Btrfs: Metadata reservation for orphan inodes
[cascardo/linux.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55         u64 ino;
56         struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
77         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
78         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
79         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
80         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
81         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
82         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88                                    struct page *locked_page,
89                                    u64 start, u64 end, int *page_started,
90                                    unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93                                      struct inode *inode,  struct inode *dir)
94 {
95         int err;
96
97         err = btrfs_init_acl(trans, inode, dir);
98         if (!err)
99                 err = btrfs_xattr_security_init(trans, inode, dir);
100         return err;
101 }
102
103 /*
104  * this does all the hard work for inserting an inline extent into
105  * the btree.  The caller should have done a btrfs_drop_extents so that
106  * no overlapping inline items exist in the btree
107  */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109                                 struct btrfs_root *root, struct inode *inode,
110                                 u64 start, size_t size, size_t compressed_size,
111                                 struct page **compressed_pages)
112 {
113         struct btrfs_key key;
114         struct btrfs_path *path;
115         struct extent_buffer *leaf;
116         struct page *page = NULL;
117         char *kaddr;
118         unsigned long ptr;
119         struct btrfs_file_extent_item *ei;
120         int err = 0;
121         int ret;
122         size_t cur_size = size;
123         size_t datasize;
124         unsigned long offset;
125         int use_compress = 0;
126
127         if (compressed_size && compressed_pages) {
128                 use_compress = 1;
129                 cur_size = compressed_size;
130         }
131
132         path = btrfs_alloc_path();
133         if (!path)
134                 return -ENOMEM;
135
136         path->leave_spinning = 1;
137         btrfs_set_trans_block_group(trans, inode);
138
139         key.objectid = inode->i_ino;
140         key.offset = start;
141         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142         datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144         inode_add_bytes(inode, size);
145         ret = btrfs_insert_empty_item(trans, root, path, &key,
146                                       datasize);
147         BUG_ON(ret);
148         if (ret) {
149                 err = ret;
150                 goto fail;
151         }
152         leaf = path->nodes[0];
153         ei = btrfs_item_ptr(leaf, path->slots[0],
154                             struct btrfs_file_extent_item);
155         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157         btrfs_set_file_extent_encryption(leaf, ei, 0);
158         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160         ptr = btrfs_file_extent_inline_start(ei);
161
162         if (use_compress) {
163                 struct page *cpage;
164                 int i = 0;
165                 while (compressed_size > 0) {
166                         cpage = compressed_pages[i];
167                         cur_size = min_t(unsigned long, compressed_size,
168                                        PAGE_CACHE_SIZE);
169
170                         kaddr = kmap_atomic(cpage, KM_USER0);
171                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
172                         kunmap_atomic(kaddr, KM_USER0);
173
174                         i++;
175                         ptr += cur_size;
176                         compressed_size -= cur_size;
177                 }
178                 btrfs_set_file_extent_compression(leaf, ei,
179                                                   BTRFS_COMPRESS_ZLIB);
180         } else {
181                 page = find_get_page(inode->i_mapping,
182                                      start >> PAGE_CACHE_SHIFT);
183                 btrfs_set_file_extent_compression(leaf, ei, 0);
184                 kaddr = kmap_atomic(page, KM_USER0);
185                 offset = start & (PAGE_CACHE_SIZE - 1);
186                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187                 kunmap_atomic(kaddr, KM_USER0);
188                 page_cache_release(page);
189         }
190         btrfs_mark_buffer_dirty(leaf);
191         btrfs_free_path(path);
192
193         /*
194          * we're an inline extent, so nobody can
195          * extend the file past i_size without locking
196          * a page we already have locked.
197          *
198          * We must do any isize and inode updates
199          * before we unlock the pages.  Otherwise we
200          * could end up racing with unlink.
201          */
202         BTRFS_I(inode)->disk_i_size = inode->i_size;
203         btrfs_update_inode(trans, root, inode);
204
205         return 0;
206 fail:
207         btrfs_free_path(path);
208         return err;
209 }
210
211
212 /*
213  * conditionally insert an inline extent into the file.  This
214  * does the checks required to make sure the data is small enough
215  * to fit as an inline extent.
216  */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218                                  struct btrfs_root *root,
219                                  struct inode *inode, u64 start, u64 end,
220                                  size_t compressed_size,
221                                  struct page **compressed_pages)
222 {
223         u64 isize = i_size_read(inode);
224         u64 actual_end = min(end + 1, isize);
225         u64 inline_len = actual_end - start;
226         u64 aligned_end = (end + root->sectorsize - 1) &
227                         ~((u64)root->sectorsize - 1);
228         u64 hint_byte;
229         u64 data_len = inline_len;
230         int ret;
231
232         if (compressed_size)
233                 data_len = compressed_size;
234
235         if (start > 0 ||
236             actual_end >= PAGE_CACHE_SIZE ||
237             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238             (!compressed_size &&
239             (actual_end & (root->sectorsize - 1)) == 0) ||
240             end + 1 < isize ||
241             data_len > root->fs_info->max_inline) {
242                 return 1;
243         }
244
245         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246                                  &hint_byte, 1);
247         BUG_ON(ret);
248
249         if (isize > actual_end)
250                 inline_len = min_t(u64, isize, actual_end);
251         ret = insert_inline_extent(trans, root, inode, start,
252                                    inline_len, compressed_size,
253                                    compressed_pages);
254         BUG_ON(ret);
255         btrfs_delalloc_release_metadata(inode, end + 1 - start);
256         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257         return 0;
258 }
259
260 struct async_extent {
261         u64 start;
262         u64 ram_size;
263         u64 compressed_size;
264         struct page **pages;
265         unsigned long nr_pages;
266         struct list_head list;
267 };
268
269 struct async_cow {
270         struct inode *inode;
271         struct btrfs_root *root;
272         struct page *locked_page;
273         u64 start;
274         u64 end;
275         struct list_head extents;
276         struct btrfs_work work;
277 };
278
279 static noinline int add_async_extent(struct async_cow *cow,
280                                      u64 start, u64 ram_size,
281                                      u64 compressed_size,
282                                      struct page **pages,
283                                      unsigned long nr_pages)
284 {
285         struct async_extent *async_extent;
286
287         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
288         async_extent->start = start;
289         async_extent->ram_size = ram_size;
290         async_extent->compressed_size = compressed_size;
291         async_extent->pages = pages;
292         async_extent->nr_pages = nr_pages;
293         list_add_tail(&async_extent->list, &cow->extents);
294         return 0;
295 }
296
297 /*
298  * we create compressed extents in two phases.  The first
299  * phase compresses a range of pages that have already been
300  * locked (both pages and state bits are locked).
301  *
302  * This is done inside an ordered work queue, and the compression
303  * is spread across many cpus.  The actual IO submission is step
304  * two, and the ordered work queue takes care of making sure that
305  * happens in the same order things were put onto the queue by
306  * writepages and friends.
307  *
308  * If this code finds it can't get good compression, it puts an
309  * entry onto the work queue to write the uncompressed bytes.  This
310  * makes sure that both compressed inodes and uncompressed inodes
311  * are written in the same order that pdflush sent them down.
312  */
313 static noinline int compress_file_range(struct inode *inode,
314                                         struct page *locked_page,
315                                         u64 start, u64 end,
316                                         struct async_cow *async_cow,
317                                         int *num_added)
318 {
319         struct btrfs_root *root = BTRFS_I(inode)->root;
320         struct btrfs_trans_handle *trans;
321         u64 num_bytes;
322         u64 orig_start;
323         u64 disk_num_bytes;
324         u64 blocksize = root->sectorsize;
325         u64 actual_end;
326         u64 isize = i_size_read(inode);
327         int ret = 0;
328         struct page **pages = NULL;
329         unsigned long nr_pages;
330         unsigned long nr_pages_ret = 0;
331         unsigned long total_compressed = 0;
332         unsigned long total_in = 0;
333         unsigned long max_compressed = 128 * 1024;
334         unsigned long max_uncompressed = 128 * 1024;
335         int i;
336         int will_compress;
337
338         orig_start = start;
339
340         actual_end = min_t(u64, isize, end + 1);
341 again:
342         will_compress = 0;
343         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345
346         /*
347          * we don't want to send crud past the end of i_size through
348          * compression, that's just a waste of CPU time.  So, if the
349          * end of the file is before the start of our current
350          * requested range of bytes, we bail out to the uncompressed
351          * cleanup code that can deal with all of this.
352          *
353          * It isn't really the fastest way to fix things, but this is a
354          * very uncommon corner.
355          */
356         if (actual_end <= start)
357                 goto cleanup_and_bail_uncompressed;
358
359         total_compressed = actual_end - start;
360
361         /* we want to make sure that amount of ram required to uncompress
362          * an extent is reasonable, so we limit the total size in ram
363          * of a compressed extent to 128k.  This is a crucial number
364          * because it also controls how easily we can spread reads across
365          * cpus for decompression.
366          *
367          * We also want to make sure the amount of IO required to do
368          * a random read is reasonably small, so we limit the size of
369          * a compressed extent to 128k.
370          */
371         total_compressed = min(total_compressed, max_uncompressed);
372         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373         num_bytes = max(blocksize,  num_bytes);
374         disk_num_bytes = num_bytes;
375         total_in = 0;
376         ret = 0;
377
378         /*
379          * we do compression for mount -o compress and when the
380          * inode has not been flagged as nocompress.  This flag can
381          * change at any time if we discover bad compression ratios.
382          */
383         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
384             (btrfs_test_opt(root, COMPRESS) ||
385              (BTRFS_I(inode)->force_compress))) {
386                 WARN_ON(pages);
387                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
388
389                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
390                                                 total_compressed, pages,
391                                                 nr_pages, &nr_pages_ret,
392                                                 &total_in,
393                                                 &total_compressed,
394                                                 max_compressed);
395
396                 if (!ret) {
397                         unsigned long offset = total_compressed &
398                                 (PAGE_CACHE_SIZE - 1);
399                         struct page *page = pages[nr_pages_ret - 1];
400                         char *kaddr;
401
402                         /* zero the tail end of the last page, we might be
403                          * sending it down to disk
404                          */
405                         if (offset) {
406                                 kaddr = kmap_atomic(page, KM_USER0);
407                                 memset(kaddr + offset, 0,
408                                        PAGE_CACHE_SIZE - offset);
409                                 kunmap_atomic(kaddr, KM_USER0);
410                         }
411                         will_compress = 1;
412                 }
413         }
414         if (start == 0) {
415                 trans = btrfs_join_transaction(root, 1);
416                 BUG_ON(!trans);
417                 btrfs_set_trans_block_group(trans, inode);
418                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
419
420                 /* lets try to make an inline extent */
421                 if (ret || total_in < (actual_end - start)) {
422                         /* we didn't compress the entire range, try
423                          * to make an uncompressed inline extent.
424                          */
425                         ret = cow_file_range_inline(trans, root, inode,
426                                                     start, end, 0, NULL);
427                 } else {
428                         /* try making a compressed inline extent */
429                         ret = cow_file_range_inline(trans, root, inode,
430                                                     start, end,
431                                                     total_compressed, pages);
432                 }
433                 if (ret == 0) {
434                         /*
435                          * inline extent creation worked, we don't need
436                          * to create any more async work items.  Unlock
437                          * and free up our temp pages.
438                          */
439                         extent_clear_unlock_delalloc(inode,
440                              &BTRFS_I(inode)->io_tree,
441                              start, end, NULL,
442                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
443                              EXTENT_CLEAR_DELALLOC |
444                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
445
446                         btrfs_end_transaction(trans, root);
447                         goto free_pages_out;
448                 }
449                 btrfs_end_transaction(trans, root);
450         }
451
452         if (will_compress) {
453                 /*
454                  * we aren't doing an inline extent round the compressed size
455                  * up to a block size boundary so the allocator does sane
456                  * things
457                  */
458                 total_compressed = (total_compressed + blocksize - 1) &
459                         ~(blocksize - 1);
460
461                 /*
462                  * one last check to make sure the compression is really a
463                  * win, compare the page count read with the blocks on disk
464                  */
465                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
466                         ~(PAGE_CACHE_SIZE - 1);
467                 if (total_compressed >= total_in) {
468                         will_compress = 0;
469                 } else {
470                         disk_num_bytes = total_compressed;
471                         num_bytes = total_in;
472                 }
473         }
474         if (!will_compress && pages) {
475                 /*
476                  * the compression code ran but failed to make things smaller,
477                  * free any pages it allocated and our page pointer array
478                  */
479                 for (i = 0; i < nr_pages_ret; i++) {
480                         WARN_ON(pages[i]->mapping);
481                         page_cache_release(pages[i]);
482                 }
483                 kfree(pages);
484                 pages = NULL;
485                 total_compressed = 0;
486                 nr_pages_ret = 0;
487
488                 /* flag the file so we don't compress in the future */
489                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
490                     !(BTRFS_I(inode)->force_compress)) {
491                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
492                 }
493         }
494         if (will_compress) {
495                 *num_added += 1;
496
497                 /* the async work queues will take care of doing actual
498                  * allocation on disk for these compressed pages,
499                  * and will submit them to the elevator.
500                  */
501                 add_async_extent(async_cow, start, num_bytes,
502                                  total_compressed, pages, nr_pages_ret);
503
504                 if (start + num_bytes < end && start + num_bytes < actual_end) {
505                         start += num_bytes;
506                         pages = NULL;
507                         cond_resched();
508                         goto again;
509                 }
510         } else {
511 cleanup_and_bail_uncompressed:
512                 /*
513                  * No compression, but we still need to write the pages in
514                  * the file we've been given so far.  redirty the locked
515                  * page if it corresponds to our extent and set things up
516                  * for the async work queue to run cow_file_range to do
517                  * the normal delalloc dance
518                  */
519                 if (page_offset(locked_page) >= start &&
520                     page_offset(locked_page) <= end) {
521                         __set_page_dirty_nobuffers(locked_page);
522                         /* unlocked later on in the async handlers */
523                 }
524                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
525                 *num_added += 1;
526         }
527
528 out:
529         return 0;
530
531 free_pages_out:
532         for (i = 0; i < nr_pages_ret; i++) {
533                 WARN_ON(pages[i]->mapping);
534                 page_cache_release(pages[i]);
535         }
536         kfree(pages);
537
538         goto out;
539 }
540
541 /*
542  * phase two of compressed writeback.  This is the ordered portion
543  * of the code, which only gets called in the order the work was
544  * queued.  We walk all the async extents created by compress_file_range
545  * and send them down to the disk.
546  */
547 static noinline int submit_compressed_extents(struct inode *inode,
548                                               struct async_cow *async_cow)
549 {
550         struct async_extent *async_extent;
551         u64 alloc_hint = 0;
552         struct btrfs_trans_handle *trans;
553         struct btrfs_key ins;
554         struct extent_map *em;
555         struct btrfs_root *root = BTRFS_I(inode)->root;
556         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
557         struct extent_io_tree *io_tree;
558         int ret = 0;
559
560         if (list_empty(&async_cow->extents))
561                 return 0;
562
563
564         while (!list_empty(&async_cow->extents)) {
565                 async_extent = list_entry(async_cow->extents.next,
566                                           struct async_extent, list);
567                 list_del(&async_extent->list);
568
569                 io_tree = &BTRFS_I(inode)->io_tree;
570
571 retry:
572                 /* did the compression code fall back to uncompressed IO? */
573                 if (!async_extent->pages) {
574                         int page_started = 0;
575                         unsigned long nr_written = 0;
576
577                         lock_extent(io_tree, async_extent->start,
578                                          async_extent->start +
579                                          async_extent->ram_size - 1, GFP_NOFS);
580
581                         /* allocate blocks */
582                         ret = cow_file_range(inode, async_cow->locked_page,
583                                              async_extent->start,
584                                              async_extent->start +
585                                              async_extent->ram_size - 1,
586                                              &page_started, &nr_written, 0);
587
588                         /*
589                          * if page_started, cow_file_range inserted an
590                          * inline extent and took care of all the unlocking
591                          * and IO for us.  Otherwise, we need to submit
592                          * all those pages down to the drive.
593                          */
594                         if (!page_started && !ret)
595                                 extent_write_locked_range(io_tree,
596                                                   inode, async_extent->start,
597                                                   async_extent->start +
598                                                   async_extent->ram_size - 1,
599                                                   btrfs_get_extent,
600                                                   WB_SYNC_ALL);
601                         kfree(async_extent);
602                         cond_resched();
603                         continue;
604                 }
605
606                 lock_extent(io_tree, async_extent->start,
607                             async_extent->start + async_extent->ram_size - 1,
608                             GFP_NOFS);
609
610                 trans = btrfs_join_transaction(root, 1);
611                 ret = btrfs_reserve_extent(trans, root,
612                                            async_extent->compressed_size,
613                                            async_extent->compressed_size,
614                                            0, alloc_hint,
615                                            (u64)-1, &ins, 1);
616                 btrfs_end_transaction(trans, root);
617
618                 if (ret) {
619                         int i;
620                         for (i = 0; i < async_extent->nr_pages; i++) {
621                                 WARN_ON(async_extent->pages[i]->mapping);
622                                 page_cache_release(async_extent->pages[i]);
623                         }
624                         kfree(async_extent->pages);
625                         async_extent->nr_pages = 0;
626                         async_extent->pages = NULL;
627                         unlock_extent(io_tree, async_extent->start,
628                                       async_extent->start +
629                                       async_extent->ram_size - 1, GFP_NOFS);
630                         goto retry;
631                 }
632
633                 /*
634                  * here we're doing allocation and writeback of the
635                  * compressed pages
636                  */
637                 btrfs_drop_extent_cache(inode, async_extent->start,
638                                         async_extent->start +
639                                         async_extent->ram_size - 1, 0);
640
641                 em = alloc_extent_map(GFP_NOFS);
642                 em->start = async_extent->start;
643                 em->len = async_extent->ram_size;
644                 em->orig_start = em->start;
645
646                 em->block_start = ins.objectid;
647                 em->block_len = ins.offset;
648                 em->bdev = root->fs_info->fs_devices->latest_bdev;
649                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
650                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
651
652                 while (1) {
653                         write_lock(&em_tree->lock);
654                         ret = add_extent_mapping(em_tree, em);
655                         write_unlock(&em_tree->lock);
656                         if (ret != -EEXIST) {
657                                 free_extent_map(em);
658                                 break;
659                         }
660                         btrfs_drop_extent_cache(inode, async_extent->start,
661                                                 async_extent->start +
662                                                 async_extent->ram_size - 1, 0);
663                 }
664
665                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
666                                                ins.objectid,
667                                                async_extent->ram_size,
668                                                ins.offset,
669                                                BTRFS_ORDERED_COMPRESSED);
670                 BUG_ON(ret);
671
672                 /*
673                  * clear dirty, set writeback and unlock the pages.
674                  */
675                 extent_clear_unlock_delalloc(inode,
676                                 &BTRFS_I(inode)->io_tree,
677                                 async_extent->start,
678                                 async_extent->start +
679                                 async_extent->ram_size - 1,
680                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
681                                 EXTENT_CLEAR_UNLOCK |
682                                 EXTENT_CLEAR_DELALLOC |
683                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
684
685                 ret = btrfs_submit_compressed_write(inode,
686                                     async_extent->start,
687                                     async_extent->ram_size,
688                                     ins.objectid,
689                                     ins.offset, async_extent->pages,
690                                     async_extent->nr_pages);
691
692                 BUG_ON(ret);
693                 alloc_hint = ins.objectid + ins.offset;
694                 kfree(async_extent);
695                 cond_resched();
696         }
697
698         return 0;
699 }
700
701 /*
702  * when extent_io.c finds a delayed allocation range in the file,
703  * the call backs end up in this code.  The basic idea is to
704  * allocate extents on disk for the range, and create ordered data structs
705  * in ram to track those extents.
706  *
707  * locked_page is the page that writepage had locked already.  We use
708  * it to make sure we don't do extra locks or unlocks.
709  *
710  * *page_started is set to one if we unlock locked_page and do everything
711  * required to start IO on it.  It may be clean and already done with
712  * IO when we return.
713  */
714 static noinline int cow_file_range(struct inode *inode,
715                                    struct page *locked_page,
716                                    u64 start, u64 end, int *page_started,
717                                    unsigned long *nr_written,
718                                    int unlock)
719 {
720         struct btrfs_root *root = BTRFS_I(inode)->root;
721         struct btrfs_trans_handle *trans;
722         u64 alloc_hint = 0;
723         u64 num_bytes;
724         unsigned long ram_size;
725         u64 disk_num_bytes;
726         u64 cur_alloc_size;
727         u64 blocksize = root->sectorsize;
728         u64 actual_end;
729         u64 isize = i_size_read(inode);
730         struct btrfs_key ins;
731         struct extent_map *em;
732         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
733         int ret = 0;
734
735         trans = btrfs_join_transaction(root, 1);
736         BUG_ON(!trans);
737         btrfs_set_trans_block_group(trans, inode);
738         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
739
740         actual_end = min_t(u64, isize, end + 1);
741
742         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
743         num_bytes = max(blocksize,  num_bytes);
744         disk_num_bytes = num_bytes;
745         ret = 0;
746
747         if (start == 0) {
748                 /* lets try to make an inline extent */
749                 ret = cow_file_range_inline(trans, root, inode,
750                                             start, end, 0, NULL);
751                 if (ret == 0) {
752                         extent_clear_unlock_delalloc(inode,
753                                      &BTRFS_I(inode)->io_tree,
754                                      start, end, NULL,
755                                      EXTENT_CLEAR_UNLOCK_PAGE |
756                                      EXTENT_CLEAR_UNLOCK |
757                                      EXTENT_CLEAR_DELALLOC |
758                                      EXTENT_CLEAR_DIRTY |
759                                      EXTENT_SET_WRITEBACK |
760                                      EXTENT_END_WRITEBACK);
761
762                         *nr_written = *nr_written +
763                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
764                         *page_started = 1;
765                         ret = 0;
766                         goto out;
767                 }
768         }
769
770         BUG_ON(disk_num_bytes >
771                btrfs_super_total_bytes(&root->fs_info->super_copy));
772
773
774         read_lock(&BTRFS_I(inode)->extent_tree.lock);
775         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
776                                    start, num_bytes);
777         if (em) {
778                 /*
779                  * if block start isn't an actual block number then find the
780                  * first block in this inode and use that as a hint.  If that
781                  * block is also bogus then just don't worry about it.
