xen: switch to post-init routines in xen mmu.c earlier
[cascardo/linux.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62
63 struct btrfs_iget_args {
64         struct btrfs_key *location;
65         struct btrfs_root *root;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
88         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
89         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
90         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
91         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
92         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
93         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
94 };
95
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100                                    struct page *locked_page,
101                                    u64 start, u64 end, int *page_started,
102                                    unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104                                            u64 len, u64 orig_start,
105                                            u64 block_start, u64 block_len,
106                                            u64 orig_block_len, u64 ram_bytes,
107                                            int type);
108
109 static int btrfs_dirty_inode(struct inode *inode);
110
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112                                      struct inode *inode,  struct inode *dir,
113                                      const struct qstr *qstr)
114 {
115         int err;
116
117         err = btrfs_init_acl(trans, inode, dir);
118         if (!err)
119                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120         return err;
121 }
122
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129                                 struct btrfs_path *path, int extent_inserted,
130                                 struct btrfs_root *root, struct inode *inode,
131                                 u64 start, size_t size, size_t compressed_size,
132                                 int compress_type,
133                                 struct page **compressed_pages)
134 {
135         struct extent_buffer *leaf;
136         struct page *page = NULL;
137         char *kaddr;
138         unsigned long ptr;
139         struct btrfs_file_extent_item *ei;
140         int err = 0;
141         int ret;
142         size_t cur_size = size;
143         unsigned long offset;
144
145         if (compressed_size && compressed_pages)
146                 cur_size = compressed_size;
147
148         inode_add_bytes(inode, size);
149
150         if (!extent_inserted) {
151                 struct btrfs_key key;
152                 size_t datasize;
153
154                 key.objectid = btrfs_ino(inode);
155                 key.offset = start;
156                 key.type = BTRFS_EXTENT_DATA_KEY;
157
158                 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159                 path->leave_spinning = 1;
160                 ret = btrfs_insert_empty_item(trans, root, path, &key,
161                                               datasize);
162                 if (ret) {
163                         err = ret;
164                         goto fail;
165                 }
166         }
167         leaf = path->nodes[0];
168         ei = btrfs_item_ptr(leaf, path->slots[0],
169                             struct btrfs_file_extent_item);
170         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172         btrfs_set_file_extent_encryption(leaf, ei, 0);
173         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175         ptr = btrfs_file_extent_inline_start(ei);
176
177         if (compress_type != BTRFS_COMPRESS_NONE) {
178                 struct page *cpage;
179                 int i = 0;
180                 while (compressed_size > 0) {
181                         cpage = compressed_pages[i];
182                         cur_size = min_t(unsigned long, compressed_size,
183                                        PAGE_CACHE_SIZE);
184
185                         kaddr = kmap_atomic(cpage);
186                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
187                         kunmap_atomic(kaddr);
188
189                         i++;
190                         ptr += cur_size;
191                         compressed_size -= cur_size;
192                 }
193                 btrfs_set_file_extent_compression(leaf, ei,
194                                                   compress_type);
195         } else {
196                 page = find_get_page(inode->i_mapping,
197                                      start >> PAGE_CACHE_SHIFT);
198                 btrfs_set_file_extent_compression(leaf, ei, 0);
199                 kaddr = kmap_atomic(page);
200                 offset = start & (PAGE_CACHE_SIZE - 1);
201                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202                 kunmap_atomic(kaddr);
203                 page_cache_release(page);
204         }
205         btrfs_mark_buffer_dirty(leaf);
206         btrfs_release_path(path);
207
208         /*
209          * we're an inline extent, so nobody can
210          * extend the file past i_size without locking
211          * a page we already have locked.
212          *
213          * We must do any isize and inode updates
214          * before we unlock the pages.  Otherwise we
215          * could end up racing with unlink.
216          */
217         BTRFS_I(inode)->disk_i_size = inode->i_size;
218         ret = btrfs_update_inode(trans, root, inode);
219
220         return ret;
221 fail:
222         return err;
223 }
224
225
226 /*
227  * conditionally insert an inline extent into the file.  This
228  * does the checks required to make sure the data is small enough
229  * to fit as an inline extent.
230  */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232                                           struct inode *inode, u64 start,
233                                           u64 end, size_t compressed_size,
234                                           int compress_type,
235                                           struct page **compressed_pages)
236 {
237         struct btrfs_trans_handle *trans;
238         u64 isize = i_size_read(inode);
239         u64 actual_end = min(end + 1, isize);
240         u64 inline_len = actual_end - start;
241         u64 aligned_end = ALIGN(end, root->sectorsize);
242         u64 data_len = inline_len;
243         int ret;
244         struct btrfs_path *path;
245         int extent_inserted = 0;
246         u32 extent_item_size;
247
248         if (compressed_size)
249                 data_len = compressed_size;
250
251         if (start > 0 ||
252             actual_end > PAGE_CACHE_SIZE ||
253             data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254             (!compressed_size &&
255             (actual_end & (root->sectorsize - 1)) == 0) ||
256             end + 1 < isize ||
257             data_len > root->fs_info->max_inline) {
258                 return 1;
259         }
260
261         path = btrfs_alloc_path();
262         if (!path)
263                 return -ENOMEM;
264
265         trans = btrfs_join_transaction(root);
266         if (IS_ERR(trans)) {
267                 btrfs_free_path(path);
268                 return PTR_ERR(trans);
269         }
270         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
272         if (compressed_size && compressed_pages)
273                 extent_item_size = btrfs_file_extent_calc_inline_size(
274                    compressed_size);
275         else
276                 extent_item_size = btrfs_file_extent_calc_inline_size(
277                     inline_len);
278
279         ret = __btrfs_drop_extents(trans, root, inode, path,
280                                    start, aligned_end, NULL,
281                                    1, 1, extent_item_size, &extent_inserted);
282         if (ret) {
283                 btrfs_abort_transaction(trans, root, ret);
284                 goto out;
285         }
286
287         if (isize > actual_end)
288                 inline_len = min_t(u64, isize, actual_end);
289         ret = insert_inline_extent(trans, path, extent_inserted,
290                                    root, inode, start,
291                                    inline_len, compressed_size,
292                                    compress_type, compressed_pages);
293         if (ret && ret != -ENOSPC) {
294                 btrfs_abort_transaction(trans, root, ret);
295                 goto out;
296         } else if (ret == -ENOSPC) {
297                 ret = 1;
298                 goto out;
299         }
300
301         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302         btrfs_delalloc_release_metadata(inode, end + 1 - start);
303         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305         btrfs_free_path(path);
306         btrfs_end_transaction(trans, root);
307         return ret;
308 }
309
310 struct async_extent {
311         u64 start;
312         u64 ram_size;
313         u64 compressed_size;
314         struct page **pages;
315         unsigned long nr_pages;
316         int compress_type;
317         struct list_head list;
318 };
319
320 struct async_cow {
321         struct inode *inode;
322         struct btrfs_root *root;
323         struct page *locked_page;
324         u64 start;
325         u64 end;
326         struct list_head extents;
327         struct btrfs_work work;
328 };
329
330 static noinline int add_async_extent(struct async_cow *cow,
331                                      u64 start, u64 ram_size,
332                                      u64 compressed_size,
333                                      struct page **pages,
334                                      unsigned long nr_pages,
335                                      int compress_type)
336 {
337         struct async_extent *async_extent;
338
339         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340         BUG_ON(!async_extent); /* -ENOMEM */
341         async_extent->start = start;
342         async_extent->ram_size = ram_size;
343         async_extent->compressed_size = compressed_size;
344         async_extent->pages = pages;
345         async_extent->nr_pages = nr_pages;
346         async_extent->compress_type = compress_type;
347         list_add_tail(&async_extent->list, &cow->extents);
348         return 0;
349 }
350
351 static inline int inode_need_compress(struct inode *inode)
352 {
353         struct btrfs_root *root = BTRFS_I(inode)->root;
354
355         /* force compress */
356         if (btrfs_test_opt(root, FORCE_COMPRESS))
357                 return 1;
358         /* bad compression ratios */
359         if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360                 return 0;
361         if (btrfs_test_opt(root, COMPRESS) ||
362             BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363             BTRFS_I(inode)->force_compress)
364                 return 1;
365         return 0;
366 }
367
368 /*
369  * we create compressed extents in two phases.  The first
370  * phase compresses a range of pages that have already been
371  * locked (both pages and state bits are locked).
372  *
373  * This is done inside an ordered work queue, and the compression
374  * is spread across many cpus.  The actual IO submission is step
375  * two, and the ordered work queue takes care of making sure that
376  * happens in the same order things were put onto the queue by
377  * writepages and friends.
378  *
379  * If this code finds it can't get good compression, it puts an
380  * entry onto the work queue to write the uncompressed bytes.  This
381  * makes sure that both compressed inodes and uncompressed inodes
382  * are written in the same order that the flusher thread sent them
383  * down.
384  */
385 static noinline int compress_file_range(struct inode *inode,
386                                         struct page *locked_page,
387                                         u64 start, u64 end,
388                                         struct async_cow *async_cow,
389                                         int *num_added)
390 {
391         struct btrfs_root *root = BTRFS_I(inode)->root;
392         u64 num_bytes;
393         u64 blocksize = root->sectorsize;
394         u64 actual_end;
395         u64 isize = i_size_read(inode);
396         int ret = 0;
397         struct page **pages = NULL;
398         unsigned long nr_pages;
399         unsigned long nr_pages_ret = 0;
400         unsigned long total_compressed = 0;
401         unsigned long total_in = 0;
402         unsigned long max_compressed = 128 * 1024;
403         unsigned long max_uncompressed = 128 * 1024;
404         int i;
405         int will_compress;
406         int compress_type = root->fs_info->compress_type;
407         int redirty = 0;
408
409         /* if this is a small write inside eof, kick off a defrag */
410         if ((end - start + 1) < 16 * 1024 &&
411             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
412                 btrfs_add_inode_defrag(NULL, inode);
413
414         /*
415          * skip compression for a small file range(<=blocksize) that
416          * isn't an inline extent, since it dosen't save disk space at all.
417          */
418         if ((end - start + 1) <= blocksize &&
419             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420                 goto cleanup_and_bail_uncompressed;
421
422         actual_end = min_t(u64, isize, end + 1);
423 again:
424         will_compress = 0;
425         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
427
428         /*
429          * we don't want to send crud past the end of i_size through
430          * compression, that's just a waste of CPU time.  So, if the
431          * end of the file is before the start of our current
432          * requested range of bytes, we bail out to the uncompressed
433          * cleanup code that can deal with all of this.
434          *
435          * It isn't really the fastest way to fix things, but this is a
436          * very uncommon corner.
