c22f175ed02486a5bce1213aa635636edaa7e071
[cascardo/linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30         return !RB_EMPTY_NODE(&state->rb_node);
31 }
32
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36
37 static DEFINE_SPINLOCK(leak_lock);
38
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42         unsigned long flags;
43
44         spin_lock_irqsave(&leak_lock, flags);
45         list_add(new, head);
46         spin_unlock_irqrestore(&leak_lock, flags);
47 }
48
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52         unsigned long flags;
53
54         spin_lock_irqsave(&leak_lock, flags);
55         list_del(entry);
56         spin_unlock_irqrestore(&leak_lock, flags);
57 }
58
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62         struct extent_state *state;
63         struct extent_buffer *eb;
64
65         while (!list_empty(&states)) {
66                 state = list_entry(states.next, struct extent_state, leak_list);
67                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68                        state->start, state->end, state->state,
69                        extent_state_in_tree(state),
70                        atomic_read(&state->refs));
71                 list_del(&state->leak_list);
72                 kmem_cache_free(extent_state_cache, state);
73         }
74
75         while (!list_empty(&buffers)) {
76                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77                 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78                        "refs %d\n",
79                        eb->start, eb->len, atomic_read(&eb->refs));
80                 list_del(&eb->leak_list);
81                 kmem_cache_free(extent_buffer_cache, eb);
82         }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
86         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88                 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90         struct inode *inode;
91         u64 isize;
92
93         if (!tree->mapping)
94                 return;
95
96         inode = tree->mapping->host;
97         isize = i_size_read(inode);
98         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99                 printk_ratelimited(KERN_DEBUG
100                     "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101                                 caller, btrfs_ino(inode), isize, start, end);
102         }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry)     do {} while (0)
107 #define btrfs_leak_debug_check()        do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114         u64 start;
115         u64 end;
116         struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120         struct bio *bio;
121         struct extent_io_tree *tree;
122         get_extent_t *get_extent;
123         unsigned long bio_flags;
124
125         /* tells writepage not to lock the state bits for this range
126          * it still does the unlocking
127          */
128         unsigned int extent_locked:1;
129
130         /* tells the submit_bio code to use a WRITE_SYNC */
131         unsigned int sync_io:1;
132 };
133
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
137 {
138         if (!tree->mapping)
139                 return NULL;
140         return btrfs_sb(tree->mapping->host->i_sb);
141 }
142
143 int __init extent_io_init(void)
144 {
145         extent_state_cache = kmem_cache_create("btrfs_extent_state",
146                         sizeof(struct extent_state), 0,
147                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148         if (!extent_state_cache)
149                 return -ENOMEM;
150
151         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152                         sizeof(struct extent_buffer), 0,
153                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154         if (!extent_buffer_cache)
155                 goto free_state_cache;
156
157         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158                                      offsetof(struct btrfs_io_bio, bio));
159         if (!btrfs_bioset)
160                 goto free_buffer_cache;
161
162         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163                 goto free_bioset;
164
165         return 0;
166
167 free_bioset:
168         bioset_free(btrfs_bioset);
169         btrfs_bioset = NULL;
170
171 free_buffer_cache:
172         kmem_cache_destroy(extent_buffer_cache);
173         extent_buffer_cache = NULL;
174
175 free_state_cache:
176         kmem_cache_destroy(extent_state_cache);
177         extent_state_cache = NULL;
178         return -ENOMEM;
179 }
180
181 void extent_io_exit(void)
182 {
183         btrfs_leak_debug_check();
184
185         /*
186          * Make sure all delayed rcu free are flushed before we
187          * destroy caches.
188          */
189         rcu_barrier();
190         if (extent_state_cache)
191                 kmem_cache_destroy(extent_state_cache);
192         if (extent_buffer_cache)
193                 kmem_cache_destroy(extent_buffer_cache);
194         if (btrfs_bioset)
195                 bioset_free(btrfs_bioset);
196 }
197
198 void extent_io_tree_init(struct extent_io_tree *tree,
199                          struct address_space *mapping)
200 {
201         tree->state = RB_ROOT;
202         tree->ops = NULL;
203         tree->dirty_bytes = 0;
204         spin_lock_init(&tree->lock);
205         tree->mapping = mapping;
206 }
207
208 static struct extent_state *alloc_extent_state(gfp_t mask)
209 {
210         struct extent_state *state;
211
212         state = kmem_cache_alloc(extent_state_cache, mask);
213         if (!state)
214                 return state;
215         state->state = 0;
216         state->private = 0;
217         RB_CLEAR_NODE(&state->rb_node);
218         btrfs_leak_debug_add(&state->leak_list, &states);
219         atomic_set(&state->refs, 1);
220         init_waitqueue_head(&state->wq);
221         trace_alloc_extent_state(state, mask, _RET_IP_);
222         return state;
223 }
224
225 void free_extent_state(struct extent_state *state)
226 {
227         if (!state)
228                 return;
229         if (atomic_dec_and_test(&state->refs)) {
230                 WARN_ON(extent_state_in_tree(state));
231                 btrfs_leak_debug_del(&state->leak_list);
232                 trace_free_extent_state(state, _RET_IP_);
233                 kmem_cache_free(extent_state_cache, state);
234         }
235 }
236
237 static struct rb_node *tree_insert(struct rb_root *root,
238                                    struct rb_node *search_start,
239                                    u64 offset,
240                                    struct rb_node *node,
241                                    struct rb_node ***p_in,
242                                    struct rb_node **parent_in)
243 {
244         struct rb_node **p;
245         struct rb_node *parent = NULL;
246         struct tree_entry *entry;
247
248         if (p_in && parent_in) {
249                 p = *p_in;
250                 parent = *parent_in;
251                 goto do_insert;
252         }
253
254         p = search_start ? &search_start : &root->rb_node;
255         while (*p) {
256                 parent = *p;
257                 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259                 if (offset < entry->start)
260                         p = &(*p)->rb_left;
261                 else if (offset > entry->end)
262                         p = &(*p)->rb_right;
263                 else
264                         return parent;
265         }
266
267 do_insert:
268         rb_link_node(node, parent, p);
269         rb_insert_color(node, root);
270         return NULL;
271 }
272
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274                                       struct rb_node **prev_ret,
275                                       struct rb_node **next_ret,
276                                       struct rb_node ***p_ret,
277                                       struct rb_node **parent_ret)
278 {
279         struct rb_root *root = &tree->state;
280         struct rb_node **n = &root->rb_node;
281         struct rb_node *prev = NULL;
282         struct rb_node *orig_prev = NULL;
283         struct tree_entry *entry;
284         struct tree_entry *prev_entry = NULL;
285
286         while (*n) {
287                 prev = *n;
288                 entry = rb_entry(prev, struct tree_entry, rb_node);
289                 prev_entry = entry;
290
291                 if (offset < entry->start)
292                         n = &(*n)->rb_left;
293                 else if (offset > entry->end)
294                         n = &(*n)->rb_right;
295                 else
296                         return *n;
297         }
298
299         if (p_ret)
300                 *p_ret = n;
301         if (parent_ret)
302                 *parent_ret = prev;
303
304         if (prev_ret) {
305                 orig_prev = prev;
306                 while (prev && offset > prev_entry->end) {
307                         prev = rb_next(prev);
308                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309                 }
310                 *prev_ret = prev;
311                 prev = orig_prev;
312         }
313
314         if (next_ret) {
315                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316                 while (prev && offset < prev_entry->start) {
317                         prev = rb_prev(prev);
318                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319                 }
320                 *next_ret = prev;
321         }
322         return NULL;
323 }
324
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
327                        u64 offset,
328                        struct rb_node ***p_ret,
329                        struct rb_node **parent_ret)
330 {
331         struct rb_node *prev = NULL;
332         struct rb_node *ret;
333
334         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
335         if (!ret)
336                 return prev;
337         return ret;
338 }
339
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341                                           u64 offset)
342 {
343         return tree_search_for_insert(tree, offset, NULL, NULL);
344 }
345
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347                      struct extent_state *other)
348 {
349         if (tree->ops && tree->ops->merge_extent_hook)
350                 tree->ops->merge_extent_hook(tree->mapping->host, new,
351                                              other);
352 }
353
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static void merge_state(struct extent_io_tree *tree,
364                         struct extent_state *state)
365 {
366         struct extent_state *other;
367         struct rb_node *other_node;
368
369         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370                 return;
371
372         other_node = rb_prev(&state->rb_node);
373         if (other_node) {
374                 other = rb_entry(other_node, struct extent_state, rb_node);
375                 if (other->end == state->start - 1 &&
376                     other->state == state->state) {
377                         merge_cb(tree, state, other);
378                         state->start = other->start;
379                         rb_erase(&other->rb_node, &tree->state);
380                         RB_CLEAR_NODE(&other->rb_node);
381                         free_extent_state(other);
382                 }
383         }
384         other_node = rb_next(&state->rb_node);
385         if (other_node) {
386                 other = rb_entry(other_node, struct extent_state, rb_node);
387                 if (other->start == state->end + 1 &&
388                     other->state == state->state) {
389                         merge_cb(tree, state, other);
390                         state->end = other->end;
391                         rb_erase(&other->rb_node, &tree->state);
392                         RB_CLEAR_NODE(&other->rb_node);
393                         free_extent_state(other);
394                 }
395         }
396 }
397
398 static void set_state_cb(struct extent_io_tree *tree,
399                          struct extent_state *state, unsigned *bits)
400 {
401         if (tree->ops && tree->ops->set_bit_hook)
402                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
403 }
404
405 static void clear_state_cb(struct extent_io_tree *tree,
406                            struct extent_state *state, unsigned *bits)
407 {
408         if (tree->ops && tree->ops->clear_bit_hook)
409                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
410 }
411
412 static void set_state_bits(struct extent_io_tree *tree,
413                            struct extent_state *state, unsigned *bits);
414
415 /*
416  * insert an extent_state struct into the tree.  'bits' are set on the
417  * struct before it is inserted.
418  *
419  * This may return -EEXIST if the extent is already there, in which case the
420  * state struct is freed.
421  *
422  * The tree lock is not taken internally.  This is a utility function and
423  * probably isn't what you want to call (see set/clear_extent_bit).
424  */
425 static int insert_state(struct extent_io_tree *tree,
426                         struct extent_state *state, u64 start, u64 end,
427                         struct rb_node ***p,
428                         struct rb_node **parent,
429                         unsigned *bits)
430 {
431         struct rb_node *node;
432
433         if (end < start)
434                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
435                        end, start);
436         state->start = start;
437         state->end = end;
438
439         set_state_bits(tree, state, bits);
440
441         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
442         if (node) {
443                 struct extent_state *found;
444                 found = rb_entry(node, struct extent_state, rb_node);
445                 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
446                        "%llu %llu\n",
447                        found->start, found->end, start, end);
448                 return -EEXIST;
449         }
450         merge_state(tree, state);
451         return 0;
452 }
453
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455                      u64 split)
456 {
457         if (tree->ops && tree->ops->split_extent_hook)
458                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
459 }
460
461 /*
462  * split a given extent state struct in two, inserting the preallocated
463  * struct 'prealloc' as the newly created second half.  'split' indicates an
464  * offset inside 'orig' where it should be split.
465  *
466  * Before calling,
467  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
468  * are two extent state structs in the tree:
469  * prealloc: [orig->start, split - 1]
470  * orig: [ split, orig->end ]
471  *
472  * The tree locks are not taken by this function. They need to be held
473  * by the caller.
474  */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476                        struct extent_state *prealloc, u64 split)
477 {
478         struct rb_node *node;
479
480         split_cb(tree, orig, split);
481
482         prealloc->start = orig->start;
483         prealloc->end = split - 1;
484         prealloc->state = orig->state;
485         orig->start = split;
486
487         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488                            &prealloc->rb_node, NULL, NULL);
489         if (node) {
490                 free_extent_state(prealloc);
491                 return -EEXIST;
492         }
493         return 0;
494 }
495
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498         struct rb_node *next = rb_next(&state->rb_node);
499         if (next)
500                 return rb_entry(next, struct extent_state, rb_node);
501         else
502                 return NULL;
503 }
504
505 /*
506  * utility function to clear some bits in an extent state struct.
507  * it will optionally wake up any one waiting on this state (wake == 1).
508  *
509  * If no bits are set on the state struct after clearing things, the
510  * struct is freed and removed from the tree
511  */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513                                             struct extent_state *state,
514                                             unsigned *bits, int wake)
515 {
516         struct extent_state *next;
517         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
518
519         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520                 u64 range = state->end - state->start + 1;
521                 WARN_ON(range > tree->dirty_bytes);
522                 tree->dirty_bytes -= range;
523         }
524         clear_state_cb(tree, state, bits);
525         state->state &= ~bits_to_clear;
526         if (wake)
527                 wake_up(&state->wq);
528         if (state->state == 0) {
529                 next = next_state(state);
530                 if (extent_state_in_tree(state)) {
531                         rb_erase(&state->rb_node, &tree->state);
532                         RB_CLEAR_NODE(&state->rb_node);
533                         free_extent_state(state);
534                 } else {
535                         WARN_ON(1);
536                 }
537         } else {
538                 merge_state(tree, state);
539                 next = next_state(state);
540         }
541         return next;
542 }
543
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
546 {
547         if (!prealloc)
548                 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550         return prealloc;
551 }
552
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
554 {
555         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556                     "Extent tree was modified by another "
557                     "thread while locked.");
558 }
559
560 /*
561  * clear some bits on a range in the tree.  This may require splitting
562  * or inserting elements in the tree, so the gfp mask is used to
563  * indicate which allocations or sleeping are allowed.
564  *
565  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566  * the given range from the tree regardless of state (ie for truncate).
567  *
568  * the range [start, end] is inclusive.
569  *
570  * This takes the tree lock, and returns 0 on success and < 0 on error.
571  */
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573                      unsigned bits, int wake, int delete,
574                      struct extent_state **cached_state,
575                      gfp_t mask)
576 {
577         struct extent_state *state;
578         struct extent_state *cached;
579         struct extent_state *prealloc = NULL;
580         struct rb_node *node;
581         u64 last_end;
582         int err;
583         int clear = 0;
584
585         btrfs_debug_check_extent_io_range(tree, start, end);
586
587         if (bits & EXTENT_DELALLOC)
588                 bits |= EXTENT_NORESERVE;
589
590         if (delete)
591                 bits |= ~EXTENT_CTLBITS;
592         bits |= EXTENT_FIRST_DELALLOC;
593
594         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595                 clear = 1;
596 again:
597         if (!prealloc && (mask & __GFP_WAIT)) {
598                 /*
599                  * Don't care for allocation failure here because we might end
600                  * up not needing the pre-allocated extent state at all, which
601                  * is the case if we only have in the tree extent states that
602                  * cover our input range and don't cover too any other range.
603                  * If we end up needing a new extent state we allocate it later.
604                  */
605                 prealloc = alloc_extent_state(mask);
606         }
607
608         spin_lock(&tree->lock);
609         if (cached_state) {
610                 cached = *cached_state;
611
612                 if (clear) {
613                         *cached_state = NULL;
614                         cached_state = NULL;
615                 }
616
617                 if (cached && extent_state_in_tree(cached) &&
618                     cached->start <= start && cached->end > start) {
619                         if (clear)
620                                 atomic_dec(&cached->refs);
621                         state = cached;
622                         goto hit_next;
623                 }
624                 if (clear)
625                         free_extent_state(cached);
626         }
627         /*
628          * this search will find the extents that end after
629          * our range starts
630          */
631         node = tree_search(tree, start);
632         if (!node)
633                 goto out;
634         state = rb_entry(node, struct extent_state, rb_node);
635 hit_next:
636         if (state->start > end)
637                 goto out;
638         WARN_ON(state->end < start);
639         last_end = state->end;
640
641         /* the state doesn't have the wanted bits, go ahead */
642         if (!(state->state & bits)) {
643                 state = next_state(state);
644                 goto next;
645         }
646
647         /*
648          *     | ---- desired range ---- |
649          *  | state | or
650          *  | ------------- state -------------- |
651          *
652          * We need to split the extent we found, and may flip
653          * bits on second half.
654          *
655          * If the extent we found extends past our range, we
656          * just split and search again.  It'll get split again
657          * the next time though.
658          *
659          * If the extent we found is inside our range, we clear
660          * the desired bit on it.
661          */
662
663         if (state->start < start) {
664                 prealloc = alloc_extent_state_atomic(prealloc);
665                 BUG_ON(!prealloc);
666                 err = split_state(tree, state, prealloc, start);
667                 if (err)
668                         extent_io_tree_panic(tree, err);
669
670                 prealloc = NULL;
671                 if (err)
672                         goto out;
673                 if (state->end <= end) {
674                         state = clear_state_bit(tree, state, &bits, wake);
675                         goto next;
676                 }
677                 goto search_again;
678         }
679         /*
680          * | ---- desired range ---- |
681          *                        | state |
682          * We need to split the extent, and clear the bit
683          * on the first half
684          */
685         if (state->start <= end && state->end > end) {
686                 prealloc = alloc_extent_state_atomic(prealloc);
687                 BUG_ON(!prealloc);
688                 err = split_state(tree, state, prealloc, end + 1);
689                 if (err)
690                         extent_io_tree_panic(tree, err);
691
692                 if (wake)
693                         wake_up(&state->wq);
694
695                 clear_state_bit(tree, prealloc, &bits, wake);
696
697                 prealloc = NULL;
698                 goto out;
699         }
700
701         state = clear_state_bit(tree, state, &bits, wake);
702 next:
703         if (last_end == (u64)-1)
704                 goto out;
705         start = last_end + 1;
706         if (start <= end && state && !need_resched())
707                 goto hit_next;
708         goto search_again;
709
710 out:
711         spin_unlock(&tree->lock);
712         if (prealloc)
713                 free_extent_state(prealloc);
714
715         return 0;
716
717 search_again:
718         if (start > end)
719                 goto out;
720         spin_unlock(&tree->lock);
721         if (mask & __GFP_WAIT)
722                 cond_resched();
723         goto again;
724 }
725
726 static void wait_on_state(struct extent_io_tree *tree,
727                           struct extent_state *state)
728                 __releases(tree->lock)
729                 __acquires(tree->lock)
730 {
731         DEFINE_WAIT(wait);
732         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
733         spin_unlock(&tree->lock);
734         schedule();
735         spin_lock(&tree->lock);
736         finish_wait(&state->wq, &wait);
737 }
738
739 /*
740  * waits for one or more bits to clear on a range in the state tree.
741  * The range [start, end] is inclusive.
742  * The tree lock is taken by this function
743  */
744 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
745                             unsigned long bits)
746 {
747         struct extent_state *state;
748         struct rb_node *node;
749
750         btrfs_debug_check_extent_io_range(tree, start, end);
751
752         spin_lock(&tree->lock);
753 again:
754         while (1) {
755                 /*
756                  * this search will find all the extents that end after
757                  * our range starts
758                  */
759                 node = tree_search(tree, start);
760 process_node:
761                 if (!node)
762                         break;
763
764                 state = rb_entry(node, struct extent_state, rb_node);
765
766                 if (state->start > end)
767                         goto out;
768
769                 if (state->state & bits) {
770                         start = state->start;
771                         atomic_inc(&state->refs);
772                         wait_on_state(tree, state);
773                         free_extent_state(state);
774                         goto again;
775                 }
776                 start = state->end + 1;
777
778                 if (start > end)
779                         break;
780
781                 if (!cond_resched_lock(&tree->lock)) {
782                         node = rb_next(node);
783                         goto process_node;
784                 }
785         }
786 out:
787         spin_unlock(&tree->lock);
788 }
789
790 static void set_state_bits(struct extent_io_tree *tree,
791                            struct extent_state *state,
792                            unsigned *bits)
793 {
794         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
795
796         set_state_cb(tree, state, bits);
797         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798                 u64 range = state->end - state->start + 1;
799                 tree->dirty_bytes += range;
800         }
801         state->state |= bits_to_set;
802 }
803
804 static void cache_state_if_flags(struct extent_state *state,
805                                  struct extent_state **cached_ptr,
806                                  unsigned flags)
807 {
808         if (cached_ptr && !(*cached_ptr)) {
809                 if (!flags || (state->state & flags)) {
810                         *cached_ptr = state;
811                         atomic_inc(&state->refs);
812                 }
813         }
814 }
815
816 static void cache_state(struct extent_state *state,
817                         struct extent_state **cached_ptr)
818 {
819         return cache_state_if_flags(state, cached_ptr,
820                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
821 }
822
823 /*
824  * set some bits on a range in the tree.  This may require allocations or
825  * sleeping, so the gfp mask is used to indicate what is allowed.
