;
1628         }
1629         /*
1630          * this search will find all the extents that end after
1631          * our range starts.
1632          */
1633         node = tree_search(tree, cur_start);
1634         if (!node)
1635                 goto out;
1636
1637         while (1) {
1638                 state = rb_entry(node, struct extent_state, rb_node);
1639                 if (state->start > search_end)
1640                         break;
1641                 if (contig && found && state->start > last + 1)
1642                         break;
1643                 if (state->end >= cur_start && (state->state & bits) == bits) {
1644                         total_bytes += min(search_end, state->end) + 1 -
1645                                        max(cur_start, state->start);
1646                         if (total_bytes >= max_bytes)
1647                                 break;
1648                         if (!found) {
1649                                 *start = max(cur_start, state->start);
1650                                 found = 1;
1651                         }
1652                         last = state->end;
1653                 } else if (contig && found) {
1654                         break;
1655                 }
1656                 node = rb_next(node);
1657                 if (!node)
1658                         break;
1659         }
1660 out:
1661         spin_unlock(&tree->lock);
1662         return total_bytes;
1663 }
1664
1665 /*
1666  * set the private field for a given byte offset in the tree.  If there isn't
1667  * an extent_state there already, this does nothing.
1668  */
1669 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1670 {
1671         struct rb_node *node;
1672         struct extent_state *state;
1673         int ret = 0;
1674
1675         spin_lock(&tree->lock);
1676         /*
1677          * this search will find all the extents that end after
1678          * our range starts.
1679          */
1680         node = tree_search(tree, start);
1681         if (!node) {
1682                 ret = -ENOENT;
1683                 goto out;
1684         }
1685         state = rb_entry(node, struct extent_state, rb_node);
1686         if (state->start != start) {
1687                 ret = -ENOENT;
1688                 goto out;
1689         }
1690         state->private = private;
1691 out:
1692         spin_unlock(&tree->lock);
1693         return ret;
1694 }
1695
1696 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1697 {
1698         struct rb_node *node;
1699         struct extent_state *state;
1700         int ret = 0;
1701
1702         spin_lock(&tree->lock);
1703         /*
1704          * this search will find all the extents that end after
1705          * our range starts.
1706          */
1707         node = tree_search(tree, start);
1708         if (!node) {
1709                 ret = -ENOENT;
1710                 goto out;
1711         }
1712         state = rb_entry(node, struct extent_state, rb_node);
1713         if (state->start != start) {
1714                 ret = -ENOENT;
1715                 goto out;
1716         }
1717         *private = state->private;
1718 out:
1719         spin_unlock(&tree->lock);
1720         return ret;
1721 }
1722
1723 /*
1724  * searches a range in the state tree for a given mask.
1725  * If 'filled' == 1, this returns 1 only if every extent in the tree
1726  * has the bits set.  Otherwise, 1 is returned if any bit in the
1727  * range is found set.
1728  */
1729 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1730                    int bits, int filled, struct extent_state *cached)
1731 {
1732         struct extent_state *state = NULL;
1733         struct rb_node *node;
1734         int bitset = 0;
1735
1736         spin_lock(&tree->lock);
1737         if (cached && cached->tree && cached->start <= start &&
1738             cached->end > start)
1739                 node = &cached->rb_node;
1740         else
1741                 node = tree_search(tree, start);
1742         while (node && start <= end) {
1743                 state = rb_entry(node, struct extent_state, rb_node);
1744
1745                 if (filled && state->start > start) {
1746                         bitset = 0;
1747                         break;
1748                 }
1749
1750                 if (state->start > end)
1751                         break;
1752
1753                 if (state->state & bits) {
1754                         bitset = 1;
1755                         if (!filled)
1756                                 break;
1757                 } else if (filled) {
1758                         bitset = 0;
1759                         break;
1760                 }
1761
1762                 if (state->end == (u64)-1)
1763                         break;
1764
1765                 start = state->end + 1;
1766                 if (start > end)
1767                         break;
1768                 node = rb_next(node);
1769                 if (!node) {
1770                         if (filled)
1771                                 bitset = 0;
1772                         break;
1773                 }
1774         }
1775         spin_unlock(&tree->lock);
1776         return bitset;
1777 }
1778
1779 /*
1780  * helper function to set a given page up to date if all the
1781  * extents in the tree for that page are up to date
1782  */
1783 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1784 {
1785         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1786         u64 end = start + PAGE_CACHE_SIZE - 1;
1787         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1788                 SetPageUptodate(page);
1789 }
1790
1791 /*
1792  * helper function to unlock a page if all the extents in the tree
1793  * for that page are unlocked
1794  */
1795 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1796 {
1797         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1798         u64 end = start + PAGE_CACHE_SIZE - 1;
1799         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1800                 unlock_page(page);
1801 }
1802
1803 /*
1804  * helper function to end page writeback if all the extents
1805  * in the tree for that page are done with writeback
1806  */
1807 static void check_page_writeback(struct extent_io_tree *tree,
1808                                  struct page *page)
1809 {
1810         end_page_writeback(page);
1811 }
1812
1813 /*
1814  * When IO fails, either with EIO or csum verification fails, we
1815  * try other mirrors that might have a good copy of the data.  This
1816  * io_failure_record is used to record state as we go through all the
1817  * mirrors.  If another mirror has good data, the page is set up to date
1818  * and things continue.  If a good mirror can't be found, the original
1819  * bio end_io callback is called to indicate things have failed.
1820  */
1821 struct io_failure_record {
1822         struct page *page;
1823         u64 start;
1824         u64 len;
1825         u64 logical;
1826         unsigned long bio_flags;
1827         int this_mirror;
1828         int failed_mirror;
1829         int in_validation;
1830 };
1831
1832 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1833                                 int did_repair)
1834 {
1835         int ret;
1836         int err = 0;
1837         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1838
1839         set_state_private(failure_tree, rec->start, 0);
1840         ret = clear_extent_bits(failure_tree, rec->start,
1841                                 rec->start + rec->len - 1,
1842                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1843         if (ret)
1844                 err = ret;
1845
1846         if (did_repair) {
1847                 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1848                                         rec->start + rec->len - 1,
1849                                         EXTENT_DAMAGED, GFP_NOFS);
1850                 if (ret && !err)
1851                         err = ret;
1852         }
1853
1854         kfree(rec);
1855         return err;
1856 }
1857
1858 static void repair_io_failure_callback(struct bio *bio, int err)
1859 {
1860         complete(bio->bi_private);
1861 }
1862
1863 /*
1864  * this bypasses the standard btrfs submit functions deliberately, as
1865  * the standard behavior is to write all copies in a raid setup. here we only
1866  * want to write the one bad copy. so we do the mapping for ourselves and issue
1867  * submit_bio directly.
1868  * to avoid any synchonization issues, wait for the data after writing, which
1869  * actually prevents the read that triggered the error from finishing.
1870  * currently, there can be no more than two copies of every data bit. thus,
1871  * exactly one rewrite is required.
1872  */
1873 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1874                         u64 length, u64 logical, struct page *page,
1875                         int mirror_num)
1876 {
1877         struct bio *bio;
1878         struct btrfs_device *dev;
1879         DECLARE_COMPLETION_ONSTACK(compl);
1880         u64 map_length = 0;
1881         u64 sector;
1882         struct btrfs_bio *bbio = NULL;
1883         int ret;
1884
1885         BUG_ON(!mirror_num);
1886
1887         bio = bio_alloc(GFP_NOFS, 1);
1888         if (!bio)
1889                 return -EIO;
1890         bio->bi_private = &compl;
1891         bio->bi_end_io = repair_io_failure_callback;
1892         bio->bi_size = 0;
1893         map_length = length;
1894
1895         ret = btrfs_map_block(map_tree, WRITE, logical,
1896                               &map_length, &bbio, mirror_num);
1897         if (ret) {
1898                 bio_put(bio);
1899                 return -EIO;
1900         }
1901         BUG_ON(mirror_num != bbio->mirror_num);
1902         sector = bbio->stripes[mirror_num-1].physical >> 9;
1903         bio->bi_sector = sector;
1904         dev = bbio->stripes[mirror_num-1].dev;
1905         kfree(bbio);
1906         if (!dev || !dev->bdev || !dev->writeable) {
1907                 bio_put(bio);
1908                 return -EIO;
1909         }
1910         bio->bi_bdev = dev->bdev;
1911         bio_add_page(bio, page, length, start-page_offset(page));
1912         btrfsic_submit_bio(WRITE_SYNC, bio);
1913         wait_for_completion(&compl);
1914
1915         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1916                 /* try to remap that extent elsewhere? */
1917                 bio_put(bio);
1918                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1919                 return -EIO;
1920         }
1921
1922         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1923                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1924                       start, rcu_str_deref(dev->name), sector);
1925
1926         bio_put(bio);
1927         return 0;
1928 }
1929
1930 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1931                          int mirror_num)
1932 {
1933         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1934         u64 start = eb->start;
1935         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1936         int ret = 0;
1937
1938         for (i = 0; i < num_pages; i++) {
1939                 struct page *p = extent_buffer_page(eb, i);
1940                 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1941                                         start, p, mirror_num);
1942                 if (ret)
1943                         break;
1944                 start += PAGE_CACHE_SIZE;
1945         }
1946
1947         return ret;
1948 }
1949
1950 /*
1951  * each time an IO finishes, we do a fast check in the IO failure tree
1952  * to see if we need to process or clean up an io_failure_record
1953  */
1954 static int clean_io_failure(u64 start, struct page *page)
1955 {
1956         u64 private;
1957         u64 private_failure;
1958         struct io_failure_record *failrec;
1959         struct btrfs_mapping_tree *map_tree;
1960         struct extent_state *state;
1961         int num_copies;
1962         int did_repair = 0;
1963         int ret;
1964         struct inode *inode = page->mapping->host;
1965
1966         private = 0;
1967         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1968                                 (u64)-1, 1, EXTENT_DIRTY, 0);
1969         if (!ret)
1970                 return 0;
1971
1972         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1973                                 &private_failure);
1974         if (ret)
1975                 return 0;
1976
1977         failrec = (struct io_failure_record *)(unsigned long) private_failure;
1978         BUG_ON(!failrec->this_mirror);
1979
1980         if (failrec->in_validation) {
1981                 /* there was no real error, just free the record */
1982                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1983                          failrec->start);
1984                 did_repair = 1;
1985                 goto out;
1986         }
1987
1988         spin_lock(&BTRFS_I(inode)->io_tree.lock);
1989         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1990                                             failrec->start,
1991                                             EXTENT_LOCKED);
1992         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1993
1994         if (state && state->start == failrec->start) {
1995                 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1996                 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1997                                                 failrec->len);
1998                 if (num_copies > 1)  {
1999                         ret = repair_io_failure(map_tree, start, failrec->len,
2000                                                 failrec->logical, page,
2001                                                 failrec->failed_mirror);
2002                         did_repair = !ret;
2003                 }
2004         }
2005
2006 out:
2007         if (!ret)
2008                 ret = free_io_failure(inode, failrec, did_repair);
2009
2010         return ret;
2011 }
2012
2013 /*
2014  * this is a generic handler for readpage errors (default
2015  * readpage_io_failed_hook). if other copies exist, read those and write back
2016  * good data to the failed position. does not investigate in remapping the
2017  * failed extent elsewhere, hoping the device will be smart enough to do this as
2018  * needed
2019  */
2020
2021 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2022                                 u64 start, u64 end, int failed_mirror,
2023                                 struct extent_state *state)
2024 {
2025         struct io_failure_record *failrec = NULL;
2026         u64 private;
2027         struct extent_map *em;
2028         struct inode *inode = page->mapping->host;
2029         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2030         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2031         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2032         struct bio *bio;
2033         int num_copies;
2034         int ret;
2035         int read_mode;
2036         u64 logical;
2037
2038         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2039
2040         ret = get_state_private(failure_tree, start, &private);
2041         if (ret) {
2042                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2043                 if (!failrec)
2044                         return -ENOMEM;
2045                 failrec->start = start;
2046                 failrec->len = end - start + 1;
2047                 failrec->this_mirror = 0;
2048                 failrec->bio_flags = 0;
2049                 failrec->in_validation = 0;
2050
2051                 read_lock(&em_tree->lock);
2052                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2053                 if (!em) {
2054                         read_unlock(&em_tree->lock);
2055                         kfree(failrec);
2056                         return -EIO;
2057                 }
2058
2059                 if (em->start > start || em->start + em->len < start) {
2060                         free_extent_map(em);
2061                         em = NULL;
2062                 }
2063                 read_unlock(&em_tree->lock);
2064
2065                 if (!em || IS_ERR(em)) {
2066                         kfree(failrec);
2067                         return -EIO;
2068                 }
2069                 logical = start - em->start;
2070                 logical = em->block_start + logical;
2071                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2072                         logical = em->block_start;
2073                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2074                         extent_set_compress_type(&failrec->bio_flags,
2075                                                  em->compress_type);
2076                 }
2077                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2078                          "len=%llu\n", logical, start, failrec->len);
2079                 failrec->logical = logical;
2080                 free_extent_map(em);
2081
2082                 /* set the bits in the private failure tree */
2083                 ret = set_extent_bits(failure_tree, start, end,
2084                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2085                 if (ret >= 0)
2086                         ret = set_state_private(failure_tree, start,
2087                                                 (u64)(unsigned long)failrec);
2088                 /* set the bits in the inode's tree */
2089                 if (ret >= 0)
2090                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2091                                                 GFP_NOFS);
2092                 if (ret < 0) {
2093                         kfree(failrec);
2094                         return ret;
2095                 }
2096         } else {
2097                 failrec = (struct io_failure_record *)(unsigned long)private;
2098                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2099                          "start=%llu, len=%llu, validation=%d\n",
2100                          failrec->logical, failrec->start, failrec->len,
2101                          failrec->in_validation);
2102                 /*
2103                  * when data can be on disk more than twice, add to failrec here
2104                  * (e.g. with a list for failed_mirror) to make
2105                  * clean_io_failure() clean all those errors at once.