437          */
438         if (actual_end <= start)
439                 goto cleanup_and_bail_uncompressed;
440
441         total_compressed = actual_end - start;
442
443         /* we want to make sure that amount of ram required to uncompress
444          * an extent is reasonable, so we limit the total size in ram
445          * of a compressed extent to 128k.  This is a crucial number
446          * because it also controls how easily we can spread reads across
447          * cpus for decompression.
448          *
449          * We also want to make sure the amount of IO required to do
450          * a random read is reasonably small, so we limit the size of
451          * a compressed extent to 128k.
452          */
453         total_compressed = min(total_compressed, max_uncompressed);
454         num_bytes = ALIGN(end - start + 1, blocksize);
455         num_bytes = max(blocksize,  num_bytes);
456         total_in = 0;
457         ret = 0;
458
459         /*
460          * we do compression for mount -o compress and when the
461          * inode has not been flagged as nocompress.  This flag can
462          * change at any time if we discover bad compression ratios.
463          */
464         if (inode_need_compress(inode)) {
465                 WARN_ON(pages);
466                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
467                 if (!pages) {
468                         /* just bail out to the uncompressed code */
469                         goto cont;
470                 }
471
472                 if (BTRFS_I(inode)->force_compress)
473                         compress_type = BTRFS_I(inode)->force_compress;
474
475                 /*
476                  * we need to call clear_page_dirty_for_io on each
477                  * page in the range.  Otherwise applications with the file
478                  * mmap'd can wander in and change the page contents while
479                  * we are compressing them.
480                  *
481                  * If the compression fails for any reason, we set the pages
482                  * dirty again later on.
483                  */
484                 extent_range_clear_dirty_for_io(inode, start, end);
485                 redirty = 1;
486                 ret = btrfs_compress_pages(compress_type,
487                                            inode->i_mapping, start,
488                                            total_compressed, pages,
489                                            nr_pages, &nr_pages_ret,
490                                            &total_in,
491                                            &total_compressed,
492                                            max_compressed);
493
494                 if (!ret) {
495                         unsigned long offset = total_compressed &
496                                 (PAGE_CACHE_SIZE - 1);
497                         struct page *page = pages[nr_pages_ret - 1];
498                         char *kaddr;
499
500                         /* zero the tail end of the last page, we might be
501                          * sending it down to disk
502                          */
503                         if (offset) {
504                                 kaddr = kmap_atomic(page);
505                                 memset(kaddr + offset, 0,
506                                        PAGE_CACHE_SIZE - offset);
507                                 kunmap_atomic(kaddr);
508                         }
509                         will_compress = 1;
510                 }
511         }
512 cont:
513         if (start == 0) {
514                 /* lets try to make an inline extent */
515                 if (ret || total_in < (actual_end - start)) {
516                         /* we didn't compress the entire range, try
517                          * to make an uncompressed inline extent.
518                          */
519                         ret = cow_file_range_inline(root, inode, start, end,
520                                                     0, 0, NULL);
521                 } else {
522                         /* try making a compressed inline extent */
523                         ret = cow_file_range_inline(root, inode, start, end,
524                                                     total_compressed,
525                                                     compress_type, pages);
526                 }
527                 if (ret <= 0) {
528                         unsigned long clear_flags = EXTENT_DELALLOC |
529                                 EXTENT_DEFRAG;
530                         clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
531
532                         /*
533                          * inline extent creation worked or returned error,
534                          * we don't need to create any more async work items.
535                          * Unlock and free up our temp pages.
536                          */
537                         extent_clear_unlock_delalloc(inode, start, end, NULL,
538                                                      clear_flags, PAGE_UNLOCK |
539                                                      PAGE_CLEAR_DIRTY |
540                                                      PAGE_SET_WRITEBACK |
541                                                      PAGE_END_WRITEBACK);
542                         goto free_pages_out;
543                 }
544         }
545
546         if (will_compress) {
547                 /*
548                  * we aren't doing an inline extent round the compressed size
549                  * up to a block size boundary so the allocator does sane
550                  * things
551                  */
552                 total_compressed = ALIGN(total_compressed, blocksize);
553
554                 /*
555                  * one last check to make sure the compression is really a
556                  * win, compare the page count read with the blocks on disk
557                  */
558                 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
559                 if (total_compressed >= total_in) {
560                         will_compress = 0;
561                 } else {
562                         num_bytes = total_in;
563                 }
564         }
565         if (!will_compress && pages) {
566                 /*
567                  * the compression code ran but failed to make things smaller,
568                  * free any pages it allocated and our page pointer array
569                  */
570                 for (i = 0; i < nr_pages_ret; i++) {
571                         WARN_ON(pages[i]->mapping);
572                         page_cache_release(pages[i]);
573                 }
574                 kfree(pages);
575                 pages = NULL;
576                 total_compressed = 0;
577                 nr_pages_ret = 0;
578
579                 /* flag the file so we don't compress in the future */
580                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
581                     !(BTRFS_I(inode)->force_compress)) {
582                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
583                 }
584         }
585         if (will_compress) {
586                 *num_added += 1;
587
588                 /* the async work queues will take care of doing actual
589                  * allocation on disk for these compressed pages,
590                  * and will submit them to the elevator.
591                  */
592                 add_async_extent(async_cow, start, num_bytes,
593                                  total_compressed, pages, nr_pages_ret,
594                                  compress_type);
595
596                 if (start + num_bytes < end) {
597                         start += num_bytes;
598                         pages = NULL;
599                         cond_resched();
600                         goto again;
601                 }
602         } else {
603 cleanup_and_bail_uncompressed:
604                 /*
605                  * No compression, but we still need to write the pages in
606                  * the file we've been given so far.  redirty the locked
607                  * page if it corresponds to our extent and set things up
608                  * for the async work queue to run cow_file_range to do
609                  * the normal delalloc dance
610                  */
611                 if (page_offset(locked_page) >= start &&
612                     page_offset(locked_page) <= end) {
613                         __set_page_dirty_nobuffers(locked_page);
614                         /* unlocked later on in the async handlers */
615                 }
616                 if (redirty)
617                         extent_range_redirty_for_io(inode, start, end);
618                 add_async_extent(async_cow, start, end - start + 1,
619                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
620                 *num_added += 1;
621         }
622
623 out:
624         return ret;
625
626 free_pages_out:
627         for (i = 0; i < nr_pages_ret; i++) {
628                 WARN_ON(pages[i]->mapping);
629                 page_cache_release(pages[i]);
630         }
631         kfree(pages);
632
633         goto out;
634 }
635
636 /*
637  * phase two of compressed writeback.  This is the ordered portion
638  * of the code, which only gets called in the order the work was
639  * queued.  We walk all the async extents created by compress_file_range
640  * and send them down to the disk.
641  */
642 static noinline int submit_compressed_extents(struct inode *inode,
643                                               struct async_cow *async_cow)
644 {
645         struct async_extent *async_extent;
646         u64 alloc_hint = 0;
647         struct btrfs_key ins;
648         struct extent_map *em;
649         struct btrfs_root *root = BTRFS_I(inode)->root;
650         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
651         struct extent_io_tree *io_tree;
652         int ret = 0;
653
654         if (list_empty(&async_cow->extents))
655                 return 0;
656
657 again:
658         while (!list_empty(&async_cow->extents)) {
659                 async_extent = list_entry(async_cow->extents.next,
660                                           struct async_extent, list);
661                 list_del(&async_extent->list);
662
663                 io_tree = &BTRFS_I(inode)->io_tree;
664
665 retry:
666                 /* did the compression code fall back to uncompressed IO? */
667                 if (!async_extent->pages) {
668                         int page_started = 0;
669                         unsigned long nr_written = 0;
670
671                         lock_extent(io_tree, async_extent->start,
672                                          async_extent->start +
673                                          async_extent->ram_size - 1);
674
675                         /* allocate blocks */
676                         ret = cow_file_range(inode, async_cow->locked_page,
677                                              async_extent->start,
678                                              async_extent->start +
679                                              async_extent->ram_size - 1,
680                                              &page_started, &nr_written, 0);
681
682                         /* JDM XXX */
683
684                         /*
685                          * if page_started, cow_file_range inserted an
686                          * inline extent and took care of all the unlocking
687                          * and IO for us.  Otherwise, we need to submit
688                          * all those pages down to the drive.
689                          */
690                         if (!page_started && !ret)
691                                 extent_write_locked_range(io_tree,
692                                                   inode, async_extent->start,
693                                                   async_extent->start +
694                                                   async_extent->ram_size - 1,
695                                                   btrfs_get_extent,
696                                                   WB_SYNC_ALL);
697                         else if (ret)
698                                 unlock_page(async_cow->locked_page);
699                         kfree(async_extent);
700                         cond_resched();
701                         continue;
702                 }
703
704                 lock_extent(io_tree, async_extent->start,
705                             async_extent->start + async_extent->ram_size - 1);
706
707                 ret = btrfs_reserve_extent(root,
708                                            async_extent->compressed_size,
709                                            async_extent->compressed_size,
710                                            0, alloc_hint, &ins, 1, 1);
711                 if (ret) {
712                         int i;
713
714                         for (i = 0; i < async_extent->nr_pages; i++) {
715                                 WARN_ON(async_extent->pages[i]->mapping);
716                                 page_cache_release(async_extent->pages[i]);
717                         }
718                         kfree(async_extent->pages);
719                         async_extent->nr_pages = 0;
720                         async_extent->pages = NULL;
721
722                         if (ret == -ENOSPC) {
723                                 unlock_extent(io_tree, async_extent->start,
724                                               async_extent->start +
725                                               async_extent->ram_size - 1);
726
727                                 /*
728                                  * we need to redirty the pages if we decide to
729                                  * fallback to uncompressed IO, otherwise we
730                                  * will not submit these pages down to lower
731                                  * layers.
