Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6
[cascardo/linux.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54         u64 ino;
55         struct btrfs_root *root;
56 };
57
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
76         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
77         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
78         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
79         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
80         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
81         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87                                    struct page *locked_page,
88                                    u64 start, u64 end, int *page_started,
89                                    unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92                                      struct inode *inode,  struct inode *dir)
93 {
94         int err;
95
96         err = btrfs_init_acl(trans, inode, dir);
97         if (!err)
98                 err = btrfs_xattr_security_init(trans, inode, dir);
99         return err;
100 }
101
102 /*
103  * this does all the hard work for inserting an inline extent into
104  * the btree.  The caller should have done a btrfs_drop_extents so that
105  * no overlapping inline items exist in the btree
106  */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108                                 struct btrfs_root *root, struct inode *inode,
109                                 u64 start, size_t size, size_t compressed_size,
110                                 struct page **compressed_pages)
111 {
112         struct btrfs_key key;
113         struct btrfs_path *path;
114         struct extent_buffer *leaf;
115         struct page *page = NULL;
116         char *kaddr;
117         unsigned long ptr;
118         struct btrfs_file_extent_item *ei;
119         int err = 0;
120         int ret;
121         size_t cur_size = size;
122         size_t datasize;
123         unsigned long offset;
124         int use_compress = 0;
125
126         if (compressed_size && compressed_pages) {
127                 use_compress = 1;
128                 cur_size = compressed_size;
129         }
130
131         path = btrfs_alloc_path();
132         if (!path)
133                 return -ENOMEM;
134
135         path->leave_spinning = 1;
136         btrfs_set_trans_block_group(trans, inode);
137
138         key.objectid = inode->i_ino;
139         key.offset = start;
140         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141         datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143         inode_add_bytes(inode, size);
144         ret = btrfs_insert_empty_item(trans, root, path, &key,
145                                       datasize);
146         BUG_ON(ret);
147         if (ret) {
148                 err = ret;
149                 goto fail;
150         }
151         leaf = path->nodes[0];
152         ei = btrfs_item_ptr(leaf, path->slots[0],
153                             struct btrfs_file_extent_item);
154         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156         btrfs_set_file_extent_encryption(leaf, ei, 0);
157         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159         ptr = btrfs_file_extent_inline_start(ei);
160
161         if (use_compress) {
162                 struct page *cpage;
163                 int i = 0;
164                 while (compressed_size > 0) {
165                         cpage = compressed_pages[i];
166                         cur_size = min_t(unsigned long, compressed_size,
167                                        PAGE_CACHE_SIZE);
168
169                         kaddr = kmap_atomic(cpage, KM_USER0);
170                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
171                         kunmap_atomic(kaddr, KM_USER0);
172
173                         i++;
174                         ptr += cur_size;
175                         compressed_size -= cur_size;
176                 }
177                 btrfs_set_file_extent_compression(leaf, ei,
178                                                   BTRFS_COMPRESS_ZLIB);
179         } else {
180                 page = find_get_page(inode->i_mapping,
181                                      start >> PAGE_CACHE_SHIFT);
182                 btrfs_set_file_extent_compression(leaf, ei, 0);
183                 kaddr = kmap_atomic(page, KM_USER0);
184                 offset = start & (PAGE_CACHE_SIZE - 1);
185                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186                 kunmap_atomic(kaddr, KM_USER0);
187                 page_cache_release(page);
188         }
189         btrfs_mark_buffer_dirty(leaf);
190         btrfs_free_path(path);
191
192         /*
193          * we're an inline extent, so nobody can
194          * extend the file past i_size without locking
195          * a page we already have locked.
196          *
197          * We must do any isize and inode updates
198          * before we unlock the pages.  Otherwise we
199          * could end up racing with unlink.
200          */
201         BTRFS_I(inode)->disk_i_size = inode->i_size;
202         btrfs_update_inode(trans, root, inode);
203
204         return 0;
205 fail:
206         btrfs_free_path(path);
207         return err;
208 }
209
210
211 /*
212  * conditionally insert an inline extent into the file.  This
213  * does the checks required to make sure the data is small enough
214  * to fit as an inline extent.
215  */
216 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
217                                  struct btrfs_root *root,
218                                  struct inode *inode, u64 start, u64 end,
219                                  size_t compressed_size,
220                                  struct page **compressed_pages)
221 {
222         u64 isize = i_size_read(inode);
223         u64 actual_end = min(end + 1, isize);
224         u64 inline_len = actual_end - start;
225         u64 aligned_end = (end + root->sectorsize - 1) &
226                         ~((u64)root->sectorsize - 1);
227         u64 hint_byte;
228         u64 data_len = inline_len;
229         int ret;
230
231         if (compressed_size)
232                 data_len = compressed_size;
233
234         if (start > 0 ||
235             actual_end >= PAGE_CACHE_SIZE ||
236             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237             (!compressed_size &&
238             (actual_end & (root->sectorsize - 1)) == 0) ||
239             end + 1 < isize ||
240             data_len > root->fs_info->max_inline) {
241                 return 1;
242         }
243
244         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
245                                  &hint_byte, 1);
246         BUG_ON(ret);
247
248         if (isize > actual_end)
249                 inline_len = min_t(u64, isize, actual_end);
250         ret = insert_inline_extent(trans, root, inode, start,
251                                    inline_len, compressed_size,
252                                    compressed_pages);
253         BUG_ON(ret);
254         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
255         return 0;
256 }
257
258 struct async_extent {
259         u64 start;
260         u64 ram_size;
261         u64 compressed_size;
262         struct page **pages;
263         unsigned long nr_pages;
264         struct list_head list;
265 };
266
267 struct async_cow {
268         struct inode *inode;
269         struct btrfs_root *root;
270         struct page *locked_page;
271         u64 start;
272         u64 end;
273         struct list_head extents;
274         struct btrfs_work work;
275 };
276
277 static noinline int add_async_extent(struct async_cow *cow,
278                                      u64 start, u64 ram_size,
279                                      u64 compressed_size,
280                                      struct page **pages,
281                                      unsigned long nr_pages)
282 {
283         struct async_extent *async_extent;
284
285         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286         async_extent->start = start;
287         async_extent->ram_size = ram_size;
288         async_extent->compressed_size = compressed_size;
289         async_extent->pages = pages;
290         async_extent->nr_pages = nr_pages;
291         list_add_tail(&async_extent->list, &cow->extents);
292         return 0;
293 }
294
295 /*
296  * we create compressed extents in two phases.  The first
297  * phase compresses a range of pages that have already been
298  * locked (both pages and state bits are locked).
299  *
300  * This is done inside an ordered work queue, and the compression
301  * is spread across many cpus.  The actual IO submission is step
302  * two, and the ordered work queue takes care of making sure that
303  * happens in the same order things were put onto the queue by
304  * writepages and friends.
305  *
306  * If this code finds it can't get good compression, it puts an
307  * entry onto the work queue to write the uncompressed bytes.  This
308  * makes sure that both compressed inodes and uncompressed inodes
309  * are written in the same order that pdflush sent them down.
310  */
311 static noinline int compress_file_range(struct inode *inode,
312                                         struct page *locked_page,
313                                         u64 start, u64 end,
314                                         struct async_cow *async_cow,
315                                         int *num_added)
316 {
317         struct btrfs_root *root = BTRFS_I(inode)->root;
318         struct btrfs_trans_handle *trans;
319         u64 num_bytes;
320         u64 orig_start;
321         u64 disk_num_bytes;
322         u64 blocksize = root->sectorsize;
323         u64 actual_end;
324         u64 isize = i_size_read(inode);
325         int ret = 0;
326         struct page **pages = NULL;
327         unsigned long nr_pages;
328         unsigned long nr_pages_ret = 0;
329         unsigned long total_compressed = 0;
330         unsigned long total_in = 0;
331         unsigned long max_compressed = 128 * 1024;
332         unsigned long max_uncompressed = 128 * 1024;
333         int i;
334         int will_compress;
335
336         orig_start = start;
337
338         actual_end = min_t(u64, isize, end + 1);
339 again:
340         will_compress = 0;
341         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
343
344         /*
345          * we don't want to send crud past the end of i_size through
346          * compression, that's just a waste of CPU time.  So, if the
347          * end of the file is before the start of our current
348          * requested range of bytes, we bail out to the uncompressed
349          * cleanup code that can deal with all of this.
350          *
351          * It isn't really the fastest way to fix things, but this is a
352          * very uncommon corner.
353          */
354         if (actual_end <= start)
355                 goto cleanup_and_bail_uncompressed;
356
357         total_compressed = actual_end - start;
358
359         /* we want to make sure that amount of ram required to uncompress
360          * an extent is reasonable, so we limit the total size in ram
361          * of a compressed extent to 128k.  This is a crucial number
362          * because it also controls how easily we can spread reads across
363          * cpus for decompression.
364          *
365          * We also want to make sure the amount of IO required to do
366          * a random read is reasonably small, so we limit the size of
367          * a compressed extent to 128k.
368          */
369         total_compressed = min(total_compressed, max_uncompressed);
370         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
371         num_bytes = max(blocksize,  num_bytes);
372         disk_num_bytes = num_bytes;
373         total_in = 0;
374         ret = 0;
375
376         /*
377          * we do compression for mount -o compress and when the
378          * inode has not been flagged as nocompress.  This flag can
379          * change at any time if we discover bad compression ratios.
380          */
381         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
382             btrfs_test_opt(root, COMPRESS)) {
383                 WARN_ON(pages);
384                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
385
386                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
387                                                 total_compressed, pages,
388                                                 nr_pages, &nr_pages_ret,
389                                                 &total_in,
390                                                 &total_compressed,
391                                                 max_compressed);
392
393                 if (!ret) {
394                         unsigned long offset = total_compressed &
395                                 (PAGE_CACHE_SIZE - 1);
396                         struct page *page = pages[nr_pages_ret - 1];
397                         char *kaddr;
398
399                         /* zero the tail end of the last page, we might be
400                          * sending it down to disk
401                          */
402                         if (offset) {
403                                 kaddr = kmap_atomic(page, KM_USER0);
404                                 memset(kaddr + offset, 0,
405                                        PAGE_CACHE_SIZE - offset);
406                                 kunmap_atomic(kaddr, KM_USER0);
407                         }
408                         will_compress = 1;
409                 }
410         }
411         if (start == 0) {
412                 trans = btrfs_join_transaction(root, 1);
413                 BUG_ON(!trans);
414                 btrfs_set_trans_block_group(trans, inode);
415
416                 /* lets try to make an inline extent */
417                 if (ret || total_in < (actual_end - start)) {
418                         /* we didn't compress the entire range, try
419                          * to make an uncompressed inline extent.
420                          */
421                         ret = cow_file_range_inline(trans, root, inode,
422                                                     start, end, 0, NULL);
423                 } else {
424                         /* try making a compressed inline extent */
425                         ret = cow_file_range_inline(trans, root, inode,
426                                                     start, end,
427                                                     total_compressed, pages);
428                 }
429                 if (ret == 0) {
430                         /*
431                          * inline extent creation worked, we don't need
432                          * to create any more async work items.  Unlock
433                          * and free up our temp pages.
434                          */
435                         extent_clear_unlock_delalloc(inode,
436                              &BTRFS_I(inode)->io_tree,
437                              start, end, NULL,
438                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
439                              EXTENT_CLEAR_DELALLOC |
440                              EXTENT_CLEAR_ACCOUNTING |
441                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
442
443                         btrfs_end_transaction(trans, root);
444                         goto free_pages_out;
445                 }
446                 btrfs_end_transaction(trans, root);
447         }
448
449         if (will_compress) {
450                 /*
451                  * we aren't doing an inline extent round the compressed size
452                  * up to a block size boundary so the allocator does sane
453                  * things
454                  */
455                 total_compressed = (total_compressed + blocksize - 1) &
456                         ~(blocksize - 1);
457
458                 /*
459                  * one last check to make sure the compression is really a
460                  * win, compare the page count read with the blocks on disk
461                  */
462                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
463                         ~(PAGE_CACHE_SIZE - 1);
464                 if (total_compressed >= total_in) {
465                         will_compress = 0;
466                 } else {
467                         disk_num_bytes = total_compressed;
468                         num_bytes = total_in;
469                 }
470         }
471         if (!will_compress && pages) {
472                 /*
473                  * the compression code ran but failed to make things smaller,
474                  * free any pages it allocated and our page pointer array
475                  */
476                 for (i = 0; i < nr_pages_ret; i++) {
477                         WARN_ON(pages[i]->mapping);
478                         page_cache_release(pages[i]);
479                 }
480                 kfree(pages);
481                 pages = NULL;
482                 total_compressed = 0;
483                 nr_pages_ret = 0;
484
485                 /* flag the file so we don't compress in the future */
486                 if (!btrfs_test_opt(root, FORCE_COMPRESS))
487                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
488         }
489         if (will_compress) {
490                 *num_added += 1;
491
492                 /* the async work queues will take care of doing actual
493                  * allocation on disk for these compressed pages,
494                  * and will submit them to the elevator.
495                  */
496                 add_async_extent(async_cow, start, num_bytes,
497                                  total_compressed, pages, nr_pages_ret);
498
499                 if (start + num_bytes < end && start + num_bytes < actual_end) {
500                         start += num_bytes;
501                         pages = NULL;
502                         cond_resched();
503                         goto again;
504                 }
505         } else {
506 cleanup_and_bail_uncompressed:
507                 /*
508                  * No compression, but we still need to write the pages in
509                  * the file we've been given so far.  redirty the locked
510                  * page if it corresponds to our extent and set things up
511                  * for the async work queue to run cow_file_range to do
512                  * the normal delalloc dance
513                  */
514                 if (page_offset(locked_page) >= start &&
515                     page_offset(locked_page) <= end) {
516                         __set_page_dirty_nobuffers(locked_page);
517                         /* unlocked later on in the async handlers */
518                 }
519                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
520                 *num_added += 1;
521         }
522
523 out:
524         return 0;
525
526 free_pages_out:
527         for (i = 0; i < nr_pages_ret; i++) {
528                 WARN_ON(pages[i]->mapping);
529                 page_cache_release(pages[i]);
530         }
531         kfree(pages);
532
533         goto out;
534 }
535
536 /*
537  * phase two of compressed writeback.  This is the ordered portion
538  * of the code, which only gets called in the order the work was
539  * queued.  We walk all the async extents created by compress_file_range
540  * and send them down to the disk.
541  */
542 static noinline int submit_compressed_extents(struct inode *inode,
543                                               struct async_cow *async_cow)
544 {
545         struct async_extent *async_extent;
546         u64 alloc_hint = 0;
547         struct btrfs_trans_handle *trans;
548         struct btrfs_key ins;
549         struct extent_map *em;
550         struct btrfs_root *root = BTRFS_I(inode)->root;
551         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
552         struct extent_io_tree *io_tree;
553         int ret = 0;
554
555         if (list_empty(&async_cow->extents))
556                 return 0;
557
558
559         while (!list_empty(&async_cow->extents)) {
560                 async_extent = list_entry(async_cow->extents.next,
561                                           struct async_extent, list);
562                 list_del(&async_extent->list);
563
564                 io_tree = &BTRFS_I(inode)->io_tree;
565
566 retry:
567                 /* did the compression code fall back to uncompressed IO? */
568                 if (!async_extent->pages) {
569                         int page_started = 0;
570                         unsigned long nr_written = 0;
571
572                         lock_extent(io_tree, async_extent->start,
573                                     async_extent->start +
574                                     async_extent->ram_size - 1, GFP_NOFS);
575
576                         /* allocate blocks */
577                         ret = cow_file_range(inode, async_cow->locked_page,
578                                              async_extent->start,
579                                              async_extent->start +
580                                              async_extent->ram_size - 1,
581                                              &page_started, &nr_written, 0);
582
583                         /*
584                          * if page_started, cow_file_range inserted an
585                          * inline extent and took care of all the unlocking
586                          * and IO for us.  Otherwise, we need to submit
587                          * all those pages down to the drive.
588                          */
589                         if (!page_started && !ret)
590                                 extent_write_locked_range(io_tree,
591                                                   inode, async_extent->start,
592                                                   async_extent->start +
593                                                   async_extent->ram_size - 1,
594                                                   btrfs_get_extent,
595                                                   WB_SYNC_ALL);
596                         kfree(async_extent);
597                         cond_resched();
598                         continue;
599                 }
600
601                 lock_extent(io_tree, async_extent->start,
602                             async_extent->start + async_extent->ram_size - 1,
603                             GFP_NOFS);
604
605                 trans = btrfs_join_transaction(root, 1);
606                 ret = btrfs_reserve_extent(trans, root,
607                                            async_extent->compressed_size,
608                                            async_extent->compressed_size,
609                                            0, alloc_hint,
610                                            (u64)-1, &ins, 1);
611                 btrfs_end_transaction(trans, root);
612
613                 if (ret) {
614                         int i;
615                         for (i = 0; i < async_extent->nr_pages; i++) {
616                                 WARN_ON(async_extent->pages[i]->mapping);
617                                 page_cache_release(async_extent->pages[i]);
618                         }
619                         kfree(async_extent->pages);
620                         async_extent->nr_pages = 0;
621                         async_extent->pages = NULL;
622                         unlock_extent(io_tree, async_extent->start,
623                                       async_extent->start +
624                                       async_extent->ram_size - 1, GFP_NOFS);
625                         goto retry;
626                 }
627
628                 /*
629                  * here we're doing allocation and writeback of the
630                  * compressed pages
631                  */
632                 btrfs_drop_extent_cache(inode, async_extent->start,
633                                         async_extent->start +
634                                         async_extent->ram_size - 1, 0);
635
636                 em = alloc_extent_map(GFP_NOFS);
637                 em->start = async_extent->start;
638                 em->len = async_extent->ram_size;
639                 em->orig_start = em->start;
640
641                 em->block_start = ins.objectid;
642                 em->block_len = ins.offset;
643                 em->bdev = root->fs_info->fs_devices->latest_bdev;
644                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
645                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
646
647                 while (1) {
648                         write_lock(&em_tree->lock);
649                         ret = add_extent_mapping(em_tree, em);
650                         write_unlock(&em_tree->lock);
651                         if (ret != -EEXIST) {
652                                 free_extent_map(em);
653                                 break;
654                         }
655                         btrfs_drop_extent_cache(inode, async_extent->start,
656                                                 async_extent->start +
657                                                 async_extent->ram_size - 1, 0);
658                 }
659
660                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
661                                                ins.objectid,
662                                                async_extent->ram_size,
663                                                ins.offset,
664                                                BTRFS_ORDERED_COMPRESSED);
665                 BUG_ON(ret);
666
667                 /*
668                  * clear dirty, set writeback and unlock the pages.
669                  */
670                 extent_clear_unlock_delalloc(inode,
671                                 &BTRFS_I(inode)->io_tree,
672                                 async_extent->start,
673                                 async_extent->start +
674                                 async_extent->ram_size - 1,
675                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
676                                 EXTENT_CLEAR_UNLOCK |
677                                 EXTENT_CLEAR_DELALLOC |
678                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
679
680                 ret = btrfs_submit_compressed_write(inode,
681                                     async_extent->start,
682                                     async_extent->ram_size,
683                                     ins.objectid,
684                                     ins.offset, async_extent->pages,
685                                     async_extent->nr_pages);
686
687                 BUG_ON(ret);
688                 alloc_hint = ins.objectid + ins.offset;
689                 kfree(async_extent);
690                 cond_resched();
691         }
692
693         return 0;
694 }
695
696 /*
697  * when extent_io.c finds a delayed allocation range in the file,
698  * the call backs end up in this code.  The basic idea is to
699  * allocate extents on disk for the range, and create ordered data structs
700  * in ram to track those extents.
701  *
702  * locked_page is the page that writepage had locked already.  We use
703  * it to make sure we don't do extra locks or unlocks.
704  *
705  * *page_started is set to one if we unlock locked_page and do everything
706  * required to start IO on it.  It may be clean and already done with
707  * IO when we return.
708  */
709 static noinline int cow_file_range(struct inode *inode,
710                                    struct page *locked_page,
711                                    u64 start, u64 end, int *page_started,
712                                    unsigned long *nr_written,
713                                    int unlock)
714 {
715         struct btrfs_root *root = BTRFS_I(inode)->root;
716         struct btrfs_trans_handle *trans;
717         u64 alloc_hint = 0;
718         u64 num_bytes;
719         unsigned long ram_size;
720         u64 disk_num_bytes;
721         u64 cur_alloc_size;
722         u64 blocksize = root->sectorsize;
723         u64 actual_end;
724         u64 isize = i_size_read(inode);
725         struct btrfs_key ins;
726         struct extent_map *em;
727         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
728         int ret = 0;
729
730         trans = btrfs_join_transaction(root, 1);
731         BUG_ON(!trans);
732         btrfs_set_trans_block_group(trans, inode);
733
734         actual_end = min_t(u64, isize, end + 1);
735
736         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
737         num_bytes = max(blocksize,  num_bytes);
738         disk_num_bytes = num_bytes;
739         ret = 0;
740
741         if (start == 0) {
742                 /* lets try to make an inline extent */
743                 ret = cow_file_range_inline(trans, root, inode,
744                                             start, end, 0, NULL);
745                 if (ret == 0) {
746                         extent_clear_unlock_delalloc(inode,
747                                      &BTRFS_I(inode)->io_tree,
748                                      start, end, NULL,
749                                      EXTENT_CLEAR_UNLOCK_PAGE |
750                                      EXTENT_CLEAR_UNLOCK |
751                                      EXTENT_CLEAR_DELALLOC |
752                                      EXTENT_CLEAR_ACCOUNTING |
753                                      EXTENT_CLEAR_DIRTY |
754                                      EXTENT_SET_WRITEBACK |
755                                      EXTENT_END_WRITEBACK);
756
757                         *nr_written = *nr_written +
758                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
759                         *page_started = 1;
760                         ret = 0;
761                         goto out;
762                 }
763         }
764
765         BUG_ON(disk_num_bytes >
766                btrfs_super_total_bytes(&root->fs_info->super_copy));
767
768
769         read_lock(&BTRFS_I(inode)->extent_tree.lock);
770         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
771                                    start, num_bytes);
772         if (em) {
773                 /*
774                  * if block start isn't an actual block number then find the
775                  * first block in this inode and use that as a hint.  If that
776                  * block is also bogus then just don't worry about it.