2106                  */
2107         }
2108         num_copies = btrfs_num_copies(
2109                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
2110                               failrec->logical, failrec->len);
2111         if (num_copies == 1) {
2112                 /*
2113                  * we only have a single copy of the data, so don't bother with
2114                  * all the retry and error correction code that follows. no
2115                  * matter what the error is, it is very likely to persist.
2116                  */
2117                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2118                          "state=%p, num_copies=%d, next_mirror %d, "
2119                          "failed_mirror %d\n", state, num_copies,
2120                          failrec->this_mirror, failed_mirror);
2121                 free_io_failure(inode, failrec, 0);
2122                 return -EIO;
2123         }
2124
2125         if (!state) {
2126                 spin_lock(&tree->lock);
2127                 state = find_first_extent_bit_state(tree, failrec->start,
2128                                                     EXTENT_LOCKED);
2129                 if (state && state->start != failrec->start)
2130                         state = NULL;
2131                 spin_unlock(&tree->lock);
2132         }
2133
2134         /*
2135          * there are two premises:
2136          *      a) deliver good data to the caller
2137          *      b) correct the bad sectors on disk
2138          */
2139         if (failed_bio->bi_vcnt > 1) {
2140                 /*
2141                  * to fulfill b), we need to know the exact failing sectors, as
2142                  * we don't want to rewrite any more than the failed ones. thus,
2143                  * we need separate read requests for the failed bio
2144                  *
2145                  * if the following BUG_ON triggers, our validation request got
2146                  * merged. we need separate requests for our algorithm to work.
2147                  */
2148                 BUG_ON(failrec->in_validation);
2149                 failrec->in_validation = 1;
2150                 failrec->this_mirror = failed_mirror;
2151                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2152         } else {
2153                 /*
2154                  * we're ready to fulfill a) and b) alongside. get a good copy
2155                  * of the failed sector and if we succeed, we have setup
2156                  * everything for repair_io_failure to do the rest for us.
2157                  */
2158                 if (failrec->in_validation) {
2159                         BUG_ON(failrec->this_mirror != failed_mirror);
2160                         failrec->in_validation = 0;
2161                         failrec->this_mirror = 0;
2162                 }
2163                 failrec->failed_mirror = failed_mirror;
2164                 failrec->this_mirror++;
2165                 if (failrec->this_mirror == failed_mirror)
2166                         failrec->this_mirror++;
2167                 read_mode = READ_SYNC;
2168         }
2169
2170         if (!state || failrec->this_mirror > num_copies) {
2171                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2172                          "next_mirror %d, failed_mirror %d\n", state,
2173                          num_copies, failrec->this_mirror, failed_mirror);
2174                 free_io_failure(inode, failrec, 0);
2175                 return -EIO;
2176         }
2177
2178         bio = bio_alloc(GFP_NOFS, 1);
2179         if (!bio) {
2180                 free_io_failure(inode, failrec, 0);
2181                 return -EIO;
2182         }
2183         bio->bi_private = state;
2184         bio->bi_end_io = failed_bio->bi_end_io;
2185         bio->bi_sector = failrec->logical >> 9;
2186         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2187         bio->bi_size = 0;
2188
2189         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2190
2191         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2192                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2193                  failrec->this_mirror, num_copies, failrec->in_validation);
2194
2195         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2196                                          failrec->this_mirror,
2197                                          failrec->bio_flags, 0);
2198         return ret;
2199 }
2200
2201 /* lots and lots of room for performance fixes in the end_bio funcs */
2202
2203 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2204 {
2205         int uptodate = (err == 0);
2206         struct extent_io_tree *tree;
2207         int ret;
2208
2209         tree = &BTRFS_I(page->mapping->host)->io_tree;
2210
2211         if (tree->ops && tree->ops->writepage_end_io_hook) {
2212                 ret = tree->ops->writepage_end_io_hook(page, start,
2213                                                end, NULL, uptodate);
2214                 if (ret)
2215                         uptodate = 0;
2216         }
2217
2218         if (!uptodate) {
2219                 ClearPageUptodate(page);
2220                 SetPageError(page);
2221         }
2222         return 0;
2223 }
2224
2225 /*
2226  * after a writepage IO is done, we need to:
2227  * clear the uptodate bits on error
2228  * clear the writeback bits in the extent tree for this IO
2229  * end_page_writeback if the page has no more pending IO
2230  *
2231  * Scheduling is not allowed, so the extent state tree is expected
2232  * to have one and only one object corresponding to this IO.
2233  */
2234 static void end_bio_extent_writepage(struct bio *bio, int err)
2235 {
2236         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2237         struct extent_io_tree *tree;
2238         u64 start;
2239         u64 end;
2240         int whole_page;
2241
2242         do {
2243                 struct page *page = bvec->bv_page;
2244                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2245
2246                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2247                          bvec->bv_offset;
2248                 end = start + bvec->bv_len - 1;
2249
2250                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2251                         whole_page = 1;
2252                 else
2253                         whole_page = 0;
2254
2255                 if (--bvec >= bio->bi_io_vec)
2256                         prefetchw(&bvec->bv_page->flags);
2257
2258                 if (end_extent_writepage(page, err, start, end))
2259                         continue;
2260
2261                 if (whole_page)
2262                         end_page_writeback(page);
2263                 else
2264                         check_page_writeback(tree, page);
2265         } while (bvec >= bio->bi_io_vec);
2266
2267         bio_put(bio);
2268 }
2269
2270 /*
2271  * after a readpage IO is done, we need to:
2272  * clear the uptodate bits on error
2273  * set the uptodate bits if things worked
2274  * set the page up to date if all extents in the tree are uptodate
2275  * clear the lock bit in the extent tree
2276  * unlock the page if there are no other extents locked for it
2277  *
2278  * Scheduling is not allowed, so the extent state tree is expected
2279  * to have one and only one object corresponding to this IO.
2280  */
2281 static void end_bio_extent_readpage(struct bio *bio, int err)
2282 {
2283         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2284         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2285         struct bio_vec *bvec = bio->bi_io_vec;
2286         struct extent_io_tree *tree;
2287         u64 start;
2288         u64 end;
2289         int whole_page;
2290         int mirror;
2291         int ret;
2292
2293         if (err)
2294                 uptodate = 0;
2295
2296         do {
2297                 struct page *page = bvec->bv_page;
2298                 struct extent_state *cached = NULL;
2299                 struct extent_state *state;
2300
2301                 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2302                          "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2303                          (long int)bio->bi_bdev);
2304                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2305
2306                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2307                         bvec->bv_offset;
2308                 end = start + bvec->bv_len - 1;
2309
2310                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2311                         whole_page = 1;
2312                 else
2313                         whole_page = 0;
2314
2315                 if (++bvec <= bvec_end)
2316                         prefetchw(&bvec->bv_page->flags);
2317
2318                 spin_lock(&tree->lock);
2319                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2320                 if (state && state->start == start) {
2321                         /*
2322                          * take a reference on the state, unlock will drop
2323                          * the ref
2324                          */
2325                         cache_state(state, &cached);
2326                 }
2327                 spin_unlock(&tree->lock);
2328
2329                 mirror = (int)(unsigned long)bio->bi_bdev;
2330                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2331                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2332                                                               state, mirror);
2333                         if (ret) {
2334                                 /* no IO indicated but software detected errors
2335                                  * in the block, either checksum errors or
2336                                  * issues with the contents */
2337                                 struct btrfs_root *root =
2338                                         BTRFS_I(page->mapping->host)->root;
2339                                 struct btrfs_device *device;
2340
2341                                 uptodate = 0;
2342                                 device = btrfs_find_device_for_logical(
2343                                                 root, start, mirror);
2344                                 if (device)
2345                                         btrfs_dev_stat_inc_and_print(device,
2346                                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2347                         } else {
2348                                 clean_io_failure(start, page);
2349                         }
2350                 }
2351
2352                 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2353                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2354                         if (!ret && !err &&
2355                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2356                                 uptodate = 1;
2357                 } else if (!uptodate) {
2358                         /*
2359                          * The generic bio_readpage_error handles errors the
2360                          * following way: If possible, new read requests are
2361                          * created and submitted and will end up in
2362                          * end_bio_extent_readpage as well (if we're lucky, not
2363                          * in the !uptodate case). In that case it returns 0 and
2364                          * we just go on with the next page in our bio. If it
2365                          * can't handle the error it will return -EIO and we
2366                          * remain responsible for that page.
2367                          */
2368                         ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2369                         if (ret == 0) {
2370                                 uptodate =
2371                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2372                                 if (err)
2373                                         uptodate = 0;
2374                                 uncache_state(&cached);
2375                                 continue;
2376                         }
2377                 }
2378
2379                 if (uptodate && tree->track_uptodate) {
2380                         set_extent_uptodate(tree, start, end, &cached,
2381                                             GFP_ATOMIC);
2382                 }
2383                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2384
2385                 if (whole_page) {
2386                         if (uptodate) {
2387                                 SetPageUptodate(page);
2388                         } else {
2389                                 ClearPageUptodate(page);
2390                                 SetPageError(page);
2391                         }
2392                         unlock_page(page);
2393                 } else {
2394                         if (uptodate) {
2395                                 check_page_uptodate(tree, page);
2396                         } else {
2397                                 ClearPageUptodate(page);
2398                                 SetPageError(page);
2399                         }
2400                         check_page_locked(tree, page);
2401                 }
2402         } while (bvec <= bvec_end);
2403
2404         bio_put(bio);
2405 }
2406
2407 struct bio *
2408 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2409                 gfp_t gfp_flags)
2410 {
2411         struct bio *bio;
2412
2413         bio = bio_alloc(gfp_flags, nr_vecs);
2414
2415         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2416                 while (!bio && (nr_vecs /= 2))
2417                         bio = bio_alloc(gfp_flags, nr_vecs);
2418         }
2419
2420         if (bio) {
2421                 bio->bi_size = 0;
2422                 bio->bi_bdev = bdev;
2423                 bio->bi_sector = first_sector;
2424         }
2425         return bio;
2426 }
2427
2428 /*
2429  * Since writes are async, they will only return -ENOMEM.
2430  * Reads can return the full range of I/O error conditions.