826  *
827  * If any of the exclusive bits are set, this will fail with -EEXIST if some
828  * part of the range already has the desired bits set.  The start of the
829  * existing range is returned in failed_start in this case.
830  *
831  * [start, end] is inclusive This takes the tree lock.
832  */
833
834 static int __must_check
835 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
836                  unsigned bits, unsigned exclusive_bits,
837                  u64 *failed_start, struct extent_state **cached_state,
838                  gfp_t mask)
839 {
840         struct extent_state *state;
841         struct extent_state *prealloc = NULL;
842         struct rb_node *node;
843         struct rb_node **p;
844         struct rb_node *parent;
845         int err = 0;
846         u64 last_start;
847         u64 last_end;
848
849         btrfs_debug_check_extent_io_range(tree, start, end);
850
851         bits |= EXTENT_FIRST_DELALLOC;
852 again:
853         if (!prealloc && (mask & __GFP_WAIT)) {
854                 prealloc = alloc_extent_state(mask);
855                 BUG_ON(!prealloc);
856         }
857
858         spin_lock(&tree->lock);
859         if (cached_state && *cached_state) {
860                 state = *cached_state;
861                 if (state->start <= start && state->end > start &&
862                     extent_state_in_tree(state)) {
863                         node = &state->rb_node;
864                         goto hit_next;
865                 }
866         }
867         /*
868          * this search will find all the extents that end after
869          * our range starts.
870          */
871         node = tree_search_for_insert(tree, start, &p, &parent);
872         if (!node) {
873                 prealloc = alloc_extent_state_atomic(prealloc);
874                 BUG_ON(!prealloc);
875                 err = insert_state(tree, prealloc, start, end,
876                                    &p, &parent, &bits);
877                 if (err)
878                         extent_io_tree_panic(tree, err);
879
880                 cache_state(prealloc, cached_state);
881                 prealloc = NULL;
882                 goto out;
883         }
884         state = rb_entry(node, struct extent_state, rb_node);
885 hit_next:
886         last_start = state->start;
887         last_end = state->end;
888
889         /*
890          * | ---- desired range ---- |
891          * | state |
892          *
893          * Just lock what we found and keep going
894          */
895         if (state->start == start && state->end <= end) {
896                 if (state->state & exclusive_bits) {
897                         *failed_start = state->start;
898                         err = -EEXIST;
899                         goto out;
900                 }
901
902                 set_state_bits(tree, state, &bits);
903                 cache_state(state, cached_state);
904                 merge_state(tree, state);
905                 if (last_end == (u64)-1)
906                         goto out;
907                 start = last_end + 1;
908                 state = next_state(state);
909                 if (start < end && state && state->start == start &&
910                     !need_resched())
911                         goto hit_next;
912                 goto search_again;
913         }
914
915         /*
916          *     | ---- desired range ---- |
917          * | state |
918          *   or
919          * | ------------- state -------------- |
920          *
921          * We need to split the extent we found, and may flip bits on
922          * second half.
923          *
924          * If the extent we found extends past our
925          * range, we just split and search again.  It'll get split
926          * again the next time though.
927          *
928          * If the extent we found is inside our range, we set the
929          * desired bit on it.
930          */
931         if (state->start < start) {
932                 if (state->state & exclusive_bits) {
933                         *failed_start = start;
934                         err = -EEXIST;
935                         goto out;
936                 }
937
938                 prealloc = alloc_extent_state_atomic(prealloc);
939                 BUG_ON(!prealloc);
940                 err = split_state(tree, state, prealloc, start);
941                 if (err)
942                         extent_io_tree_panic(tree, err);
943
944                 prealloc = NULL;
945                 if (err)
946                         goto out;
947                 if (state->end <= end) {
948                         set_state_bits(tree, state, &bits);
949                         cache_state(state, cached_state);
950                         merge_state(tree, state);
951                         if (last_end == (u64)-1)
952                                 goto out;
953                         start = last_end + 1;
954                         state = next_state(state);
955                         if (start < end && state && state->start == start &&
956                             !need_resched())
957                                 goto hit_next;
958                 }
959                 goto search_again;
960         }
961         /*
962          * | ---- desired range ---- |
963          *     | state | or               | state |
964          *
965          * There's a hole, we need to insert something in it and
966          * ignore the extent we found.
967          */
968         if (state->start > start) {
969                 u64 this_end;
970                 if (end < last_start)
971                         this_end = end;
972                 else
973                         this_end = last_start - 1;
974
975                 prealloc = alloc_extent_state_atomic(prealloc);
976                 BUG_ON(!prealloc);
977
978                 /*
979                  * Avoid to free 'prealloc' if it can be merged with
980                  * the later extent.
981                  */
982                 err = insert_state(tree, prealloc, start, this_end,
983                                    NULL, NULL, &bits);
984                 if (err)
985                         extent_io_tree_panic(tree, err);
986
987                 cache_state(prealloc, cached_state);
988                 prealloc = NULL;
989                 start = this_end + 1;
990                 goto search_again;
991         }
992         /*
993          * | ---- desired range ---- |
994          *                        | state |
995          * We need to split the extent, and set the bit
996          * on the first half
997          */
998         if (state->start <= end && state->end > end) {
999                 if (state->state & exclusive_bits) {
1000                         *failed_start = start;
1001                         err = -EEXIST;
1002                         goto out;
1003                 }
1004
1005                 prealloc = alloc_extent_state_atomic(prealloc);
1006                 BUG_ON(!prealloc);
1007                 err = split_state(tree, state, prealloc, end + 1);
1008                 if (err)
1009                         extent_io_tree_panic(tree, err);
1010
1011                 set_state_bits(tree, prealloc, &bits);
1012                 cache_state(prealloc, cached_state);
1013                 merge_state(tree, prealloc);
1014                 prealloc = NULL;
1015                 goto out;
1016         }
1017
1018         goto search_again;
1019
1020 out:
1021         spin_unlock(&tree->lock);
1022         if (prealloc)
1023                 free_extent_state(prealloc);
1024
1025         return err;
1026
1027 search_again:
1028         if (start > end)
1029                 goto out;
1030         spin_unlock(&tree->lock);
1031         if (mask & __GFP_WAIT)
1032                 cond_resched();
1033         goto again;
1034 }
1035
1036 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1037                    unsigned bits, u64 * failed_start,
1038                    struct extent_state **cached_state, gfp_t mask)
1039 {
1040         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041                                 cached_state, mask);
1042 }
1043
1044
1045 /**
1046  * convert_extent_bit - convert all bits in a given range from one bit to
1047  *                      another
1048  * @tree:       the io tree to search
1049  * @start:      the start offset in bytes
1050  * @end:        the end offset in bytes (inclusive)
1051  * @bits:       the bits to set in this range
1052  * @clear_bits: the bits to clear in this range
1053  * @cached_state:       state that we're going to cache
1054  * @mask:       the allocation mask
1055  *
1056  * This will go through and set bits for the given range.  If any states exist
1057  * already in this range they are set with the given bit and cleared of the
1058  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1059  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1060  * boundary bits like LOCK.
1061  */
1062 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1063                        unsigned bits, unsigned clear_bits,
1064                        struct extent_state **cached_state, gfp_t mask)
1065 {
1066         struct extent_state *state;
1067         struct extent_state *prealloc = NULL;
1068         struct rb_node *node;
1069         struct rb_node **p;
1070         struct rb_node *parent;
1071         int err = 0;
1072         u64 last_start;
1073         u64 last_end;
1074         bool first_iteration = true;
1075
1076         btrfs_debug_check_extent_io_range(tree, start, end);
1077
1078 again:
1079         if (!prealloc && (mask & __GFP_WAIT)) {
1080                 /*
1081                  * Best effort, don't worry if extent state allocation fails
1082                  * here for the first iteration. We might have a cached state
1083                  * that matches exactly the target range, in which case no
1084                  * extent state allocations are needed. We'll only know this
1085                  * after locking the tree.
1086                  */
1087                 prealloc = alloc_extent_state(mask);
1088                 if (!prealloc && !first_iteration)
1089                         return -ENOMEM;
1090         }
1091
1092         spin_lock(&tree->lock);
1093         if (cached_state && *cached_state) {
1094                 state = *cached_state;
1095                 if (state->start <= start && state->end > start &&
1096                     extent_state_in_tree(state)) {
1097                         node = &state->rb_node;
1098                         goto hit_next;
1099                 }
1100         }
1101
1102         /*
1103          * this search will find all the extents that end after
1104          * our range starts.
1105          */
1106         node = tree_search_for_insert(tree, start, &p, &parent);
1107         if (!node) {
1108                 prealloc = alloc_extent_state_atomic(prealloc);
1109                 if (!prealloc) {
1110                         err = -ENOMEM;
1111                         goto out;
1112                 }
1113                 err = insert_state(tree, prealloc, start, end,
1114                                    &p, &parent, &bits);
1115                 if (err)
1116                         extent_io_tree_panic(tree, err);
1117                 cache_state(prealloc, cached_state);
1118                 prealloc = NULL;
1119                 goto out;
1120         }
1121         state = rb_entry(node, struct extent_state, rb_node);
1122 hit_next:
1123         last_start = state->start;
1124         last_end = state->end;
1125
1126         /*
1127          * | ---- desired range ---- |
1128          * | state |
1129          *
1130          * Just lock what we found and keep going
1131          */
1132         if (state->start == start && state->end <= end) {
1133                 set_state_bits(tree, state, &bits);
1134                 cache_state(state, cached_state);
1135                 state = clear_state_bit(tree, state, &clear_bits, 0);
1136                 if (last_end == (u64)-1)
1137                         goto out;
1138                 start = last_end + 1;
1139                 if (start < end && state && state->start == start &&
1140                     !need_resched())
1141                         goto hit_next;
1142                 goto search_again;
1143         }
1144
1145         /*
1146          *     | ---- desired range ---- |
1147          * | state |
1148          *   or
1149          * | ------------- state -------------- |
1150          *
1151          * We need to split the extent we found, and may flip bits on
1152          * second half.
1153          *
1154          * If the extent we found extends past our
1155          * range, we just split and search again.  It'll get split
1156          * again the next time though.
1157          *
1158          * If the extent we found is inside our range, we set the
1159          * desired bit on it.
1160          */
1161         if (state->start < start) {
1162                 prealloc = alloc_extent_state_atomic(prealloc);
1163                 if (!prealloc) {
1164                         err = -ENOMEM;
1165                         goto out;
1166                 }
1167                 err = split_state(tree, state, prealloc, start);
1168                 if (err)
1169                         extent_io_tree_panic(tree, err);
1170                 prealloc = NULL;
1171                 if (err)
1172                         goto out;
1173                 if (state->end <= end) {
1174                         set_state_bits(tree, state, &bits);
1175                         cache_state(state, cached_state);
1176                         state = clear_state_bit(tree, state, &clear_bits, 0);
1177                         if (last_end == (u64)-1)
1178                                 goto out;
1179                         start = last_end + 1;
1180                         if (start < end && state && state->start == start &&
1181                             !need_resched())
1182                                 goto hit_next;
1183                 }
1184                 goto search_again;
1185         }
1186         /*
1187          * | ---- desired range ---- |
1188          *     | state | or               | state |
1189          *
1190          * There's a hole, we need to insert something in it and
1191          * ignore the extent we found.
1192          */
1193         if (state->start > start) {
1194                 u64 this_end;
1195                 if (end < last_start)
1196                         this_end = end;
1197                 else
1198                         this_end = last_start - 1;
1199
1200                 prealloc = alloc_extent_state_atomic(prealloc);
1201                 if (!prealloc) {
1202                         err = -ENOMEM;
1203                         goto out;
1204                 }
1205
1206                 /*
1207                  * Avoid to free 'prealloc' if it can be merged with
1208                  * the later extent.
1209                  */
1210                 err = insert_state(tree, prealloc, start, this_end,
1211                                    NULL, NULL, &bits);
1212                 if (err)
1213                         extent_io_tree_panic(tree, err);
1214                 cache_state(prealloc, cached_state);
1215                 prealloc = NULL;
1216                 start = this_end + 1;
1217                 goto search_again;
1218         }
1219         /*
1220          * | ---- desired range ---- |
1221          *                        | state |
1222          * We need to split the extent, and set the bit
1223          * on the first half
1224          */
1225         if (state->start <= end && state->end > end) {
1226                 prealloc = alloc_extent_state_atomic(prealloc);
1227                 if (!prealloc) {
1228                         err = -ENOMEM;
1229                         goto out;
1230                 }
1231
1232                 err = split_state(tree, state, prealloc, end + 1);
1233                 if (err)
1234                         extent_io_tree_panic(tree, err);
1235
1236                 set_state_bits(tree, prealloc, &bits);
1237                 cache_state(prealloc, cached_state);
1238                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1239                 prealloc = NULL;
1240                 goto out;
1241         }
1242
1243         goto search_again;
1244
1245 out:
1246         spin_unlock(&tree->lock);
1247         if (prealloc)
1248                 free_extent_state(prealloc);
1249
1250         return err;
1251
1252 search_again:
1253         if (start > end)
1254                 goto out;
1255         spin_unlock(&tree->lock);
1256         if (mask & __GFP_WAIT)
1257                 cond_resched();
1258         first_iteration = false;
1259         goto again;
1260 }
1261
1262 /* wrappers around set/clear extent bit */
1263 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1264                      gfp_t mask)
1265 {
1266         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1267                               NULL, mask);
1268 }
1269
1270 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1271                     unsigned bits, gfp_t mask)
1272 {
1273         return set_extent_bit(tree, start, end, bits, NULL,
1274                               NULL, mask);
1275 }
1276
1277 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1278                       unsigned bits, gfp_t mask)
1279 {
1280         int wake = 0;
1281
1282         if (bits & EXTENT_LOCKED)
1283                 wake = 1;
1284
1285         return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1286 }
1287
1288 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1289                         struct extent_state **cached_state, gfp_t mask)
1290 {
1291         return set_extent_bit(tree, start, end,
1292                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1293                               NULL, cached_state, mask);
1294 }
1295
1296 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1297                       struct extent_state **cached_state, gfp_t mask)
1298 {
1299         return set_extent_bit(tree, start, end,
1300                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1301                               NULL, cached_state, mask);
1302 }
1303
1304 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1305                        gfp_t mask)
1306 {
1307         return clear_extent_bit(tree, start, end,
1308                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1309                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1310 }
1311
1312 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1313                      gfp_t mask)
1314 {
1315         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1316                               NULL, mask);
1317 }
1318
1319 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1320                         struct extent_state **cached_state, gfp_t mask)
1321 {
1322         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1323                               cached_state, mask);
1324 }
1325
1326 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1327                           struct extent_state **cached_state, gfp_t mask)
1328 {
1329         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1330                                 cached_state, mask);
1331 }
1332
1333 /*
1334  * either insert or lock state struct between start and end use mask to tell
1335  * us if waiting is desired.
1336  */
1337 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338                      unsigned bits, struct extent_state **cached_state)
1339 {
1340         int err;
1341         u64 failed_start;
1342
1343         while (1) {
1344                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1345                                        EXTENT_LOCKED, &failed_start,
1346                                        cached_state, GFP_NOFS);
1347                 if (err == -EEXIST) {
1348                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1349                         start = failed_start;
1350                 } else
1351                         break;
1352                 WARN_ON(start > end);
1353         }
1354         return err;
1355 }
1356
1357 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358 {
1359         return lock_extent_bits(tree, start, end, 0, NULL);
1360 }
1361
1362 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1363 {
1364         int err;
1365         u64 failed_start;
1366
1367         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1368                                &failed_start, NULL, GFP_NOFS);
1369         if (err == -EEXIST) {
1370                 if (failed_start > start)
1371                         clear_extent_bit(tree, start, failed_start - 1,
1372                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1373                 return 0;
1374         }
1375         return 1;
1376 }
1377
1378 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1379                          struct extent_state **cached, gfp_t mask)
1380 {
1381         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1382                                 mask);
1383 }
1384
1385 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1386 {
1387         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1388                                 GFP_NOFS);
1389 }
1390
1391 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1392 {
1393         unsigned long index = start >> PAGE_CACHE_SHIFT;
1394         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1395         struct page *page;
1396
1397         while (index <= end_index) {
1398                 page = find_get_page(inode->i_mapping, index);
1399                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1400                 clear_page_dirty_for_io(page);
1401                 page_cache_release(page);
1402                 index++;
1403         }
1404         return 0;
1405 }
1406
1407 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1408 {
1409         unsigned long index = start >> PAGE_CACHE_SHIFT;
1410         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1411         struct page *page;
1412
1413         while (index <= end_index) {
1414                 page = find_get_page(inode->i_mapping, index);
1415                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1416                 __set_page_dirty_nobuffers(page);
1417                 account_page_redirty(page);
1418                 page_cache_release(page);
1419                 index++;
1420         }
1421         return 0;
1422 }
1423
1424 /*
1425  * helper function to set both pages and extents in the tree writeback
1426  */
1427 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1428 {
1429         unsigned long index = start >> PAGE_CACHE_SHIFT;
1430         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1431         struct page *page;
1432
1433         while (index <= end_index) {
1434                 page = find_get_page(tree->mapping, index);
1435                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1436                 set_page_writeback(page);
1437                 page_cache_release(page);
1438                 index++;
1439         }
1440         return 0;
1441 }
1442
1443 /* find the first state struct with 'bits' set after 'start', and
1444  * return it.  tree->lock must be held.  NULL will returned if
1445  * nothing was found after 'start'
1446  */
1447 static struct extent_state *
1448 find_first_extent_bit_state(struct extent_io_tree *tree,
1449                             u64 start, unsigned bits)
1450 {
1451         struct rb_node *node;
1452         struct extent_state *state;
1453
1454         /*
1455          * this search will find all the extents that end after
1456          * our range starts.
1457          */
1458         node = tree_search(tree, start);
1459         if (!node)
1460                 goto out;
1461
1462         while (1) {
1463                 state = rb_entry(node, struct extent_state, rb_node);
1464                 if (state->end >= start && (state->state & bits))
1465                         return state;
1466
1467                 node = rb_next(node);
1468                 if (!node)
1469                         break;
1470         }
1471 out:
1472         return NULL;
1473 }
1474
1475 /*
1476  * find the first offset in the io tree with 'bits' set. zero is
1477  * returned if we find something, and *start_ret and *end_ret are
1478  * set to reflect the state struct that was found.
1479  *
1480  * If nothing was found, 1 is returned. If found something, return 0.
1481  */
1482 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1483                           u64 *start_ret, u64 *end_ret, unsigned bits,
1484                           struct extent_state **cached_state)
1485 {
1486         struct extent_state *state;
1487         struct rb_node *n;
1488         int ret = 1;
1489
1490         spin_lock(&tree->lock);
1491         if (cached_state && *cached_state) {
1492                 state = *cached_state;
1493                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1494                         n = rb_next(&state->rb_node);
1495                         while (n) {
1496                                 state = rb_entry(n, struct extent_state,
1497                                                  rb_node);
1498                                 if (state->state & bits)
1499                                         goto got_it;
1500                                 n = rb_next(n);
1501                         }
1502                         free_extent_state(*cached_state);
1503                         *cached_state = NULL;
1504                         goto out;
1505                 }
1506                 free_extent_state(*cached_state);
1507                 *cached_state = NULL;
1508         }
1509
1510         state = find_first_extent_bit_state(tree, start, bits);
1511 got_it:
1512         if (state) {
1513                 cache_state_if_flags(state, cached_state, 0);
1514                 *start_ret = state->start;
1515                 *end_ret = state->end;
1516                 ret = 0;
1517         }
1518 out:
1519         spin_unlock(&tree->lock);
1520         return ret;
1521 }
1522
1523 /*
1524  * find a contiguous range of bytes in the file marked as delalloc, not
1525  * more than 'max_bytes'.  start and end are used to return the range,
1526  *
1527  * 1 is returned if we find something, 0 if nothing was in the tree
1528  */
1529 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1530                                         u64 *start, u64 *end, u64 max_bytes,
1531                                         struct extent_state **cached_state)
1532 {
1533         struct rb_node *node;
1534         struct extent_state *state;
1535         u64 cur_start = *start;
1536         u64 found = 0;
1537         u64 total_bytes = 0;
1538
1539         spin_lock(&tree->lock);
1540
1541         /*
1542          * this search will find all the extents that end after
1543          * our range starts.