777                  */
778                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
779                         free_extent_map(em);
780                         em = search_extent_mapping(em_tree, 0, 0);
781                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
782                                 alloc_hint = em->block_start;
783                         if (em)
784                                 free_extent_map(em);
785                 } else {
786                         alloc_hint = em->block_start;
787                         free_extent_map(em);
788                 }
789         }
790         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
791         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
792
793         while (disk_num_bytes > 0) {
794                 unsigned long op;
795
796                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
797                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
798                                            root->sectorsize, 0, alloc_hint,
799                                            (u64)-1, &ins, 1);
800                 BUG_ON(ret);
801
802                 em = alloc_extent_map(GFP_NOFS);
803                 em->start = start;
804                 em->orig_start = em->start;
805                 ram_size = ins.offset;
806                 em->len = ins.offset;
807
808                 em->block_start = ins.objectid;
809                 em->block_len = ins.offset;
810                 em->bdev = root->fs_info->fs_devices->latest_bdev;
811                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
812
813                 while (1) {
814                         write_lock(&em_tree->lock);
815                         ret = add_extent_mapping(em_tree, em);
816                         write_unlock(&em_tree->lock);
817                         if (ret != -EEXIST) {
818                                 free_extent_map(em);
819                                 break;
820                         }
821                         btrfs_drop_extent_cache(inode, start,
822                                                 start + ram_size - 1, 0);
823                 }
824
825                 cur_alloc_size = ins.offset;
826                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
827                                                ram_size, cur_alloc_size, 0);
828                 BUG_ON(ret);
829
830                 if (root->root_key.objectid ==
831                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
832                         ret = btrfs_reloc_clone_csums(inode, start,
833                                                       cur_alloc_size);
834                         BUG_ON(ret);
835                 }
836
837                 if (disk_num_bytes < cur_alloc_size)
838                         break;
839
840                 /* we're not doing compressed IO, don't unlock the first
841                  * page (which the caller expects to stay locked), don't
842                  * clear any dirty bits and don't set any writeback bits
843                  *
844                  * Do set the Private2 bit so we know this page was properly
845                  * setup for writepage
846                  */
847                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
848                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
849                         EXTENT_SET_PRIVATE2;
850
851                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
852                                              start, start + ram_size - 1,
853                                              locked_page, op);
854                 disk_num_bytes -= cur_alloc_size;
855                 num_bytes -= cur_alloc_size;
856                 alloc_hint = ins.objectid + ins.offset;
857                 start += cur_alloc_size;
858         }
859 out:
860         ret = 0;
861         btrfs_end_transaction(trans, root);
862
863         return ret;
864 }
865
866 /*
867  * work queue call back to started compression on a file and pages
868  */
869 static noinline void async_cow_start(struct btrfs_work *work)
870 {
871         struct async_cow *async_cow;
872         int num_added = 0;
873         async_cow = container_of(work, struct async_cow, work);
874
875         compress_file_range(async_cow->inode, async_cow->locked_page,
876                             async_cow->start, async_cow->end, async_cow,
877                             &num_added);
878         if (num_added == 0)
879                 async_cow->inode = NULL;
880 }
881
882 /*
883  * work queue call back to submit previously compressed pages
884  */
885 static noinline void async_cow_submit(struct btrfs_work *work)
886 {
887         struct async_cow *async_cow;
888         struct btrfs_root *root;
889         unsigned long nr_pages;
890
891         async_cow = container_of(work, struct async_cow, work);
892
893         root = async_cow->root;
894         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
895                 PAGE_CACHE_SHIFT;
896
897         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
898
899         if (atomic_read(&root->fs_info->async_delalloc_pages) <
900             5 * 1042 * 1024 &&
901             waitqueue_active(&root->fs_info->async_submit_wait))
902                 wake_up(&root->fs_info->async_submit_wait);
903
904         if (async_cow->inode)
905                 submit_compressed_extents(async_cow->inode, async_cow);
906 }
907
908 static noinline void async_cow_free(struct btrfs_work *work)
909 {
910         struct async_cow *async_cow;
911         async_cow = container_of(work, struct async_cow, work);
912         kfree(async_cow);
913 }
914
915 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
916                                 u64 start, u64 end, int *page_started,
917                                 unsigned long *nr_written)
918 {
919         struct async_cow *async_cow;
920         struct btrfs_root *root = BTRFS_I(inode)->root;
921         unsigned long nr_pages;
922         u64 cur_end;
923         int limit = 10 * 1024 * 1042;
924
925         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
926                          1, 0, NULL, GFP_NOFS);
927         while (start < end) {
928                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
929                 async_cow->inode = inode;
930                 async_cow->root = root;
931                 async_cow->locked_page = locked_page;
932                 async_cow->start = start;
933
934                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
935                         cur_end = end;
936                 else
937                         cur_end = min(end, start + 512 * 1024 - 1);
938
939                 async_cow->end = cur_end;
940                 INIT_LIST_HEAD(&async_cow->extents);
941
942                 async_cow->work.func = async_cow_start;
943                 async_cow->work.ordered_func = async_cow_submit;
944                 async_cow->work.ordered_free = async_cow_free;
945                 async_cow->work.flags = 0;
946
947                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
948                         PAGE_CACHE_SHIFT;
949                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
950
951                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
952                                    &async_cow->work);
953
954                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
955                         wait_event(root->fs_info->async_submit_wait,
956                            (atomic_read(&root->fs_info->async_delalloc_pages) <
957                             limit));
958                 }
959
960                 while (atomic_read(&root->fs_info->async_submit_draining) &&
961                       atomic_read(&root->fs_info->async_delalloc_pages)) {
962                         wait_event(root->fs_info->async_submit_wait,
963                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
964                            0));
965                 }
966
967                 *nr_written += nr_pages;
968                 start = cur_end + 1;
969         }
970         *page_started = 1;
971         return 0;
972 }
973
974 static noinline int csum_exist_in_range(struct btrfs_root *root,
975                                         u64 bytenr, u64 num_bytes)
976 {
977         int ret;
978         struct btrfs_ordered_sum *sums;
979         LIST_HEAD(list);
980
981         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
982                                        bytenr + num_bytes - 1, &list);
983         if (ret == 0 && list_empty(&list))
984                 return 0;
985
986         while (!list_empty(&list)) {
987                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
988                 list_del(&sums->list);
989                 kfree(sums);
990         }
991         return 1;
992 }
993
994 /*
995  * when nowcow writeback call back.  This checks for snapshots or COW copies
996  * of the extents that exist in the file, and COWs the file as required.
997  *
998  * If no cow copies or snapshots exist, we write directly to the existing
999  * blocks on disk
1000  */
1001 static noinline int run_delalloc_nocow(struct inode *inode,
1002                                        struct page *locked_page,
1003                               u64 start, u64 end, int *page_started, int force,
1004                               unsigned long *nr_written)
1005 {
1006         struct btrfs_root *root = BTRFS_I(inode)->root;
1007         struct btrfs_trans_handle *trans;
1008         struct extent_buffer *leaf;
1009         struct btrfs_path *path;
1010         struct btrfs_file_extent_item *fi;
1011         struct btrfs_key found_key;
1012         u64 cow_start;
1013         u64 cur_offset;
1014         u64 extent_end;
1015         u64 extent_offset;
1016         u64 disk_bytenr;
1017         u64 num_bytes;
1018         int extent_type;
1019         int ret;
1020         int type;
1021         int nocow;
1022         int check_prev = 1;
1023
1024         path = btrfs_alloc_path();
1025         BUG_ON(!path);
1026         trans = btrfs_join_transaction(root, 1);
1027         BUG_ON(!trans);
1028
1029         cow_start = (u64)-1;
1030         cur_offset = start;
1031         while (1) {
1032                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1033                                                cur_offset, 0);
1034                 BUG_ON(ret < 0);
1035                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1036                         leaf = path->nodes[0];
1037                         btrfs_item_key_to_cpu(leaf, &found_key,
1038                                               path->slots[0] - 1);
1039                         if (found_key.objectid == inode->i_ino &&
1040                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1041                                 path->slots[0]--;
1042                 }
1043                 check_prev = 0;
1044 next_slot:
1045                 leaf = path->nodes[0];
1046                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1047                         ret = btrfs_next_leaf(root, path);
1048                         if (ret < 0)
1049                                 BUG_ON(1);
1050                         if (ret > 0)
1051                                 break;
1052                         leaf = path->nodes[0];
1053                 }
1054
1055                 nocow = 0;
1056                 disk_bytenr = 0;
1057                 num_bytes = 0;
1058                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1059
1060                 if (found_key.objectid > inode->i_ino ||
1061                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1062                     found_key.offset > end)
1063                         break;
1064
1065                 if (found_key.offset > cur_offset) {
1066                         extent_end = found_key.offset;
1067                         extent_type = 0;
1068                         goto out_check;
1069                 }
1070
1071                 fi = btrfs_item_ptr(leaf, path->slots[0],
1072                                     struct btrfs_file_extent_item);
1073                 extent_type = btrfs_file_extent_type(leaf, fi);
1074
1075                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1076                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1077                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1078                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1079                         extent_end = found_key.offset +
1080                                 btrfs_file_extent_num_bytes(leaf, fi);
1081                         if (extent_end <= start) {
1082                                 path->slots[0]++;
1083                                 goto next_slot;
1084                         }
1085                         if (disk_bytenr == 0)
1086                                 goto out_check;
1087                         if (btrfs_file_extent_compression(leaf, fi) ||
1088                             btrfs_file_extent_encryption(leaf, fi) ||
1089                             btrfs_file_extent_other_encoding(leaf, fi))
1090                                 goto out_check;
1091                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1092                                 goto out_check;
1093                         if (btrfs_extent_readonly(root, disk_bytenr))
1094                                 goto out_check;
1095                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1096                                                   found_key.offset -
1097                                                   extent_offset, disk_bytenr))
1098                                 goto out_check;
1099                         disk_bytenr += extent_offset;
1100                         disk_bytenr += cur_offset - found_key.offset;
1101                         num_bytes = min(end + 1, extent_end) - cur_offset;
1102                         /*
1103                          * force cow if csum exists in the range.
1104                          * this ensure that csum for a given extent are
1105                          * either valid or do not exist.
1106                          */
1107                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1108                                 goto out_check;
1109                         nocow = 1;
1110                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1111                         extent_end = found_key.offset +
1112                                 btrfs_file_extent_inline_len(leaf, fi);
1113                         extent_end = ALIGN(extent_end, root->sectorsize);
1114                 } else {
1115                         BUG_ON(1);
1116                 }
1117 out_check:
1118                 if (extent_end <= start) {
1119                         path->slots[0]++;
1120                         goto next_slot;
1121                 }
1122                 if (!nocow) {
1123                         if (cow_start == (u64)-1)
1124                                 cow_start = cur_offset;
1125                         cur_offset = extent_end;
1126                         if (cur_offset > end)
1127                                 break;
1128                         path->slots[0]++;
1129                         goto next_slot;
1130                 }
1131
1132                 btrfs_release_path(root, path);
1133                 if (cow_start != (u64)-1) {
1134                         ret = cow_file_range(inode, locked_page, cow_start,
1135                                         found_key.offset - 1, page_started,
1136                                         nr_written, 1);
1137                         BUG_ON(ret);
1138                         cow_start = (u64)-1;
1139                 }
1140
1141                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1142                         struct extent_map *em;
1143                         struct extent_map_tree *em_tree;
1144                         em_tree = &BTRFS_I(inode)->extent_tree;
1145                         em = alloc_extent_map(GFP_NOFS);
1146                         em->start = cur_offset;
1147                         em->orig_start = em->start;
1148                         em->len = num_bytes;
1149                         em->block_len = num_bytes;
1150                         em->block_start = disk_bytenr;
1151                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1152                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1153                         while (1) {
1154                                 write_lock(&em_tree->lock);
1155                                 ret = add_extent_mapping(em_tree, em);
1156                                 write_unlock(&em_tree->lock);
1157                                 if (ret != -EEXIST) {
1158                                         free_extent_map(em);
1159                                         break;
1160                                 }
1161                                 btrfs_drop_extent_cache(inode, em->start,
1162                                                 em->start + em->len - 1, 0);
1163                         }
1164                         type = BTRFS_ORDERED_PREALLOC;
1165                 } else {
1166                         type = BTRFS_ORDERED_NOCOW;
1167                 }
1168
1169                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1170                                                num_bytes, num_bytes, type);
1171                 BUG_ON(ret);
1172
1173                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1174                                 cur_offset, cur_offset + num_bytes - 1,
1175                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1176                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1177                                 EXTENT_SET_PRIVATE2);
1178                 cur_offset = extent_end;
1179                 if (cur_offset > end)
1180                         break;
1181         }
1182         btrfs_release_path(root, path);
1183
1184         if (cur_offset <= end && cow_start == (u64)-1)
1185                 cow_start = cur_offset;
1186         if (cow_start != (u64)-1) {
1187                 ret = cow_file_range(inode, locked_page, cow_start, end,
1188                                      page_started, nr_written, 1);
1189                 BUG_ON(ret);
1190         }
1191
1192         ret = btrfs_end_transaction(trans, root);
1193         BUG_ON(ret);
1194         btrfs_free_path(path);
1195         return 0;
1196 }
1197
1198 /*
1199  * extent_io.c call back to do delayed allocation processing
1200  */
1201 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1202                               u64 start, u64 end, int *page_started,
1203                               unsigned long *nr_written)
1204 {
1205         int ret;
1206         struct btrfs_root *root = BTRFS_I(inode)->root;
1207
1208         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1209                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1210                                          page_started, 1, nr_written);
1211         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1212                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1213                                          page_started, 0, nr_written);
1214         else if (!btrfs_test_opt(root, COMPRESS))
1215                 ret = cow_file_range(inode, locked_page, start, end,
1216                                       page_started, nr_written, 1);
1217         else
1218                 ret = cow_file_range_async(inode, locked_page, start, end,
1219                                            page_started, nr_written);
1220         return ret;
1221 }
1222
1223 static int btrfs_split_extent_hook(struct inode *inode,
1224                                     struct extent_state *orig, u64 split)
1225 {
1226         struct btrfs_root *root = BTRFS_I(inode)->root;
1227         u64 size;
1228
1229         if (!(orig->state & EXTENT_DELALLOC))
1230                 return 0;
1231
1232         size = orig->end - orig->start + 1;
1233         if (size > root->fs_info->max_extent) {
1234                 u64 num_extents;
1235                 u64 new_size;
1236
1237                 new_size = orig->end - split + 1;
1238                 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1239                                         root->fs_info->max_extent);
1240
1241                 /*
1242                  * if we break a large extent up then leave oustanding_extents
1243                  * be, since we've already accounted for the large extent.
1244                  */
1245                 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1246                               root->fs_info->max_extent) < num_extents)
1247                         return 0;
1248         }
1249
1250         spin_lock(&BTRFS_I(inode)->accounting_lock);
1251         BTRFS_I(inode)->outstanding_extents++;
1252         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1253
1254         return 0;
1255 }
1256
1257 /*
1258  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1259  * extents so we can keep track of new extents that are just merged onto old
1260  * extents, such as when we are doing sequential writes, so we can properly
1261  * account for the metadata space we'll need.
1262  */
1263 static int btrfs_merge_extent_hook(struct inode *inode,
1264                                    struct extent_state *new,
1265                                    struct extent_state *other)
1266 {
1267         struct btrfs_root *root = BTRFS_I(inode)->root;
1268         u64 new_size, old_size;
1269         u64 num_extents;
1270
1271         /* not delalloc, ignore it */
1272         if (!(other->state & EXTENT_DELALLOC))
1273                 return 0;
1274
1275         old_size = other->end - other->start + 1;
1276         if (new->start < other->start)
1277                 new_size = other->end - new->start + 1;
1278         else
1279                 new_size = new->end - other->start + 1;
1280
1281         /* we're not bigger than the max, unreserve the space and go */
1282         if (new_size <= root->fs_info->max_extent) {
1283                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1284                 BTRFS_I(inode)->outstanding_extents--;
1285                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1286                 return 0;
1287         }
1288
1289         /*
1290          * If we grew by another max_extent, just return, we want to keep that
1291          * reserved amount.
1292          */
1293         num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1294                                 root->fs_info->max_extent);
1295         if (div64_u64(new_size + root->fs_info->max_extent - 1,
1296                       root->fs_info->max_extent) > num_extents)
1297                 return 0;
1298
1299         spin_lock(&BTRFS_I(inode)->accounting_lock);
1300         BTRFS_I(inode)->outstanding_extents--;
1301         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1302
1303         return 0;
1304 }
1305
1306 /*
1307  * extent_io.c set_bit_hook, used to track delayed allocation
1308  * bytes in this file, and to maintain the list of inodes that
1309  * have pending delalloc work to be done.
1310  */
1311 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1312                        unsigned long old, unsigned long bits)
1313 {
1314
1315         /*
1316          * set_bit and clear bit hooks normally require _irqsave/restore
1317          * but in this case, we are only testeing for the DELALLOC
1318          * bit, which is only set or cleared with irqs on
1319          */
1320         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1321                 struct btrfs_root *root = BTRFS_I(inode)->root;
1322
1323                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1324                 BTRFS_I(inode)->outstanding_extents++;
1325                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1326                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1327                 spin_lock(&root->fs_info->delalloc_lock);
1328                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1329                 root->fs_info->delalloc_bytes += end - start + 1;
1330                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1331                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1332                                       &root->fs_info->delalloc_inodes);
1333                 }
1334                 spin_unlock(&root->fs_info->delalloc_lock);
1335         }
1336         return 0;
1337 }
1338
1339 /*
1340  * extent_io.c clear_bit_hook, see set_bit_hook for why
1341  */
1342 static int btrfs_clear_bit_hook(struct inode *inode,
1343                                 struct extent_state *state, unsigned long bits)
1344 {
1345         /*
1346          * set_bit and clear bit hooks normally require _irqsave/restore
1347          * but in this case, we are only testeing for the DELALLOC
1348          * bit, which is only set or cleared with irqs on
1349          */
1350         if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1351                 struct btrfs_root *root = BTRFS_I(inode)->root;
1352
1353                 if (bits & EXTENT_DO_ACCOUNTING) {
1354                         spin_lock(&BTRFS_I(inode)->accounting_lock);
1355                         BTRFS_I(inode)->outstanding_extents--;
1356                         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1357                         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1358                 }
1359
1360                 spin_lock(&root->fs_info->delalloc_lock);
1361                 if (state->end - state->start + 1 >
1362                     root->fs_info->delalloc_bytes) {
1363                         printk(KERN_INFO "btrfs warning: delalloc account "
1364                                "%llu %llu\n",
1365                                (unsigned long long)
1366                                state->end - state->start + 1,
1367                                (unsigned long long)
1368                                root->fs_info->delalloc_bytes);
1369                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1370                         root->fs_info->delalloc_bytes = 0;
1371                         BTRFS_I(inode)->delalloc_bytes = 0;
1372                 } else {
1373                         btrfs_delalloc_free_space(root, inode,
1374                                                   state->end -
1375                                                   state->start + 1);
1376                         root->fs_info->delalloc_bytes -= state->end -
1377                                 state->start + 1;
1378                         BTRFS_I(inode)->delalloc_bytes -= state->end -
1379                                 state->start + 1;
1380                 }
1381                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1382                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1383                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1384                 }
1385                 spin_unlock(&root->fs_info->delalloc_lock);
1386         }
1387         return 0;
1388 }
1389
1390 /*
1391  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1392  * we don't create bios that span stripes or chunks
1393  */
1394 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1395                          size_t size, struct bio *bio,
1396                          unsigned long bio_flags)
1397 {
1398         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1399         struct btrfs_mapping_tree *map_tree;
1400         u64 logical = (u64)bio->bi_sector << 9;
1401         u64 length = 0;
1402         u64 map_length;
1403         int ret;
1404
1405         if (bio_flags & EXTENT_BIO_COMPRESSED)
1406                 return 0;
1407
1408         length = bio->bi_size;
1409         map_tree = &root->fs_info->mapping_tree;
1410         map_length = length;
1411         ret = btrfs_map_block(map_tree, READ, logical,
1412                               &map_length, NULL, 0);
1413
1414         if (map_length < length + size)
1415                 return 1;
1416         return 0;
1417 }
1418
1419 /*
1420  * in order to insert checksums into the metadata in large chunks,
1421  * we wait until bio submission time.   All the pages in the bio are
1422  * checksummed and sums are attached onto the ordered extent record.
1423  *
1424  * At IO completion time the cums attached on the ordered extent record
1425  * are inserted into the btree
1426  */
1427 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1428                                     struct bio *bio, int mirror_num,
1429                                     unsigned long bio_flags)
1430 {
1431         struct btrfs_root *root = BTRFS_I(inode)->root;
1432         int ret = 0;
1433
1434         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1435         BUG_ON(ret);
1436         return 0;
1437 }
1438
1439 /*
1440  * in order to insert checksums into the metadata in large chunks,
1441  * we wait until bio submission time.   All the pages in the bio are
1442  * checksummed and sums are attached onto the ordered extent record.
1443  *
1444  * At IO completion time the cums attached on the ordered extent record
1445  * are inserted into the btree
1446  */
1447 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1448                           int mirror_num, unsigned long bio_flags)
1449 {
1450         struct btrfs_root *root = BTRFS_I(inode)->root;
1451         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1452 }
1453
1454 /*
1455  * extent_io.c submission hook. This does the right thing for csum calculation
1456  * on write, or reading the csums from the tree before a read
1457  */
1458 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1459                           int mirror_num, unsigned long bio_flags)
1460 {
1461         struct btrfs_root *root = BTRFS_I(inode)->root;
1462         int ret = 0;
1463         int skip_sum;
1464
1465         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1466
1467         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1468         BUG_ON(ret);
1469
1470         if (!(rw & (1 << BIO_RW))) {
1471                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1472                         return btrfs_submit_compressed_read(inode, bio,
1473                                                     mirror_num, bio_flags);
1474                 } else if (!skip_sum)
1475                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1476                 goto mapit;
1477         } else if (!skip_sum) {
1478                 /* csum items have already been cloned */
1479                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1480                         goto mapit;
1481                 /* we're doing a write, do the async checksumming */
1482                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1483                                    inode, rw, bio, mirror_num,
1484                                    bio_flags, __btrfs_submit_bio_start,
1485                                    __btrfs_submit_bio_done);
1486         }
1487
1488 mapit:
1489         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1490 }
1491
1492 /*
1493  * given a list of ordered sums record them in the inode.  This happens
1494  * at IO completion time based on sums calculated at bio submission time.
1495  */
1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1497                              struct inode *inode, u64 file_offset,
1498                              struct list_head *list)
1499 {
1500         struct btrfs_ordered_sum *sum;
1501
1502         btrfs_set_trans_block_group(trans, inode);
1503
1504         list_for_each_entry(sum, list, list) {
1505                 btrfs_csum_file_blocks(trans,
1506                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1507         }
1508         return 0;
1509 }
1510
1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1512 {
1513         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1514                 WARN_ON(1);
1515         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1516                                    GFP_NOFS);
1517 }
1518
1519 /* see btrfs_writepage_start_hook for details on why this is required */
1520 struct btrfs_writepage_fixup {
1521         struct page *page;
1522         struct btrfs_work work;
1523 };
1524
1525 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1526 {
1527         struct btrfs_writepage_fixup *fixup;
1528         struct btrfs_ordered_extent *ordered;
1529         struct page *page;
1530         struct inode *inode;
1531         u64 page_start;
1532         u64 page_end;
1533
1534         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1535         page = fixup->page;
1536 again:
1537         lock_page(page);
1538         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1539                 ClearPageChecked(page);
1540                 goto out_page;
1541         }
1542
1543         inode = page->mapping->host;
1544         page_start = page_offset(page);
1545         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1546
1547         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1548
1549         /* already ordered? We're done */
1550         if (PagePrivate2(page))
1551                 goto out;
1552
1553         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1554         if (ordered) {
1555                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1556                               page_end, GFP_NOFS);
1557                 unlock_page(page);
1558                 btrfs_start_ordered_extent(inode, ordered, 1);
1559                 goto again;
1560         }
1561
1562         btrfs_set_extent_delalloc(inode, page_start, page_end);
1563         ClearPageChecked(page);
1564 out:
1565         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1566 out_page:
1567         unlock_page(page);
1568         page_cache_release(page);
1569 }
1570
1571 /*
1572  * There are a few paths in the higher layers of the kernel that directly
1573  * set the page dirty bit without asking the filesystem if it is a
1574  * good idea.  This causes problems because we want to make sure COW
1575  * properly happens and the data=ordered rules are followed.
1576  *
1577  * In our case any range that doesn't have the ORDERED bit set
1578  * hasn't been properly setup for IO.  We kick off an async process
1579  * to fix it up.  The async helper will wait for ordered extents, set
1580  * the delalloc bit and make it safe to write the page.