2431  */
2432 static int __must_check submit_one_bio(int rw, struct bio *bio,
2433                                        int mirror_num, unsigned long bio_flags)
2434 {
2435         int ret = 0;
2436         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2437         struct page *page = bvec->bv_page;
2438         struct extent_io_tree *tree = bio->bi_private;
2439         u64 start;
2440
2441         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2442
2443         bio->bi_private = NULL;
2444
2445         bio_get(bio);
2446
2447         if (tree->ops && tree->ops->submit_bio_hook)
2448                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2449                                            mirror_num, bio_flags, start);
2450         else
2451                 btrfsic_submit_bio(rw, bio);
2452
2453         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2454                 ret = -EOPNOTSUPP;
2455         bio_put(bio);
2456         return ret;
2457 }
2458
2459 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2460                      unsigned long offset, size_t size, struct bio *bio,
2461                      unsigned long bio_flags)
2462 {
2463         int ret = 0;
2464         if (tree->ops && tree->ops->merge_bio_hook)
2465                 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2466                                                 bio_flags);
2467         BUG_ON(ret < 0);
2468         return ret;
2469
2470 }
2471
2472 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2473                               struct page *page, sector_t sector,
2474                               size_t size, unsigned long offset,
2475                               struct block_device *bdev,
2476                               struct bio **bio_ret,
2477                               unsigned long max_pages,
2478                               bio_end_io_t end_io_func,
2479                               int mirror_num,
2480                               unsigned long prev_bio_flags,
2481                               unsigned long bio_flags)
2482 {
2483         int ret = 0;
2484         struct bio *bio;
2485         int nr;
2486         int contig = 0;
2487         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2488         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2489         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2490
2491         if (bio_ret && *bio_ret) {
2492                 bio = *bio_ret;
2493                 if (old_compressed)
2494                         contig = bio->bi_sector == sector;
2495                 else
2496                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
2497                                 sector;
2498
2499                 if (prev_bio_flags != bio_flags || !contig ||
2500                     merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2501                     bio_add_page(bio, page, page_size, offset) < page_size) {
2502                         ret = submit_one_bio(rw, bio, mirror_num,
2503                                              prev_bio_flags);
2504                         if (ret < 0)
2505                                 return ret;
2506                         bio = NULL;
2507                 } else {
2508                         return 0;
2509                 }
2510         }
2511         if (this_compressed)
2512                 nr = BIO_MAX_PAGES;
2513         else
2514                 nr = bio_get_nr_vecs(bdev);
2515
2516         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2517         if (!bio)
2518                 return -ENOMEM;
2519
2520         bio_add_page(bio, page, page_size, offset);
2521         bio->bi_end_io = end_io_func;
2522         bio->bi_private = tree;
2523
2524         if (bio_ret)
2525                 *bio_ret = bio;
2526         else
2527                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2528
2529         return ret;
2530 }
2531
2532 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2533 {
2534         if (!PagePrivate(page)) {
2535                 SetPagePrivate(page);
2536                 page_cache_get(page);
2537                 set_page_private(page, (unsigned long)eb);
2538         } else {
2539                 WARN_ON(page->private != (unsigned long)eb);
2540         }
2541 }
2542
2543 void set_page_extent_mapped(struct page *page)
2544 {
2545         if (!PagePrivate(page)) {
2546                 SetPagePrivate(page);
2547                 page_cache_get(page);
2548                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2549         }
2550 }
2551
2552 /*
2553  * basic readpage implementation.  Locked extent state structs are inserted
2554  * into the tree that are removed when the IO is done (by the end_io
2555  * handlers)
2556  * XXX JDM: This needs looking at to ensure proper page locking
2557  */
2558 static int __extent_read_full_page(struct extent_io_tree *tree,
2559                                    struct page *page,
2560                                    get_extent_t *get_extent,
2561                                    struct bio **bio, int mirror_num,
2562                                    unsigned long *bio_flags)
2563 {
2564         struct inode *inode = page->mapping->host;
2565         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2566         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2567         u64 end;
2568         u64 cur = start;
2569         u64 extent_offset;
2570         u64 last_byte = i_size_read(inode);
2571         u64 block_start;
2572         u64 cur_end;
2573         sector_t sector;
2574         struct extent_map *em;
2575         struct block_device *bdev;
2576         struct btrfs_ordered_extent *ordered;
2577         int ret;
2578         int nr = 0;
2579         size_t pg_offset = 0;
2580         size_t iosize;
2581         size_t disk_io_size;
2582         size_t blocksize = inode->i_sb->s_blocksize;
2583         unsigned long this_bio_flag = 0;
2584
2585         set_page_extent_mapped(page);
2586
2587         if (!PageUptodate(page)) {
2588                 if (cleancache_get_page(page) == 0) {
2589                         BUG_ON(blocksize != PAGE_SIZE);
2590                         goto out;
2591                 }
2592         }
2593
2594         end = page_end;
2595         while (1) {
2596                 lock_extent(tree, start, end);
2597                 ordered = btrfs_lookup_ordered_extent(inode, start);
2598                 if (!ordered)
2599                         break;
2600                 unlock_extent(tree, start, end);
2601                 btrfs_start_ordered_extent(inode, ordered, 1);
2602                 btrfs_put_ordered_extent(ordered);
2603         }
2604
2605         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2606                 char *userpage;
2607                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2608
2609                 if (zero_offset) {
2610                         iosize = PAGE_CACHE_SIZE - zero_offset;
2611                         userpage = kmap_atomic(page);
2612                         memset(userpage + zero_offset, 0, iosize);
2613                         flush_dcache_page(page);
2614                         kunmap_atomic(userpage);
2615                 }
2616         }
2617         while (cur <= end) {
2618                 if (cur >= last_byte) {
2619                         char *userpage;
2620                         struct extent_state *cached = NULL;
2621
2622                         iosize = PAGE_CACHE_SIZE - pg_offset;
2623                         userpage = kmap_atomic(page);
2624                         memset(userpage + pg_offset, 0, iosize);
2625                         flush_dcache_page(page);
2626                         kunmap_atomic(userpage);
2627                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2628                                             &cached, GFP_NOFS);
2629                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2630                                              &cached, GFP_NOFS);
2631                         break;
2632                 }
2633                 em = get_extent(inode, page, pg_offset, cur,
2634                                 end - cur + 1, 0);
2635                 if (IS_ERR_OR_NULL(em)) {
2636                         SetPageError(page);
2637                         unlock_extent(tree, cur, end);
2638                         break;
2639                 }
2640                 extent_offset = cur - em->start;
2641                 BUG_ON(extent_map_end(em) <= cur);
2642                 BUG_ON(end < cur);
2643
2644                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2645                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2646                         extent_set_compress_type(&this_bio_flag,
2647                                                  em->compress_type);
2648                 }
2649
2650                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2651                 cur_end = min(extent_map_end(em) - 1, end);
2652                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2653                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2654                         disk_io_size = em->block_len;
2655                         sector = em->block_start >> 9;
2656                 } else {
2657                         sector = (em->block_start + extent_offset) >> 9;
2658                         disk_io_size = iosize;
2659                 }
2660                 bdev = em->bdev;
2661                 block_start = em->block_start;
2662                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2663                         block_start = EXTENT_MAP_HOLE;
2664                 free_extent_map(em);
2665                 em = NULL;
2666
2667                 /* we've found a hole, just zero and go on */
2668                 if (block_start == EXTENT_MAP_HOLE) {
2669                         char *userpage;
2670                         struct extent_state *cached = NULL;
2671
2672                         userpage = kmap_atomic(page);
2673                         memset(userpage + pg_offset, 0, iosize);
2674                         flush_dcache_page(page);
2675                         kunmap_atomic(userpage);
2676
2677                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2678                                             &cached, GFP_NOFS);
2679                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2680                                              &cached, GFP_NOFS);
2681                         cur = cur + iosize;
2682                         pg_offset += iosize;
2683                         continue;
2684                 }
2685                 /* the get_extent function already copied into the page */
2686                 if (test_range_bit(tree, cur, cur_end,
2687                                    EXTENT_UPTODATE, 1, NULL)) {
2688                         check_page_uptodate(tree, page);
2689                         unlock_extent(tree, cur, cur + iosize - 1);
2690                         cur = cur + iosize;
2691                         pg_offset += iosize;
2692                         continue;
2693                 }
2694                 /* we have an inline extent but it didn't get marked up
2695                  * to date.  Error out
2696                  */
2697                 if (block_start == EXTENT_MAP_INLINE) {
2698                         SetPageError(page);
2699                         unlock_extent(tree, cur, cur + iosize - 1);
2700                         cur = cur + iosize;
2701                         pg_offset += iosize;
2702                         continue;
2703                 }
2704
2705                 ret = 0;
2706                 if (tree->ops && tree->ops->readpage_io_hook) {
2707                         ret = tree->ops->readpage_io_hook(page, cur,
2708                                                           cur + iosize - 1);
2709                 }
2710                 if (!ret) {
2711                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2712                         pnr -= page->index;
2713                         ret = submit_extent_page(READ, tree, page,
2714                                          sector, disk_io_size, pg_offset,
2715                                          bdev, bio, pnr,
2716                                          end_bio_extent_readpage, mirror_num,
2717                                          *bio_flags,
2718                                          this_bio_flag);
2719                         BUG_ON(ret == -ENOMEM);
2720                         nr++;
2721                         *bio_flags = this_bio_flag;
2722                 }
2723                 if (ret)
2724                         SetPageError(page);
2725                 cur = cur + iosize;
2726                 pg_offset += iosize;
2727         }
2728 out:
2729         if (!nr) {
2730                 if (!PageError(page))
2731                         SetPageUptodate(page);
2732                 unlock_page(page);
2733         }
2734         return 0;
2735 }
2736
2737 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2738                             get_extent_t *get_extent, int mirror_num)
2739 {
2740         struct bio *bio = NULL;
2741         unsigned long bio_flags = 0;
2742         int ret;
2743
2744         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2745                                       &bio_flags);
2746         if (bio)
2747                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2748         return ret;
2749 }
2750
2751 static noinline void update_nr_written(struct page *page,
2752                                       struct writeback_control *wbc,
2753                                       unsigned long nr_written)
2754 {
2755         wbc->nr_to_write -= nr_written;
2756         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2757             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2758                 page->mapping->writeback_index = page->index + nr_written;
2759 }
2760
2761 /*
2762  * the writepage semantics are similar to regular writepage.  extent
2763  * records are inserted to lock ranges in the tree, and as dirty areas
2764  * are found, they are marked writeback.  Then the lock bits are removed
2765  * and the end_io handler clears the writeback ranges
2766  */
2767 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2768                               void *data)
2769 {
2770         struct inode *inode = page->mapping->host;
2771         struct extent_page_data *epd = data;
2772         struct extent_io_tree *tree = epd->tree;
2773         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2774         u64 delalloc_start;
2775         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2776         u64 end;
2777         u64 cur = start;
2778         u64 extent_offset;
2779         u64 last_byte = i_size_read(inode);
2780         u64 block_start;
2781         u64 iosize;
2782         sector_t sector;
2783         struct extent_state *cached_state = NULL;
2784         struct extent_map *em;
2785         struct block_device *bdev;
2786         int ret;
2787         int nr = 0;
2788         size_t pg_offset = 0;
2789         size_t blocksize;
2790         loff_t i_size = i_size_read(inode);
2791         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2792         u64 nr_delalloc;
2793         u64 delalloc_end;
2794         int page_started;
2795         int compressed;
2796         int write_flags;
2797         unsigned long nr_written = 0;
2798         bool fill_delalloc = true;
2799
2800         if (wbc->sync_mode == WB_SYNC_ALL)
2801                 write_flags = WRITE_SYNC;
2802         else
2803                 write_flags = WRITE;
2804
2805         trace___extent_writepage(page, inode, wbc);
2806
2807         WARN_ON(!PageLocked(page));
2808
2809         ClearPageError(page);
2810
2811         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2812         if (page->index > end_index ||
2813            (page->index == end_index && !pg_offset)) {
2814                 page->mapping->a_ops->invalidatepage(page, 0);
2815                 unlock_page(page);
2816                 return 0;
2817         }
2818
2819         if (page->index == end_index) {
2820                 char *userpage;
2821
2822                 userpage = kmap_atomic(page);
2823                 memset(userpage + pg_offset, 0,
2824                        PAGE_CACHE_SIZE - pg_offset);
2825                 kunmap_atomic(userpage);
2826                 flush_dcache_page(page);
2827         }
2828         pg_offset = 0;
2829
2830         set_page_extent_mapped(page);
2831
2832         if (!tree->ops || !tree->ops->fill_delalloc)
2833                 fill_delalloc = false;
2834
2835         delalloc_start = start;
2836         delalloc_end = 0;
2837         page_started = 0;
2838         if (!epd->extent_locked && fill_delalloc) {
2839                 u64 delalloc_to_write = 0;
2840                 /*
2841                  * make sure the wbc mapping index is at least updated
2842                  * to this page.
2843                  */
2844                 update_nr_written(page, wbc, 0);
2845
2846                 while (delalloc_end < page_end) {
2847                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2848                                                        page,
2849                                                        &delalloc_start,
2850                                                        &delalloc_end,
2851                                                        128 * 1024 * 1024);
2852                         if (nr_delalloc == 0) {
2853                                 delalloc_start = delalloc_end + 1;
2854                                 continue;
2855                         }
2856                         ret = tree->ops->fill_delalloc(inode, page,
2857                                                        delalloc_start,
2858                                                        delalloc_end,
2859                                                        &page_started,
2860                                                        &nr_written);
2861                         /* File system has been set read-only */
2862                         if (ret) {
2863                                 SetPageError(page);
2864                                 goto done;
2865                         }
2866                         /*
2867                          * delalloc_end is already one less than the total
2868                          * length, so we don't subtract one from
2869                          * PAGE_CACHE_SIZE
2870                          */
2871                         delalloc_to_write += (delalloc_end - delalloc_start +
2872                                               PAGE_CACHE_SIZE) >>
2873                                               PAGE_CACHE_SHIFT;
2874                         delalloc_start = delalloc_end + 1;
2875                 }
2876                 if (wbc->nr_to_write < delalloc_to_write) {
2877                         int thresh = 8192;
2878
2879                         if (delalloc_to_write < thresh * 2)
2880                                 thresh = delalloc_to_write;
2881                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2882                                                  thresh);
2883                 }
2884
2885                 /* did the fill delalloc function already unlock and start
2886                  * the IO?