1544          */
1545         node = tree_search(tree, cur_start);
1546         if (!node) {
1547                 if (!found)
1548                         *end = (u64)-1;
1549                 goto out;
1550         }
1551
1552         while (1) {
1553                 state = rb_entry(node, struct extent_state, rb_node);
1554                 if (found && (state->start != cur_start ||
1555                               (state->state & EXTENT_BOUNDARY))) {
1556                         goto out;
1557                 }
1558                 if (!(state->state & EXTENT_DELALLOC)) {
1559                         if (!found)
1560                                 *end = state->end;
1561                         goto out;
1562                 }
1563                 if (!found) {
1564                         *start = state->start;
1565                         *cached_state = state;
1566                         atomic_inc(&state->refs);
1567                 }
1568                 found++;
1569                 *end = state->end;
1570                 cur_start = state->end + 1;
1571                 node = rb_next(node);
1572                 total_bytes += state->end - state->start + 1;
1573                 if (total_bytes >= max_bytes)
1574                         break;
1575                 if (!node)
1576                         break;
1577         }
1578 out:
1579         spin_unlock(&tree->lock);
1580         return found;
1581 }
1582
1583 static noinline void __unlock_for_delalloc(struct inode *inode,
1584                                            struct page *locked_page,
1585                                            u64 start, u64 end)
1586 {
1587         int ret;
1588         struct page *pages[16];
1589         unsigned long index = start >> PAGE_CACHE_SHIFT;
1590         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1591         unsigned long nr_pages = end_index - index + 1;
1592         int i;
1593
1594         if (index == locked_page->index && end_index == index)
1595                 return;
1596
1597         while (nr_pages > 0) {
1598                 ret = find_get_pages_contig(inode->i_mapping, index,
1599                                      min_t(unsigned long, nr_pages,
1600                                      ARRAY_SIZE(pages)), pages);
1601                 for (i = 0; i < ret; i++) {
1602                         if (pages[i] != locked_page)
1603                                 unlock_page(pages[i]);
1604                         page_cache_release(pages[i]);
1605                 }
1606                 nr_pages -= ret;
1607                 index += ret;
1608                 cond_resched();
1609         }
1610 }
1611
1612 static noinline int lock_delalloc_pages(struct inode *inode,
1613                                         struct page *locked_page,
1614                                         u64 delalloc_start,
1615                                         u64 delalloc_end)
1616 {
1617         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1618         unsigned long start_index = index;
1619         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1620         unsigned long pages_locked = 0;
1621         struct page *pages[16];
1622         unsigned long nrpages;
1623         int ret;
1624         int i;
1625
1626         /* the caller is responsible for locking the start index */
1627         if (index == locked_page->index && index == end_index)
1628                 return 0;
1629
1630         /* skip the page at the start index */
1631         nrpages = end_index - index + 1;
1632         while (nrpages > 0) {
1633                 ret = find_get_pages_contig(inode->i_mapping, index,
1634                                      min_t(unsigned long,
1635                                      nrpages, ARRAY_SIZE(pages)), pages);
1636                 if (ret == 0) {
1637                         ret = -EAGAIN;
1638                         goto done;
1639                 }
1640                 /* now we have an array of pages, lock them all */
1641                 for (i = 0; i < ret; i++) {
1642                         /*
1643                          * the caller is taking responsibility for
1644                          * locked_page
1645                          */
1646                         if (pages[i] != locked_page) {
1647                                 lock_page(pages[i]);
1648                                 if (!PageDirty(pages[i]) ||
1649                                     pages[i]->mapping != inode->i_mapping) {
1650                                         ret = -EAGAIN;
1651                                         unlock_page(pages[i]);
1652                                         page_cache_release(pages[i]);
1653                                         goto done;
1654                                 }
1655                         }
1656                         page_cache_release(pages[i]);
1657                         pages_locked++;
1658                 }
1659                 nrpages -= ret;
1660                 index += ret;
1661                 cond_resched();
1662         }
1663         ret = 0;
1664 done:
1665         if (ret && pages_locked) {
1666                 __unlock_for_delalloc(inode, locked_page,
1667                               delalloc_start,
1668                               ((u64)(start_index + pages_locked - 1)) <<
1669                               PAGE_CACHE_SHIFT);
1670         }
1671         return ret;
1672 }
1673
1674 /*
1675  * find a contiguous range of bytes in the file marked as delalloc, not
1676  * more than 'max_bytes'.  start and end are used to return the range,
1677  *
1678  * 1 is returned if we find something, 0 if nothing was in the tree
1679  */
1680 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1681                                     struct extent_io_tree *tree,
1682                                     struct page *locked_page, u64 *start,
1683                                     u64 *end, u64 max_bytes)
1684 {
1685         u64 delalloc_start;
1686         u64 delalloc_end;
1687         u64 found;
1688         struct extent_state *cached_state = NULL;
1689         int ret;
1690         int loops = 0;
1691
1692 again:
1693         /* step one, find a bunch of delalloc bytes starting at start */
1694         delalloc_start = *start;
1695         delalloc_end = 0;
1696         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1697                                     max_bytes, &cached_state);
1698         if (!found || delalloc_end <= *start) {
1699                 *start = delalloc_start;
1700                 *end = delalloc_end;
1701                 free_extent_state(cached_state);
1702                 return 0;
1703         }
1704
1705         /*
1706          * start comes from the offset of locked_page.  We have to lock
1707          * pages in order, so we can't process delalloc bytes before
1708          * locked_page
1709          */
1710         if (delalloc_start < *start)
1711                 delalloc_start = *start;
1712
1713         /*
1714          * make sure to limit the number of pages we try to lock down
1715          */
1716         if (delalloc_end + 1 - delalloc_start > max_bytes)
1717                 delalloc_end = delalloc_start + max_bytes - 1;
1718
1719         /* step two, lock all the pages after the page that has start */
1720         ret = lock_delalloc_pages(inode, locked_page,
1721                                   delalloc_start, delalloc_end);
1722         if (ret == -EAGAIN) {
1723                 /* some of the pages are gone, lets avoid looping by
1724                  * shortening the size of the delalloc range we're searching
1725                  */
1726                 free_extent_state(cached_state);
1727                 cached_state = NULL;
1728                 if (!loops) {
1729                         max_bytes = PAGE_CACHE_SIZE;
1730                         loops = 1;
1731                         goto again;
1732                 } else {
1733                         found = 0;
1734                         goto out_failed;
1735                 }
1736         }
1737         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1738
1739         /* step three, lock the state bits for the whole range */
1740         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1741
1742         /* then test to make sure it is all still delalloc */
1743         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1744                              EXTENT_DELALLOC, 1, cached_state);
1745         if (!ret) {
1746                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1747                                      &cached_state, GFP_NOFS);
1748                 __unlock_for_delalloc(inode, locked_page,
1749                               delalloc_start, delalloc_end);
1750                 cond_resched();
1751                 goto again;
1752         }
1753         free_extent_state(cached_state);
1754         *start = delalloc_start;
1755         *end = delalloc_end;
1756 out_failed:
1757         return found;
1758 }
1759
1760 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1761                                  struct page *locked_page,
1762                                  unsigned clear_bits,
1763                                  unsigned long page_ops)
1764 {
1765         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1766         int ret;
1767         struct page *pages[16];
1768         unsigned long index = start >> PAGE_CACHE_SHIFT;
1769         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1770         unsigned long nr_pages = end_index - index + 1;
1771         int i;
1772
1773         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1774         if (page_ops == 0)
1775                 return 0;
1776
1777         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1778                 mapping_set_error(inode->i_mapping, -EIO);
1779
1780         while (nr_pages > 0) {
1781                 ret = find_get_pages_contig(inode->i_mapping, index,
1782                                      min_t(unsigned long,
1783                                      nr_pages, ARRAY_SIZE(pages)), pages);
1784                 for (i = 0; i < ret; i++) {
1785
1786                         if (page_ops & PAGE_SET_PRIVATE2)
1787                                 SetPagePrivate2(pages[i]);
1788
1789                         if (pages[i] == locked_page) {
1790                                 page_cache_release(pages[i]);
1791                                 continue;
1792                         }
1793                         if (page_ops & PAGE_CLEAR_DIRTY)
1794                                 clear_page_dirty_for_io(pages[i]);
1795                         if (page_ops & PAGE_SET_WRITEBACK)
1796                                 set_page_writeback(pages[i]);
1797                         if (page_ops & PAGE_SET_ERROR)
1798                                 SetPageError(pages[i]);
1799                         if (page_ops & PAGE_END_WRITEBACK)
1800                                 end_page_writeback(pages[i]);
1801                         if (page_ops & PAGE_UNLOCK)
1802                                 unlock_page(pages[i]);
1803                         page_cache_release(pages[i]);
1804                 }
1805                 nr_pages -= ret;
1806                 index += ret;
1807                 cond_resched();
1808         }
1809         return 0;
1810 }
1811
1812 /*
1813  * count the number of bytes in the tree that have a given bit(s)
1814  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1815  * cached.  The total number found is returned.
1816  */
1817 u64 count_range_bits(struct extent_io_tree *tree,
1818                      u64 *start, u64 search_end, u64 max_bytes,
1819                      unsigned bits, int contig)
1820 {
1821         struct rb_node *node;
1822         struct extent_state *state;
1823         u64 cur_start = *start;
1824         u64 total_bytes = 0;
1825         u64 last = 0;
1826         int found = 0;
1827
1828         if (WARN_ON(search_end <= cur_start))
1829                 return 0;
1830
1831         spin_lock(&tree->lock);
1832         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1833                 total_bytes = tree->dirty_bytes;
1834                 goto out;
1835         }
1836         /*
1837          * this search will find all the extents that end after
1838          * our range starts.
1839          */
1840         node = tree_search(tree, cur_start);
1841         if (!node)
1842                 goto out;
1843
1844         while (1) {
1845                 state = rb_entry(node, struct extent_state, rb_node);
1846                 if (state->start > search_end)
1847                         break;
1848                 if (contig && found && state->start > last + 1)
1849                         break;
1850                 if (state->end >= cur_start && (state->state & bits) == bits) {
1851                         total_bytes += min(search_end, state->end) + 1 -
1852                                        max(cur_start, state->start);
1853                         if (total_bytes >= max_bytes)
1854                                 break;
1855                         if (!found) {
1856                                 *start = max(cur_start, state->start);
1857                                 found = 1;
1858                         }
1859                         last = state->end;
1860                 } else if (contig && found) {
1861                         break;
1862                 }
1863                 node = rb_next(node);
1864                 if (!node)
1865                         break;
1866         }
1867 out:
1868         spin_unlock(&tree->lock);
1869         return total_bytes;
1870 }
1871
1872 /*
1873  * set the private field for a given byte offset in the tree.  If there isn't
1874  * an extent_state there already, this does nothing.
1875  */
1876 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1877 {
1878         struct rb_node *node;
1879         struct extent_state *state;
1880         int ret = 0;
1881
1882         spin_lock(&tree->lock);
1883         /*
1884          * this search will find all the extents that end after
1885          * our range starts.
1886          */
1887         node = tree_search(tree, start);
1888         if (!node) {
1889                 ret = -ENOENT;
1890                 goto out;
1891         }
1892         state = rb_entry(node, struct extent_state, rb_node);
1893         if (state->start != start) {
1894                 ret = -ENOENT;
1895                 goto out;
1896         }
1897         state->private = private;
1898 out:
1899         spin_unlock(&tree->lock);
1900         return ret;
1901 }
1902
1903 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1904 {
1905         struct rb_node *node;
1906         struct extent_state *state;
1907         int ret = 0;
1908
1909         spin_lock(&tree->lock);
1910         /*
1911          * this search will find all the extents that end after
1912          * our range starts.
1913          */
1914         node = tree_search(tree, start);
1915         if (!node) {
1916                 ret = -ENOENT;
1917                 goto out;
1918         }
1919         state = rb_entry(node, struct extent_state, rb_node);
1920         if (state->start != start) {
1921                 ret = -ENOENT;
1922                 goto out;
1923         }
1924         *private = state->private;
1925 out:
1926         spin_unlock(&tree->lock);
1927         return ret;
1928 }
1929
1930 /*
1931  * searches a range in the state tree for a given mask.
1932  * If 'filled' == 1, this returns 1 only if every extent in the tree
1933  * has the bits set.  Otherwise, 1 is returned if any bit in the
1934  * range is found set.
1935  */
1936 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1937                    unsigned bits, int filled, struct extent_state *cached)
1938 {
1939         struct extent_state *state = NULL;
1940         struct rb_node *node;
1941         int bitset = 0;
1942
1943         spin_lock(&tree->lock);
1944         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1945             cached->end > start)
1946                 node = &cached->rb_node;
1947         else
1948                 node = tree_search(tree, start);
1949         while (node && start <= end) {
1950                 state = rb_entry(node, struct extent_state, rb_node);
1951
1952                 if (filled && state->start > start) {
1953                         bitset = 0;
1954                         break;
1955                 }
1956
1957                 if (state->start > end)
1958                         break;
1959
1960                 if (state->state & bits) {
1961                         bitset = 1;
1962                         if (!filled)
1963                                 break;
1964                 } else if (filled) {
1965                         bitset = 0;
1966                         break;
1967                 }
1968
1969                 if (state->end == (u64)-1)
1970                         break;
1971
1972                 start = state->end + 1;
1973                 if (start > end)
1974                         break;
1975                 node = rb_next(node);
1976                 if (!node) {
1977                         if (filled)
1978                                 bitset = 0;
1979                         break;
1980                 }
1981         }
1982         spin_unlock(&tree->lock);
1983         return bitset;
1984 }
1985
1986 /*
1987  * helper function to set a given page up to date if all the
1988  * extents in the tree for that page are up to date
1989  */
1990 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1991 {
1992         u64 start = page_offset(page);
1993         u64 end = start + PAGE_CACHE_SIZE - 1;
1994         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1995                 SetPageUptodate(page);
1996 }
1997
1998 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1999 {
2000         int ret;
2001         int err = 0;
2002         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2003
2004         set_state_private(failure_tree, rec->start, 0);
2005         ret = clear_extent_bits(failure_tree, rec->start,
2006                                 rec->start + rec->len - 1,
2007                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2008         if (ret)
2009                 err = ret;
2010
2011         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2012                                 rec->start + rec->len - 1,
2013                                 EXTENT_DAMAGED, GFP_NOFS);
2014         if (ret && !err)
2015                 err = ret;
2016
2017         kfree(rec);
2018         return err;
2019 }
2020
2021 /*
2022  * this bypasses the standard btrfs submit functions deliberately, as
2023  * the standard behavior is to write all copies in a raid setup. here we only
2024  * want to write the one bad copy. so we do the mapping for ourselves and issue
2025  * submit_bio directly.
2026  * to avoid any synchronization issues, wait for the data after writing, which
2027  * actually prevents the read that triggered the error from finishing.
2028  * currently, there can be no more than two copies of every data bit. thus,
2029  * exactly one rewrite is required.
2030  */
2031 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2032                       struct page *page, unsigned int pg_offset, int mirror_num)
2033 {
2034         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2035         struct bio *bio;
2036         struct btrfs_device *dev;
2037         u64 map_length = 0;
2038         u64 sector;
2039         struct btrfs_bio *bbio = NULL;
2040         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2041         int ret;
2042
2043         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2044         BUG_ON(!mirror_num);
2045
2046         /* we can't repair anything in raid56 yet */
2047         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2048                 return 0;
2049
2050         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2051         if (!bio)
2052                 return -EIO;
2053         bio->bi_iter.bi_size = 0;
2054         map_length = length;
2055
2056         ret = btrfs_map_block(fs_info, WRITE, logical,
2057                               &map_length, &bbio, mirror_num);
2058         if (ret) {
2059                 bio_put(bio);
2060                 return -EIO;
2061         }
2062         BUG_ON(mirror_num != bbio->mirror_num);
2063         sector = bbio->stripes[mirror_num-1].physical >> 9;
2064         bio->bi_iter.bi_sector = sector;
2065         dev = bbio->stripes[mirror_num-1].dev;
2066         btrfs_put_bbio(bbio);
2067         if (!dev || !dev->bdev || !dev->writeable) {
2068                 bio_put(bio);
2069                 return -EIO;
2070         }
2071         bio->bi_bdev = dev->bdev;
2072         bio_add_page(bio, page, length, pg_offset);
2073
2074         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2075                 /* try to remap that extent elsewhere? */
2076                 bio_put(bio);
2077                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2078                 return -EIO;
2079         }
2080
2081         printk_ratelimited_in_rcu(KERN_INFO
2082                                   "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2083                                   btrfs_ino(inode), start,
2084                                   rcu_str_deref(dev->name), sector);
2085         bio_put(bio);
2086         return 0;
2087 }
2088
2089 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2090                          int mirror_num)
2091 {
2092         u64 start = eb->start;
2093         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2094         int ret = 0;
2095
2096         if (root->fs_info->sb->s_flags & MS_RDONLY)
2097                 return -EROFS;
2098
2099         for (i = 0; i < num_pages; i++) {
2100                 struct page *p = eb->pages[i];
2101
2102                 ret = repair_io_failure(root->fs_info->btree_inode, start,
2103                                         PAGE_CACHE_SIZE, start, p,
2104                                         start - page_offset(p), mirror_num);
2105                 if (ret)
2106                         break;
2107                 start += PAGE_CACHE_SIZE;
2108         }
2109
2110         return ret;
2111 }
2112
2113 /*
2114  * each time an IO finishes, we do a fast check in the IO failure tree
2115  * to see if we need to process or clean up an io_failure_record
2116  */
2117 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2118                      unsigned int pg_offset)
2119 {
2120         u64 private;
2121         u64 private_failure;
2122         struct io_failure_record *failrec;
2123         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2124         struct extent_state *state;
2125         int num_copies;
2126         int ret;
2127
2128         private = 0;
2129         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2130                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2131         if (!ret)
2132                 return 0;
2133
2134         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2135                                 &private_failure);
2136         if (ret)
2137                 return 0;
2138
2139         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2140         BUG_ON(!failrec->this_mirror);
2141
2142         if (failrec->in_validation) {
2143                 /* there was no real error, just free the record */
2144                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2145                          failrec->start);
2146                 goto out;
2147         }
2148         if (fs_info->sb->s_flags & MS_RDONLY)
2149                 goto out;
2150
2151         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2152         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2153                                             failrec->start,
2154                                             EXTENT_LOCKED);
2155         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2156
2157         if (state && state->start <= failrec->start &&
2158             state->end >= failrec->start + failrec->len - 1) {
2159                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2160                                               failrec->len);
2161                 if (num_copies > 1)  {
2162                         repair_io_failure(inode, start, failrec->len,
2163                                           failrec->logical, page,
2164                                           pg_offset, failrec->failed_mirror);
2165                 }
2166         }
2167
2168 out:
2169         free_io_failure(inode, failrec);
2170
2171         return 0;
2172 }
2173
2174 /*
2175  * Can be called when
2176  * - hold extent lock
2177  * - under ordered extent
2178  * - the inode is freeing
2179  */
2180 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2181 {
2182         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183         struct io_failure_record *failrec;
2184         struct extent_state *state, *next;
2185
2186         if (RB_EMPTY_ROOT(&failure_tree->state))
2187                 return;
2188
2189         spin_lock(&failure_tree->lock);
2190         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2191         while (state) {
2192                 if (state->start > end)
2193                         break;
2194
2195                 ASSERT(state->end <= end);
2196
2197                 next = next_state(state);
2198
2199                 failrec = (struct io_failure_record *)(unsigned long)state->private;
2200                 free_extent_state(state);
2201                 kfree(failrec);
2202
2203                 state = next;
2204         }
2205         spin_unlock(&failure_tree->lock);
2206 }
2207
2208 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2209                                 struct io_failure_record **failrec_ret)
2210 {
2211         struct io_failure_record *failrec;
2212         u64 private;
2213         struct extent_map *em;
2214         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2215         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2216         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2217         int ret;
2218         u64 logical;
2219
2220         ret = get_state_private(failure_tree, start, &private);
2221         if (ret) {
2222                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2223                 if (!failrec)
2224                         return -ENOMEM;
2225
2226                 failrec->start = start;
2227                 failrec->len = end - start + 1;
2228                 failrec->this_mirror = 0;
2229                 failrec->bio_flags = 0;
2230                 failrec->in_validation = 0;
2231
2232                 read_lock(&em_tree->lock);
2233                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2234                 if (!em) {
2235                         read_unlock(&em_tree->lock);
2236                         kfree(failrec);
2237                         return -EIO;
2238                 }
2239
2240                 if (em->start > start || em->start + em->len <= start) {
2241                         free_extent_map(em);
2242                         em = NULL;
2243                 }
2244                 read_unlock(&em_tree->lock);
2245                 if (!em) {
2246                         kfree(failrec);
2247                         return -EIO;
2248                 }
2249
2250                 logical = start - em->start;
2251                 logical = em->block_start + logical;
2252                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2253                         logical = em->block_start;
2254                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2255                         extent_set_compress_type(&failrec->bio_flags,
2256                                                  em->compress_type);
2257                 }
2258
2259                 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2260                          logical, start, failrec->len);
2261
2262                 failrec->logical = logical;
2263                 free_extent_map(em);
2264
2265                 /* set the bits in the private failure tree */
2266                 ret = set_extent_bits(failure_tree, start, end,
2267                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2268                 if (ret >= 0)
2269                         ret = set_state_private(failure_tree, start,
2270                                                 (u64)(unsigned long)failrec);
2271                 /* set the bits in the inode's tree */
2272                 if (ret >= 0)
2273                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2274                                                 GFP_NOFS);
2275                 if (ret < 0) {
2276                         kfree(failrec);
2277                         return ret;
2278                 }
2279         } else {
2280                 failrec = (struct io_failure_record *)(unsigned long)private;
2281                 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2282                          failrec->logical, failrec->start, failrec->len,
2283                          failrec->in_validation);
2284                 /*
2285                  * when data can be on disk more than twice, add to failrec here
2286                  * (e.g. with a list for failed_mirror) to make
2287                  * clean_io_failure() clean all those errors at once.