732                                  */
733                                 extent_range_redirty_for_io(inode,
734                                                 async_extent->start,
735                                                 async_extent->start +
736                                                 async_extent->ram_size - 1);
737
738                                 goto retry;
739                         }
740                         goto out_free;
741                 }
742
743                 /*
744                  * here we're doing allocation and writeback of the
745                  * compressed pages
746                  */
747                 btrfs_drop_extent_cache(inode, async_extent->start,
748                                         async_extent->start +
749                                         async_extent->ram_size - 1, 0);
750
751                 em = alloc_extent_map();
752                 if (!em) {
753                         ret = -ENOMEM;
754                         goto out_free_reserve;
755                 }
756                 em->start = async_extent->start;
757                 em->len = async_extent->ram_size;
758                 em->orig_start = em->start;
759                 em->mod_start = em->start;
760                 em->mod_len = em->len;
761
762                 em->block_start = ins.objectid;
763                 em->block_len = ins.offset;
764                 em->orig_block_len = ins.offset;
765                 em->ram_bytes = async_extent->ram_size;
766                 em->bdev = root->fs_info->fs_devices->latest_bdev;
767                 em->compress_type = async_extent->compress_type;
768                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
769                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
770                 em->generation = -1;
771
772                 while (1) {
773                         write_lock(&em_tree->lock);
774                         ret = add_extent_mapping(em_tree, em, 1);
775                         write_unlock(&em_tree->lock);
776                         if (ret != -EEXIST) {
777                                 free_extent_map(em);
778                                 break;
779                         }
780                         btrfs_drop_extent_cache(inode, async_extent->start,
781                                                 async_extent->start +
782                                                 async_extent->ram_size - 1, 0);
783                 }
784
785                 if (ret)
786                         goto out_free_reserve;
787
788                 ret = btrfs_add_ordered_extent_compress(inode,
789                                                 async_extent->start,
790                                                 ins.objectid,
791                                                 async_extent->ram_size,
792                                                 ins.offset,
793                                                 BTRFS_ORDERED_COMPRESSED,
794                                                 async_extent->compress_type);
795                 if (ret) {
796                         btrfs_drop_extent_cache(inode, async_extent->start,
797                                                 async_extent->start +
798                                                 async_extent->ram_size - 1, 0);
799                         goto out_free_reserve;
800                 }
801
802                 /*
803                  * clear dirty, set writeback and unlock the pages.
804                  */
805                 extent_clear_unlock_delalloc(inode, async_extent->start,
806                                 async_extent->start +
807                                 async_extent->ram_size - 1,
808                                 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
809                                 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
810                                 PAGE_SET_WRITEBACK);
811                 ret = btrfs_submit_compressed_write(inode,
812                                     async_extent->start,
813                                     async_extent->ram_size,
814                                     ins.objectid,
815                                     ins.offset, async_extent->pages,
816                                     async_extent->nr_pages);
817                 alloc_hint = ins.objectid + ins.offset;
818                 kfree(async_extent);
819                 if (ret)
820                         goto out;
821                 cond_resched();
822         }
823         ret = 0;
824 out:
825         return ret;
826 out_free_reserve:
827         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
828 out_free:
829         extent_clear_unlock_delalloc(inode, async_extent->start,
830                                      async_extent->start +
831                                      async_extent->ram_size - 1,
832                                      NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
833                                      EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
834                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
835                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
836         kfree(async_extent);
837         goto again;
838 }
839
840 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
841                                       u64 num_bytes)
842 {
843         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
844         struct extent_map *em;
845         u64 alloc_hint = 0;
846
847         read_lock(&em_tree->lock);
848         em = search_extent_mapping(em_tree, start, num_bytes);
849         if (em) {
850                 /*
851                  * if block start isn't an actual block number then find the
852                  * first block in this inode and use that as a hint.  If that
853                  * block is also bogus then just don't worry about it.
854                  */
855                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
856                         free_extent_map(em);
857                         em = search_extent_mapping(em_tree, 0, 0);
858                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
859                                 alloc_hint = em->block_start;
860                         if (em)
861                                 free_extent_map(em);
862                 } else {
863                         alloc_hint = em->block_start;
864                         free_extent_map(em);
865                 }
866         }
867         read_unlock(&em_tree->lock);
868
869         return alloc_hint;
870 }
871
872 /*
873  * when extent_io.c finds a delayed allocation range in the file,
874  * the call backs end up in this code.  The basic idea is to
875  * allocate extents on disk for the range, and create ordered data structs
876  * in ram to track those extents.
877  *
878  * locked_page is the page that writepage had locked already.  We use
879  * it to make sure we don't do extra locks or unlocks.
880  *
881  * *page_started is set to one if we unlock locked_page and do everything
882  * required to start IO on it.  It may be clean and already done with
883  * IO when we return.
884  */
885 static noinline int cow_file_range(struct inode *inode,
886                                    struct page *locked_page,
887                                    u64 start, u64 end, int *page_started,
888                                    unsigned long *nr_written,
889                                    int unlock)
890 {
891         struct btrfs_root *root = BTRFS_I(inode)->root;
892         u64 alloc_hint = 0;
893         u64 num_bytes;
894         unsigned long ram_size;
895         u64 disk_num_bytes;
896         u64 cur_alloc_size;
897         u64 blocksize = root->sectorsize;
898         struct btrfs_key ins;
899         struct extent_map *em;
900         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
901         int ret = 0;
902
903         if (btrfs_is_free_space_inode(inode)) {
904                 WARN_ON_ONCE(1);
905                 ret = -EINVAL;
906                 goto out_unlock;
907         }
908
909         num_bytes = ALIGN(end - start + 1, blocksize);
910         num_bytes = max(blocksize,  num_bytes);
911         disk_num_bytes = num_bytes;
912
913         /* if this is a small write inside eof, kick off defrag */
914         if (num_bytes < 64 * 1024 &&
915             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
916                 btrfs_add_inode_defrag(NULL, inode);
917
918         if (start == 0) {
919                 /* lets try to make an inline extent */
920                 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
921                                             NULL);
922                 if (ret == 0) {
923                         extent_clear_unlock_delalloc(inode, start, end, NULL,
924                                      EXTENT_LOCKED | EXTENT_DELALLOC |
925                                      EXTENT_DEFRAG, PAGE_UNLOCK |
926                                      PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
927                                      PAGE_END_WRITEBACK);
928
929                         *nr_written = *nr_written +
930                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
931                         *page_started = 1;
932                         goto out;
933                 } else if (ret < 0) {
934                         goto out_unlock;
935                 }
936         }
937
938         BUG_ON(disk_num_bytes >
939                btrfs_super_total_bytes(root->fs_info->super_copy));
940
941         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
942         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
943
944         while (disk_num_bytes > 0) {
945                 unsigned long op;
946
947                 cur_alloc_size = disk_num_bytes;
948                 ret = btrfs_reserve_extent(root, cur_alloc_size,
949                                            root->sectorsize, 0, alloc_hint,
950                                            &ins, 1, 1);
951                 if (ret < 0)
952                         goto out_unlock;
953
954                 em = alloc_extent_map();
955                 if (!em) {
956                         ret = -ENOMEM;
957                         goto out_reserve;
958                 }
959                 em->start = start;
960                 em->orig_start = em->start;
961                 ram_size = ins.offset;
962                 em->len = ins.offset;
963                 em->mod_start = em->start;
964                 em->mod_len = em->len;
965
966                 em->block_start = ins.objectid;
967                 em->block_len = ins.offset;
968                 em->orig_block_len = ins.offset;
969                 em->ram_bytes = ram_size;
970                 em->bdev = root->fs_info->fs_devices->latest_bdev;
971                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
972                 em->generation = -1;
973
974                 while (1) {
975                         write_lock(&em_tree->lock);
976                         ret = add_extent_mapping(em_tree, em, 1);
977                         write_unlock(&em_tree->lock);
978                         if (ret != -EEXIST) {
979                                 free_extent_map(em);
980                                 break;
981                         }
982                         btrfs_drop_extent_cache(inode, start,
983                                                 start + ram_size - 1, 0);
984                 }
985                 if (ret)
986                         goto out_reserve;
987
988                 cur_alloc_size = ins.offset;
989                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
990                                                ram_size, cur_alloc_size, 0);
991                 if (ret)
992                         goto out_drop_extent_cache;
993
994                 if (root->root_key.objectid ==
995                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
996                         ret = btrfs_reloc_clone_csums(inode, start,
997                                                       cur_alloc_size);
998                         if (ret)
999                                 goto out_drop_extent_cache;
1000                 }
1001
1002                 if (disk_num_bytes < cur_alloc_size)
1003                         break;
1004
1005                 /* we're not doing compressed IO, don't unlock the first
1006                  * page (which the caller expects to stay locked), don't
1007                  * clear any dirty bits and don't set any writeback bits
1008                  *
1009                  * Do set the Private2 bit so we know this page was properly
1010                  * setup for writepage
1011                  */
1012                 op = unlock ? PAGE_UNLOCK : 0;
1013                 op |= PAGE_SET_PRIVATE2;
1014
1015                 extent_clear_unlock_delalloc(inode, start,
1016                                              start + ram_size - 1, locked_page,
1017                                              EXTENT_LOCKED | EXTENT_DELALLOC,
1018                                              op);
1019                 disk_num_bytes -= cur_alloc_size;
1020                 num_bytes -= cur_alloc_size;
1021                 alloc_hint = ins.objectid + ins.offset;
1022                 start += cur_alloc_size;
1023         }
1024 out:
1025         return ret;
1026
1027 out_drop_extent_cache:
1028         btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1029 out_reserve:
1030         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1031 out_unlock:
1032         extent_clear_unlock_delalloc(inode, start, end, locked_page,
1033                                      EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1034                                      EXTENT_DELALLOC | EXTENT_DEFRAG,
1035                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1036                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1037         goto out;
1038 }
1039
1040 /*
1041  * work queue call back to started compression on a file and pages
1042  */
1043 static noinline void async_cow_start(struct btrfs_work *work)
1044 {
1045         struct async_cow *async_cow;
1046         int num_added = 0;
1047         async_cow = container_of(work, struct async_cow, work);
1048
1049         compress_file_range(async_cow->inode, async_cow->locked_page,
1050                             async_cow->start, async_cow->end, async_cow,
1051                             &num_added);
1052         if (num_added == 0) {
1053                 btrfs_add_delayed_iput(async_cow->inode);
1054                 async_cow->inode = NULL;
1055         }
1056 }
1057
1058 /*
1059  * work queue call back to submit previously compressed pages
1060  */
1061 static noinline void async_cow_submit(struct btrfs_work *work)
1062 {
1063         struct async_cow *async_cow;
1064         struct btrfs_root *root;
1065         unsigned long nr_pages;
1066
1067         async_cow = container_of(work, struct async_cow, work);
1068
1069         root = async_cow->root;
1070         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1071                 PAGE_CACHE_SHIFT;
1072
1073         if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1074             5 * 1024 * 1024 &&
1075             waitqueue_active(&root->fs_info->async_submit_wait))
1076                 wake_up(&root->fs_info->async_submit_wait);
1077
1078         if (async_cow->inode)
1079                 submit_compressed_extents(async_cow->inode, async_cow);
1080 }
1081
1082 static noinline void async_cow_free(struct btrfs_work *work)
1083 {
1084         struct async_cow *async_cow;
1085         async_cow = container_of(work, struct async_cow, work);
1086         if (async_cow->inode)
1087                 btrfs_add_delayed_iput(async_cow->inode);
1088         kfree(async_cow);
1089 }
1090
1091 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1092                                 u64 start, u64 end, int *page_started,
1093                                 unsigned long *nr_written)
1094 {
1095         struct async_cow *async_cow;
1096         struct btrfs_root *root = BTRFS_I(inode)->root;
1097         unsigned long nr_pages;
1098         u64 cur_end;
1099         int limit = 10 * 1024 * 1024;
1100
1101         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1102                          1, 0, NULL, GFP_NOFS);
1103         while (start < end) {
1104                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1105                 BUG_ON(!async_cow); /* -ENOMEM */
1106                 async_cow->inode = igrab(inode);
1107                 async_cow->root = root;
1108                 async_cow->locked_page = locked_page;
1109                 async_cow->start = start;
1110
1111                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1112                     !btrfs_test_opt(root, FORCE_COMPRESS))
1113                         cur_end = end;
1114                 else
1115                         cur_end = min(end, start + 512 * 1024 - 1);
1116
1117                 async_cow->end = cur_end;
1118                 INIT_LIST_HEAD(&async_cow->extents);
1119
1120                 btrfs_init_work(&async_cow->work,
1121                                 btrfs_delalloc_helper,
1122                                 async_cow_start, async_cow_submit,
1123                                 async_cow_free);
1124
1125                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1126                         PAGE_CACHE_SHIFT;
1127                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1128
1129                 btrfs_queue_work(root->fs_info->delalloc_workers,
1130                                  &async_cow->work);
1131
1132                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1133                         wait_event(root->fs_info->async_submit_wait,
1134                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1135                             limit));
1136                 }
1137
1138                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1139                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1140                         wait_event(root->fs_info->async_submit_wait,
1141                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1142                            0));
1143                 }
1144
1145                 *nr_written += nr_pages;
1146                 start = cur_end + 1;
1147         }
1148         *page_started = 1;
1149         return 0;
1150 }
1151
1152 static noinline int csum_exist_in_range(struct btrfs_root *root,
1153                                         u64 bytenr, u64 num_bytes)
1154 {
1155         int ret;
1156         struct btrfs_ordered_sum *sums;
1157         LIST_HEAD(list);
1158
1159         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1160                                        bytenr + num_bytes - 1, &list, 0);
1161         if (ret == 0 && list_empty(&list))
1162                 return 0;
1163
1164         while (!list_empty(&list)) {
1165                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1166                 list_del(&sums->list);
1167                 kfree(sums);
1168         }
1169         return 1;
1170 }
1171
1172 /*
1173  * when nowcow writeback call back.  This checks for snapshots or COW copies
1174  * of the extents that exist in the file, and COWs the file as required.