782                  */
783                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
784                         free_extent_map(em);
785                         em = search_extent_mapping(em_tree, 0, 0);
786                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
787                                 alloc_hint = em->block_start;
788                         if (em)
789                                 free_extent_map(em);
790                 } else {
791                         alloc_hint = em->block_start;
792                         free_extent_map(em);
793                 }
794         }
795         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
796         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
797
798         while (disk_num_bytes > 0) {
799                 unsigned long op;
800
801                 cur_alloc_size = disk_num_bytes;
802                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
803                                            root->sectorsize, 0, alloc_hint,
804                                            (u64)-1, &ins, 1);
805                 BUG_ON(ret);
806
807                 em = alloc_extent_map(GFP_NOFS);
808                 em->start = start;
809                 em->orig_start = em->start;
810                 ram_size = ins.offset;
811                 em->len = ins.offset;
812
813                 em->block_start = ins.objectid;
814                 em->block_len = ins.offset;
815                 em->bdev = root->fs_info->fs_devices->latest_bdev;
816                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
817
818                 while (1) {
819                         write_lock(&em_tree->lock);
820                         ret = add_extent_mapping(em_tree, em);
821                         write_unlock(&em_tree->lock);
822                         if (ret != -EEXIST) {
823                                 free_extent_map(em);
824                                 break;
825                         }
826                         btrfs_drop_extent_cache(inode, start,
827                                                 start + ram_size - 1, 0);
828                 }
829
830                 cur_alloc_size = ins.offset;
831                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
832                                                ram_size, cur_alloc_size, 0);
833                 BUG_ON(ret);
834
835                 if (root->root_key.objectid ==
836                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
837                         ret = btrfs_reloc_clone_csums(inode, start,
838                                                       cur_alloc_size);
839                         BUG_ON(ret);
840                 }
841
842                 if (disk_num_bytes < cur_alloc_size)
843                         break;
844
845                 /* we're not doing compressed IO, don't unlock the first
846                  * page (which the caller expects to stay locked), don't
847                  * clear any dirty bits and don't set any writeback bits
848                  *
849                  * Do set the Private2 bit so we know this page was properly
850                  * setup for writepage
851                  */
852                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
853                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
854                         EXTENT_SET_PRIVATE2;
855
856                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
857                                              start, start + ram_size - 1,
858                                              locked_page, op);
859                 disk_num_bytes -= cur_alloc_size;
860                 num_bytes -= cur_alloc_size;
861                 alloc_hint = ins.objectid + ins.offset;
862                 start += cur_alloc_size;
863         }
864 out:
865         ret = 0;
866         btrfs_end_transaction(trans, root);
867
868         return ret;
869 }
870
871 /*
872  * work queue call back to started compression on a file and pages
873  */
874 static noinline void async_cow_start(struct btrfs_work *work)
875 {
876         struct async_cow *async_cow;
877         int num_added = 0;
878         async_cow = container_of(work, struct async_cow, work);
879
880         compress_file_range(async_cow->inode, async_cow->locked_page,
881                             async_cow->start, async_cow->end, async_cow,
882                             &num_added);
883         if (num_added == 0)
884                 async_cow->inode = NULL;
885 }
886
887 /*
888  * work queue call back to submit previously compressed pages
889  */
890 static noinline void async_cow_submit(struct btrfs_work *work)
891 {
892         struct async_cow *async_cow;
893         struct btrfs_root *root;
894         unsigned long nr_pages;
895
896         async_cow = container_of(work, struct async_cow, work);
897
898         root = async_cow->root;
899         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
900                 PAGE_CACHE_SHIFT;
901
902         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
903
904         if (atomic_read(&root->fs_info->async_delalloc_pages) <
905             5 * 1042 * 1024 &&
906             waitqueue_active(&root->fs_info->async_submit_wait))
907                 wake_up(&root->fs_info->async_submit_wait);
908
909         if (async_cow->inode)
910                 submit_compressed_extents(async_cow->inode, async_cow);
911 }
912
913 static noinline void async_cow_free(struct btrfs_work *work)
914 {
915         struct async_cow *async_cow;
916         async_cow = container_of(work, struct async_cow, work);
917         kfree(async_cow);
918 }
919
920 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
921                                 u64 start, u64 end, int *page_started,
922                                 unsigned long *nr_written)
923 {
924         struct async_cow *async_cow;
925         struct btrfs_root *root = BTRFS_I(inode)->root;
926         unsigned long nr_pages;
927         u64 cur_end;
928         int limit = 10 * 1024 * 1042;
929
930         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
931                          1, 0, NULL, GFP_NOFS);
932         while (start < end) {
933                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
934                 async_cow->inode = inode;
935                 async_cow->root = root;
936                 async_cow->locked_page = locked_page;
937                 async_cow->start = start;
938
939                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
940                         cur_end = end;
941                 else
942                         cur_end = min(end, start + 512 * 1024 - 1);
943
944                 async_cow->end = cur_end;
945                 INIT_LIST_HEAD(&async_cow->extents);
946
947                 async_cow->work.func = async_cow_start;
948                 async_cow->work.ordered_func = async_cow_submit;
949                 async_cow->work.ordered_free = async_cow_free;
950                 async_cow->work.flags = 0;
951
952                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
953                         PAGE_CACHE_SHIFT;
954                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
955
956                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
957                                    &async_cow->work);
958
959                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
960                         wait_event(root->fs_info->async_submit_wait,
961                            (atomic_read(&root->fs_info->async_delalloc_pages) <
962                             limit));
963                 }
964
965                 while (atomic_read(&root->fs_info->async_submit_draining) &&
966                       atomic_read(&root->fs_info->async_delalloc_pages)) {
967                         wait_event(root->fs_info->async_submit_wait,
968                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
969                            0));
970                 }
971
972                 *nr_written += nr_pages;
973                 start = cur_end + 1;
974         }
975         *page_started = 1;
976         return 0;
977 }
978
979 static noinline int csum_exist_in_range(struct btrfs_root *root,
980                                         u64 bytenr, u64 num_bytes)
981 {
982         int ret;
983         struct btrfs_ordered_sum *sums;
984         LIST_HEAD(list);
985
986         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
987                                        bytenr + num_bytes - 1, &list);
988         if (ret == 0 && list_empty(&list))
989                 return 0;
990
991         while (!list_empty(&list)) {
992                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
993                 list_del(&sums->list);
994                 kfree(sums);
995         }
996         return 1;
997 }
998
999 /*
1000  * when nowcow writeback call back.  This checks for snapshots or COW copies
1001  * of the extents that exist in the file, and COWs the file as required.
1002  *
1003  * If no cow copies or snapshots exist, we write directly to the existing
1004  * blocks on disk
1005  */
1006 static noinline int run_delalloc_nocow(struct inode *inode,
1007                                        struct page *locked_page,
1008                               u64 start, u64 end, int *page_started, int force,
1009                               unsigned long *nr_written)
1010 {
1011         struct btrfs_root *root = BTRFS_I(inode)->root;
1012         struct btrfs_trans_handle *trans;
1013         struct extent_buffer *leaf;
1014         struct btrfs_path *path;
1015         struct btrfs_file_extent_item *fi;
1016         struct btrfs_key found_key;
1017         u64 cow_start;
1018         u64 cur_offset;
1019         u64 extent_end;
1020         u64 extent_offset;
1021         u64 disk_bytenr;
1022         u64 num_bytes;
1023         int extent_type;
1024         int ret;
1025         int type;
1026         int nocow;
1027         int check_prev = 1;
1028
1029         path = btrfs_alloc_path();
1030         BUG_ON(!path);
1031         trans = btrfs_join_transaction(root, 1);
1032         BUG_ON(!trans);
1033
1034         cow_start = (u64)-1;
1035         cur_offset = start;
1036         while (1) {
1037                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1038                                                cur_offset, 0);
1039                 BUG_ON(ret < 0);
1040                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1041                         leaf = path->nodes[0];
1042                         btrfs_item_key_to_cpu(leaf, &found_key,
1043                                               path->slots[0] - 1);
1044                         if (found_key.objectid == inode->i_ino &&
1045                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1046                                 path->slots[0]--;
1047                 }
1048                 check_prev = 0;
1049 next_slot:
1050                 leaf = path->nodes[0];
1051                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1052                         ret = btrfs_next_leaf(root, path);
1053                         if (ret < 0)
1054                                 BUG_ON(1);
1055                         if (ret > 0)
1056                                 break;
1057                         leaf = path->nodes[0];
1058                 }
1059
1060                 nocow = 0;
1061                 disk_bytenr = 0;
1062                 num_bytes = 0;
1063                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1064
1065                 if (found_key.objectid > inode->i_ino ||
1066                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1067                     found_key.offset > end)
1068                         break;
1069
1070                 if (found_key.offset > cur_offset) {
1071                         extent_end = found_key.offset;
1072                         extent_type = 0;
1073                         goto out_check;
1074                 }
1075
1076                 fi = btrfs_item_ptr(leaf, path->slots[0],
1077                                     struct btrfs_file_extent_item);
1078                 extent_type = btrfs_file_extent_type(leaf, fi);
1079
1080                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1081                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1082                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1083                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1084                         extent_end = found_key.offset +
1085                                 btrfs_file_extent_num_bytes(leaf, fi);
1086                         if (extent_end <= start) {
1087                                 path->slots[0]++;
1088                                 goto next_slot;
1089                         }
1090                         if (disk_bytenr == 0)
1091                                 goto out_check;
1092                         if (btrfs_file_extent_compression(leaf, fi) ||
1093                             btrfs_file_extent_encryption(leaf, fi) ||
1094                             btrfs_file_extent_other_encoding(leaf, fi))
1095                                 goto out_check;
1096                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1097                                 goto out_check;
1098                         if (btrfs_extent_readonly(root, disk_bytenr))
1099                                 goto out_check;
1100                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1101                                                   found_key.offset -
1102                                                   extent_offset, disk_bytenr))
1103                                 goto out_check;
1104                         disk_bytenr += extent_offset;
1105                         disk_bytenr += cur_offset - found_key.offset;
1106                         num_bytes = min(end + 1, extent_end) - cur_offset;
1107                         /*
1108                          * force cow if csum exists in the range.
1109                          * this ensure that csum for a given extent are
1110                          * either valid or do not exist.
1111                          */
1112                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1113                                 goto out_check;
1114                         nocow = 1;
1115                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1116                         extent_end = found_key.offset +
1117                                 btrfs_file_extent_inline_len(leaf, fi);
1118                         extent_end = ALIGN(extent_end, root->sectorsize);
1119                 } else {
1120                         BUG_ON(1);
1121                 }
1122 out_check:
1123                 if (extent_end <= start) {
1124                         path->slots[0]++;
1125                         goto next_slot;
1126                 }
1127                 if (!nocow) {
1128                         if (cow_start == (u64)-1)
1129                                 cow_start = cur_offset;
1130                         cur_offset = extent_end;
1131                         if (cur_offset > end)
1132                                 break;
1133                         path->slots[0]++;
1134                         goto next_slot;
1135                 }
1136
1137                 btrfs_release_path(root, path);
1138                 if (cow_start != (u64)-1) {
1139                         ret = cow_file_range(inode, locked_page, cow_start,
1140                                         found_key.offset - 1, page_started,
1141                                         nr_written, 1);
1142                         BUG_ON(ret);
1143                         cow_start = (u64)-1;
1144                 }
1145
1146                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1147                         struct extent_map *em;
1148                         struct extent_map_tree *em_tree;
1149                         em_tree = &BTRFS_I(inode)->extent_tree;
1150                         em = alloc_extent_map(GFP_NOFS);
1151                         em->start = cur_offset;
1152                         em->orig_start = em->start;
1153                         em->len = num_bytes;
1154                         em->block_len = num_bytes;
1155                         em->block_start = disk_bytenr;
1156                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1157                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1158                         while (1) {
1159                                 write_lock(&em_tree->lock);
1160                                 ret = add_extent_mapping(em_tree, em);
1161                                 write_unlock(&em_tree->lock);
1162                                 if (ret != -EEXIST) {
1163                                         free_extent_map(em);
1164                                         break;
1165                                 }
1166                                 btrfs_drop_extent_cache(inode, em->start,
1167                                                 em->start + em->len - 1, 0);
1168                         }
1169                         type = BTRFS_ORDERED_PREALLOC;
1170                 } else {
1171                         type = BTRFS_ORDERED_NOCOW;
1172                 }
1173
1174                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1175                                                num_bytes, num_bytes, type);
1176                 BUG_ON(ret);
1177
1178                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1179                                 cur_offset, cur_offset + num_bytes - 1,
1180                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1181                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1182                                 EXTENT_SET_PRIVATE2);
1183                 cur_offset = extent_end;
1184                 if (cur_offset > end)
1185                         break;
1186         }
1187         btrfs_release_path(root, path);
1188
1189         if (cur_offset <= end && cow_start == (u64)-1)
1190                 cow_start = cur_offset;
1191         if (cow_start != (u64)-1) {
1192                 ret = cow_file_range(inode, locked_page, cow_start, end,
1193                                      page_started, nr_written, 1);
1194                 BUG_ON(ret);
1195         }
1196
1197         ret = btrfs_end_transaction(trans, root);
1198         BUG_ON(ret);
1199         btrfs_free_path(path);
1200         return 0;
1201 }
1202
1203 /*
1204  * extent_io.c call back to do delayed allocation processing
1205  */
1206 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1207                               u64 start, u64 end, int *page_started,
1208                               unsigned long *nr_written)
1209 {
1210         int ret;
1211         struct btrfs_root *root = BTRFS_I(inode)->root;
1212
1213         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1214                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1215                                          page_started, 1, nr_written);
1216         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1217                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1218                                          page_started, 0, nr_written);
1219         else if (!btrfs_test_opt(root, COMPRESS) &&
1220                  !(BTRFS_I(inode)->force_compress))
1221                 ret = cow_file_range(inode, locked_page, start, end,
1222                                       page_started, nr_written, 1);
1223         else
1224                 ret = cow_file_range_async(inode, locked_page, start, end,
1225                                            page_started, nr_written);
1226         return ret;
1227 }
1228
1229 static int btrfs_split_extent_hook(struct inode *inode,
1230                                    struct extent_state *orig, u64 split)
1231 {
1232         /* not delalloc, ignore it */
1233         if (!(orig->state & EXTENT_DELALLOC))
1234                 return 0;
1235
1236         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1237         return 0;
1238 }
1239
1240 /*
1241  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1242  * extents so we can keep track of new extents that are just merged onto old
1243  * extents, such as when we are doing sequential writes, so we can properly
1244  * account for the metadata space we'll need.
1245  */
1246 static int btrfs_merge_extent_hook(struct inode *inode,
1247                                    struct extent_state *new,
1248                                    struct extent_state *other)
1249 {
1250         /* not delalloc, ignore it */
1251         if (!(other->state & EXTENT_DELALLOC))
1252                 return 0;
1253
1254         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1255         return 0;
1256 }
1257
1258 /*
1259  * extent_io.c set_bit_hook, used to track delayed allocation
1260  * bytes in this file, and to maintain the list of inodes that
1261  * have pending delalloc work to be done.
1262  */
1263 static int btrfs_set_bit_hook(struct inode *inode,
1264                               struct extent_state *state, int *bits)
1265 {
1266
1267         /*
1268          * set_bit and clear bit hooks normally require _irqsave/restore
1269          * but in this case, we are only testeing for the DELALLOC
1270          * bit, which is only set or cleared with irqs on
1271          */
1272         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1273                 struct btrfs_root *root = BTRFS_I(inode)->root;
1274                 u64 len = state->end + 1 - state->start;
1275
1276                 if (*bits & EXTENT_FIRST_DELALLOC)
1277                         *bits &= ~EXTENT_FIRST_DELALLOC;
1278                 else
1279                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1280
1281                 spin_lock(&root->fs_info->delalloc_lock);
1282                 BTRFS_I(inode)->delalloc_bytes += len;
1283                 root->fs_info->delalloc_bytes += len;
1284                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1285                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1286                                       &root->fs_info->delalloc_inodes);
1287                 }
1288                 spin_unlock(&root->fs_info->delalloc_lock);
1289         }
1290         return 0;
1291 }
1292
1293 /*
1294  * extent_io.c clear_bit_hook, see set_bit_hook for why
1295  */
1296 static int btrfs_clear_bit_hook(struct inode *inode,
1297                                 struct extent_state *state, int *bits)
1298 {
1299         /*
1300          * set_bit and clear bit hooks normally require _irqsave/restore
1301          * but in this case, we are only testeing for the DELALLOC
1302          * bit, which is only set or cleared with irqs on
1303          */
1304         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1305                 struct btrfs_root *root = BTRFS_I(inode)->root;
1306                 u64 len = state->end + 1 - state->start;
1307
1308                 if (*bits & EXTENT_FIRST_DELALLOC)
1309                         *bits &= ~EXTENT_FIRST_DELALLOC;
1310                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1311                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1312
1313                 if (*bits & EXTENT_DO_ACCOUNTING)
1314                         btrfs_delalloc_release_metadata(inode, len);
1315
1316                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1317                         btrfs_free_reserved_data_space(inode, len);
1318
1319                 spin_lock(&root->fs_info->delalloc_lock);
1320                 root->fs_info->delalloc_bytes -= len;
1321                 BTRFS_I(inode)->delalloc_bytes -= len;
1322
1323                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1324                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1325                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1326                 }
1327                 spin_unlock(&root->fs_info->delalloc_lock);
1328         }
1329         return 0;
1330 }
1331
1332 /*
1333  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1334  * we don't create bios that span stripes or chunks
1335  */
1336 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1337                          size_t size, struct bio *bio,
1338                          unsigned long bio_flags)
1339 {
1340         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1341         struct btrfs_mapping_tree *map_tree;
1342         u64 logical = (u64)bio->bi_sector << 9;
1343         u64 length = 0;
1344         u64 map_length;
1345         int ret;
1346
1347         if (bio_flags & EXTENT_BIO_COMPRESSED)
1348                 return 0;
1349
1350         length = bio->bi_size;
1351         map_tree = &root->fs_info->mapping_tree;
1352         map_length = length;
1353         ret = btrfs_map_block(map_tree, READ, logical,
1354                               &map_length, NULL, 0);
1355
1356         if (map_length < length + size)
1357                 return 1;
1358         return 0;
1359 }
1360
1361 /*
1362  * in order to insert checksums into the metadata in large chunks,
1363  * we wait until bio submission time.   All the pages in the bio are
1364  * checksummed and sums are attached onto the ordered extent record.
1365  *
1366  * At IO completion time the cums attached on the ordered extent record
1367  * are inserted into the btree
1368  */
1369 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1370                                     struct bio *bio, int mirror_num,
1371                                     unsigned long bio_flags)
1372 {
1373         struct btrfs_root *root = BTRFS_I(inode)->root;
1374         int ret = 0;
1375
1376         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1377         BUG_ON(ret);
1378         return 0;
1379 }
1380
1381 /*
1382  * in order to insert checksums into the metadata in large chunks,
1383  * we wait until bio submission time.   All the pages in the bio are
1384  * checksummed and sums are attached onto the ordered extent record.
1385  *
1386  * At IO completion time the cums attached on the ordered extent record
1387  * are inserted into the btree
1388  */
1389 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1390                           int mirror_num, unsigned long bio_flags)
1391 {
1392         struct btrfs_root *root = BTRFS_I(inode)->root;
1393         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1394 }
1395
1396 /*
1397  * extent_io.c submission hook. This does the right thing for csum calculation
1398  * on write, or reading the csums from the tree before a read
1399  */
1400 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1401                           int mirror_num, unsigned long bio_flags)
1402 {
1403         struct btrfs_root *root = BTRFS_I(inode)->root;
1404         int ret = 0;
1405         int skip_sum;
1406
1407         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1408
1409         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1410         BUG_ON(ret);
1411
1412         if (!(rw & (1 << BIO_RW))) {
1413                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1414                         return btrfs_submit_compressed_read(inode, bio,
1415                                                     mirror_num, bio_flags);
1416                 } else if (!skip_sum)
1417                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1418                 goto mapit;
1419         } else if (!skip_sum) {
1420                 /* csum items have already been cloned */
1421                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1422                         goto mapit;
1423                 /* we're doing a write, do the async checksumming */
1424                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1425                                    inode, rw, bio, mirror_num,
1426                                    bio_flags, __btrfs_submit_bio_start,
1427                                    __btrfs_submit_bio_done);
1428         }
1429
1430 mapit:
1431         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1432 }
1433
1434 /*
1435  * given a list of ordered sums record them in the inode.  This happens
1436  * at IO completion time based on sums calculated at bio submission time.
1437  */
1438 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1439                              struct inode *inode, u64 file_offset,
1440                              struct list_head *list)
1441 {
1442         struct btrfs_ordered_sum *sum;
1443
1444         btrfs_set_trans_block_group(trans, inode);
1445
1446         list_for_each_entry(sum, list, list) {
1447                 btrfs_csum_file_blocks(trans,
1448                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1449         }
1450         return 0;
1451 }
1452
1453 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1454                               struct extent_state **cached_state)
1455 {
1456         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1457                 WARN_ON(1);
1458         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1459                                    cached_state, GFP_NOFS);
1460 }
1461
1462 /* see btrfs_writepage_start_hook for details on why this is required */
1463 struct btrfs_writepage_fixup {
1464         struct page *page;
1465         struct btrfs_work work;
1466 };
1467
1468 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1469 {
1470         struct btrfs_writepage_fixup *fixup;
1471         struct btrfs_ordered_extent *ordered;
1472         struct extent_state *cached_state = NULL;
1473         struct page *page;
1474         struct inode *inode;
1475         u64 page_start;
1476         u64 page_end;
1477
1478         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1479         page = fixup->page;
1480 again:
1481         lock_page(page);
1482         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1483                 ClearPageChecked(page);
1484                 goto out_page;
1485         }
1486
1487         inode = page->mapping->host;
1488         page_start = page_offset(page);
1489         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1490
1491         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1492                          &cached_state, GFP_NOFS);
1493
1494         /* already ordered? We're done */
1495         if (PagePrivate2(page))
1496                 goto out;
1497
1498         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1499         if (ordered) {
1500                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1501                                      page_end, &cached_state, GFP_NOFS);
1502                 unlock_page(page);
1503                 btrfs_start_ordered_extent(inode, ordered, 1);
1504                 goto again;
1505         }
1506
1507         BUG();
1508         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1509         ClearPageChecked(page);
1510 out:
1511         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1512                              &cached_state, GFP_NOFS);
1513 out_page:
1514         unlock_page(page);
1515         page_cache_release(page);
1516 }
1517
1518 /*
1519  * There are a few paths in the higher layers of the kernel that directly
1520  * set the page dirty bit without asking the filesystem if it is a
1521  * good idea.  This causes problems because we want to make sure COW
1522  * properly happens and the data=ordered rules are followed.
1523  *
1524  * In our case any range that doesn't have the ORDERED bit set
1525  * hasn't been properly setup for IO.  We kick off an async process
1526  * to fix it up.  The async helper will wait for ordered extents, set
1527  * the delalloc bit and make it safe to write the page.
1528  */
1529 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1530 {
1531         struct inode *inode = page->mapping->host;
1532         struct btrfs_writepage_fixup *fixup;
1533         struct btrfs_root *root = BTRFS_I(inode)->root;
1534
1535         /* this page is properly in the ordered list */
1536         if (TestClearPagePrivate2(page))
1537                 return 0;
1538
1539         if (PageChecked(page))
1540                 return -EAGAIN;
1541
1542         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1543         if (!fixup)
1544                 return -EAGAIN;
1545
1546         SetPageChecked(page);
1547         page_cache_get(page);
1548         fixup->work.func = btrfs_writepage_fixup_worker;
1549         fixup->page = page;
1550         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1551         return -EAGAIN;
1552 }
1553
1554 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1555                                        struct inode *inode, u64 file_pos,
1556                                        u64 disk_bytenr, u64 disk_num_bytes,
1557                                        u64 num_bytes, u64 ram_bytes,
1558                                        u8 compression, u8 encryption,
1559                                        u16 other_encoding, int extent_type)
1560 {
1561         struct btrfs_root *root = BTRFS_I(inode)->root;
1562         struct btrfs_file_extent_item *fi;
1563         struct btrfs_path *path;
1564         struct extent_buffer *leaf;
1565         struct btrfs_key ins;
1566         u64 hint;
1567         int ret;
1568
1569         path = btrfs_alloc_path();
1570         BUG_ON(!path);
1571
1572         path->leave_spinning = 1;
1573
1574         /*
1575          * we may be replacing one extent in the tree with another.
1576          * The new extent is pinned in the extent map, and we don't want
1577          * to drop it from the cache until it is completely in the btree.
1578          *
1579          * So, tell btrfs_drop_extents to leave this extent in the cache.
1580          * the caller is expected to unpin it and allow it to be merged
1581          * with the others.
1582          */
1583         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1584                                  &hint, 0);
1585         BUG_ON(ret);
1586
1587         ins.objectid = inode->i_ino;
1588         ins.offset = file_pos;
1589         ins.type = BTRFS_EXTENT_DATA_KEY;
1590         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1591         BUG_ON(ret);
1592         leaf = path->nodes[0];
1593         fi = btrfs_item_ptr(leaf, path->slots[0],
1594                             struct btrfs_file_extent_item);
1595         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1596         btrfs_set_file_extent_type(leaf, fi, extent_type);
1597         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1598         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1599         btrfs_set_file_extent_offset(leaf, fi, 0);
1600         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1601         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1602         btrfs_set_file_extent_compression(leaf, fi, compression);
1603         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1604         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1605
1606         btrfs_unlock_up_safe(path, 1);
1607         btrfs_set_lock_blocking(leaf);
1608
1609         btrfs_mark_buffer_dirty(leaf);
1610
1611         inode_add_bytes(inode, num_bytes);
1612
1613         ins.objectid = disk_bytenr;
1614         ins.offset = disk_num_bytes;
1615         ins.type = BTRFS_EXTENT_ITEM_KEY;
1616         ret = btrfs_alloc_reserved_file_extent(trans, root,
1617                                         root->root_key.objectid,
1618                                         inode->i_ino, file_pos, &ins);
1619         BUG_ON(ret);
1620         btrfs_free_path(path);
1621
1622         return 0;
1623 }
1624
1625 /*
1626  * helper function for btrfs_finish_ordered_io, this
1627  * just reads in some of the csum leaves to prime them into ram
1628  * before we start the transaction.  It limits the amount of btree
1629  * reads required while inside the transaction.
1630  */
1631 /* as ordered data IO finishes, this gets called so we can finish
1632  * an ordered extent if the range of bytes in the file it covers are
1633  * fully written.