2288                  */
2289         }
2290
2291         *failrec_ret = failrec;
2292
2293         return 0;
2294 }
2295
2296 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2297                            struct io_failure_record *failrec, int failed_mirror)
2298 {
2299         int num_copies;
2300
2301         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2302                                       failrec->logical, failrec->len);
2303         if (num_copies == 1) {
2304                 /*
2305                  * we only have a single copy of the data, so don't bother with
2306                  * all the retry and error correction code that follows. no
2307                  * matter what the error is, it is very likely to persist.
2308                  */
2309                 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2310                          num_copies, failrec->this_mirror, failed_mirror);
2311                 return 0;
2312         }
2313
2314         /*
2315          * there are two premises:
2316          *      a) deliver good data to the caller
2317          *      b) correct the bad sectors on disk
2318          */
2319         if (failed_bio->bi_vcnt > 1) {
2320                 /*
2321                  * to fulfill b), we need to know the exact failing sectors, as
2322                  * we don't want to rewrite any more than the failed ones. thus,
2323                  * we need separate read requests for the failed bio
2324                  *
2325                  * if the following BUG_ON triggers, our validation request got
2326                  * merged. we need separate requests for our algorithm to work.
2327                  */
2328                 BUG_ON(failrec->in_validation);
2329                 failrec->in_validation = 1;
2330                 failrec->this_mirror = failed_mirror;
2331         } else {
2332                 /*
2333                  * we're ready to fulfill a) and b) alongside. get a good copy
2334                  * of the failed sector and if we succeed, we have setup
2335                  * everything for repair_io_failure to do the rest for us.
2336                  */
2337                 if (failrec->in_validation) {
2338                         BUG_ON(failrec->this_mirror != failed_mirror);
2339                         failrec->in_validation = 0;
2340                         failrec->this_mirror = 0;
2341                 }
2342                 failrec->failed_mirror = failed_mirror;
2343                 failrec->this_mirror++;
2344                 if (failrec->this_mirror == failed_mirror)
2345                         failrec->this_mirror++;
2346         }
2347
2348         if (failrec->this_mirror > num_copies) {
2349                 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2350                          num_copies, failrec->this_mirror, failed_mirror);
2351                 return 0;
2352         }
2353
2354         return 1;
2355 }
2356
2357
2358 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2359                                     struct io_failure_record *failrec,
2360                                     struct page *page, int pg_offset, int icsum,
2361                                     bio_end_io_t *endio_func, void *data)
2362 {
2363         struct bio *bio;
2364         struct btrfs_io_bio *btrfs_failed_bio;
2365         struct btrfs_io_bio *btrfs_bio;
2366
2367         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2368         if (!bio)
2369                 return NULL;
2370
2371         bio->bi_end_io = endio_func;
2372         bio->bi_iter.bi_sector = failrec->logical >> 9;
2373         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2374         bio->bi_iter.bi_size = 0;
2375         bio->bi_private = data;
2376
2377         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2378         if (btrfs_failed_bio->csum) {
2379                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2380                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2381
2382                 btrfs_bio = btrfs_io_bio(bio);
2383                 btrfs_bio->csum = btrfs_bio->csum_inline;
2384                 icsum *= csum_size;
2385                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2386                        csum_size);
2387         }
2388
2389         bio_add_page(bio, page, failrec->len, pg_offset);
2390
2391         return bio;
2392 }
2393
2394 /*
2395  * this is a generic handler for readpage errors (default
2396  * readpage_io_failed_hook). if other copies exist, read those and write back
2397  * good data to the failed position. does not investigate in remapping the
2398  * failed extent elsewhere, hoping the device will be smart enough to do this as
2399  * needed
2400  */
2401
2402 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2403                               struct page *page, u64 start, u64 end,
2404                               int failed_mirror)
2405 {
2406         struct io_failure_record *failrec;
2407         struct inode *inode = page->mapping->host;
2408         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2409         struct bio *bio;
2410         int read_mode;
2411         int ret;
2412
2413         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2414
2415         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2416         if (ret)
2417                 return ret;
2418
2419         ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2420         if (!ret) {
2421                 free_io_failure(inode, failrec);
2422                 return -EIO;
2423         }
2424
2425         if (failed_bio->bi_vcnt > 1)
2426                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2427         else
2428                 read_mode = READ_SYNC;
2429
2430         phy_offset >>= inode->i_sb->s_blocksize_bits;
2431         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2432                                       start - page_offset(page),
2433                                       (int)phy_offset, failed_bio->bi_end_io,
2434                                       NULL);
2435         if (!bio) {
2436                 free_io_failure(inode, failrec);
2437                 return -EIO;
2438         }
2439
2440         pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2441                  read_mode, failrec->this_mirror, failrec->in_validation);
2442
2443         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2444                                          failrec->this_mirror,
2445                                          failrec->bio_flags, 0);
2446         if (ret) {
2447                 free_io_failure(inode, failrec);
2448                 bio_put(bio);
2449         }
2450
2451         return ret;
2452 }
2453
2454 /* lots and lots of room for performance fixes in the end_bio funcs */
2455
2456 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2457 {
2458         int uptodate = (err == 0);
2459         struct extent_io_tree *tree;
2460         int ret = 0;
2461
2462         tree = &BTRFS_I(page->mapping->host)->io_tree;
2463
2464         if (tree->ops && tree->ops->writepage_end_io_hook) {
2465                 ret = tree->ops->writepage_end_io_hook(page, start,
2466                                                end, NULL, uptodate);
2467                 if (ret)
2468                         uptodate = 0;
2469         }
2470
2471         if (!uptodate) {
2472                 ClearPageUptodate(page);
2473                 SetPageError(page);
2474                 ret = ret < 0 ? ret : -EIO;
2475                 mapping_set_error(page->mapping, ret);
2476         }
2477         return 0;
2478 }
2479
2480 /*
2481  * after a writepage IO is done, we need to:
2482  * clear the uptodate bits on error
2483  * clear the writeback bits in the extent tree for this IO
2484  * end_page_writeback if the page has no more pending IO
2485  *
2486  * Scheduling is not allowed, so the extent state tree is expected
2487  * to have one and only one object corresponding to this IO.
2488  */
2489 static void end_bio_extent_writepage(struct bio *bio)
2490 {
2491         struct bio_vec *bvec;
2492         u64 start;
2493         u64 end;
2494         int i;
2495
2496         bio_for_each_segment_all(bvec, bio, i) {
2497                 struct page *page = bvec->bv_page;
2498
2499                 /* We always issue full-page reads, but if some block
2500                  * in a page fails to read, blk_update_request() will
2501                  * advance bv_offset and adjust bv_len to compensate.
2502                  * Print a warning for nonzero offsets, and an error
2503                  * if they don't add up to a full page.  */
2504                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2505                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2506                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2507                                    "partial page write in btrfs with offset %u and length %u",
2508                                         bvec->bv_offset, bvec->bv_len);
2509                         else
2510                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2511                                    "incomplete page write in btrfs with offset %u and "
2512                                    "length %u",
2513                                         bvec->bv_offset, bvec->bv_len);
2514                 }
2515
2516                 start = page_offset(page);
2517                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2518
2519                 if (end_extent_writepage(page, bio->bi_error, start, end))
2520                         continue;
2521
2522                 end_page_writeback(page);
2523         }
2524
2525         bio_put(bio);
2526 }
2527
2528 static void
2529 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2530                               int uptodate)
2531 {
2532         struct extent_state *cached = NULL;
2533         u64 end = start + len - 1;
2534
2535         if (uptodate && tree->track_uptodate)
2536                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2537         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2538 }
2539
2540 /*
2541  * after a readpage IO is done, we need to:
2542  * clear the uptodate bits on error
2543  * set the uptodate bits if things worked
2544  * set the page up to date if all extents in the tree are uptodate
2545  * clear the lock bit in the extent tree
2546  * unlock the page if there are no other extents locked for it
2547  *
2548  * Scheduling is not allowed, so the extent state tree is expected
2549  * to have one and only one object corresponding to this IO.
2550  */
2551 static void end_bio_extent_readpage(struct bio *bio)
2552 {
2553         struct bio_vec *bvec;
2554         int uptodate = !bio->bi_error;
2555         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2556         struct extent_io_tree *tree;
2557         u64 offset = 0;
2558         u64 start;
2559         u64 end;
2560         u64 len;
2561         u64 extent_start = 0;
2562         u64 extent_len = 0;
2563         int mirror;
2564         int ret;
2565         int i;
2566
2567         bio_for_each_segment_all(bvec, bio, i) {
2568                 struct page *page = bvec->bv_page;
2569                 struct inode *inode = page->mapping->host;
2570
2571                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2572                          "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2573                          bio->bi_error, io_bio->mirror_num);
2574                 tree = &BTRFS_I(inode)->io_tree;
2575
2576                 /* We always issue full-page reads, but if some block
2577                  * in a page fails to read, blk_update_request() will
2578                  * advance bv_offset and adjust bv_len to compensate.
2579                  * Print a warning for nonzero offsets, and an error
2580                  * if they don't add up to a full page.  */
2581                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2582                         if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2583                                 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2584                                    "partial page read in btrfs with offset %u and length %u",
2585                                         bvec->bv_offset, bvec->bv_len);
2586                         else
2587                                 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2588                                    "incomplete page read in btrfs with offset %u and "
2589                                    "length %u",
2590                                         bvec->bv_offset, bvec->bv_len);
2591                 }
2592
2593                 start = page_offset(page);
2594                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2595                 len = bvec->bv_len;
2596
2597                 mirror = io_bio->mirror_num;
2598                 if (likely(uptodate && tree->ops &&
2599                            tree->ops->readpage_end_io_hook)) {
2600                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2601                                                               page, start, end,
2602                                                               mirror);
2603                         if (ret)
2604                                 uptodate = 0;
2605                         else
2606                                 clean_io_failure(inode, start, page, 0);
2607                 }
2608
2609                 if (likely(uptodate))
2610                         goto readpage_ok;
2611
2612                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2613                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2614                         if (!ret && !bio->bi_error)
2615                                 uptodate = 1;
2616                 } else {
2617                         /*
2618                          * The generic bio_readpage_error handles errors the
2619                          * following way: If possible, new read requests are
2620                          * created and submitted and will end up in
2621                          * end_bio_extent_readpage as well (if we're lucky, not
2622                          * in the !uptodate case). In that case it returns 0 and
2623                          * we just go on with the next page in our bio. If it
2624                          * can't handle the error it will return -EIO and we
2625                          * remain responsible for that page.
2626                          */
2627                         ret = bio_readpage_error(bio, offset, page, start, end,
2628                                                  mirror);
2629                         if (ret == 0) {
2630                                 uptodate = !bio->bi_error;
2631                                 offset += len;
2632                                 continue;
2633                         }
2634                 }
2635 readpage_ok:
2636                 if (likely(uptodate)) {
2637                         loff_t i_size = i_size_read(inode);
2638                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2639                         unsigned off;
2640
2641                         /* Zero out the end if this page straddles i_size */
2642                         off = i_size & (PAGE_CACHE_SIZE-1);
2643                         if (page->index == end_index && off)
2644                                 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2645                         SetPageUptodate(page);
2646                 } else {
2647                         ClearPageUptodate(page);
2648                         SetPageError(page);
2649                 }
2650                 unlock_page(page);
2651                 offset += len;
2652
2653                 if (unlikely(!uptodate)) {
2654                         if (extent_len) {
2655                                 endio_readpage_release_extent(tree,
2656                                                               extent_start,
2657                                                               extent_len, 1);
2658                                 extent_start = 0;
2659                                 extent_len = 0;
2660                         }
2661                         endio_readpage_release_extent(tree, start,
2662                                                       end - start + 1, 0);
2663                 } else if (!extent_len) {
2664                         extent_start = start;
2665                         extent_len = end + 1 - start;
2666                 } else if (extent_start + extent_len == start) {
2667                         extent_len += end + 1 - start;
2668                 } else {
2669                         endio_readpage_release_extent(tree, extent_start,
2670                                                       extent_len, uptodate);
2671                         extent_start = start;
2672                         extent_len = end + 1 - start;
2673                 }
2674         }
2675
2676         if (extent_len)
2677                 endio_readpage_release_extent(tree, extent_start, extent_len,
2678                                               uptodate);
2679         if (io_bio->end_io)
2680                 io_bio->end_io(io_bio, bio->bi_error);
2681         bio_put(bio);
2682 }
2683
2684 /*
2685  * this allocates from the btrfs_bioset.  We're returning a bio right now
2686  * but you can call btrfs_io_bio for the appropriate container_of magic
2687  */
2688 struct bio *
2689 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2690                 gfp_t gfp_flags)
2691 {
2692         struct btrfs_io_bio *btrfs_bio;
2693         struct bio *bio;
2694
2695         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2696
2697         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2698                 while (!bio && (nr_vecs /= 2)) {
2699                         bio = bio_alloc_bioset(gfp_flags,
2700                                                nr_vecs, btrfs_bioset);
2701                 }
2702         }
2703
2704         if (bio) {
2705                 bio->bi_bdev = bdev;
2706                 bio->bi_iter.bi_sector = first_sector;
2707                 btrfs_bio = btrfs_io_bio(bio);
2708                 btrfs_bio->csum = NULL;
2709                 btrfs_bio->csum_allocated = NULL;
2710                 btrfs_bio->end_io = NULL;
2711         }
2712         return bio;
2713 }
2714
2715 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2716 {
2717         struct btrfs_io_bio *btrfs_bio;
2718         struct bio *new;
2719
2720         new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2721         if (new) {
2722                 btrfs_bio = btrfs_io_bio(new);
2723                 btrfs_bio->csum = NULL;
2724                 btrfs_bio->csum_allocated = NULL;
2725                 btrfs_bio->end_io = NULL;
2726         }
2727         return new;
2728 }
2729
2730 /* this also allocates from the btrfs_bioset */
2731 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2732 {
2733         struct btrfs_io_bio *btrfs_bio;
2734         struct bio *bio;
2735
2736         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2737         if (bio) {
2738                 btrfs_bio = btrfs_io_bio(bio);
2739                 btrfs_bio->csum = NULL;
2740                 btrfs_bio->csum_allocated = NULL;
2741                 btrfs_bio->end_io = NULL;
2742         }
2743         return bio;
2744 }
2745
2746
2747 static int __must_check submit_one_bio(int rw, struct bio *bio,
2748                                        int mirror_num, unsigned long bio_flags)
2749 {
2750         int ret = 0;
2751         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2752         struct page *page = bvec->bv_page;
2753         struct extent_io_tree *tree = bio->bi_private;
2754         u64 start;
2755
2756         start = page_offset(page) + bvec->bv_offset;
2757
2758         bio->bi_private = NULL;
2759
2760         bio_get(bio);
2761
2762         if (tree->ops && tree->ops->submit_bio_hook)
2763                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2764                                            mirror_num, bio_flags, start);
2765         else
2766                 btrfsic_submit_bio(rw, bio);
2767
2768         bio_put(bio);
2769         return ret;
2770 }
2771
2772 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2773                      unsigned long offset, size_t size, struct bio *bio,
2774                      unsigned long bio_flags)
2775 {
2776         int ret = 0;
2777         if (tree->ops && tree->ops->merge_bio_hook)
2778                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2779                                                 bio_flags);
2780         BUG_ON(ret < 0);
2781         return ret;
2782
2783 }
2784
2785 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2786                               struct page *page, sector_t sector,
2787                               size_t size, unsigned long offset,
2788                               struct block_device *bdev,
2789                               struct bio **bio_ret,
2790                               unsigned long max_pages,
2791                               bio_end_io_t end_io_func,
2792                               int mirror_num,
2793                               unsigned long prev_bio_flags,
2794                               unsigned long bio_flags)
2795 {
2796         int ret = 0;
2797         struct bio *bio;
2798         int nr;
2799         int contig = 0;
2800         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2801         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2802         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2803
2804         if (bio_ret && *bio_ret) {
2805                 bio = *bio_ret;
2806                 if (old_compressed)
2807                         contig = bio->bi_iter.bi_sector == sector;
2808                 else
2809                         contig = bio_end_sector(bio) == sector;
2810
2811                 if (prev_bio_flags != bio_flags || !contig ||
2812                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2813                     bio_add_page(bio, page, page_size, offset) < page_size) {
2814                         ret = submit_one_bio(rw, bio, mirror_num,
2815                                              prev_bio_flags);
2816                         if (ret < 0) {
2817                                 *bio_ret = NULL;
2818                                 return ret;
2819                         }
2820                         bio = NULL;
2821                 } else {
2822                         return 0;
2823                 }
2824         }
2825         if (this_compressed)
2826                 nr = BIO_MAX_PAGES;
2827         else
2828                 nr = bio_get_nr_vecs(bdev);
2829
2830         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2831         if (!bio)
2832                 return -ENOMEM;
2833
2834         bio_add_page(bio, page, page_size, offset);
2835         bio->bi_end_io = end_io_func;
2836         bio->bi_private = tree;
2837
2838         if (bio_ret)
2839                 *bio_ret = bio;
2840         else
2841                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2842
2843         return ret;
2844 }
2845
2846 static void attach_extent_buffer_page(struct extent_buffer *eb,
2847                                       struct page *page)
2848 {
2849         if (!PagePrivate(page)) {
2850                 SetPagePrivate(page);
2851                 page_cache_get(page);
2852                 set_page_private(page, (unsigned long)eb);
2853         } else {
2854                 WARN_ON(page->private != (unsigned long)eb);
2855         }
2856 }
2857
2858 void set_page_extent_mapped(struct page *page)
2859 {
2860         if (!PagePrivate(page)) {
2861                 SetPagePrivate(page);
2862                 page_cache_get(page);
2863                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2864         }
2865 }
2866
2867 static struct extent_map *
2868 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2869                  u64 start, u64 len, get_extent_t *get_extent,
2870                  struct extent_map **em_cached)
2871 {
2872         struct extent_map *em;
2873
2874         if (em_cached && *em_cached) {
2875                 em = *em_cached;
2876                 if (extent_map_in_tree(em) && start >= em->start &&
2877                     start < extent_map_end(em)) {
2878                         atomic_inc(&em->refs);
2879                         return em;
2880                 }
2881
2882                 free_extent_map(em);
2883                 *em_cached = NULL;
2884         }
2885
2886         em = get_extent(inode, page, pg_offset, start, len, 0);
2887         if (em_cached && !IS_ERR_OR_NULL(em)) {
2888                 BUG_ON(*em_cached);
2889                 atomic_inc(&em->refs);
2890                 *em_cached = em;
2891         }
2892         return em;
2893 }
2894 /*
2895  * basic readpage implementation.  Locked extent state structs are inserted
2896  * into the tree that are removed when the IO is done (by the end_io
2897  * handlers)
2898  * XXX JDM: This needs looking at to ensure proper page locking
2899  */
2900 static int __do_readpage(struct extent_io_tree *tree,
2901                          struct page *page,
2902                          get_extent_t *get_extent,
2903                          struct extent_map **em_cached,
2904                          struct bio **bio, int mirror_num,
2905                          unsigned long *bio_flags, int rw)
2906 {
2907         struct inode *inode = page->mapping->host;
2908         u64 start = page_offset(page);
2909         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2910         u64 end;
2911         u64 cur = start;
2912         u64 extent_offset;
2913         u64 last_byte = i_size_read(inode);
2914         u64 block_start;
2915         u64 cur_end;
2916         sector_t sector;
2917         struct extent_map *em;
2918         struct block_device *bdev;
2919         int ret;
2920         int nr = 0;
2921         int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2922         size_t pg_offset = 0;
2923         size_t iosize;
2924         size_t disk_io_size;
2925         size_t blocksize = inode->i_sb->s_blocksize;
2926         unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2927
2928         set_page_extent_mapped(page);
2929
2930         end = page_end;
2931         if (!PageUptodate(page)) {
2932                 if (cleancache_get_page(page) == 0) {
2933                         BUG_ON(blocksize != PAGE_SIZE);
2934                         unlock_extent(tree, start, end);
2935                         goto out;
2936                 }
2937         }
2938
2939         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2940                 char *userpage;
2941                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2942
2943                 if (zero_offset) {
2944                         iosize = PAGE_CACHE_SIZE - zero_offset;
2945                         userpage = kmap_atomic(page);
2946                         memset(userpage + zero_offset, 0, iosize);
2947                         flush_dcache_page(page);
2948                         kunmap_atomic(userpage);
2949                 }
2950         }
2951         while (cur <= end) {
2952                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2953
2954                 if (cur >= last_byte) {