1581  */
1582 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1583 {
1584         struct inode *inode = page->mapping->host;
1585         struct btrfs_writepage_fixup *fixup;
1586         struct btrfs_root *root = BTRFS_I(inode)->root;
1587
1588         /* this page is properly in the ordered list */
1589         if (TestClearPagePrivate2(page))
1590                 return 0;
1591
1592         if (PageChecked(page))
1593                 return -EAGAIN;
1594
1595         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1596         if (!fixup)
1597                 return -EAGAIN;
1598
1599         SetPageChecked(page);
1600         page_cache_get(page);
1601         fixup->work.func = btrfs_writepage_fixup_worker;
1602         fixup->page = page;
1603         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1604         return -EAGAIN;
1605 }
1606
1607 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1608                                        struct inode *inode, u64 file_pos,
1609                                        u64 disk_bytenr, u64 disk_num_bytes,
1610                                        u64 num_bytes, u64 ram_bytes,
1611                                        u8 compression, u8 encryption,
1612                                        u16 other_encoding, int extent_type)
1613 {
1614         struct btrfs_root *root = BTRFS_I(inode)->root;
1615         struct btrfs_file_extent_item *fi;
1616         struct btrfs_path *path;
1617         struct extent_buffer *leaf;
1618         struct btrfs_key ins;
1619         u64 hint;
1620         int ret;
1621
1622         path = btrfs_alloc_path();
1623         BUG_ON(!path);
1624
1625         path->leave_spinning = 1;
1626
1627         /*
1628          * we may be replacing one extent in the tree with another.
1629          * The new extent is pinned in the extent map, and we don't want
1630          * to drop it from the cache until it is completely in the btree.
1631          *
1632          * So, tell btrfs_drop_extents to leave this extent in the cache.
1633          * the caller is expected to unpin it and allow it to be merged
1634          * with the others.
1635          */
1636         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1637                                  &hint, 0);
1638         BUG_ON(ret);
1639
1640         ins.objectid = inode->i_ino;
1641         ins.offset = file_pos;
1642         ins.type = BTRFS_EXTENT_DATA_KEY;
1643         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1644         BUG_ON(ret);
1645         leaf = path->nodes[0];
1646         fi = btrfs_item_ptr(leaf, path->slots[0],
1647                             struct btrfs_file_extent_item);
1648         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1649         btrfs_set_file_extent_type(leaf, fi, extent_type);
1650         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1651         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1652         btrfs_set_file_extent_offset(leaf, fi, 0);
1653         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1654         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1655         btrfs_set_file_extent_compression(leaf, fi, compression);
1656         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1657         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1658
1659         btrfs_unlock_up_safe(path, 1);
1660         btrfs_set_lock_blocking(leaf);
1661
1662         btrfs_mark_buffer_dirty(leaf);
1663
1664         inode_add_bytes(inode, num_bytes);
1665
1666         ins.objectid = disk_bytenr;
1667         ins.offset = disk_num_bytes;
1668         ins.type = BTRFS_EXTENT_ITEM_KEY;
1669         ret = btrfs_alloc_reserved_file_extent(trans, root,
1670                                         root->root_key.objectid,
1671                                         inode->i_ino, file_pos, &ins);
1672         BUG_ON(ret);
1673         btrfs_free_path(path);
1674
1675         return 0;
1676 }
1677
1678 /*
1679  * helper function for btrfs_finish_ordered_io, this
1680  * just reads in some of the csum leaves to prime them into ram
1681  * before we start the transaction.  It limits the amount of btree
1682  * reads required while inside the transaction.
1683  */
1684 static noinline void reada_csum(struct btrfs_root *root,
1685                                 struct btrfs_path *path,
1686                                 struct btrfs_ordered_extent *ordered_extent)
1687 {
1688         struct btrfs_ordered_sum *sum;
1689         u64 bytenr;
1690
1691         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1692                          list);
1693         bytenr = sum->sums[0].bytenr;
1694
1695         /*
1696          * we don't care about the results, the point of this search is
1697          * just to get the btree leaves into ram
1698          */
1699         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1700 }
1701
1702 /* as ordered data IO finishes, this gets called so we can finish
1703  * an ordered extent if the range of bytes in the file it covers are
1704  * fully written.
1705  */
1706 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1707 {
1708         struct btrfs_root *root = BTRFS_I(inode)->root;
1709         struct btrfs_trans_handle *trans;
1710         struct btrfs_ordered_extent *ordered_extent = NULL;
1711         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1712         struct btrfs_path *path;
1713         int compressed = 0;
1714         int ret;
1715
1716         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1717         if (!ret)
1718                 return 0;
1719
1720         /*
1721          * before we join the transaction, try to do some of our IO.
1722          * This will limit the amount of IO that we have to do with
1723          * the transaction running.  We're unlikely to need to do any
1724          * IO if the file extents are new, the disk_i_size checks
1725          * covers the most common case.
1726          */
1727         if (start < BTRFS_I(inode)->disk_i_size) {
1728                 path = btrfs_alloc_path();
1729                 if (path) {
1730                         ret = btrfs_lookup_file_extent(NULL, root, path,
1731                                                        inode->i_ino,
1732                                                        start, 0);
1733                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1734                                                                      start);
1735                         if (!list_empty(&ordered_extent->list)) {
1736                                 btrfs_release_path(root, path);
1737                                 reada_csum(root, path, ordered_extent);
1738                         }
1739                         btrfs_free_path(path);
1740                 }
1741         }
1742
1743         if (!ordered_extent)
1744                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1745         BUG_ON(!ordered_extent);
1746         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1747                 BUG_ON(!list_empty(&ordered_extent->list));
1748                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1749                 if (!ret) {
1750                         trans = btrfs_join_transaction(root, 1);
1751                         ret = btrfs_update_inode(trans, root, inode);
1752                         BUG_ON(ret);
1753                         btrfs_end_transaction(trans, root);
1754                 }
1755                 goto out;
1756         }
1757
1758         lock_extent(io_tree, ordered_extent->file_offset,
1759                     ordered_extent->file_offset + ordered_extent->len - 1,
1760                     GFP_NOFS);
1761
1762         trans = btrfs_join_transaction(root, 1);
1763
1764         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1765                 compressed = 1;
1766         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1767                 BUG_ON(compressed);
1768                 ret = btrfs_mark_extent_written(trans, inode,
1769                                                 ordered_extent->file_offset,
1770                                                 ordered_extent->file_offset +
1771                                                 ordered_extent->len);
1772                 BUG_ON(ret);
1773         } else {
1774                 ret = insert_reserved_file_extent(trans, inode,
1775                                                 ordered_extent->file_offset,
1776                                                 ordered_extent->start,
1777                                                 ordered_extent->disk_len,
1778                                                 ordered_extent->len,
1779                                                 ordered_extent->len,
1780                                                 compressed, 0, 0,
1781                                                 BTRFS_FILE_EXTENT_REG);
1782                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1783                                    ordered_extent->file_offset,
1784                                    ordered_extent->len);
1785                 BUG_ON(ret);
1786         }
1787         unlock_extent(io_tree, ordered_extent->file_offset,
1788                     ordered_extent->file_offset + ordered_extent->len - 1,
1789                     GFP_NOFS);
1790         add_pending_csums(trans, inode, ordered_extent->file_offset,
1791                           &ordered_extent->list);
1792
1793         /* this also removes the ordered extent from the tree */
1794         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1795         ret = btrfs_update_inode(trans, root, inode);
1796         BUG_ON(ret);
1797         btrfs_end_transaction(trans, root);
1798 out:
1799         /* once for us */
1800         btrfs_put_ordered_extent(ordered_extent);
1801         /* once for the tree */
1802         btrfs_put_ordered_extent(ordered_extent);
1803
1804         return 0;
1805 }
1806
1807 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1808                                 struct extent_state *state, int uptodate)
1809 {
1810         ClearPagePrivate2(page);
1811         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1812 }
1813
1814 /*
1815  * When IO fails, either with EIO or csum verification fails, we
1816  * try other mirrors that might have a good copy of the data.  This
1817  * io_failure_record is used to record state as we go through all the
1818  * mirrors.  If another mirror has good data, the page is set up to date
1819  * and things continue.  If a good mirror can't be found, the original
1820  * bio end_io callback is called to indicate things have failed.
1821  */
1822 struct io_failure_record {
1823         struct page *page;
1824         u64 start;
1825         u64 len;
1826         u64 logical;
1827         unsigned long bio_flags;
1828         int last_mirror;
1829 };
1830
1831 static int btrfs_io_failed_hook(struct bio *failed_bio,
1832                          struct page *page, u64 start, u64 end,
1833                          struct extent_state *state)
1834 {
1835         struct io_failure_record *failrec = NULL;
1836         u64 private;
1837         struct extent_map *em;
1838         struct inode *inode = page->mapping->host;
1839         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1840         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1841         struct bio *bio;
1842         int num_copies;
1843         int ret;
1844         int rw;
1845         u64 logical;
1846
1847         ret = get_state_private(failure_tree, start, &private);
1848         if (ret) {
1849                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1850                 if (!failrec)
1851                         return -ENOMEM;
1852                 failrec->start = start;
1853                 failrec->len = end - start + 1;
1854                 failrec->last_mirror = 0;
1855                 failrec->bio_flags = 0;
1856
1857                 read_lock(&em_tree->lock);
1858                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1859                 if (em->start > start || em->start + em->len < start) {
1860                         free_extent_map(em);
1861                         em = NULL;
1862                 }
1863                 read_unlock(&em_tree->lock);
1864
1865                 if (!em || IS_ERR(em)) {
1866                         kfree(failrec);
1867                         return -EIO;
1868                 }
1869                 logical = start - em->start;
1870                 logical = em->block_start + logical;
1871                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1872                         logical = em->block_start;
1873                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1874                 }
1875                 failrec->logical = logical;
1876                 free_extent_map(em);
1877                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1878                                 EXTENT_DIRTY, GFP_NOFS);
1879                 set_state_private(failure_tree, start,
1880                                  (u64)(unsigned long)failrec);
1881         } else {
1882                 failrec = (struct io_failure_record *)(unsigned long)private;
1883         }
1884         num_copies = btrfs_num_copies(
1885                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1886                               failrec->logical, failrec->len);
1887         failrec->last_mirror++;
1888         if (!state) {
1889                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1890                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1891                                                     failrec->start,
1892                                                     EXTENT_LOCKED);
1893                 if (state && state->start != failrec->start)
1894                         state = NULL;
1895                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1896         }
1897         if (!state || failrec->last_mirror > num_copies) {
1898                 set_state_private(failure_tree, failrec->start, 0);
1899                 clear_extent_bits(failure_tree, failrec->start,
1900                                   failrec->start + failrec->len - 1,
1901                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1902                 kfree(failrec);
1903                 return -EIO;
1904         }
1905         bio = bio_alloc(GFP_NOFS, 1);
1906         bio->bi_private = state;
1907         bio->bi_end_io = failed_bio->bi_end_io;
1908         bio->bi_sector = failrec->logical >> 9;
1909         bio->bi_bdev = failed_bio->bi_bdev;
1910         bio->bi_size = 0;
1911
1912         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1913         if (failed_bio->bi_rw & (1 << BIO_RW))
1914                 rw = WRITE;
1915         else
1916                 rw = READ;
1917
1918         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1919                                                       failrec->last_mirror,
1920                                                       failrec->bio_flags);
1921         return 0;
1922 }
1923
1924 /*
1925  * each time an IO finishes, we do a fast check in the IO failure tree
1926  * to see if we need to process or clean up an io_failure_record
1927  */
1928 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1929 {
1930         u64 private;
1931         u64 private_failure;
1932         struct io_failure_record *failure;
1933         int ret;
1934
1935         private = 0;
1936         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1937                              (u64)-1, 1, EXTENT_DIRTY)) {
1938                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1939                                         start, &private_failure);
1940                 if (ret == 0) {
1941                         failure = (struct io_failure_record *)(unsigned long)
1942                                    private_failure;
1943                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1944                                           failure->start, 0);
1945                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1946                                           failure->start,
1947                                           failure->start + failure->len - 1,
1948                                           EXTENT_DIRTY | EXTENT_LOCKED,
1949                                           GFP_NOFS);
1950                         kfree(failure);
1951                 }
1952         }
1953         return 0;
1954 }
1955
1956 /*
1957  * when reads are done, we need to check csums to verify the data is correct
1958  * if there's a match, we allow the bio to finish.  If not, we go through
1959  * the io_failure_record routines to find good copies
1960  */
1961 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1962                                struct extent_state *state)
1963 {
1964         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1965         struct inode *inode = page->mapping->host;
1966         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1967         char *kaddr;
1968         u64 private = ~(u32)0;
1969         int ret;
1970         struct btrfs_root *root = BTRFS_I(inode)->root;
1971         u32 csum = ~(u32)0;
1972
1973         if (PageChecked(page)) {
1974                 ClearPageChecked(page);
1975                 goto good;
1976         }
1977
1978         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1979                 return 0;
1980
1981         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1982             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1983                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1984                                   GFP_NOFS);
1985                 return 0;
1986         }
1987
1988         if (state && state->start == start) {
1989                 private = state->private;
1990                 ret = 0;
1991         } else {
1992                 ret = get_state_private(io_tree, start, &private);
1993         }
1994         kaddr = kmap_atomic(page, KM_USER0);
1995         if (ret)
1996                 goto zeroit;
1997
1998         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1999         btrfs_csum_final(csum, (char *)&csum);
2000         if (csum != private)
2001                 goto zeroit;
2002
2003         kunmap_atomic(kaddr, KM_USER0);
2004 good:
2005         /* if the io failure tree for this inode is non-empty,
2006          * check to see if we've recovered from a failed IO
2007          */
2008         btrfs_clean_io_failures(inode, start);
2009         return 0;
2010
2011 zeroit:
2012         if (printk_ratelimit()) {
2013                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2014                        "private %llu\n", page->mapping->host->i_ino,
2015                        (unsigned long long)start, csum,
2016                        (unsigned long long)private);
2017         }
2018         memset(kaddr + offset, 1, end - start + 1);
2019         flush_dcache_page(page);
2020         kunmap_atomic(kaddr, KM_USER0);
2021         if (private == 0)
2022                 return 0;
2023         return -EIO;
2024 }
2025
2026 struct delayed_iput {
2027         struct list_head list;
2028         struct inode *inode;
2029 };
2030
2031 void btrfs_add_delayed_iput(struct inode *inode)
2032 {
2033         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2034         struct delayed_iput *delayed;
2035
2036         if (atomic_add_unless(&inode->i_count, -1, 1))
2037                 return;
2038
2039         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2040         delayed->inode = inode;
2041
2042         spin_lock(&fs_info->delayed_iput_lock);
2043         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2044         spin_unlock(&fs_info->delayed_iput_lock);
2045 }
2046
2047 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2048 {
2049         LIST_HEAD(list);
2050         struct btrfs_fs_info *fs_info = root->fs_info;
2051         struct delayed_iput *delayed;
2052         int empty;
2053
2054         spin_lock(&fs_info->delayed_iput_lock);
2055         empty = list_empty(&fs_info->delayed_iputs);
2056         spin_unlock(&fs_info->delayed_iput_lock);
2057         if (empty)
2058                 return;
2059
2060         down_read(&root->fs_info->cleanup_work_sem);
2061         spin_lock(&fs_info->delayed_iput_lock);
2062         list_splice_init(&fs_info->delayed_iputs, &list);
2063         spin_unlock(&fs_info->delayed_iput_lock);
2064
2065         while (!list_empty(&list)) {
2066                 delayed = list_entry(list.next, struct delayed_iput, list);
2067                 list_del(&delayed->list);
2068                 iput(delayed->inode);
2069                 kfree(delayed);
2070         }
2071         up_read(&root->fs_info->cleanup_work_sem);
2072 }
2073
2074 /*
2075  * This creates an orphan entry for the given inode in case something goes
2076  * wrong in the middle of an unlink/truncate.
2077  */
2078 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2079 {
2080         struct btrfs_root *root = BTRFS_I(inode)->root;
2081         int ret = 0;
2082
2083         spin_lock(&root->list_lock);
2084
2085         /* already on the orphan list, we're good */
2086         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2087                 spin_unlock(&root->list_lock);
2088                 return 0;
2089         }
2090
2091         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2092
2093         spin_unlock(&root->list_lock);
2094
2095         /*
2096          * insert an orphan item to track this unlinked/truncated file
2097          */
2098         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2099
2100         return ret;
2101 }
2102
2103 /*
2104  * We have done the truncate/delete so we can go ahead and remove the orphan
2105  * item for this particular inode.
2106  */
2107 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2108 {
2109         struct btrfs_root *root = BTRFS_I(inode)->root;
2110         int ret = 0;
2111
2112         spin_lock(&root->list_lock);
2113
2114         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2115                 spin_unlock(&root->list_lock);
2116                 return 0;
2117         }
2118
2119         list_del_init(&BTRFS_I(inode)->i_orphan);
2120         if (!trans) {
2121                 spin_unlock(&root->list_lock);
2122                 return 0;
2123         }
2124
2125         spin_unlock(&root->list_lock);
2126
2127         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2128
2129         return ret;
2130 }
2131
2132 /*
2133  * this cleans up any orphans that may be left on the list from the last use
2134  * of this root.
2135  */
2136 void btrfs_orphan_cleanup(struct btrfs_root *root)
2137 {
2138         struct btrfs_path *path;
2139         struct extent_buffer *leaf;
2140         struct btrfs_item *item;
2141         struct btrfs_key key, found_key;
2142         struct btrfs_trans_handle *trans;
2143         struct inode *inode;
2144         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2145
2146         if (!xchg(&root->clean_orphans, 0))
2147                 return;
2148
2149         path = btrfs_alloc_path();
2150         BUG_ON(!path);
2151         path->reada = -1;
2152
2153         key.objectid = BTRFS_ORPHAN_OBJECTID;
2154         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2155         key.offset = (u64)-1;
2156
2157         while (1) {
2158                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2159                 if (ret < 0) {
2160                         printk(KERN_ERR "Error searching slot for orphan: %d"
2161                                "\n", ret);
2162                         break;
2163                 }
2164
2165                 /*
2166                  * if ret == 0 means we found what we were searching for, which
2167                  * is weird, but possible, so only screw with path if we didnt
2168                  * find the key and see if we have stuff that matches
2169                  */
2170                 if (ret > 0) {
2171                         if (path->slots[0] == 0)
2172                                 break;
2173                         path->slots[0]--;
2174                 }
2175
2176                 /* pull out the item */
2177                 leaf = path->nodes[0];
2178                 item = btrfs_item_nr(leaf, path->slots[0]);
2179                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2180
2181                 /* make sure the item matches what we want */
2182                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2183                         break;
2184                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2185                         break;
2186
2187                 /* release the path since we're done with it */
2188                 btrfs_release_path(root, path);
2189
2190                 /*
2191                  * this is where we are basically btrfs_lookup, without the
2192                  * crossing root thing.  we store the inode number in the
2193                  * offset of the orphan item.
2194                  */
2195                 found_key.objectid = found_key.offset;
2196                 found_key.type = BTRFS_INODE_ITEM_KEY;
2197                 found_key.offset = 0;
2198                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2199                 if (IS_ERR(inode))
2200                         break;
2201
2202                 /*
2203                  * add this inode to the orphan list so btrfs_orphan_del does
2204                  * the proper thing when we hit it
2205                  */
2206                 spin_lock(&root->list_lock);
2207                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2208                 spin_unlock(&root->list_lock);
2209
2210                 /*
2211                  * if this is a bad inode, means we actually succeeded in
2212                  * removing the inode, but not the orphan record, which means
2213                  * we need to manually delete the orphan since iput will just
2214                  * do a destroy_inode
2215                  */
2216                 if (is_bad_inode(inode)) {
2217                         trans = btrfs_start_transaction(root, 1);
2218                         btrfs_orphan_del(trans, inode);
2219                         btrfs_end_transaction(trans, root);
2220                         iput(inode);
2221                         continue;
2222                 }
2223
2224                 /* if we have links, this was a truncate, lets do that */
2225                 if (inode->i_nlink) {
2226                         nr_truncate++;
2227                         btrfs_truncate(inode);
2228                 } else {
2229                         nr_unlink++;
2230                 }
2231
2232                 /* this will do delete_inode and everything for us */
2233                 iput(inode);
2234         }
2235
2236         if (nr_unlink)
2237                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2238         if (nr_truncate)
2239                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2240
2241         btrfs_free_path(path);
2242 }
2243
2244 /*
2245  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2246  * don't find any xattrs, we know there can't be any acls.
2247  *
2248  * slot is the slot the inode is in, objectid is the objectid of the inode
2249  */
2250 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2251                                           int slot, u64 objectid)
2252 {
2253         u32 nritems = btrfs_header_nritems(leaf);
2254         struct btrfs_key found_key;
2255         int scanned = 0;
2256
2257         slot++;
2258         while (slot < nritems) {
2259                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2260
2261                 /* we found a different objectid, there must not be acls */
2262                 if (found_key.objectid != objectid)
2263                         return 0;
2264
2265                 /* we found an xattr, assume we've got an acl */
2266                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2267                         return 1;
2268
2269                 /*
2270                  * we found a key greater than an xattr key, there can't
2271                  * be any acls later on
2272                  */
2273                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2274                         return 0;
2275
2276                 slot++;
2277                 scanned++;
2278
2279                 /*
2280                  * it goes inode, inode backrefs, xattrs, extents,
2281                  * so if there are a ton of hard links to an inode there can
2282                  * be a lot of backrefs.  Don't waste time searching too hard,
2283                  * this is just an optimization
2284                  */
2285                 if (scanned >= 8)
2286                         break;
2287         }
2288         /* we hit the end of the leaf before we found an xattr or
2289          * something larger than an xattr.  We have to assume the inode
2290          * has acls
2291          */
2292         return 1;
2293 }
2294
2295 /*
2296  * read an inode from the btree into the in-memory inode
2297  */
2298 static void btrfs_read_locked_inode(struct inode *inode)
2299 {
2300         struct btrfs_path *path;
2301         struct extent_buffer *leaf;
2302         struct btrfs_inode_item *inode_item;
2303         struct btrfs_timespec *tspec;
2304         struct btrfs_root *root = BTRFS_I(inode)->root;
2305         struct btrfs_key location;
2306         int maybe_acls;
2307         u64 alloc_group_block;
2308         u32 rdev;
2309         int ret;
2310
2311         path = btrfs_alloc_path();
2312         BUG_ON(!path);
2313         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2314
2315         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2316         if (ret)
2317                 goto make_bad;
2318
2319         leaf = path->nodes[0];
2320         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2321                                     struct btrfs_inode_item);
2322
2323         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2324         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2325         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2326         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2327         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2328
2329         tspec = btrfs_inode_atime(inode_item);
2330         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2331         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2332
2333         tspec = btrfs_inode_mtime(inode_item);
2334         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2335         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2336
2337         tspec = btrfs_inode_ctime(inode_item);
2338         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2339         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2340
2341         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2342         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2343         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2344         inode->i_generation = BTRFS_I(inode)->generation;
2345         inode->i_rdev = 0;
2346         rdev = btrfs_inode_rdev(leaf, inode_item);
2347
2348         BTRFS_I(inode)->index_cnt = (u64)-1;
2349         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2350
2351         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2352
2353         /*
2354          * try to precache a NULL acl entry for files that don't have
2355          * any xattrs or acls
2356          */
2357         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2358         if (!maybe_acls)
2359                 cache_no_acl(inode);
2360
2361         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2362                                                 alloc_group_block, 0);
2363         btrfs_free_path(path);
2364         inode_item = NULL;
2365
2366         switch (inode->i_mode & S_IFMT) {
2367         case S_IFREG:
2368                 inode->i_mapping->a_ops = &btrfs_aops;
2369                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2370                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2371                 inode->i_fop = &btrfs_file_operations;
2372                 inode->i_op = &btrfs_file_inode_operations;
2373                 break;
2374         case S_IFDIR:
2375                 inode->i_fop = &btrfs_dir_file_operations;
2376                 if (root == root->fs_info->tree_root)
2377                         inode->i_op = &btrfs_dir_ro_inode_operations;
2378                 else
2379                         inode->i_op = &btrfs_dir_inode_operations;
2380                 break;
2381         case S_IFLNK:
2382                 inode->i_op = &btrfs_symlink_inode_operations;
2383                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2384                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2385                 break;
2386         default:
2387                 inode->i_op = &btrfs_special_inode_operations;
2388                 init_special_inode(inode, inode->i_mode, rdev);
2389                 break;
2390         }
2391
2392         btrfs_update_iflags(inode);
2393         return;
2394
2395 make_bad:
2396         btrfs_free_path(path);
2397         make_bad_inode(inode);
2398 }
2399
2400 /*
2401  * given a leaf and an inode, copy the inode fields into the leaf
2402  */
2403 static void fill_inode_item(struct btrfs_trans_handle *trans,
2404                             struct extent_buffer *leaf,
2405                             struct btrfs_inode_item *item,
2406                             struct inode *inode)
2407 {
2408         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2409         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2410         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2411         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2412         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2413
2414         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2415                                inode->i_atime.tv_sec);
2416         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2417                                 inode->i_atime.tv_nsec);
2418
2419         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2420                                inode->i_mtime.tv_sec);
2421         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2422                                 inode->i_mtime.tv_nsec);
2423
2424         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2425                                inode->i_ctime.tv_sec);
2426         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2427                                 inode->i_ctime.tv_nsec);
2428
2429         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2430         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2431         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2432         btrfs_set_inode_transid(leaf, item, trans->transid);
2433         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2434         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2435         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2436 }
2437
2438 /*
2439  * copy everything in the in-memory inode into the btree.