1634  */
1635 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1636 {
1637         struct btrfs_root *root = BTRFS_I(inode)->root;
1638         struct btrfs_trans_handle *trans = NULL;
1639         struct btrfs_ordered_extent *ordered_extent = NULL;
1640         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1641         struct extent_state *cached_state = NULL;
1642         int compressed = 0;
1643         int ret;
1644
1645         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1646                                              end - start + 1);
1647         if (!ret)
1648                 return 0;
1649         BUG_ON(!ordered_extent);
1650
1651         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1652                 BUG_ON(!list_empty(&ordered_extent->list));
1653                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1654                 if (!ret) {
1655                         trans = btrfs_join_transaction(root, 1);
1656                         btrfs_set_trans_block_group(trans, inode);
1657                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1658                         ret = btrfs_update_inode(trans, root, inode);
1659                         BUG_ON(ret);
1660                 }
1661                 goto out;
1662         }
1663
1664         lock_extent_bits(io_tree, ordered_extent->file_offset,
1665                          ordered_extent->file_offset + ordered_extent->len - 1,
1666                          0, &cached_state, GFP_NOFS);
1667
1668         trans = btrfs_join_transaction(root, 1);
1669         btrfs_set_trans_block_group(trans, inode);
1670         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1671
1672         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1673                 compressed = 1;
1674         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1675                 BUG_ON(compressed);
1676                 ret = btrfs_mark_extent_written(trans, inode,
1677                                                 ordered_extent->file_offset,
1678                                                 ordered_extent->file_offset +
1679                                                 ordered_extent->len);
1680                 BUG_ON(ret);
1681         } else {
1682                 ret = insert_reserved_file_extent(trans, inode,
1683                                                 ordered_extent->file_offset,
1684                                                 ordered_extent->start,
1685                                                 ordered_extent->disk_len,
1686                                                 ordered_extent->len,
1687                                                 ordered_extent->len,
1688                                                 compressed, 0, 0,
1689                                                 BTRFS_FILE_EXTENT_REG);
1690                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1691                                    ordered_extent->file_offset,
1692                                    ordered_extent->len);
1693                 BUG_ON(ret);
1694         }
1695         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1696                              ordered_extent->file_offset +
1697                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1698
1699         add_pending_csums(trans, inode, ordered_extent->file_offset,
1700                           &ordered_extent->list);
1701
1702         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1703         ret = btrfs_update_inode(trans, root, inode);
1704         BUG_ON(ret);
1705 out:
1706         btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1707         if (trans)
1708                 btrfs_end_transaction(trans, root);
1709         /* once for us */
1710         btrfs_put_ordered_extent(ordered_extent);
1711         /* once for the tree */
1712         btrfs_put_ordered_extent(ordered_extent);
1713
1714         return 0;
1715 }
1716
1717 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1718                                 struct extent_state *state, int uptodate)
1719 {
1720         ClearPagePrivate2(page);
1721         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1722 }
1723
1724 /*
1725  * When IO fails, either with EIO or csum verification fails, we
1726  * try other mirrors that might have a good copy of the data.  This
1727  * io_failure_record is used to record state as we go through all the
1728  * mirrors.  If another mirror has good data, the page is set up to date
1729  * and things continue.  If a good mirror can't be found, the original
1730  * bio end_io callback is called to indicate things have failed.
1731  */
1732 struct io_failure_record {
1733         struct page *page;
1734         u64 start;
1735         u64 len;
1736         u64 logical;
1737         unsigned long bio_flags;
1738         int last_mirror;
1739 };
1740
1741 static int btrfs_io_failed_hook(struct bio *failed_bio,
1742                          struct page *page, u64 start, u64 end,
1743                          struct extent_state *state)
1744 {
1745         struct io_failure_record *failrec = NULL;
1746         u64 private;
1747         struct extent_map *em;
1748         struct inode *inode = page->mapping->host;
1749         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1750         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1751         struct bio *bio;
1752         int num_copies;
1753         int ret;
1754         int rw;
1755         u64 logical;
1756
1757         ret = get_state_private(failure_tree, start, &private);
1758         if (ret) {
1759                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1760                 if (!failrec)
1761                         return -ENOMEM;
1762                 failrec->start = start;
1763                 failrec->len = end - start + 1;
1764                 failrec->last_mirror = 0;
1765                 failrec->bio_flags = 0;
1766
1767                 read_lock(&em_tree->lock);
1768                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1769                 if (em->start > start || em->start + em->len < start) {
1770                         free_extent_map(em);
1771                         em = NULL;
1772                 }
1773                 read_unlock(&em_tree->lock);
1774
1775                 if (!em || IS_ERR(em)) {
1776                         kfree(failrec);
1777                         return -EIO;
1778                 }
1779                 logical = start - em->start;
1780                 logical = em->block_start + logical;
1781                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1782                         logical = em->block_start;
1783                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1784                 }
1785                 failrec->logical = logical;
1786                 free_extent_map(em);
1787                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1788                                 EXTENT_DIRTY, GFP_NOFS);
1789                 set_state_private(failure_tree, start,
1790                                  (u64)(unsigned long)failrec);
1791         } else {
1792                 failrec = (struct io_failure_record *)(unsigned long)private;
1793         }
1794         num_copies = btrfs_num_copies(
1795                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1796                               failrec->logical, failrec->len);
1797         failrec->last_mirror++;
1798         if (!state) {
1799                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1800                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1801                                                     failrec->start,
1802                                                     EXTENT_LOCKED);
1803                 if (state && state->start != failrec->start)
1804                         state = NULL;
1805                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1806         }
1807         if (!state || failrec->last_mirror > num_copies) {
1808                 set_state_private(failure_tree, failrec->start, 0);
1809                 clear_extent_bits(failure_tree, failrec->start,
1810                                   failrec->start + failrec->len - 1,
1811                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1812                 kfree(failrec);
1813                 return -EIO;
1814         }
1815         bio = bio_alloc(GFP_NOFS, 1);
1816         bio->bi_private = state;
1817         bio->bi_end_io = failed_bio->bi_end_io;
1818         bio->bi_sector = failrec->logical >> 9;
1819         bio->bi_bdev = failed_bio->bi_bdev;
1820         bio->bi_size = 0;
1821
1822         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1823         if (failed_bio->bi_rw & (1 << BIO_RW))
1824                 rw = WRITE;
1825         else
1826                 rw = READ;
1827
1828         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1829                                                       failrec->last_mirror,
1830                                                       failrec->bio_flags);
1831         return 0;
1832 }
1833
1834 /*
1835  * each time an IO finishes, we do a fast check in the IO failure tree
1836  * to see if we need to process or clean up an io_failure_record
1837  */
1838 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1839 {
1840         u64 private;
1841         u64 private_failure;
1842         struct io_failure_record *failure;
1843         int ret;
1844
1845         private = 0;
1846         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1847                              (u64)-1, 1, EXTENT_DIRTY)) {
1848                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1849                                         start, &private_failure);
1850                 if (ret == 0) {
1851                         failure = (struct io_failure_record *)(unsigned long)
1852                                    private_failure;
1853                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1854                                           failure->start, 0);
1855                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1856                                           failure->start,
1857                                           failure->start + failure->len - 1,
1858                                           EXTENT_DIRTY | EXTENT_LOCKED,
1859                                           GFP_NOFS);
1860                         kfree(failure);
1861                 }
1862         }
1863         return 0;
1864 }
1865
1866 /*
1867  * when reads are done, we need to check csums to verify the data is correct
1868  * if there's a match, we allow the bio to finish.  If not, we go through
1869  * the io_failure_record routines to find good copies
1870  */
1871 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1872                                struct extent_state *state)
1873 {
1874         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1875         struct inode *inode = page->mapping->host;
1876         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1877         char *kaddr;
1878         u64 private = ~(u32)0;
1879         int ret;
1880         struct btrfs_root *root = BTRFS_I(inode)->root;
1881         u32 csum = ~(u32)0;
1882
1883         if (PageChecked(page)) {
1884                 ClearPageChecked(page);
1885                 goto good;
1886         }
1887
1888         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1889                 return 0;
1890
1891         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1892             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1893                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1894                                   GFP_NOFS);
1895                 return 0;
1896         }
1897
1898         if (state && state->start == start) {
1899                 private = state->private;
1900                 ret = 0;
1901         } else {
1902                 ret = get_state_private(io_tree, start, &private);
1903         }
1904         kaddr = kmap_atomic(page, KM_USER0);
1905         if (ret)
1906                 goto zeroit;
1907
1908         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1909         btrfs_csum_final(csum, (char *)&csum);
1910         if (csum != private)
1911                 goto zeroit;
1912
1913         kunmap_atomic(kaddr, KM_USER0);
1914 good:
1915         /* if the io failure tree for this inode is non-empty,
1916          * check to see if we've recovered from a failed IO
1917          */
1918         btrfs_clean_io_failures(inode, start);
1919         return 0;
1920
1921 zeroit:
1922         if (printk_ratelimit()) {
1923                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1924                        "private %llu\n", page->mapping->host->i_ino,
1925                        (unsigned long long)start, csum,
1926                        (unsigned long long)private);
1927         }
1928         memset(kaddr + offset, 1, end - start + 1);
1929         flush_dcache_page(page);
1930         kunmap_atomic(kaddr, KM_USER0);
1931         if (private == 0)
1932                 return 0;
1933         return -EIO;
1934 }
1935
1936 struct delayed_iput {
1937         struct list_head list;
1938         struct inode *inode;
1939 };
1940
1941 void btrfs_add_delayed_iput(struct inode *inode)
1942 {
1943         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1944         struct delayed_iput *delayed;
1945
1946         if (atomic_add_unless(&inode->i_count, -1, 1))
1947                 return;
1948
1949         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1950         delayed->inode = inode;
1951
1952         spin_lock(&fs_info->delayed_iput_lock);
1953         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1954         spin_unlock(&fs_info->delayed_iput_lock);
1955 }
1956
1957 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1958 {
1959         LIST_HEAD(list);
1960         struct btrfs_fs_info *fs_info = root->fs_info;
1961         struct delayed_iput *delayed;
1962         int empty;
1963
1964         spin_lock(&fs_info->delayed_iput_lock);
1965         empty = list_empty(&fs_info->delayed_iputs);
1966         spin_unlock(&fs_info->delayed_iput_lock);
1967         if (empty)
1968                 return;
1969
1970         down_read(&root->fs_info->cleanup_work_sem);
1971         spin_lock(&fs_info->delayed_iput_lock);
1972         list_splice_init(&fs_info->delayed_iputs, &list);
1973         spin_unlock(&fs_info->delayed_iput_lock);
1974
1975         while (!list_empty(&list)) {
1976                 delayed = list_entry(list.next, struct delayed_iput, list);
1977                 list_del(&delayed->list);
1978                 iput(delayed->inode);
1979                 kfree(delayed);
1980         }
1981         up_read(&root->fs_info->cleanup_work_sem);
1982 }
1983
1984 /*
1985  * calculate extra metadata reservation when snapshotting a subvolume
1986  * contains orphan files.
1987  */
1988 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
1989                                 struct btrfs_pending_snapshot *pending,
1990                                 u64 *bytes_to_reserve)
1991 {
1992         struct btrfs_root *root;
1993         struct btrfs_block_rsv *block_rsv;
1994         u64 num_bytes;
1995         int index;
1996
1997         root = pending->root;
1998         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
1999                 return;
2000
2001         block_rsv = root->orphan_block_rsv;
2002
2003         /* orphan block reservation for the snapshot */
2004         num_bytes = block_rsv->size;
2005
2006         /*
2007          * after the snapshot is created, COWing tree blocks may use more
2008          * space than it frees. So we should make sure there is enough
2009          * reserved space.
2010          */
2011         index = trans->transid & 0x1;
2012         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2013                 num_bytes += block_rsv->size -
2014                              (block_rsv->reserved + block_rsv->freed[index]);
2015         }
2016
2017         *bytes_to_reserve += num_bytes;
2018 }
2019
2020 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2021                                 struct btrfs_pending_snapshot *pending)
2022 {
2023         struct btrfs_root *root = pending->root;
2024         struct btrfs_root *snap = pending->snap;
2025         struct btrfs_block_rsv *block_rsv;
2026         u64 num_bytes;
2027         int index;
2028         int ret;
2029
2030         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2031                 return;
2032
2033         /* refill source subvolume's orphan block reservation */
2034         block_rsv = root->orphan_block_rsv;
2035         index = trans->transid & 0x1;
2036         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2037                 num_bytes = block_rsv->size -
2038                             (block_rsv->reserved + block_rsv->freed[index]);
2039                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2040                                               root->orphan_block_rsv,
2041                                               num_bytes);
2042                 BUG_ON(ret);
2043         }
2044
2045         /* setup orphan block reservation for the snapshot */
2046         block_rsv = btrfs_alloc_block_rsv(snap);
2047         BUG_ON(!block_rsv);
2048
2049         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2050         snap->orphan_block_rsv = block_rsv;
2051
2052         num_bytes = root->orphan_block_rsv->size;
2053         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2054                                       block_rsv, num_bytes);
2055         BUG_ON(ret);
2056
2057 #if 0
2058         /* insert orphan item for the snapshot */
2059         WARN_ON(!root->orphan_item_inserted);
2060         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2061                                        snap->root_key.objectid);
2062         BUG_ON(ret);
2063         snap->orphan_item_inserted = 1;
2064 #endif
2065 }
2066
2067 enum btrfs_orphan_cleanup_state {
2068         ORPHAN_CLEANUP_STARTED  = 1,
2069         ORPHAN_CLEANUP_DONE     = 2,
2070 };
2071
2072 /*
2073  * This is called in transaction commmit time. If there are no orphan
2074  * files in the subvolume, it removes orphan item and frees block_rsv
2075  * structure.
2076  */
2077 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2078                               struct btrfs_root *root)
2079 {
2080         int ret;
2081
2082         if (!list_empty(&root->orphan_list) ||
2083             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2084                 return;
2085
2086         if (root->orphan_item_inserted &&
2087             btrfs_root_refs(&root->root_item) > 0) {
2088                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2089                                             root->root_key.objectid);
2090                 BUG_ON(ret);
2091                 root->orphan_item_inserted = 0;
2092         }
2093
2094         if (root->orphan_block_rsv) {
2095                 WARN_ON(root->orphan_block_rsv->size > 0);
2096                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2097                 root->orphan_block_rsv = NULL;
2098         }
2099 }
2100
2101 /*
2102  * This creates an orphan entry for the given inode in case something goes
2103  * wrong in the middle of an unlink/truncate.
2104  *
2105  * NOTE: caller of this function should reserve 5 units of metadata for
2106  *       this function.
2107  */
2108 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2109 {
2110         struct btrfs_root *root = BTRFS_I(inode)->root;
2111         struct btrfs_block_rsv *block_rsv = NULL;
2112         int reserve = 0;
2113         int insert = 0;
2114         int ret;
2115
2116         if (!root->orphan_block_rsv) {
2117                 block_rsv = btrfs_alloc_block_rsv(root);
2118                 BUG_ON(!block_rsv);
2119         }
2120
2121         spin_lock(&root->orphan_lock);
2122         if (!root->orphan_block_rsv) {
2123                 root->orphan_block_rsv = block_rsv;
2124         } else if (block_rsv) {
2125                 btrfs_free_block_rsv(root, block_rsv);
2126                 block_rsv = NULL;
2127         }
2128
2129         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2130                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2131 #if 0
2132                 /*
2133                  * For proper ENOSPC handling, we should do orphan
2134                  * cleanup when mounting. But this introduces backward
2135                  * compatibility issue.
2136                  */
2137                 if (!xchg(&root->orphan_item_inserted, 1))
2138                         insert = 2;
2139                 else
2140                         insert = 1;
2141 #endif
2142                 insert = 1;
2143         } else {
2144                 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2145         }
2146
2147         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2148                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2149                 reserve = 1;
2150         }
2151         spin_unlock(&root->orphan_lock);
2152
2153         if (block_rsv)
2154                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2155
2156         /* grab metadata reservation from transaction handle */
2157         if (reserve) {
2158                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2159                 BUG_ON(ret);
2160         }
2161
2162         /* insert an orphan item to track this unlinked/truncated file */
2163         if (insert >= 1) {
2164                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2165                 BUG_ON(ret);
2166         }
2167
2168         /* insert an orphan item to track subvolume contains orphan files */
2169         if (insert >= 2) {
2170                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2171                                                root->root_key.objectid);
2172                 BUG_ON(ret);
2173         }
2174         return 0;
2175 }
2176
2177 /*
2178  * We have done the truncate/delete so we can go ahead and remove the orphan
2179  * item for this particular inode.
2180  */
2181 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2182 {
2183         struct btrfs_root *root = BTRFS_I(inode)->root;
2184         int delete_item = 0;
2185         int release_rsv = 0;
2186         int ret = 0;
2187
2188         spin_lock(&root->orphan_lock);
2189         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2190                 list_del_init(&BTRFS_I(inode)->i_orphan);
2191                 delete_item = 1;
2192         }
2193
2194         if (BTRFS_I(inode)->orphan_meta_reserved) {
2195                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2196                 release_rsv = 1;
2197         }
2198         spin_unlock(&root->orphan_lock);
2199
2200         if (trans && delete_item) {
2201                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2202                 BUG_ON(ret);
2203         }
2204
2205         if (release_rsv)
2206                 btrfs_orphan_release_metadata(inode);
2207
2208         return 0;
2209 }
2210
2211 /*
2212  * this cleans up any orphans that may be left on the list from the last use
2213  * of this root.
2214  */
2215 void btrfs_orphan_cleanup(struct btrfs_root *root)
2216 {
2217         struct btrfs_path *path;
2218         struct extent_buffer *leaf;
2219         struct btrfs_item *item;
2220         struct btrfs_key key, found_key;
2221         struct btrfs_trans_handle *trans;
2222         struct inode *inode;
2223         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2224
2225         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2226                 return;
2227
2228         path = btrfs_alloc_path();
2229         BUG_ON(!path);
2230         path->reada = -1;
2231
2232         key.objectid = BTRFS_ORPHAN_OBJECTID;
2233         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2234         key.offset = (u64)-1;
2235
2236         while (1) {
2237                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2238                 if (ret < 0) {
2239                         printk(KERN_ERR "Error searching slot for orphan: %d"
2240                                "\n", ret);
2241                         break;
2242                 }
2243
2244                 /*
2245                  * if ret == 0 means we found what we were searching for, which
2246                  * is weird, but possible, so only screw with path if we didnt
2247                  * find the key and see if we have stuff that matches
2248                  */
2249                 if (ret > 0) {
2250                         if (path->slots[0] == 0)
2251                                 break;
2252                         path->slots[0]--;
2253                 }
2254
2255                 /* pull out the item */
2256                 leaf = path->nodes[0];
2257                 item = btrfs_item_nr(leaf, path->slots[0]);
2258                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2259
2260                 /* make sure the item matches what we want */
2261                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2262                         break;
2263                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2264                         break;
2265
2266                 /* release the path since we're done with it */
2267                 btrfs_release_path(root, path);
2268
2269                 /*
2270                  * this is where we are basically btrfs_lookup, without the
2271                  * crossing root thing.  we store the inode number in the
2272                  * offset of the orphan item.
2273                  */
2274                 found_key.objectid = found_key.offset;
2275                 found_key.type = BTRFS_INODE_ITEM_KEY;
2276                 found_key.offset = 0;
2277                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2278                 BUG_ON(IS_ERR(inode));
2279
2280                 /*
2281                  * add this inode to the orphan list so btrfs_orphan_del does
2282                  * the proper thing when we hit it
2283                  */
2284                 spin_lock(&root->orphan_lock);
2285                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2286                 spin_unlock(&root->orphan_lock);
2287
2288                 /*
2289                  * if this is a bad inode, means we actually succeeded in
2290                  * removing the inode, but not the orphan record, which means
2291                  * we need to manually delete the orphan since iput will just
2292                  * do a destroy_inode
2293                  */
2294                 if (is_bad_inode(inode)) {
2295                         trans = btrfs_start_transaction(root, 0);
2296                         btrfs_orphan_del(trans, inode);
2297                         btrfs_end_transaction(trans, root);
2298                         iput(inode);
2299                         continue;
2300                 }
2301
2302                 /* if we have links, this was a truncate, lets do that */
2303                 if (inode->i_nlink) {
2304                         nr_truncate++;
2305                         btrfs_truncate(inode);
2306                 } else {
2307                         nr_unlink++;
2308                 }
2309
2310                 /* this will do delete_inode and everything for us */
2311                 iput(inode);
2312         }
2313         btrfs_free_path(path);
2314
2315         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2316
2317         if (root->orphan_block_rsv)
2318                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2319                                         (u64)-1);
2320
2321         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2322                 trans = btrfs_join_transaction(root, 1);
2323                 btrfs_end_transaction(trans, root);
2324         }
2325
2326         if (nr_unlink)
2327                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2328         if (nr_truncate)
2329                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2330 }
2331
2332 /*
2333  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2334  * don't find any xattrs, we know there can't be any acls.
2335  *
2336  * slot is the slot the inode is in, objectid is the objectid of the inode
2337  */
2338 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2339                                           int slot, u64 objectid)
2340 {
2341         u32 nritems = btrfs_header_nritems(leaf);
2342         struct btrfs_key found_key;
2343         int scanned = 0;
2344
2345         slot++;
2346         while (slot < nritems) {
2347                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2348
2349                 /* we found a different objectid, there must not be acls */
2350                 if (found_key.objectid != objectid)
2351                         return 0;
2352
2353                 /* we found an xattr, assume we've got an acl */
2354                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2355                         return 1;
2356
2357                 /*
2358                  * we found a key greater than an xattr key, there can't
2359                  * be any acls later on
2360                  */
2361                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2362                         return 0;
2363
2364                 slot++;
2365                 scanned++;
2366
2367                 /*
2368                  * it goes inode, inode backrefs, xattrs, extents,
2369                  * so if there are a ton of hard links to an inode there can
2370                  * be a lot of backrefs.  Don't waste time searching too hard,
2371                  * this is just an optimization
2372                  */
2373                 if (scanned >= 8)
2374                         break;
2375         }
2376         /* we hit the end of the leaf before we found an xattr or
2377          * something larger than an xattr.  We have to assume the inode
2378          * has acls
2379          */
2380         return 1;
2381 }
2382
2383 /*
2384  * read an inode from the btree into the in-memory inode
2385  */
2386 static void btrfs_read_locked_inode(struct inode *inode)
2387 {
2388         struct btrfs_path *path;
2389         struct extent_buffer *leaf;
2390         struct btrfs_inode_item *inode_item;
2391         struct btrfs_timespec *tspec;
2392         struct btrfs_root *root = BTRFS_I(inode)->root;
2393         struct btrfs_key location;
2394         int maybe_acls;
2395         u64 alloc_group_block;
2396         u32 rdev;
2397         int ret;
2398
2399         path = btrfs_alloc_path();
2400         BUG_ON(!path);
2401         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2402
2403         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2404         if (ret)
2405                 goto make_bad;
2406
2407         leaf = path->nodes[0];
2408         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2409                                     struct btrfs_inode_item);
2410
2411         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2412         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2413         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2414         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2415         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2416
2417         tspec = btrfs_inode_atime(inode_item);
2418         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2419         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2420
2421         tspec = btrfs_inode_mtime(inode_item);
2422         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2423         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2424
2425         tspec = btrfs_inode_ctime(inode_item);
2426         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2427         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2428
2429         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2430         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2431         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2432         inode->i_generation = BTRFS_I(inode)->generation;
2433         inode->i_rdev = 0;
2434         rdev = btrfs_inode_rdev(leaf, inode_item);
2435
2436         BTRFS_I(inode)->index_cnt = (u64)-1;
2437         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2438
2439         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2440
2441         /*
2442          * try to precache a NULL acl entry for files that don't have
2443          * any xattrs or acls
2444          */
2445         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2446         if (!maybe_acls)
2447                 cache_no_acl(inode);
2448
2449         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2450                                                 alloc_group_block, 0);
2451         btrfs_free_path(path);
2452         inode_item = NULL;
2453
2454         switch (inode->i_mode & S_IFMT) {
2455         case S_IFREG:
2456                 inode->i_mapping->a_ops = &btrfs_aops;
2457                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2458                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2459                 inode->i_fop = &btrfs_file_operations;
2460                 inode->i_op = &btrfs_file_inode_operations;
2461                 break;
2462         case S_IFDIR:
2463                 inode->i_fop = &btrfs_dir_file_operations;
2464                 if (root == root->fs_info->tree_root)
2465                         inode->i_op = &btrfs_dir_ro_inode_operations;
2466                 else
2467                         inode->i_op = &btrfs_dir_inode_operations;
2468                 break;
2469         case S_IFLNK:
2470                 inode->i_op = &btrfs_symlink_inode_operations;
2471                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2472                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2473                 break;
2474         default:
2475                 inode->i_op = &btrfs_special_inode_operations;
2476                 init_special_inode(inode, inode->i_mode, rdev);
2477                 break;
2478         }
2479
2480         btrfs_update_iflags(inode);
2481         return;
2482
2483 make_bad:
2484         btrfs_free_path(path);
2485         make_bad_inode(inode);
2486 }
2487
2488 /*
2489  * given a leaf and an inode, copy the inode fields into the leaf
2490  */
2491 static void fill_inode_item(struct btrfs_trans_handle *trans,
2492                             struct extent_buffer *leaf,
2493                             struct btrfs_inode_item *item,
2494                             struct inode *inode)
2495 {
2496         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2497         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2498         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2499         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2500         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2501
2502         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2503                                inode->i_atime.tv_sec);
2504         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2505                                 inode->i_atime.tv_nsec);
2506
2507         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2508                                inode->i_mtime.tv_sec);
2509         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2510                                 inode->i_mtime.tv_nsec);
2511
2512         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2513                                inode->i_ctime.tv_sec);
2514         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2515                                 inode->i_ctime.tv_nsec);
2516
2517         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2518         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2519         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2520         btrfs_set_inode_transid(leaf, item, trans->transid);
2521         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2522         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2523         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2524 }
2525
2526 /*
2527  * copy everything in the in-memory inode into the btree.