1175  *
1176  * If no cow copies or snapshots exist, we write directly to the existing
1177  * blocks on disk
1178  */
1179 static noinline int run_delalloc_nocow(struct inode *inode,
1180                                        struct page *locked_page,
1181                               u64 start, u64 end, int *page_started, int force,
1182                               unsigned long *nr_written)
1183 {
1184         struct btrfs_root *root = BTRFS_I(inode)->root;
1185         struct btrfs_trans_handle *trans;
1186         struct extent_buffer *leaf;
1187         struct btrfs_path *path;
1188         struct btrfs_file_extent_item *fi;
1189         struct btrfs_key found_key;
1190         u64 cow_start;
1191         u64 cur_offset;
1192         u64 extent_end;
1193         u64 extent_offset;
1194         u64 disk_bytenr;
1195         u64 num_bytes;
1196         u64 disk_num_bytes;
1197         u64 ram_bytes;
1198         int extent_type;
1199         int ret, err;
1200         int type;
1201         int nocow;
1202         int check_prev = 1;
1203         bool nolock;
1204         u64 ino = btrfs_ino(inode);
1205
1206         path = btrfs_alloc_path();
1207         if (!path) {
1208                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1209                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1210                                              EXTENT_DO_ACCOUNTING |
1211                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1212                                              PAGE_CLEAR_DIRTY |
1213                                              PAGE_SET_WRITEBACK |
1214                                              PAGE_END_WRITEBACK);
1215                 return -ENOMEM;
1216         }
1217
1218         nolock = btrfs_is_free_space_inode(inode);
1219
1220         if (nolock)
1221                 trans = btrfs_join_transaction_nolock(root);
1222         else
1223                 trans = btrfs_join_transaction(root);
1224
1225         if (IS_ERR(trans)) {
1226                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1227                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1228                                              EXTENT_DO_ACCOUNTING |
1229                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1230                                              PAGE_CLEAR_DIRTY |
1231                                              PAGE_SET_WRITEBACK |
1232                                              PAGE_END_WRITEBACK);
1233                 btrfs_free_path(path);
1234                 return PTR_ERR(trans);
1235         }
1236
1237         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1238
1239         cow_start = (u64)-1;
1240         cur_offset = start;
1241         while (1) {
1242                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1243                                                cur_offset, 0);
1244                 if (ret < 0)
1245                         goto error;
1246                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1247                         leaf = path->nodes[0];
1248                         btrfs_item_key_to_cpu(leaf, &found_key,
1249                                               path->slots[0] - 1);
1250                         if (found_key.objectid == ino &&
1251                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1252                                 path->slots[0]--;
1253                 }
1254                 check_prev = 0;
1255 next_slot:
1256                 leaf = path->nodes[0];
1257                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1258                         ret = btrfs_next_leaf(root, path);
1259                         if (ret < 0)
1260                                 goto error;
1261                         if (ret > 0)
1262                                 break;
1263                         leaf = path->nodes[0];
1264                 }
1265
1266                 nocow = 0;
1267                 disk_bytenr = 0;
1268                 num_bytes = 0;
1269                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1270
1271                 if (found_key.objectid > ino ||
1272                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1273                     found_key.offset > end)
1274                         break;
1275
1276                 if (found_key.offset > cur_offset) {
1277                         extent_end = found_key.offset;
1278                         extent_type = 0;
1279                         goto out_check;
1280                 }
1281
1282                 fi = btrfs_item_ptr(leaf, path->slots[0],
1283                                     struct btrfs_file_extent_item);
1284                 extent_type = btrfs_file_extent_type(leaf, fi);
1285
1286                 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1287                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1288                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1289                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1290                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1291                         extent_end = found_key.offset +
1292                                 btrfs_file_extent_num_bytes(leaf, fi);
1293                         disk_num_bytes =
1294                                 btrfs_file_extent_disk_num_bytes(leaf, fi);
1295                         if (extent_end <= start) {
1296                                 path->slots[0]++;
1297                                 goto next_slot;
1298                         }
1299                         if (disk_bytenr == 0)
1300                                 goto out_check;
1301                         if (btrfs_file_extent_compression(leaf, fi) ||
1302                             btrfs_file_extent_encryption(leaf, fi) ||
1303                             btrfs_file_extent_other_encoding(leaf, fi))
1304                                 goto out_check;
1305                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1306                                 goto out_check;
1307                         if (btrfs_extent_readonly(root, disk_bytenr))
1308                                 goto out_check;
1309                         if (btrfs_cross_ref_exist(trans, root, ino,
1310                                                   found_key.offset -
1311                                                   extent_offset, disk_bytenr))
1312                                 goto out_check;
1313                         disk_bytenr += extent_offset;
1314                         disk_bytenr += cur_offset - found_key.offset;
1315                         num_bytes = min(end + 1, extent_end) - cur_offset;
1316                         /*
1317                          * if there are pending snapshots for this root,
1318                          * we fall into common COW way.
1319                          */
1320                         if (!nolock) {
1321                                 err = btrfs_start_nocow_write(root);
1322                                 if (!err)
1323                                         goto out_check;
1324                         }
1325                         /*
1326                          * force cow if csum exists in the range.
1327                          * this ensure that csum for a given extent are
1328                          * either valid or do not exist.
1329                          */
1330                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1331                                 goto out_check;
1332                         nocow = 1;
1333                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1334                         extent_end = found_key.offset +
1335                                 btrfs_file_extent_inline_len(leaf,
1336                                                      path->slots[0], fi);
1337                         extent_end = ALIGN(extent_end, root->sectorsize);
1338                 } else {
1339                         BUG_ON(1);
1340                 }
1341 out_check:
1342                 if (extent_end <= start) {
1343                         path->slots[0]++;
1344                         if (!nolock && nocow)
1345                                 btrfs_end_nocow_write(root);
1346                         goto next_slot;
1347                 }
1348                 if (!nocow) {
1349                         if (cow_start == (u64)-1)
1350                                 cow_start = cur_offset;
1351                         cur_offset = extent_end;
1352                         if (cur_offset > end)
1353                                 break;
1354                         path->slots[0]++;
1355                         goto next_slot;
1356                 }
1357
1358                 btrfs_release_path(path);
1359                 if (cow_start != (u64)-1) {
1360                         ret = cow_file_range(inode, locked_page,
1361                                              cow_start, found_key.offset - 1,
1362                                              page_started, nr_written, 1);
1363                         if (ret) {
1364                                 if (!nolock && nocow)
1365                                         btrfs_end_nocow_write(root);
1366                                 goto error;
1367                         }
1368                         cow_start = (u64)-1;
1369                 }
1370
1371                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1372                         struct extent_map *em;
1373                         struct extent_map_tree *em_tree;
1374                         em_tree = &BTRFS_I(inode)->extent_tree;
1375                         em = alloc_extent_map();
1376                         BUG_ON(!em); /* -ENOMEM */
1377                         em->start = cur_offset;
1378                         em->orig_start = found_key.offset - extent_offset;
1379                         em->len = num_bytes;
1380                         em->block_len = num_bytes;
1381                         em->block_start = disk_bytenr;
1382                         em->orig_block_len = disk_num_bytes;
1383                         em->ram_bytes = ram_bytes;
1384                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1385                         em->mod_start = em->start;
1386                         em->mod_len = em->len;
1387                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1388                         set_bit(EXTENT_FLAG_FILLING, &em->flags);
1389                         em->generation = -1;
1390                         while (1) {
1391                                 write_lock(&em_tree->lock);
1392                                 ret = add_extent_mapping(em_tree, em, 1);
1393                                 write_unlock(&em_tree->lock);
1394                                 if (ret != -EEXIST) {
1395                                         free_extent_map(em);
1396                                         break;
1397                                 }
1398                                 btrfs_drop_extent_cache(inode, em->start,
1399                                                 em->start + em->len - 1, 0);
1400                         }
1401                         type = BTRFS_ORDERED_PREALLOC;
1402                 } else {
1403                         type = BTRFS_ORDERED_NOCOW;
1404                 }
1405
1406                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1407                                                num_bytes, num_bytes, type);
1408                 BUG_ON(ret); /* -ENOMEM */
1409
1410                 if (root->root_key.objectid ==
1411                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1412                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1413                                                       num_bytes);
1414                         if (ret) {
1415                                 if (!nolock && nocow)
1416                                         btrfs_end_nocow_write(root);
1417                                 goto error;
1418                         }
1419                 }
1420
1421                 extent_clear_unlock_delalloc(inode, cur_offset,
1422                                              cur_offset + num_bytes - 1,
1423                                              locked_page, EXTENT_LOCKED |
1424                                              EXTENT_DELALLOC, PAGE_UNLOCK |
1425                                              PAGE_SET_PRIVATE2);
1426                 if (!nolock && nocow)
1427                         btrfs_end_nocow_write(root);
1428                 cur_offset = extent_end;
1429                 if (cur_offset > end)
1430                         break;
1431         }
1432         btrfs_release_path(path);
1433
1434         if (cur_offset <= end && cow_start == (u64)-1) {
1435                 cow_start = cur_offset;
1436                 cur_offset = end;
1437         }
1438
1439         if (cow_start != (u64)-1) {
1440                 ret = cow_file_range(inode, locked_page, cow_start, end,
1441                                      page_started, nr_written, 1);
1442                 if (ret)
1443                         goto error;
1444         }
1445
1446 error:
1447         err = btrfs_end_transaction(trans, root);
1448         if (!ret)
1449                 ret = err;
1450
1451         if (ret && cur_offset < end)
1452                 extent_clear_unlock_delalloc(inode, cur_offset, end,
1453                                              locked_page, EXTENT_LOCKED |
1454                                              EXTENT_DELALLOC | EXTENT_DEFRAG |
1455                                              EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1456                                              PAGE_CLEAR_DIRTY |
1457                                              PAGE_SET_WRITEBACK |
1458                                              PAGE_END_WRITEBACK);
1459         btrfs_free_path(path);
1460         return ret;
1461 }
1462
1463 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1464 {
1465
1466         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1467             !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1468                 return 0;
1469
1470         /*
1471          * @defrag_bytes is a hint value, no spinlock held here,
1472          * if is not zero, it means the file is defragging.