2440  */
2441 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2442                                 struct btrfs_root *root, struct inode *inode)
2443 {
2444         struct btrfs_inode_item *inode_item;
2445         struct btrfs_path *path;
2446         struct extent_buffer *leaf;
2447         int ret;
2448
2449         path = btrfs_alloc_path();
2450         BUG_ON(!path);
2451         path->leave_spinning = 1;
2452         ret = btrfs_lookup_inode(trans, root, path,
2453                                  &BTRFS_I(inode)->location, 1);
2454         if (ret) {
2455                 if (ret > 0)
2456                         ret = -ENOENT;
2457                 goto failed;
2458         }
2459
2460         btrfs_unlock_up_safe(path, 1);
2461         leaf = path->nodes[0];
2462         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2463                                   struct btrfs_inode_item);
2464
2465         fill_inode_item(trans, leaf, inode_item, inode);
2466         btrfs_mark_buffer_dirty(leaf);
2467         btrfs_set_inode_last_trans(trans, inode);
2468         ret = 0;
2469 failed:
2470         btrfs_free_path(path);
2471         return ret;
2472 }
2473
2474
2475 /*
2476  * unlink helper that gets used here in inode.c and in the tree logging
2477  * recovery code.  It remove a link in a directory with a given name, and
2478  * also drops the back refs in the inode to the directory
2479  */
2480 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2481                        struct btrfs_root *root,
2482                        struct inode *dir, struct inode *inode,
2483                        const char *name, int name_len)
2484 {
2485         struct btrfs_path *path;
2486         int ret = 0;
2487         struct extent_buffer *leaf;
2488         struct btrfs_dir_item *di;
2489         struct btrfs_key key;
2490         u64 index;
2491
2492         path = btrfs_alloc_path();
2493         if (!path) {
2494                 ret = -ENOMEM;
2495                 goto err;
2496         }
2497
2498         path->leave_spinning = 1;
2499         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2500                                     name, name_len, -1);
2501         if (IS_ERR(di)) {
2502                 ret = PTR_ERR(di);
2503                 goto err;
2504         }
2505         if (!di) {
2506                 ret = -ENOENT;
2507                 goto err;
2508         }
2509         leaf = path->nodes[0];
2510         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2511         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2512         if (ret)
2513                 goto err;
2514         btrfs_release_path(root, path);
2515
2516         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2517                                   inode->i_ino,
2518                                   dir->i_ino, &index);
2519         if (ret) {
2520                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2521                        "inode %lu parent %lu\n", name_len, name,
2522                        inode->i_ino, dir->i_ino);
2523                 goto err;
2524         }
2525
2526         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2527                                          index, name, name_len, -1);
2528         if (IS_ERR(di)) {
2529                 ret = PTR_ERR(di);
2530                 goto err;
2531         }
2532         if (!di) {
2533                 ret = -ENOENT;
2534                 goto err;
2535         }
2536         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2537         btrfs_release_path(root, path);
2538
2539         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2540                                          inode, dir->i_ino);
2541         BUG_ON(ret != 0 && ret != -ENOENT);
2542
2543         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2544                                            dir, index);
2545         BUG_ON(ret);
2546 err:
2547         btrfs_free_path(path);
2548         if (ret)
2549                 goto out;
2550
2551         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2552         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2553         btrfs_update_inode(trans, root, dir);
2554         btrfs_drop_nlink(inode);
2555         ret = btrfs_update_inode(trans, root, inode);
2556 out:
2557         return ret;
2558 }
2559
2560 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2561 {
2562         struct btrfs_root *root;
2563         struct btrfs_trans_handle *trans;
2564         struct inode *inode = dentry->d_inode;
2565         int ret;
2566         unsigned long nr = 0;
2567
2568         root = BTRFS_I(dir)->root;
2569
2570         /*
2571          * 5 items for unlink inode
2572          * 1 for orphan
2573          */
2574         ret = btrfs_reserve_metadata_space(root, 6);
2575         if (ret)
2576                 return ret;
2577
2578         trans = btrfs_start_transaction(root, 1);
2579         if (IS_ERR(trans)) {
2580                 btrfs_unreserve_metadata_space(root, 6);
2581                 return PTR_ERR(trans);
2582         }
2583
2584         btrfs_set_trans_block_group(trans, dir);
2585
2586         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2587
2588         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2589                                  dentry->d_name.name, dentry->d_name.len);
2590
2591         if (inode->i_nlink == 0)
2592                 ret = btrfs_orphan_add(trans, inode);
2593
2594         nr = trans->blocks_used;
2595
2596         btrfs_end_transaction_throttle(trans, root);
2597         btrfs_unreserve_metadata_space(root, 6);
2598         btrfs_btree_balance_dirty(root, nr);
2599         return ret;
2600 }
2601
2602 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2603                         struct btrfs_root *root,
2604                         struct inode *dir, u64 objectid,
2605                         const char *name, int name_len)
2606 {
2607         struct btrfs_path *path;
2608         struct extent_buffer *leaf;
2609         struct btrfs_dir_item *di;
2610         struct btrfs_key key;
2611         u64 index;
2612         int ret;
2613
2614         path = btrfs_alloc_path();
2615         if (!path)
2616                 return -ENOMEM;
2617
2618         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2619                                    name, name_len, -1);
2620         BUG_ON(!di || IS_ERR(di));
2621
2622         leaf = path->nodes[0];
2623         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2624         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2625         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2626         BUG_ON(ret);
2627         btrfs_release_path(root, path);
2628
2629         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2630                                  objectid, root->root_key.objectid,
2631                                  dir->i_ino, &index, name, name_len);
2632         if (ret < 0) {
2633                 BUG_ON(ret != -ENOENT);
2634                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2635                                                  name, name_len);
2636                 BUG_ON(!di || IS_ERR(di));
2637
2638                 leaf = path->nodes[0];
2639                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2640                 btrfs_release_path(root, path);
2641                 index = key.offset;
2642         }
2643
2644         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2645                                          index, name, name_len, -1);
2646         BUG_ON(!di || IS_ERR(di));
2647
2648         leaf = path->nodes[0];
2649         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2650         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2651         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2652         BUG_ON(ret);
2653         btrfs_release_path(root, path);
2654
2655         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2656         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2657         ret = btrfs_update_inode(trans, root, dir);
2658         BUG_ON(ret);
2659         dir->i_sb->s_dirt = 1;
2660
2661         btrfs_free_path(path);
2662         return 0;
2663 }
2664
2665 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2666 {
2667         struct inode *inode = dentry->d_inode;
2668         int err = 0;
2669         int ret;
2670         struct btrfs_root *root = BTRFS_I(dir)->root;
2671         struct btrfs_trans_handle *trans;
2672         unsigned long nr = 0;
2673
2674         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2675             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2676                 return -ENOTEMPTY;
2677
2678         ret = btrfs_reserve_metadata_space(root, 5);
2679         if (ret)
2680                 return ret;
2681
2682         trans = btrfs_start_transaction(root, 1);
2683         if (IS_ERR(trans)) {
2684                 btrfs_unreserve_metadata_space(root, 5);
2685                 return PTR_ERR(trans);
2686         }
2687
2688         btrfs_set_trans_block_group(trans, dir);
2689
2690         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2691                 err = btrfs_unlink_subvol(trans, root, dir,
2692                                           BTRFS_I(inode)->location.objectid,
2693                                           dentry->d_name.name,
2694                                           dentry->d_name.len);
2695                 goto out;
2696         }
2697
2698         err = btrfs_orphan_add(trans, inode);
2699         if (err)
2700                 goto out;
2701
2702         /* now the directory is empty */
2703         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2704                                  dentry->d_name.name, dentry->d_name.len);
2705         if (!err)
2706                 btrfs_i_size_write(inode, 0);
2707 out:
2708         nr = trans->blocks_used;
2709         ret = btrfs_end_transaction_throttle(trans, root);
2710         btrfs_unreserve_metadata_space(root, 5);
2711         btrfs_btree_balance_dirty(root, nr);
2712
2713         if (ret && !err)
2714                 err = ret;
2715         return err;
2716 }
2717
2718 #if 0
2719 /*
2720  * when truncating bytes in a file, it is possible to avoid reading
2721  * the leaves that contain only checksum items.  This can be the
2722  * majority of the IO required to delete a large file, but it must
2723  * be done carefully.
2724  *
2725  * The keys in the level just above the leaves are checked to make sure
2726  * the lowest key in a given leaf is a csum key, and starts at an offset
2727  * after the new  size.
2728  *
2729  * Then the key for the next leaf is checked to make sure it also has
2730  * a checksum item for the same file.  If it does, we know our target leaf
2731  * contains only checksum items, and it can be safely freed without reading
2732  * it.
2733  *
2734  * This is just an optimization targeted at large files.  It may do
2735  * nothing.  It will return 0 unless things went badly.
2736  */
2737 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2738                                      struct btrfs_root *root,
2739                                      struct btrfs_path *path,
2740                                      struct inode *inode, u64 new_size)
2741 {
2742         struct btrfs_key key;
2743         int ret;
2744         int nritems;
2745         struct btrfs_key found_key;
2746         struct btrfs_key other_key;
2747         struct btrfs_leaf_ref *ref;
2748         u64 leaf_gen;
2749         u64 leaf_start;
2750
2751         path->lowest_level = 1;
2752         key.objectid = inode->i_ino;
2753         key.type = BTRFS_CSUM_ITEM_KEY;
2754         key.offset = new_size;
2755 again:
2756         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2757         if (ret < 0)
2758                 goto out;
2759
2760         if (path->nodes[1] == NULL) {
2761                 ret = 0;
2762                 goto out;
2763         }
2764         ret = 0;
2765         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2766         nritems = btrfs_header_nritems(path->nodes[1]);
2767
2768         if (!nritems)
2769                 goto out;
2770
2771         if (path->slots[1] >= nritems)
2772                 goto next_node;
2773
2774         /* did we find a key greater than anything we want to delete? */
2775         if (found_key.objectid > inode->i_ino ||
2776            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2777                 goto out;
2778
2779         /* we check the next key in the node to make sure the leave contains
2780          * only checksum items.  This comparison doesn't work if our
2781          * leaf is the last one in the node
2782          */
2783         if (path->slots[1] + 1 >= nritems) {
2784 next_node:
2785                 /* search forward from the last key in the node, this
2786                  * will bring us into the next node in the tree
2787                  */
2788                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2789
2790                 /* unlikely, but we inc below, so check to be safe */
2791                 if (found_key.offset == (u64)-1)
2792                         goto out;
2793
2794                 /* search_forward needs a path with locks held, do the
2795                  * search again for the original key.  It is possible
2796                  * this will race with a balance and return a path that
2797                  * we could modify, but this drop is just an optimization
2798                  * and is allowed to miss some leaves.
2799                  */
2800                 btrfs_release_path(root, path);
2801                 found_key.offset++;
2802
2803                 /* setup a max key for search_forward */
2804                 other_key.offset = (u64)-1;
2805                 other_key.type = key.type;
2806                 other_key.objectid = key.objectid;
2807
2808                 path->keep_locks = 1;
2809                 ret = btrfs_search_forward(root, &found_key, &other_key,
2810                                            path, 0, 0);
2811                 path->keep_locks = 0;
2812                 if (ret || found_key.objectid != key.objectid ||
2813                     found_key.type != key.type) {
2814                         ret = 0;
2815                         goto out;
2816                 }
2817
2818                 key.offset = found_key.offset;
2819                 btrfs_release_path(root, path);
2820                 cond_resched();
2821                 goto again;
2822         }
2823
2824         /* we know there's one more slot after us in the tree,
2825          * read that key so we can verify it is also a checksum item
2826          */
2827         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2828
2829         if (found_key.objectid < inode->i_ino)
2830                 goto next_key;
2831
2832         if (found_key.type != key.type || found_key.offset < new_size)
2833                 goto next_key;
2834
2835         /*
2836          * if the key for the next leaf isn't a csum key from this objectid,
2837          * we can't be sure there aren't good items inside this leaf.
2838          * Bail out
2839          */
2840         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2841                 goto out;
2842
2843         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2844         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2845         /*
2846          * it is safe to delete this leaf, it contains only
2847          * csum items from this inode at an offset >= new_size
2848          */
2849         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2850         BUG_ON(ret);
2851
2852         if (root->ref_cows && leaf_gen < trans->transid) {
2853                 ref = btrfs_alloc_leaf_ref(root, 0);
2854                 if (ref) {
2855                         ref->root_gen = root->root_key.offset;
2856                         ref->bytenr = leaf_start;
2857                         ref->owner = 0;
2858                         ref->generation = leaf_gen;
2859                         ref->nritems = 0;
2860
2861                         btrfs_sort_leaf_ref(ref);
2862
2863                         ret = btrfs_add_leaf_ref(root, ref, 0);
2864                         WARN_ON(ret);
2865                         btrfs_free_leaf_ref(root, ref);
2866                 } else {
2867                         WARN_ON(1);
2868                 }
2869         }
2870 next_key:
2871         btrfs_release_path(root, path);
2872
2873         if (other_key.objectid == inode->i_ino &&
2874             other_key.type == key.type && other_key.offset > key.offset) {
2875                 key.offset = other_key.offset;
2876                 cond_resched();
2877                 goto again;
2878         }
2879         ret = 0;
2880 out:
2881         /* fixup any changes we've made to the path */
2882         path->lowest_level = 0;
2883         path->keep_locks = 0;
2884         btrfs_release_path(root, path);
2885         return ret;
2886 }
2887
2888 #endif
2889
2890 /*
2891  * this can truncate away extent items, csum items and directory items.
2892  * It starts at a high offset and removes keys until it can't find
2893  * any higher than new_size
2894  *
2895  * csum items that cross the new i_size are truncated to the new size
2896  * as well.
2897  *
2898  * min_type is the minimum key type to truncate down to.  If set to 0, this
2899  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2900  */
2901 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2902                                struct btrfs_root *root,
2903                                struct inode *inode,
2904                                u64 new_size, u32 min_type)
2905 {
2906         struct btrfs_path *path;
2907         struct extent_buffer *leaf;
2908         struct btrfs_file_extent_item *fi;
2909         struct btrfs_key key;
2910         struct btrfs_key found_key;
2911         u64 extent_start = 0;
2912         u64 extent_num_bytes = 0;
2913         u64 extent_offset = 0;
2914         u64 item_end = 0;
2915         u64 mask = root->sectorsize - 1;
2916         u32 found_type = (u8)-1;
2917         int found_extent;
2918         int del_item;
2919         int pending_del_nr = 0;
2920         int pending_del_slot = 0;
2921         int extent_type = -1;
2922         int encoding;
2923         int ret;
2924         int err = 0;
2925
2926         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2927
2928         if (root->ref_cows)
2929                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2930
2931         path = btrfs_alloc_path();
2932         BUG_ON(!path);
2933         path->reada = -1;
2934
2935         key.objectid = inode->i_ino;
2936         key.offset = (u64)-1;
2937         key.type = (u8)-1;
2938
2939 search_again:
2940         path->leave_spinning = 1;
2941         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2942         if (ret < 0) {
2943                 err = ret;
2944                 goto out;
2945         }
2946
2947         if (ret > 0) {
2948                 /* there are no items in the tree for us to truncate, we're
2949                  * done
2950                  */
2951                 if (path->slots[0] == 0)
2952                         goto out;
2953                 path->slots[0]--;
2954         }
2955
2956         while (1) {
2957                 fi = NULL;
2958                 leaf = path->nodes[0];
2959                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2960                 found_type = btrfs_key_type(&found_key);
2961                 encoding = 0;
2962
2963                 if (found_key.objectid != inode->i_ino)
2964                         break;
2965
2966                 if (found_type < min_type)
2967                         break;
2968
2969                 item_end = found_key.offset;
2970                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2971                         fi = btrfs_item_ptr(leaf, path->slots[0],
2972                                             struct btrfs_file_extent_item);
2973                         extent_type = btrfs_file_extent_type(leaf, fi);
2974                         encoding = btrfs_file_extent_compression(leaf, fi);
2975                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2976                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2977
2978                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2979                                 item_end +=
2980                                     btrfs_file_extent_num_bytes(leaf, fi);
2981                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2982                                 item_end += btrfs_file_extent_inline_len(leaf,
2983                                                                          fi);
2984                         }
2985                         item_end--;
2986                 }
2987                 if (found_type > min_type) {
2988                         del_item = 1;
2989                 } else {
2990                         if (item_end < new_size)
2991                                 break;
2992                         if (found_key.offset >= new_size)
2993                                 del_item = 1;
2994                         else
2995                                 del_item = 0;
2996                 }
2997                 found_extent = 0;
2998                 /* FIXME, shrink the extent if the ref count is only 1 */
2999                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3000                         goto delete;
3001
3002                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3003                         u64 num_dec;
3004                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3005                         if (!del_item && !encoding) {
3006                                 u64 orig_num_bytes =
3007                                         btrfs_file_extent_num_bytes(leaf, fi);
3008                                 extent_num_bytes = new_size -
3009                                         found_key.offset + root->sectorsize - 1;
3010                                 extent_num_bytes = extent_num_bytes &
3011                                         ~((u64)root->sectorsize - 1);
3012                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3013                                                          extent_num_bytes);
3014                                 num_dec = (orig_num_bytes -
3015                                            extent_num_bytes);
3016                                 if (root->ref_cows && extent_start != 0)
3017                                         inode_sub_bytes(inode, num_dec);
3018                                 btrfs_mark_buffer_dirty(leaf);
3019                         } else {
3020                                 extent_num_bytes =
3021                                         btrfs_file_extent_disk_num_bytes(leaf,
3022                                                                          fi);
3023                                 extent_offset = found_key.offset -
3024                                         btrfs_file_extent_offset(leaf, fi);
3025
3026                                 /* FIXME blocksize != 4096 */
3027                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3028                                 if (extent_start != 0) {
3029                                         found_extent = 1;
3030                                         if (root->ref_cows)
3031                                                 inode_sub_bytes(inode, num_dec);
3032                                 }
3033                         }
3034                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3035                         /*
3036                          * we can't truncate inline items that have had
3037                          * special encodings
3038                          */
3039                         if (!del_item &&
3040                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3041                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3042                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3043                                 u32 size = new_size - found_key.offset;
3044
3045                                 if (root->ref_cows) {
3046                                         inode_sub_bytes(inode, item_end + 1 -
3047                                                         new_size);
3048                                 }
3049                                 size =
3050                                     btrfs_file_extent_calc_inline_size(size);
3051                                 ret = btrfs_truncate_item(trans, root, path,
3052                                                           size, 1);
3053                                 BUG_ON(ret);
3054                         } else if (root->ref_cows) {
3055                                 inode_sub_bytes(inode, item_end + 1 -
3056                                                 found_key.offset);
3057                         }
3058                 }
3059 delete:
3060                 if (del_item) {
3061                         if (!pending_del_nr) {
3062                                 /* no pending yet, add ourselves */
3063                                 pending_del_slot = path->slots[0];
3064                                 pending_del_nr = 1;
3065                         } else if (pending_del_nr &&
3066                                    path->slots[0] + 1 == pending_del_slot) {
3067                                 /* hop on the pending chunk */
3068                                 pending_del_nr++;
3069                                 pending_del_slot = path->slots[0];
3070                         } else {
3071                                 BUG();
3072                         }
3073                 } else {
3074                         break;
3075                 }
3076                 if (found_extent && root->ref_cows) {
3077                         btrfs_set_path_blocking(path);
3078                         ret = btrfs_free_extent(trans, root, extent_start,
3079                                                 extent_num_bytes, 0,
3080                                                 btrfs_header_owner(leaf),
3081                                                 inode->i_ino, extent_offset);
3082                         BUG_ON(ret);
3083                 }
3084
3085                 if (found_type == BTRFS_INODE_ITEM_KEY)
3086                         break;
3087
3088                 if (path->slots[0] == 0 ||
3089                     path->slots[0] != pending_del_slot) {
3090                         if (root->ref_cows) {
3091                                 err = -EAGAIN;
3092                                 goto out;
3093                         }
3094                         if (pending_del_nr) {
3095                                 ret = btrfs_del_items(trans, root, path,
3096                                                 pending_del_slot,
3097                                                 pending_del_nr);
3098                                 BUG_ON(ret);
3099                                 pending_del_nr = 0;
3100                         }
3101                         btrfs_release_path(root, path);
3102                         goto search_again;
3103                 } else {
3104                         path->slots[0]--;
3105                 }
3106         }
3107 out:
3108         if (pending_del_nr) {
3109                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3110                                       pending_del_nr);
3111         }
3112         btrfs_free_path(path);
3113         return err;
3114 }
3115
3116 /*
3117  * taken from block_truncate_page, but does cow as it zeros out
3118  * any bytes left in the last page in the file.