2528  */
2529 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2530                                 struct btrfs_root *root, struct inode *inode)
2531 {
2532         struct btrfs_inode_item *inode_item;
2533         struct btrfs_path *path;
2534         struct extent_buffer *leaf;
2535         int ret;
2536
2537         path = btrfs_alloc_path();
2538         BUG_ON(!path);
2539         path->leave_spinning = 1;
2540         ret = btrfs_lookup_inode(trans, root, path,
2541                                  &BTRFS_I(inode)->location, 1);
2542         if (ret) {
2543                 if (ret > 0)
2544                         ret = -ENOENT;
2545                 goto failed;
2546         }
2547
2548         btrfs_unlock_up_safe(path, 1);
2549         leaf = path->nodes[0];
2550         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2551                                   struct btrfs_inode_item);
2552
2553         fill_inode_item(trans, leaf, inode_item, inode);
2554         btrfs_mark_buffer_dirty(leaf);
2555         btrfs_set_inode_last_trans(trans, inode);
2556         ret = 0;
2557 failed:
2558         btrfs_free_path(path);
2559         return ret;
2560 }
2561
2562
2563 /*
2564  * unlink helper that gets used here in inode.c and in the tree logging
2565  * recovery code.  It remove a link in a directory with a given name, and
2566  * also drops the back refs in the inode to the directory
2567  */
2568 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2569                        struct btrfs_root *root,
2570                        struct inode *dir, struct inode *inode,
2571                        const char *name, int name_len)
2572 {
2573         struct btrfs_path *path;
2574         int ret = 0;
2575         struct extent_buffer *leaf;
2576         struct btrfs_dir_item *di;
2577         struct btrfs_key key;
2578         u64 index;
2579
2580         path = btrfs_alloc_path();
2581         if (!path) {
2582                 ret = -ENOMEM;
2583                 goto err;
2584         }
2585
2586         path->leave_spinning = 1;
2587         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2588                                     name, name_len, -1);
2589         if (IS_ERR(di)) {
2590                 ret = PTR_ERR(di);
2591                 goto err;
2592         }
2593         if (!di) {
2594                 ret = -ENOENT;
2595                 goto err;
2596         }
2597         leaf = path->nodes[0];
2598         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2599         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2600         if (ret)
2601                 goto err;
2602         btrfs_release_path(root, path);
2603
2604         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2605                                   inode->i_ino,
2606                                   dir->i_ino, &index);
2607         if (ret) {
2608                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2609                        "inode %lu parent %lu\n", name_len, name,
2610                        inode->i_ino, dir->i_ino);
2611                 goto err;
2612         }
2613
2614         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2615                                          index, name, name_len, -1);
2616         if (IS_ERR(di)) {
2617                 ret = PTR_ERR(di);
2618                 goto err;
2619         }
2620         if (!di) {
2621                 ret = -ENOENT;
2622                 goto err;
2623         }
2624         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2625         btrfs_release_path(root, path);
2626
2627         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2628                                          inode, dir->i_ino);
2629         BUG_ON(ret != 0 && ret != -ENOENT);
2630
2631         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2632                                            dir, index);
2633         BUG_ON(ret);
2634 err:
2635         btrfs_free_path(path);
2636         if (ret)
2637                 goto out;
2638
2639         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2640         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2641         btrfs_update_inode(trans, root, dir);
2642         btrfs_drop_nlink(inode);
2643         ret = btrfs_update_inode(trans, root, inode);
2644 out:
2645         return ret;
2646 }
2647
2648 /* helper to check if there is any shared block in the path */
2649 static int check_path_shared(struct btrfs_root *root,
2650                              struct btrfs_path *path)
2651 {
2652         struct extent_buffer *eb;
2653         int level;
2654         int ret;
2655         u64 refs;
2656
2657         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2658                 if (!path->nodes[level])
2659                         break;
2660                 eb = path->nodes[level];
2661                 if (!btrfs_block_can_be_shared(root, eb))
2662                         continue;
2663                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2664                                                &refs, NULL);
2665                 if (refs > 1)
2666                         return 1;
2667         }
2668         return 0;
2669 }
2670
2671 /*
2672  * helper to start transaction for unlink and rmdir.
2673  *
2674  * unlink and rmdir are special in btrfs, they do not always free space.
2675  * so in enospc case, we should make sure they will free space before
2676  * allowing them to use the global metadata reservation.
2677  */
2678 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2679                                                        struct dentry *dentry)
2680 {
2681         struct btrfs_trans_handle *trans;
2682         struct btrfs_root *root = BTRFS_I(dir)->root;
2683         struct btrfs_path *path;
2684         struct btrfs_inode_ref *ref;
2685         struct btrfs_dir_item *di;
2686         struct inode *inode = dentry->d_inode;
2687         u64 index;
2688         int check_link = 1;
2689         int err = -ENOSPC;
2690         int ret;
2691
2692         trans = btrfs_start_transaction(root, 10);
2693         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2694                 return trans;
2695
2696         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2697                 return ERR_PTR(-ENOSPC);
2698
2699         /* check if there is someone else holds reference */
2700         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2701                 return ERR_PTR(-ENOSPC);
2702
2703         if (atomic_read(&inode->i_count) > 2)
2704                 return ERR_PTR(-ENOSPC);
2705
2706         if (xchg(&root->fs_info->enospc_unlink, 1))
2707                 return ERR_PTR(-ENOSPC);
2708
2709         path = btrfs_alloc_path();
2710         if (!path) {
2711                 root->fs_info->enospc_unlink = 0;
2712                 return ERR_PTR(-ENOMEM);
2713         }
2714
2715         trans = btrfs_start_transaction(root, 0);
2716         if (IS_ERR(trans)) {
2717                 btrfs_free_path(path);
2718                 root->fs_info->enospc_unlink = 0;
2719                 return trans;
2720         }
2721
2722         path->skip_locking = 1;
2723         path->search_commit_root = 1;
2724
2725         ret = btrfs_lookup_inode(trans, root, path,
2726                                 &BTRFS_I(dir)->location, 0);
2727         if (ret < 0) {
2728                 err = ret;
2729                 goto out;
2730         }
2731         if (ret == 0) {
2732                 if (check_path_shared(root, path))
2733                         goto out;
2734         } else {
2735                 check_link = 0;
2736         }
2737         btrfs_release_path(root, path);
2738
2739         ret = btrfs_lookup_inode(trans, root, path,
2740                                 &BTRFS_I(inode)->location, 0);
2741         if (ret < 0) {
2742                 err = ret;
2743                 goto out;
2744         }
2745         if (ret == 0) {
2746                 if (check_path_shared(root, path))
2747                         goto out;
2748         } else {
2749                 check_link = 0;
2750         }
2751         btrfs_release_path(root, path);
2752
2753         if (ret == 0 && S_ISREG(inode->i_mode)) {
2754                 ret = btrfs_lookup_file_extent(trans, root, path,
2755                                                inode->i_ino, (u64)-1, 0);
2756                 if (ret < 0) {
2757                         err = ret;
2758                         goto out;
2759                 }
2760                 BUG_ON(ret == 0);
2761                 if (check_path_shared(root, path))
2762                         goto out;
2763                 btrfs_release_path(root, path);
2764         }
2765
2766         if (!check_link) {
2767                 err = 0;
2768                 goto out;
2769         }
2770
2771         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2772                                 dentry->d_name.name, dentry->d_name.len, 0);
2773         if (IS_ERR(di)) {
2774                 err = PTR_ERR(di);
2775                 goto out;
2776         }
2777         if (di) {
2778                 if (check_path_shared(root, path))
2779                         goto out;
2780         } else {
2781                 err = 0;
2782                 goto out;
2783         }
2784         btrfs_release_path(root, path);
2785
2786         ref = btrfs_lookup_inode_ref(trans, root, path,
2787                                 dentry->d_name.name, dentry->d_name.len,
2788                                 inode->i_ino, dir->i_ino, 0);
2789         if (IS_ERR(ref)) {
2790                 err = PTR_ERR(ref);
2791                 goto out;
2792         }
2793         BUG_ON(!ref);
2794         if (check_path_shared(root, path))
2795                 goto out;
2796         index = btrfs_inode_ref_index(path->nodes[0], ref);
2797         btrfs_release_path(root, path);
2798
2799         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2800                                 dentry->d_name.name, dentry->d_name.len, 0);
2801         if (IS_ERR(di)) {
2802                 err = PTR_ERR(di);
2803                 goto out;
2804         }
2805         BUG_ON(ret == -ENOENT);
2806         if (check_path_shared(root, path))
2807                 goto out;
2808
2809         err = 0;
2810 out:
2811         btrfs_free_path(path);
2812         if (err) {
2813                 btrfs_end_transaction(trans, root);
2814                 root->fs_info->enospc_unlink = 0;
2815                 return ERR_PTR(err);
2816         }
2817
2818         trans->block_rsv = &root->fs_info->global_block_rsv;
2819         return trans;
2820 }
2821
2822 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2823                                struct btrfs_root *root)
2824 {
2825         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2826                 BUG_ON(!root->fs_info->enospc_unlink);
2827                 root->fs_info->enospc_unlink = 0;
2828         }
2829         btrfs_end_transaction_throttle(trans, root);
2830 }
2831
2832 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2833 {
2834         struct btrfs_root *root = BTRFS_I(dir)->root;
2835         struct btrfs_trans_handle *trans;
2836         struct inode *inode = dentry->d_inode;
2837         int ret;
2838         unsigned long nr = 0;
2839
2840         trans = __unlink_start_trans(dir, dentry);
2841         if (IS_ERR(trans))
2842                 return PTR_ERR(trans);
2843
2844         btrfs_set_trans_block_group(trans, dir);
2845
2846         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2847
2848         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2849                                  dentry->d_name.name, dentry->d_name.len);
2850         BUG_ON(ret);
2851
2852         if (inode->i_nlink == 0) {
2853                 ret = btrfs_orphan_add(trans, inode);
2854                 BUG_ON(ret);
2855         }
2856
2857         nr = trans->blocks_used;
2858         __unlink_end_trans(trans, root);
2859         btrfs_btree_balance_dirty(root, nr);
2860         return ret;
2861 }
2862
2863 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2864                         struct btrfs_root *root,
2865                         struct inode *dir, u64 objectid,
2866                         const char *name, int name_len)
2867 {
2868         struct btrfs_path *path;
2869         struct extent_buffer *leaf;
2870         struct btrfs_dir_item *di;
2871         struct btrfs_key key;
2872         u64 index;
2873         int ret;
2874
2875         path = btrfs_alloc_path();
2876         if (!path)
2877                 return -ENOMEM;
2878
2879         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2880                                    name, name_len, -1);
2881         BUG_ON(!di || IS_ERR(di));
2882
2883         leaf = path->nodes[0];
2884         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2885         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2886         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2887         BUG_ON(ret);
2888         btrfs_release_path(root, path);
2889
2890         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2891                                  objectid, root->root_key.objectid,
2892                                  dir->i_ino, &index, name, name_len);
2893         if (ret < 0) {
2894                 BUG_ON(ret != -ENOENT);
2895                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2896                                                  name, name_len);
2897                 BUG_ON(!di || IS_ERR(di));
2898
2899                 leaf = path->nodes[0];
2900                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2901                 btrfs_release_path(root, path);
2902                 index = key.offset;
2903         }
2904
2905         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2906                                          index, name, name_len, -1);
2907         BUG_ON(!di || IS_ERR(di));
2908
2909         leaf = path->nodes[0];
2910         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2911         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2912         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2913         BUG_ON(ret);
2914         btrfs_release_path(root, path);
2915
2916         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2917         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2918         ret = btrfs_update_inode(trans, root, dir);
2919         BUG_ON(ret);
2920         dir->i_sb->s_dirt = 1;
2921
2922         btrfs_free_path(path);
2923         return 0;
2924 }
2925
2926 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2927 {
2928         struct inode *inode = dentry->d_inode;
2929         int err = 0;
2930         struct btrfs_root *root = BTRFS_I(dir)->root;
2931         struct btrfs_trans_handle *trans;
2932         unsigned long nr = 0;
2933
2934         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2935             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2936                 return -ENOTEMPTY;
2937
2938         trans = __unlink_start_trans(dir, dentry);
2939         if (IS_ERR(trans))
2940                 return PTR_ERR(trans);
2941
2942         btrfs_set_trans_block_group(trans, dir);
2943
2944         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2945                 err = btrfs_unlink_subvol(trans, root, dir,
2946                                           BTRFS_I(inode)->location.objectid,
2947                                           dentry->d_name.name,
2948                                           dentry->d_name.len);
2949                 goto out;
2950         }
2951
2952         err = btrfs_orphan_add(trans, inode);
2953         if (err)
2954                 goto out;
2955
2956         /* now the directory is empty */
2957         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2958                                  dentry->d_name.name, dentry->d_name.len);
2959         if (!err)
2960                 btrfs_i_size_write(inode, 0);
2961 out:
2962         nr = trans->blocks_used;
2963         __unlink_end_trans(trans, root);
2964         btrfs_btree_balance_dirty(root, nr);
2965
2966         return err;
2967 }
2968
2969 #if 0
2970 /*
2971  * when truncating bytes in a file, it is possible to avoid reading
2972  * the leaves that contain only checksum items.  This can be the
2973  * majority of the IO required to delete a large file, but it must
2974  * be done carefully.
2975  *
2976  * The keys in the level just above the leaves are checked to make sure
2977  * the lowest key in a given leaf is a csum key, and starts at an offset
2978  * after the new  size.
2979  *
2980  * Then the key for the next leaf is checked to make sure it also has
2981  * a checksum item for the same file.  If it does, we know our target leaf
2982  * contains only checksum items, and it can be safely freed without reading
2983  * it.
2984  *
2985  * This is just an optimization targeted at large files.  It may do
2986  * nothing.  It will return 0 unless things went badly.
2987  */
2988 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2989                                      struct btrfs_root *root,
2990                                      struct btrfs_path *path,
2991                                      struct inode *inode, u64 new_size)
2992 {
2993         struct btrfs_key key;
2994         int ret;
2995         int nritems;
2996         struct btrfs_key found_key;
2997         struct btrfs_key other_key;
2998         struct btrfs_leaf_ref *ref;
2999         u64 leaf_gen;
3000         u64 leaf_start;
3001
3002         path->lowest_level = 1;
3003         key.objectid = inode->i_ino;
3004         key.type = BTRFS_CSUM_ITEM_KEY;
3005         key.offset = new_size;
3006 again:
3007         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3008         if (ret < 0)
3009                 goto out;
3010
3011         if (path->nodes[1] == NULL) {
3012                 ret = 0;
3013                 goto out;
3014         }
3015         ret = 0;
3016         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3017         nritems = btrfs_header_nritems(path->nodes[1]);
3018
3019         if (!nritems)
3020                 goto out;
3021
3022         if (path->slots[1] >= nritems)
3023                 goto next_node;
3024
3025         /* did we find a key greater than anything we want to delete? */
3026         if (found_key.objectid > inode->i_ino ||
3027            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3028                 goto out;
3029
3030         /* we check the next key in the node to make sure the leave contains
3031          * only checksum items.  This comparison doesn't work if our
3032          * leaf is the last one in the node
3033          */
3034         if (path->slots[1] + 1 >= nritems) {
3035 next_node:
3036                 /* search forward from the last key in the node, this
3037                  * will bring us into the next node in the tree
3038                  */
3039                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3040
3041                 /* unlikely, but we inc below, so check to be safe */
3042                 if (found_key.offset == (u64)-1)
3043                         goto out;
3044
3045                 /* search_forward needs a path with locks held, do the
3046                  * search again for the original key.  It is possible
3047                  * this will race with a balance and return a path that
3048                  * we could modify, but this drop is just an optimization
3049                  * and is allowed to miss some leaves.
3050                  */
3051                 btrfs_release_path(root, path);
3052                 found_key.offset++;
3053
3054                 /* setup a max key for search_forward */
3055                 other_key.offset = (u64)-1;
3056                 other_key.type = key.type;
3057                 other_key.objectid = key.objectid;
3058
3059                 path->keep_locks = 1;
3060                 ret = btrfs_search_forward(root, &found_key, &other_key,
3061                                            path, 0, 0);
3062                 path->keep_locks = 0;
3063                 if (ret || found_key.objectid != key.objectid ||
3064                     found_key.type != key.type) {
3065                         ret = 0;
3066                         goto out;
3067                 }
3068
3069                 key.offset = found_key.offset;
3070                 btrfs_release_path(root, path);
3071                 cond_resched();
3072                 goto again;
3073         }
3074
3075         /* we know there's one more slot after us in the tree,
3076          * read that key so we can verify it is also a checksum item
3077          */
3078         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3079
3080         if (found_key.objectid < inode->i_ino)
3081                 goto next_key;
3082
3083         if (found_key.type != key.type || found_key.offset < new_size)
3084                 goto next_key;
3085
3086         /*
3087          * if the key for the next leaf isn't a csum key from this objectid,
3088          * we can't be sure there aren't good items inside this leaf.
3089          * Bail out
3090          */
3091         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3092                 goto out;
3093
3094         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3095         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3096         /*
3097          * it is safe to delete this leaf, it contains only
3098          * csum items from this inode at an offset >= new_size
3099          */
3100         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3101         BUG_ON(ret);
3102
3103         if (root->ref_cows && leaf_gen < trans->transid) {
3104                 ref = btrfs_alloc_leaf_ref(root, 0);
3105                 if (ref) {
3106                         ref->root_gen = root->root_key.offset;
3107                         ref->bytenr = leaf_start;
3108                         ref->owner = 0;
3109                         ref->generation = leaf_gen;
3110                         ref->nritems = 0;
3111
3112                         btrfs_sort_leaf_ref(ref);
3113
3114                         ret = btrfs_add_leaf_ref(root, ref, 0);
3115                         WARN_ON(ret);
3116                         btrfs_free_leaf_ref(root, ref);
3117                 } else {
3118                         WARN_ON(1);
3119                 }
3120         }
3121 next_key:
3122         btrfs_release_path(root, path);
3123
3124         if (other_key.objectid == inode->i_ino &&
3125             other_key.type == key.type && other_key.offset > key.offset) {
3126                 key.offset = other_key.offset;
3127                 cond_resched();
3128                 goto again;
3129         }
3130         ret = 0;
3131 out:
3132         /* fixup any changes we've made to the path */
3133         path->lowest_level = 0;
3134         path->keep_locks = 0;
3135         btrfs_release_path(root, path);
3136         return ret;
3137 }
3138
3139 #endif
3140
3141 /*
3142  * this can truncate away extent items, csum items and directory items.
3143  * It starts at a high offset and removes keys until it can't find
3144  * any higher than new_size
3145  *
3146  * csum items that cross the new i_size are truncated to the new size
3147  * as well.
3148  *
3149  * min_type is the minimum key type to truncate down to.  If set to 0, this
3150  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3151  */
3152 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3153                                struct btrfs_root *root,
3154                                struct inode *inode,
3155                                u64 new_size, u32 min_type)
3156 {
3157         struct btrfs_path *path;
3158         struct extent_buffer *leaf;
3159         struct btrfs_file_extent_item *fi;
3160         struct btrfs_key key;
3161         struct btrfs_key found_key;
3162         u64 extent_start = 0;
3163         u64 extent_num_bytes = 0;
3164         u64 extent_offset = 0;
3165         u64 item_end = 0;
3166         u64 mask = root->sectorsize - 1;
3167         u32 found_type = (u8)-1;
3168         int found_extent;
3169         int del_item;
3170         int pending_del_nr = 0;
3171         int pending_del_slot = 0;
3172         int extent_type = -1;
3173         int encoding;
3174         int ret;
3175         int err = 0;
3176
3177         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3178
3179         if (root->ref_cows)
3180                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3181
3182         path = btrfs_alloc_path();
3183         BUG_ON(!path);
3184         path->reada = -1;
3185
3186         key.objectid = inode->i_ino;
3187         key.offset = (u64)-1;
3188         key.type = (u8)-1;
3189
3190 search_again:
3191         path->leave_spinning = 1;
3192         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3193         if (ret < 0) {
3194                 err = ret;
3195                 goto out;
3196         }
3197
3198         if (ret > 0) {
3199                 /* there are no items in the tree for us to truncate, we're
3200                  * done
3201                  */
3202                 if (path->slots[0] == 0)
3203                         goto out;
3204                 path->slots[0]--;
3205         }
3206
3207         while (1) {
3208                 fi = NULL;
3209                 leaf = path->nodes[0];
3210                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3211                 found_type = btrfs_key_type(&found_key);
3212                 encoding = 0;
3213
3214                 if (found_key.objectid != inode->i_ino)
3215                         break;
3216
3217                 if (found_type < min_type)
3218                         break;
3219
3220                 item_end = found_key.offset;
3221                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3222                         fi = btrfs_item_ptr(leaf, path->slots[0],
3223                                             struct btrfs_file_extent_item);
3224                         extent_type = btrfs_file_extent_type(leaf, fi);
3225                         encoding = btrfs_file_extent_compression(leaf, fi);
3226                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3227                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3228
3229                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3230                                 item_end +=
3231                                     btrfs_file_extent_num_bytes(leaf, fi);
3232                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3233                                 item_end += btrfs_file_extent_inline_len(leaf,
3234                                                                          fi);
3235                         }
3236                         item_end--;
3237                 }
3238                 if (found_type > min_type) {
3239                         del_item = 1;
3240                 } else {
3241                         if (item_end < new_size)
3242                                 break;
3243                         if (found_key.offset >= new_size)
3244                                 del_item = 1;
3245                         else
3246                                 del_item = 0;
3247                 }
3248                 found_extent = 0;
3249                 /* FIXME, shrink the extent if the ref count is only 1 */
3250                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3251                         goto delete;
3252
3253                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3254                         u64 num_dec;
3255                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3256                         if (!del_item && !encoding) {
3257                                 u64 orig_num_bytes =
3258                                         btrfs_file_extent_num_bytes(leaf, fi);
3259                                 extent_num_bytes = new_size -
3260                                         found_key.offset + root->sectorsize - 1;
3261                                 extent_num_bytes = extent_num_bytes &
3262                                         ~((u64)root->sectorsize - 1);
3263                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3264                                                          extent_num_bytes);
3265                                 num_dec = (orig_num_bytes -
3266                                            extent_num_bytes);
3267                                 if (root->ref_cows && extent_start != 0)
3268                                         inode_sub_bytes(inode, num_dec);
3269                                 btrfs_mark_buffer_dirty(leaf);
3270                         } else {
3271                                 extent_num_bytes =
3272                                         btrfs_file_extent_disk_num_bytes(leaf,
3273                                                                          fi);
3274                                 extent_offset = found_key.offset -
3275                                         btrfs_file_extent_offset(leaf, fi);
3276
3277                                 /* FIXME blocksize != 4096 */
3278                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3279                                 if (extent_start != 0) {
3280                                         found_extent = 1;
3281                                         if (root->ref_cows)
3282                                                 inode_sub_bytes(inode, num_dec);
3283                                 }
3284                         }
3285                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3286                         /*
3287                          * we can't truncate inline items that have had
3288                          * special encodings
3289                          */
3290                         if (!del_item &&
3291                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3292                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3293                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3294                                 u32 size = new_size - found_key.offset;
3295
3296                                 if (root->ref_cows) {
3297                                         inode_sub_bytes(inode, item_end + 1 -
3298                                                         new_size);
3299                                 }
3300                                 size =
3301                                     btrfs_file_extent_calc_inline_size(size);
3302                                 ret = btrfs_truncate_item(trans, root, path,
3303                                                           size, 1);
3304                                 BUG_ON(ret);
3305                         } else if (root->ref_cows) {
3306                                 inode_sub_bytes(inode, item_end + 1 -
3307                                                 found_key.offset);
3308                         }
3309                 }
3310 delete:
3311                 if (del_item) {
3312                         if (!pending_del_nr) {
3313                                 /* no pending yet, add ourselves */
3314                                 pending_del_slot = path->slots[0];
3315                                 pending_del_nr = 1;
3316                         } else if (pending_del_nr &&
3317                                    path->slots[0] + 1 == pending_del_slot) {
3318                                 /* hop on the pending chunk */
3319                                 pending_del_nr++;
3320                                 pending_del_slot = path->slots[0];
3321                         } else {
3322                                 BUG();
3323                         }
3324                 } else {
3325                         break;
3326                 }
3327                 if (found_extent && root->ref_cows) {
3328                         btrfs_set_path_blocking(path);
3329                         ret = btrfs_free_extent(trans, root, extent_start,
3330                                                 extent_num_bytes, 0,
3331                                                 btrfs_header_owner(leaf),
3332                                                 inode->i_ino, extent_offset);
3333                         BUG_ON(ret);
3334                 }
3335
3336                 if (found_type == BTRFS_INODE_ITEM_KEY)
3337                         break;
3338
3339                 if (path->slots[0] == 0 ||
3340                     path->slots[0] != pending_del_slot) {
3341                         if (root->ref_cows) {
3342                                 err = -EAGAIN;
3343                                 goto out;
3344                         }
3345                         if (pending_del_nr) {
3346                                 ret = btrfs_del_items(trans, root, path,
3347                                                 pending_del_slot,
3348                                                 pending_del_nr);
3349                                 BUG_ON(ret);
3350                                 pending_del_nr = 0;
3351                         }
3352                         btrfs_release_path(root, path);
3353                         goto search_again;
3354                 } else {
3355                         path->slots[0]--;
3356                 }
3357         }
3358 out:
3359         if (pending_del_nr) {
3360                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3361                                       pending_del_nr);
3362                 BUG_ON(ret);
3363         }
3364         btrfs_free_path(path);
3365         return err;
3366 }
3367
3368 /*
3369  * taken from block_truncate_page, but does cow as it zeros out
3370  * any bytes left in the last page in the file.