2887                  */
2888                 if (page_started) {
2889                         ret = 0;
2890                         /*
2891                          * we've unlocked the page, so we can't update
2892                          * the mapping's writeback index, just update
2893                          * nr_to_write.
2894                          */
2895                         wbc->nr_to_write -= nr_written;
2896                         goto done_unlocked;
2897                 }
2898         }
2899         if (tree->ops && tree->ops->writepage_start_hook) {
2900                 ret = tree->ops->writepage_start_hook(page, start,
2901                                                       page_end);
2902                 if (ret) {
2903                         /* Fixup worker will requeue */
2904                         if (ret == -EBUSY)
2905                                 wbc->pages_skipped++;
2906                         else
2907                                 redirty_page_for_writepage(wbc, page);
2908                         update_nr_written(page, wbc, nr_written);
2909                         unlock_page(page);
2910                         ret = 0;
2911                         goto done_unlocked;
2912                 }
2913         }
2914
2915         /*
2916          * we don't want to touch the inode after unlocking the page,
2917          * so we update the mapping writeback index now
2918          */
2919         update_nr_written(page, wbc, nr_written + 1);
2920
2921         end = page_end;
2922         if (last_byte <= start) {
2923                 if (tree->ops && tree->ops->writepage_end_io_hook)
2924                         tree->ops->writepage_end_io_hook(page, start,
2925                                                          page_end, NULL, 1);
2926                 goto done;
2927         }
2928
2929         blocksize = inode->i_sb->s_blocksize;
2930
2931         while (cur <= end) {
2932                 if (cur >= last_byte) {
2933                         if (tree->ops && tree->ops->writepage_end_io_hook)
2934                                 tree->ops->writepage_end_io_hook(page, cur,
2935                                                          page_end, NULL, 1);
2936                         break;
2937                 }
2938                 em = epd->get_extent(inode, page, pg_offset, cur,
2939                                      end - cur + 1, 1);
2940                 if (IS_ERR_OR_NULL(em)) {
2941                         SetPageError(page);
2942                         break;
2943                 }
2944
2945                 extent_offset = cur - em->start;
2946                 BUG_ON(extent_map_end(em) <= cur);
2947                 BUG_ON(end < cur);
2948                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2949                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2950                 sector = (em->block_start + extent_offset) >> 9;
2951                 bdev = em->bdev;
2952                 block_start = em->block_start;
2953                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2954                 free_extent_map(em);
2955                 em = NULL;
2956
2957                 /*
2958                  * compressed and inline extents are written through other
2959                  * paths in the FS
2960                  */
2961                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2962                     block_start == EXTENT_MAP_INLINE) {
2963                         /*
2964                          * end_io notification does not happen here for
2965                          * compressed extents
2966                          */
2967                         if (!compressed && tree->ops &&
2968                             tree->ops->writepage_end_io_hook)
2969                                 tree->ops->writepage_end_io_hook(page, cur,
2970                                                          cur + iosize - 1,
2971                                                          NULL, 1);
2972                         else if (compressed) {
2973                                 /* we don't want to end_page_writeback on
2974                                  * a compressed extent.  this happens
2975                                  * elsewhere
2976                                  */
2977                                 nr++;
2978                         }
2979
2980                         cur += iosize;
2981                         pg_offset += iosize;
2982                         continue;
2983                 }
2984                 /* leave this out until we have a page_mkwrite call */
2985                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2986                                    EXTENT_DIRTY, 0, NULL)) {
2987                         cur = cur + iosize;
2988                         pg_offset += iosize;
2989                         continue;
2990                 }
2991
2992                 if (tree->ops && tree->ops->writepage_io_hook) {
2993                         ret = tree->ops->writepage_io_hook(page, cur,
2994                                                 cur + iosize - 1);
2995                 } else {
2996                         ret = 0;
2997                 }
2998                 if (ret) {
2999                         SetPageError(page);
3000                 } else {
3001                         unsigned long max_nr = end_index + 1;
3002
3003                         set_range_writeback(tree, cur, cur + iosize - 1);
3004                         if (!PageWriteback(page)) {
3005                                 printk(KERN_ERR "btrfs warning page %lu not "
3006                                        "writeback, cur %llu end %llu\n",
3007                                        page->index, (unsigned long long)cur,
3008                                        (unsigned long long)end);
3009                         }
3010
3011                         ret = submit_extent_page(write_flags, tree, page,
3012                                                  sector, iosize, pg_offset,
3013                                                  bdev, &epd->bio, max_nr,
3014                                                  end_bio_extent_writepage,
3015                                                  0, 0, 0);
3016                         if (ret)
3017                                 SetPageError(page);
3018                 }
3019                 cur = cur + iosize;
3020                 pg_offset += iosize;
3021                 nr++;
3022         }
3023 done:
3024         if (nr == 0) {
3025                 /* make sure the mapping tag for page dirty gets cleared */
3026                 set_page_writeback(page);
3027                 end_page_writeback(page);
3028         }
3029         unlock_page(page);
3030
3031 done_unlocked:
3032
3033         /* drop our reference on any cached states */
3034         free_extent_state(cached_state);
3035         return 0;
3036 }
3037
3038 static int eb_wait(void *word)
3039 {
3040         io_schedule();
3041         return 0;
3042 }
3043
3044 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3045 {
3046         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3047                     TASK_UNINTERRUPTIBLE);
3048 }
3049
3050 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3051                                      struct btrfs_fs_info *fs_info,
3052                                      struct extent_page_data *epd)
3053 {
3054         unsigned long i, num_pages;
3055         int flush = 0;
3056         int ret = 0;
3057
3058         if (!btrfs_try_tree_write_lock(eb)) {
3059                 flush = 1;
3060                 flush_write_bio(epd);
3061                 btrfs_tree_lock(eb);
3062         }
3063
3064         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3065                 btrfs_tree_unlock(eb);
3066                 if (!epd->sync_io)
3067                         return 0;
3068                 if (!flush) {
3069                         flush_write_bio(epd);
3070                         flush = 1;
3071                 }
3072                 while (1) {
3073                         wait_on_extent_buffer_writeback(eb);
3074                         btrfs_tree_lock(eb);
3075                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3076                                 break;
3077                         btrfs_tree_unlock(eb);
3078                 }
3079         }
3080
3081         /*
3082          * We need to do this to prevent races in people who check if the eb is
3083          * under IO since we can end up having no IO bits set for a short period
3084          * of time.
3085          */
3086         spin_lock(&eb->refs_lock);
3087         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3088                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3089                 spin_unlock(&eb->refs_lock);
3090                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3091                 spin_lock(&fs_info->delalloc_lock);
3092                 if (fs_info->dirty_metadata_bytes >= eb->len)
3093                         fs_info->dirty_metadata_bytes -= eb->len;
3094                 else
3095                         WARN_ON(1);
3096                 spin_unlock(&fs_info->delalloc_lock);
3097                 ret = 1;
3098         } else {
3099                 spin_unlock(&eb->refs_lock);
3100         }
3101
3102         btrfs_tree_unlock(eb);
3103
3104         if (!ret)
3105                 return ret;
3106
3107         num_pages = num_extent_pages(eb->start, eb->len);
3108         for (i = 0; i < num_pages; i++) {
3109                 struct page *p = extent_buffer_page(eb, i);
3110
3111                 if (!trylock_page(p)) {
3112                         if (!flush) {
3113                                 flush_write_bio(epd);
3114                                 flush = 1;
3115                         }
3116                         lock_page(p);
3117                 }
3118         }
3119
3120         return ret;
3121 }
3122
3123 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3124 {
3125         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3126         smp_mb__after_clear_bit();
3127         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3128 }
3129
3130 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3131 {
3132         int uptodate = err == 0;
3133         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3134         struct extent_buffer *eb;
3135         int done;
3136
3137         do {
3138                 struct page *page = bvec->bv_page;
3139
3140                 bvec--;
3141                 eb = (struct extent_buffer *)page->private;
3142                 BUG_ON(!eb);
3143                 done = atomic_dec_and_test(&eb->io_pages);
3144
3145                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3146                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3147                         ClearPageUptodate(page);
3148                         SetPageError(page);
3149                 }
3150
3151                 end_page_writeback(page);
3152
3153                 if (!done)
3154                         continue;
3155
3156                 end_extent_buffer_writeback(eb);
3157         } while (bvec >= bio->bi_io_vec);
3158
3159         bio_put(bio);
3160
3161 }
3162
3163 static int write_one_eb(struct extent_buffer *eb,
3164                         struct btrfs_fs_info *fs_info,
3165                         struct writeback_control *wbc,
3166                         struct extent_page_data *epd)
3167 {
3168         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3169         u64 offset = eb->start;
3170         unsigned long i, num_pages;
3171         int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3172         int ret = 0;
3173
3174         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3175         num_pages = num_extent_pages(eb->start, eb->len);
3176         atomic_set(&eb->io_pages, num_pages);
3177         for (i = 0; i < num_pages; i++) {
3178                 struct page *p = extent_buffer_page(eb, i);
3179
3180                 clear_page_dirty_for_io(p);
3181                 set_page_writeback(p);
3182                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3183                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3184                                          -1, end_bio_extent_buffer_writepage,
3185                                          0, 0, 0);
3186                 if (ret) {
3187                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3188                         SetPageError(p);
3189                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3190                                 end_extent_buffer_writeback(eb);
3191                         ret = -EIO;
3192                         break;
3193                 }
3194                 offset += PAGE_CACHE_SIZE;
3195                 update_nr_written(p, wbc, 1);
3196                 unlock_page(p);
3197         }
3198
3199         if (unlikely(ret)) {
3200                 for (; i < num_pages; i++) {
3201                         struct page *p = extent_buffer_page(eb, i);
3202                         unlock_page(p);
3203                 }
3204         }
3205
3206         return ret;
3207 }
3208
3209 int btree_write_cache_pages(struct address_space *mapping,
3210                                    struct writeback_control *wbc)
3211 {
3212         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3213         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3214         struct extent_buffer *eb, *prev_eb = NULL;
3215         struct extent_page_data epd = {
3216                 .bio = NULL,
3217                 .tree = tree,
3218                 .extent_locked = 0,
3219                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3220         };
3221         int ret = 0;
3222         int done = 0;
3223         int nr_to_write_done = 0;
3224         struct pagevec pvec;
3225         int nr_pages;
3226         pgoff_t index;
3227         pgoff_t end;            /* Inclusive */
3228         int scanned = 0;
3229         int tag;
3230
3231         pagevec_init(&pvec, 0);
3232         if (wbc->range_cyclic) {
3233                 index = mapping->writeback_index; /* Start from prev offset */
3234                 end = -1;
3235         } else {
3236                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3237                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3238                 scanned = 1;
3239         }
3240         if (wbc->sync_mode == WB_SYNC_ALL)
3241                 tag = PAGECACHE_TAG_TOWRITE;
3242         else
3243                 tag = PAGECACHE_TAG_DIRTY;
3244 retry:
3245         if (wbc->sync_mode == WB_SYNC_ALL)
3246                 tag_pages_for_writeback(mapping, index, end);
3247         while (!done && !nr_to_write_done && (index <= end) &&
3248                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3249                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3250                 unsigned i;
3251
3252                 scanned = 1;
3253                 for (i = 0; i < nr_pages; i++) {
3254                         struct page *page = pvec.pages[i];
3255
3256                         if (!PagePrivate(page))
3257                                 continue;
3258
3259                         if (!wbc->range_cyclic && page->index > end) {
3260                                 done = 1;
3261                                 break;
3262                         }
3263
3264                         eb = (struct extent_buffer *)page->private;
3265                         if (!eb) {
3266                                 WARN_ON(1);
3267                                 continue;
3268                         }
3269
3270                         if (eb == prev_eb)
3271                                 continue;
3272
3273                         if (!atomic_inc_not_zero(&eb->refs)) {
3274                                 WARN_ON(1);
3275                                 continue;
3276                         }
3277
3278                         prev_eb = eb;
3279                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3280                         if (!ret) {
3281                                 free_extent_buffer(eb);
3282                                 continue;
3283                         }
3284
3285                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3286                         if (ret) {
3287                                 done = 1;
3288                                 free_extent_buffer(eb);
3289                                 break;
3290                         }
3291                         free_extent_buffer(eb);
3292
3293                         /*
3294                          * the filesystem may choose to bump up nr_to_write.