3119  */
3120 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3121 {
3122         struct inode *inode = mapping->host;
3123         struct btrfs_root *root = BTRFS_I(inode)->root;
3124         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3125         struct btrfs_ordered_extent *ordered;
3126         char *kaddr;
3127         u32 blocksize = root->sectorsize;
3128         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3129         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3130         struct page *page;
3131         int ret = 0;
3132         u64 page_start;
3133         u64 page_end;
3134
3135         if ((offset & (blocksize - 1)) == 0)
3136                 goto out;
3137         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3138         if (ret)
3139                 goto out;
3140
3141         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3142         if (ret)
3143                 goto out;
3144
3145         ret = -ENOMEM;
3146 again:
3147         page = grab_cache_page(mapping, index);
3148         if (!page) {
3149                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3150                 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3151                 goto out;
3152         }
3153
3154         page_start = page_offset(page);
3155         page_end = page_start + PAGE_CACHE_SIZE - 1;
3156
3157         if (!PageUptodate(page)) {
3158                 ret = btrfs_readpage(NULL, page);
3159                 lock_page(page);
3160                 if (page->mapping != mapping) {
3161                         unlock_page(page);
3162                         page_cache_release(page);
3163                         goto again;
3164                 }
3165                 if (!PageUptodate(page)) {
3166                         ret = -EIO;
3167                         goto out_unlock;
3168                 }
3169         }
3170         wait_on_page_writeback(page);
3171
3172         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3173         set_page_extent_mapped(page);
3174
3175         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3176         if (ordered) {
3177                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3178                 unlock_page(page);
3179                 page_cache_release(page);
3180                 btrfs_start_ordered_extent(inode, ordered, 1);
3181                 btrfs_put_ordered_extent(ordered);
3182                 goto again;
3183         }
3184
3185         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3186                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3187                           GFP_NOFS);
3188
3189         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3190         if (ret) {
3191                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3192                 goto out_unlock;
3193         }
3194
3195         ret = 0;
3196         if (offset != PAGE_CACHE_SIZE) {
3197                 kaddr = kmap(page);
3198                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3199                 flush_dcache_page(page);
3200                 kunmap(page);
3201         }
3202         ClearPageChecked(page);
3203         set_page_dirty(page);
3204         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3205
3206 out_unlock:
3207         if (ret)
3208                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3209         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3210         unlock_page(page);
3211         page_cache_release(page);
3212 out:
3213         return ret;
3214 }
3215
3216 int btrfs_cont_expand(struct inode *inode, loff_t size)
3217 {
3218         struct btrfs_trans_handle *trans;
3219         struct btrfs_root *root = BTRFS_I(inode)->root;
3220         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3221         struct extent_map *em;
3222         u64 mask = root->sectorsize - 1;
3223         u64 hole_start = (inode->i_size + mask) & ~mask;
3224         u64 block_end = (size + mask) & ~mask;
3225         u64 last_byte;
3226         u64 cur_offset;
3227         u64 hole_size;
3228         int err = 0;
3229
3230         if (size <= hole_start)
3231                 return 0;
3232
3233         while (1) {
3234                 struct btrfs_ordered_extent *ordered;
3235                 btrfs_wait_ordered_range(inode, hole_start,
3236                                          block_end - hole_start);
3237                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3238                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3239                 if (!ordered)
3240                         break;
3241                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3242                 btrfs_put_ordered_extent(ordered);
3243         }
3244
3245         cur_offset = hole_start;
3246         while (1) {
3247                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3248                                 block_end - cur_offset, 0);
3249                 BUG_ON(IS_ERR(em) || !em);
3250                 last_byte = min(extent_map_end(em), block_end);
3251                 last_byte = (last_byte + mask) & ~mask;
3252                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3253                         u64 hint_byte = 0;
3254                         hole_size = last_byte - cur_offset;
3255
3256                         err = btrfs_reserve_metadata_space(root, 2);
3257                         if (err)
3258                                 break;
3259
3260                         trans = btrfs_start_transaction(root, 1);
3261                         btrfs_set_trans_block_group(trans, inode);
3262
3263                         err = btrfs_drop_extents(trans, inode, cur_offset,
3264                                                  cur_offset + hole_size,
3265                                                  &hint_byte, 1);
3266                         BUG_ON(err);
3267
3268                         err = btrfs_insert_file_extent(trans, root,
3269                                         inode->i_ino, cur_offset, 0,
3270                                         0, hole_size, 0, hole_size,
3271                                         0, 0, 0);
3272                         BUG_ON(err);
3273
3274                         btrfs_drop_extent_cache(inode, hole_start,
3275                                         last_byte - 1, 0);
3276
3277                         btrfs_end_transaction(trans, root);
3278                         btrfs_unreserve_metadata_space(root, 2);
3279                 }
3280                 free_extent_map(em);
3281                 cur_offset = last_byte;
3282                 if (cur_offset >= block_end)
3283                         break;
3284         }
3285
3286         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3287         return err;
3288 }
3289
3290 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3291 {
3292         struct btrfs_root *root = BTRFS_I(inode)->root;
3293         struct btrfs_trans_handle *trans;
3294         unsigned long nr;
3295         int ret;
3296
3297         if (attr->ia_size == inode->i_size)
3298                 return 0;
3299
3300         if (attr->ia_size > inode->i_size) {
3301                 unsigned long limit;
3302                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3303                 if (attr->ia_size > inode->i_sb->s_maxbytes)
3304                         return -EFBIG;
3305                 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3306                         send_sig(SIGXFSZ, current, 0);
3307                         return -EFBIG;
3308                 }
3309         }
3310
3311         ret = btrfs_reserve_metadata_space(root, 1);
3312         if (ret)
3313                 return ret;
3314
3315         trans = btrfs_start_transaction(root, 1);
3316         btrfs_set_trans_block_group(trans, inode);
3317
3318         ret = btrfs_orphan_add(trans, inode);
3319         BUG_ON(ret);
3320
3321         nr = trans->blocks_used;
3322         btrfs_end_transaction(trans, root);
3323         btrfs_unreserve_metadata_space(root, 1);
3324         btrfs_btree_balance_dirty(root, nr);
3325
3326         if (attr->ia_size > inode->i_size) {
3327                 ret = btrfs_cont_expand(inode, attr->ia_size);
3328                 if (ret) {
3329                         btrfs_truncate(inode);
3330                         return ret;
3331                 }
3332
3333                 i_size_write(inode, attr->ia_size);
3334                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3335
3336                 trans = btrfs_start_transaction(root, 1);
3337                 btrfs_set_trans_block_group(trans, inode);
3338
3339                 ret = btrfs_update_inode(trans, root, inode);
3340                 BUG_ON(ret);
3341                 if (inode->i_nlink > 0) {
3342                         ret = btrfs_orphan_del(trans, inode);
3343                         BUG_ON(ret);
3344                 }
3345                 nr = trans->blocks_used;
3346                 btrfs_end_transaction(trans, root);
3347                 btrfs_btree_balance_dirty(root, nr);
3348                 return 0;
3349         }
3350
3351         /*
3352          * We're truncating a file that used to have good data down to
3353          * zero. Make sure it gets into the ordered flush list so that
3354          * any new writes get down to disk quickly.
3355          */
3356         if (attr->ia_size == 0)
3357                 BTRFS_I(inode)->ordered_data_close = 1;
3358
3359         /* we don't support swapfiles, so vmtruncate shouldn't fail */
3360         ret = vmtruncate(inode, attr->ia_size);
3361         BUG_ON(ret);
3362
3363         return 0;
3364 }
3365
3366 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3367 {
3368         struct inode *inode = dentry->d_inode;
3369         int err;
3370
3371         err = inode_change_ok(inode, attr);
3372         if (err)
3373                 return err;
3374
3375         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3376                 err = btrfs_setattr_size(inode, attr);
3377                 if (err)
3378                         return err;
3379         }
3380         attr->ia_valid &= ~ATTR_SIZE;
3381
3382         if (attr->ia_valid)
3383                 err = inode_setattr(inode, attr);
3384
3385         if (!err && ((attr->ia_valid & ATTR_MODE)))
3386                 err = btrfs_acl_chmod(inode);
3387         return err;
3388 }
3389
3390 void btrfs_delete_inode(struct inode *inode)
3391 {
3392         struct btrfs_trans_handle *trans;
3393         struct btrfs_root *root = BTRFS_I(inode)->root;
3394         unsigned long nr;
3395         int ret;
3396
3397         truncate_inode_pages(&inode->i_data, 0);
3398         if (is_bad_inode(inode)) {
3399                 btrfs_orphan_del(NULL, inode);
3400                 goto no_delete;
3401         }
3402         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3403
3404         if (root->fs_info->log_root_recovering) {
3405                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3406                 goto no_delete;
3407         }
3408
3409         if (inode->i_nlink > 0) {
3410                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3411                 goto no_delete;
3412         }
3413
3414         btrfs_i_size_write(inode, 0);
3415
3416         while (1) {
3417                 trans = btrfs_start_transaction(root, 1);
3418                 btrfs_set_trans_block_group(trans, inode);
3419                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3420
3421                 if (ret != -EAGAIN)
3422                         break;
3423
3424                 nr = trans->blocks_used;
3425                 btrfs_end_transaction(trans, root);
3426                 trans = NULL;
3427                 btrfs_btree_balance_dirty(root, nr);
3428         }
3429
3430         if (ret == 0) {
3431                 ret = btrfs_orphan_del(trans, inode);
3432                 BUG_ON(ret);
3433         }
3434
3435         nr = trans->blocks_used;
3436         btrfs_end_transaction(trans, root);
3437         btrfs_btree_balance_dirty(root, nr);
3438 no_delete:
3439         clear_inode(inode);
3440         return;
3441 }
3442
3443 /*
3444  * this returns the key found in the dir entry in the location pointer.
3445  * If no dir entries were found, location->objectid is 0.
3446  */
3447 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3448                                struct btrfs_key *location)
3449 {
3450         const char *name = dentry->d_name.name;
3451         int namelen = dentry->d_name.len;
3452         struct btrfs_dir_item *di;
3453         struct btrfs_path *path;
3454         struct btrfs_root *root = BTRFS_I(dir)->root;
3455         int ret = 0;
3456
3457         path = btrfs_alloc_path();
3458         BUG_ON(!path);
3459
3460         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3461                                     namelen, 0);
3462         if (IS_ERR(di))
3463                 ret = PTR_ERR(di);
3464
3465         if (!di || IS_ERR(di))
3466                 goto out_err;
3467
3468         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3469 out:
3470         btrfs_free_path(path);
3471         return ret;
3472 out_err:
3473         location->objectid = 0;
3474         goto out;
3475 }
3476
3477 /*
3478  * when we hit a tree root in a directory, the btrfs part of the inode
3479  * needs to be changed to reflect the root directory of the tree root.  This
3480  * is kind of like crossing a mount point.
3481  */
3482 static int fixup_tree_root_location(struct btrfs_root *root,
3483                                     struct inode *dir,
3484                                     struct dentry *dentry,
3485                                     struct btrfs_key *location,
3486                                     struct btrfs_root **sub_root)
3487 {
3488         struct btrfs_path *path;
3489         struct btrfs_root *new_root;
3490         struct btrfs_root_ref *ref;
3491         struct extent_buffer *leaf;
3492         int ret;
3493         int err = 0;
3494
3495         path = btrfs_alloc_path();
3496         if (!path) {
3497                 err = -ENOMEM;
3498                 goto out;
3499         }
3500
3501         err = -ENOENT;
3502         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3503                                   BTRFS_I(dir)->root->root_key.objectid,
3504                                   location->objectid);
3505         if (ret) {
3506                 if (ret < 0)
3507                         err = ret;
3508                 goto out;
3509         }
3510
3511         leaf = path->nodes[0];
3512         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3513         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3514             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3515                 goto out;
3516
3517         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3518                                    (unsigned long)(ref + 1),
3519                                    dentry->d_name.len);
3520         if (ret)
3521                 goto out;
3522
3523         btrfs_release_path(root->fs_info->tree_root, path);
3524
3525         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3526         if (IS_ERR(new_root)) {
3527                 err = PTR_ERR(new_root);
3528                 goto out;
3529         }
3530
3531         if (btrfs_root_refs(&new_root->root_item) == 0) {
3532                 err = -ENOENT;
3533                 goto out;
3534         }
3535
3536         *sub_root = new_root;
3537         location->objectid = btrfs_root_dirid(&new_root->root_item);
3538         location->type = BTRFS_INODE_ITEM_KEY;
3539         location->offset = 0;
3540         err = 0;
3541 out:
3542         btrfs_free_path(path);
3543         return err;
3544 }
3545
3546 static void inode_tree_add(struct inode *inode)
3547 {
3548         struct btrfs_root *root = BTRFS_I(inode)->root;
3549         struct btrfs_inode *entry;
3550         struct rb_node **p;
3551         struct rb_node *parent;
3552 again:
3553         p = &root->inode_tree.rb_node;
3554         parent = NULL;
3555
3556         if (hlist_unhashed(&inode->i_hash))
3557                 return;
3558
3559         spin_lock(&root->inode_lock);
3560         while (*p) {
3561                 parent = *p;
3562                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3563
3564                 if (inode->i_ino < entry->vfs_inode.i_ino)
3565                         p = &parent->rb_left;
3566                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3567                         p = &parent->rb_right;
3568                 else {
3569                         WARN_ON(!(entry->vfs_inode.i_state &
3570                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3571                         rb_erase(parent, &root->inode_tree);
3572                         RB_CLEAR_NODE(parent);
3573                         spin_unlock(&root->inode_lock);
3574                         goto again;
3575                 }
3576         }
3577         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3578         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3579         spin_unlock(&root->inode_lock);
3580 }
3581
3582 static void inode_tree_del(struct inode *inode)
3583 {
3584         struct btrfs_root *root = BTRFS_I(inode)->root;
3585         int empty = 0;
3586
3587         spin_lock(&root->inode_lock);
3588         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3589                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3590                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3591                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3592         }
3593         spin_unlock(&root->inode_lock);
3594
3595         if (empty && btrfs_root_refs(&root->root_item) == 0) {
3596                 synchronize_srcu(&root->fs_info->subvol_srcu);
3597                 spin_lock(&root->inode_lock);
3598                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3599                 spin_unlock(&root->inode_lock);
3600                 if (empty)
3601                         btrfs_add_dead_root(root);
3602         }
3603 }
3604
3605 int btrfs_invalidate_inodes(struct btrfs_root *root)
3606 {
3607         struct rb_node *node;
3608         struct rb_node *prev;
3609         struct btrfs_inode *entry;
3610         struct inode *inode;
3611         u64 objectid = 0;
3612
3613         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3614
3615         spin_lock(&root->inode_lock);
3616 again:
3617         node = root->inode_tree.rb_node;
3618         prev = NULL;
3619         while (node) {
3620                 prev = node;
3621                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3622
3623                 if (objectid < entry->vfs_inode.i_ino)
3624                         node = node->rb_left;
3625                 else if (objectid > entry->vfs_inode.i_ino)
3626                         node = node->rb_right;
3627                 else
3628                         break;
3629         }
3630         if (!node) {
3631                 while (prev) {
3632                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3633                         if (objectid <= entry->vfs_inode.i_ino) {
3634                                 node = prev;
3635                                 break;
3636                         }
3637                         prev = rb_next(prev);
3638                 }
3639         }
3640         while (node) {
3641                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3642                 objectid = entry->vfs_inode.i_ino + 1;
3643                 inode = igrab(&entry->vfs_inode);
3644                 if (inode) {
3645                         spin_unlock(&root->inode_lock);
3646                         if (atomic_read(&inode->i_count) > 1)
3647                                 d_prune_aliases(inode);
3648                         /*
3649                          * btrfs_drop_inode will remove it from
3650                          * the inode cache when its usage count
3651                          * hits zero.
3652                          */
3653                         iput(inode);
3654                         cond_resched();
3655                         spin_lock(&root->inode_lock);
3656                         goto again;
3657                 }
3658
3659                 if (cond_resched_lock(&root->inode_lock))
3660                         goto again;
3661
3662                 node = rb_next(node);
3663         }
3664         spin_unlock(&root->inode_lock);
3665         return 0;
3666 }
3667
3668 static noinline void init_btrfs_i(struct inode *inode)
3669 {
3670         struct btrfs_inode *bi = BTRFS_I(inode);
3671
3672         bi->generation = 0;
3673         bi->sequence = 0;
3674         bi->last_trans = 0;
3675         bi->last_sub_trans = 0;
3676         bi->logged_trans = 0;
3677         bi->delalloc_bytes = 0;
3678         bi->reserved_bytes = 0;
3679         bi->disk_i_size = 0;
3680         bi->flags = 0;
3681         bi->index_cnt = (u64)-1;
3682         bi->last_unlink_trans = 0;
3683         bi->ordered_data_close = 0;
3684         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3685         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3686                              inode->i_mapping, GFP_NOFS);
3687         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3688                              inode->i_mapping, GFP_NOFS);
3689         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3690         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3691         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3692         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3693         mutex_init(&BTRFS_I(inode)->log_mutex);
3694 }
3695
3696 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3697 {
3698         struct btrfs_iget_args *args = p;
3699         inode->i_ino = args->ino;
3700         init_btrfs_i(inode);
3701         BTRFS_I(inode)->root = args->root;
3702         btrfs_set_inode_space_info(args->root, inode);
3703         return 0;
3704 }
3705
3706 static int btrfs_find_actor(struct inode *inode, void *opaque)
3707 {
3708         struct btrfs_iget_args *args = opaque;
3709         return args->ino == inode->i_ino &&
3710                 args->root == BTRFS_I(inode)->root;
3711 }
3712
3713 static struct inode *btrfs_iget_locked(struct super_block *s,
3714                                        u64 objectid,
3715                                        struct btrfs_root *root)
3716 {
3717         struct inode *inode;
3718         struct btrfs_iget_args args;
3719         args.ino = objectid;
3720         args.root = root;
3721
3722         inode = iget5_locked(s, objectid, btrfs_find_actor,
3723                              btrfs_init_locked_inode,
3724                              (void *)&args);
3725         return inode;
3726 }
3727
3728 /* Get an inode object given its location and corresponding root.
3729  * Returns in *is_new if the inode was read from disk
3730  */
3731 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3732                          struct btrfs_root *root)
3733 {
3734         struct inode *inode;
3735
3736         inode = btrfs_iget_locked(s, location->objectid, root);
3737         if (!inode)
3738                 return ERR_PTR(-ENOMEM);
3739
3740         if (inode->i_state & I_NEW) {
3741                 BTRFS_I(inode)->root = root;
3742                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3743                 btrfs_read_locked_inode(inode);
3744
3745                 inode_tree_add(inode);
3746                 unlock_new_inode(inode);
3747         }
3748
3749         return inode;
3750 }
3751
3752 static struct inode *new_simple_dir(struct super_block *s,
3753                                     struct btrfs_key *key,
3754                                     struct btrfs_root *root)
3755 {
3756         struct inode *inode = new_inode(s);
3757
3758         if (!inode)
3759                 return ERR_PTR(-ENOMEM);
3760
3761         init_btrfs_i(inode);
3762
3763         BTRFS_I(inode)->root = root;
3764         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3765         BTRFS_I(inode)->dummy_inode = 1;
3766
3767         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3768         inode->i_op = &simple_dir_inode_operations;
3769         inode->i_fop = &simple_dir_operations;
3770         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3771         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3772
3773         return inode;
3774 }
3775
3776 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3777 {
3778         struct inode *inode;
3779         struct btrfs_root *root = BTRFS_I(dir)->root;
3780         struct btrfs_root *sub_root = root;
3781         struct btrfs_key location;
3782         int index;
3783         int ret;
3784
3785         dentry->d_op = &btrfs_dentry_operations;
3786
3787         if (dentry->d_name.len > BTRFS_NAME_LEN)
3788                 return ERR_PTR(-ENAMETOOLONG);
3789
3790         ret = btrfs_inode_by_name(dir, dentry, &location);
3791
3792         if (ret < 0)
3793                 return ERR_PTR(ret);
3794
3795         if (location.objectid == 0)
3796                 return NULL;
3797
3798         if (location.type == BTRFS_INODE_ITEM_KEY) {
3799                 inode = btrfs_iget(dir->i_sb, &location, root);
3800                 return inode;
3801         }
3802
3803         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3804
3805         index = srcu_read_lock(&root->fs_info->subvol_srcu);
3806         ret = fixup_tree_root_location(root, dir, dentry,
3807                                        &location, &sub_root);
3808         if (ret < 0) {
3809                 if (ret != -ENOENT)
3810                         inode = ERR_PTR(ret);
3811                 else
3812                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3813         } else {
3814                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3815         }
3816         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3817
3818         if (root != sub_root) {
3819                 down_read(&root->fs_info->cleanup_work_sem);
3820                 if (!(inode->i_sb->s_flags & MS_RDONLY))
3821                         btrfs_orphan_cleanup(sub_root);
3822                 up_read(&root->fs_info->cleanup_work_sem);
3823         }
3824
3825         return inode;
3826 }
3827
3828 static int btrfs_dentry_delete(struct dentry *dentry)
3829 {
3830         struct btrfs_root *root;
3831
3832         if (!dentry->d_inode && !IS_ROOT(dentry))
3833                 dentry = dentry->d_parent;
3834
3835         if (dentry->d_inode) {
3836                 root = BTRFS_I(dentry->d_inode)->root;
3837                 if (btrfs_root_refs(&root->root_item) == 0)
3838                         return 1;
3839         }
3840         return 0;
3841 }
3842
3843 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3844                                    struct nameidata *nd)
3845 {
3846         struct inode *inode;
3847
3848         inode = btrfs_lookup_dentry(dir, dentry);
3849         if (IS_ERR(inode))
3850                 return ERR_CAST(inode);
3851
3852         return d_splice_alias(inode, dentry);
3853 }
3854
3855 static unsigned char btrfs_filetype_table[] = {
3856         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3857 };
3858
3859 static int btrfs_real_readdir(struct file *filp, void *dirent,
3860                               filldir_t filldir)
3861 {
3862         struct inode *inode = filp->f_dentry->d_inode;
3863         struct btrfs_root *root = BTRFS_I(inode)->root;
3864         struct btrfs_item *item;
3865         struct btrfs_dir_item *di;
3866         struct btrfs_key key;
3867         struct btrfs_key found_key;
3868         struct btrfs_path *path;
3869         int ret;
3870         u32 nritems;
3871         struct extent_buffer *leaf;
3872         int slot;
3873         int advance;
3874         unsigned char d_type;
3875         int over = 0;
3876         u32 di_cur;
3877         u32 di_total;
3878         u32 di_len;
3879         int key_type = BTRFS_DIR_INDEX_KEY;
3880         char tmp_name[32];
3881         char *name_ptr;
3882         int name_len;
3883
3884         /* FIXME, use a real flag for deciding about the key type */
3885         if (root->fs_info->tree_root == root)
3886                 key_type = BTRFS_DIR_ITEM_KEY;
3887
3888         /* special case for "." */
3889         if (filp->f_pos == 0) {
3890                 over = filldir(dirent, ".", 1,
3891                                1, inode->i_ino,
3892                                DT_DIR);
3893                 if (over)
3894                         return 0;
3895                 filp->f_pos = 1;
3896         }
3897         /* special case for .., just use the back ref */
3898         if (filp->f_pos == 1) {
3899                 u64 pino = parent_ino(filp->f_path.dentry);
3900                 over = filldir(dirent, "..", 2,
3901                                2, pino, DT_DIR);
3902                 if (over)
3903                         return 0;
3904                 filp->f_pos = 2;
3905         }
3906         path = btrfs_alloc_path();
3907         path->reada = 2;
3908
3909         btrfs_set_key_type(&key, key_type);
3910         key.offset = filp->f_pos;
3911         key.objectid = inode->i_ino;
3912
3913         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3914         if (ret < 0)
3915                 goto err;
3916         advance = 0;
3917
3918         while (1) {
3919                 leaf = path->nodes[0];
3920                 nritems = btrfs_header_nritems(leaf);
3921                 slot = path->slots[0];
3922                 if (advance || slot >= nritems) {
3923                         if (slot >= nritems - 1) {
3924                                 ret = btrfs_next_leaf(root, path);
3925                                 if (ret)
3926                                         break;
3927                                 leaf = path->nodes[0];
3928                                 nritems = btrfs_header_nritems(leaf);
3929                                 slot = path->slots[0];
3930                         } else {
3931                                 slot++;
3932                                 path->slots[0]++;
3933                         }
3934                 }
3935
3936                 advance = 1;
3937                 item = btrfs_item_nr(leaf, slot);
3938                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3939
3940                 if (found_key.objectid != key.objectid)
3941                         break;
3942                 if (btrfs_key_type(&found_key) != key_type)
3943                         break;
3944                 if (found_key.offset < filp->f_pos)
3945                         continue;
3946
3947                 filp->f_pos = found_key.offset;
3948
3949                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3950                 di_cur = 0;
3951                 di_total = btrfs_item_size(leaf, item);
3952
3953                 while (di_cur < di_total) {
3954                         struct btrfs_key location;
3955
3956                         name_len = btrfs_dir_name_len(leaf, di);
3957                         if (name_len <= sizeof(tmp_name)) {
3958                                 name_ptr = tmp_name;
3959                         } else {
3960                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3961                                 if (!name_ptr) {
3962                                         ret = -ENOMEM;
3963                                         goto err;
3964                                 }
3965                         }
3966                         read_extent_buffer(leaf, name_ptr,
3967                                            (unsigned long)(di + 1), name_len);
3968
3969                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3970                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3971
3972                         /* is this a reference to our own snapshot? If so
3973                          * skip it
3974                          */
3975                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3976                             location.objectid == root->root_key.objectid) {
3977                                 over = 0;
3978                                 goto skip;
3979                         }
3980                         over = filldir(dirent, name_ptr, name_len,
3981                                        found_key.offset, location.objectid,
3982                                        d_type);
3983
3984 skip:
3985                         if (name_ptr != tmp_name)
3986                                 kfree(name_ptr);
3987
3988                         if (over)
3989                                 goto nopos;
3990                         di_len = btrfs_dir_name_len(leaf, di) +
3991                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3992                         di_cur += di_len;
3993                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3994                 }
3995         }
3996
3997         /* Reached end of directory/root. Bump pos past the last item. */
3998         if (key_type == BTRFS_DIR_INDEX_KEY)
3999                 /*
4000                  * 32-bit glibc will use getdents64, but then strtol -
4001                  * so the last number we can serve is this.