1473          * Force cow if given extent needs to be defragged.
1474          */
1475         if (BTRFS_I(inode)->defrag_bytes &&
1476             test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1477                            EXTENT_DEFRAG, 0, NULL))
1478                 return 1;
1479
1480         return 0;
1481 }
1482
1483 /*
1484  * extent_io.c call back to do delayed allocation processing
1485  */
1486 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1487                               u64 start, u64 end, int *page_started,
1488                               unsigned long *nr_written)
1489 {
1490         int ret;
1491         int force_cow = need_force_cow(inode, start, end);
1492
1493         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1494                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1495                                          page_started, 1, nr_written);
1496         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1497                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1498                                          page_started, 0, nr_written);
1499         } else if (!inode_need_compress(inode)) {
1500                 ret = cow_file_range(inode, locked_page, start, end,
1501                                       page_started, nr_written, 1);
1502         } else {
1503                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1504                         &BTRFS_I(inode)->runtime_flags);
1505                 ret = cow_file_range_async(inode, locked_page, start, end,
1506                                            page_started, nr_written);
1507         }
1508         return ret;
1509 }
1510
1511 static void btrfs_split_extent_hook(struct inode *inode,
1512                                     struct extent_state *orig, u64 split)
1513 {
1514         /* not delalloc, ignore it */
1515         if (!(orig->state & EXTENT_DELALLOC))
1516                 return;
1517
1518         spin_lock(&BTRFS_I(inode)->lock);
1519         BTRFS_I(inode)->outstanding_extents++;
1520         spin_unlock(&BTRFS_I(inode)->lock);
1521 }
1522
1523 /*
1524  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1525  * extents so we can keep track of new extents that are just merged onto old
1526  * extents, such as when we are doing sequential writes, so we can properly
1527  * account for the metadata space we'll need.
1528  */
1529 static void btrfs_merge_extent_hook(struct inode *inode,
1530                                     struct extent_state *new,
1531                                     struct extent_state *other)
1532 {
1533         /* not delalloc, ignore it */
1534         if (!(other->state & EXTENT_DELALLOC))
1535                 return;
1536
1537         spin_lock(&BTRFS_I(inode)->lock);
1538         BTRFS_I(inode)->outstanding_extents--;
1539         spin_unlock(&BTRFS_I(inode)->lock);
1540 }
1541
1542 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1543                                       struct inode *inode)
1544 {
1545         spin_lock(&root->delalloc_lock);
1546         if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1547                 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1548                               &root->delalloc_inodes);
1549                 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1550                         &BTRFS_I(inode)->runtime_flags);
1551                 root->nr_delalloc_inodes++;
1552                 if (root->nr_delalloc_inodes == 1) {
1553                         spin_lock(&root->fs_info->delalloc_root_lock);
1554                         BUG_ON(!list_empty(&root->delalloc_root));
1555                         list_add_tail(&root->delalloc_root,
1556                                       &root->fs_info->delalloc_roots);
1557                         spin_unlock(&root->fs_info->delalloc_root_lock);
1558                 }
1559         }
1560         spin_unlock(&root->delalloc_lock);
1561 }
1562
1563 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1564                                      struct inode *inode)
1565 {
1566         spin_lock(&root->delalloc_lock);
1567         if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1568                 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1569                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1570                           &BTRFS_I(inode)->runtime_flags);
1571                 root->nr_delalloc_inodes--;
1572                 if (!root->nr_delalloc_inodes) {
1573                         spin_lock(&root->fs_info->delalloc_root_lock);
1574                         BUG_ON(list_empty(&root->delalloc_root));
1575                         list_del_init(&root->delalloc_root);
1576                         spin_unlock(&root->fs_info->delalloc_root_lock);
1577                 }
1578         }
1579         spin_unlock(&root->delalloc_lock);
1580 }
1581
1582 /*
1583  * extent_io.c set_bit_hook, used to track delayed allocation
1584  * bytes in this file, and to maintain the list of inodes that
1585  * have pending delalloc work to be done.
1586  */
1587 static void btrfs_set_bit_hook(struct inode *inode,
1588                                struct extent_state *state, unsigned long *bits)
1589 {
1590
1591         if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1592                 WARN_ON(1);
1593         /*
1594          * set_bit and clear bit hooks normally require _irqsave/restore
1595          * but in this case, we are only testing for the DELALLOC
1596          * bit, which is only set or cleared with irqs on
1597          */
1598         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1599                 struct btrfs_root *root = BTRFS_I(inode)->root;
1600                 u64 len = state->end + 1 - state->start;
1601                 bool do_list = !btrfs_is_free_space_inode(inode);
1602
1603                 if (*bits & EXTENT_FIRST_DELALLOC) {
1604                         *bits &= ~EXTENT_FIRST_DELALLOC;
1605                 } else {
1606                         spin_lock(&BTRFS_I(inode)->lock);
1607                         BTRFS_I(inode)->outstanding_extents++;
1608                         spin_unlock(&BTRFS_I(inode)->lock);
1609                 }
1610
1611                 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1612                                      root->fs_info->delalloc_batch);
1613                 spin_lock(&BTRFS_I(inode)->lock);
1614                 BTRFS_I(inode)->delalloc_bytes += len;
1615                 if (*bits & EXTENT_DEFRAG)
1616                         BTRFS_I(inode)->defrag_bytes += len;
1617                 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1618                                          &BTRFS_I(inode)->runtime_flags))
1619                         btrfs_add_delalloc_inodes(root, inode);
1620                 spin_unlock(&BTRFS_I(inode)->lock);
1621         }
1622 }
1623
1624 /*
1625  * extent_io.c clear_bit_hook, see set_bit_hook for why
1626  */
1627 static void btrfs_clear_bit_hook(struct inode *inode,
1628                                  struct extent_state *state,
1629                                  unsigned long *bits)
1630 {
1631         u64 len = state->end + 1 - state->start;
1632
1633         spin_lock(&BTRFS_I(inode)->lock);
1634         if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1635                 BTRFS_I(inode)->defrag_bytes -= len;
1636         spin_unlock(&BTRFS_I(inode)->lock);
1637
1638         /*
1639          * set_bit and clear bit hooks normally require _irqsave/restore
1640          * but in this case, we are only testing for the DELALLOC
1641          * bit, which is only set or cleared with irqs on
1642          */
1643         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1644                 struct btrfs_root *root = BTRFS_I(inode)->root;
1645                 bool do_list = !btrfs_is_free_space_inode(inode);
1646
1647                 if (*bits & EXTENT_FIRST_DELALLOC) {
1648                         *bits &= ~EXTENT_FIRST_DELALLOC;
1649                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1650                         spin_lock(&BTRFS_I(inode)->lock);
1651                         BTRFS_I(inode)->outstanding_extents--;
1652                         spin_unlock(&BTRFS_I(inode)->lock);
1653                 }
1654
1655                 /*
1656                  * We don't reserve metadata space for space cache inodes so we
1657                  * don't need to call dellalloc_release_metadata if there is an
1658                  * error.
1659                  */
1660                 if (*bits & EXTENT_DO_ACCOUNTING &&
1661                     root != root->fs_info->tree_root)
1662                         btrfs_delalloc_release_metadata(inode, len);
1663
1664                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1665                     && do_list && !(state->state & EXTENT_NORESERVE))
1666                         btrfs_free_reserved_data_space(inode, len);
1667
1668                 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1669                                      root->fs_info->delalloc_batch);
1670                 spin_lock(&BTRFS_I(inode)->lock);
1671                 BTRFS_I(inode)->delalloc_bytes -= len;
1672                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1673                     test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1674                              &BTRFS_I(inode)->runtime_flags))
1675                         btrfs_del_delalloc_inode(root, inode);
1676                 spin_unlock(&BTRFS_I(inode)->lock);
1677         }
1678 }
1679
1680 /*
1681  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1682  * we don't create bios that span stripes or chunks
1683  */
1684 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1685                          size_t size, struct bio *bio,
1686                          unsigned long bio_flags)
1687 {
1688         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1689         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1690         u64 length = 0;
1691         u64 map_length;
1692         int ret;
1693
1694         if (bio_flags & EXTENT_BIO_COMPRESSED)
1695                 return 0;
1696
1697         length = bio->bi_iter.bi_size;
1698         map_length = length;
1699         ret = btrfs_map_block(root->fs_info, rw, logical,
1700                               &map_length, NULL, 0);
1701         /* Will always return 0 with map_multi == NULL */
1702         BUG_ON(ret < 0);
1703         if (map_length < length + size)
1704                 return 1;
1705         return 0;
1706 }
1707
1708 /*
1709  * in order to insert checksums into the metadata in large chunks,
1710  * we wait until bio submission time.   All the pages in the bio are
1711  * checksummed and sums are attached onto the ordered extent record.