3371  */
3372 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3373 {
3374         struct inode *inode = mapping->host;
3375         struct btrfs_root *root = BTRFS_I(inode)->root;
3376         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3377         struct btrfs_ordered_extent *ordered;
3378         struct extent_state *cached_state = NULL;
3379         char *kaddr;
3380         u32 blocksize = root->sectorsize;
3381         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3382         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3383         struct page *page;
3384         int ret = 0;
3385         u64 page_start;
3386         u64 page_end;
3387
3388         if ((offset & (blocksize - 1)) == 0)
3389                 goto out;
3390         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3391         if (ret)
3392                 goto out;
3393
3394         ret = -ENOMEM;
3395 again:
3396         page = grab_cache_page(mapping, index);
3397         if (!page) {
3398                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3399                 goto out;
3400         }
3401
3402         page_start = page_offset(page);
3403         page_end = page_start + PAGE_CACHE_SIZE - 1;
3404
3405         if (!PageUptodate(page)) {
3406                 ret = btrfs_readpage(NULL, page);
3407                 lock_page(page);
3408                 if (page->mapping != mapping) {
3409                         unlock_page(page);
3410                         page_cache_release(page);
3411                         goto again;
3412                 }
3413                 if (!PageUptodate(page)) {
3414                         ret = -EIO;
3415                         goto out_unlock;
3416                 }
3417         }
3418         wait_on_page_writeback(page);
3419
3420         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3421                          GFP_NOFS);
3422         set_page_extent_mapped(page);
3423
3424         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3425         if (ordered) {
3426                 unlock_extent_cached(io_tree, page_start, page_end,
3427                                      &cached_state, GFP_NOFS);
3428                 unlock_page(page);
3429                 page_cache_release(page);
3430                 btrfs_start_ordered_extent(inode, ordered, 1);
3431                 btrfs_put_ordered_extent(ordered);
3432                 goto again;
3433         }
3434
3435         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3436                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3437                           0, 0, &cached_state, GFP_NOFS);
3438
3439         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3440                                         &cached_state);
3441         if (ret) {
3442                 unlock_extent_cached(io_tree, page_start, page_end,
3443                                      &cached_state, GFP_NOFS);
3444                 goto out_unlock;
3445         }
3446
3447         ret = 0;
3448         if (offset != PAGE_CACHE_SIZE) {
3449                 kaddr = kmap(page);
3450                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3451                 flush_dcache_page(page);
3452                 kunmap(page);
3453         }
3454         ClearPageChecked(page);
3455         set_page_dirty(page);
3456         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3457                              GFP_NOFS);
3458
3459 out_unlock:
3460         if (ret)
3461                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3462         unlock_page(page);
3463         page_cache_release(page);
3464 out:
3465         return ret;
3466 }
3467
3468 int btrfs_cont_expand(struct inode *inode, loff_t size)
3469 {
3470         struct btrfs_trans_handle *trans;
3471         struct btrfs_root *root = BTRFS_I(inode)->root;
3472         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3473         struct extent_map *em = NULL;
3474         struct extent_state *cached_state = NULL;
3475         u64 mask = root->sectorsize - 1;
3476         u64 hole_start = (inode->i_size + mask) & ~mask;
3477         u64 block_end = (size + mask) & ~mask;
3478         u64 last_byte;
3479         u64 cur_offset;
3480         u64 hole_size;
3481         int err = 0;
3482
3483         if (size <= hole_start)
3484                 return 0;
3485
3486         while (1) {
3487                 struct btrfs_ordered_extent *ordered;
3488                 btrfs_wait_ordered_range(inode, hole_start,
3489                                          block_end - hole_start);
3490                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3491                                  &cached_state, GFP_NOFS);
3492                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3493                 if (!ordered)
3494                         break;
3495                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3496                                      &cached_state, GFP_NOFS);
3497                 btrfs_put_ordered_extent(ordered);
3498         }
3499
3500         cur_offset = hole_start;
3501         while (1) {
3502                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3503                                 block_end - cur_offset, 0);
3504                 BUG_ON(IS_ERR(em) || !em);
3505                 last_byte = min(extent_map_end(em), block_end);
3506                 last_byte = (last_byte + mask) & ~mask;
3507                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3508                         u64 hint_byte = 0;
3509                         hole_size = last_byte - cur_offset;
3510
3511                         trans = btrfs_start_transaction(root, 2);
3512                         if (IS_ERR(trans)) {
3513                                 err = PTR_ERR(trans);
3514                                 break;
3515                         }
3516                         btrfs_set_trans_block_group(trans, inode);
3517
3518                         err = btrfs_drop_extents(trans, inode, cur_offset,
3519                                                  cur_offset + hole_size,
3520                                                  &hint_byte, 1);
3521                         BUG_ON(err);
3522
3523                         err = btrfs_insert_file_extent(trans, root,
3524                                         inode->i_ino, cur_offset, 0,
3525                                         0, hole_size, 0, hole_size,
3526                                         0, 0, 0);
3527                         BUG_ON(err);
3528
3529                         btrfs_drop_extent_cache(inode, hole_start,
3530                                         last_byte - 1, 0);
3531
3532                         btrfs_end_transaction(trans, root);
3533                 }
3534                 free_extent_map(em);
3535                 em = NULL;
3536                 cur_offset = last_byte;
3537                 if (cur_offset >= block_end)
3538                         break;
3539         }
3540
3541         free_extent_map(em);
3542         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3543                              GFP_NOFS);
3544         return err;
3545 }
3546
3547 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3548 {
3549         struct btrfs_root *root = BTRFS_I(inode)->root;
3550         struct btrfs_trans_handle *trans;
3551         unsigned long nr;
3552         int ret;
3553
3554         if (attr->ia_size == inode->i_size)
3555                 return 0;
3556
3557         if (attr->ia_size > inode->i_size) {
3558                 unsigned long limit;
3559                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3560                 if (attr->ia_size > inode->i_sb->s_maxbytes)
3561                         return -EFBIG;
3562                 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3563                         send_sig(SIGXFSZ, current, 0);
3564                         return -EFBIG;
3565                 }
3566         }
3567
3568         trans = btrfs_start_transaction(root, 5);
3569         if (IS_ERR(trans))
3570                 return PTR_ERR(trans);
3571
3572         btrfs_set_trans_block_group(trans, inode);
3573
3574         ret = btrfs_orphan_add(trans, inode);
3575         BUG_ON(ret);
3576
3577         nr = trans->blocks_used;
3578         btrfs_end_transaction(trans, root);
3579         btrfs_btree_balance_dirty(root, nr);
3580
3581         if (attr->ia_size > inode->i_size) {
3582                 ret = btrfs_cont_expand(inode, attr->ia_size);
3583                 if (ret) {
3584                         btrfs_truncate(inode);
3585                         return ret;
3586                 }
3587
3588                 i_size_write(inode, attr->ia_size);
3589                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3590
3591                 trans = btrfs_start_transaction(root, 0);
3592                 BUG_ON(IS_ERR(trans));
3593                 btrfs_set_trans_block_group(trans, inode);
3594                 trans->block_rsv = root->orphan_block_rsv;
3595                 BUG_ON(!trans->block_rsv);
3596
3597                 ret = btrfs_update_inode(trans, root, inode);
3598                 BUG_ON(ret);
3599                 if (inode->i_nlink > 0) {
3600                         ret = btrfs_orphan_del(trans, inode);
3601                         BUG_ON(ret);
3602                 }
3603                 nr = trans->blocks_used;
3604                 btrfs_end_transaction(trans, root);
3605                 btrfs_btree_balance_dirty(root, nr);
3606                 return 0;
3607         }
3608
3609         /*
3610          * We're truncating a file that used to have good data down to
3611          * zero. Make sure it gets into the ordered flush list so that
3612          * any new writes get down to disk quickly.
3613          */
3614         if (attr->ia_size == 0)
3615                 BTRFS_I(inode)->ordered_data_close = 1;
3616
3617         /* we don't support swapfiles, so vmtruncate shouldn't fail */
3618         ret = vmtruncate(inode, attr->ia_size);
3619         BUG_ON(ret);
3620
3621         return 0;
3622 }
3623
3624 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3625 {
3626         struct inode *inode = dentry->d_inode;
3627         int err;
3628
3629         err = inode_change_ok(inode, attr);
3630         if (err)
3631                 return err;
3632
3633         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3634                 err = btrfs_setattr_size(inode, attr);
3635                 if (err)
3636                         return err;
3637         }
3638         attr->ia_valid &= ~ATTR_SIZE;
3639
3640         if (attr->ia_valid)
3641                 err = inode_setattr(inode, attr);
3642
3643         if (!err && ((attr->ia_valid & ATTR_MODE)))
3644                 err = btrfs_acl_chmod(inode);
3645         return err;
3646 }
3647
3648 void btrfs_delete_inode(struct inode *inode)
3649 {
3650         struct btrfs_trans_handle *trans;
3651         struct btrfs_root *root = BTRFS_I(inode)->root;
3652         unsigned long nr;
3653         int ret;
3654
3655         truncate_inode_pages(&inode->i_data, 0);
3656         if (is_bad_inode(inode)) {
3657                 btrfs_orphan_del(NULL, inode);
3658                 goto no_delete;
3659         }
3660         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3661
3662         if (root->fs_info->log_root_recovering) {
3663                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3664                 goto no_delete;
3665         }
3666
3667         if (inode->i_nlink > 0) {
3668                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3669                 goto no_delete;
3670         }
3671
3672         btrfs_i_size_write(inode, 0);
3673
3674         while (1) {
3675                 trans = btrfs_start_transaction(root, 0);
3676                 BUG_ON(IS_ERR(trans));
3677                 btrfs_set_trans_block_group(trans, inode);
3678                 trans->block_rsv = root->orphan_block_rsv;
3679
3680                 ret = btrfs_block_rsv_check(trans, root,
3681                                             root->orphan_block_rsv, 0, 5);
3682                 if (ret) {
3683                         BUG_ON(ret != -EAGAIN);
3684                         ret = btrfs_commit_transaction(trans, root);
3685                         BUG_ON(ret);
3686                         continue;
3687                 }
3688
3689                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3690                 if (ret != -EAGAIN)
3691                         break;
3692
3693                 nr = trans->blocks_used;
3694                 btrfs_end_transaction(trans, root);
3695                 trans = NULL;
3696                 btrfs_btree_balance_dirty(root, nr);
3697
3698         }
3699
3700         if (ret == 0) {
3701                 ret = btrfs_orphan_del(trans, inode);
3702                 BUG_ON(ret);
3703         }
3704
3705         nr = trans->blocks_used;
3706         btrfs_end_transaction(trans, root);
3707         btrfs_btree_balance_dirty(root, nr);
3708 no_delete:
3709         clear_inode(inode);
3710         return;
3711 }
3712
3713 /*
3714  * this returns the key found in the dir entry in the location pointer.
3715  * If no dir entries were found, location->objectid is 0.
3716  */
3717 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3718                                struct btrfs_key *location)
3719 {
3720         const char *name = dentry->d_name.name;
3721         int namelen = dentry->d_name.len;
3722         struct btrfs_dir_item *di;
3723         struct btrfs_path *path;
3724         struct btrfs_root *root = BTRFS_I(dir)->root;
3725         int ret = 0;
3726
3727         path = btrfs_alloc_path();
3728         BUG_ON(!path);
3729
3730         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3731                                     namelen, 0);
3732         if (IS_ERR(di))
3733                 ret = PTR_ERR(di);
3734
3735         if (!di || IS_ERR(di))
3736                 goto out_err;
3737
3738         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3739 out:
3740         btrfs_free_path(path);
3741         return ret;
3742 out_err:
3743         location->objectid = 0;
3744         goto out;
3745 }
3746
3747 /*
3748  * when we hit a tree root in a directory, the btrfs part of the inode
3749  * needs to be changed to reflect the root directory of the tree root.  This
3750  * is kind of like crossing a mount point.
3751  */
3752 static int fixup_tree_root_location(struct btrfs_root *root,
3753                                     struct inode *dir,
3754                                     struct dentry *dentry,
3755                                     struct btrfs_key *location,
3756                                     struct btrfs_root **sub_root)
3757 {
3758         struct btrfs_path *path;
3759         struct btrfs_root *new_root;
3760         struct btrfs_root_ref *ref;
3761         struct extent_buffer *leaf;
3762         int ret;
3763         int err = 0;
3764
3765         path = btrfs_alloc_path();
3766         if (!path) {
3767                 err = -ENOMEM;
3768                 goto out;
3769         }
3770
3771         err = -ENOENT;
3772         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3773                                   BTRFS_I(dir)->root->root_key.objectid,
3774                                   location->objectid);
3775         if (ret) {
3776                 if (ret < 0)
3777                         err = ret;
3778                 goto out;
3779         }
3780
3781         leaf = path->nodes[0];
3782         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3783         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3784             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3785                 goto out;
3786
3787         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3788                                    (unsigned long)(ref + 1),
3789                                    dentry->d_name.len);
3790         if (ret)
3791                 goto out;
3792
3793         btrfs_release_path(root->fs_info->tree_root, path);
3794
3795         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3796         if (IS_ERR(new_root)) {
3797                 err = PTR_ERR(new_root);
3798                 goto out;
3799         }
3800
3801         if (btrfs_root_refs(&new_root->root_item) == 0) {
3802                 err = -ENOENT;
3803                 goto out;
3804         }
3805
3806         *sub_root = new_root;
3807         location->objectid = btrfs_root_dirid(&new_root->root_item);
3808         location->type = BTRFS_INODE_ITEM_KEY;
3809         location->offset = 0;
3810         err = 0;
3811 out:
3812         btrfs_free_path(path);
3813         return err;
3814 }
3815
3816 static void inode_tree_add(struct inode *inode)
3817 {
3818         struct btrfs_root *root = BTRFS_I(inode)->root;
3819         struct btrfs_inode *entry;
3820         struct rb_node **p;
3821         struct rb_node *parent;
3822 again:
3823         p = &root->inode_tree.rb_node;
3824         parent = NULL;
3825
3826         if (hlist_unhashed(&inode->i_hash))
3827                 return;
3828
3829         spin_lock(&root->inode_lock);
3830         while (*p) {
3831                 parent = *p;
3832                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3833
3834                 if (inode->i_ino < entry->vfs_inode.i_ino)
3835                         p = &parent->rb_left;
3836                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3837                         p = &parent->rb_right;
3838                 else {
3839                         WARN_ON(!(entry->vfs_inode.i_state &
3840                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3841                         rb_erase(parent, &root->inode_tree);
3842                         RB_CLEAR_NODE(parent);
3843                         spin_unlock(&root->inode_lock);
3844                         goto again;
3845                 }
3846         }
3847         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3848         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3849         spin_unlock(&root->inode_lock);
3850 }
3851
3852 static void inode_tree_del(struct inode *inode)
3853 {
3854         struct btrfs_root *root = BTRFS_I(inode)->root;
3855         int empty = 0;
3856
3857         spin_lock(&root->inode_lock);
3858         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3859                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3860                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3861                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3862         }
3863         spin_unlock(&root->inode_lock);
3864
3865         if (empty && btrfs_root_refs(&root->root_item) == 0) {
3866                 synchronize_srcu(&root->fs_info->subvol_srcu);
3867                 spin_lock(&root->inode_lock);
3868                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3869                 spin_unlock(&root->inode_lock);
3870                 if (empty)
3871                         btrfs_add_dead_root(root);
3872         }
3873 }
3874
3875 int btrfs_invalidate_inodes(struct btrfs_root *root)
3876 {
3877         struct rb_node *node;
3878         struct rb_node *prev;
3879         struct btrfs_inode *entry;
3880         struct inode *inode;
3881         u64 objectid = 0;
3882
3883         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3884
3885         spin_lock(&root->inode_lock);
3886 again:
3887         node = root->inode_tree.rb_node;
3888         prev = NULL;
3889         while (node) {
3890                 prev = node;
3891                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3892
3893                 if (objectid < entry->vfs_inode.i_ino)
3894                         node = node->rb_left;
3895                 else if (objectid > entry->vfs_inode.i_ino)
3896                         node = node->rb_right;
3897                 else
3898                         break;
3899         }
3900         if (!node) {
3901                 while (prev) {
3902                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3903                         if (objectid <= entry->vfs_inode.i_ino) {
3904                                 node = prev;
3905                                 break;
3906                         }
3907                         prev = rb_next(prev);
3908                 }
3909         }
3910         while (node) {
3911                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3912                 objectid = entry->vfs_inode.i_ino + 1;
3913                 inode = igrab(&entry->vfs_inode);
3914                 if (inode) {
3915                         spin_unlock(&root->inode_lock);
3916                         if (atomic_read(&inode->i_count) > 1)
3917                                 d_prune_aliases(inode);
3918                         /*
3919                          * btrfs_drop_inode will remove it from
3920                          * the inode cache when its usage count
3921                          * hits zero.
3922                          */
3923                         iput(inode);
3924                         cond_resched();
3925                         spin_lock(&root->inode_lock);
3926                         goto again;
3927                 }
3928
3929                 if (cond_resched_lock(&root->inode_lock))
3930                         goto again;
3931
3932                 node = rb_next(node);
3933         }
3934         spin_unlock(&root->inode_lock);
3935         return 0;
3936 }
3937
3938 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3939 {
3940         struct btrfs_iget_args *args = p;
3941         inode->i_ino = args->ino;
3942         BTRFS_I(inode)->root = args->root;
3943         btrfs_set_inode_space_info(args->root, inode);
3944         return 0;
3945 }
3946
3947 static int btrfs_find_actor(struct inode *inode, void *opaque)
3948 {
3949         struct btrfs_iget_args *args = opaque;
3950         return args->ino == inode->i_ino &&
3951                 args->root == BTRFS_I(inode)->root;
3952 }
3953
3954 static struct inode *btrfs_iget_locked(struct super_block *s,
3955                                        u64 objectid,
3956                                        struct btrfs_root *root)
3957 {
3958         struct inode *inode;
3959         struct btrfs_iget_args args;
3960         args.ino = objectid;
3961         args.root = root;
3962
3963         inode = iget5_locked(s, objectid, btrfs_find_actor,
3964                              btrfs_init_locked_inode,
3965                              (void *)&args);
3966         return inode;
3967 }
3968
3969 /* Get an inode object given its location and corresponding root.
3970  * Returns in *is_new if the inode was read from disk
3971  */
3972 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3973                          struct btrfs_root *root, int *new)
3974 {
3975         struct inode *inode;
3976
3977         inode = btrfs_iget_locked(s, location->objectid, root);
3978         if (!inode)
3979                 return ERR_PTR(-ENOMEM);
3980
3981         if (inode->i_state & I_NEW) {
3982                 BTRFS_I(inode)->root = root;
3983                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3984                 btrfs_read_locked_inode(inode);
3985
3986                 inode_tree_add(inode);
3987                 unlock_new_inode(inode);
3988                 if (new)
3989                         *new = 1;
3990         }
3991
3992         return inode;
3993 }
3994
3995 static struct inode *new_simple_dir(struct super_block *s,
3996                                     struct btrfs_key *key,
3997                                     struct btrfs_root *root)
3998 {
3999         struct inode *inode = new_inode(s);
4000
4001         if (!inode)
4002                 return ERR_PTR(-ENOMEM);
4003
4004         BTRFS_I(inode)->root = root;
4005         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4006         BTRFS_I(inode)->dummy_inode = 1;
4007
4008         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4009         inode->i_op = &simple_dir_inode_operations;
4010         inode->i_fop = &simple_dir_operations;
4011         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4012         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4013
4014         return inode;
4015 }
4016
4017 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4018 {
4019         struct inode *inode;
4020         struct btrfs_root *root = BTRFS_I(dir)->root;
4021         struct btrfs_root *sub_root = root;
4022         struct btrfs_key location;
4023         int index;
4024         int ret;
4025
4026         dentry->d_op = &btrfs_dentry_operations;
4027
4028         if (dentry->d_name.len > BTRFS_NAME_LEN)
4029                 return ERR_PTR(-ENAMETOOLONG);
4030
4031         ret = btrfs_inode_by_name(dir, dentry, &location);
4032
4033         if (ret < 0)
4034                 return ERR_PTR(ret);
4035
4036         if (location.objectid == 0)
4037                 return NULL;
4038
4039         if (location.type == BTRFS_INODE_ITEM_KEY) {
4040                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4041                 return inode;
4042         }
4043
4044         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4045
4046         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4047         ret = fixup_tree_root_location(root, dir, dentry,
4048                                        &location, &sub_root);
4049         if (ret < 0) {
4050                 if (ret != -ENOENT)
4051                         inode = ERR_PTR(ret);
4052                 else
4053                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4054         } else {
4055                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4056         }
4057         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4058
4059         if (root != sub_root) {
4060                 down_read(&root->fs_info->cleanup_work_sem);
4061                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4062                         btrfs_orphan_cleanup(sub_root);
4063                 up_read(&root->fs_info->cleanup_work_sem);
4064         }
4065
4066         return inode;
4067 }
4068
4069 static int btrfs_dentry_delete(struct dentry *dentry)
4070 {
4071         struct btrfs_root *root;
4072
4073         if (!dentry->d_inode && !IS_ROOT(dentry))
4074                 dentry = dentry->d_parent;
4075
4076         if (dentry->d_inode) {
4077                 root = BTRFS_I(dentry->d_inode)->root;
4078                 if (btrfs_root_refs(&root->root_item) == 0)
4079                         return 1;
4080         }
4081         return 0;
4082 }
4083
4084 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4085                                    struct nameidata *nd)
4086 {
4087         struct inode *inode;
4088
4089         inode = btrfs_lookup_dentry(dir, dentry);
4090         if (IS_ERR(inode))
4091                 return ERR_CAST(inode);
4092
4093         return d_splice_alias(inode, dentry);
4094 }
4095
4096 static unsigned char btrfs_filetype_table[] = {
4097         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4098 };
4099
4100 static int btrfs_real_readdir(struct file *filp, void *dirent,
4101                               filldir_t filldir)
4102 {
4103         struct inode *inode = filp->f_dentry->d_inode;
4104         struct btrfs_root *root = BTRFS_I(inode)->root;
4105         struct btrfs_item *item;
4106         struct btrfs_dir_item *di;
4107         struct btrfs_key key;
4108         struct btrfs_key found_key;
4109         struct btrfs_path *path;
4110         int ret;
4111         u32 nritems;
4112         struct extent_buffer *leaf;
4113         int slot;
4114         int advance;
4115         unsigned char d_type;
4116         int over = 0;
4117         u32 di_cur;
4118         u32 di_total;
4119         u32 di_len;
4120         int key_type = BTRFS_DIR_INDEX_KEY;
4121         char tmp_name[32];
4122         char *name_ptr;
4123         int name_len;
4124
4125         /* FIXME, use a real flag for deciding about the key type */
4126         if (root->fs_info->tree_root == root)
4127                 key_type = BTRFS_DIR_ITEM_KEY;
4128
4129         /* special case for "." */
4130         if (filp->f_pos == 0) {
4131                 over = filldir(dirent, ".", 1,
4132                                1, inode->i_ino,
4133                                DT_DIR);
4134                 if (over)
4135                         return 0;
4136                 filp->f_pos = 1;
4137         }
4138         /* special case for .., just use the back ref */
4139         if (filp->f_pos == 1) {
4140                 u64 pino = parent_ino(filp->f_path.dentry);
4141                 over = filldir(dirent, "..", 2,
4142                                2, pino, DT_DIR);
4143                 if (over)
4144                         return 0;
4145                 filp->f_pos = 2;
4146         }
4147         path = btrfs_alloc_path();
4148         path->reada = 2;
4149
4150         btrfs_set_key_type(&key, key_type);
4151         key.offset = filp->f_pos;
4152         key.objectid = inode->i_ino;
4153
4154         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4155         if (ret < 0)
4156                 goto err;
4157         advance = 0;
4158
4159         while (1) {
4160                 leaf = path->nodes[0];
4161                 nritems = btrfs_header_nritems(leaf);
4162                 slot = path->slots[0];
4163                 if (advance || slot >= nritems) {
4164                         if (slot >= nritems - 1) {
4165                                 ret = btrfs_next_leaf(root, path);
4166                                 if (ret)
4167                                         break;
4168                                 leaf = path->nodes[0];
4169                                 nritems = btrfs_header_nritems(leaf);
4170                                 slot = path->slots[0];
4171                         } else {
4172                                 slot++;
4173                                 path->slots[0]++;
4174                         }
4175                 }
4176
4177                 advance = 1;
4178                 item = btrfs_item_nr(leaf, slot);
4179                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4180
4181                 if (found_key.objectid != key.objectid)
4182                         break;
4183                 if (btrfs_key_type(&found_key) != key_type)
4184                         break;
4185                 if (found_key.offset < filp->f_pos)
4186                         continue;
4187
4188                 filp->f_pos = found_key.offset;
4189
4190                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4191                 di_cur = 0;
4192                 di_total = btrfs_item_size(leaf, item);
4193
4194                 while (di_cur < di_total) {
4195                         struct btrfs_key location;
4196
4197                         name_len = btrfs_dir_name_len(leaf, di);
4198                         if (name_len <= sizeof(tmp_name)) {
4199                                 name_ptr = tmp_name;
4200                         } else {
4201                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4202                                 if (!name_ptr) {
4203                                         ret = -ENOMEM;
4204                                         goto err;
4205                                 }
4206                         }
4207                         read_extent_buffer(leaf, name_ptr,
4208                                            (unsigned long)(di + 1), name_len);
4209
4210                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4211                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4212
4213                         /* is this a reference to our own snapshot? If so
4214                          * skip it
4215                          */
4216                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4217                             location.objectid == root->root_key.objectid) {
4218                                 over = 0;
4219                                 goto skip;
4220                         }
4221                         over = filldir(dirent, name_ptr, name_len,
4222                                        found_key.offset, location.objectid,
4223                                        d_type);
4224
4225 skip:
4226                         if (name_ptr != tmp_name)
4227                                 kfree(name_ptr);
4228
4229                         if (over)
4230                                 goto nopos;
4231                         di_len = btrfs_dir_name_len(leaf, di) +
4232                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4233                         di_cur += di_len;
4234                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4235                 }
4236         }
4237
4238         /* Reached end of directory/root. Bump pos past the last item. */
4239         if (key_type == BTRFS_DIR_INDEX_KEY)
4240                 /*
4241                  * 32-bit glibc will use getdents64, but then strtol -
4242                  * so the last number we can serve is this.