3295                          * We have to make sure to honor the new nr_to_write
3296                          * at any time
3297                          */
3298                         nr_to_write_done = wbc->nr_to_write <= 0;
3299                 }
3300                 pagevec_release(&pvec);
3301                 cond_resched();
3302         }
3303         if (!scanned && !done) {
3304                 /*
3305                  * We hit the last page and there is more work to be done: wrap
3306                  * back to the start of the file
3307                  */
3308                 scanned = 1;
3309                 index = 0;
3310                 goto retry;
3311         }
3312         flush_write_bio(&epd);
3313         return ret;
3314 }
3315
3316 /**
3317  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3318  * @mapping: address space structure to write
3319  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3320  * @writepage: function called for each page
3321  * @data: data passed to writepage function
3322  *
3323  * If a page is already under I/O, write_cache_pages() skips it, even
3324  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3325  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3326  * and msync() need to guarantee that all the data which was dirty at the time
3327  * the call was made get new I/O started against them.  If wbc->sync_mode is
3328  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3329  * existing IO to complete.
3330  */
3331 static int extent_write_cache_pages(struct extent_io_tree *tree,
3332                              struct address_space *mapping,
3333                              struct writeback_control *wbc,
3334                              writepage_t writepage, void *data,
3335                              void (*flush_fn)(void *))
3336 {
3337         struct inode *inode = mapping->host;
3338         int ret = 0;
3339         int done = 0;
3340         int nr_to_write_done = 0;
3341         struct pagevec pvec;
3342         int nr_pages;
3343         pgoff_t index;
3344         pgoff_t end;            /* Inclusive */
3345         int scanned = 0;
3346         int tag;
3347
3348         /*
3349          * We have to hold onto the inode so that ordered extents can do their
3350          * work when the IO finishes.  The alternative to this is failing to add
3351          * an ordered extent if the igrab() fails there and that is a huge pain
3352          * to deal with, so instead just hold onto the inode throughout the
3353          * writepages operation.  If it fails here we are freeing up the inode
3354          * anyway and we'd rather not waste our time writing out stuff that is
3355          * going to be truncated anyway.
3356          */
3357         if (!igrab(inode))
3358                 return 0;
3359
3360         pagevec_init(&pvec, 0);
3361         if (wbc->range_cyclic) {
3362                 index = mapping->writeback_index; /* Start from prev offset */
3363                 end = -1;
3364         } else {
3365                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3366                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3367                 scanned = 1;
3368         }
3369         if (wbc->sync_mode == WB_SYNC_ALL)
3370                 tag = PAGECACHE_TAG_TOWRITE;
3371         else
3372                 tag = PAGECACHE_TAG_DIRTY;
3373 retry:
3374         if (wbc->sync_mode == WB_SYNC_ALL)
3375                 tag_pages_for_writeback(mapping, index, end);
3376         while (!done && !nr_to_write_done && (index <= end) &&
3377                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3378                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3379                 unsigned i;
3380
3381                 scanned = 1;
3382                 for (i = 0; i < nr_pages; i++) {
3383                         struct page *page = pvec.pages[i];
3384
3385                         /*
3386                          * At this point we hold neither mapping->tree_lock nor
3387                          * lock on the page itself: the page may be truncated or
3388                          * invalidated (changing page->mapping to NULL), or even
3389                          * swizzled back from swapper_space to tmpfs file
3390                          * mapping
3391                          */
3392                         if (tree->ops &&
3393                             tree->ops->write_cache_pages_lock_hook) {
3394                                 tree->ops->write_cache_pages_lock_hook(page,
3395                                                                data, flush_fn);
3396                         } else {
3397                                 if (!trylock_page(page)) {
3398                                         flush_fn(data);
3399                                         lock_page(page);
3400                                 }
3401                         }
3402
3403                         if (unlikely(page->mapping != mapping)) {
3404                                 unlock_page(page);
3405                                 continue;
3406                         }
3407
3408                         if (!wbc->range_cyclic && page->index > end) {
3409                                 done = 1;
3410                                 unlock_page(page);
3411                                 continue;
3412                         }
3413
3414                         if (wbc->sync_mode != WB_SYNC_NONE) {
3415                                 if (PageWriteback(page))
3416                                         flush_fn(data);
3417                                 wait_on_page_writeback(page);
3418                         }
3419
3420                         if (PageWriteback(page) ||
3421                             !clear_page_dirty_for_io(page)) {
3422                                 unlock_page(page);
3423                                 continue;
3424                         }
3425
3426                         ret = (*writepage)(page, wbc, data);
3427
3428                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3429                                 unlock_page(page);
3430                                 ret = 0;
3431                         }
3432                         if (ret)
3433                                 done = 1;
3434
3435                         /*
3436                          * the filesystem may choose to bump up nr_to_write.
3437                          * We have to make sure to honor the new nr_to_write
3438                          * at any time
3439                          */
3440                         nr_to_write_done = wbc->nr_to_write <= 0;
3441                 }
3442                 pagevec_release(&pvec);
3443                 cond_resched();
3444         }
3445         if (!scanned && !done) {
3446                 /*
3447                  * We hit the last page and there is more work to be done: wrap
3448                  * back to the start of the file
3449                  */
3450                 scanned = 1;
3451                 index = 0;
3452                 goto retry;
3453         }
3454         btrfs_add_delayed_iput(inode);
3455         return ret;
3456 }
3457
3458 static void flush_epd_write_bio(struct extent_page_data *epd)
3459 {
3460         if (epd->bio) {
3461                 int rw = WRITE;
3462                 int ret;
3463
3464                 if (epd->sync_io)
3465                         rw = WRITE_SYNC;
3466
3467                 ret = submit_one_bio(rw, epd->bio, 0, 0);
3468                 BUG_ON(ret < 0); /* -ENOMEM */
3469                 epd->bio = NULL;
3470         }
3471 }
3472
3473 static noinline void flush_write_bio(void *data)
3474 {
3475         struct extent_page_data *epd = data;
3476         flush_epd_write_bio(epd);
3477 }
3478
3479 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3480                           get_extent_t *get_extent,
3481                           struct writeback_control *wbc)
3482 {
3483         int ret;
3484         struct extent_page_data epd = {
3485                 .bio = NULL,
3486                 .tree = tree,
3487                 .get_extent = get_extent,
3488                 .extent_locked = 0,
3489                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3490         };
3491
3492         ret = __extent_writepage(page, wbc, &epd);
3493
3494         flush_epd_write_bio(&epd);
3495         return ret;
3496 }
3497
3498 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3499                               u64 start, u64 end, get_extent_t *get_extent,
3500                               int mode)
3501 {
3502         int ret = 0;
3503         struct address_space *mapping = inode->i_mapping;
3504         struct page *page;
3505         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3506                 PAGE_CACHE_SHIFT;
3507
3508         struct extent_page_data epd = {
3509                 .bio = NULL,
3510                 .tree = tree,
3511                 .get_extent = get_extent,
3512                 .extent_locked = 1,
3513                 .sync_io = mode == WB_SYNC_ALL,
3514         };
3515         struct writeback_control wbc_writepages = {
3516                 .sync_mode      = mode,
3517                 .nr_to_write    = nr_pages * 2,
3518                 .range_start    = start,
3519                 .range_end      = end + 1,
3520         };
3521
3522         while (start <= end) {
3523                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3524                 if (clear_page_dirty_for_io(page))
3525                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3526                 else {
3527                         if (tree->ops && tree->ops->writepage_end_io_hook)
3528                                 tree->ops->writepage_end_io_hook(page, start,
3529                                                  start + PAGE_CACHE_SIZE - 1,
3530                                                  NULL, 1);
3531                         unlock_page(page);
3532                 }
3533                 page_cache_release(page);
3534                 start += PAGE_CACHE_SIZE;
3535         }
3536
3537         flush_epd_write_bio(&epd);
3538         return ret;
3539 }
3540
3541 int extent_writepages(struct extent_io_tree *tree,
3542                       struct address_space *mapping,
3543                       get_extent_t *get_extent,
3544                       struct writeback_control *wbc)
3545 {
3546         int ret = 0;
3547         struct extent_page_data epd = {
3548                 .bio = NULL,
3549                 .tree = tree,
3550                 .get_extent = get_extent,
3551                 .extent_locked = 0,
3552                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3553         };
3554
3555         ret = extent_write_cache_pages(tree, mapping, wbc,
3556                                        __extent_writepage, &epd,
3557                                        flush_write_bio);
3558         flush_epd_write_bio(&epd);
3559         return ret;
3560 }
3561
3562 int extent_readpages(struct extent_io_tree *tree,
3563                      struct address_space *mapping,
3564                      struct list_head *pages, unsigned nr_pages,
3565                      get_extent_t get_extent)
3566 {
3567         struct bio *bio = NULL;
3568         unsigned page_idx;
3569         unsigned long bio_flags = 0;
3570         struct page *pagepool[16];
3571         struct page *page;
3572         int i = 0;
3573         int nr = 0;
3574
3575         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3576                 page = list_entry(pages->prev, struct page, lru);
3577
3578                 prefetchw(&page->flags);
3579                 list_del(&page->lru);
3580                 if (add_to_page_cache_lru(page, mapping,
3581                                         page->index, GFP_NOFS)) {
3582                         page_cache_release(page);
3583                         continue;
3584                 }
3585
3586                 pagepool[nr++] = page;
3587                 if (nr < ARRAY_SIZE(pagepool))
3588                         continue;
3589                 for (i = 0; i < nr; i++) {
3590                         __extent_read_full_page(tree, pagepool[i], get_extent,
3591                                         &bio, 0, &bio_flags);
3592                         page_cache_release(pagepool[i]);
3593                 }
3594                 nr = 0;
3595         }
3596         for (i = 0; i < nr; i++) {
3597                 __extent_read_full_page(tree, pagepool[i], get_extent,
3598                                         &bio, 0, &bio_flags);
3599                 page_cache_release(pagepool[i]);
3600         }
3601
3602         BUG_ON(!list_empty(pages));
3603         if (bio)
3604                 return submit_one_bio(READ, bio, 0, bio_flags);
3605         return 0;
3606 }
3607
3608 /*
3609  * basic invalidatepage code, this waits on any locked or writeback
3610  * ranges corresponding to the page, and then deletes any extent state
3611  * records from the tree
3612  */
3613 int extent_invalidatepage(struct extent_io_tree *tree,
3614                           struct page *page, unsigned long offset)
3615 {
3616         struct extent_state *cached_state = NULL;
3617         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3618         u64 end = start + PAGE_CACHE_SIZE - 1;
3619         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3620
3621         start += (offset + blocksize - 1) & ~(blocksize - 1);
3622         if (start > end)
3623                 return 0;
3624
3625         lock_extent_bits(tree, start, end, 0, &cached_state);
3626         wait_on_page_writeback(page);
3627         clear_extent_bit(tree, start, end,
3628                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3629                          EXTENT_DO_ACCOUNTING,
3630                          1, 1, &cached_state, GFP_NOFS);
3631         return 0;
3632 }
3633
3634 /*
3635  * a helper for releasepage, this tests for areas of the page that
3636  * are locked or under IO and drops the related state bits if it is safe
3637  * to drop the page.
3638  */
3639 int try_release_extent_state(struct extent_map_tree *map,
3640                              struct extent_io_tree *tree, struct page *page,
3641                              gfp_t mask)
3642 {
3643         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3644         u64 end = start + PAGE_CACHE_SIZE - 1;
3645         int ret = 1;
3646
3647         if (test_range_bit(tree, start, end,
3648                            EXTENT_IOBITS, 0, NULL))
3649                 ret = 0;
3650         else {
3651                 if ((mask & GFP_NOFS) == GFP_NOFS)
3652                         mask = GFP_NOFS;
3653                 /*
3654                  * at this point we can safely clear everything except the
3655                  * locked bit and the nodatasum bit
3656                  */
3657                 ret = clear_extent_bit(tree, start, end,
3658                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3659                                  0, 0, NULL, mask);
3660
3661                 /* if clear_extent_bit failed for enomem reasons,
3662                  * we can't allow the release to continue.
3663                  */
3664                 if (ret < 0)
3665                         ret = 0;
3666                 else
3667                         ret = 1;
3668         }
3669         return ret;
3670 }
3671
3672 /*
3673  * a helper for releasepage.  As long as there are no locked extents
3674  * in the range corresponding to the page, both state records and extent
3675  * map records are removed
3676  */
3677 int try_release_extent_mapping(struct extent_map_tree *map,
3678                                struct extent_io_tree *tree, struct page *page,
3679                                gfp_t mask)
3680 {
3681         struct extent_map *em;
3682         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3683         u64 end = start + PAGE_CACHE_SIZE - 1;
3684
3685         if ((mask & __GFP_WAIT) &&
3686             page->mapping->host->i_size > 16 * 1024 * 1024) {
3687                 u64 len;
3688                 while (start <= end) {
3689                         len = end - start + 1;
3690                         write_lock(&map->lock);
3691                         em = lookup_extent_mapping(map, start, len);
3692                         if (!em) {
3693                                 write_unlock(&map->lock);
3694                                 break;
3695                         }
3696                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3697                             em->start != start) {
3698                                 write_unlock(&map->lock);
3699                                 free_extent_map(em);
3700                                 break;
3701                         }
3702                         if (!test_range_bit(tree, em->start,
3703                                             extent_map_end(em) - 1,
3704                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3705                                             0, NULL)) {
3706                                 remove_extent_mapping(map, em);
3707                                 /* once for the rb tree */
3708                                 free_extent_map(em);
3709                         }
3710                         start = extent_map_end(em);
3711                         write_unlock(&map->lock);
3712
3713                         /* once for us */
3714                         free_extent_map(em);
3715                 }
3716         }
3717         return try_release_extent_state(map, tree, page, mask);
3718 }
3719
3720 /*
3721  * helper function for fiemap, which doesn't want to see any holes.