1712  *
1713  * At IO completion time the cums attached on the ordered extent record
1714  * are inserted into the btree
1715  */
1716 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1717                                     struct bio *bio, int mirror_num,
1718                                     unsigned long bio_flags,
1719                                     u64 bio_offset)
1720 {
1721         struct btrfs_root *root = BTRFS_I(inode)->root;
1722         int ret = 0;
1723
1724         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1725         BUG_ON(ret); /* -ENOMEM */
1726         return 0;
1727 }
1728
1729 /*
1730  * in order to insert checksums into the metadata in large chunks,
1731  * we wait until bio submission time.   All the pages in the bio are
1732  * checksummed and sums are attached onto the ordered extent record.
1733  *
1734  * At IO completion time the cums attached on the ordered extent record
1735  * are inserted into the btree
1736  */
1737 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1738                           int mirror_num, unsigned long bio_flags,
1739                           u64 bio_offset)
1740 {
1741         struct btrfs_root *root = BTRFS_I(inode)->root;
1742         int ret;
1743
1744         ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1745         if (ret)
1746                 bio_endio(bio, ret);
1747         return ret;
1748 }
1749
1750 /*
1751  * extent_io.c submission hook. This does the right thing for csum calculation
1752  * on write, or reading the csums from the tree before a read
1753  */
1754 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1755                           int mirror_num, unsigned long bio_flags,
1756                           u64 bio_offset)
1757 {
1758         struct btrfs_root *root = BTRFS_I(inode)->root;
1759         int ret = 0;
1760         int skip_sum;
1761         int metadata = 0;
1762         int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1763
1764         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1765
1766         if (btrfs_is_free_space_inode(inode))
1767                 metadata = 2;
1768
1769         if (!(rw & REQ_WRITE)) {
1770                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1771                 if (ret)
1772                         goto out;
1773
1774                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1775                         ret = btrfs_submit_compressed_read(inode, bio,
1776                                                            mirror_num,
1777                                                            bio_flags);
1778                         goto out;
1779                 } else if (!skip_sum) {
1780                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1781                         if (ret)
1782                                 goto out;
1783                 }
1784                 goto mapit;
1785         } else if (async && !skip_sum) {
1786                 /* csum items have already been cloned */
1787                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1788                         goto mapit;
1789                 /* we're doing a write, do the async checksumming */
1790                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1791                                    inode, rw, bio, mirror_num,
1792                                    bio_flags, bio_offset,
1793                                    __btrfs_submit_bio_start,
1794                                    __btrfs_submit_bio_done);
1795                 goto out;
1796         } else if (!skip_sum) {
1797                 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1798                 if (ret)
1799                         goto out;
1800         }
1801
1802 mapit:
1803         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1804
1805 out:
1806         if (ret < 0)
1807                 bio_endio(bio, ret);
1808         return ret;
1809 }
1810
1811 /*
1812  * given a list of ordered sums record them in the inode.  This happens
1813  * at IO completion time based on sums calculated at bio submission time.
1814  */
1815 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1816                              struct inode *inode, u64 file_offset,
1817                              struct list_head *list)
1818 {
1819         struct btrfs_ordered_sum *sum;
1820
1821         list_for_each_entry(sum, list, list) {
1822                 trans->adding_csums = 1;
1823                 btrfs_csum_file_blocks(trans,
1824                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1825                 trans->adding_csums = 0;
1826         }
1827         return 0;
1828 }
1829
1830 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1831                               struct extent_state **cached_state)
1832 {
1833         WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1834         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1835                                    cached_state, GFP_NOFS);
1836 }
1837
1838 /* see btrfs_writepage_start_hook for details on why this is required */
1839 struct btrfs_writepage_fixup {
1840         struct page *page;
1841         struct btrfs_work work;
1842 };
1843
1844 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1845 {
1846         struct btrfs_writepage_fixup *fixup;
1847         struct btrfs_ordered_extent *ordered;
1848         struct extent_state *cached_state = NULL;
1849         struct page *page;
1850         struct inode *inode;
1851         u64 page_start;
1852         u64 page_end;
1853         int ret;
1854
1855         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1856         page = fixup->page;
1857 again:
1858         lock_page(page);
1859         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1860                 ClearPageChecked(page);
1861                 goto out_page;
1862         }
1863
1864         inode = page->mapping->host;
1865         page_start = page_offset(page);
1866         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1867
1868         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1869                          &cached_state);
1870
1871         /* already ordered? We're done */
1872         if (PagePrivate2(page))
1873                 goto out;
1874
1875         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1876         if (ordered) {
1877                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1878                                      page_end, &cached_state, GFP_NOFS);
1879                 unlock_page(page);
1880                 btrfs_start_ordered_extent(inode, ordered, 1);
1881                 btrfs_put_ordered_extent(ordered);
1882                 goto again;
1883         }
1884
1885         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1886         if (ret) {
1887                 mapping_set_error(page->mapping, ret);
1888                 end_extent_writepage(page, ret, page_start, page_end);
1889                 ClearPageChecked(page);
1890                 goto out;
1891          }
1892
1893         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1894         ClearPageChecked(page);
1895         set_page_dirty(page);
1896 out:
1897         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1898                              &cached_state, GFP_NOFS);
1899 out_page:
1900         unlock_page(page);
1901         page_cache_release(page);
1902         kfree(fixup);
1903 }
1904
1905 /*
1906  * There are a few paths in the higher layers of the kernel that directly
1907  * set the page dirty bit without asking the filesystem if it is a
1908  * good idea.  This causes problems because we want to make sure COW
1909  * properly happens and the data=ordered rules are followed.
1910  *
1911  * In our case any range that doesn't have the ORDERED bit set
1912  * hasn't been properly setup for IO.  We kick off an async process
1913  * to fix it up.  The async helper will wait for ordered extents, set
1914  * the delalloc bit and make it safe to write the page.
1915  */
1916 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1917 {
1918         struct inode *inode = page->mapping->host;
1919         struct btrfs_writepage_fixup *fixup;
1920         struct btrfs_root *root = BTRFS_I(inode)->root;
1921
1922         /* this page is properly in the ordered list */
1923         if (TestClearPagePrivate2(page))
1924                 return 0;
1925
1926         if (PageChecked(page))
1927                 return -EAGAIN;
1928
1929         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1930         if (!fixup)
1931                 return -EAGAIN;
1932
1933         SetPageChecked(page);
1934         page_cache_get(page);
1935         btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1936                         btrfs_writepage_fixup_worker, NULL, NULL);
1937         fixup->page = page;
1938         btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1939         return -EBUSY;
1940 }
1941
1942 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1943                                        struct inode *inode, u64 file_pos,
1944                                        u64 disk_bytenr, u64 disk_num_bytes,
1945                                        u64 num_bytes, u64 ram_bytes,
1946                                        u8 compression, u8 encryption,
1947                                        u16 other_encoding, int extent_type)
1948 {
1949         struct btrfs_root *root = BTRFS_I(inode)->root;
1950         struct btrfs_file_extent_item *fi;
1951         struct btrfs_path *path;
1952         struct extent_buffer *leaf;
1953         struct btrfs_key ins;
1954         int extent_inserted = 0;
1955         int ret;
1956
1957         path = btrfs_alloc_path();
1958         if (!path)
1959                 return -ENOMEM;
1960
1961         /*
1962          * we may be replacing one extent in the tree with another.
1963          * The new extent is pinned in the extent map, and we don't want
1964          * to drop it from the cache until it is completely in the btree.
1965          *
1966          * So, tell btrfs_drop_extents to leave this extent in the cache.
1967          * the caller is expected to unpin it and allow it to be merged
1968          * with the others.
1969          */
1970         ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1971                                    file_pos + num_bytes, NULL, 0,
1972                                    1, sizeof(*fi), &extent_inserted);
1973         if (ret)
1974                 goto out;
1975
1976         if (!extent_inserted) {
1977                 ins.objectid = btrfs_ino(inode);
1978                 ins.offset = file_pos;
1979                 ins.type = BTRFS_EXTENT_DATA_KEY;
1980
1981                 path->leave_spinning = 1;
1982                 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1983                                               sizeof(*fi));
1984                 if (ret)
1985                         goto out;
1986         }
1987         leaf = path->nodes[0];
1988         fi = btrfs_item_ptr(leaf, path->slots[0],
1989                             struct btrfs_file_extent_item);
1990         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1991         btrfs_set_file_extent_type(leaf, fi, extent_type);
1992         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1993         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1994         btrfs_set_file_extent_offset(leaf, fi, 0);
1995         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1996         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1997         btrfs_set_file_extent_compression(leaf, fi, compression);
1998         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1999         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2000
2001         btrfs_mark_buffer_dirty(leaf);
2002         btrfs_release_path(path);
2003
2004         inode_add_bytes(inode, num_bytes);
2005
2006         ins.objectid = disk_bytenr;
2007         ins.offset = disk_num_bytes;
2008         ins.type = BTRFS_EXTENT_ITEM_KEY;
2009         ret = btrfs_alloc_reserved_file_extent(trans, root,
2010                                         root->root_key.objectid,
2011                                         btrfs_ino(inode), file_pos, &ins);
2012 out:
2013         btrfs_free_path(path);
2014
2015         return ret;
2016 }
2017
2018 /* snapshot-aware defrag */
2019 struct sa_defrag_extent_backref {
2020         struct rb_node node;
2021         struct old_sa_defrag_extent *old;
2022         u64 root_id;
2023         u64 inum;
2024         u64 file_pos;
2025         u64 extent_offset;
2026         u64 num_bytes;
2027         u64 generation;
2028 };
2029
2030 struct old_sa_defrag_extent {
2031         struct list_head list;
2032         struct new_sa_defrag_extent *new;
2033
2034         u64 extent_offset;
2035         u64 bytenr;
2036         u64 offset;
2037         u64 len;
2038         int count;
2039 };
2040
2041 struct new_sa_defrag_extent {
2042         struct rb_root root;
2043         struct list_head head;
2044         struct btrfs_path *path;
2045         struct inode *inode;
2046         u64 file_pos;
2047         u64 len;
2048         u64 bytenr;
2049         u64 disk_len;
2050         u8 compress_type;
2051 };
2052
2053 static int backref_comp(struct sa_defrag_extent_backref *b1,
2054                         struct sa_defrag_extent_backref *b2)
2055 {
2056         if (b1->root_id < b2->root_id)
2057                 return -1;
2058         else if (b1->root_id > b2->root_id)
2059                 return 1;
2060
2061         if (b1->inum < b2->inum)
2062                 return -1;
2063         else if (b1->inum > b2->inum)
2064                 return 1;
2065
2066         if (b1->file_pos < b2->file_pos)
2067                 return -1;
2068         else if (b1->file_pos > b2->file_pos)
2069                 return 1;
2070
2071         /*
2072          * [------------------------------] ===> (a range of space)
2073          *     |<--->|   |<---->| =============> (fs/file tree A)
2074          * |<---------------------------->| ===> (fs/file tree B)
2075          *
2076          * A range of space can refer to two file extents in one tree while
2077          * refer to only one file extent in another tree.