4243                  */
4244                 filp->f_pos = 0x7fffffff;
4245         else
4246                 filp->f_pos++;
4247 nopos:
4248         ret = 0;
4249 err:
4250         btrfs_free_path(path);
4251         return ret;
4252 }
4253
4254 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4255 {
4256         struct btrfs_root *root = BTRFS_I(inode)->root;
4257         struct btrfs_trans_handle *trans;
4258         int ret = 0;
4259
4260         if (BTRFS_I(inode)->dummy_inode)
4261                 return 0;
4262
4263         if (wbc->sync_mode == WB_SYNC_ALL) {
4264                 trans = btrfs_join_transaction(root, 1);
4265                 btrfs_set_trans_block_group(trans, inode);
4266                 ret = btrfs_commit_transaction(trans, root);
4267         }
4268         return ret;
4269 }
4270
4271 /*
4272  * This is somewhat expensive, updating the tree every time the
4273  * inode changes.  But, it is most likely to find the inode in cache.
4274  * FIXME, needs more benchmarking...there are no reasons other than performance
4275  * to keep or drop this code.
4276  */
4277 void btrfs_dirty_inode(struct inode *inode)
4278 {
4279         struct btrfs_root *root = BTRFS_I(inode)->root;
4280         struct btrfs_trans_handle *trans;
4281         int ret;
4282
4283         if (BTRFS_I(inode)->dummy_inode)
4284                 return;
4285
4286         trans = btrfs_join_transaction(root, 1);
4287         btrfs_set_trans_block_group(trans, inode);
4288
4289         ret = btrfs_update_inode(trans, root, inode);
4290         if (ret)
4291                 printk(KERN_ERR"btrfs: fail to dirty inode %lu error %d\n",
4292                         inode->i_ino, ret);
4293
4294         btrfs_end_transaction(trans, root);
4295 }
4296
4297 /*
4298  * find the highest existing sequence number in a directory
4299  * and then set the in-memory index_cnt variable to reflect
4300  * free sequence numbers
4301  */
4302 static int btrfs_set_inode_index_count(struct inode *inode)
4303 {
4304         struct btrfs_root *root = BTRFS_I(inode)->root;
4305         struct btrfs_key key, found_key;
4306         struct btrfs_path *path;
4307         struct extent_buffer *leaf;
4308         int ret;
4309
4310         key.objectid = inode->i_ino;
4311         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4312         key.offset = (u64)-1;
4313
4314         path = btrfs_alloc_path();
4315         if (!path)
4316                 return -ENOMEM;
4317
4318         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4319         if (ret < 0)
4320                 goto out;
4321         /* FIXME: we should be able to handle this */
4322         if (ret == 0)
4323                 goto out;
4324         ret = 0;
4325
4326         /*
4327          * MAGIC NUMBER EXPLANATION:
4328          * since we search a directory based on f_pos we have to start at 2
4329          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4330          * else has to start at 2
4331          */
4332         if (path->slots[0] == 0) {
4333                 BTRFS_I(inode)->index_cnt = 2;
4334                 goto out;
4335         }
4336
4337         path->slots[0]--;
4338
4339         leaf = path->nodes[0];
4340         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4341
4342         if (found_key.objectid != inode->i_ino ||
4343             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4344                 BTRFS_I(inode)->index_cnt = 2;
4345                 goto out;
4346         }
4347
4348         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4349 out:
4350         btrfs_free_path(path);
4351         return ret;
4352 }
4353
4354 /*
4355  * helper to find a free sequence number in a given directory.  This current
4356  * code is very simple, later versions will do smarter things in the btree
4357  */
4358 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4359 {
4360         int ret = 0;
4361
4362         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4363                 ret = btrfs_set_inode_index_count(dir);
4364                 if (ret)
4365                         return ret;
4366         }
4367
4368         *index = BTRFS_I(dir)->index_cnt;
4369         BTRFS_I(dir)->index_cnt++;
4370
4371         return ret;
4372 }
4373
4374 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4375                                      struct btrfs_root *root,
4376                                      struct inode *dir,
4377                                      const char *name, int name_len,
4378                                      u64 ref_objectid, u64 objectid,
4379                                      u64 alloc_hint, int mode, u64 *index)
4380 {
4381         struct inode *inode;
4382         struct btrfs_inode_item *inode_item;
4383         struct btrfs_key *location;
4384         struct btrfs_path *path;
4385         struct btrfs_inode_ref *ref;
4386         struct btrfs_key key[2];
4387         u32 sizes[2];
4388         unsigned long ptr;
4389         int ret;
4390         int owner;
4391
4392         path = btrfs_alloc_path();
4393         BUG_ON(!path);
4394
4395         inode = new_inode(root->fs_info->sb);
4396         if (!inode)
4397                 return ERR_PTR(-ENOMEM);
4398
4399         if (dir) {
4400                 ret = btrfs_set_inode_index(dir, index);
4401                 if (ret) {
4402                         iput(inode);
4403                         return ERR_PTR(ret);
4404                 }
4405         }
4406         /*
4407          * index_cnt is ignored for everything but a dir,
4408          * btrfs_get_inode_index_count has an explanation for the magic
4409          * number
4410          */
4411         BTRFS_I(inode)->index_cnt = 2;
4412         BTRFS_I(inode)->root = root;
4413         BTRFS_I(inode)->generation = trans->transid;
4414         btrfs_set_inode_space_info(root, inode);
4415
4416         if (mode & S_IFDIR)
4417                 owner = 0;
4418         else
4419                 owner = 1;
4420         BTRFS_I(inode)->block_group =
4421                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4422
4423         key[0].objectid = objectid;
4424         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4425         key[0].offset = 0;
4426
4427         key[1].objectid = objectid;
4428         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4429         key[1].offset = ref_objectid;
4430
4431         sizes[0] = sizeof(struct btrfs_inode_item);
4432         sizes[1] = name_len + sizeof(*ref);
4433
4434         path->leave_spinning = 1;
4435         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4436         if (ret != 0)
4437                 goto fail;
4438
4439         inode->i_uid = current_fsuid();
4440
4441         if (dir && (dir->i_mode & S_ISGID)) {
4442                 inode->i_gid = dir->i_gid;
4443                 if (S_ISDIR(mode))
4444                         mode |= S_ISGID;
4445         } else
4446                 inode->i_gid = current_fsgid();
4447
4448         inode->i_mode = mode;
4449         inode->i_ino = objectid;
4450         inode_set_bytes(inode, 0);
4451         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4452         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4453                                   struct btrfs_inode_item);
4454         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4455
4456         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4457                              struct btrfs_inode_ref);
4458         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4459         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4460         ptr = (unsigned long)(ref + 1);
4461         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4462
4463         btrfs_mark_buffer_dirty(path->nodes[0]);
4464         btrfs_free_path(path);
4465
4466         location = &BTRFS_I(inode)->location;
4467         location->objectid = objectid;
4468         location->offset = 0;
4469         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4470
4471         btrfs_inherit_iflags(inode, dir);
4472
4473         if ((mode & S_IFREG)) {
4474                 if (btrfs_test_opt(root, NODATASUM))
4475                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4476                 if (btrfs_test_opt(root, NODATACOW))
4477                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4478         }
4479
4480         insert_inode_hash(inode);
4481         inode_tree_add(inode);
4482         return inode;
4483 fail:
4484         if (dir)
4485                 BTRFS_I(dir)->index_cnt--;
4486         btrfs_free_path(path);
4487         iput(inode);
4488         return ERR_PTR(ret);
4489 }
4490
4491 static inline u8 btrfs_inode_type(struct inode *inode)
4492 {
4493         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4494 }
4495
4496 /*
4497  * utility function to add 'inode' into 'parent_inode' with
4498  * a give name and a given sequence number.
4499  * if 'add_backref' is true, also insert a backref from the
4500  * inode to the parent directory.
4501  */
4502 int btrfs_add_link(struct btrfs_trans_handle *trans,
4503                    struct inode *parent_inode, struct inode *inode,
4504                    const char *name, int name_len, int add_backref, u64 index)
4505 {
4506         int ret = 0;
4507         struct btrfs_key key;
4508         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4509
4510         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4511                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4512         } else {
4513                 key.objectid = inode->i_ino;
4514                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4515                 key.offset = 0;
4516         }
4517
4518         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4519                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4520                                          key.objectid, root->root_key.objectid,
4521                                          parent_inode->i_ino,
4522                                          index, name, name_len);
4523         } else if (add_backref) {
4524                 ret = btrfs_insert_inode_ref(trans, root,
4525                                              name, name_len, inode->i_ino,
4526                                              parent_inode->i_ino, index);
4527         }
4528
4529         if (ret == 0) {
4530                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4531                                             parent_inode->i_ino, &key,
4532                                             btrfs_inode_type(inode), index);
4533                 BUG_ON(ret);
4534
4535                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4536                                    name_len * 2);
4537                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4538                 ret = btrfs_update_inode(trans, root, parent_inode);
4539         }
4540         return ret;
4541 }
4542
4543 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4544                             struct dentry *dentry, struct inode *inode,
4545                             int backref, u64 index)
4546 {
4547         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4548                                  inode, dentry->d_name.name,
4549                                  dentry->d_name.len, backref, index);
4550         if (!err) {
4551                 d_instantiate(dentry, inode);
4552                 return 0;
4553         }
4554         if (err > 0)
4555                 err = -EEXIST;
4556         return err;
4557 }
4558
4559 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4560                         int mode, dev_t rdev)
4561 {
4562         struct btrfs_trans_handle *trans;
4563         struct btrfs_root *root = BTRFS_I(dir)->root;
4564         struct inode *inode = NULL;
4565         int err;
4566         int drop_inode = 0;
4567         u64 objectid;
4568         unsigned long nr = 0;
4569         u64 index = 0;
4570
4571         if (!new_valid_dev(rdev))
4572                 return -EINVAL;
4573
4574         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4575         if (err)
4576                 return err;
4577
4578         /*
4579          * 2 for inode item and ref
4580          * 2 for dir items
4581          * 1 for xattr if selinux is on
4582          */
4583         trans = btrfs_start_transaction(root, 5);
4584         if (IS_ERR(trans))
4585                 return PTR_ERR(trans);
4586
4587         btrfs_set_trans_block_group(trans, dir);
4588
4589         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4590                                 dentry->d_name.len,
4591                                 dentry->d_parent->d_inode->i_ino, objectid,
4592                                 BTRFS_I(dir)->block_group, mode, &index);
4593         err = PTR_ERR(inode);
4594         if (IS_ERR(inode))
4595                 goto out_unlock;
4596
4597         err = btrfs_init_inode_security(trans, inode, dir);
4598         if (err) {
4599                 drop_inode = 1;
4600                 goto out_unlock;
4601         }
4602
4603         btrfs_set_trans_block_group(trans, inode);
4604         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4605         if (err)
4606                 drop_inode = 1;
4607         else {
4608                 inode->i_op = &btrfs_special_inode_operations;
4609                 init_special_inode(inode, inode->i_mode, rdev);
4610                 btrfs_update_inode(trans, root, inode);
4611         }
4612         btrfs_update_inode_block_group(trans, inode);
4613         btrfs_update_inode_block_group(trans, dir);
4614 out_unlock:
4615         nr = trans->blocks_used;
4616         btrfs_end_transaction_throttle(trans, root);
4617         btrfs_btree_balance_dirty(root, nr);
4618         if (drop_inode) {
4619                 inode_dec_link_count(inode);
4620                 iput(inode);
4621         }
4622         return err;
4623 }
4624
4625 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4626                         int mode, struct nameidata *nd)
4627 {
4628         struct btrfs_trans_handle *trans;
4629         struct btrfs_root *root = BTRFS_I(dir)->root;
4630         struct inode *inode = NULL;
4631         int drop_inode = 0;
4632         int err;
4633         unsigned long nr = 0;
4634         u64 objectid;
4635         u64 index = 0;
4636
4637         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4638         if (err)
4639                 return err;
4640         /*
4641          * 2 for inode item and ref
4642          * 2 for dir items
4643          * 1 for xattr if selinux is on
4644          */
4645         trans = btrfs_start_transaction(root, 5);
4646         if (IS_ERR(trans))
4647                 return PTR_ERR(trans);
4648
4649         btrfs_set_trans_block_group(trans, dir);
4650
4651         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4652                                 dentry->d_name.len,
4653                                 dentry->d_parent->d_inode->i_ino,
4654                                 objectid, BTRFS_I(dir)->block_group, mode,
4655                                 &index);
4656         err = PTR_ERR(inode);
4657         if (IS_ERR(inode))
4658                 goto out_unlock;
4659
4660         err = btrfs_init_inode_security(trans, inode, dir);
4661         if (err) {
4662                 drop_inode = 1;
4663                 goto out_unlock;
4664         }
4665
4666         btrfs_set_trans_block_group(trans, inode);
4667         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4668         if (err)
4669                 drop_inode = 1;
4670         else {
4671                 inode->i_mapping->a_ops = &btrfs_aops;
4672                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4673                 inode->i_fop = &btrfs_file_operations;
4674                 inode->i_op = &btrfs_file_inode_operations;
4675                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4676         }
4677         btrfs_update_inode_block_group(trans, inode);
4678         btrfs_update_inode_block_group(trans, dir);
4679 out_unlock:
4680         nr = trans->blocks_used;
4681         btrfs_end_transaction_throttle(trans, root);
4682         if (drop_inode) {
4683                 inode_dec_link_count(inode);
4684                 iput(inode);
4685         }
4686         btrfs_btree_balance_dirty(root, nr);
4687         return err;
4688 }
4689
4690 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4691                       struct dentry *dentry)
4692 {
4693         struct btrfs_trans_handle *trans;
4694         struct btrfs_root *root = BTRFS_I(dir)->root;
4695         struct inode *inode = old_dentry->d_inode;
4696         u64 index;
4697         unsigned long nr = 0;
4698         int err;
4699         int drop_inode = 0;
4700
4701         if (inode->i_nlink == 0)
4702                 return -ENOENT;
4703
4704         /* do not allow sys_link's with other subvols of the same device */
4705         if (root->objectid != BTRFS_I(inode)->root->objectid)
4706                 return -EPERM;
4707
4708         btrfs_inc_nlink(inode);
4709
4710         err = btrfs_set_inode_index(dir, &index);
4711         if (err)
4712                 goto fail;
4713
4714         /*
4715          * 1 item for inode ref
4716          * 2 items for dir items
4717          */
4718         trans = btrfs_start_transaction(root, 3);
4719         if (IS_ERR(trans)) {
4720                 err = PTR_ERR(trans);
4721                 goto fail;
4722         }
4723
4724         btrfs_set_trans_block_group(trans, dir);
4725         atomic_inc(&inode->i_count);
4726
4727         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4728
4729         if (err) {
4730                 drop_inode = 1;
4731         } else {
4732                 btrfs_update_inode_block_group(trans, dir);
4733                 err = btrfs_update_inode(trans, root, inode);
4734                 BUG_ON(err);
4735                 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4736         }
4737
4738         nr = trans->blocks_used;
4739         btrfs_end_transaction_throttle(trans, root);
4740 fail:
4741         if (drop_inode) {
4742                 inode_dec_link_count(inode);
4743                 iput(inode);
4744         }
4745         btrfs_btree_balance_dirty(root, nr);
4746         return err;
4747 }
4748
4749 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4750 {
4751         struct inode *inode = NULL;
4752         struct btrfs_trans_handle *trans;
4753         struct btrfs_root *root = BTRFS_I(dir)->root;
4754         int err = 0;
4755         int drop_on_err = 0;
4756         u64 objectid = 0;
4757         u64 index = 0;
4758         unsigned long nr = 1;
4759
4760         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4761         if (err)
4762                 return err;
4763
4764         /*
4765          * 2 items for inode and ref
4766          * 2 items for dir items
4767          * 1 for xattr if selinux is on
4768          */
4769         trans = btrfs_start_transaction(root, 5);
4770         if (IS_ERR(trans))
4771                 return PTR_ERR(trans);
4772         btrfs_set_trans_block_group(trans, dir);
4773
4774         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4775                                 dentry->d_name.len,
4776                                 dentry->d_parent->d_inode->i_ino, objectid,
4777                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4778                                 &index);
4779         if (IS_ERR(inode)) {
4780                 err = PTR_ERR(inode);
4781                 goto out_fail;
4782         }
4783
4784         drop_on_err = 1;
4785
4786         err = btrfs_init_inode_security(trans, inode, dir);
4787         if (err)
4788                 goto out_fail;
4789
4790         inode->i_op = &btrfs_dir_inode_operations;
4791         inode->i_fop = &btrfs_dir_file_operations;
4792         btrfs_set_trans_block_group(trans, inode);
4793
4794         btrfs_i_size_write(inode, 0);
4795         err = btrfs_update_inode(trans, root, inode);
4796         if (err)
4797                 goto out_fail;
4798
4799         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4800                                  inode, dentry->d_name.name,
4801                                  dentry->d_name.len, 0, index);
4802         if (err)
4803                 goto out_fail;
4804
4805         d_instantiate(dentry, inode);
4806         drop_on_err = 0;
4807         btrfs_update_inode_block_group(trans, inode);
4808         btrfs_update_inode_block_group(trans, dir);
4809
4810 out_fail:
4811         nr = trans->blocks_used;
4812         btrfs_end_transaction_throttle(trans, root);
4813         if (drop_on_err)
4814                 iput(inode);
4815         btrfs_btree_balance_dirty(root, nr);
4816         return err;
4817 }
4818
4819 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4820  * and an extent that you want to insert, deal with overlap and insert
4821  * the new extent into the tree.
4822  */
4823 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4824                                 struct extent_map *existing,
4825                                 struct extent_map *em,
4826                                 u64 map_start, u64 map_len)
4827 {
4828         u64 start_diff;
4829
4830         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4831         start_diff = map_start - em->start;
4832         em->start = map_start;
4833         em->len = map_len;
4834         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4835             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4836                 em->block_start += start_diff;
4837                 em->block_len -= start_diff;
4838         }
4839         return add_extent_mapping(em_tree, em);
4840 }
4841
4842 static noinline int uncompress_inline(struct btrfs_path *path,
4843                                       struct inode *inode, struct page *page,
4844                                       size_t pg_offset, u64 extent_offset,
4845                                       struct btrfs_file_extent_item *item)
4846 {
4847         int ret;
4848         struct extent_buffer *leaf = path->nodes[0];
4849         char *tmp;
4850         size_t max_size;
4851         unsigned long inline_size;
4852         unsigned long ptr;
4853
4854         WARN_ON(pg_offset != 0);
4855         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4856         inline_size = btrfs_file_extent_inline_item_len(leaf,
4857                                         btrfs_item_nr(leaf, path->slots[0]));
4858         tmp = kmalloc(inline_size, GFP_NOFS);
4859         ptr = btrfs_file_extent_inline_start(item);
4860
4861         read_extent_buffer(leaf, tmp, ptr, inline_size);
4862
4863         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4864         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4865                                     inline_size, max_size);
4866         if (ret) {
4867                 char *kaddr = kmap_atomic(page, KM_USER0);
4868                 unsigned long copy_size = min_t(u64,
4869                                   PAGE_CACHE_SIZE - pg_offset,
4870                                   max_size - extent_offset);
4871                 memset(kaddr + pg_offset, 0, copy_size);
4872                 kunmap_atomic(kaddr, KM_USER0);
4873         }
4874         kfree(tmp);
4875         return 0;
4876 }
4877
4878 /*
4879  * a bit scary, this does extent mapping from logical file offset to the disk.
4880  * the ugly parts come from merging extents from the disk with the in-ram
4881  * representation.  This gets more complex because of the data=ordered code,
4882  * where the in-ram extents might be locked pending data=ordered completion.
4883  *
4884  * This also copies inline extents directly into the page.