3722  * This maps until we find something past 'last'
3723  */
3724 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3725                                                 u64 offset,
3726                                                 u64 last,
3727                                                 get_extent_t *get_extent)
3728 {
3729         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3730         struct extent_map *em;
3731         u64 len;
3732
3733         if (offset >= last)
3734                 return NULL;
3735
3736         while(1) {
3737                 len = last - offset;
3738                 if (len == 0)
3739                         break;
3740                 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3741                 em = get_extent(inode, NULL, 0, offset, len, 0);
3742                 if (IS_ERR_OR_NULL(em))
3743                         return em;
3744
3745                 /* if this isn't a hole return it */
3746                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3747                     em->block_start != EXTENT_MAP_HOLE) {
3748                         return em;
3749                 }
3750
3751                 /* this is a hole, advance to the next extent */
3752                 offset = extent_map_end(em);
3753                 free_extent_map(em);
3754                 if (offset >= last)
3755                         break;
3756         }
3757         return NULL;
3758 }
3759
3760 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3761                 __u64 start, __u64 len, get_extent_t *get_extent)
3762 {
3763         int ret = 0;
3764         u64 off = start;
3765         u64 max = start + len;
3766         u32 flags = 0;
3767         u32 found_type;
3768         u64 last;
3769         u64 last_for_get_extent = 0;
3770         u64 disko = 0;
3771         u64 isize = i_size_read(inode);
3772         struct btrfs_key found_key;
3773         struct extent_map *em = NULL;
3774         struct extent_state *cached_state = NULL;
3775         struct btrfs_path *path;
3776         struct btrfs_file_extent_item *item;
3777         int end = 0;
3778         u64 em_start = 0;
3779         u64 em_len = 0;
3780         u64 em_end = 0;
3781         unsigned long emflags;
3782
3783         if (len == 0)
3784                 return -EINVAL;
3785
3786         path = btrfs_alloc_path();
3787         if (!path)
3788                 return -ENOMEM;
3789         path->leave_spinning = 1;
3790
3791         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3792         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3793
3794         /*
3795          * lookup the last file extent.  We're not using i_size here
3796          * because there might be preallocation past i_size
3797          */
3798         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3799                                        path, btrfs_ino(inode), -1, 0);
3800         if (ret < 0) {
3801                 btrfs_free_path(path);
3802                 return ret;
3803         }
3804         WARN_ON(!ret);
3805         path->slots[0]--;
3806         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3807                               struct btrfs_file_extent_item);
3808         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3809         found_type = btrfs_key_type(&found_key);
3810
3811         /* No extents, but there might be delalloc bits */
3812         if (found_key.objectid != btrfs_ino(inode) ||
3813             found_type != BTRFS_EXTENT_DATA_KEY) {
3814                 /* have to trust i_size as the end */
3815                 last = (u64)-1;
3816                 last_for_get_extent = isize;
3817         } else {
3818                 /*
3819                  * remember the start of the last extent.  There are a
3820                  * bunch of different factors that go into the length of the
3821                  * extent, so its much less complex to remember where it started
3822                  */
3823                 last = found_key.offset;
3824                 last_for_get_extent = last + 1;
3825         }
3826         btrfs_free_path(path);
3827
3828         /*
3829          * we might have some extents allocated but more delalloc past those
3830          * extents.  so, we trust isize unless the start of the last extent is
3831          * beyond isize
3832          */
3833         if (last < isize) {
3834                 last = (u64)-1;
3835                 last_for_get_extent = isize;
3836         }
3837
3838         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3839                          &cached_state);
3840
3841         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3842                                    get_extent);
3843         if (!em)
3844                 goto out;
3845         if (IS_ERR(em)) {
3846                 ret = PTR_ERR(em);
3847                 goto out;
3848         }
3849
3850         while (!end) {
3851                 u64 offset_in_extent;
3852
3853                 /* break if the extent we found is outside the range */
3854                 if (em->start >= max || extent_map_end(em) < off)
3855                         break;
3856
3857                 /*
3858                  * get_extent may return an extent that starts before our
3859                  * requested range.  We have to make sure the ranges
3860                  * we return to fiemap always move forward and don't
3861                  * overlap, so adjust the offsets here
3862                  */
3863                 em_start = max(em->start, off);
3864
3865                 /*
3866                  * record the offset from the start of the extent
3867                  * for adjusting the disk offset below
3868                  */
3869                 offset_in_extent = em_start - em->start;
3870                 em_end = extent_map_end(em);
3871                 em_len = em_end - em_start;
3872                 emflags = em->flags;
3873                 disko = 0;
3874                 flags = 0;
3875
3876                 /*
3877                  * bump off for our next call to get_extent
3878                  */
3879                 off = extent_map_end(em);
3880                 if (off >= max)
3881                         end = 1;
3882
3883                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3884                         end = 1;
3885                         flags |= FIEMAP_EXTENT_LAST;
3886                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3887                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3888                                   FIEMAP_EXTENT_NOT_ALIGNED);
3889                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3890                         flags |= (FIEMAP_EXTENT_DELALLOC |
3891                                   FIEMAP_EXTENT_UNKNOWN);
3892                 } else {
3893                         disko = em->block_start + offset_in_extent;
3894                 }
3895                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3896                         flags |= FIEMAP_EXTENT_ENCODED;
3897
3898                 free_extent_map(em);
3899                 em = NULL;
3900                 if ((em_start >= last) || em_len == (u64)-1 ||
3901                    (last == (u64)-1 && isize <= em_end)) {
3902                         flags |= FIEMAP_EXTENT_LAST;
3903                         end = 1;
3904                 }
3905
3906                 /* now scan forward to see if this is really the last extent. */
3907                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3908                                            get_extent);
3909                 if (IS_ERR(em)) {
3910                         ret = PTR_ERR(em);
3911                         goto out;
3912                 }
3913                 if (!em) {
3914                         flags |= FIEMAP_EXTENT_LAST;
3915                         end = 1;
3916                 }
3917                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3918                                               em_len, flags);
3919                 if (ret)
3920                         goto out_free;
3921         }
3922 out_free:
3923         free_extent_map(em);
3924 out:
3925         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3926                              &cached_state, GFP_NOFS);
3927         return ret;
3928 }
3929
3930 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3931                                               unsigned long i)
3932 {
3933         return eb->pages[i];
3934 }
3935
3936 inline unsigned long num_extent_pages(u64 start, u64 len)
3937 {
3938         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3939                 (start >> PAGE_CACHE_SHIFT);
3940 }
3941
3942 static void __free_extent_buffer(struct extent_buffer *eb)
3943 {
3944 #if LEAK_DEBUG
3945         unsigned long flags;
3946         spin_lock_irqsave(&leak_lock, flags);
3947         list_del(&eb->leak_list);
3948         spin_unlock_irqrestore(&leak_lock, flags);
3949 #endif
3950         if (eb->pages && eb->pages != eb->inline_pages)
3951                 kfree(eb->pages);
3952         kmem_cache_free(extent_buffer_cache, eb);
3953 }
3954
3955 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3956                                                    u64 start,
3957                                                    unsigned long len,
3958                                                    gfp_t mask)
3959 {
3960         struct extent_buffer *eb = NULL;
3961 #if LEAK_DEBUG
3962         unsigned long flags;
3963 #endif
3964
3965         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3966         if (eb == NULL)
3967                 return NULL;
3968         eb->start = start;
3969         eb->len = len;
3970         eb->tree = tree;
3971         eb->bflags = 0;
3972         rwlock_init(&eb->lock);
3973         atomic_set(&eb->write_locks, 0);
3974         atomic_set(&eb->read_locks, 0);
3975         atomic_set(&eb->blocking_readers, 0);
3976         atomic_set(&eb->blocking_writers, 0);
3977         atomic_set(&eb->spinning_readers, 0);
3978         atomic_set(&eb->spinning_writers, 0);
3979         eb->lock_nested = 0;
3980         init_waitqueue_head(&eb->write_lock_wq);
3981         init_waitqueue_head(&eb->read_lock_wq);
3982
3983 #if LEAK_DEBUG
3984         spin_lock_irqsave(&leak_lock, flags);
3985         list_add(&eb->leak_list, &buffers);
3986         spin_unlock_irqrestore(&leak_lock, flags);
3987 #endif
3988         spin_lock_init(&eb->refs_lock);
3989         atomic_set(&eb->refs, 1);
3990         atomic_set(&eb->io_pages, 0);
3991
3992         if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3993                 struct page **pages;
3994                 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3995                         PAGE_CACHE_SHIFT;
3996                 pages = kzalloc(num_pages, mask);
3997                 if (!pages) {
3998                         __free_extent_buffer(eb);
3999                         return NULL;
4000                 }
4001                 eb->pages = pages;
4002         } else {
4003                 eb->pages = eb->inline_pages;
4004         }
4005
4006         return eb;
4007 }
4008
4009 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4010 {
4011         unsigned long i;
4012         struct page *p;
4013         struct extent_buffer *new;
4014         unsigned long num_pages = num_extent_pages(src->start, src->len);
4015
4016         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4017         if (new == NULL)
4018                 return NULL;
4019
4020         for (i = 0; i < num_pages; i++) {
4021                 p = alloc_page(GFP_ATOMIC);
4022                 BUG_ON(!p);
4023                 attach_extent_buffer_page(new, p);
4024                 WARN_ON(PageDirty(p));
4025                 SetPageUptodate(p);
4026                 new->pages[i] = p;
4027         }
4028
4029         copy_extent_buffer(new, src, 0, 0, src->len);
4030         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4031         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4032
4033         return new;
4034 }
4035
4036 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4037 {
4038         struct extent_buffer *eb;
4039         unsigned long num_pages = num_extent_pages(0, len);
4040         unsigned long i;
4041
4042         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4043         if (!eb)
4044                 return NULL;
4045
4046         for (i = 0; i < num_pages; i++) {
4047                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4048                 if (!eb->pages[i])
4049                         goto err;
4050         }
4051         set_extent_buffer_uptodate(eb);
4052         btrfs_set_header_nritems(eb, 0);
4053         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4054
4055         return eb;
4056 err:
4057         for (i--; i > 0; i--)
4058                 __free_page(eb->pages[i]);
4059         __free_extent_buffer(eb);
4060         return NULL;
4061 }
4062
4063 static int extent_buffer_under_io(struct extent_buffer *eb)
4064 {
4065         return (atomic_read(&eb->io_pages) ||
4066                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4067                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4068 }
4069
4070 /*
4071  * Helper for releasing extent buffer page.
4072  */
4073 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4074                                                 unsigned long start_idx)
4075 {
4076         unsigned long index;
4077         unsigned long num_pages;
4078         struct page *page;
4079         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4080
4081         BUG_ON(extent_buffer_under_io(eb));
4082
4083         num_pages = num_extent_pages(eb->start, eb->len);
4084         index = start_idx + num_pages;
4085         if (start_idx >= index)
4086                 return;
4087
4088         do {
4089                 index--;
4090                 page = extent_buffer_page(eb, index);
4091                 if (page && mapped) {
4092                         spin_lock(&page->mapping->private_lock);
4093                         /*
4094                          * We do this since we'll remove the pages after we've
4095                          * removed the eb from the radix tree, so we could race
4096                          * and have this page now attached to the new eb.  So
4097                          * only clear page_private if it's still connected to
4098                          * this eb.
4099                          */
4100                         if (PagePrivate(page) &&
4101                             page->private == (unsigned long)eb) {
4102                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4103                                 BUG_ON(PageDirty(page));
4104                                 BUG_ON(PageWriteback(page));
4105                                 /*
4106                                  * We need to make sure we haven't be attached
4107                                  * to a new eb.
4108                                  */
4109                                 ClearPagePrivate(page);
4110                                 set_page_private(page, 0);
4111                                 /* One for the page private */
4112                                 page_cache_release(page);
4113                         }
4114                         spin_unlock(&page->mapping->private_lock);
4115
4116                 }
4117                 if (page) {
4118                         /* One for when we alloced the page */
4119                         page_cache_release(page);
4120                 }
4121         } while (index != start_idx);
4122 }
4123
4124 /*
4125  * Helper for releasing the extent buffer.