2955                         char *userpage;
2956                         struct extent_state *cached = NULL;
2957
2958                         iosize = PAGE_CACHE_SIZE - pg_offset;
2959                         userpage = kmap_atomic(page);
2960                         memset(userpage + pg_offset, 0, iosize);
2961                         flush_dcache_page(page);
2962                         kunmap_atomic(userpage);
2963                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2964                                             &cached, GFP_NOFS);
2965                         if (!parent_locked)
2966                                 unlock_extent_cached(tree, cur,
2967                                                      cur + iosize - 1,
2968                                                      &cached, GFP_NOFS);
2969                         break;
2970                 }
2971                 em = __get_extent_map(inode, page, pg_offset, cur,
2972                                       end - cur + 1, get_extent, em_cached);
2973                 if (IS_ERR_OR_NULL(em)) {
2974                         SetPageError(page);
2975                         if (!parent_locked)
2976                                 unlock_extent(tree, cur, end);
2977                         break;
2978                 }
2979                 extent_offset = cur - em->start;
2980                 BUG_ON(extent_map_end(em) <= cur);
2981                 BUG_ON(end < cur);
2982
2983                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2984                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2985                         extent_set_compress_type(&this_bio_flag,
2986                                                  em->compress_type);
2987                 }
2988
2989                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2990                 cur_end = min(extent_map_end(em) - 1, end);
2991                 iosize = ALIGN(iosize, blocksize);
2992                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2993                         disk_io_size = em->block_len;
2994                         sector = em->block_start >> 9;
2995                 } else {
2996                         sector = (em->block_start + extent_offset) >> 9;
2997                         disk_io_size = iosize;
2998                 }
2999                 bdev = em->bdev;
3000                 block_start = em->block_start;
3001                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3002                         block_start = EXTENT_MAP_HOLE;
3003                 free_extent_map(em);
3004                 em = NULL;
3005
3006                 /* we've found a hole, just zero and go on */
3007                 if (block_start == EXTENT_MAP_HOLE) {
3008                         char *userpage;
3009                         struct extent_state *cached = NULL;
3010
3011                         userpage = kmap_atomic(page);
3012                         memset(userpage + pg_offset, 0, iosize);
3013                         flush_dcache_page(page);
3014                         kunmap_atomic(userpage);
3015
3016                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3017                                             &cached, GFP_NOFS);
3018                         unlock_extent_cached(tree, cur, cur + iosize - 1,
3019                                              &cached, GFP_NOFS);
3020                         cur = cur + iosize;
3021                         pg_offset += iosize;
3022                         continue;
3023                 }
3024                 /* the get_extent function already copied into the page */
3025                 if (test_range_bit(tree, cur, cur_end,
3026                                    EXTENT_UPTODATE, 1, NULL)) {
3027                         check_page_uptodate(tree, page);
3028                         if (!parent_locked)
3029                                 unlock_extent(tree, cur, cur + iosize - 1);
3030                         cur = cur + iosize;
3031                         pg_offset += iosize;
3032                         continue;
3033                 }
3034                 /* we have an inline extent but it didn't get marked up
3035                  * to date.  Error out
3036                  */
3037                 if (block_start == EXTENT_MAP_INLINE) {
3038                         SetPageError(page);
3039                         if (!parent_locked)
3040                                 unlock_extent(tree, cur, cur + iosize - 1);
3041                         cur = cur + iosize;
3042                         pg_offset += iosize;
3043                         continue;
3044                 }
3045
3046                 pnr -= page->index;
3047                 ret = submit_extent_page(rw, tree, page,
3048                                          sector, disk_io_size, pg_offset,
3049                                          bdev, bio, pnr,
3050                                          end_bio_extent_readpage, mirror_num,
3051                                          *bio_flags,
3052                                          this_bio_flag);
3053                 if (!ret) {
3054                         nr++;
3055                         *bio_flags = this_bio_flag;
3056                 } else {
3057                         SetPageError(page);
3058                         if (!parent_locked)
3059                                 unlock_extent(tree, cur, cur + iosize - 1);
3060                 }
3061                 cur = cur + iosize;
3062                 pg_offset += iosize;
3063         }
3064 out:
3065         if (!nr) {
3066                 if (!PageError(page))
3067                         SetPageUptodate(page);
3068                 unlock_page(page);
3069         }
3070         return 0;
3071 }
3072
3073 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3074                                              struct page *pages[], int nr_pages,
3075                                              u64 start, u64 end,
3076                                              get_extent_t *get_extent,
3077                                              struct extent_map **em_cached,
3078                                              struct bio **bio, int mirror_num,
3079                                              unsigned long *bio_flags, int rw)
3080 {
3081         struct inode *inode;
3082         struct btrfs_ordered_extent *ordered;
3083         int index;
3084
3085         inode = pages[0]->mapping->host;
3086         while (1) {
3087                 lock_extent(tree, start, end);
3088                 ordered = btrfs_lookup_ordered_range(inode, start,
3089                                                      end - start + 1);
3090                 if (!ordered)
3091                         break;
3092                 unlock_extent(tree, start, end);
3093                 btrfs_start_ordered_extent(inode, ordered, 1);
3094                 btrfs_put_ordered_extent(ordered);
3095         }
3096
3097         for (index = 0; index < nr_pages; index++) {
3098                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3099                               mirror_num, bio_flags, rw);
3100                 page_cache_release(pages[index]);
3101         }
3102 }
3103
3104 static void __extent_readpages(struct extent_io_tree *tree,
3105                                struct page *pages[],
3106                                int nr_pages, get_extent_t *get_extent,
3107                                struct extent_map **em_cached,
3108                                struct bio **bio, int mirror_num,
3109                                unsigned long *bio_flags, int rw)
3110 {
3111         u64 start = 0;
3112         u64 end = 0;
3113         u64 page_start;
3114         int index;
3115         int first_index = 0;
3116
3117         for (index = 0; index < nr_pages; index++) {
3118                 page_start = page_offset(pages[index]);
3119                 if (!end) {
3120                         start = page_start;
3121                         end = start + PAGE_CACHE_SIZE - 1;
3122                         first_index = index;
3123                 } else if (end + 1 == page_start) {
3124                         end += PAGE_CACHE_SIZE;
3125                 } else {
3126                         __do_contiguous_readpages(tree, &pages[first_index],
3127                                                   index - first_index, start,
3128                                                   end, get_extent, em_cached,
3129                                                   bio, mirror_num, bio_flags,
3130                                                   rw);
3131                         start = page_start;
3132                         end = start + PAGE_CACHE_SIZE - 1;
3133                         first_index = index;
3134                 }
3135         }
3136
3137         if (end)
3138                 __do_contiguous_readpages(tree, &pages[first_index],
3139                                           index - first_index, start,
3140                                           end, get_extent, em_cached, bio,
3141                                           mirror_num, bio_flags, rw);
3142 }
3143
3144 static int __extent_read_full_page(struct extent_io_tree *tree,
3145                                    struct page *page,
3146                                    get_extent_t *get_extent,
3147                                    struct bio **bio, int mirror_num,
3148                                    unsigned long *bio_flags, int rw)
3149 {
3150         struct inode *inode = page->mapping->host;
3151         struct btrfs_ordered_extent *ordered;
3152         u64 start = page_offset(page);
3153         u64 end = start + PAGE_CACHE_SIZE - 1;
3154         int ret;
3155
3156         while (1) {
3157                 lock_extent(tree, start, end);
3158                 ordered = btrfs_lookup_ordered_extent(inode, start);
3159                 if (!ordered)
3160                         break;
3161                 unlock_extent(tree, start, end);
3162                 btrfs_start_ordered_extent(inode, ordered, 1);
3163                 btrfs_put_ordered_extent(ordered);
3164         }
3165
3166         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3167                             bio_flags, rw);
3168         return ret;
3169 }
3170
3171 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3172                             get_extent_t *get_extent, int mirror_num)
3173 {
3174         struct bio *bio = NULL;
3175         unsigned long bio_flags = 0;
3176         int ret;
3177
3178         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3179                                       &bio_flags, READ);
3180         if (bio)
3181                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3182         return ret;
3183 }
3184
3185 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3186                                  get_extent_t *get_extent, int mirror_num)
3187 {
3188         struct bio *bio = NULL;
3189         unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3190         int ret;
3191
3192         ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3193                                       &bio_flags, READ);
3194         if (bio)
3195                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3196         return ret;
3197 }
3198
3199 static noinline void update_nr_written(struct page *page,
3200                                       struct writeback_control *wbc,
3201                                       unsigned long nr_written)
3202 {
3203         wbc->nr_to_write -= nr_written;
3204         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3205             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3206                 page->mapping->writeback_index = page->index + nr_written;
3207 }
3208
3209 /*
3210  * helper for __extent_writepage, doing all of the delayed allocation setup.
3211  *
3212  * This returns 1 if our fill_delalloc function did all the work required
3213  * to write the page (copy into inline extent).  In this case the IO has
3214  * been started and the page is already unlocked.
3215  *
3216  * This returns 0 if all went well (page still locked)
3217  * This returns < 0 if there were errors (page still locked)
3218  */
3219 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220                               struct page *page, struct writeback_control *wbc,
3221                               struct extent_page_data *epd,
3222                               u64 delalloc_start,
3223                               unsigned long *nr_written)
3224 {
3225         struct extent_io_tree *tree = epd->tree;
3226         u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3227         u64 nr_delalloc;
3228         u64 delalloc_to_write = 0;
3229         u64 delalloc_end = 0;
3230         int ret;
3231         int page_started = 0;
3232
3233         if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3234                 return 0;
3235
3236         while (delalloc_end < page_end) {
3237                 nr_delalloc = find_lock_delalloc_range(inode, tree,
3238                                                page,
3239                                                &delalloc_start,
3240                                                &delalloc_end,
3241                                                BTRFS_MAX_EXTENT_SIZE);
3242                 if (nr_delalloc == 0) {
3243                         delalloc_start = delalloc_end + 1;
3244                         continue;
3245                 }
3246                 ret = tree->ops->fill_delalloc(inode, page,
3247                                                delalloc_start,
3248                                                delalloc_end,
3249                                                &page_started,
3250                                                nr_written);
3251                 /* File system has been set read-only */
3252                 if (ret) {
3253                         SetPageError(page);
3254                         /* fill_delalloc should be return < 0 for error
3255                          * but just in case, we use > 0 here meaning the
3256                          * IO is started, so we don't want to return > 0
3257                          * unless things are going well.
3258                          */
3259                         ret = ret < 0 ? ret : -EIO;
3260                         goto done;
3261                 }
3262                 /*
3263                  * delalloc_end is already one less than the total
3264                  * length, so we don't subtract one from
3265                  * PAGE_CACHE_SIZE
3266                  */
3267                 delalloc_to_write += (delalloc_end - delalloc_start +
3268                                       PAGE_CACHE_SIZE) >>
3269                                       PAGE_CACHE_SHIFT;
3270                 delalloc_start = delalloc_end + 1;
3271         }
3272         if (wbc->nr_to_write < delalloc_to_write) {
3273                 int thresh = 8192;
3274
3275                 if (delalloc_to_write < thresh * 2)
3276                         thresh = delalloc_to_write;
3277                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3278                                          thresh);
3279         }
3280
3281         /* did the fill delalloc function already unlock and start
3282          * the IO?
3283          */
3284         if (page_started) {
3285                 /*
3286                  * we've unlocked the page, so we can't update
3287                  * the mapping's writeback index, just update
3288                  * nr_to_write.
3289                  */
3290                 wbc->nr_to_write -= *nr_written;
3291                 return 1;
3292         }
3293
3294         ret = 0;
3295
3296 done:
3297         return ret;
3298 }
3299
3300 /*
3301  * helper for __extent_writepage.  This calls the writepage start hooks,
3302  * and does the loop to map the page into extents and bios.
3303  *
3304  * We return 1 if the IO is started and the page is unlocked,
3305  * 0 if all went well (page still locked)
3306  * < 0 if there were errors (page still locked)
3307  */
3308 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3309                                  struct page *page,
3310                                  struct writeback_control *wbc,
3311                                  struct extent_page_data *epd,
3312                                  loff_t i_size,
3313                                  unsigned long nr_written,
3314                                  int write_flags, int *nr_ret)
3315 {
3316         struct extent_io_tree *tree = epd->tree;
3317         u64 start = page_offset(page);
3318         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3319         u64 end;
3320         u64 cur = start;
3321         u64 extent_offset;
3322         u64 block_start;
3323         u64 iosize;
3324         sector_t sector;
3325         struct extent_state *cached_state = NULL;
3326         struct extent_map *em;
3327         struct block_device *bdev;
3328         size_t pg_offset = 0;
3329         size_t blocksize;
3330         int ret = 0;
3331         int nr = 0;
3332         bool compressed;
3333
3334         if (tree->ops && tree->ops->writepage_start_hook) {
3335                 ret = tree->ops->writepage_start_hook(page, start,
3336                                                       page_end);
3337                 if (ret) {
3338                         /* Fixup worker will requeue */
3339                         if (ret == -EBUSY)
3340                                 wbc->pages_skipped++;
3341                         else
3342                                 redirty_page_for_writepage(wbc, page);
3343
3344                         update_nr_written(page, wbc, nr_written);
3345                         unlock_page(page);
3346                         ret = 1;
3347                         goto done_unlocked;
3348                 }
3349         }
3350
3351         /*
3352          * we don't want to touch the inode after unlocking the page,
3353          * so we update the mapping writeback index now
3354          */
3355         update_nr_written(page, wbc, nr_written + 1);
3356
3357         end = page_end;
3358         if (i_size <= start) {
3359                 if (tree->ops && tree->ops->writepage_end_io_hook)
3360                         tree->ops->writepage_end_io_hook(page, start,
3361                                                          page_end, NULL, 1);
3362                 goto done;
3363         }
3364
3365         blocksize = inode->i_sb->s_blocksize;
3366
3367         while (cur <= end) {
3368                 u64 em_end;
3369                 if (cur >= i_size) {
3370                         if (tree->ops && tree->ops->writepage_end_io_hook)
3371                                 tree->ops->writepage_end_io_hook(page, cur,
3372                                                          page_end, NULL, 1);
3373                         break;
3374                 }
3375                 em = epd->get_extent(inode, page, pg_offset, cur,
3376                                      end - cur + 1, 1);
3377                 if (IS_ERR_OR_NULL(em)) {
3378                         SetPageError(page);
3379                         ret = PTR_ERR_OR_ZERO(em);
3380                         break;
3381                 }
3382
3383                 extent_offset = cur - em->start;
3384                 em_end = extent_map_end(em);
3385                 BUG_ON(em_end <= cur);
3386                 BUG_ON(end < cur);
3387                 iosize = min(em_end - cur, end - cur + 1);
3388                 iosize = ALIGN(iosize, blocksize);
3389                 sector = (em->block_start + extent_offset) >> 9;
3390                 bdev = em->bdev;
3391                 block_start = em->block_start;
3392                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3393                 free_extent_map(em);
3394                 em = NULL;
3395
3396                 /*
3397                  * compressed and inline extents are written through other
3398                  * paths in the FS
3399                  */
3400                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3401                     block_start == EXTENT_MAP_INLINE) {
3402                         /*
3403                          * end_io notification does not happen here for
3404                          * compressed extents
3405                          */
3406                         if (!compressed && tree->ops &&
3407                             tree->ops->writepage_end_io_hook)
3408                                 tree->ops->writepage_end_io_hook(page, cur,
3409                                                          cur + iosize - 1,
3410                                                          NULL, 1);
3411                         else if (compressed) {
3412                                 /* we don't want to end_page_writeback on
3413                                  * a compressed extent.  this happens
3414                                  * elsewhere
3415                                  */
3416                                 nr++;
3417                         }
3418
3419                         cur += iosize;
3420                         pg_offset += iosize;
3421                         continue;
3422                 }
3423
3424                 if (tree->ops && tree->ops->writepage_io_hook) {
3425                         ret = tree->ops->writepage_io_hook(page, cur,
3426                                                 cur + iosize - 1);
3427                 } else {
3428                         ret = 0;
3429                 }
3430                 if (ret) {
3431                         SetPageError(page);
3432                 } else {
3433                         unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3434
3435                         set_range_writeback(tree, cur, cur + iosize - 1);
3436                         if (!PageWriteback(page)) {
3437                                 btrfs_err(BTRFS_I(inode)->root->fs_info,
3438                                            "page %lu not writeback, cur %llu end %llu",
3439                                        page->index, cur, end);
3440                         }
3441
3442                         ret = submit_extent_page(write_flags, tree, page,
3443                                                  sector, iosize, pg_offset,
3444                                                  bdev, &epd->bio, max_nr,
3445                                                  end_bio_extent_writepage,
3446                                                  0, 0, 0);
3447                         if (ret)
3448                                 SetPageError(page);
3449                 }
3450                 cur = cur + iosize;
3451                 pg_offset += iosize;
3452                 nr++;
3453         }
3454 done:
3455         *nr_ret = nr;
3456
3457 done_unlocked:
3458
3459         /* drop our reference on any cached states */
3460         free_extent_state(cached_state);
3461         return ret;
3462 }
3463
3464 /*
3465  * the writepage semantics are similar to regular writepage.  extent
3466  * records are inserted to lock ranges in the tree, and as dirty areas
3467  * are found, they are marked writeback.  Then the lock bits are removed
3468  * and the end_io handler clears the writeback ranges
3469  */
3470 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3471                               void *data)
3472 {
3473         struct inode *inode = page->mapping->host;
3474         struct extent_page_data *epd = data;
3475         u64 start = page_offset(page);
3476         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3477         int ret;
3478         int nr = 0;
3479         size_t pg_offset = 0;
3480         loff_t i_size = i_size_read(inode);
3481         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3482         int write_flags;
3483         unsigned long nr_written = 0;
3484
3485         if (wbc->sync_mode == WB_SYNC_ALL)
3486                 write_flags = WRITE_SYNC;
3487         else
3488                 write_flags = WRITE;
3489
3490         trace___extent_writepage(page, inode, wbc);
3491
3492         WARN_ON(!PageLocked(page));
3493
3494         ClearPageError(page);
3495
3496         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3497         if (page->index > end_index ||
3498            (page->index == end_index && !pg_offset)) {
3499                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3500                 unlock_page(page);
3501                 return 0;
3502         }
3503
3504         if (page->index == end_index) {
3505                 char *userpage;
3506
3507                 userpage = kmap_atomic(page);
3508                 memset(userpage + pg_offset, 0,
3509                        PAGE_CACHE_SIZE - pg_offset);
3510                 kunmap_atomic(userpage);
3511                 flush_dcache_page(page);
3512         }
3513
3514         pg_offset = 0;
3515
3516         set_page_extent_mapped(page);
3517
3518         ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3519         if (ret == 1)
3520                 goto done_unlocked;
3521         if (ret)
3522                 goto done;
3523
3524         ret = __extent_writepage_io(inode, page, wbc, epd,
3525                                     i_size, nr_written, write_flags, &nr);
3526         if (ret == 1)
3527                 goto done_unlocked;
3528
3529 done:
3530         if (nr == 0) {
3531                 /* make sure the mapping tag for page dirty gets cleared */
3532                 set_page_writeback(page);
3533                 end_page_writeback(page);
3534         }
3535         if (PageError(page)) {
3536                 ret = ret < 0 ? ret : -EIO;
3537                 end_extent_writepage(page, ret, start, page_end);
3538         }
3539         unlock_page(page);
3540         return ret;
3541
3542 done_unlocked:
3543         return 0;
3544 }
3545
3546 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3547 {
3548         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3549                        TASK_UNINTERRUPTIBLE);
3550 }
3551
3552 static noinline_for_stack int
3553 lock_extent_buffer_for_io(struct extent_buffer *eb,
3554                           struct btrfs_fs_info *fs_info,
3555                           struct extent_page_data *epd)
3556 {
3557         unsigned long i, num_pages;
3558         int flush = 0;
3559         int ret = 0;
3560
3561         if (!btrfs_try_tree_write_lock(eb)) {
3562                 flush = 1;
3563                 flush_write_bio(epd);
3564                 btrfs_tree_lock(eb);
3565         }
3566
3567         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3568                 btrfs_tree_unlock(eb);
3569                 if (!epd->sync_io)
3570                         return 0;
3571                 if (!flush) {
3572                         flush_write_bio(epd);
3573                         flush = 1;
3574                 }
3575                 while (1) {
3576                         wait_on_extent_buffer_writeback(eb);
3577                         btrfs_tree_lock(eb);
3578                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3579                                 break;
3580                         btrfs_tree_unlock(eb);
3581                 }
3582         }
3583
3584         /*
3585          * We need to do this to prevent races in people who check if the eb is
3586          * under IO since we can end up having no IO bits set for a short period
3587          * of time.