4002                  */
4003                 filp->f_pos = 0x7fffffff;
4004         else
4005                 filp->f_pos++;
4006 nopos:
4007         ret = 0;
4008 err:
4009         btrfs_free_path(path);
4010         return ret;
4011 }
4012
4013 int btrfs_write_inode(struct inode *inode, int wait)
4014 {
4015         struct btrfs_root *root = BTRFS_I(inode)->root;
4016         struct btrfs_trans_handle *trans;
4017         int ret = 0;
4018
4019         if (root->fs_info->btree_inode == inode)
4020                 return 0;
4021
4022         if (wait) {
4023                 trans = btrfs_join_transaction(root, 1);
4024                 btrfs_set_trans_block_group(trans, inode);
4025                 ret = btrfs_commit_transaction(trans, root);
4026         }
4027         return ret;
4028 }
4029
4030 /*
4031  * This is somewhat expensive, updating the tree every time the
4032  * inode changes.  But, it is most likely to find the inode in cache.
4033  * FIXME, needs more benchmarking...there are no reasons other than performance
4034  * to keep or drop this code.
4035  */
4036 void btrfs_dirty_inode(struct inode *inode)
4037 {
4038         struct btrfs_root *root = BTRFS_I(inode)->root;
4039         struct btrfs_trans_handle *trans;
4040
4041         trans = btrfs_join_transaction(root, 1);
4042         btrfs_set_trans_block_group(trans, inode);
4043         btrfs_update_inode(trans, root, inode);
4044         btrfs_end_transaction(trans, root);
4045 }
4046
4047 /*
4048  * find the highest existing sequence number in a directory
4049  * and then set the in-memory index_cnt variable to reflect
4050  * free sequence numbers
4051  */
4052 static int btrfs_set_inode_index_count(struct inode *inode)
4053 {
4054         struct btrfs_root *root = BTRFS_I(inode)->root;
4055         struct btrfs_key key, found_key;
4056         struct btrfs_path *path;
4057         struct extent_buffer *leaf;
4058         int ret;
4059
4060         key.objectid = inode->i_ino;
4061         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4062         key.offset = (u64)-1;
4063
4064         path = btrfs_alloc_path();
4065         if (!path)
4066                 return -ENOMEM;
4067
4068         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4069         if (ret < 0)
4070                 goto out;
4071         /* FIXME: we should be able to handle this */
4072         if (ret == 0)
4073                 goto out;
4074         ret = 0;
4075
4076         /*
4077          * MAGIC NUMBER EXPLANATION:
4078          * since we search a directory based on f_pos we have to start at 2
4079          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4080          * else has to start at 2
4081          */
4082         if (path->slots[0] == 0) {
4083                 BTRFS_I(inode)->index_cnt = 2;
4084                 goto out;
4085         }
4086
4087         path->slots[0]--;
4088
4089         leaf = path->nodes[0];
4090         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4091
4092         if (found_key.objectid != inode->i_ino ||
4093             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4094                 BTRFS_I(inode)->index_cnt = 2;
4095                 goto out;
4096         }
4097
4098         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4099 out:
4100         btrfs_free_path(path);
4101         return ret;
4102 }
4103
4104 /*
4105  * helper to find a free sequence number in a given directory.  This current
4106  * code is very simple, later versions will do smarter things in the btree
4107  */
4108 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4109 {
4110         int ret = 0;
4111
4112         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4113                 ret = btrfs_set_inode_index_count(dir);
4114                 if (ret)
4115                         return ret;
4116         }
4117
4118         *index = BTRFS_I(dir)->index_cnt;
4119         BTRFS_I(dir)->index_cnt++;
4120
4121         return ret;
4122 }
4123
4124 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4125                                      struct btrfs_root *root,
4126                                      struct inode *dir,
4127                                      const char *name, int name_len,
4128                                      u64 ref_objectid, u64 objectid,
4129                                      u64 alloc_hint, int mode, u64 *index)
4130 {
4131         struct inode *inode;
4132         struct btrfs_inode_item *inode_item;
4133         struct btrfs_key *location;
4134         struct btrfs_path *path;
4135         struct btrfs_inode_ref *ref;
4136         struct btrfs_key key[2];
4137         u32 sizes[2];
4138         unsigned long ptr;
4139         int ret;
4140         int owner;
4141
4142         path = btrfs_alloc_path();
4143         BUG_ON(!path);
4144
4145         inode = new_inode(root->fs_info->sb);
4146         if (!inode)
4147                 return ERR_PTR(-ENOMEM);
4148
4149         if (dir) {
4150                 ret = btrfs_set_inode_index(dir, index);
4151                 if (ret) {
4152                         iput(inode);
4153                         return ERR_PTR(ret);
4154                 }
4155         }
4156         /*
4157          * index_cnt is ignored for everything but a dir,
4158          * btrfs_get_inode_index_count has an explanation for the magic
4159          * number
4160          */
4161         init_btrfs_i(inode);
4162         BTRFS_I(inode)->index_cnt = 2;
4163         BTRFS_I(inode)->root = root;
4164         BTRFS_I(inode)->generation = trans->transid;
4165         btrfs_set_inode_space_info(root, inode);
4166
4167         if (mode & S_IFDIR)
4168                 owner = 0;
4169         else
4170                 owner = 1;
4171         BTRFS_I(inode)->block_group =
4172                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4173
4174         key[0].objectid = objectid;
4175         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4176         key[0].offset = 0;
4177
4178         key[1].objectid = objectid;
4179         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4180         key[1].offset = ref_objectid;
4181
4182         sizes[0] = sizeof(struct btrfs_inode_item);
4183         sizes[1] = name_len + sizeof(*ref);
4184
4185         path->leave_spinning = 1;
4186         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4187         if (ret != 0)
4188                 goto fail;
4189
4190         inode->i_uid = current_fsuid();
4191
4192         if (dir && (dir->i_mode & S_ISGID)) {
4193                 inode->i_gid = dir->i_gid;
4194                 if (S_ISDIR(mode))
4195                         mode |= S_ISGID;
4196         } else
4197                 inode->i_gid = current_fsgid();
4198
4199         inode->i_mode = mode;
4200         inode->i_ino = objectid;
4201         inode_set_bytes(inode, 0);
4202         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4203         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4204                                   struct btrfs_inode_item);
4205         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4206
4207         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4208                              struct btrfs_inode_ref);
4209         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4210         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4211         ptr = (unsigned long)(ref + 1);
4212         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4213
4214         btrfs_mark_buffer_dirty(path->nodes[0]);
4215         btrfs_free_path(path);
4216
4217         location = &BTRFS_I(inode)->location;
4218         location->objectid = objectid;
4219         location->offset = 0;
4220         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4221
4222         btrfs_inherit_iflags(inode, dir);
4223
4224         if ((mode & S_IFREG)) {
4225                 if (btrfs_test_opt(root, NODATASUM))
4226                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4227                 if (btrfs_test_opt(root, NODATACOW))
4228                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4229         }
4230
4231         insert_inode_hash(inode);
4232         inode_tree_add(inode);
4233         return inode;
4234 fail:
4235         if (dir)
4236                 BTRFS_I(dir)->index_cnt--;
4237         btrfs_free_path(path);
4238         iput(inode);
4239         return ERR_PTR(ret);
4240 }
4241
4242 static inline u8 btrfs_inode_type(struct inode *inode)
4243 {
4244         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4245 }
4246
4247 /*
4248  * utility function to add 'inode' into 'parent_inode' with
4249  * a give name and a given sequence number.
4250  * if 'add_backref' is true, also insert a backref from the
4251  * inode to the parent directory.
4252  */
4253 int btrfs_add_link(struct btrfs_trans_handle *trans,
4254                    struct inode *parent_inode, struct inode *inode,
4255                    const char *name, int name_len, int add_backref, u64 index)
4256 {
4257         int ret = 0;
4258         struct btrfs_key key;
4259         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4260
4261         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4262                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4263         } else {
4264                 key.objectid = inode->i_ino;
4265                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4266                 key.offset = 0;
4267         }
4268
4269         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4270                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4271                                          key.objectid, root->root_key.objectid,
4272                                          parent_inode->i_ino,
4273                                          index, name, name_len);
4274         } else if (add_backref) {
4275                 ret = btrfs_insert_inode_ref(trans, root,
4276                                              name, name_len, inode->i_ino,
4277                                              parent_inode->i_ino, index);
4278         }
4279
4280         if (ret == 0) {
4281                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4282                                             parent_inode->i_ino, &key,
4283                                             btrfs_inode_type(inode), index);
4284                 BUG_ON(ret);
4285
4286                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4287                                    name_len * 2);
4288                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4289                 ret = btrfs_update_inode(trans, root, parent_inode);
4290         }
4291         return ret;
4292 }
4293
4294 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4295                             struct dentry *dentry, struct inode *inode,
4296                             int backref, u64 index)
4297 {
4298         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4299                                  inode, dentry->d_name.name,
4300                                  dentry->d_name.len, backref, index);
4301         if (!err) {
4302                 d_instantiate(dentry, inode);
4303                 return 0;
4304         }
4305         if (err > 0)
4306                 err = -EEXIST;
4307         return err;
4308 }
4309
4310 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4311                         int mode, dev_t rdev)
4312 {
4313         struct btrfs_trans_handle *trans;
4314         struct btrfs_root *root = BTRFS_I(dir)->root;
4315         struct inode *inode = NULL;
4316         int err;
4317         int drop_inode = 0;
4318         u64 objectid;
4319         unsigned long nr = 0;
4320         u64 index = 0;
4321
4322         if (!new_valid_dev(rdev))
4323                 return -EINVAL;
4324
4325         /*
4326          * 2 for inode item and ref
4327          * 2 for dir items
4328          * 1 for xattr if selinux is on
4329          */
4330         err = btrfs_reserve_metadata_space(root, 5);
4331         if (err)
4332                 return err;
4333
4334         trans = btrfs_start_transaction(root, 1);
4335         if (!trans)
4336                 goto fail;
4337         btrfs_set_trans_block_group(trans, dir);
4338
4339         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4340         if (err) {
4341                 err = -ENOSPC;
4342                 goto out_unlock;
4343         }
4344
4345         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4346                                 dentry->d_name.len,
4347                                 dentry->d_parent->d_inode->i_ino, objectid,
4348                                 BTRFS_I(dir)->block_group, mode, &index);
4349         err = PTR_ERR(inode);
4350         if (IS_ERR(inode))
4351                 goto out_unlock;
4352
4353         err = btrfs_init_inode_security(trans, inode, dir);
4354         if (err) {
4355                 drop_inode = 1;
4356                 goto out_unlock;
4357         }
4358
4359         btrfs_set_trans_block_group(trans, inode);
4360         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4361         if (err)
4362                 drop_inode = 1;
4363         else {
4364                 inode->i_op = &btrfs_special_inode_operations;
4365                 init_special_inode(inode, inode->i_mode, rdev);
4366                 btrfs_update_inode(trans, root, inode);
4367         }
4368         btrfs_update_inode_block_group(trans, inode);
4369         btrfs_update_inode_block_group(trans, dir);
4370 out_unlock:
4371         nr = trans->blocks_used;
4372         btrfs_end_transaction_throttle(trans, root);
4373 fail:
4374         btrfs_unreserve_metadata_space(root, 5);
4375         if (drop_inode) {
4376                 inode_dec_link_count(inode);
4377                 iput(inode);
4378         }
4379         btrfs_btree_balance_dirty(root, nr);
4380         return err;
4381 }
4382
4383 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4384                         int mode, struct nameidata *nd)
4385 {
4386         struct btrfs_trans_handle *trans;
4387         struct btrfs_root *root = BTRFS_I(dir)->root;
4388         struct inode *inode = NULL;
4389         int err;
4390         int drop_inode = 0;
4391         unsigned long nr = 0;
4392         u64 objectid;
4393         u64 index = 0;
4394
4395         /*
4396          * 2 for inode item and ref
4397          * 2 for dir items
4398          * 1 for xattr if selinux is on
4399          */
4400         err = btrfs_reserve_metadata_space(root, 5);
4401         if (err)
4402                 return err;
4403
4404         trans = btrfs_start_transaction(root, 1);
4405         if (!trans)
4406                 goto fail;
4407         btrfs_set_trans_block_group(trans, dir);
4408
4409         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4410         if (err) {
4411                 err = -ENOSPC;
4412                 goto out_unlock;
4413         }
4414
4415         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4416                                 dentry->d_name.len,
4417                                 dentry->d_parent->d_inode->i_ino,
4418                                 objectid, BTRFS_I(dir)->block_group, mode,
4419                                 &index);
4420         err = PTR_ERR(inode);
4421         if (IS_ERR(inode))
4422                 goto out_unlock;
4423
4424         err = btrfs_init_inode_security(trans, inode, dir);
4425         if (err) {
4426                 drop_inode = 1;
4427                 goto out_unlock;
4428         }
4429
4430         btrfs_set_trans_block_group(trans, inode);
4431         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4432         if (err)
4433                 drop_inode = 1;
4434         else {
4435                 inode->i_mapping->a_ops = &btrfs_aops;
4436                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4437                 inode->i_fop = &btrfs_file_operations;
4438                 inode->i_op = &btrfs_file_inode_operations;
4439                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4440         }
4441         btrfs_update_inode_block_group(trans, inode);
4442         btrfs_update_inode_block_group(trans, dir);
4443 out_unlock:
4444         nr = trans->blocks_used;
4445         btrfs_end_transaction_throttle(trans, root);
4446 fail:
4447         btrfs_unreserve_metadata_space(root, 5);
4448         if (drop_inode) {
4449                 inode_dec_link_count(inode);
4450                 iput(inode);
4451         }
4452         btrfs_btree_balance_dirty(root, nr);
4453         return err;
4454 }
4455
4456 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4457                       struct dentry *dentry)
4458 {
4459         struct btrfs_trans_handle *trans;
4460         struct btrfs_root *root = BTRFS_I(dir)->root;
4461         struct inode *inode = old_dentry->d_inode;
4462         u64 index;
4463         unsigned long nr = 0;
4464         int err;
4465         int drop_inode = 0;
4466
4467         if (inode->i_nlink == 0)
4468                 return -ENOENT;
4469
4470         /* do not allow sys_link's with other subvols of the same device */
4471         if (root->objectid != BTRFS_I(inode)->root->objectid)
4472                 return -EPERM;
4473
4474         /*
4475          * 1 item for inode ref
4476          * 2 items for dir items
4477          */
4478         err = btrfs_reserve_metadata_space(root, 3);
4479         if (err)
4480                 return err;
4481
4482         btrfs_inc_nlink(inode);
4483
4484         err = btrfs_set_inode_index(dir, &index);
4485         if (err)
4486                 goto fail;
4487
4488         trans = btrfs_start_transaction(root, 1);
4489
4490         btrfs_set_trans_block_group(trans, dir);
4491         atomic_inc(&inode->i_count);
4492
4493         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4494
4495         if (err) {
4496                 drop_inode = 1;
4497         } else {
4498                 btrfs_update_inode_block_group(trans, dir);
4499                 err = btrfs_update_inode(trans, root, inode);
4500                 BUG_ON(err);
4501                 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4502         }
4503
4504         nr = trans->blocks_used;
4505         btrfs_end_transaction_throttle(trans, root);
4506 fail:
4507         btrfs_unreserve_metadata_space(root, 3);
4508         if (drop_inode) {
4509                 inode_dec_link_count(inode);
4510                 iput(inode);
4511         }
4512         btrfs_btree_balance_dirty(root, nr);
4513         return err;
4514 }
4515
4516 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4517 {
4518         struct inode *inode = NULL;
4519         struct btrfs_trans_handle *trans;
4520         struct btrfs_root *root = BTRFS_I(dir)->root;
4521         int err = 0;
4522         int drop_on_err = 0;
4523         u64 objectid = 0;
4524         u64 index = 0;
4525         unsigned long nr = 1;
4526
4527         /*
4528          * 2 items for inode and ref
4529          * 2 items for dir items
4530          * 1 for xattr if selinux is on
4531          */
4532         err = btrfs_reserve_metadata_space(root, 5);
4533         if (err)
4534                 return err;
4535
4536         trans = btrfs_start_transaction(root, 1);
4537         if (!trans) {
4538                 err = -ENOMEM;
4539                 goto out_unlock;
4540         }
4541         btrfs_set_trans_block_group(trans, dir);
4542
4543         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4544         if (err) {
4545                 err = -ENOSPC;
4546                 goto out_unlock;
4547         }
4548
4549         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4550                                 dentry->d_name.len,
4551                                 dentry->d_parent->d_inode->i_ino, objectid,
4552                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4553                                 &index);
4554         if (IS_ERR(inode)) {
4555                 err = PTR_ERR(inode);
4556                 goto out_fail;
4557         }
4558
4559         drop_on_err = 1;
4560
4561         err = btrfs_init_inode_security(trans, inode, dir);
4562         if (err)
4563                 goto out_fail;
4564
4565         inode->i_op = &btrfs_dir_inode_operations;
4566         inode->i_fop = &btrfs_dir_file_operations;
4567         btrfs_set_trans_block_group(trans, inode);
4568
4569         btrfs_i_size_write(inode, 0);
4570         err = btrfs_update_inode(trans, root, inode);
4571         if (err)
4572                 goto out_fail;
4573
4574         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4575                                  inode, dentry->d_name.name,
4576                                  dentry->d_name.len, 0, index);
4577         if (err)
4578                 goto out_fail;
4579
4580         d_instantiate(dentry, inode);
4581         drop_on_err = 0;
4582         btrfs_update_inode_block_group(trans, inode);
4583         btrfs_update_inode_block_group(trans, dir);
4584
4585 out_fail:
4586         nr = trans->blocks_used;
4587         btrfs_end_transaction_throttle(trans, root);
4588
4589 out_unlock:
4590         btrfs_unreserve_metadata_space(root, 5);
4591         if (drop_on_err)
4592                 iput(inode);
4593         btrfs_btree_balance_dirty(root, nr);
4594         return err;
4595 }
4596
4597 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4598  * and an extent that you want to insert, deal with overlap and insert
4599  * the new extent into the tree.
4600  */
4601 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4602                                 struct extent_map *existing,
4603                                 struct extent_map *em,
4604                                 u64 map_start, u64 map_len)
4605 {
4606         u64 start_diff;
4607
4608         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4609         start_diff = map_start - em->start;
4610         em->start = map_start;
4611         em->len = map_len;
4612         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4613             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4614                 em->block_start += start_diff;
4615                 em->block_len -= start_diff;
4616         }
4617         return add_extent_mapping(em_tree, em);
4618 }
4619
4620 static noinline int uncompress_inline(struct btrfs_path *path,
4621                                       struct inode *inode, struct page *page,
4622                                       size_t pg_offset, u64 extent_offset,
4623                                       struct btrfs_file_extent_item *item)
4624 {
4625         int ret;
4626         struct extent_buffer *leaf = path->nodes[0];
4627         char *tmp;
4628         size_t max_size;
4629         unsigned long inline_size;
4630         unsigned long ptr;
4631
4632         WARN_ON(pg_offset != 0);
4633         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4634         inline_size = btrfs_file_extent_inline_item_len(leaf,
4635                                         btrfs_item_nr(leaf, path->slots[0]));
4636         tmp = kmalloc(inline_size, GFP_NOFS);
4637         ptr = btrfs_file_extent_inline_start(item);
4638
4639         read_extent_buffer(leaf, tmp, ptr, inline_size);
4640
4641         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4642         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4643                                     inline_size, max_size);
4644         if (ret) {
4645                 char *kaddr = kmap_atomic(page, KM_USER0);
4646                 unsigned long copy_size = min_t(u64,
4647                                   PAGE_CACHE_SIZE - pg_offset,
4648                                   max_size - extent_offset);
4649                 memset(kaddr + pg_offset, 0, copy_size);
4650                 kunmap_atomic(kaddr, KM_USER0);
4651         }
4652         kfree(tmp);
4653         return 0;
4654 }
4655
4656 /*
4657  * a bit scary, this does extent mapping from logical file offset to the disk.
4658  * the ugly parts come from merging extents from the disk with the in-ram
4659  * representation.  This gets more complex because of the data=ordered code,
4660  * where the in-ram extents might be locked pending data=ordered completion.
4661  *
4662  * This also copies inline extents directly into the page.