4126  */
4127 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4128 {
4129         btrfs_release_extent_buffer_page(eb, 0);
4130         __free_extent_buffer(eb);
4131 }
4132
4133 static void check_buffer_tree_ref(struct extent_buffer *eb)
4134 {
4135         /* the ref bit is tricky.  We have to make sure it is set
4136          * if we have the buffer dirty.   Otherwise the
4137          * code to free a buffer can end up dropping a dirty
4138          * page
4139          *
4140          * Once the ref bit is set, it won't go away while the
4141          * buffer is dirty or in writeback, and it also won't
4142          * go away while we have the reference count on the
4143          * eb bumped.
4144          *
4145          * We can't just set the ref bit without bumping the
4146          * ref on the eb because free_extent_buffer might
4147          * see the ref bit and try to clear it.  If this happens
4148          * free_extent_buffer might end up dropping our original
4149          * ref by mistake and freeing the page before we are able
4150          * to add one more ref.
4151          *
4152          * So bump the ref count first, then set the bit.  If someone
4153          * beat us to it, drop the ref we added.
4154          */
4155         spin_lock(&eb->refs_lock);
4156         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4157                 atomic_inc(&eb->refs);
4158         spin_unlock(&eb->refs_lock);
4159 }
4160
4161 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4162 {
4163         unsigned long num_pages, i;
4164
4165         check_buffer_tree_ref(eb);
4166
4167         num_pages = num_extent_pages(eb->start, eb->len);
4168         for (i = 0; i < num_pages; i++) {
4169                 struct page *p = extent_buffer_page(eb, i);
4170                 mark_page_accessed(p);
4171         }
4172 }
4173
4174 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4175                                           u64 start, unsigned long len)
4176 {
4177         unsigned long num_pages = num_extent_pages(start, len);
4178         unsigned long i;
4179         unsigned long index = start >> PAGE_CACHE_SHIFT;
4180         struct extent_buffer *eb;
4181         struct extent_buffer *exists = NULL;
4182         struct page *p;
4183         struct address_space *mapping = tree->mapping;
4184         int uptodate = 1;
4185         int ret;
4186
4187         rcu_read_lock();
4188         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4189         if (eb && atomic_inc_not_zero(&eb->refs)) {
4190                 rcu_read_unlock();
4191                 mark_extent_buffer_accessed(eb);
4192                 return eb;
4193         }
4194         rcu_read_unlock();
4195
4196         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4197         if (!eb)
4198                 return NULL;
4199
4200         for (i = 0; i < num_pages; i++, index++) {
4201                 p = find_or_create_page(mapping, index, GFP_NOFS);
4202                 if (!p) {
4203                         WARN_ON(1);
4204                         goto free_eb;
4205                 }
4206
4207                 spin_lock(&mapping->private_lock);
4208                 if (PagePrivate(p)) {
4209                         /*
4210                          * We could have already allocated an eb for this page
4211                          * and attached one so lets see if we can get a ref on
4212                          * the existing eb, and if we can we know it's good and
4213                          * we can just return that one, else we know we can just
4214                          * overwrite page->private.
4215                          */
4216                         exists = (struct extent_buffer *)p->private;
4217                         if (atomic_inc_not_zero(&exists->refs)) {
4218                                 spin_unlock(&mapping->private_lock);
4219                                 unlock_page(p);
4220                                 page_cache_release(p);
4221                                 mark_extent_buffer_accessed(exists);
4222                                 goto free_eb;
4223                         }
4224
4225                         /*
4226                          * Do this so attach doesn't complain and we need to
4227                          * drop the ref the old guy had.
4228                          */
4229                         ClearPagePrivate(p);
4230                         WARN_ON(PageDirty(p));
4231                         page_cache_release(p);
4232                 }
4233                 attach_extent_buffer_page(eb, p);
4234                 spin_unlock(&mapping->private_lock);
4235                 WARN_ON(PageDirty(p));
4236                 mark_page_accessed(p);
4237                 eb->pages[i] = p;
4238                 if (!PageUptodate(p))
4239                         uptodate = 0;
4240
4241                 /*
4242                  * see below about how we avoid a nasty race with release page
4243                  * and why we unlock later
4244                  */
4245         }
4246         if (uptodate)
4247                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4248 again:
4249         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4250         if (ret)
4251                 goto free_eb;
4252
4253         spin_lock(&tree->buffer_lock);
4254         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4255         if (ret == -EEXIST) {
4256                 exists = radix_tree_lookup(&tree->buffer,
4257                                                 start >> PAGE_CACHE_SHIFT);
4258                 if (!atomic_inc_not_zero(&exists->refs)) {
4259                         spin_unlock(&tree->buffer_lock);
4260                         radix_tree_preload_end();
4261                         exists = NULL;
4262                         goto again;
4263                 }
4264                 spin_unlock(&tree->buffer_lock);
4265                 radix_tree_preload_end();
4266                 mark_extent_buffer_accessed(exists);
4267                 goto free_eb;
4268         }
4269         /* add one reference for the tree */
4270         check_buffer_tree_ref(eb);
4271         spin_unlock(&tree->buffer_lock);
4272         radix_tree_preload_end();
4273
4274         /*
4275          * there is a race where release page may have
4276          * tried to find this extent buffer in the radix
4277          * but failed.  It will tell the VM it is safe to
4278          * reclaim the, and it will clear the page private bit.
4279          * We must make sure to set the page private bit properly
4280          * after the extent buffer is in the radix tree so
4281          * it doesn't get lost
4282          */
4283         SetPageChecked(eb->pages[0]);
4284         for (i = 1; i < num_pages; i++) {
4285                 p = extent_buffer_page(eb, i);
4286                 ClearPageChecked(p);
4287                 unlock_page(p);
4288         }
4289         unlock_page(eb->pages[0]);
4290         return eb;
4291
4292 free_eb:
4293         for (i = 0; i < num_pages; i++) {
4294                 if (eb->pages[i])
4295                         unlock_page(eb->pages[i]);
4296         }
4297
4298         WARN_ON(!atomic_dec_and_test(&eb->refs));
4299         btrfs_release_extent_buffer(eb);
4300         return exists;
4301 }
4302
4303 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4304                                          u64 start, unsigned long len)
4305 {
4306         struct extent_buffer *eb;
4307
4308         rcu_read_lock();
4309         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4310         if (eb && atomic_inc_not_zero(&eb->refs)) {
4311                 rcu_read_unlock();
4312                 mark_extent_buffer_accessed(eb);
4313                 return eb;
4314         }
4315         rcu_read_unlock();
4316
4317         return NULL;
4318 }
4319
4320 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4321 {
4322         struct extent_buffer *eb =
4323                         container_of(head, struct extent_buffer, rcu_head);
4324
4325         __free_extent_buffer(eb);
4326 }
4327
4328 /* Expects to have eb->eb_lock already held */
4329 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4330 {
4331         WARN_ON(atomic_read(&eb->refs) == 0);
4332         if (atomic_dec_and_test(&eb->refs)) {
4333                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4334                         spin_unlock(&eb->refs_lock);
4335                 } else {
4336                         struct extent_io_tree *tree = eb->tree;
4337
4338                         spin_unlock(&eb->refs_lock);
4339
4340                         spin_lock(&tree->buffer_lock);
4341                         radix_tree_delete(&tree->buffer,
4342                                           eb->start >> PAGE_CACHE_SHIFT);
4343                         spin_unlock(&tree->buffer_lock);
4344                 }
4345
4346                 /* Should be safe to release our pages at this point */
4347                 btrfs_release_extent_buffer_page(eb, 0);
4348
4349                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4350                 return 1;
4351         }
4352         spin_unlock(&eb->refs_lock);
4353
4354         return 0;
4355 }
4356
4357 void free_extent_buffer(struct extent_buffer *eb)
4358 {
4359         if (!eb)
4360                 return;
4361
4362         spin_lock(&eb->refs_lock);
4363         if (atomic_read(&eb->refs) == 2 &&
4364             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4365                 atomic_dec(&eb->refs);
4366
4367         if (atomic_read(&eb->refs) == 2 &&
4368             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4369             !extent_buffer_under_io(eb) &&
4370             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4371                 atomic_dec(&eb->refs);
4372
4373         /*
4374          * I know this is terrible, but it's temporary until we stop tracking
4375          * the uptodate bits and such for the extent buffers.
4376          */
4377         release_extent_buffer(eb, GFP_ATOMIC);
4378 }
4379
4380 void free_extent_buffer_stale(struct extent_buffer *eb)
4381 {
4382         if (!eb)
4383                 return;
4384
4385         spin_lock(&eb->refs_lock);
4386         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4387
4388         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4389             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4390                 atomic_dec(&eb->refs);
4391         release_extent_buffer(eb, GFP_NOFS);
4392 }
4393
4394 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4395 {
4396         unsigned long i;
4397         unsigned long num_pages;
4398         struct page *page;
4399
4400         num_pages = num_extent_pages(eb->start, eb->len);
4401
4402         for (i = 0; i < num_pages; i++) {
4403                 page = extent_buffer_page(eb, i);
4404                 if (!PageDirty(page))
4405                         continue;
4406
4407                 lock_page(page);
4408                 WARN_ON(!PagePrivate(page));
4409
4410                 clear_page_dirty_for_io(page);
4411                 spin_lock_irq(&page->mapping->tree_lock);
4412                 if (!PageDirty(page)) {
4413                         radix_tree_tag_clear(&page->mapping->page_tree,
4414                                                 page_index(page),
4415                                                 PAGECACHE_TAG_DIRTY);
4416                 }
4417                 spin_unlock_irq(&page->mapping->tree_lock);
4418                 ClearPageError(page);
4419                 unlock_page(page);
4420         }
4421         WARN_ON(atomic_read(&eb->refs) == 0);
4422 }
4423
4424 int set_extent_buffer_dirty(struct extent_buffer *eb)
4425 {
4426         unsigned long i;
4427         unsigned long num_pages;
4428         int was_dirty = 0;
4429
4430         check_buffer_tree_ref(eb);
4431
4432         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4433
4434         num_pages = num_extent_pages(eb->start, eb->len);
4435         WARN_ON(atomic_read(&eb->refs) == 0);
4436         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4437
4438         for (i = 0; i < num_pages; i++)
4439                 set_page_dirty(extent_buffer_page(eb, i));
4440         return was_dirty;
4441 }
4442
4443 static int range_straddles_pages(u64 start, u64 len)
4444 {
4445         if (len < PAGE_CACHE_SIZE)
4446                 return 1;
4447         if (start & (PAGE_CACHE_SIZE - 1))
4448                 return 1;
4449         if ((start + len) & (PAGE_CACHE_SIZE - 1))
4450                 return 1;
4451         return 0;
4452 }
4453
4454 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4455 {
4456         unsigned long i;
4457         struct page *page;
4458         unsigned long num_pages;
4459
4460         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4461         num_pages = num_extent_pages(eb->start, eb->len);
4462         for (i = 0; i < num_pages; i++) {
4463                 page = extent_buffer_page(eb, i);
4464                 if (page)
4465                         ClearPageUptodate(page);
4466         }
4467         return 0;
4468 }
4469
4470 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4471 {
4472         unsigned long i;
4473         struct page *page;
4474         unsigned long num_pages;
4475
4476         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4477         num_pages = num_extent_pages(eb->start, eb->len);
4478         for (i = 0; i < num_pages; i++) {
4479                 page = extent_buffer_page(eb, i);
4480                 SetPageUptodate(page);
4481         }
4482         return 0;
4483 }
4484
4485 int extent_range_uptodate(struct extent_io_tree *tree,
4486                           u64 start, u64 end)
4487 {
4488         struct page *page;
4489         int ret;
4490         int pg_uptodate = 1;
4491         int uptodate;
4492         unsigned long index;
4493
4494         if (range_straddles_pages(start, end - start + 1)) {
4495                 ret = test_range_bit(tree, start, end,
4496                                      EXTENT_UPTODATE, 1, NULL);
4497                 if (ret)
4498                         return 1;
4499         }
4500         while (start <= end) {
4501                 index = start >> PAGE_CACHE_SHIFT;
4502                 page = find_get_page(tree->mapping, index);
4503                 if (!page)
4504                         return 1;
4505                 uptodate = PageUptodate(page);
4506                 page_cache_release(page);
4507                 if (!uptodate) {
4508                         pg_uptodate = 0;
4509                         break;
4510                 }
4511                 start += PAGE_CACHE_SIZE;
4512         }
4513         return pg_uptodate;
4514 }
4515
4516 int extent_buffer_uptodate(struct extent_buffer *eb)
4517 {
4518         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4519 }
4520
4521 int read_extent_buffer_pages(struct extent_io_tree *tree,
4522                              struct extent_buffer *eb, u64 start, int wait,
4523                              get_extent_t *get_extent, int mirror_num)
4524 {
4525         unsigned long i;
4526         unsigned long start_i;
4527         struct page *page;
4528         int err;
4529         int ret = 0;
4530         int locked_pages = 0;
4531         int all_uptodate = 1;
4532         unsigned long num_pages;
4533         unsigned long num_reads = 0;
4534         struct bio *bio = NULL;
4535         unsigned long bio_flags = 0;
4536
4537         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4538                 return 0;
4539
4540         if (start) {
4541                 WARN_ON(start < eb->start);
4542                 start_i = (start >> PAGE_CACHE_SHIFT) -
4543                         (eb->start >> PAGE_CACHE_SHIFT);
4544         } else {
4545                 start_i = 0;
4546         }
4547
4548         num_pages = num_extent_pages(eb->start, eb->len);
4549         for (i = start_i; i < num_pages; i++) {
4550                 page = extent_buffer_page(eb, i);
4551                 if (wait == WAIT_NONE) {
4552                         if (!trylock_page(page))
4553                                 goto unlock_exit;
4554                 } else {
4555                         lock_page(page);