3588          */
3589         spin_lock(&eb->refs_lock);
3590         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3591                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3592                 spin_unlock(&eb->refs_lock);
3593                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3594                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3595                                      -eb->len,
3596                                      fs_info->dirty_metadata_batch);
3597                 ret = 1;
3598         } else {
3599                 spin_unlock(&eb->refs_lock);
3600         }
3601
3602         btrfs_tree_unlock(eb);
3603
3604         if (!ret)
3605                 return ret;
3606
3607         num_pages = num_extent_pages(eb->start, eb->len);
3608         for (i = 0; i < num_pages; i++) {
3609                 struct page *p = eb->pages[i];
3610
3611                 if (!trylock_page(p)) {
3612                         if (!flush) {
3613                                 flush_write_bio(epd);
3614                                 flush = 1;
3615                         }
3616                         lock_page(p);
3617                 }
3618         }
3619
3620         return ret;
3621 }
3622
3623 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3624 {
3625         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3626         smp_mb__after_atomic();
3627         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3628 }
3629
3630 static void set_btree_ioerr(struct page *page)
3631 {
3632         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3633         struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3634
3635         SetPageError(page);
3636         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3637                 return;
3638
3639         /*
3640          * If writeback for a btree extent that doesn't belong to a log tree
3641          * failed, increment the counter transaction->eb_write_errors.
3642          * We do this because while the transaction is running and before it's
3643          * committing (when we call filemap_fdata[write|wait]_range against
3644          * the btree inode), we might have
3645          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3646          * returns an error or an error happens during writeback, when we're
3647          * committing the transaction we wouldn't know about it, since the pages
3648          * can be no longer dirty nor marked anymore for writeback (if a
3649          * subsequent modification to the extent buffer didn't happen before the
3650          * transaction commit), which makes filemap_fdata[write|wait]_range not
3651          * able to find the pages tagged with SetPageError at transaction
3652          * commit time. So if this happens we must abort the transaction,
3653          * otherwise we commit a super block with btree roots that point to
3654          * btree nodes/leafs whose content on disk is invalid - either garbage
3655          * or the content of some node/leaf from a past generation that got
3656          * cowed or deleted and is no longer valid.
3657          *
3658          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3659          * not be enough - we need to distinguish between log tree extents vs
3660          * non-log tree extents, and the next filemap_fdatawait_range() call
3661          * will catch and clear such errors in the mapping - and that call might
3662          * be from a log sync and not from a transaction commit. Also, checking
3663          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3664          * not done and would not be reliable - the eb might have been released
3665          * from memory and reading it back again means that flag would not be
3666          * set (since it's a runtime flag, not persisted on disk).
3667          *
3668          * Using the flags below in the btree inode also makes us achieve the
3669          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3670          * writeback for all dirty pages and before filemap_fdatawait_range()
3671          * is called, the writeback for all dirty pages had already finished
3672          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3673          * filemap_fdatawait_range() would return success, as it could not know
3674          * that writeback errors happened (the pages were no longer tagged for
3675          * writeback).
3676          */
3677         switch (eb->log_index) {
3678         case -1:
3679                 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3680                 break;
3681         case 0:
3682                 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3683                 break;
3684         case 1:
3685                 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3686                 break;
3687         default:
3688                 BUG(); /* unexpected, logic error */
3689         }
3690 }
3691
3692 static void end_bio_extent_buffer_writepage(struct bio *bio)
3693 {
3694         struct bio_vec *bvec;
3695         struct extent_buffer *eb;
3696         int i, done;
3697
3698         bio_for_each_segment_all(bvec, bio, i) {
3699                 struct page *page = bvec->bv_page;
3700
3701                 eb = (struct extent_buffer *)page->private;
3702                 BUG_ON(!eb);
3703                 done = atomic_dec_and_test(&eb->io_pages);
3704
3705                 if (bio->bi_error ||
3706                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3707                         ClearPageUptodate(page);
3708                         set_btree_ioerr(page);
3709                 }
3710
3711                 end_page_writeback(page);
3712
3713                 if (!done)
3714                         continue;
3715
3716                 end_extent_buffer_writeback(eb);
3717         }
3718
3719         bio_put(bio);
3720 }
3721
3722 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3723                         struct btrfs_fs_info *fs_info,
3724                         struct writeback_control *wbc,
3725                         struct extent_page_data *epd)
3726 {
3727         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3728         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3729         u64 offset = eb->start;
3730         unsigned long i, num_pages;
3731         unsigned long bio_flags = 0;
3732         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3733         int ret = 0;
3734
3735         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3736         num_pages = num_extent_pages(eb->start, eb->len);
3737         atomic_set(&eb->io_pages, num_pages);
3738         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3739                 bio_flags = EXTENT_BIO_TREE_LOG;
3740
3741         for (i = 0; i < num_pages; i++) {
3742                 struct page *p = eb->pages[i];
3743
3744                 clear_page_dirty_for_io(p);
3745                 set_page_writeback(p);
3746                 ret = submit_extent_page(rw, tree, p, offset >> 9,
3747                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3748                                          -1, end_bio_extent_buffer_writepage,
3749                                          0, epd->bio_flags, bio_flags);
3750                 epd->bio_flags = bio_flags;
3751                 if (ret) {
3752                         set_btree_ioerr(p);
3753                         end_page_writeback(p);
3754                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3755                                 end_extent_buffer_writeback(eb);
3756                         ret = -EIO;
3757                         break;
3758                 }
3759                 offset += PAGE_CACHE_SIZE;
3760                 update_nr_written(p, wbc, 1);
3761                 unlock_page(p);
3762         }
3763
3764         if (unlikely(ret)) {
3765                 for (; i < num_pages; i++) {
3766                         struct page *p = eb->pages[i];
3767                         clear_page_dirty_for_io(p);
3768                         unlock_page(p);
3769                 }
3770         }
3771
3772         return ret;
3773 }
3774
3775 int btree_write_cache_pages(struct address_space *mapping,
3776                                    struct writeback_control *wbc)
3777 {
3778         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3779         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3780         struct extent_buffer *eb, *prev_eb = NULL;
3781         struct extent_page_data epd = {
3782                 .bio = NULL,
3783                 .tree = tree,
3784                 .extent_locked = 0,
3785                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3786                 .bio_flags = 0,
3787         };
3788         int ret = 0;
3789         int done = 0;
3790         int nr_to_write_done = 0;
3791         struct pagevec pvec;
3792         int nr_pages;
3793         pgoff_t index;
3794         pgoff_t end;            /* Inclusive */
3795         int scanned = 0;
3796         int tag;
3797
3798         pagevec_init(&pvec, 0);
3799         if (wbc->range_cyclic) {
3800                 index = mapping->writeback_index; /* Start from prev offset */
3801                 end = -1;
3802         } else {
3803                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3804                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3805                 scanned = 1;
3806         }
3807         if (wbc->sync_mode == WB_SYNC_ALL)
3808                 tag = PAGECACHE_TAG_TOWRITE;
3809         else
3810                 tag = PAGECACHE_TAG_DIRTY;
3811 retry:
3812         if (wbc->sync_mode == WB_SYNC_ALL)
3813                 tag_pages_for_writeback(mapping, index, end);
3814         while (!done && !nr_to_write_done && (index <= end) &&
3815                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3816                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3817                 unsigned i;
3818
3819                 scanned = 1;
3820                 for (i = 0; i < nr_pages; i++) {
3821                         struct page *page = pvec.pages[i];
3822
3823                         if (!PagePrivate(page))
3824                                 continue;
3825
3826                         if (!wbc->range_cyclic && page->index > end) {
3827                                 done = 1;
3828                                 break;
3829                         }
3830
3831                         spin_lock(&mapping->private_lock);
3832                         if (!PagePrivate(page)) {
3833                                 spin_unlock(&mapping->private_lock);
3834                                 continue;
3835                         }
3836
3837                         eb = (struct extent_buffer *)page->private;
3838
3839                         /*
3840                          * Shouldn't happen and normally this would be a BUG_ON
3841                          * but no sense in crashing the users box for something
3842                          * we can survive anyway.
3843                          */
3844                         if (WARN_ON(!eb)) {
3845                                 spin_unlock(&mapping->private_lock);
3846                                 continue;
3847                         }
3848
3849                         if (eb == prev_eb) {
3850                                 spin_unlock(&mapping->private_lock);
3851                                 continue;
3852                         }
3853
3854                         ret = atomic_inc_not_zero(&eb->refs);
3855                         spin_unlock(&mapping->private_lock);
3856                         if (!ret)
3857                                 continue;
3858
3859                         prev_eb = eb;
3860                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3861                         if (!ret) {
3862                                 free_extent_buffer(eb);
3863                                 continue;
3864                         }
3865
3866                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3867                         if (ret) {
3868                                 done = 1;
3869                                 free_extent_buffer(eb);
3870                                 break;
3871                         }
3872                         free_extent_buffer(eb);
3873
3874                         /*
3875                          * the filesystem may choose to bump up nr_to_write.
3876                          * We have to make sure to honor the new nr_to_write
3877                          * at any time
3878                          */
3879                         nr_to_write_done = wbc->nr_to_write <= 0;
3880                 }
3881                 pagevec_release(&pvec);
3882                 cond_resched();
3883         }
3884         if (!scanned && !done) {
3885                 /*
3886                  * We hit the last page and there is more work to be done: wrap
3887                  * back to the start of the file
3888                  */
3889                 scanned = 1;
3890                 index = 0;
3891                 goto retry;
3892         }
3893         flush_write_bio(&epd);
3894         return ret;
3895 }
3896
3897 /**
3898  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3899  * @mapping: address space structure to write
3900  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3901  * @writepage: function called for each page
3902  * @data: data passed to writepage function
3903  *
3904  * If a page is already under I/O, write_cache_pages() skips it, even
3905  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3906  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3907  * and msync() need to guarantee that all the data which was dirty at the time
3908  * the call was made get new I/O started against them.  If wbc->sync_mode is
3909  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3910  * existing IO to complete.
3911  */
3912 static int extent_write_cache_pages(struct extent_io_tree *tree,
3913                              struct address_space *mapping,
3914                              struct writeback_control *wbc,
3915                              writepage_t writepage, void *data,
3916                              void (*flush_fn)(void *))
3917 {
3918         struct inode *inode = mapping->host;
3919         int ret = 0;
3920         int done = 0;
3921         int err = 0;
3922         int nr_to_write_done = 0;
3923         struct pagevec pvec;
3924         int nr_pages;
3925         pgoff_t index;
3926         pgoff_t end;            /* Inclusive */
3927         int scanned = 0;
3928         int tag;
3929
3930         /*
3931          * We have to hold onto the inode so that ordered extents can do their
3932          * work when the IO finishes.  The alternative to this is failing to add
3933          * an ordered extent if the igrab() fails there and that is a huge pain
3934          * to deal with, so instead just hold onto the inode throughout the
3935          * writepages operation.  If it fails here we are freeing up the inode
3936          * anyway and we'd rather not waste our time writing out stuff that is
3937          * going to be truncated anyway.
3938          */
3939         if (!igrab(inode))
3940                 return 0;
3941
3942         pagevec_init(&pvec, 0);
3943         if (wbc->range_cyclic) {
3944                 index = mapping->writeback_index; /* Start from prev offset */
3945                 end = -1;
3946         } else {
3947                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3948                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3949                 scanned = 1;
3950         }
3951         if (wbc->sync_mode == WB_SYNC_ALL)
3952                 tag = PAGECACHE_TAG_TOWRITE;
3953         else
3954                 tag = PAGECACHE_TAG_DIRTY;
3955 retry:
3956         if (wbc->sync_mode == WB_SYNC_ALL)
3957                 tag_pages_for_writeback(mapping, index, end);
3958         while (!done && !nr_to_write_done && (index <= end) &&
3959                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3960                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3961                 unsigned i;
3962
3963                 scanned = 1;
3964                 for (i = 0; i < nr_pages; i++) {
3965                         struct page *page = pvec.pages[i];
3966
3967                         /*
3968                          * At this point we hold neither mapping->tree_lock nor
3969                          * lock on the page itself: the page may be truncated or
3970                          * invalidated (changing page->mapping to NULL), or even
3971                          * swizzled back from swapper_space to tmpfs file
3972                          * mapping
3973                          */
3974                         if (!trylock_page(page)) {
3975                                 flush_fn(data);
3976                                 lock_page(page);
3977                         }
3978
3979                         if (unlikely(page->mapping != mapping)) {
3980                                 unlock_page(page);
3981                                 continue;
3982                         }
3983
3984                         if (!wbc->range_cyclic && page->index > end) {
3985                                 done = 1;
3986                                 unlock_page(page);
3987                                 continue;
3988                         }
3989
3990                         if (wbc->sync_mode != WB_SYNC_NONE) {
3991                                 if (PageWriteback(page))
3992                                         flush_fn(data);
3993                                 wait_on_page_writeback(page);
3994                         }
3995
3996                         if (PageWriteback(page) ||
3997                             !clear_page_dirty_for_io(page)) {
3998                                 unlock_page(page);
3999                                 continue;
4000                         }
4001
4002                         ret = (*writepage)(page, wbc, data);
4003
4004                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4005                                 unlock_page(page);
4006                                 ret = 0;
4007                         }
4008                         if (!err && ret < 0)
4009                                 err = ret;
4010
4011                         /*
4012                          * the filesystem may choose to bump up nr_to_write.
4013                          * We have to make sure to honor the new nr_to_write
4014                          * at any time
4015                          */
4016                         nr_to_write_done = wbc->nr_to_write <= 0;
4017                 }
4018                 pagevec_release(&pvec);
4019                 cond_resched();
4020         }
4021         if (!scanned && !done && !err) {
4022                 /*
4023                  * We hit the last page and there is more work to be done: wrap
4024                  * back to the start of the file
4025                  */
4026                 scanned = 1;
4027                 index = 0;
4028                 goto retry;
4029         }
4030         btrfs_add_delayed_iput(inode);
4031         return err;
4032 }
4033
4034 static void flush_epd_write_bio(struct extent_page_data *epd)
4035 {
4036         if (epd->bio) {
4037                 int rw = WRITE;
4038                 int ret;
4039
4040                 if (epd->sync_io)
4041                         rw = WRITE_SYNC;
4042
4043                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4044                 BUG_ON(ret < 0); /* -ENOMEM */
4045                 epd->bio = NULL;
4046         }
4047 }
4048
4049 static noinline void flush_write_bio(void *data)
4050 {
4051         struct extent_page_data *epd = data;
4052         flush_epd_write_bio(epd);
4053 }
4054
4055 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4056                           get_extent_t *get_extent,
4057                           struct writeback_control *wbc)
4058 {
4059         int ret;
4060         struct extent_page_data epd = {
4061                 .bio = NULL,
4062                 .tree = tree,
4063                 .get_extent = get_extent,
4064                 .extent_locked = 0,
4065                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4066                 .bio_flags = 0,
4067         };
4068
4069         ret = __extent_writepage(page, wbc, &epd);
4070
4071         flush_epd_write_bio(&epd);
4072         return ret;
4073 }
4074
4075 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4076                               u64 start, u64 end, get_extent_t *get_extent,
4077                               int mode)
4078 {
4079         int ret = 0;
4080         struct address_space *mapping = inode->i_mapping;
4081         struct page *page;
4082         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4083                 PAGE_CACHE_SHIFT;
4084
4085         struct extent_page_data epd = {
4086                 .bio = NULL,
4087                 .tree = tree,
4088                 .get_extent = get_extent,
4089                 .extent_locked = 1,
4090                 .sync_io = mode == WB_SYNC_ALL,
4091                 .bio_flags = 0,
4092         };
4093         struct writeback_control wbc_writepages = {
4094                 .sync_mode      = mode,
4095                 .nr_to_write    = nr_pages * 2,
4096                 .range_start    = start,
4097                 .range_end      = end + 1,
4098         };
4099
4100         while (start <= end) {
4101                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4102                 if (clear_page_dirty_for_io(page))
4103                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4104                 else {
4105                         if (tree->ops && tree->ops->writepage_end_io_hook)
4106                                 tree->ops->writepage_end_io_hook(page, start,
4107                                                  start + PAGE_CACHE_SIZE - 1,
4108                                                  NULL, 1);
4109                         unlock_page(page);
4110                 }
4111                 page_cache_release(page);
4112                 start += PAGE_CACHE_SIZE;
4113         }
4114
4115         flush_epd_write_bio(&epd);
4116         return ret;
4117 }
4118
4119 int extent_writepages(struct extent_io_tree *tree,
4120                       struct address_space *mapping,
4121                       get_extent_t *get_extent,
4122                       struct writeback_control *wbc)
4123 {
4124         int ret = 0;
4125         struct extent_page_data epd = {
4126                 .bio = NULL,
4127                 .tree = tree,
4128                 .get_extent = get_extent,
4129                 .extent_locked = 0,
4130                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4131                 .bio_flags = 0,
4132         };
4133
4134         ret = extent_write_cache_pages(tree, mapping, wbc,
4135                                        __extent_writepage, &epd,
4136                                        flush_write_bio);
4137         flush_epd_write_bio(&epd);
4138         return ret;
4139 }
4140
4141 int extent_readpages(struct extent_io_tree *tree,
4142                      struct address_space *mapping,
4143                      struct list_head *pages, unsigned nr_pages,
4144                      get_extent_t get_extent)
4145 {
4146         struct bio *bio = NULL;
4147         unsigned page_idx;
4148         unsigned long bio_flags = 0;
4149         struct page *pagepool[16];
4150         struct page *page;
4151         struct extent_map *em_cached = NULL;
4152         int nr = 0;
4153
4154         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4155                 page = list_entry(pages->prev, struct page, lru);
4156
4157                 prefetchw(&page->flags);
4158                 list_del(&page->lru);
4159                 if (add_to_page_cache_lru(page, mapping,
4160                                         page->index, GFP_NOFS)) {
4161                         page_cache_release(page);
4162                         continue;
4163                 }
4164
4165                 pagepool[nr++] = page;
4166                 if (nr < ARRAY_SIZE(pagepool))
4167                         continue;
4168                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4169                                    &bio, 0, &bio_flags, READ);
4170                 nr = 0;
4171         }
4172         if (nr)
4173                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4174                                    &bio, 0, &bio_flags, READ);
4175
4176         if (em_cached)
4177                 free_extent_map(em_cached);
4178
4179         BUG_ON(!list_empty(pages));
4180         if (bio)
4181                 return submit_one_bio(READ, bio, 0, bio_flags);
4182         return 0;
4183 }
4184
4185 /*
4186  * basic invalidatepage code, this waits on any locked or writeback
4187  * ranges corresponding to the page, and then deletes any extent state
4188  * records from the tree
4189  */
4190 int extent_invalidatepage(struct extent_io_tree *tree,
4191                           struct page *page, unsigned long offset)
4192 {
4193         struct extent_state *cached_state = NULL;
4194         u64 start = page_offset(page);
4195         u64 end = start + PAGE_CACHE_SIZE - 1;
4196         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4197
4198         start += ALIGN(offset, blocksize);
4199         if (start > end)
4200                 return 0;
4201
4202         lock_extent_bits(tree, start, end, 0, &cached_state);
4203         wait_on_page_writeback(page);
4204         clear_extent_bit(tree, start, end,
4205                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4206                          EXTENT_DO_ACCOUNTING,
4207                          1, 1, &cached_state, GFP_NOFS);
4208         return 0;
4209 }
4210
4211 /*
4212  * a helper for releasepage, this tests for areas of the page that
4213  * are locked or under IO and drops the related state bits if it is safe
4214  * to drop the page.