4885  */
4886
4887 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4888                                     size_t pg_offset, u64 start, u64 len,
4889                                     int create)
4890 {
4891         int ret;
4892         int err = 0;
4893         u64 bytenr;
4894         u64 extent_start = 0;
4895         u64 extent_end = 0;
4896         u64 objectid = inode->i_ino;
4897         u32 found_type;
4898         struct btrfs_path *path = NULL;
4899         struct btrfs_root *root = BTRFS_I(inode)->root;
4900         struct btrfs_file_extent_item *item;
4901         struct extent_buffer *leaf;
4902         struct btrfs_key found_key;
4903         struct extent_map *em = NULL;
4904         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4905         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4906         struct btrfs_trans_handle *trans = NULL;
4907         int compressed;
4908
4909 again:
4910         read_lock(&em_tree->lock);
4911         em = lookup_extent_mapping(em_tree, start, len);
4912         if (em)
4913                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4914         read_unlock(&em_tree->lock);
4915
4916         if (em) {
4917                 if (em->start > start || em->start + em->len <= start)
4918                         free_extent_map(em);
4919                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4920                         free_extent_map(em);
4921                 else
4922                         goto out;
4923         }
4924         em = alloc_extent_map(GFP_NOFS);
4925         if (!em) {
4926                 err = -ENOMEM;
4927                 goto out;
4928         }
4929         em->bdev = root->fs_info->fs_devices->latest_bdev;
4930         em->start = EXTENT_MAP_HOLE;
4931         em->orig_start = EXTENT_MAP_HOLE;
4932         em->len = (u64)-1;
4933         em->block_len = (u64)-1;
4934
4935         if (!path) {
4936                 path = btrfs_alloc_path();
4937                 BUG_ON(!path);
4938         }
4939
4940         ret = btrfs_lookup_file_extent(trans, root, path,
4941                                        objectid, start, trans != NULL);
4942         if (ret < 0) {
4943                 err = ret;
4944                 goto out;
4945         }
4946
4947         if (ret != 0) {
4948                 if (path->slots[0] == 0)
4949                         goto not_found;
4950                 path->slots[0]--;
4951         }
4952
4953         leaf = path->nodes[0];
4954         item = btrfs_item_ptr(leaf, path->slots[0],
4955                               struct btrfs_file_extent_item);
4956         /* are we inside the extent that was found? */
4957         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4958         found_type = btrfs_key_type(&found_key);
4959         if (found_key.objectid != objectid ||
4960             found_type != BTRFS_EXTENT_DATA_KEY) {
4961                 goto not_found;
4962         }
4963
4964         found_type = btrfs_file_extent_type(leaf, item);
4965         extent_start = found_key.offset;
4966         compressed = btrfs_file_extent_compression(leaf, item);
4967         if (found_type == BTRFS_FILE_EXTENT_REG ||
4968             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4969                 extent_end = extent_start +
4970                        btrfs_file_extent_num_bytes(leaf, item);
4971         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4972                 size_t size;
4973                 size = btrfs_file_extent_inline_len(leaf, item);
4974                 extent_end = (extent_start + size + root->sectorsize - 1) &
4975                         ~((u64)root->sectorsize - 1);
4976         }
4977
4978         if (start >= extent_end) {
4979                 path->slots[0]++;
4980                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4981                         ret = btrfs_next_leaf(root, path);
4982                         if (ret < 0) {
4983                                 err = ret;
4984                                 goto out;
4985                         }
4986                         if (ret > 0)
4987                                 goto not_found;
4988                         leaf = path->nodes[0];
4989                 }
4990                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4991                 if (found_key.objectid != objectid ||
4992                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4993                         goto not_found;
4994                 if (start + len <= found_key.offset)
4995                         goto not_found;
4996                 em->start = start;
4997                 em->len = found_key.offset - start;
4998                 goto not_found_em;
4999         }
5000
5001         if (found_type == BTRFS_FILE_EXTENT_REG ||
5002             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5003                 em->start = extent_start;
5004                 em->len = extent_end - extent_start;
5005                 em->orig_start = extent_start -
5006                                  btrfs_file_extent_offset(leaf, item);
5007                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5008                 if (bytenr == 0) {
5009                         em->block_start = EXTENT_MAP_HOLE;
5010                         goto insert;
5011                 }
5012                 if (compressed) {
5013                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5014                         em->block_start = bytenr;
5015                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5016                                                                          item);
5017                 } else {
5018                         bytenr += btrfs_file_extent_offset(leaf, item);
5019                         em->block_start = bytenr;
5020                         em->block_len = em->len;
5021                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5022                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5023                 }
5024                 goto insert;
5025         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5026                 unsigned long ptr;
5027                 char *map;
5028                 size_t size;
5029                 size_t extent_offset;
5030                 size_t copy_size;
5031
5032                 em->block_start = EXTENT_MAP_INLINE;
5033                 if (!page || create) {
5034                         em->start = extent_start;
5035                         em->len = extent_end - extent_start;
5036                         goto out;
5037                 }
5038
5039                 size = btrfs_file_extent_inline_len(leaf, item);
5040                 extent_offset = page_offset(page) + pg_offset - extent_start;
5041                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5042                                 size - extent_offset);
5043                 em->start = extent_start + extent_offset;
5044                 em->len = (copy_size + root->sectorsize - 1) &
5045                         ~((u64)root->sectorsize - 1);
5046                 em->orig_start = EXTENT_MAP_INLINE;
5047                 if (compressed)
5048                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5049                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5050                 if (create == 0 && !PageUptodate(page)) {
5051                         if (btrfs_file_extent_compression(leaf, item) ==
5052                             BTRFS_COMPRESS_ZLIB) {
5053                                 ret = uncompress_inline(path, inode, page,
5054                                                         pg_offset,
5055                                                         extent_offset, item);
5056                                 BUG_ON(ret);
5057                         } else {
5058                                 map = kmap(page);
5059                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5060                                                    copy_size);
5061                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5062                                         memset(map + pg_offset + copy_size, 0,
5063                                                PAGE_CACHE_SIZE - pg_offset -
5064                                                copy_size);
5065                                 }
5066                                 kunmap(page);
5067                         }
5068                         flush_dcache_page(page);
5069                 } else if (create && PageUptodate(page)) {
5070                         WARN_ON(1);
5071                         if (!trans) {
5072                                 kunmap(page);
5073                                 free_extent_map(em);
5074                                 em = NULL;
5075                                 btrfs_release_path(root, path);
5076                                 trans = btrfs_join_transaction(root, 1);
5077                                 goto again;
5078                         }
5079                         map = kmap(page);
5080                         write_extent_buffer(leaf, map + pg_offset, ptr,
5081                                             copy_size);
5082                         kunmap(page);
5083                         btrfs_mark_buffer_dirty(leaf);
5084                 }
5085                 set_extent_uptodate(io_tree, em->start,
5086                                     extent_map_end(em) - 1, GFP_NOFS);
5087                 goto insert;
5088         } else {
5089                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5090                 WARN_ON(1);
5091         }
5092 not_found:
5093         em->start = start;
5094         em->len = len;
5095 not_found_em:
5096         em->block_start = EXTENT_MAP_HOLE;
5097         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5098 insert:
5099         btrfs_release_path(root, path);
5100         if (em->start > start || extent_map_end(em) <= start) {
5101                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5102                        "[%llu %llu]\n", (unsigned long long)em->start,
5103                        (unsigned long long)em->len,
5104                        (unsigned long long)start,
5105                        (unsigned long long)len);
5106                 err = -EIO;
5107                 goto out;
5108         }
5109
5110         err = 0;
5111         write_lock(&em_tree->lock);
5112         ret = add_extent_mapping(em_tree, em);
5113         /* it is possible that someone inserted the extent into the tree
5114          * while we had the lock dropped.  It is also possible that
5115          * an overlapping map exists in the tree
5116          */
5117         if (ret == -EEXIST) {
5118                 struct extent_map *existing;
5119
5120                 ret = 0;
5121
5122                 existing = lookup_extent_mapping(em_tree, start, len);
5123                 if (existing && (existing->start > start ||
5124                     existing->start + existing->len <= start)) {
5125                         free_extent_map(existing);
5126                         existing = NULL;
5127                 }
5128                 if (!existing) {
5129                         existing = lookup_extent_mapping(em_tree, em->start,
5130                                                          em->len);
5131                         if (existing) {
5132                                 err = merge_extent_mapping(em_tree, existing,
5133                                                            em, start,
5134                                                            root->sectorsize);
5135                                 free_extent_map(existing);
5136                                 if (err) {
5137                                         free_extent_map(em);
5138                                         em = NULL;
5139                                 }
5140                         } else {
5141                                 err = -EIO;
5142                                 free_extent_map(em);
5143                                 em = NULL;
5144                         }
5145                 } else {
5146                         free_extent_map(em);
5147                         em = existing;
5148                         err = 0;
5149                 }
5150         }
5151         write_unlock(&em_tree->lock);
5152 out:
5153         if (path)
5154                 btrfs_free_path(path);
5155         if (trans) {
5156                 ret = btrfs_end_transaction(trans, root);
5157                 if (!err)
5158                         err = ret;
5159         }
5160         if (err) {
5161                 free_extent_map(em);
5162                 return ERR_PTR(err);
5163         }
5164         return em;
5165 }
5166
5167 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5168                         const struct iovec *iov, loff_t offset,
5169                         unsigned long nr_segs)
5170 {
5171         return -EINVAL;
5172 }
5173
5174 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5175                 __u64 start, __u64 len)
5176 {
5177         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
5178 }
5179
5180 int btrfs_readpage(struct file *file, struct page *page)
5181 {
5182         struct extent_io_tree *tree;
5183         tree = &BTRFS_I(page->mapping->host)->io_tree;
5184         return extent_read_full_page(tree, page, btrfs_get_extent);
5185 }
5186
5187 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
5188 {
5189         struct extent_io_tree *tree;
5190
5191
5192         if (current->flags & PF_MEMALLOC) {
5193                 redirty_page_for_writepage(wbc, page);
5194                 unlock_page(page);
5195                 return 0;
5196         }
5197         tree = &BTRFS_I(page->mapping->host)->io_tree;
5198         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
5199 }
5200
5201 int btrfs_writepages(struct address_space *mapping,
5202                      struct writeback_control *wbc)
5203 {
5204         struct extent_io_tree *tree;
5205
5206         tree = &BTRFS_I(mapping->host)->io_tree;
5207         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
5208 }
5209
5210 static int
5211 btrfs_readpages(struct file *file, struct address_space *mapping,
5212                 struct list_head *pages, unsigned nr_pages)
5213 {
5214         struct extent_io_tree *tree;
5215         tree = &BTRFS_I(mapping->host)->io_tree;
5216         return extent_readpages(tree, mapping, pages, nr_pages,
5217                                 btrfs_get_extent);
5218 }
5219 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5220 {
5221         struct extent_io_tree *tree;
5222         struct extent_map_tree *map;
5223         int ret;
5224
5225         tree = &BTRFS_I(page->mapping->host)->io_tree;
5226         map = &BTRFS_I(page->mapping->host)->extent_tree;
5227         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
5228         if (ret == 1) {
5229                 ClearPagePrivate(page);
5230                 set_page_private(page, 0);
5231                 page_cache_release(page);
5232         }
5233         return ret;
5234 }
5235
5236 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5237 {
5238         if (PageWriteback(page) || PageDirty(page))
5239                 return 0;
5240         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
5241 }
5242
5243 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5244 {
5245         struct extent_io_tree *tree;
5246         struct btrfs_ordered_extent *ordered;
5247         struct extent_state *cached_state = NULL;
5248         u64 page_start = page_offset(page);
5249         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5250
5251
5252         /*
5253          * we have the page locked, so new writeback can't start,
5254          * and the dirty bit won't be cleared while we are here.
5255          *
5256          * Wait for IO on this page so that we can safely clear
5257          * the PagePrivate2 bit and do ordered accounting
5258          */
5259         wait_on_page_writeback(page);
5260
5261         tree = &BTRFS_I(page->mapping->host)->io_tree;
5262         if (offset) {
5263                 btrfs_releasepage(page, GFP_NOFS);
5264                 return;
5265         }
5266         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5267                          GFP_NOFS);
5268         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5269                                            page_offset(page));
5270         if (ordered) {
5271                 /*
5272                  * IO on this page will never be started, so we need
5273                  * to account for any ordered extents now
5274                  */
5275                 clear_extent_bit(tree, page_start, page_end,
5276                                  EXTENT_DIRTY | EXTENT_DELALLOC |
5277                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5278                                  &cached_state, GFP_NOFS);
5279                 /*
5280                  * whoever cleared the private bit is responsible
5281                  * for the finish_ordered_io
5282                  */
5283                 if (TestClearPagePrivate2(page)) {
5284                         btrfs_finish_ordered_io(page->mapping->host,
5285                                                 page_start, page_end);
5286                 }
5287                 btrfs_put_ordered_extent(ordered);
5288                 cached_state = NULL;
5289                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5290                                  GFP_NOFS);
5291         }
5292         clear_extent_bit(tree, page_start, page_end,
5293                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5294                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
5295         __btrfs_releasepage(page, GFP_NOFS);
5296
5297         ClearPageChecked(page);
5298         if (PagePrivate(page)) {
5299                 ClearPagePrivate(page);
5300                 set_page_private(page, 0);
5301                 page_cache_release(page);
5302         }
5303 }
5304
5305 /*
5306  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5307  * called from a page fault handler when a page is first dirtied. Hence we must
5308  * be careful to check for EOF conditions here. We set the page up correctly
5309  * for a written page which means we get ENOSPC checking when writing into
5310  * holes and correct delalloc and unwritten extent mapping on filesystems that
5311  * support these features.
5312  *
5313  * We are not allowed to take the i_mutex here so we have to play games to
5314  * protect against truncate races as the page could now be beyond EOF.  Because
5315  * vmtruncate() writes the inode size before removing pages, once we have the
5316  * page lock we can determine safely if the page is beyond EOF. If it is not
5317  * beyond EOF, then the page is guaranteed safe against truncation until we
5318  * unlock the page.
5319  */
5320 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5321 {
5322         struct page *page = vmf->page;
5323         struct inode *inode = fdentry(vma->vm_file)->d_inode;
5324         struct btrfs_root *root = BTRFS_I(inode)->root;
5325         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5326         struct btrfs_ordered_extent *ordered;
5327         struct extent_state *cached_state = NULL;
5328         char *kaddr;
5329         unsigned long zero_start;
5330         loff_t size;
5331         int ret;
5332         u64 page_start;
5333         u64 page_end;
5334
5335         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5336         if (ret) {
5337                 if (ret == -ENOMEM)
5338                         ret = VM_FAULT_OOM;
5339                 else /* -ENOSPC, -EIO, etc */
5340                         ret = VM_FAULT_SIGBUS;
5341                 goto out;
5342         }
5343
5344         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5345 again:
5346         lock_page(page);
5347         size = i_size_read(inode);
5348         page_start = page_offset(page);
5349         page_end = page_start + PAGE_CACHE_SIZE - 1;
5350
5351         if ((page->mapping != inode->i_mapping) ||
5352             (page_start >= size)) {
5353                 /* page got truncated out from underneath us */
5354                 goto out_unlock;
5355         }
5356         wait_on_page_writeback(page);
5357
5358         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
5359                          GFP_NOFS);
5360         set_page_extent_mapped(page);
5361
5362         /*
5363          * we can't set the delalloc bits if there are pending ordered
5364          * extents.  Drop our locks and wait for them to finish
5365          */
5366         ordered = btrfs_lookup_ordered_extent(inode, page_start);
5367         if (ordered) {
5368                 unlock_extent_cached(io_tree, page_start, page_end,
5369                                      &cached_state, GFP_NOFS);
5370                 unlock_page(page);
5371                 btrfs_start_ordered_extent(inode, ordered, 1);
5372                 btrfs_put_ordered_extent(ordered);
5373                 goto again;
5374         }
5375
5376         /*
5377          * XXX - page_mkwrite gets called every time the page is dirtied, even
5378          * if it was already dirty, so for space accounting reasons we need to
5379          * clear any delalloc bits for the range we are fixing to save.  There
5380          * is probably a better way to do this, but for now keep consistent with
5381          * prepare_pages in the normal write path.
5382          */
5383         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5384                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5385                           0, 0, &cached_state, GFP_NOFS);
5386
5387         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
5388                                         &cached_state);
5389         if (ret) {
5390                 unlock_extent_cached(io_tree, page_start, page_end,
5391                                      &cached_state, GFP_NOFS);
5392                 ret = VM_FAULT_SIGBUS;
5393                 goto out_unlock;
5394         }
5395         ret = 0;
5396
5397         /* page is wholly or partially inside EOF */
5398         if (page_start + PAGE_CACHE_SIZE > size)
5399                 zero_start = size & ~PAGE_CACHE_MASK;
5400         else
5401                 zero_start = PAGE_CACHE_SIZE;
5402
5403         if (zero_start != PAGE_CACHE_SIZE) {
5404                 kaddr = kmap(page);
5405                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5406                 flush_dcache_page(page);
5407                 kunmap(page);
5408         }
5409         ClearPageChecked(page);
5410         set_page_dirty(page);
5411         SetPageUptodate(page);
5412
5413         BTRFS_I(inode)->last_trans = root->fs_info->generation;
5414         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5415
5416         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
5417
5418 out_unlock:
5419         if (!ret)
5420                 return VM_FAULT_LOCKED;
5421         unlock_page(page);
5422         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
5423 out:
5424         return ret;
5425 }
5426
5427 static void btrfs_truncate(struct inode *inode)
5428 {
5429         struct btrfs_root *root = BTRFS_I(inode)->root;
5430         int ret;
5431         struct btrfs_trans_handle *trans;
5432         unsigned long nr;
5433         u64 mask = root->sectorsize - 1;
5434
5435         if (!S_ISREG(inode->i_mode)) {
5436                 WARN_ON(1);
5437                 return;
5438         }
5439
5440         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5441         if (ret)
5442                 return;
5443
5444         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5445         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5446
5447         trans = btrfs_start_transaction(root, 0);
5448         BUG_ON(IS_ERR(trans));
5449         btrfs_set_trans_block_group(trans, inode);
5450         trans->block_rsv = root->orphan_block_rsv;
5451
5452         /*
5453          * setattr is responsible for setting the ordered_data_close flag,
5454          * but that is only tested during the last file release.  That
5455          * could happen well after the next commit, leaving a great big
5456          * window where new writes may get lost if someone chooses to write
5457          * to this file after truncating to zero
5458          *
5459          * The inode doesn't have any dirty data here, and so if we commit
5460          * this is a noop.  If someone immediately starts writing to the inode
5461          * it is very likely we'll catch some of their writes in this
5462          * transaction, and the commit will find this file on the ordered
5463          * data list with good things to send down.
5464          *
5465          * This is a best effort solution, there is still a window where
5466          * using truncate to replace the contents of the file will
5467          * end up with a zero length file after a crash.
5468          */
5469         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5470                 btrfs_add_ordered_operation(trans, root, inode);
5471
5472         while (1) {
5473                 if (!trans) {
5474                         trans = btrfs_start_transaction(root, 0);
5475                         BUG_ON(IS_ERR(trans));
5476                         btrfs_set_trans_block_group(trans, inode);
5477                         trans->block_rsv = root->orphan_block_rsv;
5478                 }
5479
5480                 ret = btrfs_block_rsv_check(trans, root,
5481                                             root->orphan_block_rsv, 0, 5);
5482                 if (ret) {
5483                         BUG_ON(ret != -EAGAIN);
5484                         ret = btrfs_commit_transaction(trans, root);
5485                         BUG_ON(ret);
5486                         trans = NULL;
5487                         continue;
5488                 }
5489
5490                 ret = btrfs_truncate_inode_items(trans, root, inode,
5491                                                  inode->i_size,
5492                                                  BTRFS_EXTENT_DATA_KEY);
5493                 if (ret != -EAGAIN)
5494                         break;
5495
5496                 ret = btrfs_update_inode(trans, root, inode);
5497                 BUG_ON(ret);
5498
5499                 nr = trans->blocks_used;
5500                 btrfs_end_transaction(trans, root);
5501                 trans = NULL;
5502                 btrfs_btree_balance_dirty(root, nr);
5503         }
5504
5505         if (ret == 0 && inode->i_nlink > 0) {
5506                 ret = btrfs_orphan_del(trans, inode);
5507                 BUG_ON(ret);
5508         }
5509
5510         ret = btrfs_update_inode(trans, root, inode);
5511         BUG_ON(ret);
5512
5513         nr = trans->blocks_used;
5514         ret = btrfs_end_transaction_throttle(trans, root);
5515         BUG_ON(ret);
5516         btrfs_btree_balance_dirty(root, nr);
5517 }
5518
5519 /*
5520  * create a new subvolume directory/inode (helper for the ioctl).
5521  */
5522 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5523                              struct btrfs_root *new_root,
5524                              u64 new_dirid, u64 alloc_hint)
5525 {
5526         struct inode *inode;
5527         int err;
5528         u64 index = 0;
5529
5530         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5531                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5532         if (IS_ERR(inode))
5533                 return PTR_ERR(inode);
5534         inode->i_op = &btrfs_dir_inode_operations;
5535         inode->i_fop = &btrfs_dir_file_operations;
5536
5537         inode->i_nlink = 1;
5538         btrfs_i_size_write(inode, 0);
5539
5540         err = btrfs_update_inode(trans, new_root, inode);
5541         BUG_ON(err);
5542
5543         iput(inode);
5544         return 0;
5545 }
5546
5547 /* helper function for file defrag and space balancing.  This
5548  * forces readahead on a given range of bytes in an inode
5549  */
5550 unsigned long btrfs_force_ra(struct address_space *mapping,
5551                               struct file_ra_state *ra, struct file *file,
5552                               pgoff_t offset, pgoff_t last_index)
5553 {
5554         pgoff_t req_size = last_index - offset + 1;
5555
5556         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5557         return offset + req_size;
5558 }
5559
5560 struct inode *btrfs_alloc_inode(struct super_block *sb)
5561 {
5562         struct btrfs_inode *ei;
5563         struct inode *inode;
5564
5565         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5566         if (!ei)
5567                 return NULL;
5568
5569         ei->root = NULL;
5570         ei->space_info = NULL;
5571         ei->generation = 0;
5572         ei->sequence = 0;
5573         ei->last_trans = 0;
5574         ei->last_sub_trans = 0;
5575         ei->logged_trans = 0;
5576         ei->delalloc_bytes = 0;
5577         ei->reserved_bytes = 0;
5578         ei->disk_i_size = 0;
5579         ei->flags = 0;
5580         ei->index_cnt = (u64)-1;
5581         ei->last_unlink_trans = 0;
5582
5583         spin_lock_init(&ei->accounting_lock);
5584         atomic_set(&ei->outstanding_extents, 0);
5585         ei->reserved_extents = 0;
5586
5587         ei->ordered_data_close = 0;
5588         ei->orphan_meta_reserved = 0;
5589         ei->dummy_inode = 0;
5590         ei->force_compress = 0;
5591
5592         inode = &ei->vfs_inode;
5593         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
5594         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
5595         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
5596         mutex_init(&ei->log_mutex);
5597         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5598         INIT_LIST_HEAD(&ei->i_orphan);
5599         INIT_LIST_HEAD(&ei->delalloc_inodes);
5600         INIT_LIST_HEAD(&ei->ordered_operations);
5601         RB_CLEAR_NODE(&ei->rb_node);
5602
5603         return inode;
5604 }
5605
5606 void btrfs_destroy_inode(struct inode *inode)
5607 {
5608         struct btrfs_ordered_extent *ordered;
5609         struct btrfs_root *root = BTRFS_I(inode)->root;
5610
5611         WARN_ON(!list_empty(&inode->i_dentry));
5612         WARN_ON(inode->i_data.nrpages);
5613         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
5614         WARN_ON(BTRFS_I(inode)->reserved_extents);
5615
5616         /*
5617          * This can happen where we create an inode, but somebody else also
5618          * created the same inode and we need to destroy the one we already
5619          * created.
5620          */
5621         if (!root)
5622                 goto free;
5623
5624         /*
5625          * Make sure we're properly removed from the ordered operation
5626          * lists.