4663  */
4664
4665 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4666                                     size_t pg_offset, u64 start, u64 len,
4667                                     int create)
4668 {
4669         int ret;
4670         int err = 0;
4671         u64 bytenr;
4672         u64 extent_start = 0;
4673         u64 extent_end = 0;
4674         u64 objectid = inode->i_ino;
4675         u32 found_type;
4676         struct btrfs_path *path = NULL;
4677         struct btrfs_root *root = BTRFS_I(inode)->root;
4678         struct btrfs_file_extent_item *item;
4679         struct extent_buffer *leaf;
4680         struct btrfs_key found_key;
4681         struct extent_map *em = NULL;
4682         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4683         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4684         struct btrfs_trans_handle *trans = NULL;
4685         int compressed;
4686
4687 again:
4688         read_lock(&em_tree->lock);
4689         em = lookup_extent_mapping(em_tree, start, len);
4690         if (em)
4691                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4692         read_unlock(&em_tree->lock);
4693
4694         if (em) {
4695                 if (em->start > start || em->start + em->len <= start)
4696                         free_extent_map(em);
4697                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4698                         free_extent_map(em);
4699                 else
4700                         goto out;
4701         }
4702         em = alloc_extent_map(GFP_NOFS);
4703         if (!em) {
4704                 err = -ENOMEM;
4705                 goto out;
4706         }
4707         em->bdev = root->fs_info->fs_devices->latest_bdev;
4708         em->start = EXTENT_MAP_HOLE;
4709         em->orig_start = EXTENT_MAP_HOLE;
4710         em->len = (u64)-1;
4711         em->block_len = (u64)-1;
4712
4713         if (!path) {
4714                 path = btrfs_alloc_path();
4715                 BUG_ON(!path);
4716         }
4717
4718         ret = btrfs_lookup_file_extent(trans, root, path,
4719                                        objectid, start, trans != NULL);
4720         if (ret < 0) {
4721                 err = ret;
4722                 goto out;
4723         }
4724
4725         if (ret != 0) {
4726                 if (path->slots[0] == 0)
4727                         goto not_found;
4728                 path->slots[0]--;
4729         }
4730
4731         leaf = path->nodes[0];
4732         item = btrfs_item_ptr(leaf, path->slots[0],
4733                               struct btrfs_file_extent_item);
4734         /* are we inside the extent that was found? */
4735         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4736         found_type = btrfs_key_type(&found_key);
4737         if (found_key.objectid != objectid ||
4738             found_type != BTRFS_EXTENT_DATA_KEY) {
4739                 goto not_found;
4740         }
4741
4742         found_type = btrfs_file_extent_type(leaf, item);
4743         extent_start = found_key.offset;
4744         compressed = btrfs_file_extent_compression(leaf, item);
4745         if (found_type == BTRFS_FILE_EXTENT_REG ||
4746             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4747                 extent_end = extent_start +
4748                        btrfs_file_extent_num_bytes(leaf, item);
4749         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4750                 size_t size;
4751                 size = btrfs_file_extent_inline_len(leaf, item);
4752                 extent_end = (extent_start + size + root->sectorsize - 1) &
4753                         ~((u64)root->sectorsize - 1);
4754         }
4755
4756         if (start >= extent_end) {
4757                 path->slots[0]++;
4758                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4759                         ret = btrfs_next_leaf(root, path);
4760                         if (ret < 0) {
4761                                 err = ret;
4762                                 goto out;
4763                         }
4764                         if (ret > 0)
4765                                 goto not_found;
4766                         leaf = path->nodes[0];
4767                 }
4768                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4769                 if (found_key.objectid != objectid ||
4770                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4771                         goto not_found;
4772                 if (start + len <= found_key.offset)
4773                         goto not_found;
4774                 em->start = start;
4775                 em->len = found_key.offset - start;
4776                 goto not_found_em;
4777         }
4778
4779         if (found_type == BTRFS_FILE_EXTENT_REG ||
4780             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4781                 em->start = extent_start;
4782                 em->len = extent_end - extent_start;
4783                 em->orig_start = extent_start -
4784                                  btrfs_file_extent_offset(leaf, item);
4785                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4786                 if (bytenr == 0) {
4787                         em->block_start = EXTENT_MAP_HOLE;
4788                         goto insert;
4789                 }
4790                 if (compressed) {
4791                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4792                         em->block_start = bytenr;
4793                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4794                                                                          item);
4795                 } else {
4796                         bytenr += btrfs_file_extent_offset(leaf, item);
4797                         em->block_start = bytenr;
4798                         em->block_len = em->len;
4799                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4800                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4801                 }
4802                 goto insert;
4803         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4804                 unsigned long ptr;
4805                 char *map;
4806                 size_t size;
4807                 size_t extent_offset;
4808                 size_t copy_size;
4809
4810                 em->block_start = EXTENT_MAP_INLINE;
4811                 if (!page || create) {
4812                         em->start = extent_start;
4813                         em->len = extent_end - extent_start;
4814                         goto out;
4815                 }
4816
4817                 size = btrfs_file_extent_inline_len(leaf, item);
4818                 extent_offset = page_offset(page) + pg_offset - extent_start;
4819                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4820                                 size - extent_offset);
4821                 em->start = extent_start + extent_offset;
4822                 em->len = (copy_size + root->sectorsize - 1) &
4823                         ~((u64)root->sectorsize - 1);
4824                 em->orig_start = EXTENT_MAP_INLINE;
4825                 if (compressed)
4826                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4827                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4828                 if (create == 0 && !PageUptodate(page)) {
4829                         if (btrfs_file_extent_compression(leaf, item) ==
4830                             BTRFS_COMPRESS_ZLIB) {
4831                                 ret = uncompress_inline(path, inode, page,
4832                                                         pg_offset,
4833                                                         extent_offset, item);
4834                                 BUG_ON(ret);
4835                         } else {
4836                                 map = kmap(page);
4837                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4838                                                    copy_size);
4839                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4840                                         memset(map + pg_offset + copy_size, 0,
4841                                                PAGE_CACHE_SIZE - pg_offset -
4842                                                copy_size);
4843                                 }
4844                                 kunmap(page);
4845                         }
4846                         flush_dcache_page(page);
4847                 } else if (create && PageUptodate(page)) {
4848                         if (!trans) {
4849                                 kunmap(page);
4850                                 free_extent_map(em);
4851                                 em = NULL;
4852                                 btrfs_release_path(root, path);
4853                                 trans = btrfs_join_transaction(root, 1);
4854                                 goto again;
4855                         }
4856                         map = kmap(page);
4857                         write_extent_buffer(leaf, map + pg_offset, ptr,
4858                                             copy_size);
4859                         kunmap(page);
4860                         btrfs_mark_buffer_dirty(leaf);
4861                 }
4862                 set_extent_uptodate(io_tree, em->start,
4863                                     extent_map_end(em) - 1, GFP_NOFS);
4864                 goto insert;
4865         } else {
4866                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4867                 WARN_ON(1);
4868         }
4869 not_found:
4870         em->start = start;
4871         em->len = len;
4872 not_found_em:
4873         em->block_start = EXTENT_MAP_HOLE;
4874         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4875 insert:
4876         btrfs_release_path(root, path);
4877         if (em->start > start || extent_map_end(em) <= start) {
4878                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4879                        "[%llu %llu]\n", (unsigned long long)em->start,
4880                        (unsigned long long)em->len,
4881                        (unsigned long long)start,
4882                        (unsigned long long)len);
4883                 err = -EIO;
4884                 goto out;
4885         }
4886
4887         err = 0;
4888         write_lock(&em_tree->lock);
4889         ret = add_extent_mapping(em_tree, em);
4890         /* it is possible that someone inserted the extent into the tree
4891          * while we had the lock dropped.  It is also possible that
4892          * an overlapping map exists in the tree
4893          */
4894         if (ret == -EEXIST) {
4895                 struct extent_map *existing;
4896
4897                 ret = 0;
4898
4899                 existing = lookup_extent_mapping(em_tree, start, len);
4900                 if (existing && (existing->start > start ||
4901                     existing->start + existing->len <= start)) {
4902                         free_extent_map(existing);
4903                         existing = NULL;
4904                 }
4905                 if (!existing) {
4906                         existing = lookup_extent_mapping(em_tree, em->start,
4907                                                          em->len);
4908                         if (existing) {
4909                                 err = merge_extent_mapping(em_tree, existing,
4910                                                            em, start,
4911                                                            root->sectorsize);
4912                                 free_extent_map(existing);
4913                                 if (err) {
4914                                         free_extent_map(em);
4915                                         em = NULL;
4916                                 }
4917                         } else {
4918                                 err = -EIO;
4919                                 free_extent_map(em);
4920                                 em = NULL;
4921                         }
4922                 } else {
4923                         free_extent_map(em);
4924                         em = existing;
4925                         err = 0;
4926                 }
4927         }
4928         write_unlock(&em_tree->lock);
4929 out:
4930         if (path)
4931                 btrfs_free_path(path);
4932         if (trans) {
4933                 ret = btrfs_end_transaction(trans, root);
4934                 if (!err)
4935                         err = ret;
4936         }
4937         if (err) {
4938                 free_extent_map(em);
4939                 return ERR_PTR(err);
4940         }
4941         return em;
4942 }
4943
4944 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4945                         const struct iovec *iov, loff_t offset,
4946                         unsigned long nr_segs)
4947 {
4948         return -EINVAL;
4949 }
4950
4951 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4952                 __u64 start, __u64 len)
4953 {
4954         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4955 }
4956
4957 int btrfs_readpage(struct file *file, struct page *page)
4958 {
4959         struct extent_io_tree *tree;
4960         tree = &BTRFS_I(page->mapping->host)->io_tree;
4961         return extent_read_full_page(tree, page, btrfs_get_extent);
4962 }
4963
4964 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4965 {
4966         struct extent_io_tree *tree;
4967
4968
4969         if (current->flags & PF_MEMALLOC) {
4970                 redirty_page_for_writepage(wbc, page);
4971                 unlock_page(page);
4972                 return 0;
4973         }
4974         tree = &BTRFS_I(page->mapping->host)->io_tree;
4975         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4976 }
4977
4978 int btrfs_writepages(struct address_space *mapping,
4979                      struct writeback_control *wbc)
4980 {
4981         struct extent_io_tree *tree;
4982
4983         tree = &BTRFS_I(mapping->host)->io_tree;
4984         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4985 }
4986
4987 static int
4988 btrfs_readpages(struct file *file, struct address_space *mapping,
4989                 struct list_head *pages, unsigned nr_pages)
4990 {
4991         struct extent_io_tree *tree;
4992         tree = &BTRFS_I(mapping->host)->io_tree;
4993         return extent_readpages(tree, mapping, pages, nr_pages,
4994                                 btrfs_get_extent);
4995 }
4996 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4997 {
4998         struct extent_io_tree *tree;
4999         struct extent_map_tree *map;
5000         int ret;
5001
5002         tree = &BTRFS_I(page->mapping->host)->io_tree;
5003         map = &BTRFS_I(page->mapping->host)->extent_tree;
5004         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
5005         if (ret == 1) {
5006                 ClearPagePrivate(page);
5007                 set_page_private(page, 0);
5008                 page_cache_release(page);
5009         }
5010         return ret;
5011 }
5012
5013 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5014 {
5015         if (PageWriteback(page) || PageDirty(page))
5016                 return 0;
5017         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
5018 }
5019
5020 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5021 {
5022         struct extent_io_tree *tree;
5023         struct btrfs_ordered_extent *ordered;
5024         u64 page_start = page_offset(page);
5025         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5026
5027
5028         /*
5029          * we have the page locked, so new writeback can't start,
5030          * and the dirty bit won't be cleared while we are here.
5031          *
5032          * Wait for IO on this page so that we can safely clear
5033          * the PagePrivate2 bit and do ordered accounting
5034          */
5035         wait_on_page_writeback(page);
5036
5037         tree = &BTRFS_I(page->mapping->host)->io_tree;
5038         if (offset) {
5039                 btrfs_releasepage(page, GFP_NOFS);
5040                 return;
5041         }
5042         lock_extent(tree, page_start, page_end, GFP_NOFS);
5043         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5044                                            page_offset(page));
5045         if (ordered) {
5046                 /*
5047                  * IO on this page will never be started, so we need
5048                  * to account for any ordered extents now
5049                  */
5050                 clear_extent_bit(tree, page_start, page_end,
5051                                  EXTENT_DIRTY | EXTENT_DELALLOC |
5052                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5053                                  NULL, GFP_NOFS);
5054                 /*
5055                  * whoever cleared the private bit is responsible
5056                  * for the finish_ordered_io
5057                  */
5058                 if (TestClearPagePrivate2(page)) {
5059                         btrfs_finish_ordered_io(page->mapping->host,
5060                                                 page_start, page_end);
5061                 }
5062                 btrfs_put_ordered_extent(ordered);
5063                 lock_extent(tree, page_start, page_end, GFP_NOFS);
5064         }
5065         clear_extent_bit(tree, page_start, page_end,
5066                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5067                  EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
5068         __btrfs_releasepage(page, GFP_NOFS);
5069
5070         ClearPageChecked(page);
5071         if (PagePrivate(page)) {
5072                 ClearPagePrivate(page);
5073                 set_page_private(page, 0);
5074                 page_cache_release(page);
5075         }
5076 }
5077
5078 /*
5079  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5080  * called from a page fault handler when a page is first dirtied. Hence we must
5081  * be careful to check for EOF conditions here. We set the page up correctly
5082  * for a written page which means we get ENOSPC checking when writing into
5083  * holes and correct delalloc and unwritten extent mapping on filesystems that
5084  * support these features.
5085  *
5086  * We are not allowed to take the i_mutex here so we have to play games to
5087  * protect against truncate races as the page could now be beyond EOF.  Because
5088  * vmtruncate() writes the inode size before removing pages, once we have the
5089  * page lock we can determine safely if the page is beyond EOF. If it is not
5090  * beyond EOF, then the page is guaranteed safe against truncation until we
5091  * unlock the page.
5092  */
5093 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5094 {
5095         struct page *page = vmf->page;
5096         struct inode *inode = fdentry(vma->vm_file)->d_inode;
5097         struct btrfs_root *root = BTRFS_I(inode)->root;
5098         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5099         struct btrfs_ordered_extent *ordered;
5100         char *kaddr;
5101         unsigned long zero_start;
5102         loff_t size;
5103         int ret;
5104         u64 page_start;
5105         u64 page_end;
5106
5107         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
5108         if (ret) {
5109                 if (ret == -ENOMEM)
5110                         ret = VM_FAULT_OOM;
5111                 else /* -ENOSPC, -EIO, etc */
5112                         ret = VM_FAULT_SIGBUS;
5113                 goto out;
5114         }
5115
5116         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5117         if (ret) {
5118                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5119                 ret = VM_FAULT_SIGBUS;
5120                 goto out;
5121         }
5122
5123         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5124 again:
5125         lock_page(page);
5126         size = i_size_read(inode);
5127         page_start = page_offset(page);
5128         page_end = page_start + PAGE_CACHE_SIZE - 1;
5129
5130         if ((page->mapping != inode->i_mapping) ||
5131             (page_start >= size)) {
5132                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5133                 /* page got truncated out from underneath us */
5134                 goto out_unlock;
5135         }
5136         wait_on_page_writeback(page);
5137
5138         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5139         set_page_extent_mapped(page);
5140
5141         /*
5142          * we can't set the delalloc bits if there are pending ordered
5143          * extents.  Drop our locks and wait for them to finish
5144          */
5145         ordered = btrfs_lookup_ordered_extent(inode, page_start);
5146         if (ordered) {
5147                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5148                 unlock_page(page);
5149                 btrfs_start_ordered_extent(inode, ordered, 1);
5150                 btrfs_put_ordered_extent(ordered);
5151                 goto again;
5152         }
5153
5154         /*
5155          * XXX - page_mkwrite gets called every time the page is dirtied, even
5156          * if it was already dirty, so for space accounting reasons we need to
5157          * clear any delalloc bits for the range we are fixing to save.  There
5158          * is probably a better way to do this, but for now keep consistent with
5159          * prepare_pages in the normal write path.
5160          */
5161         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
5162                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5163                           GFP_NOFS);
5164
5165         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5166         if (ret) {
5167                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5168                 ret = VM_FAULT_SIGBUS;
5169                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5170                 goto out_unlock;
5171         }
5172         ret = 0;
5173
5174         /* page is wholly or partially inside EOF */
5175         if (page_start + PAGE_CACHE_SIZE > size)
5176                 zero_start = size & ~PAGE_CACHE_MASK;
5177         else
5178                 zero_start = PAGE_CACHE_SIZE;
5179
5180         if (zero_start != PAGE_CACHE_SIZE) {
5181                 kaddr = kmap(page);
5182                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5183                 flush_dcache_page(page);
5184                 kunmap(page);
5185         }
5186         ClearPageChecked(page);
5187         set_page_dirty(page);
5188         SetPageUptodate(page);
5189
5190         BTRFS_I(inode)->last_trans = root->fs_info->generation;
5191         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5192
5193         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5194
5195 out_unlock:
5196         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5197         if (!ret)
5198                 return VM_FAULT_LOCKED;
5199         unlock_page(page);
5200 out:
5201         return ret;
5202 }
5203
5204 static void btrfs_truncate(struct inode *inode)
5205 {
5206         struct btrfs_root *root = BTRFS_I(inode)->root;
5207         int ret;
5208         struct btrfs_trans_handle *trans;
5209         unsigned long nr;
5210         u64 mask = root->sectorsize - 1;
5211
5212         if (!S_ISREG(inode->i_mode)) {
5213                 WARN_ON(1);
5214                 return;
5215         }
5216
5217         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5218         if (ret)
5219                 return;
5220
5221         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5222         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5223
5224         trans = btrfs_start_transaction(root, 1);
5225         btrfs_set_trans_block_group(trans, inode);
5226
5227         /*
5228          * setattr is responsible for setting the ordered_data_close flag,
5229          * but that is only tested during the last file release.  That
5230          * could happen well after the next commit, leaving a great big
5231          * window where new writes may get lost if someone chooses to write
5232          * to this file after truncating to zero
5233          *
5234          * The inode doesn't have any dirty data here, and so if we commit
5235          * this is a noop.  If someone immediately starts writing to the inode
5236          * it is very likely we'll catch some of their writes in this
5237          * transaction, and the commit will find this file on the ordered
5238          * data list with good things to send down.
5239          *
5240          * This is a best effort solution, there is still a window where
5241          * using truncate to replace the contents of the file will
5242          * end up with a zero length file after a crash.
5243          */
5244         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5245                 btrfs_add_ordered_operation(trans, root, inode);
5246
5247         while (1) {
5248                 ret = btrfs_truncate_inode_items(trans, root, inode,
5249                                                  inode->i_size,
5250                                                  BTRFS_EXTENT_DATA_KEY);
5251                 if (ret != -EAGAIN)
5252                         break;
5253
5254                 ret = btrfs_update_inode(trans, root, inode);
5255                 BUG_ON(ret);
5256
5257                 nr = trans->blocks_used;
5258                 btrfs_end_transaction(trans, root);
5259                 btrfs_btree_balance_dirty(root, nr);
5260
5261                 trans = btrfs_start_transaction(root, 1);
5262                 btrfs_set_trans_block_group(trans, inode);
5263         }
5264
5265         if (ret == 0 && inode->i_nlink > 0) {
5266                 ret = btrfs_orphan_del(trans, inode);
5267                 BUG_ON(ret);
5268         }
5269
5270         ret = btrfs_update_inode(trans, root, inode);
5271         BUG_ON(ret);
5272
5273         nr = trans->blocks_used;
5274         ret = btrfs_end_transaction_throttle(trans, root);
5275         BUG_ON(ret);
5276         btrfs_btree_balance_dirty(root, nr);
5277 }
5278
5279 /*
5280  * create a new subvolume directory/inode (helper for the ioctl).
5281  */
5282 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5283                              struct btrfs_root *new_root,
5284                              u64 new_dirid, u64 alloc_hint)
5285 {
5286         struct inode *inode;
5287         int err;
5288         u64 index = 0;
5289
5290         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5291                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5292         if (IS_ERR(inode))
5293                 return PTR_ERR(inode);
5294         inode->i_op = &btrfs_dir_inode_operations;
5295         inode->i_fop = &btrfs_dir_file_operations;
5296
5297         inode->i_nlink = 1;
5298         btrfs_i_size_write(inode, 0);
5299
5300         err = btrfs_update_inode(trans, new_root, inode);
5301         BUG_ON(err);
5302
5303         iput(inode);
5304         return 0;
5305 }
5306
5307 /* helper function for file defrag and space balancing.  This
5308  * forces readahead on a given range of bytes in an inode
5309  */
5310 unsigned long btrfs_force_ra(struct address_space *mapping,
5311                               struct file_ra_state *ra, struct file *file,
5312                               pgoff_t offset, pgoff_t last_index)
5313 {
5314         pgoff_t req_size = last_index - offset + 1;
5315
5316         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5317         return offset + req_size;
5318 }
5319
5320 struct inode *btrfs_alloc_inode(struct super_block *sb)
5321 {
5322         struct btrfs_inode *ei;
5323
5324         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5325         if (!ei)
5326                 return NULL;
5327         ei->last_trans = 0;
5328         ei->last_sub_trans = 0;
5329         ei->logged_trans = 0;
5330         ei->outstanding_extents = 0;
5331         ei->reserved_extents = 0;
5332         ei->root = NULL;
5333         spin_lock_init(&ei->accounting_lock);
5334         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5335         INIT_LIST_HEAD(&ei->i_orphan);
5336         INIT_LIST_HEAD(&ei->ordered_operations);
5337         return &ei->vfs_inode;
5338 }
5339
5340 void btrfs_destroy_inode(struct inode *inode)
5341 {
5342         struct btrfs_ordered_extent *ordered;
5343         struct btrfs_root *root = BTRFS_I(inode)->root;
5344
5345         WARN_ON(!list_empty(&inode->i_dentry));
5346         WARN_ON(inode->i_data.nrpages);
5347
5348         /*
5349          * This can happen where we create an inode, but somebody else also
5350          * created the same inode and we need to destroy the one we already
5351          * created.
5352          */
5353         if (!root)
5354                 goto free;
5355
5356         /*
5357          * Make sure we're properly removed from the ordered operation
5358          * lists.