4556                 }
4557                 locked_pages++;
4558                 if (!PageUptodate(page)) {
4559                         num_reads++;
4560                         all_uptodate = 0;
4561                 }
4562         }
4563         if (all_uptodate) {
4564                 if (start_i == 0)
4565                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4566                 goto unlock_exit;
4567         }
4568
4569         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4570         eb->read_mirror = 0;
4571         atomic_set(&eb->io_pages, num_reads);
4572         for (i = start_i; i < num_pages; i++) {
4573                 page = extent_buffer_page(eb, i);
4574                 if (!PageUptodate(page)) {
4575                         ClearPageError(page);
4576                         err = __extent_read_full_page(tree, page,
4577                                                       get_extent, &bio,
4578                                                       mirror_num, &bio_flags);
4579                         if (err)
4580                                 ret = err;
4581                 } else {
4582                         unlock_page(page);
4583                 }
4584         }
4585
4586         if (bio) {
4587                 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4588                 if (err)
4589                         return err;
4590         }
4591
4592         if (ret || wait != WAIT_COMPLETE)
4593                 return ret;
4594
4595         for (i = start_i; i < num_pages; i++) {
4596                 page = extent_buffer_page(eb, i);
4597                 wait_on_page_locked(page);
4598                 if (!PageUptodate(page))
4599                         ret = -EIO;
4600         }
4601
4602         return ret;
4603
4604 unlock_exit:
4605         i = start_i;
4606         while (locked_pages > 0) {
4607                 page = extent_buffer_page(eb, i);
4608                 i++;
4609                 unlock_page(page);
4610                 locked_pages--;
4611         }
4612         return ret;
4613 }
4614
4615 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4616                         unsigned long start,
4617                         unsigned long len)
4618 {
4619         size_t cur;
4620         size_t offset;
4621         struct page *page;
4622         char *kaddr;
4623         char *dst = (char *)dstv;
4624         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4625         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4626
4627         WARN_ON(start > eb->len);
4628         WARN_ON(start + len > eb->start + eb->len);
4629
4630         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4631
4632         while (len > 0) {
4633                 page = extent_buffer_page(eb, i);
4634
4635                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4636                 kaddr = page_address(page);
4637                 memcpy(dst, kaddr + offset, cur);
4638
4639                 dst += cur;
4640                 len -= cur;
4641                 offset = 0;
4642                 i++;
4643         }
4644 }
4645
4646 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4647                                unsigned long min_len, char **map,
4648                                unsigned long *map_start,
4649                                unsigned long *map_len)
4650 {
4651         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4652         char *kaddr;
4653         struct page *p;
4654         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4655         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4656         unsigned long end_i = (start_offset + start + min_len - 1) >>
4657                 PAGE_CACHE_SHIFT;
4658
4659         if (i != end_i)
4660                 return -EINVAL;
4661
4662         if (i == 0) {
4663                 offset = start_offset;
4664                 *map_start = 0;
4665         } else {
4666                 offset = 0;
4667                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4668         }
4669
4670         if (start + min_len > eb->len) {
4671                 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4672                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4673                        eb->len, start, min_len);
4674                 WARN_ON(1);
4675                 return -EINVAL;
4676         }
4677
4678         p = extent_buffer_page(eb, i);
4679         kaddr = page_address(p);
4680         *map = kaddr + offset;
4681         *map_len = PAGE_CACHE_SIZE - offset;
4682         return 0;
4683 }
4684
4685 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4686                           unsigned long start,
4687                           unsigned long len)
4688 {
4689         size_t cur;
4690         size_t offset;
4691         struct page *page;
4692         char *kaddr;
4693         char *ptr = (char *)ptrv;
4694         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4695         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4696         int ret = 0;
4697
4698         WARN_ON(start > eb->len);
4699         WARN_ON(start + len > eb->start + eb->len);
4700
4701         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4702
4703         while (len > 0) {
4704                 page = extent_buffer_page(eb, i);
4705
4706                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4707
4708                 kaddr = page_address(page);
4709                 ret = memcmp(ptr, kaddr + offset, cur);
4710                 if (ret)
4711                         break;
4712
4713                 ptr += cur;
4714                 len -= cur;
4715                 offset = 0;
4716                 i++;
4717         }
4718         return ret;
4719 }
4720
4721 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4722                          unsigned long start, unsigned long len)
4723 {
4724         size_t cur;
4725         size_t offset;
4726         struct page *page;
4727         char *kaddr;
4728         char *src = (char *)srcv;
4729         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4730         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4731
4732         WARN_ON(start > eb->len);
4733         WARN_ON(start + len > eb->start + eb->len);
4734
4735         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4736
4737         while (len > 0) {
4738                 page = extent_buffer_page(eb, i);
4739                 WARN_ON(!PageUptodate(page));
4740
4741                 cur = min(len, PAGE_CACHE_SIZE - offset);
4742                 kaddr = page_address(page);
4743                 memcpy(kaddr + offset, src, cur);
4744
4745                 src += cur;
4746                 len -= cur;
4747                 offset = 0;
4748                 i++;
4749         }
4750 }
4751
4752 void memset_extent_buffer(struct extent_buffer *eb, char c,
4753                           unsigned long start, unsigned long len)
4754 {
4755         size_t cur;
4756         size_t offset;
4757         struct page *page;
4758         char *kaddr;
4759         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4760         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4761
4762         WARN_ON(start > eb->len);
4763         WARN_ON(start + len > eb->start + eb->len);
4764
4765         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4766
4767         while (len > 0) {
4768                 page = extent_buffer_page(eb, i);
4769                 WARN_ON(!PageUptodate(page));
4770
4771                 cur = min(len, PAGE_CACHE_SIZE - offset);
4772                 kaddr = page_address(page);
4773                 memset(kaddr + offset, c, cur);
4774
4775                 len -= cur;
4776                 offset = 0;
4777                 i++;
4778         }
4779 }
4780
4781 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4782                         unsigned long dst_offset, unsigned long src_offset,
4783                         unsigned long len)
4784 {
4785         u64 dst_len = dst->len;
4786         size_t cur;
4787         size_t offset;
4788         struct page *page;
4789         char *kaddr;
4790         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4791         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4792
4793         WARN_ON(src->len != dst_len);
4794
4795         offset = (start_offset + dst_offset) &
4796                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4797
4798         while (len > 0) {
4799                 page = extent_buffer_page(dst, i);
4800                 WARN_ON(!PageUptodate(page));
4801
4802                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4803
4804                 kaddr = page_address(page);
4805                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4806
4807                 src_offset += cur;
4808                 len -= cur;
4809                 offset = 0;
4810                 i++;
4811         }
4812 }
4813
4814 static void move_pages(struct page *dst_page, struct page *src_page,
4815                        unsigned long dst_off, unsigned long src_off,
4816                        unsigned long len)
4817 {
4818         char *dst_kaddr = page_address(dst_page);
4819         if (dst_page == src_page) {
4820                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4821         } else {
4822                 char *src_kaddr = page_address(src_page);
4823                 char *p = dst_kaddr + dst_off + len;
4824                 char *s = src_kaddr + src_off + len;
4825
4826                 while (len--)
4827                         *--p = *--s;
4828         }
4829 }
4830
4831 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4832 {
4833         unsigned long distance = (src > dst) ? src - dst : dst - src;
4834         return distance < len;
4835 }
4836
4837 static void copy_pages(struct page *dst_page, struct page *src_page,
4838                        unsigned long dst_off, unsigned long src_off,
4839                        unsigned long len)
4840 {
4841         char *dst_kaddr = page_address(dst_page);
4842         char *src_kaddr;
4843         int must_memmove = 0;
4844
4845         if (dst_page != src_page) {
4846                 src_kaddr = page_address(src_page);
4847         } else {
4848                 src_kaddr = dst_kaddr;
4849                 if (areas_overlap(src_off, dst_off, len))
4850                         must_memmove = 1;
4851         }
4852
4853         if (must_memmove)
4854                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4855         else
4856                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4857 }
4858
4859 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4860                            unsigned long src_offset, unsigned long len)
4861 {
4862         size_t cur;
4863         size_t dst_off_in_page;
4864         size_t src_off_in_page;
4865         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4866         unsigned long dst_i;
4867         unsigned long src_i;
4868
4869         if (src_offset + len > dst->len) {
4870                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4871                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4872                 BUG_ON(1);
4873         }
4874         if (dst_offset + len > dst->len) {
4875                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4876                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4877                 BUG_ON(1);
4878         }
4879
4880         while (len > 0) {
4881                 dst_off_in_page = (start_offset + dst_offset) &
4882                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4883                 src_off_in_page = (start_offset + src_offset) &
4884                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4885
4886                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4887                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4888
4889                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4890                                                src_off_in_page));
4891                 cur = min_t(unsigned long, cur,
4892                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4893
4894                 copy_pages(extent_buffer_page(dst, dst_i),
4895                            extent_buffer_page(dst, src_i),
4896                            dst_off_in_page, src_off_in_page, cur);
4897
4898                 src_offset += cur;
4899                 dst_offset += cur;
4900                 len -= cur;
4901         }
4902 }
4903
4904 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4905                            unsigned long src_offset, unsigned long len)
4906 {
4907         size_t cur;
4908         size_t dst_off_in_page;
4909         size_t src_off_in_page;
4910         unsigned long dst_end = dst_offset + len - 1;
4911         unsigned long src_end = src_offset + len - 1;
4912         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4913         unsigned long dst_i;
4914         unsigned long src_i;
4915
4916         if (src_offset + len > dst->len) {
4917                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4918                        "len %lu len %lu\n", src_offset, len, dst->len);
4919                 BUG_ON(1);
4920         }
4921         if (dst_offset + len > dst->len) {
4922                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4923                        "len %lu len %lu\n", dst_offset, len, dst->len);
4924                 BUG_ON(1);
4925         }
4926         if (dst_offset < src_offset) {
4927                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4928                 return;
4929         }
4930         while (len > 0) {
4931                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4932                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4933
4934                 dst_off_in_page = (start_offset + dst_end) &
4935                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4936                 src_off_in_page = (start_offset + src_end) &
4937                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4938
4939                 cur = min_t(unsigned long, len, src_off_in_page + 1);
4940                 cur = min(cur, dst_off_in_page + 1);
4941                 move_pages(extent_buffer_page(dst, dst_i),
4942                            extent_buffer_page(dst, src_i),
4943                            dst_off_in_page - cur + 1,
4944                            src_off_in_page - cur + 1, cur);
4945
4946                 dst_end -= cur;
4947                 src_end -= cur;
4948                 len -= cur;
4949         }
4950 }
4951
4952 int try_release_extent_buffer(struct page *page, gfp_t mask)
4953 {
4954         struct extent_buffer *eb;
4955
4956         /*
4957          * We need to make sure noboody is attaching this page to an eb right
4958          * now.
4959          */
4960         spin_lock(&page->mapping->private_lock);
4961         if (!PagePrivate(page)) {
4962                 spin_unlock(&page->mapping->private_lock);
4963                 return 1;
4964         }
4965
4966         eb = (struct extent_buffer *)page->private;
4967         BUG_ON(!eb);
4968
4969         /*
4970          * This is a little awful but should be ok, we need to make sure that
4971          * the eb doesn't disappear out from under us while we're looking at
4972          * this page.
4973          */
4974         spin_lock(&eb->refs_lock);
4975         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4976                 spin_unlock(&eb->refs_lock);
4977                 spin_unlock(&page->mapping->private_lock);
4978                 return 0;
4979         }
4980         spin_unlock(&page->mapping->private_lock);
4981
4982         if ((mask & GFP_NOFS) == GFP_NOFS)
4983                 mask = GFP_NOFS;
4984
4985         /*
4986          * If tree ref isn't set then we know the ref on this eb is a real ref,
4987          * so just return, this page will likely be freed soon anyway.
4988          */
4989         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4990                 spin_unlock(&eb->refs_lock);
4991                 return 0;
4992         }
4993
4994         return release_extent_buffer(eb, mask);
4995 }