4215  */
4216 static int try_release_extent_state(struct extent_map_tree *map,
4217                                     struct extent_io_tree *tree,
4218                                     struct page *page, gfp_t mask)
4219 {
4220         u64 start = page_offset(page);
4221         u64 end = start + PAGE_CACHE_SIZE - 1;
4222         int ret = 1;
4223
4224         if (test_range_bit(tree, start, end,
4225                            EXTENT_IOBITS, 0, NULL))
4226                 ret = 0;
4227         else {
4228                 if ((mask & GFP_NOFS) == GFP_NOFS)
4229                         mask = GFP_NOFS;
4230                 /*
4231                  * at this point we can safely clear everything except the
4232                  * locked bit and the nodatasum bit
4233                  */
4234                 ret = clear_extent_bit(tree, start, end,
4235                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4236                                  0, 0, NULL, mask);
4237
4238                 /* if clear_extent_bit failed for enomem reasons,
4239                  * we can't allow the release to continue.
4240                  */
4241                 if (ret < 0)
4242                         ret = 0;
4243                 else
4244                         ret = 1;
4245         }
4246         return ret;
4247 }
4248
4249 /*
4250  * a helper for releasepage.  As long as there are no locked extents
4251  * in the range corresponding to the page, both state records and extent
4252  * map records are removed
4253  */
4254 int try_release_extent_mapping(struct extent_map_tree *map,
4255                                struct extent_io_tree *tree, struct page *page,
4256                                gfp_t mask)
4257 {
4258         struct extent_map *em;
4259         u64 start = page_offset(page);
4260         u64 end = start + PAGE_CACHE_SIZE - 1;
4261
4262         if ((mask & __GFP_WAIT) &&
4263             page->mapping->host->i_size > 16 * 1024 * 1024) {
4264                 u64 len;
4265                 while (start <= end) {
4266                         len = end - start + 1;
4267                         write_lock(&map->lock);
4268                         em = lookup_extent_mapping(map, start, len);
4269                         if (!em) {
4270                                 write_unlock(&map->lock);
4271                                 break;
4272                         }
4273                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4274                             em->start != start) {
4275                                 write_unlock(&map->lock);
4276                                 free_extent_map(em);
4277                                 break;
4278                         }
4279                         if (!test_range_bit(tree, em->start,
4280                                             extent_map_end(em) - 1,
4281                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4282                                             0, NULL)) {
4283                                 remove_extent_mapping(map, em);
4284                                 /* once for the rb tree */
4285                                 free_extent_map(em);
4286                         }
4287                         start = extent_map_end(em);
4288                         write_unlock(&map->lock);
4289
4290                         /* once for us */
4291                         free_extent_map(em);
4292                 }
4293         }
4294         return try_release_extent_state(map, tree, page, mask);
4295 }
4296
4297 /*
4298  * helper function for fiemap, which doesn't want to see any holes.
4299  * This maps until we find something past 'last'
4300  */
4301 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4302                                                 u64 offset,
4303                                                 u64 last,
4304                                                 get_extent_t *get_extent)
4305 {
4306         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4307         struct extent_map *em;
4308         u64 len;
4309
4310         if (offset >= last)
4311                 return NULL;
4312
4313         while (1) {
4314                 len = last - offset;
4315                 if (len == 0)
4316                         break;
4317                 len = ALIGN(len, sectorsize);
4318                 em = get_extent(inode, NULL, 0, offset, len, 0);
4319                 if (IS_ERR_OR_NULL(em))
4320                         return em;
4321
4322                 /* if this isn't a hole return it */
4323                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4324                     em->block_start != EXTENT_MAP_HOLE) {
4325                         return em;
4326                 }
4327
4328                 /* this is a hole, advance to the next extent */
4329                 offset = extent_map_end(em);
4330                 free_extent_map(em);
4331                 if (offset >= last)
4332                         break;
4333         }
4334         return NULL;
4335 }
4336
4337 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4338                 __u64 start, __u64 len, get_extent_t *get_extent)
4339 {
4340         int ret = 0;
4341         u64 off = start;
4342         u64 max = start + len;
4343         u32 flags = 0;
4344         u32 found_type;
4345         u64 last;
4346         u64 last_for_get_extent = 0;
4347         u64 disko = 0;
4348         u64 isize = i_size_read(inode);
4349         struct btrfs_key found_key;
4350         struct extent_map *em = NULL;
4351         struct extent_state *cached_state = NULL;
4352         struct btrfs_path *path;
4353         struct btrfs_root *root = BTRFS_I(inode)->root;
4354         int end = 0;
4355         u64 em_start = 0;
4356         u64 em_len = 0;
4357         u64 em_end = 0;
4358
4359         if (len == 0)
4360                 return -EINVAL;
4361
4362         path = btrfs_alloc_path();
4363         if (!path)
4364                 return -ENOMEM;
4365         path->leave_spinning = 1;
4366
4367         start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4368         len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4369
4370         /*
4371          * lookup the last file extent.  We're not using i_size here
4372          * because there might be preallocation past i_size
4373          */
4374         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4375                                        0);
4376         if (ret < 0) {
4377                 btrfs_free_path(path);
4378                 return ret;
4379         }
4380         WARN_ON(!ret);
4381         path->slots[0]--;
4382         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4383         found_type = found_key.type;
4384
4385         /* No extents, but there might be delalloc bits */
4386         if (found_key.objectid != btrfs_ino(inode) ||
4387             found_type != BTRFS_EXTENT_DATA_KEY) {
4388                 /* have to trust i_size as the end */
4389                 last = (u64)-1;
4390                 last_for_get_extent = isize;
4391         } else {
4392                 /*
4393                  * remember the start of the last extent.  There are a
4394                  * bunch of different factors that go into the length of the
4395                  * extent, so its much less complex to remember where it started
4396                  */
4397                 last = found_key.offset;
4398                 last_for_get_extent = last + 1;
4399         }
4400         btrfs_release_path(path);
4401
4402         /*
4403          * we might have some extents allocated but more delalloc past those
4404          * extents.  so, we trust isize unless the start of the last extent is
4405          * beyond isize
4406          */
4407         if (last < isize) {
4408                 last = (u64)-1;
4409                 last_for_get_extent = isize;
4410         }
4411
4412         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4413                          &cached_state);
4414
4415         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4416                                    get_extent);
4417         if (!em)
4418                 goto out;
4419         if (IS_ERR(em)) {
4420                 ret = PTR_ERR(em);
4421                 goto out;
4422         }
4423
4424         while (!end) {
4425                 u64 offset_in_extent = 0;
4426
4427                 /* break if the extent we found is outside the range */
4428                 if (em->start >= max || extent_map_end(em) < off)
4429                         break;
4430
4431                 /*
4432                  * get_extent may return an extent that starts before our
4433                  * requested range.  We have to make sure the ranges
4434                  * we return to fiemap always move forward and don't
4435                  * overlap, so adjust the offsets here
4436                  */
4437                 em_start = max(em->start, off);
4438
4439                 /*
4440                  * record the offset from the start of the extent
4441                  * for adjusting the disk offset below.  Only do this if the
4442                  * extent isn't compressed since our in ram offset may be past
4443                  * what we have actually allocated on disk.
4444                  */
4445                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4446                         offset_in_extent = em_start - em->start;
4447                 em_end = extent_map_end(em);
4448                 em_len = em_end - em_start;
4449                 disko = 0;
4450                 flags = 0;
4451
4452                 /*
4453                  * bump off for our next call to get_extent
4454                  */
4455                 off = extent_map_end(em);
4456                 if (off >= max)
4457                         end = 1;
4458
4459                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4460                         end = 1;
4461                         flags |= FIEMAP_EXTENT_LAST;
4462                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4463                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4464                                   FIEMAP_EXTENT_NOT_ALIGNED);
4465                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4466                         flags |= (FIEMAP_EXTENT_DELALLOC |
4467                                   FIEMAP_EXTENT_UNKNOWN);
4468                 } else if (fieinfo->fi_extents_max) {
4469                         u64 bytenr = em->block_start -
4470                                 (em->start - em->orig_start);
4471
4472                         disko = em->block_start + offset_in_extent;
4473
4474                         /*
4475                          * As btrfs supports shared space, this information
4476                          * can be exported to userspace tools via
4477                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4478                          * then we're just getting a count and we can skip the
4479                          * lookup stuff.
4480                          */
4481                         ret = btrfs_check_shared(NULL, root->fs_info,
4482                                                  root->objectid,
4483                                                  btrfs_ino(inode), bytenr);
4484                         if (ret < 0)
4485                                 goto out_free;
4486                         if (ret)
4487                                 flags |= FIEMAP_EXTENT_SHARED;
4488                         ret = 0;
4489                 }
4490                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4491                         flags |= FIEMAP_EXTENT_ENCODED;
4492                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4493                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4494
4495                 free_extent_map(em);
4496                 em = NULL;
4497                 if ((em_start >= last) || em_len == (u64)-1 ||
4498                    (last == (u64)-1 && isize <= em_end)) {
4499                         flags |= FIEMAP_EXTENT_LAST;
4500                         end = 1;
4501                 }
4502
4503                 /* now scan forward to see if this is really the last extent. */
4504                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4505                                            get_extent);
4506                 if (IS_ERR(em)) {
4507                         ret = PTR_ERR(em);
4508                         goto out;
4509                 }
4510                 if (!em) {
4511                         flags |= FIEMAP_EXTENT_LAST;
4512                         end = 1;
4513                 }
4514                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4515                                               em_len, flags);
4516                 if (ret) {
4517                         if (ret == 1)
4518                                 ret = 0;
4519                         goto out_free;
4520                 }
4521         }
4522 out_free:
4523         free_extent_map(em);
4524 out:
4525         btrfs_free_path(path);
4526         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4527                              &cached_state, GFP_NOFS);
4528         return ret;
4529 }
4530
4531 static void __free_extent_buffer(struct extent_buffer *eb)
4532 {
4533         btrfs_leak_debug_del(&eb->leak_list);
4534         kmem_cache_free(extent_buffer_cache, eb);
4535 }
4536
4537 int extent_buffer_under_io(struct extent_buffer *eb)
4538 {
4539         return (atomic_read(&eb->io_pages) ||
4540                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4541                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4542 }
4543
4544 /*
4545  * Helper for releasing extent buffer page.
4546  */
4547 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4548 {
4549         unsigned long index;
4550         struct page *page;
4551         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4552
4553         BUG_ON(extent_buffer_under_io(eb));
4554
4555         index = num_extent_pages(eb->start, eb->len);
4556         if (index == 0)
4557                 return;
4558
4559         do {
4560                 index--;
4561                 page = eb->pages[index];
4562                 if (!page)
4563                         continue;
4564                 if (mapped)
4565                         spin_lock(&page->mapping->private_lock);
4566                 /*
4567                  * We do this since we'll remove the pages after we've
4568                  * removed the eb from the radix tree, so we could race
4569                  * and have this page now attached to the new eb.  So
4570                  * only clear page_private if it's still connected to
4571                  * this eb.
4572                  */
4573                 if (PagePrivate(page) &&
4574                     page->private == (unsigned long)eb) {
4575                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4576                         BUG_ON(PageDirty(page));
4577                         BUG_ON(PageWriteback(page));
4578                         /*
4579                          * We need to make sure we haven't be attached
4580                          * to a new eb.
4581                          */
4582                         ClearPagePrivate(page);
4583                         set_page_private(page, 0);
4584                         /* One for the page private */
4585                         page_cache_release(page);
4586                 }
4587
4588                 if (mapped)
4589                         spin_unlock(&page->mapping->private_lock);
4590
4591                 /* One for when we alloced the page */
4592                 page_cache_release(page);
4593         } while (index != 0);
4594 }
4595
4596 /*
4597  * Helper for releasing the extent buffer.
4598  */
4599 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4600 {
4601         btrfs_release_extent_buffer_page(eb);
4602         __free_extent_buffer(eb);
4603 }
4604
4605 static struct extent_buffer *
4606 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4607                       unsigned long len)
4608 {
4609         struct extent_buffer *eb = NULL;
4610
4611         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS);
4612         if (eb == NULL)
4613                 return NULL;
4614         eb->start = start;
4615         eb->len = len;
4616         eb->fs_info = fs_info;
4617         eb->bflags = 0;
4618         rwlock_init(&eb->lock);
4619         atomic_set(&eb->write_locks, 0);
4620         atomic_set(&eb->read_locks, 0);
4621         atomic_set(&eb->blocking_readers, 0);
4622         atomic_set(&eb->blocking_writers, 0);
4623         atomic_set(&eb->spinning_readers, 0);
4624         atomic_set(&eb->spinning_writers, 0);
4625         eb->lock_nested = 0;
4626         init_waitqueue_head(&eb->write_lock_wq);
4627         init_waitqueue_head(&eb->read_lock_wq);
4628
4629         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4630
4631         spin_lock_init(&eb->refs_lock);
4632         atomic_set(&eb->refs, 1);
4633         atomic_set(&eb->io_pages, 0);
4634
4635         /*
4636          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4637          */
4638         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4639                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4640         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4641
4642         return eb;
4643 }
4644
4645 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4646 {
4647         unsigned long i;
4648         struct page *p;
4649         struct extent_buffer *new;
4650         unsigned long num_pages = num_extent_pages(src->start, src->len);
4651
4652         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4653         if (new == NULL)
4654                 return NULL;
4655
4656         for (i = 0; i < num_pages; i++) {
4657                 p = alloc_page(GFP_NOFS);
4658                 if (!p) {
4659                         btrfs_release_extent_buffer(new);
4660                         return NULL;
4661                 }
4662                 attach_extent_buffer_page(new, p);
4663                 WARN_ON(PageDirty(p));
4664                 SetPageUptodate(p);
4665                 new->pages[i] = p;
4666         }
4667
4668         copy_extent_buffer(new, src, 0, 0, src->len);
4669         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4670         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4671
4672         return new;
4673 }
4674
4675 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4676                                                 u64 start)
4677 {
4678         struct extent_buffer *eb;
4679         unsigned long len;
4680         unsigned long num_pages;
4681         unsigned long i;
4682
4683         if (!fs_info) {
4684                 /*
4685                  * Called only from tests that don't always have a fs_info
4686                  * available, but we know that nodesize is 4096
4687                  */
4688                 len = 4096;
4689         } else {
4690                 len = fs_info->tree_root->nodesize;
4691         }
4692         num_pages = num_extent_pages(0, len);
4693
4694         eb = __alloc_extent_buffer(fs_info, start, len);
4695         if (!eb)
4696                 return NULL;
4697
4698         for (i = 0; i < num_pages; i++) {
4699                 eb->pages[i] = alloc_page(GFP_NOFS);
4700                 if (!eb->pages[i])
4701                         goto err;
4702         }
4703         set_extent_buffer_uptodate(eb);
4704         btrfs_set_header_nritems(eb, 0);
4705         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4706
4707         return eb;
4708 err:
4709         for (; i > 0; i--)
4710                 __free_page(eb->pages[i - 1]);
4711         __free_extent_buffer(eb);
4712         return NULL;
4713 }
4714
4715 static void check_buffer_tree_ref(struct extent_buffer *eb)
4716 {
4717         int refs;
4718         /* the ref bit is tricky.  We have to make sure it is set
4719          * if we have the buffer dirty.   Otherwise the
4720          * code to free a buffer can end up dropping a dirty
4721          * page
4722          *
4723          * Once the ref bit is set, it won't go away while the
4724          * buffer is dirty or in writeback, and it also won't
4725          * go away while we have the reference count on the
4726          * eb bumped.
4727          *
4728          * We can't just set the ref bit without bumping the
4729          * ref on the eb because free_extent_buffer might
4730          * see the ref bit and try to clear it.  If this happens
4731          * free_extent_buffer might end up dropping our original
4732          * ref by mistake and freeing the page before we are able
4733          * to add one more ref.
4734          *
4735          * So bump the ref count first, then set the bit.  If someone
4736          * beat us to it, drop the ref we added.
4737          */
4738         refs = atomic_read(&eb->refs);
4739         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4740                 return;
4741
4742         spin_lock(&eb->refs_lock);
4743         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4744                 atomic_inc(&eb->refs);
4745         spin_unlock(&eb->refs_lock);
4746 }
4747
4748 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4749                 struct page *accessed)
4750 {
4751         unsigned long num_pages, i;
4752
4753         check_buffer_tree_ref(eb);
4754
4755         num_pages = num_extent_pages(eb->start, eb->len);
4756         for (i = 0; i < num_pages; i++) {
4757                 struct page *p = eb->pages[i];
4758
4759                 if (p != accessed)
4760                         mark_page_accessed(p);
4761         }
4762 }
4763
4764 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4765                                          u64 start)
4766 {
4767         struct extent_buffer *eb;
4768
4769         rcu_read_lock();
4770         eb = radix_tree_lookup(&fs_info->buffer_radix,
4771                                start >> PAGE_CACHE_SHIFT);
4772         if (eb && atomic_inc_not_zero(&eb->refs)) {
4773                 rcu_read_unlock();
4774                 /*
4775                  * Lock our eb's refs_lock to avoid races with
4776                  * free_extent_buffer. When we get our eb it might be flagged
4777                  * with EXTENT_BUFFER_STALE and another task running
4778                  * free_extent_buffer might have seen that flag set,
4779                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4780                  * writeback flags not set) and it's still in the tree (flag
4781                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4782                  * of decrementing the extent buffer's reference count twice.
4783                  * So here we could race and increment the eb's reference count,
4784                  * clear its stale flag, mark it as dirty and drop our reference
4785                  * before the other task finishes executing free_extent_buffer,
4786                  * which would later result in an attempt to free an extent
4787                  * buffer that is dirty.
4788                  */
4789                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4790                         spin_lock(&eb->refs_lock);
4791                         spin_unlock(&eb->refs_lock);
4792                 }
4793                 mark_extent_buffer_accessed(eb, NULL);
4794                 return eb;
4795         }
4796         rcu_read_unlock();
4797
4798         return NULL;
4799 }
4800
4801 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4802 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4803                                                u64 start)
4804 {
4805         struct extent_buffer *eb, *exists = NULL;
4806         int ret;
4807
4808         eb = find_extent_buffer(fs_info, start);
4809         if (eb)
4810                 return eb;
4811         eb = alloc_dummy_extent_buffer(fs_info, start);
4812         if (!eb)
4813                 return NULL;
4814         eb->fs_info = fs_info;
4815 again:
4816         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4817         if (ret)
4818                 goto free_eb;
4819         spin_lock(&fs_info->buffer_lock);
4820         ret = radix_tree_insert(&fs_info->buffer_radix,
4821                                 start >> PAGE_CACHE_SHIFT, eb);
4822         spin_unlock(&fs_info->buffer_lock);
4823         radix_tree_preload_end();
4824         if (ret == -EEXIST) {
4825                 exists = find_extent_buffer(fs_info, start);
4826                 if (exists)
4827                         goto free_eb;
4828                 else
4829                         goto again;
4830         }
4831         check_buffer_tree_ref(eb);
4832         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4833
4834         /*
4835          * We will free dummy extent buffer's if they come into
4836          * free_extent_buffer with a ref count of 2, but if we are using this we
4837          * want the buffers to stay in memory until we're done with them, so
4838          * bump the ref count again.
4839          */
4840         atomic_inc(&eb->refs);
4841         return eb;
4842 free_eb:
4843         btrfs_release_extent_buffer(eb);
4844         return exists;
4845 }
4846 #endif
4847
4848 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4849                                           u64 start)
4850 {
4851         unsigned long len = fs_info->tree_root->nodesize;
4852         unsigned long num_pages = num_extent_pages(start, len);
4853         unsigned long i;
4854         unsigned long index = start >> PAGE_CACHE_SHIFT;
4855         struct extent_buffer *eb;
4856         struct extent_buffer *exists = NULL;
4857         struct page *p;
4858         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4859         int uptodate = 1;
4860         int ret;
4861
4862         eb = find_extent_buffer(fs_info, start);
4863         if (eb)
4864                 return eb;
4865
4866         eb = __alloc_extent_buffer(fs_info, start, len);
4867         if (!eb)
4868                 return NULL;
4869
4870         for (i = 0; i < num_pages; i++, index++) {
4871                 p = find_or_create_page(mapping, index, GFP_NOFS);
4872                 if (!p)
4873                         goto free_eb;
4874
4875                 spin_lock(&mapping->private_lock);
4876                 if (PagePrivate(p)) {
4877                         /*
4878                          * We could have already allocated an eb for this page
4879                          * and attached one so lets see if we can get a ref on
4880                          * the existing eb, and if we can we know it's good and
4881                          * we can just return that one, else we know we can just
4882                          * overwrite page->private.
4883                          */
4884                         exists = (struct extent_buffer *)p->private;
4885                         if (atomic_inc_not_zero(&exists->refs)) {
4886                                 spin_unlock(&mapping->private_lock);
4887                                 unlock_page(p);
4888                                 page_cache_release(p);
4889                                 mark_extent_buffer_accessed(exists, p);
4890                                 goto free_eb;
4891                         }
4892                         exists = NULL;
4893
4894                         /*
4895                          * Do this so attach doesn't complain and we need to
4896                          * drop the ref the old guy had.