2078          *
2079          * So we may process a disk offset more than one time(two extents in A)
2080          * and locate at the same extent(one extent in B), then insert two same
2081          * backrefs(both refer to the extent in B).
2082          */
2083         return 0;
2084 }
2085
2086 static void backref_insert(struct rb_root *root,
2087                            struct sa_defrag_extent_backref *backref)
2088 {
2089         struct rb_node **p = &root->rb_node;
2090         struct rb_node *parent = NULL;
2091         struct sa_defrag_extent_backref *entry;
2092         int ret;
2093
2094         while (*p) {
2095                 parent = *p;
2096                 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2097
2098                 ret = backref_comp(backref, entry);
2099                 if (ret < 0)
2100                         p = &(*p)->rb_left;
2101                 else
2102                         p = &(*p)->rb_right;
2103         }
2104
2105         rb_link_node(&backref->node, parent, p);
2106         rb_insert_color(&backref->node, root);
2107 }
2108
2109 /*
2110  * Note the backref might has changed, and in this case we just return 0.
2111  */
2112 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2113                                        void *ctx)
2114 {
2115         struct btrfs_file_extent_item *extent;
2116         struct btrfs_fs_info *fs_info;
2117         struct old_sa_defrag_extent *old = ctx;
2118         struct new_sa_defrag_extent *new = old->new;
2119         struct btrfs_path *path = new->path;
2120         struct btrfs_key key;
2121         struct btrfs_root *root;
2122         struct sa_defrag_extent_backref *backref;
2123         struct extent_buffer *leaf;
2124         struct inode *inode = new->inode;
2125         int slot;
2126         int ret;
2127         u64 extent_offset;
2128         u64 num_bytes;
2129
2130         if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2131             inum == btrfs_ino(inode))
2132                 return 0;
2133
2134         key.objectid = root_id;
2135         key.type = BTRFS_ROOT_ITEM_KEY;
2136         key.offset = (u64)-1;
2137
2138         fs_info = BTRFS_I(inode)->root->fs_info;
2139         root = btrfs_read_fs_root_no_name(fs_info, &key);
2140         if (IS_ERR(root)) {
2141                 if (PTR_ERR(root) == -ENOENT)
2142                         return 0;
2143                 WARN_ON(1);
2144                 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2145                          inum, offset, root_id);
2146                 return PTR_ERR(root);
2147         }
2148
2149         key.objectid = inum;
2150         key.type = BTRFS_EXTENT_DATA_KEY;
2151         if (offset > (u64)-1 << 32)
2152                 key.offset = 0;
2153         else
2154                 key.offset = offset;
2155
2156         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157         if (WARN_ON(ret < 0))
2158                 return ret;
2159         ret = 0;
2160
2161         while (1) {
2162                 cond_resched();
2163
2164                 leaf = path->nodes[0];
2165                 slot = path->slots[0];
2166
2167                 if (slot >= btrfs_header_nritems(leaf)) {
2168                         ret = btrfs_next_leaf(root, path);
2169                         if (ret < 0) {
2170                                 goto out;
2171                         } else if (ret > 0) {
2172                                 ret = 0;
2173                                 goto out;
2174                         }
2175                         continue;
2176                 }
2177
2178                 path->slots[0]++;
2179
2180                 btrfs_item_key_to_cpu(leaf, &key, slot);
2181
2182                 if (key.objectid > inum)
2183                         goto out;
2184
2185                 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2186                         continue;
2187
2188                 extent = btrfs_item_ptr(leaf, slot,
2189                                         struct btrfs_file_extent_item);
2190
2191                 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2192                         continue;
2193
2194                 /*
2195                  * 'offset' refers to the exact key.offset,
2196                  * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2197                  * (key.offset - extent_offset).
2198                  */
2199                 if (key.offset != offset)
2200                         continue;
2201
2202                 extent_offset = btrfs_file_extent_offset(leaf, extent);
2203                 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2204
2205                 if (extent_offset >= old->extent_offset + old->offset +
2206                     old->len || extent_offset + num_bytes <=
2207                     old->extent_offset + old->offset)
2208                         continue;
2209                 break;
2210         }
2211
2212         backref = kmalloc(sizeof(*backref), GFP_NOFS);
2213         if (!backref) {
2214                 ret = -ENOENT;
2215                 goto out;
2216         }
2217
2218         backref->root_id = root_id;
2219         backref->inum = inum;
2220         backref->file_pos = offset;
2221         backref->num_bytes = num_bytes;
2222         backref->extent_offset = extent_offset;
2223         backref->generation = btrfs_file_extent_generation(leaf, extent);
2224         backref->old = old;
2225         backref_insert(&new->root, backref);
2226         old->count++;
2227 out:
2228         btrfs_release_path(path);
2229         WARN_ON(ret);
2230         return ret;
2231 }
2232
2233 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2234                                    struct new_sa_defrag_extent *new)
2235 {
2236         struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2237         struct old_sa_defrag_extent *old, *tmp;
2238         int ret;
2239
2240         new->path = path;
2241
2242         list_for_each_entry_safe(old, tmp, &new->head, list) {
2243                 ret = iterate_inodes_from_logical(old->bytenr +
2244                                                   old->extent_offset, fs_info,
2245                                                   path, record_one_backref,
2246                                                   old);
2247                 if (ret < 0 && ret != -ENOENT)
2248                         return false;
2249
2250                 /* no backref to be processed for this extent */
2251                 if (!old->count) {
2252                         list_del(&old->list);
2253                         kfree(old);
2254                 }
2255         }
2256
2257         if (list_empty(&new->head))
2258                 return false;
2259
2260         return true;
2261 }
2262
2263 static int relink_is_mergable(struct extent_buffer *leaf,
2264                               struct btrfs_file_extent_item *fi,
2265                               struct new_sa_defrag_extent *new)
2266 {
2267         if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2268                 return 0;
2269
2270         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2271                 return 0;
2272
2273         if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2274                 return 0;
2275
2276         if (btrfs_file_extent_encryption(leaf, fi) ||
2277             btrfs_file_extent_other_encoding(leaf, fi))
2278                 return 0;
2279
2280         return 1;
2281 }
2282
2283 /*
2284  * Note the backref might has changed, and in this case we just return 0.
2285  */
2286 static noinline int relink_extent_backref(struct btrfs_path *path,
2287                                  struct sa_defrag_extent_backref *prev,
2288                                  struct sa_defrag_extent_backref *backref)
2289 {
2290         struct btrfs_file_extent_item *extent;
2291         struct btrfs_file_extent_item *item;
2292         struct btrfs_ordered_extent *ordered;
2293         struct btrfs_trans_handle *trans;
2294         struct btrfs_fs_info *fs_info;
2295         struct btrfs_root *root;
2296         struct btrfs_key key;
2297         struct extent_buffer *leaf;
2298         struct old_sa_defrag_extent *old = backref->old;
2299         struct new_sa_defrag_extent *new = old->new;
2300         struct inode *src_inode = new->inode;
2301         struct inode *inode;
2302         struct extent_state *cached = NULL;
2303         int ret = 0;
2304         u64 start;
2305         u64 len;
2306         u64 lock_start;
2307         u64 lock_end;
2308         bool merge = false;
2309         int index;
2310
2311         if (prev && prev->root_id == backref->root_id &&
2312             prev->inum == backref->inum &&
2313             prev->file_pos + prev->num_bytes == backref->file_pos)
2314                 merge = true;
2315
2316         /* step 1: get root */
2317         key.objectid = backref->root_id;
2318         key.type = BTRFS_ROOT_ITEM_KEY;
2319         key.offset = (u64)-1;
2320
2321         fs_info = BTRFS_I(src_inode)->root->fs_info;
2322         index = srcu_read_lock(&fs_info->subvol_srcu);
2323
2324         root = btrfs_read_fs_root_no_name(fs_info, &key);
2325         if (IS_ERR(root)) {
2326                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2327                 if (PTR_ERR(root) == -ENOENT)
2328                         return 0;
2329                 return PTR_ERR(root);
2330         }
2331
2332         if (btrfs_root_readonly(root)) {
2333                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2334                 return 0;
2335         }
2336
2337         /* step 2: get inode */
2338         key.objectid = backref->inum;
2339         key.type = BTRFS_INODE_ITEM_KEY;
2340         key.offset = 0;
2341
2342         inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2343         if (IS_ERR(inode)) {
2344                 srcu_read_unlock(&fs_info->subvol_srcu, index);
2345                 return 0;
2346         }
2347
2348         srcu_read_unlock(&fs_info->subvol_srcu, index);
2349
2350         /* step 3: relink backref */
2351         lock_start = backref->file_pos;
2352         lock_end = backref->file_pos + backref->num_bytes - 1;
2353         lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2354                          0, &cached);
2355
2356         ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2357         if (ordered) {
2358                 btrfs_put_ordered_extent(ordered);
2359                 goto out_unlock;
2360         }
2361
2362         trans = btrfs_join_transaction(root);
2363         if (IS_ERR(trans)) {
2364                 ret = PTR_ERR(trans);
2365                 goto out_unlock;
2366         }
2367
2368         key.objectid = backref->inum;
2369         key.type = BTRFS_EXTENT_DATA_KEY;
2370         key.offset = backref->file_pos;
2371
2372         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2373         if (ret < 0) {
2374                 goto out_free_path;
2375         } else if (ret > 0) {
2376                 ret = 0;
2377                 goto out_free_path;
2378         }
2379
2380         extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2381                                 struct btrfs_file_extent_item);
2382
2383         if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2384             backref->generation)
2385                 goto out_free_path;
2386
2387         btrfs_release_path(path);
2388
2389         start = backref->file_pos;
2390         if (backref->extent_offset < old->extent_offset + old->offset)
2391                 start += old->extent_offset + old->offset -
2392                          backref->extent_offset;
2393
2394         len = min(backref->extent_offset + backref->num_bytes,
2395                   old->extent_offset + old->offset + old->len);
2396         len -= max(backref->extent_offset, old->extent_offset + old->offset);
2397
2398         ret = btrfs_drop_extents(trans, root, inode, start,
2399                                  start + len, 1);
2400         if (ret)
2401                 goto out_free_path;
2402 again:
2403         key.objectid = btrfs_ino(inode);
2404         key.type = BTRFS_EXTENT_DATA_KEY;
2405         key.offset = start;
2406
2407         path->leave_spinning = 1;
2408         if (merge) {
2409                 struct btrfs_file_extent_item *fi;
2410                 u64 extent_len;
2411                 struct btrfs_key found_key;
2412
2413                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2414                 if (ret < 0)
2415                         goto out_free_path;
2416
2417                 path->slots[0]--;
2418                 leaf = path->nodes[0];
2419                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2420
2421                 fi = btrfs_item_ptr(leaf, path->slots[0],
2422                                     struct btrfs_file_extent_item);
2423                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2424