5359          */
5360         smp_mb();
5361         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5362                 spin_lock(&root->fs_info->ordered_extent_lock);
5363                 list_del_init(&BTRFS_I(inode)->ordered_operations);
5364                 spin_unlock(&root->fs_info->ordered_extent_lock);
5365         }
5366
5367         spin_lock(&root->list_lock);
5368         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5369                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5370                        inode->i_ino);
5371                 list_del_init(&BTRFS_I(inode)->i_orphan);
5372         }
5373         spin_unlock(&root->list_lock);
5374
5375         while (1) {
5376                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5377                 if (!ordered)
5378                         break;
5379                 else {
5380                         printk(KERN_ERR "btrfs found ordered "
5381                                "extent %llu %llu on inode cleanup\n",
5382                                (unsigned long long)ordered->file_offset,
5383                                (unsigned long long)ordered->len);
5384                         btrfs_remove_ordered_extent(inode, ordered);
5385                         btrfs_put_ordered_extent(ordered);
5386                         btrfs_put_ordered_extent(ordered);
5387                 }
5388         }
5389         inode_tree_del(inode);
5390         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5391 free:
5392         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5393 }
5394
5395 void btrfs_drop_inode(struct inode *inode)
5396 {
5397         struct btrfs_root *root = BTRFS_I(inode)->root;
5398
5399         if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5400                 generic_delete_inode(inode);
5401         else
5402                 generic_drop_inode(inode);
5403 }
5404
5405 static void init_once(void *foo)
5406 {
5407         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5408
5409         inode_init_once(&ei->vfs_inode);
5410 }
5411
5412 void btrfs_destroy_cachep(void)
5413 {
5414         if (btrfs_inode_cachep)
5415                 kmem_cache_destroy(btrfs_inode_cachep);
5416         if (btrfs_trans_handle_cachep)
5417                 kmem_cache_destroy(btrfs_trans_handle_cachep);
5418         if (btrfs_transaction_cachep)
5419                 kmem_cache_destroy(btrfs_transaction_cachep);
5420         if (btrfs_path_cachep)
5421                 kmem_cache_destroy(btrfs_path_cachep);
5422 }
5423
5424 int btrfs_init_cachep(void)
5425 {
5426         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5427                         sizeof(struct btrfs_inode), 0,
5428                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5429         if (!btrfs_inode_cachep)
5430                 goto fail;
5431
5432         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5433                         sizeof(struct btrfs_trans_handle), 0,
5434                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5435         if (!btrfs_trans_handle_cachep)
5436                 goto fail;
5437
5438         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5439                         sizeof(struct btrfs_transaction), 0,
5440                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5441         if (!btrfs_transaction_cachep)
5442                 goto fail;
5443
5444         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5445                         sizeof(struct btrfs_path), 0,
5446                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5447         if (!btrfs_path_cachep)
5448                 goto fail;
5449
5450         return 0;
5451 fail:
5452         btrfs_destroy_cachep();
5453         return -ENOMEM;
5454 }
5455
5456 static int btrfs_getattr(struct vfsmount *mnt,
5457                          struct dentry *dentry, struct kstat *stat)
5458 {
5459         struct inode *inode = dentry->d_inode;
5460         generic_fillattr(inode, stat);
5461         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5462         stat->blksize = PAGE_CACHE_SIZE;
5463         stat->blocks = (inode_get_bytes(inode) +
5464                         BTRFS_I(inode)->delalloc_bytes) >> 9;
5465         return 0;
5466 }
5467
5468 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5469                            struct inode *new_dir, struct dentry *new_dentry)
5470 {
5471         struct btrfs_trans_handle *trans;
5472         struct btrfs_root *root = BTRFS_I(old_dir)->root;
5473         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5474         struct inode *new_inode = new_dentry->d_inode;
5475         struct inode *old_inode = old_dentry->d_inode;
5476         struct timespec ctime = CURRENT_TIME;
5477         u64 index = 0;
5478         u64 root_objectid;
5479         int ret;
5480
5481         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5482                 return -EPERM;
5483
5484         /* we only allow rename subvolume link between subvolumes */
5485         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5486                 return -EXDEV;
5487
5488         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5489             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5490                 return -ENOTEMPTY;
5491
5492         if (S_ISDIR(old_inode->i_mode) && new_inode &&
5493             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5494                 return -ENOTEMPTY;
5495
5496         /*
5497          * We want to reserve the absolute worst case amount of items.  So if
5498          * both inodes are subvols and we need to unlink them then that would
5499          * require 4 item modifications, but if they are both normal inodes it
5500          * would require 5 item modifications, so we'll assume their normal
5501          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5502          * should cover the worst case number of items we'll modify.
5503          */
5504         ret = btrfs_reserve_metadata_space(root, 11);
5505         if (ret)
5506                 return ret;
5507
5508         /*
5509          * we're using rename to replace one file with another.
5510          * and the replacement file is large.  Start IO on it now so
5511          * we don't add too much work to the end of the transaction
5512          */
5513         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5514             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5515                 filemap_flush(old_inode->i_mapping);
5516
5517         /* close the racy window with snapshot create/destroy ioctl */
5518         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5519                 down_read(&root->fs_info->subvol_sem);
5520
5521         trans = btrfs_start_transaction(root, 1);
5522         btrfs_set_trans_block_group(trans, new_dir);
5523
5524         if (dest != root)
5525                 btrfs_record_root_in_trans(trans, dest);
5526
5527         ret = btrfs_set_inode_index(new_dir, &index);
5528         if (ret)
5529                 goto out_fail;
5530
5531         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5532                 /* force full log commit if subvolume involved. */
5533                 root->fs_info->last_trans_log_full_commit = trans->transid;
5534         } else {
5535                 ret = btrfs_insert_inode_ref(trans, dest,
5536                                              new_dentry->d_name.name,
5537                                              new_dentry->d_name.len,
5538                                              old_inode->i_ino,
5539                                              new_dir->i_ino, index);
5540                 if (ret)
5541                         goto out_fail;
5542                 /*
5543                  * this is an ugly little race, but the rename is required
5544                  * to make sure that if we crash, the inode is either at the
5545                  * old name or the new one.  pinning the log transaction lets
5546                  * us make sure we don't allow a log commit to come in after
5547                  * we unlink the name but before we add the new name back in.
5548                  */
5549                 btrfs_pin_log_trans(root);
5550         }
5551         /*
5552          * make sure the inode gets flushed if it is replacing
5553          * something.
5554          */
5555         if (new_inode && new_inode->i_size &&
5556             old_inode && S_ISREG(old_inode->i_mode)) {
5557                 btrfs_add_ordered_operation(trans, root, old_inode);
5558         }
5559
5560         old_dir->i_ctime = old_dir->i_mtime = ctime;
5561         new_dir->i_ctime = new_dir->i_mtime = ctime;
5562         old_inode->i_ctime = ctime;
5563
5564         if (old_dentry->d_parent != new_dentry->d_parent)
5565                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5566
5567         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5568                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5569                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5570                                         old_dentry->d_name.name,
5571                                         old_dentry->d_name.len);
5572         } else {
5573                 btrfs_inc_nlink(old_dentry->d_inode);
5574                 ret = btrfs_unlink_inode(trans, root, old_dir,
5575                                          old_dentry->d_inode,
5576                                          old_dentry->d_name.name,
5577                                          old_dentry->d_name.len);
5578         }
5579         BUG_ON(ret);
5580
5581         if (new_inode) {
5582                 new_inode->i_ctime = CURRENT_TIME;
5583                 if (unlikely(new_inode->i_ino ==
5584                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5585                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5586                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5587                                                 root_objectid,
5588                                                 new_dentry->d_name.name,
5589                                                 new_dentry->d_name.len);
5590                         BUG_ON(new_inode->i_nlink == 0);
5591                 } else {
5592                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5593                                                  new_dentry->d_inode,
5594                                                  new_dentry->d_name.name,
5595                                                  new_dentry->d_name.len);
5596                 }
5597                 BUG_ON(ret);
5598                 if (new_inode->i_nlink == 0) {
5599                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5600                         BUG_ON(ret);
5601                 }
5602         }
5603
5604         ret = btrfs_add_link(trans, new_dir, old_inode,
5605                              new_dentry->d_name.name,
5606                              new_dentry->d_name.len, 0, index);
5607         BUG_ON(ret);
5608
5609         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5610                 btrfs_log_new_name(trans, old_inode, old_dir,
5611                                    new_dentry->d_parent);
5612                 btrfs_end_log_trans(root);
5613         }
5614 out_fail:
5615         btrfs_end_transaction_throttle(trans, root);
5616
5617         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5618                 up_read(&root->fs_info->subvol_sem);
5619
5620         btrfs_unreserve_metadata_space(root, 11);
5621         return ret;
5622 }
5623
5624 /*
5625  * some fairly slow code that needs optimization. This walks the list
5626  * of all the inodes with pending delalloc and forces them to disk.
5627  */
5628 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5629 {
5630         struct list_head *head = &root->fs_info->delalloc_inodes;
5631         struct btrfs_inode *binode;
5632         struct inode *inode;
5633
5634         if (root->fs_info->sb->s_flags & MS_RDONLY)
5635                 return -EROFS;
5636
5637         spin_lock(&root->fs_info->delalloc_lock);
5638         while (!list_empty(head)) {
5639                 binode = list_entry(head->next, struct btrfs_inode,
5640                                     delalloc_inodes);
5641                 inode = igrab(&binode->vfs_inode);
5642                 if (!inode)
5643                         list_del_init(&binode->delalloc_inodes);
5644                 spin_unlock(&root->fs_info->delalloc_lock);
5645                 if (inode) {
5646                         filemap_flush(inode->i_mapping);
5647                         if (delay_iput)
5648                                 btrfs_add_delayed_iput(inode);
5649                         else
5650                                 iput(inode);
5651                 }
5652                 cond_resched();
5653                 spin_lock(&root->fs_info->delalloc_lock);
5654         }
5655         spin_unlock(&root->fs_info->delalloc_lock);
5656
5657         /* the filemap_flush will queue IO into the worker threads, but
5658          * we have to make sure the IO is actually started and that
5659          * ordered extents get created before we return
5660          */
5661         atomic_inc(&root->fs_info->async_submit_draining);
5662         while (atomic_read(&root->fs_info->nr_async_submits) ||
5663               atomic_read(&root->fs_info->async_delalloc_pages)) {
5664                 wait_event(root->fs_info->async_submit_wait,
5665                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5666                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5667         }
5668         atomic_dec(&root->fs_info->async_submit_draining);
5669         return 0;
5670 }
5671
5672 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5673                          const char *symname)
5674 {
5675         struct btrfs_trans_handle *trans;
5676         struct btrfs_root *root = BTRFS_I(dir)->root;
5677         struct btrfs_path *path;
5678         struct btrfs_key key;
5679         struct inode *inode = NULL;
5680         int err;
5681         int drop_inode = 0;
5682         u64 objectid;
5683         u64 index = 0 ;
5684         int name_len;
5685         int datasize;
5686         unsigned long ptr;
5687         struct btrfs_file_extent_item *ei;
5688         struct extent_buffer *leaf;
5689         unsigned long nr = 0;
5690
5691         name_len = strlen(symname) + 1;
5692         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5693                 return -ENAMETOOLONG;
5694
5695         /*
5696          * 2 items for inode item and ref
5697          * 2 items for dir items
5698          * 1 item for xattr if selinux is on
5699          */
5700         err = btrfs_reserve_metadata_space(root, 5);
5701         if (err)
5702                 return err;
5703
5704         trans = btrfs_start_transaction(root, 1);
5705         if (!trans)
5706                 goto out_fail;
5707         btrfs_set_trans_block_group(trans, dir);
5708
5709         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5710         if (err) {
5711                 err = -ENOSPC;
5712                 goto out_unlock;
5713         }
5714
5715         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5716                                 dentry->d_name.len,
5717                                 dentry->d_parent->d_inode->i_ino, objectid,
5718                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5719                                 &index);
5720         err = PTR_ERR(inode);
5721         if (IS_ERR(inode))
5722                 goto out_unlock;
5723
5724         err = btrfs_init_inode_security(trans, inode, dir);
5725         if (err) {
5726                 drop_inode = 1;
5727                 goto out_unlock;
5728         }
5729
5730         btrfs_set_trans_block_group(trans, inode);
5731         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5732         if (err)
5733                 drop_inode = 1;
5734         else {
5735                 inode->i_mapping->a_ops = &btrfs_aops;
5736                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5737                 inode->i_fop = &btrfs_file_operations;
5738                 inode->i_op = &btrfs_file_inode_operations;
5739                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5740         }
5741         btrfs_update_inode_block_group(trans, inode);
5742         btrfs_update_inode_block_group(trans, dir);
5743         if (drop_inode)
5744                 goto out_unlock;
5745
5746         path = btrfs_alloc_path();
5747         BUG_ON(!path);
5748         key.objectid = inode->i_ino;
5749         key.offset = 0;
5750         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5751         datasize = btrfs_file_extent_calc_inline_size(name_len);
5752         err = btrfs_insert_empty_item(trans, root, path, &key,
5753                                       datasize);
5754         if (err) {
5755                 drop_inode = 1;
5756                 goto out_unlock;
5757         }
5758         leaf = path->nodes[0];
5759         ei = btrfs_item_ptr(leaf, path->slots[0],
5760                             struct btrfs_file_extent_item);
5761         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5762         btrfs_set_file_extent_type(leaf, ei,
5763                                    BTRFS_FILE_EXTENT_INLINE);
5764         btrfs_set_file_extent_encryption(leaf, ei, 0);
5765         btrfs_set_file_extent_compression(leaf, ei, 0);
5766         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5767         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5768
5769         ptr = btrfs_file_extent_inline_start(ei);
5770         write_extent_buffer(leaf, symname, ptr, name_len);
5771         btrfs_mark_buffer_dirty(leaf);
5772         btrfs_free_path(path);
5773
5774         inode->i_op = &btrfs_symlink_inode_operations;
5775         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5776         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5777         inode_set_bytes(inode, name_len);
5778         btrfs_i_size_write(inode, name_len - 1);
5779         err = btrfs_update_inode(trans, root, inode);
5780         if (err)
5781                 drop_inode = 1;
5782
5783 out_unlock:
5784         nr = trans->blocks_used;
5785         btrfs_end_transaction_throttle(trans, root);
5786 out_fail:
5787         btrfs_unreserve_metadata_space(root, 5);
5788         if (drop_inode) {
5789                 inode_dec_link_count(inode);
5790                 iput(inode);
5791         }
5792         btrfs_btree_balance_dirty(root, nr);
5793         return err;
5794 }
5795
5796 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
5797                         u64 alloc_hint, int mode, loff_t actual_len)
5798 {
5799         struct btrfs_trans_handle *trans;
5800         struct btrfs_root *root = BTRFS_I(inode)->root;
5801         struct btrfs_key ins;
5802         u64 alloc_size;
5803         u64 cur_offset = start;
5804         u64 num_bytes = end - start;
5805         int ret = 0;
5806         u64 i_size;
5807
5808         while (num_bytes > 0) {
5809                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5810
5811                 trans = btrfs_start_transaction(root, 1);
5812
5813                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5814                                            root->sectorsize, 0, alloc_hint,
5815                                            (u64)-1, &ins, 1);
5816                 if (ret) {
5817                         WARN_ON(1);
5818                         goto stop_trans;
5819                 }
5820
5821                 ret = btrfs_reserve_metadata_space(root, 3);
5822                 if (ret) {
5823                         btrfs_free_reserved_extent(root, ins.objectid,
5824                                                    ins.offset);
5825                         goto stop_trans;
5826                 }
5827
5828                 ret = insert_reserved_file_extent(trans, inode,
5829                                                   cur_offset, ins.objectid,
5830                                                   ins.offset, ins.offset,
5831                                                   ins.offset, 0, 0, 0,
5832                                                   BTRFS_FILE_EXTENT_PREALLOC);
5833                 BUG_ON(ret);
5834                 btrfs_drop_extent_cache(inode, cur_offset,
5835                                         cur_offset + ins.offset -1, 0);
5836
5837                 num_bytes -= ins.offset;
5838                 cur_offset += ins.offset;
5839                 alloc_hint = ins.objectid + ins.offset;
5840
5841                 inode->i_ctime = CURRENT_TIME;
5842                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5843                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5844                     cur_offset > inode->i_size) {
5845                         if (cur_offset > actual_len)
5846                                 i_size  = actual_len;
5847                         else
5848                                 i_size = cur_offset;
5849                         i_size_write(inode, i_size);
5850                         btrfs_ordered_update_i_size(inode, i_size, NULL);
5851                 }
5852
5853                 ret = btrfs_update_inode(trans, root, inode);
5854                 BUG_ON(ret);
5855
5856                 btrfs_end_transaction(trans, root);
5857                 btrfs_unreserve_metadata_space(root, 3);
5858         }
5859         return ret;
5860
5861 stop_trans:
5862         btrfs_end_transaction(trans, root);
5863         return ret;
5864
5865 }
5866
5867 static long btrfs_fallocate(struct inode *inode, int mode,
5868                             loff_t offset, loff_t len)
5869 {
5870         u64 cur_offset;
5871         u64 last_byte;
5872         u64 alloc_start;
5873         u64 alloc_end;
5874         u64 alloc_hint = 0;
5875         u64 locked_end;
5876         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5877         struct extent_map *em;
5878         int ret;
5879
5880         alloc_start = offset & ~mask;
5881         alloc_end =  (offset + len + mask) & ~mask;
5882
5883         /*
5884          * wait for ordered IO before we have any locks.  We'll loop again
5885          * below with the locks held.
5886          */
5887         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5888
5889         mutex_lock(&inode->i_mutex);
5890         if (alloc_start > inode->i_size) {
5891                 ret = btrfs_cont_expand(inode, alloc_start);
5892                 if (ret)
5893                         goto out;
5894         }
5895
5896         ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
5897                                           alloc_end - alloc_start);
5898         if (ret)
5899                 goto out;
5900
5901         locked_end = alloc_end - 1;
5902         while (1) {
5903                 struct btrfs_ordered_extent *ordered;
5904
5905                 /* the extent lock is ordered inside the running
5906                  * transaction
5907                  */
5908                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5909                             GFP_NOFS);
5910                 ordered = btrfs_lookup_first_ordered_extent(inode,
5911                                                             alloc_end - 1);
5912                 if (ordered &&
5913                     ordered->file_offset + ordered->len > alloc_start &&
5914                     ordered->file_offset < alloc_end) {
5915                         btrfs_put_ordered_extent(ordered);
5916                         unlock_extent(&BTRFS_I(inode)->io_tree,
5917                                       alloc_start, locked_end, GFP_NOFS);
5918                         /*
5919                          * we can't wait on the range with the transaction
5920                          * running or with the extent lock held
5921                          */
5922                         btrfs_wait_ordered_range(inode, alloc_start,
5923                                                  alloc_end - alloc_start);
5924                 } else {
5925                         if (ordered)
5926                                 btrfs_put_ordered_extent(ordered);
5927                         break;
5928                 }
5929         }
5930
5931         cur_offset = alloc_start;
5932         while (1) {
5933                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5934                                       alloc_end - cur_offset, 0);
5935                 BUG_ON(IS_ERR(em) || !em);
5936                 last_byte = min(extent_map_end(em), alloc_end);
5937                 last_byte = (last_byte + mask) & ~mask;
5938                 if (em->block_start == EXTENT_MAP_HOLE ||
5939                     (cur_offset >= inode->i_size &&
5940                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5941                         ret = prealloc_file_range(inode,
5942                                                   cur_offset, last_byte,
5943                                                 alloc_hint, mode, offset+len);
5944                         if (ret < 0) {
5945                                 free_extent_map(em);
5946                                 break;
5947                         }
5948                 }
5949                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5950                         alloc_hint = em->block_start;
5951                 free_extent_map(em);
5952
5953                 cur_offset = last_byte;
5954                 if (cur_offset >= alloc_end) {
5955                         ret = 0;
5956                         break;
5957                 }
5958         }
5959         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5960                       GFP_NOFS);
5961
5962         btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5963                                        alloc_end - alloc_start);
5964 out:
5965         mutex_unlock(&inode->i_mutex);
5966         return ret;
5967 }
5968
5969 static int btrfs_set_page_dirty(struct page *page)
5970 {
5971         return __set_page_dirty_nobuffers(page);
5972 }
5973
5974 static int btrfs_permission(struct inode *inode, int mask)
5975 {
5976         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5977                 return -EACCES;
5978         return generic_permission(inode, mask, btrfs_check_acl);
5979 }
5980
5981 static const struct inode_operations btrfs_dir_inode_operations = {
5982         .getattr        = btrfs_getattr,
5983         .lookup         = btrfs_lookup,
5984         .create         = btrfs_create,
5985         .unlink         = btrfs_unlink,
5986         .link           = btrfs_link,
5987         .mkdir          = btrfs_mkdir,
5988         .rmdir          = btrfs_rmdir,
5989         .rename         = btrfs_rename,
5990         .symlink        = btrfs_symlink,
5991         .setattr        = btrfs_setattr,
5992         .mknod          = btrfs_mknod,
5993         .setxattr       = btrfs_setxattr,
5994         .getxattr       = btrfs_getxattr,
5995         .listxattr      = btrfs_listxattr,
5996         .removexattr    = btrfs_removexattr,
5997         .permission     = btrfs_permission,
5998 };
5999 static const struct inode_operations btrfs_dir_ro_inode_operations = {
6000         .lookup         = btrfs_lookup,
6001         .permission     = btrfs_permission,
6002 };
6003
6004 static const struct file_operations btrfs_dir_file_operations = {
6005         .llseek         = generic_file_llseek,
6006         .read           = generic_read_dir,
6007         .readdir        = btrfs_real_readdir,
6008         .unlocked_ioctl = btrfs_ioctl,
6009 #ifdef CONFIG_COMPAT
6010         .compat_ioctl   = btrfs_ioctl,
6011 #endif
6012         .release        = btrfs_release_file,
6013         .fsync          = btrfs_sync_file,
6014 };
6015
6016 static struct extent_io_ops btrfs_extent_io_ops = {
6017         .fill_delalloc = run_delalloc_range,
6018         .submit_bio_hook = btrfs_submit_bio_hook,
6019         .merge_bio_hook = btrfs_merge_bio_hook,
6020         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
6021         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
6022         .writepage_start_hook = btrfs_writepage_start_hook,
6023         .readpage_io_failed_hook = btrfs_io_failed_hook,
6024         .set_bit_hook = btrfs_set_bit_hook,
6025         .clear_bit_hook = btrfs_clear_bit_hook,
6026         .merge_extent_hook = btrfs_merge_extent_hook,
6027         .split_extent_hook = btrfs_split_extent_hook,
6028 };
6029
6030 /*
6031  * btrfs doesn't support the bmap operation because swapfiles
6032  * use bmap to make a mapping of extents in the file.  They assume
6033  * these extents won't change over the life of the file and they
6034  * use the bmap result to do IO directly to the drive.
6035  *
6036  * the btrfs bmap call would return logical addresses that aren't
6037  * suitable for IO and they also will change frequently as COW
6038  * operations happen.  So, swapfile + btrfs == corruption.
6039  *
6040  * For now we're avoiding this by dropping bmap.
6041  */
6042 static const struct address_space_operations btrfs_aops = {
6043         .readpage       = btrfs_readpage,
6044         .writepage      = btrfs_writepage,
6045         .writepages     = btrfs_writepages,
6046         .readpages      = btrfs_readpages,
6047         .sync_page      = block_sync_page,
6048         .direct_IO      = btrfs_direct_IO,
6049         .invalidatepage = btrfs_invalidatepage,
6050         .releasepage    = btrfs_releasepage,
6051         .set_page_dirty = btrfs_set_page_dirty,
6052         .error_remove_page = generic_error_remove_page,
6053 };
6054
6055 static const struct address_space_operations btrfs_symlink_aops = {
6056         .readpage       = btrfs_readpage,
6057         .writepage      = btrfs_writepage,
6058         .invalidatepage = btrfs_invalidatepage,
6059         .releasepage    = btrfs_releasepage,
6060 };
6061
6062 static const struct inode_operations btrfs_file_inode_operations = {
6063         .truncate       = btrfs_truncate,
6064         .getattr        = btrfs_getattr,
6065         .setattr        = btrfs_setattr,
6066         .setxattr       = btrfs_setxattr,
6067         .getxattr       = btrfs_getxattr,
6068         .listxattr      = btrfs_listxattr,
6069         .removexattr    = btrfs_removexattr,
6070         .permission     = btrfs_permission,
6071         .fallocate      = btrfs_fallocate,
6072         .fiemap         = btrfs_fiemap,
6073 };
6074 static const struct inode_operations btrfs_special_inode_operations = {
6075         .getattr        = btrfs_getattr,
6076         .setattr        = btrfs_setattr,
6077         .permission     = btrfs_permission,
6078         .setxattr       = btrfs_setxattr,
6079         .getxattr       = btrfs_getxattr,
6080         .listxattr      = btrfs_listxattr,
6081         .removexattr    = btrfs_removexattr,
6082 };
6083 static const struct inode_operations btrfs_symlink_inode_operations = {
6084         .readlink       = generic_readlink,
6085         .follow_link    = page_follow_link_light,
6086         .put_link       = page_put_link,
6087         .permission     = btrfs_permission,
6088         .setxattr       = btrfs_setxattr,
6089         .getxattr       = btrfs_getxattr,
6090         .listxattr      = btrfs_listxattr,
6091         .removexattr    = btrfs_removexattr,
6092 };
6093
6094 const struct dentry_operations btrfs_dentry_operations = {
6095         .d_delete       = btrfs_dentry_delete,
6096 };