4897                          */
4898                         ClearPagePrivate(p);
4899                         WARN_ON(PageDirty(p));
4900                         page_cache_release(p);
4901                 }
4902                 attach_extent_buffer_page(eb, p);
4903                 spin_unlock(&mapping->private_lock);
4904                 WARN_ON(PageDirty(p));
4905                 eb->pages[i] = p;
4906                 if (!PageUptodate(p))
4907                         uptodate = 0;
4908
4909                 /*
4910                  * see below about how we avoid a nasty race with release page
4911                  * and why we unlock later
4912                  */
4913         }
4914         if (uptodate)
4915                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4916 again:
4917         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4918         if (ret)
4919                 goto free_eb;
4920
4921         spin_lock(&fs_info->buffer_lock);
4922         ret = radix_tree_insert(&fs_info->buffer_radix,
4923                                 start >> PAGE_CACHE_SHIFT, eb);
4924         spin_unlock(&fs_info->buffer_lock);
4925         radix_tree_preload_end();
4926         if (ret == -EEXIST) {
4927                 exists = find_extent_buffer(fs_info, start);
4928                 if (exists)
4929                         goto free_eb;
4930                 else
4931                         goto again;
4932         }
4933         /* add one reference for the tree */
4934         check_buffer_tree_ref(eb);
4935         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4936
4937         /*
4938          * there is a race where release page may have
4939          * tried to find this extent buffer in the radix
4940          * but failed.  It will tell the VM it is safe to
4941          * reclaim the, and it will clear the page private bit.
4942          * We must make sure to set the page private bit properly
4943          * after the extent buffer is in the radix tree so
4944          * it doesn't get lost
4945          */
4946         SetPageChecked(eb->pages[0]);
4947         for (i = 1; i < num_pages; i++) {
4948                 p = eb->pages[i];
4949                 ClearPageChecked(p);
4950                 unlock_page(p);
4951         }
4952         unlock_page(eb->pages[0]);
4953         return eb;
4954
4955 free_eb:
4956         WARN_ON(!atomic_dec_and_test(&eb->refs));
4957         for (i = 0; i < num_pages; i++) {
4958                 if (eb->pages[i])
4959                         unlock_page(eb->pages[i]);
4960         }
4961
4962         btrfs_release_extent_buffer(eb);
4963         return exists;
4964 }
4965
4966 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4967 {
4968         struct extent_buffer *eb =
4969                         container_of(head, struct extent_buffer, rcu_head);
4970
4971         __free_extent_buffer(eb);
4972 }
4973
4974 /* Expects to have eb->eb_lock already held */
4975 static int release_extent_buffer(struct extent_buffer *eb)
4976 {
4977         WARN_ON(atomic_read(&eb->refs) == 0);
4978         if (atomic_dec_and_test(&eb->refs)) {
4979                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4980                         struct btrfs_fs_info *fs_info = eb->fs_info;
4981
4982                         spin_unlock(&eb->refs_lock);
4983
4984                         spin_lock(&fs_info->buffer_lock);
4985                         radix_tree_delete(&fs_info->buffer_radix,
4986                                           eb->start >> PAGE_CACHE_SHIFT);
4987                         spin_unlock(&fs_info->buffer_lock);
4988                 } else {
4989                         spin_unlock(&eb->refs_lock);
4990                 }
4991
4992                 /* Should be safe to release our pages at this point */
4993                 btrfs_release_extent_buffer_page(eb);
4994 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4995                 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
4996                         __free_extent_buffer(eb);
4997                         return 1;
4998                 }
4999 #endif
5000                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5001                 return 1;
5002         }
5003         spin_unlock(&eb->refs_lock);
5004
5005         return 0;
5006 }
5007
5008 void free_extent_buffer(struct extent_buffer *eb)
5009 {
5010         int refs;
5011         int old;
5012         if (!eb)
5013                 return;
5014
5015         while (1) {
5016                 refs = atomic_read(&eb->refs);
5017                 if (refs <= 3)
5018                         break;
5019                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5020                 if (old == refs)
5021                         return;
5022         }
5023
5024         spin_lock(&eb->refs_lock);
5025         if (atomic_read(&eb->refs) == 2 &&
5026             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5027                 atomic_dec(&eb->refs);
5028
5029         if (atomic_read(&eb->refs) == 2 &&
5030             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5031             !extent_buffer_under_io(eb) &&
5032             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5033                 atomic_dec(&eb->refs);
5034
5035         /*
5036          * I know this is terrible, but it's temporary until we stop tracking
5037          * the uptodate bits and such for the extent buffers.
5038          */
5039         release_extent_buffer(eb);
5040 }
5041
5042 void free_extent_buffer_stale(struct extent_buffer *eb)
5043 {
5044         if (!eb)
5045                 return;
5046
5047         spin_lock(&eb->refs_lock);
5048         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5049
5050         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5051             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5052                 atomic_dec(&eb->refs);
5053         release_extent_buffer(eb);
5054 }
5055
5056 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5057 {
5058         unsigned long i;
5059         unsigned long num_pages;
5060         struct page *page;
5061
5062         num_pages = num_extent_pages(eb->start, eb->len);
5063
5064         for (i = 0; i < num_pages; i++) {
5065                 page = eb->pages[i];
5066                 if (!PageDirty(page))
5067                         continue;
5068
5069                 lock_page(page);
5070                 WARN_ON(!PagePrivate(page));
5071
5072                 clear_page_dirty_for_io(page);
5073                 spin_lock_irq(&page->mapping->tree_lock);
5074                 if (!PageDirty(page)) {
5075                         radix_tree_tag_clear(&page->mapping->page_tree,
5076                                                 page_index(page),
5077                                                 PAGECACHE_TAG_DIRTY);
5078                 }
5079                 spin_unlock_irq(&page->mapping->tree_lock);
5080                 ClearPageError(page);
5081                 unlock_page(page);
5082         }
5083         WARN_ON(atomic_read(&eb->refs) == 0);
5084 }
5085
5086 int set_extent_buffer_dirty(struct extent_buffer *eb)
5087 {
5088         unsigned long i;
5089         unsigned long num_pages;
5090         int was_dirty = 0;
5091
5092         check_buffer_tree_ref(eb);
5093
5094         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5095
5096         num_pages = num_extent_pages(eb->start, eb->len);
5097         WARN_ON(atomic_read(&eb->refs) == 0);
5098         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5099
5100         for (i = 0; i < num_pages; i++)
5101                 set_page_dirty(eb->pages[i]);
5102         return was_dirty;
5103 }
5104
5105 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5106 {
5107         unsigned long i;
5108         struct page *page;
5109         unsigned long num_pages;
5110
5111         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5112         num_pages = num_extent_pages(eb->start, eb->len);
5113         for (i = 0; i < num_pages; i++) {
5114                 page = eb->pages[i];
5115                 if (page)
5116                         ClearPageUptodate(page);
5117         }
5118         return 0;
5119 }
5120
5121 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5122 {
5123         unsigned long i;
5124         struct page *page;
5125         unsigned long num_pages;
5126
5127         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5128         num_pages = num_extent_pages(eb->start, eb->len);
5129         for (i = 0; i < num_pages; i++) {
5130                 page = eb->pages[i];
5131                 SetPageUptodate(page);
5132         }
5133         return 0;
5134 }
5135
5136 int extent_buffer_uptodate(struct extent_buffer *eb)
5137 {
5138         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5139 }
5140
5141 int read_extent_buffer_pages(struct extent_io_tree *tree,
5142                              struct extent_buffer *eb, u64 start, int wait,
5143                              get_extent_t *get_extent, int mirror_num)
5144 {
5145         unsigned long i;
5146         unsigned long start_i;
5147         struct page *page;
5148         int err;
5149         int ret = 0;
5150         int locked_pages = 0;
5151         int all_uptodate = 1;
5152         unsigned long num_pages;
5153         unsigned long num_reads = 0;
5154         struct bio *bio = NULL;
5155         unsigned long bio_flags = 0;
5156
5157         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5158                 return 0;
5159
5160         if (start) {
5161                 WARN_ON(start < eb->start);
5162                 start_i = (start >> PAGE_CACHE_SHIFT) -
5163                         (eb->start >> PAGE_CACHE_SHIFT);
5164         } else {
5165                 start_i = 0;
5166         }
5167
5168         num_pages = num_extent_pages(eb->start, eb->len);
5169         for (i = start_i; i < num_pages; i++) {
5170                 page = eb->pages[i];
5171                 if (wait == WAIT_NONE) {
5172                         if (!trylock_page(page))
5173                                 goto unlock_exit;
5174                 } else {
5175                         lock_page(page);
5176                 }
5177                 locked_pages++;
5178                 if (!PageUptodate(page)) {
5179                         num_reads++;
5180                         all_uptodate = 0;
5181                 }
5182         }
5183         if (all_uptodate) {
5184                 if (start_i == 0)
5185                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5186                 goto unlock_exit;
5187         }
5188
5189         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5190         eb->read_mirror = 0;
5191         atomic_set(&eb->io_pages, num_reads);
5192         for (i = start_i; i < num_pages; i++) {
5193                 page = eb->pages[i];
5194                 if (!PageUptodate(page)) {
5195                         ClearPageError(page);
5196                         err = __extent_read_full_page(tree, page,
5197                                                       get_extent, &bio,
5198                                                       mirror_num, &bio_flags,
5199                                                       READ | REQ_META);
5200                         if (err)
5201                                 ret = err;
5202                 } else {
5203                         unlock_page(page);
5204                 }
5205         }
5206
5207         if (bio) {
5208                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5209                                      bio_flags);
5210                 if (err)
5211                         return err;
5212         }
5213
5214         if (ret || wait != WAIT_COMPLETE)
5215                 return ret;
5216
5217         for (i = start_i; i < num_pages; i++) {
5218                 page = eb->pages[i];
5219                 wait_on_page_locked(page);
5220                 if (!PageUptodate(page))
5221                         ret = -EIO;
5222         }
5223
5224         return ret;
5225
5226 unlock_exit:
5227         i = start_i;
5228         while (locked_pages > 0) {
5229                 page = eb->pages[i];
5230                 i++;
5231                 unlock_page(page);
5232                 locked_pages--;
5233         }
5234         return ret;
5235 }
5236
5237 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5238                         unsigned long start,
5239                         unsigned long len)
5240 {
5241         size_t cur;
5242         size_t offset;
5243         struct page *page;
5244         char *kaddr;
5245         char *dst = (char *)dstv;
5246         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5247         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5248
5249         WARN_ON(start > eb->len);
5250         WARN_ON(start + len > eb->start + eb->len);
5251
5252         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5253
5254         while (len > 0) {
5255                 page = eb->pages[i];
5256
5257                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5258                 kaddr = page_address(page);
5259                 memcpy(dst, kaddr + offset, cur);
5260
5261                 dst += cur;
5262                 len -= cur;
5263                 offset = 0;
5264                 i++;
5265         }
5266 }
5267
5268 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5269                         unsigned long start,
5270                         unsigned long len)
5271 {
5272         size_t cur;
5273         size_t offset;
5274         struct page *page;
5275         char *kaddr;
5276         char __user *dst = (char __user *)dstv;
5277         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5278         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5279         int ret = 0;
5280
5281         WARN_ON(start > eb->len);
5282         WARN_ON(start + len > eb->start + eb->len);
5283
5284         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5285
5286         while (len > 0) {
5287                 page = eb->pages[i];
5288
5289                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5290                 kaddr = page_address(page);
5291                 if (copy_to_user(dst, kaddr + offset, cur)) {
5292                         ret = -EFAULT;
5293                         break;
5294                 }
5295
5296                 dst += cur;
5297                 len -= cur;
5298                 offset = 0;
5299                 i++;
5300         }
5301
5302         return ret;
5303 }
5304
5305 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5306                                unsigned long min_len, char **map,
5307                                unsigned long *map_start,
5308                                unsigned long *map_len)
5309 {
5310         size_t offset = start & (PAGE_CACHE_SIZE - 1);
5311         char *kaddr;
5312         struct page *p;
5313         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5314         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5315         unsigned long end_i = (start_offset + start + min_len - 1) >>
5316                 PAGE_CACHE_SHIFT;
5317
5318         if (i != end_i)
5319                 return -EINVAL;
5320
5321         if (i == 0) {
5322                 offset = start_offset;
5323                 *map_start = 0;
5324         } else {
5325                 offset = 0;
5326                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5327         }
5328
5329         if (start + min_len > eb->len) {
5330                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5331                        "wanted %lu %lu\n",
5332                        eb->start, eb->len, start, min_len);
5333                 return -EINVAL;
5334         }
5335
5336         p = eb->pages[i];
5337         kaddr = page_address(p);
5338         *map = kaddr + offset;
5339         *map_len = PAGE_CACHE_SIZE - offset;
5340         return 0;
5341 }
5342
5343 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5344                           unsigned long start,
5345                           unsigned long len)
5346 {
5347         size_t cur;
5348         size_t offset;
5349         struct page *page;
5350         char *kaddr;
5351         char *ptr = (char *)ptrv;
5352         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5353         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5354         int ret = 0;
5355
5356         WARN_ON(start > eb->len);
5357         WARN_ON(start + len > eb->start + eb->len);
5358
5359         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5360
5361         while (len > 0) {
5362                 page = eb->pages[i];
5363
5364                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5365
5366                 kaddr = page_address(page);
5367                 ret = memcmp(ptr, kaddr + offset, cur);
5368                 if (ret)
5369                         break;
5370
5371                 ptr += cur;
5372                 len -= cur;
5373                 offset = 0;
5374                 i++;
5375         }
5376         return ret;
5377 }
5378
5379 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5380                          unsigned long start, unsigned long len)
5381 {
5382         size_t cur;
5383         size_t offset;
5384         struct page *page;
5385         char *kaddr;
5386         char *src = (char *)srcv;
5387         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5388         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5389
5390         WARN_ON(start > eb->len);
5391         WARN_ON(start + len > eb->start + eb->len);
5392
5393         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5394
5395         while (len > 0) {
5396                 page = eb->pages[i];
5397                 WARN_ON(!PageUptodate(page));
5398
5399                 cur = min(len, PAGE_CACHE_SIZE - offset);
5400                 kaddr = page_address(page);
5401                 memcpy(kaddr + offset, src, cur);
5402
5403                 src += cur;
5404                 len -= cur;
5405                 offset = 0;
5406                 i++;
5407         }
5408 }
5409
5410 void memset_extent_buffer(struct extent_buffer *eb, char c,
5411                           unsigned long start, unsigned long len)
5412 {
5413         size_t cur;
5414         size_t offset;
5415         struct page *page;
5416         char *kaddr;
5417         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5418         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5419
5420         WARN_ON(start > eb->len);
5421         WARN_ON(start + len > eb->start + eb->len);
5422
5423         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5424
5425         while (len > 0) {
5426                 page = eb->pages[i];
5427                 WARN_ON(!PageUptodate(page));
5428
5429                 cur = min(len, PAGE_CACHE_SIZE - offset);
5430                 kaddr = page_address(page);
5431                 memset(kaddr + offset, c, cur);
5432
5433                 len -= cur;
5434                 offset = 0;
5435                 i++;
5436         }
5437 }
5438
5439 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5440                         unsigned long dst_offset, unsigned long src_offset,
5441                         unsigned long len)
5442 {
5443         u64 dst_len = dst->len;
5444         size_t cur;
5445         size_t offset;
5446         struct page *page;
5447         char *kaddr;
5448         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5449         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5450
5451         WARN_ON(src->len != dst_len);
5452
5453         offset = (start_offset + dst_offset) &
5454                 (PAGE_CACHE_SIZE - 1);
5455
5456         while (len > 0) {
5457                 page = dst->pages[i];
5458                 WARN_ON(!PageUptodate(page));
5459
5460                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5461
5462                 kaddr = page_address(page);
5463                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5464
5465                 src_offset += cur;
5466                 len -= cur;
5467                 offset = 0;
5468                 i++;
5469         }
5470 }
5471
5472 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5473 {
5474         unsigned long distance = (src > dst) ? src - dst : dst - src;
5475         return distance < len;
5476 }
5477
5478 static void copy_pages(struct page *dst_page, struct page *src_page,
5479                        unsigned long dst_off, unsigned long src_off,
5480                        unsigned long len)
5481 {
5482         char *dst_kaddr = page_address(dst_page);
5483         char *src_kaddr;
5484         int must_memmove = 0;
5485
5486         if (dst_page != src_page) {
5487                 src_kaddr = page_address(src_page);
5488         } else {
5489                 src_kaddr = dst_kaddr;
5490                 if (areas_overlap(src_off, dst_off, len))
5491                         must_memmove = 1;
5492         }
5493
5494         if (must_memmove)
5495                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5496         else
5497                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5498 }
5499
5500 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5501                            unsigned long src_offset, unsigned long len)
5502 {
5503         size_t cur;
5504         size_t dst_off_in_page;
5505         size_t src_off_in_page;
5506         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5507         unsigned long dst_i;
5508         unsigned long src_i;
5509
5510         if (src_offset + len > dst->len) {
5511                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5512                        "len %lu dst len %lu\n", src_offset, len, dst->len);
5513                 BUG_ON(1);
5514         }
5515         if (dst_offset + len > dst->len) {
5516                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5517                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
5518                 BUG_ON(1);
5519         }
5520
5521         while (len > 0) {
5522                 dst_off_in_page = (start_offset + dst_offset) &
5523                         (PAGE_CACHE_SIZE - 1);
5524                 src_off_in_page = (start_offset + src_offset) &
5525                         (PAGE_CACHE_SIZE - 1);
5526
5527                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5528                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5529
5530                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5531                                                src_off_in_page));
5532                 cur = min_t(unsigned long, cur,
5533                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5534
5535                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5536                            dst_off_in_page, src_off_in_page, cur);
5537
5538                 src_offset += cur;
5539                 dst_offset += cur;
5540                 len -= cur;
5541         }
5542 }
5543
5544 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5545                            unsigned long src_offset, unsigned long len)
5546 {
5547         size_t cur;
5548         size_t dst_off_in_page;
5549         size_t src_off_in_page;
5550         unsigned long dst_end = dst_offset + len - 1;
5551         unsigned long src_end = src_offset + len - 1;
5552         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5553         unsigned long dst_i;
5554         unsigned long src_i;
5555
5556         if (src_offset + len > dst->len) {
5557                 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5558                        "len %lu len %lu\n", src_offset, len, dst->len);
5559                 BUG_ON(1);
5560         }
5561         if (dst_offset + len > dst->len) {
5562                 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5563                        "len %lu len %lu\n", dst_offset, len, dst->len);
5564                 BUG_ON(1);
5565         }
5566         if (dst_offset < src_offset) {
5567                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5568                 return;
5569         }
5570         while (len > 0) {
5571                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5572                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5573
5574                 dst_off_in_page = (start_offset + dst_end) &
5575                         (PAGE_CACHE_SIZE - 1);
5576                 src_off_in_page = (start_offset + src_end) &
5577                         (PAGE_CACHE_SIZE - 1);
5578
5579                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5580                 cur = min(cur, dst_off_in_page + 1);
5581                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5582                            dst_off_in_page - cur + 1,
5583                            src_off_in_page - cur + 1, cur);
5584
5585                 dst_end -= cur;
5586                 src_end -= cur;
5587                 len -= cur;
5588         }
5589 }
5590
5591 int try_release_extent_buffer(struct page *page)
5592 {
5593         struct extent_buffer *eb;
5594
5595         /*
5596          * We need to make sure noboody is attaching this page to an eb right
5597          * now.
5598          */
5599         spin_lock(&page->mapping->private_lock);
5600         if (!PagePrivate(page)) {
5601                 spin_unlock(&page->mapping->private_lock);
5602                 return 1;
5603         }
5604
5605         eb = (struct extent_buffer *)page->private;
5606         BUG_ON(!eb);
5607
5608         /*
5609          * This is a little awful but should be ok, we need to make sure that
5610          * the eb doesn't disappear out from under us while we're looking at
5611          * this page.
5612          */
5613         spin_lock(&eb->refs_lock);
5614         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5615                 spin_unlock(&eb->refs_lock);
5616                 spin_unlock(&page->mapping->private_lock);
5617                 return 0;
5618         }
5619         spin_unlock(&page->mapping->private_lock);
5620
5621         /*
5622          * If tree ref isn't set then we know the ref on this eb is a real ref,
5623          * so just return, this page will likely be freed soon anyway.
5624          */
5625         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5626                 spin_unlock(&eb->refs_lock);
5627                 return 0;
5628         }
5629
5630         return release_extent_buffer(eb);
5631 }