5627          */
5628         smp_mb();
5629         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5630                 spin_lock(&root->fs_info->ordered_extent_lock);
5631                 list_del_init(&BTRFS_I(inode)->ordered_operations);
5632                 spin_unlock(&root->fs_info->ordered_extent_lock);
5633         }
5634
5635         spin_lock(&root->orphan_lock);
5636         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5637                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5638                        inode->i_ino);
5639                 list_del_init(&BTRFS_I(inode)->i_orphan);
5640         }
5641         spin_unlock(&root->orphan_lock);
5642
5643         while (1) {
5644                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5645                 if (!ordered)
5646                         break;
5647                 else {
5648                         printk(KERN_ERR "btrfs found ordered "
5649                                "extent %llu %llu on inode cleanup\n",
5650                                (unsigned long long)ordered->file_offset,
5651                                (unsigned long long)ordered->len);
5652                         btrfs_remove_ordered_extent(inode, ordered);
5653                         btrfs_put_ordered_extent(ordered);
5654                         btrfs_put_ordered_extent(ordered);
5655                 }
5656         }
5657         inode_tree_del(inode);
5658         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5659 free:
5660         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5661 }
5662
5663 void btrfs_drop_inode(struct inode *inode)
5664 {
5665         struct btrfs_root *root = BTRFS_I(inode)->root;
5666         if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5667                 generic_delete_inode(inode);
5668         else
5669                 generic_drop_inode(inode);
5670 }
5671
5672 static void init_once(void *foo)
5673 {
5674         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5675
5676         inode_init_once(&ei->vfs_inode);
5677 }
5678
5679 void btrfs_destroy_cachep(void)
5680 {
5681         if (btrfs_inode_cachep)
5682                 kmem_cache_destroy(btrfs_inode_cachep);
5683         if (btrfs_trans_handle_cachep)
5684                 kmem_cache_destroy(btrfs_trans_handle_cachep);
5685         if (btrfs_transaction_cachep)
5686                 kmem_cache_destroy(btrfs_transaction_cachep);
5687         if (btrfs_path_cachep)
5688                 kmem_cache_destroy(btrfs_path_cachep);
5689 }
5690
5691 int btrfs_init_cachep(void)
5692 {
5693         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5694                         sizeof(struct btrfs_inode), 0,
5695                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5696         if (!btrfs_inode_cachep)
5697                 goto fail;
5698
5699         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5700                         sizeof(struct btrfs_trans_handle), 0,
5701                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5702         if (!btrfs_trans_handle_cachep)
5703                 goto fail;
5704
5705         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5706                         sizeof(struct btrfs_transaction), 0,
5707                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5708         if (!btrfs_transaction_cachep)
5709                 goto fail;
5710
5711         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5712                         sizeof(struct btrfs_path), 0,
5713                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5714         if (!btrfs_path_cachep)
5715                 goto fail;
5716
5717         return 0;
5718 fail:
5719         btrfs_destroy_cachep();
5720         return -ENOMEM;
5721 }
5722
5723 static int btrfs_getattr(struct vfsmount *mnt,
5724                          struct dentry *dentry, struct kstat *stat)
5725 {
5726         struct inode *inode = dentry->d_inode;
5727         generic_fillattr(inode, stat);
5728         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5729         stat->blksize = PAGE_CACHE_SIZE;
5730         stat->blocks = (inode_get_bytes(inode) +
5731                         BTRFS_I(inode)->delalloc_bytes) >> 9;
5732         return 0;
5733 }
5734
5735 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5736                            struct inode *new_dir, struct dentry *new_dentry)
5737 {
5738         struct btrfs_trans_handle *trans;
5739         struct btrfs_root *root = BTRFS_I(old_dir)->root;
5740         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5741         struct inode *new_inode = new_dentry->d_inode;
5742         struct inode *old_inode = old_dentry->d_inode;
5743         struct timespec ctime = CURRENT_TIME;
5744         u64 index = 0;
5745         u64 root_objectid;
5746         int ret;
5747
5748         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5749                 return -EPERM;
5750
5751         /* we only allow rename subvolume link between subvolumes */
5752         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5753                 return -EXDEV;
5754
5755         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5756             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5757                 return -ENOTEMPTY;
5758
5759         if (S_ISDIR(old_inode->i_mode) && new_inode &&
5760             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5761                 return -ENOTEMPTY;
5762         /*
5763          * we're using rename to replace one file with another.
5764          * and the replacement file is large.  Start IO on it now so
5765          * we don't add too much work to the end of the transaction
5766          */
5767         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5768             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5769                 filemap_flush(old_inode->i_mapping);
5770
5771         /* close the racy window with snapshot create/destroy ioctl */
5772         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5773                 down_read(&root->fs_info->subvol_sem);
5774         /*
5775          * We want to reserve the absolute worst case amount of items.  So if
5776          * both inodes are subvols and we need to unlink them then that would
5777          * require 4 item modifications, but if they are both normal inodes it
5778          * would require 5 item modifications, so we'll assume their normal
5779          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5780          * should cover the worst case number of items we'll modify.
5781          */
5782         trans = btrfs_start_transaction(root, 20);
5783         if (IS_ERR(trans))
5784                 return PTR_ERR(trans);
5785
5786         btrfs_set_trans_block_group(trans, new_dir);
5787
5788         if (dest != root)
5789                 btrfs_record_root_in_trans(trans, dest);
5790
5791         ret = btrfs_set_inode_index(new_dir, &index);
5792         if (ret)
5793                 goto out_fail;
5794
5795         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5796                 /* force full log commit if subvolume involved. */
5797                 root->fs_info->last_trans_log_full_commit = trans->transid;
5798         } else {
5799                 ret = btrfs_insert_inode_ref(trans, dest,
5800                                              new_dentry->d_name.name,
5801                                              new_dentry->d_name.len,
5802                                              old_inode->i_ino,
5803                                              new_dir->i_ino, index);
5804                 if (ret)
5805                         goto out_fail;
5806                 /*
5807                  * this is an ugly little race, but the rename is required
5808                  * to make sure that if we crash, the inode is either at the
5809                  * old name or the new one.  pinning the log transaction lets
5810                  * us make sure we don't allow a log commit to come in after
5811                  * we unlink the name but before we add the new name back in.
5812                  */
5813                 btrfs_pin_log_trans(root);
5814         }
5815         /*
5816          * make sure the inode gets flushed if it is replacing
5817          * something.
5818          */
5819         if (new_inode && new_inode->i_size &&
5820             old_inode && S_ISREG(old_inode->i_mode)) {
5821                 btrfs_add_ordered_operation(trans, root, old_inode);
5822         }
5823
5824         old_dir->i_ctime = old_dir->i_mtime = ctime;
5825         new_dir->i_ctime = new_dir->i_mtime = ctime;
5826         old_inode->i_ctime = ctime;
5827
5828         if (old_dentry->d_parent != new_dentry->d_parent)
5829                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5830
5831         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5832                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5833                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5834                                         old_dentry->d_name.name,
5835                                         old_dentry->d_name.len);
5836         } else {
5837                 btrfs_inc_nlink(old_dentry->d_inode);
5838                 ret = btrfs_unlink_inode(trans, root, old_dir,
5839                                          old_dentry->d_inode,
5840                                          old_dentry->d_name.name,
5841                                          old_dentry->d_name.len);
5842         }
5843         BUG_ON(ret);
5844
5845         if (new_inode) {
5846                 new_inode->i_ctime = CURRENT_TIME;
5847                 if (unlikely(new_inode->i_ino ==
5848                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5849                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5850                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5851                                                 root_objectid,
5852                                                 new_dentry->d_name.name,
5853                                                 new_dentry->d_name.len);
5854                         BUG_ON(new_inode->i_nlink == 0);
5855                 } else {
5856                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5857                                                  new_dentry->d_inode,
5858                                                  new_dentry->d_name.name,
5859                                                  new_dentry->d_name.len);
5860                 }
5861                 BUG_ON(ret);
5862                 if (new_inode->i_nlink == 0) {
5863                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5864                         BUG_ON(ret);
5865                 }
5866         }
5867
5868         ret = btrfs_add_link(trans, new_dir, old_inode,
5869                              new_dentry->d_name.name,
5870                              new_dentry->d_name.len, 0, index);
5871         BUG_ON(ret);
5872
5873         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5874                 btrfs_log_new_name(trans, old_inode, old_dir,
5875                                    new_dentry->d_parent);
5876                 btrfs_end_log_trans(root);
5877         }
5878 out_fail:
5879         btrfs_end_transaction_throttle(trans, root);
5880
5881         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5882                 up_read(&root->fs_info->subvol_sem);
5883
5884         return ret;
5885 }
5886
5887 /*
5888  * some fairly slow code that needs optimization. This walks the list
5889  * of all the inodes with pending delalloc and forces them to disk.
5890  */
5891 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5892 {
5893         struct list_head *head = &root->fs_info->delalloc_inodes;
5894         struct btrfs_inode *binode;
5895         struct inode *inode;
5896
5897         if (root->fs_info->sb->s_flags & MS_RDONLY)
5898                 return -EROFS;
5899
5900         spin_lock(&root->fs_info->delalloc_lock);
5901         while (!list_empty(head)) {
5902                 binode = list_entry(head->next, struct btrfs_inode,
5903                                     delalloc_inodes);
5904                 inode = igrab(&binode->vfs_inode);
5905                 if (!inode)
5906                         list_del_init(&binode->delalloc_inodes);
5907                 spin_unlock(&root->fs_info->delalloc_lock);
5908                 if (inode) {
5909                         filemap_flush(inode->i_mapping);
5910                         if (delay_iput)
5911                                 btrfs_add_delayed_iput(inode);
5912                         else
5913                                 iput(inode);
5914                 }
5915                 cond_resched();
5916                 spin_lock(&root->fs_info->delalloc_lock);
5917         }
5918         spin_unlock(&root->fs_info->delalloc_lock);
5919
5920         /* the filemap_flush will queue IO into the worker threads, but
5921          * we have to make sure the IO is actually started and that
5922          * ordered extents get created before we return
5923          */
5924         atomic_inc(&root->fs_info->async_submit_draining);
5925         while (atomic_read(&root->fs_info->nr_async_submits) ||
5926               atomic_read(&root->fs_info->async_delalloc_pages)) {
5927                 wait_event(root->fs_info->async_submit_wait,
5928                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5929                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5930         }
5931         atomic_dec(&root->fs_info->async_submit_draining);
5932         return 0;
5933 }
5934
5935 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput)
5936 {
5937         struct btrfs_inode *binode;
5938         struct inode *inode = NULL;
5939
5940         spin_lock(&root->fs_info->delalloc_lock);
5941         while (!list_empty(&root->fs_info->delalloc_inodes)) {
5942                 binode = list_entry(root->fs_info->delalloc_inodes.next,
5943                                     struct btrfs_inode, delalloc_inodes);
5944                 inode = igrab(&binode->vfs_inode);
5945                 if (inode) {
5946                         list_move_tail(&binode->delalloc_inodes,
5947                                        &root->fs_info->delalloc_inodes);
5948                         break;
5949                 }
5950
5951                 list_del_init(&binode->delalloc_inodes);
5952                 cond_resched_lock(&root->fs_info->delalloc_lock);
5953         }
5954         spin_unlock(&root->fs_info->delalloc_lock);
5955
5956         if (inode) {
5957                 write_inode_now(inode, 0);
5958                 if (delay_iput)
5959                         btrfs_add_delayed_iput(inode);
5960                 else
5961                         iput(inode);
5962                 return 1;
5963         }
5964         return 0;
5965 }
5966
5967 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5968                          const char *symname)
5969 {
5970         struct btrfs_trans_handle *trans;
5971         struct btrfs_root *root = BTRFS_I(dir)->root;
5972         struct btrfs_path *path;
5973         struct btrfs_key key;
5974         struct inode *inode = NULL;
5975         int err;
5976         int drop_inode = 0;
5977         u64 objectid;
5978         u64 index = 0 ;
5979         int name_len;
5980         int datasize;
5981         unsigned long ptr;
5982         struct btrfs_file_extent_item *ei;
5983         struct extent_buffer *leaf;
5984         unsigned long nr = 0;
5985
5986         name_len = strlen(symname) + 1;
5987         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5988                 return -ENAMETOOLONG;
5989
5990         err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
5991         if (err)
5992                 return err;
5993         /*
5994          * 2 items for inode item and ref
5995          * 2 items for dir items
5996          * 1 item for xattr if selinux is on
5997          */
5998         trans = btrfs_start_transaction(root, 5);
5999         if (IS_ERR(trans))
6000                 return PTR_ERR(trans);
6001
6002         btrfs_set_trans_block_group(trans, dir);
6003
6004         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6005                                 dentry->d_name.len,
6006                                 dentry->d_parent->d_inode->i_ino, objectid,
6007                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6008                                 &index);
6009         err = PTR_ERR(inode);
6010         if (IS_ERR(inode))
6011                 goto out_unlock;
6012
6013         err = btrfs_init_inode_security(trans, inode, dir);
6014         if (err) {
6015                 drop_inode = 1;
6016                 goto out_unlock;
6017         }
6018
6019         btrfs_set_trans_block_group(trans, inode);
6020         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
6021         if (err)
6022                 drop_inode = 1;
6023         else {
6024                 inode->i_mapping->a_ops = &btrfs_aops;
6025                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6026                 inode->i_fop = &btrfs_file_operations;
6027                 inode->i_op = &btrfs_file_inode_operations;
6028                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6029         }
6030         btrfs_update_inode_block_group(trans, inode);
6031         btrfs_update_inode_block_group(trans, dir);
6032         if (drop_inode)
6033                 goto out_unlock;
6034
6035         path = btrfs_alloc_path();
6036         BUG_ON(!path);
6037         key.objectid = inode->i_ino;
6038         key.offset = 0;
6039         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6040         datasize = btrfs_file_extent_calc_inline_size(name_len);
6041         err = btrfs_insert_empty_item(trans, root, path, &key,
6042                                       datasize);
6043         if (err) {
6044                 drop_inode = 1;
6045                 goto out_unlock;
6046         }
6047         leaf = path->nodes[0];
6048         ei = btrfs_item_ptr(leaf, path->slots[0],
6049                             struct btrfs_file_extent_item);
6050         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
6051         btrfs_set_file_extent_type(leaf, ei,
6052                                    BTRFS_FILE_EXTENT_INLINE);
6053         btrfs_set_file_extent_encryption(leaf, ei, 0);
6054         btrfs_set_file_extent_compression(leaf, ei, 0);
6055         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
6056         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
6057
6058         ptr = btrfs_file_extent_inline_start(ei);
6059         write_extent_buffer(leaf, symname, ptr, name_len);
6060         btrfs_mark_buffer_dirty(leaf);
6061         btrfs_free_path(path);
6062
6063         inode->i_op = &btrfs_symlink_inode_operations;
6064         inode->i_mapping->a_ops = &btrfs_symlink_aops;
6065         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6066         inode_set_bytes(inode, name_len);
6067         btrfs_i_size_write(inode, name_len - 1);
6068         err = btrfs_update_inode(trans, root, inode);
6069         if (err)
6070                 drop_inode = 1;
6071
6072 out_unlock:
6073         nr = trans->blocks_used;
6074         btrfs_end_transaction_throttle(trans, root);
6075         if (drop_inode) {
6076                 inode_dec_link_count(inode);
6077                 iput(inode);
6078         }
6079         btrfs_btree_balance_dirty(root, nr);
6080         return err;
6081 }
6082
6083 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
6084                         u64 alloc_hint, int mode, loff_t actual_len)
6085 {
6086         struct btrfs_trans_handle *trans;
6087         struct btrfs_root *root = BTRFS_I(inode)->root;
6088         struct btrfs_key ins;
6089         u64 cur_offset = start;
6090         u64 num_bytes = end - start;
6091         int ret = 0;
6092         u64 i_size;
6093
6094         while (num_bytes > 0) {
6095                 trans = btrfs_start_transaction(root, 3);
6096                 if (IS_ERR(trans)) {
6097                         ret = PTR_ERR(trans);
6098                         break;
6099                 }
6100
6101                 ret = btrfs_reserve_extent(trans, root, num_bytes,
6102                                            root->sectorsize, 0, alloc_hint,
6103                                            (u64)-1, &ins, 1);
6104                 if (ret) {
6105                         btrfs_end_transaction(trans, root);
6106                         break;
6107                 }
6108
6109                 ret = insert_reserved_file_extent(trans, inode,
6110                                                   cur_offset, ins.objectid,
6111                                                   ins.offset, ins.offset,
6112                                                   ins.offset, 0, 0, 0,
6113                                                   BTRFS_FILE_EXTENT_PREALLOC);
6114                 BUG_ON(ret);
6115                 btrfs_drop_extent_cache(inode, cur_offset,
6116                                         cur_offset + ins.offset -1, 0);
6117
6118                 num_bytes -= ins.offset;
6119                 cur_offset += ins.offset;
6120                 alloc_hint = ins.objectid + ins.offset;
6121
6122                 inode->i_ctime = CURRENT_TIME;
6123                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
6124                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
6125                         (actual_len > inode->i_size) &&
6126                         (cur_offset > inode->i_size)) {
6127
6128                         if (cur_offset > actual_len)
6129                                 i_size  = actual_len;
6130                         else
6131                                 i_size = cur_offset;
6132                         i_size_write(inode, i_size);
6133                         btrfs_ordered_update_i_size(inode, i_size, NULL);
6134                 }
6135
6136                 ret = btrfs_update_inode(trans, root, inode);
6137                 BUG_ON(ret);
6138
6139                 btrfs_end_transaction(trans, root);
6140         }
6141         return ret;
6142 }
6143
6144 static long btrfs_fallocate(struct inode *inode, int mode,
6145                             loff_t offset, loff_t len)
6146 {
6147         struct extent_state *cached_state = NULL;
6148         u64 cur_offset;
6149         u64 last_byte;
6150         u64 alloc_start;
6151         u64 alloc_end;
6152         u64 alloc_hint = 0;
6153         u64 locked_end;
6154         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
6155         struct extent_map *em;
6156         int ret;
6157
6158         alloc_start = offset & ~mask;
6159         alloc_end =  (offset + len + mask) & ~mask;
6160
6161         /*
6162          * wait for ordered IO before we have any locks.  We'll loop again
6163          * below with the locks held.
6164          */
6165         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
6166
6167         mutex_lock(&inode->i_mutex);
6168         if (alloc_start > inode->i_size) {
6169                 ret = btrfs_cont_expand(inode, alloc_start);
6170                 if (ret)
6171                         goto out;
6172         }
6173
6174         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
6175         if (ret)
6176                 goto out;
6177
6178         locked_end = alloc_end - 1;
6179         while (1) {
6180                 struct btrfs_ordered_extent *ordered;
6181
6182                 /* the extent lock is ordered inside the running
6183                  * transaction
6184                  */
6185                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
6186                                  locked_end, 0, &cached_state, GFP_NOFS);
6187                 ordered = btrfs_lookup_first_ordered_extent(inode,
6188                                                             alloc_end - 1);
6189                 if (ordered &&
6190                     ordered->file_offset + ordered->len > alloc_start &&
6191                     ordered->file_offset < alloc_end) {
6192                         btrfs_put_ordered_extent(ordered);
6193                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
6194                                              alloc_start, locked_end,
6195                                              &cached_state, GFP_NOFS);
6196                         /*
6197                          * we can't wait on the range with the transaction
6198                          * running or with the extent lock held
6199                          */
6200                         btrfs_wait_ordered_range(inode, alloc_start,
6201                                                  alloc_end - alloc_start);
6202                 } else {
6203                         if (ordered)
6204                                 btrfs_put_ordered_extent(ordered);
6205                         break;
6206                 }
6207         }
6208
6209         cur_offset = alloc_start;
6210         while (1) {
6211                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
6212                                       alloc_end - cur_offset, 0);
6213                 BUG_ON(IS_ERR(em) || !em);
6214                 last_byte = min(extent_map_end(em), alloc_end);
6215                 last_byte = (last_byte + mask) & ~mask;
6216                 if (em->block_start == EXTENT_MAP_HOLE ||
6217                     (cur_offset >= inode->i_size &&
6218                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6219                         ret = prealloc_file_range(inode,
6220                                                   cur_offset, last_byte,
6221                                                 alloc_hint, mode, offset+len);
6222                         if (ret < 0) {
6223                                 free_extent_map(em);
6224                                 break;
6225                         }
6226                 }
6227                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
6228                         alloc_hint = em->block_start;
6229                 free_extent_map(em);
6230
6231                 cur_offset = last_byte;
6232                 if (cur_offset >= alloc_end) {
6233                         ret = 0;
6234                         break;
6235                 }
6236         }
6237         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
6238                              &cached_state, GFP_NOFS);
6239
6240         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
6241 out:
6242         mutex_unlock(&inode->i_mutex);
6243         return ret;
6244 }
6245
6246 static int btrfs_set_page_dirty(struct page *page)
6247 {
6248         return __set_page_dirty_nobuffers(page);
6249 }
6250
6251 static int btrfs_permission(struct inode *inode, int mask)
6252 {
6253         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
6254                 return -EACCES;
6255         return generic_permission(inode, mask, btrfs_check_acl);
6256 }
6257
6258 static const struct inode_operations btrfs_dir_inode_operations = {
6259         .getattr        = btrfs_getattr,
6260         .lookup         = btrfs_lookup,
6261         .create         = btrfs_create,
6262         .unlink         = btrfs_unlink,
6263         .link           = btrfs_link,
6264         .mkdir          = btrfs_mkdir,
6265         .rmdir          = btrfs_rmdir,
6266         .rename         = btrfs_rename,
6267         .symlink        = btrfs_symlink,
6268         .setattr        = btrfs_setattr,
6269         .mknod          = btrfs_mknod,
6270         .setxattr       = btrfs_setxattr,
6271         .getxattr       = btrfs_getxattr,
6272         .listxattr      = btrfs_listxattr,
6273         .removexattr    = btrfs_removexattr,
6274         .permission     = btrfs_permission,
6275 };
6276 static const struct inode_operations btrfs_dir_ro_inode_operations = {
6277         .lookup         = btrfs_lookup,
6278         .permission     = btrfs_permission,
6279 };
6280
6281 static const struct file_operations btrfs_dir_file_operations = {
6282         .llseek         = generic_file_llseek,
6283         .read           = generic_read_dir,
6284         .readdir        = btrfs_real_readdir,
6285         .unlocked_ioctl = btrfs_ioctl,
6286 #ifdef CONFIG_COMPAT
6287         .compat_ioctl   = btrfs_ioctl,
6288 #endif
6289         .release        = btrfs_release_file,
6290         .fsync          = btrfs_sync_file,
6291 };
6292
6293 static struct extent_io_ops btrfs_extent_io_ops = {
6294         .fill_delalloc = run_delalloc_range,
6295         .submit_bio_hook = btrfs_submit_bio_hook,
6296         .merge_bio_hook = btrfs_merge_bio_hook,
6297         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
6298         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
6299         .writepage_start_hook = btrfs_writepage_start_hook,
6300         .readpage_io_failed_hook = btrfs_io_failed_hook,
6301         .set_bit_hook = btrfs_set_bit_hook,
6302         .clear_bit_hook = btrfs_clear_bit_hook,
6303         .merge_extent_hook = btrfs_merge_extent_hook,
6304         .split_extent_hook = btrfs_split_extent_hook,
6305 };
6306
6307 /*
6308  * btrfs doesn't support the bmap operation because swapfiles
6309  * use bmap to make a mapping of extents in the file.  They assume
6310  * these extents won't change over the life of the file and they
6311  * use the bmap result to do IO directly to the drive.
6312  *
6313  * the btrfs bmap call would return logical addresses that aren't
6314  * suitable for IO and they also will change frequently as COW
6315  * operations happen.  So, swapfile + btrfs == corruption.
6316  *
6317  * For now we're avoiding this by dropping bmap.
6318  */
6319 static const struct address_space_operations btrfs_aops = {
6320         .readpage       = btrfs_readpage,
6321         .writepage      = btrfs_writepage,
6322         .writepages     = btrfs_writepages,
6323         .readpages      = btrfs_readpages,
6324         .sync_page      = block_sync_page,
6325         .direct_IO      = btrfs_direct_IO,
6326         .invalidatepage = btrfs_invalidatepage,
6327         .releasepage    = btrfs_releasepage,
6328         .set_page_dirty = btrfs_set_page_dirty,
6329         .error_remove_page = generic_error_remove_page,
6330 };
6331
6332 static const struct address_space_operations btrfs_symlink_aops = {
6333         .readpage       = btrfs_readpage,
6334         .writepage      = btrfs_writepage,
6335         .invalidatepage = btrfs_invalidatepage,
6336         .releasepage    = btrfs_releasepage,
6337 };
6338
6339 static const struct inode_operations btrfs_file_inode_operations = {
6340         .truncate       = btrfs_truncate,
6341         .getattr        = btrfs_getattr,
6342         .setattr        = btrfs_setattr,
6343         .setxattr       = btrfs_setxattr,
6344         .getxattr       = btrfs_getxattr,
6345         .listxattr      = btrfs_listxattr,
6346         .removexattr    = btrfs_removexattr,
6347         .permission     = btrfs_permission,
6348         .fallocate      = btrfs_fallocate,
6349         .fiemap         = btrfs_fiemap,
6350 };
6351 static const struct inode_operations btrfs_special_inode_operations = {
6352         .getattr        = btrfs_getattr,
6353         .setattr        = btrfs_setattr,
6354         .permission     = btrfs_permission,
6355         .setxattr       = btrfs_setxattr,
6356         .getxattr       = btrfs_getxattr,
6357         .listxattr      = btrfs_listxattr,
6358         .removexattr    = btrfs_removexattr,
6359 };
6360 static const struct inode_operations btrfs_symlink_inode_operations = {
6361         .readlink       = generic_readlink,
6362         .follow_link    = page_follow_link_light,
6363         .put_link       = page_put_link,
6364         .permission     = btrfs_permission,
6365         .setxattr       = btrfs_setxattr,
6366         .getxattr       = btrfs_getxattr,
6367         .listxattr      = btrfs_listxattr,
6368         .removexattr    = btrfs_removexattr,
6369 };
6370
6371 const struct dentry_operations btrfs_dentry_operations = {
6372         .d_delete       = btrfs_dentry_delete,
6373 };