2425                 if (extent_len + found_key.offset == start &&
2426                     relink_is_mergable(leaf, fi, new)) {
2427                         btrfs_set_file_extent_num_bytes(leaf, fi,
2428                                                         extent_len + len);
2429                         btrfs_mark_buffer_dirty(leaf);
2430                         inode_add_bytes(inode, len);
2431
2432                         ret = 1;
2433                         goto out_free_path;
2434                 } else {
2435                         merge = false;
2436                         btrfs_release_path(path);
2437                         goto again;
2438                 }
2439         }
2440
2441         ret = btrfs_insert_empty_item(trans, root, path, &key,
2442                                         sizeof(*extent));
2443         if (ret) {
2444                 btrfs_abort_transaction(trans, root, ret);
2445                 goto out_free_path;
2446         }
2447
2448         leaf = path->nodes[0];
2449         item = btrfs_item_ptr(leaf, path->slots[0],
2450                                 struct btrfs_file_extent_item);
2451         btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2452         btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2453         btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2454         btrfs_set_file_extent_num_bytes(leaf, item, len);
2455         btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2456         btrfs_set_file_extent_generation(leaf, item, trans->transid);
2457         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2458         btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2459         btrfs_set_file_extent_encryption(leaf, item, 0);
2460         btrfs_set_file_extent_other_encoding(leaf, item, 0);
2461
2462         btrfs_mark_buffer_dirty(leaf);
2463         inode_add_bytes(inode, len);
2464         btrfs_release_path(path);
2465
2466         ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2467                         new->disk_len, 0,
2468                         backref->root_id, backref->inum,
2469                         new->file_pos, 0);      /* start - extent_offset */
2470         if (ret) {
2471                 btrfs_abort_transaction(trans, root, ret);
2472                 goto out_free_path;
2473         }
2474
2475         ret = 1;
2476 out_free_path:
2477         btrfs_release_path(path);
2478         path->leave_spinning = 0;
2479         btrfs_end_transaction(trans, root);
2480 out_unlock:
2481         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2482                              &cached, GFP_NOFS);
2483         iput(inode);
2484         return ret;
2485 }
2486
2487 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2488 {
2489         struct old_sa_defrag_extent *old, *tmp;
2490
2491         if (!new)
2492                 return;
2493
2494         list_for_each_entry_safe(old, tmp, &new->head, list) {
2495                 list_del(&old->list);
2496                 kfree(old);
2497         }
2498         kfree(new);
2499 }
2500
2501 static void relink_file_extents(struct new_sa_defrag_extent *new)
2502 {
2503         struct btrfs_path *path;
2504         struct sa_defrag_extent_backref *backref;
2505         struct sa_defrag_extent_backref *prev = NULL;
2506         struct inode *inode;
2507         struct btrfs_root *root;
2508         struct rb_node *node;
2509         int ret;
2510
2511         inode = new->inode;
2512         root = BTRFS_I(inode)->root;
2513
2514         path = btrfs_alloc_path();
2515         if (!path)
2516                 return;
2517
2518         if (!record_extent_backrefs(path, new)) {
2519                 btrfs_free_path(path);
2520                 goto out;
2521         }
2522         btrfs_release_path(path);
2523
2524         while (1) {
2525                 node = rb_first(&new->root);
2526                 if (!node)
2527                         break;
2528                 rb_erase(node, &new->root);
2529
2530                 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2531
2532                 ret = relink_extent_backref(path, prev, backref);
2533                 WARN_ON(ret < 0);
2534
2535                 kfree(prev);
2536
2537                 if (ret == 1)
2538                         prev = backref;
2539                 else
2540                         prev = NULL;
2541                 cond_resched();
2542         }
2543         kfree(prev);
2544
2545         btrfs_free_path(path);
2546 out:
2547         free_sa_defrag_extent(new);
2548
2549         atomic_dec(&root->fs_info->defrag_running);
2550         wake_up(&root->fs_info->transaction_wait);
2551 }
2552
2553 static struct new_sa_defrag_extent *
2554 record_old_file_extents(struct inode *inode,
2555                         struct btrfs_ordered_extent *ordered)
2556 {
2557         struct btrfs_root *root = BTRFS_I(inode)->root;
2558         struct btrfs_path *path;
2559         struct btrfs_key key;
2560         struct old_sa_defrag_extent *old;
2561         struct new_sa_defrag_extent *new;
2562         int ret;
2563
2564         new = kmalloc(sizeof(*new), GFP_NOFS);
2565         if (!new)
2566                 return NULL;
2567
2568         new->inode = inode;
2569         new->file_pos = ordered->file_offset;
2570         new->len = ordered->len;
2571         new->bytenr = ordered->start;
2572         new->disk_len = ordered->disk_len;
2573         new->compress_type = ordered->compress_type;
2574         new->root = RB_ROOT;
2575         INIT_LIST_HEAD(&new->head);
2576
2577         path = btrfs_alloc_path();
2578         if (!path)
2579                 goto out_kfree;
2580
2581         key.objectid = btrfs_ino(inode);
2582         key.type = BTRFS_EXTENT_DATA_KEY;
2583         key.offset = new->file_pos;
2584
2585         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2586         if (ret < 0)
2587                 goto out_free_path;
2588         if (ret > 0 && path->slots[0] > 0)
2589                 path->slots[0]--;
2590
2591         /* find out all the old extents for the file range */
2592         while (1) {
2593                 struct btrfs_file_extent_item *extent;
2594                 struct extent_buffer *l;
2595                 int slot;
2596                 u64 num_bytes;
2597                 u64 offset;
2598                 u64 end;
2599                 u64 disk_bytenr;
2600                 u64 extent_offset;
2601
2602                 l = path->nodes[0];
2603                 slot = path->slots[0];
2604
2605                 if (slot >= btrfs_header_nritems(l)) {
2606                         ret = btrfs_next_leaf(root, path);
2607                         if (ret < 0)
2608                                 goto out_free_path;
2609                         else if (ret > 0)
2610                                 break;
2611                         continue;
2612                 }
2613
2614                 btrfs_item_key_to_cpu(l, &key, slot);
2615
2616                 if (key.objectid != btrfs_ino(inode))
2617                         break;
2618                 if (key.type != BTRFS_EXTENT_DATA_KEY)
2619                         break;
2620                 if (key.offset >= new->file_pos + new->len)
2621                         break;
2622
2623                 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2624
2625                 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2626                 if (key.offset + num_bytes < new->file_pos)
2627                         goto next;
2628
2629                 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2630                 if (!disk_bytenr)
2631                         goto next;
2632
2633                 extent_offset = btrfs_file_extent_offset(l, extent);
2634
2635                 old = kmalloc(sizeof(*old), GFP_NOFS);
2636                 if (!old)
2637                         goto out_free_path;
2638
2639                 offset = max(new->file_pos, key.offset);
2640                 end = min(new->file_pos + new->len, key.offset + num_bytes);
2641
2642                 old->bytenr = disk_bytenr;
2643                 old->extent_offset = extent_offset;
2644                 old->offset = offset - key.offset;
2645                 old->len = end - offset;
2646                 old->new = new;
2647                 old->count = 0;
2648                 list_add_tail(&old->list, &new->head);
2649 next:
2650                 path->slots[0]++;
2651                 cond_resched();
2652         }
2653
2654         btrfs_free_path(path);
2655         atomic_inc(&root->fs_info->defrag_running);
2656
2657         return new;
2658
2659 out_free_path:
2660         btrfs_free_path(path);
2661 out_kfree:
2662         free_sa_defrag_extent(new);
2663         return NULL;
2664 }
2665
2666 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2667                                          u64 start, u64 len)
2668 {
2669         struct btrfs_block_group_cache *cache;
2670
2671         cache = btrfs_lookup_block_group(root->fs_info, start);
2672         ASSERT(cache);
2673
2674         spin_lock(&cache->lock);
2675         cache->delalloc_bytes -= len;
2676         spin_unlock(&cache->lock);
2677
2678         btrfs_put_block_group(cache);
2679 }
2680
2681 /* as ordered data IO finishes, this gets called so we can finish
2682  * an ordered extent if the range of bytes in the file it covers are
2683  * fully written.
2684  */
2685 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2686 {
2687         struct inode *inode = ordered_extent->inode;
2688         struct btrfs_root *root = BTRFS_I(inode)->root;
2689         struct btrfs_trans_handle *trans = NULL;
2690         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2691         struct extent_state *cached_state = NULL;
2692         struct new_sa_defrag_extent *new = NULL;
2693         int compress_type = 0;
2694         int ret = 0;
2695         u64 logical_len = ordered_extent->len;
2696         bool nolock;
2697         bool truncated = false;
2698
2699         nolock = btrfs_is_free_space_inode(inode);
2700
2701         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2702                 ret = -EIO;
2703                 goto out;
2704         }
2705
2706         btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2707                                      ordered_extent->file_offset +
2708                                      ordered_extent->len - 1);
2709
2710         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2711                 truncated = true;
2712                 logical_len = ordered_extent->truncated_len;
2713                 /* Truncated the entire extent, don't bother adding */
2714                 if (!logical_len)
2715                         goto out;
2716         }
2717
2718         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2719                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2720                 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2721                 if (nolock)
2722                         trans = btrfs_join_transaction_nolock(root);
2723                 else
2724                         trans = btrfs_join_transaction(root);
2725                 if (IS_ERR(trans)) {
2726                         ret = PTR_ERR(trans);
2727                         trans = NULL;
2728                         goto out;
2729                 }
2730                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2731                 ret = btrfs_update_inode_fallback(trans, root, inode);
2732                 if (ret) /* -ENOMEM or corruption */
2733                         btrfs_abort_transaction(trans, root, ret);
2734                 goto out;
2735         }
2736
2737         lock_extent_bits(io_tree, ordered_extent->file_offset,
2738                          ordered_extent->file_offset + ordered_extent->len - 1,
2739                          0, &cached_state);
2740
2741         ret = test_range_bit(io_tree, ordered_extent->file_offset,
2742                         ordered_extent->file_offset + ordered_extent->len - 1,
2743                         EXTENT_DEFRAG, 1, cached_state);
2744         if (ret) {
2745                 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2746                 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2747                         /* the inode is shared */
2748                         new = record_old_file_extents(inode, ordered_extent);
2749
2750                 clear_extent_bit(io_tree, ordered_extent->file_offset,
2751                         ordered_extent->file_offset + ordered_extent->len - 1,
2752                         EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2753         }
2754
2755         if (nolock)
2756                 trans = btrfs_join_transaction_nolock(root);
2757         else
2758                 trans = btrfs_join_transaction(root);
2759         if (IS_ERR(trans)) {
2760                 ret = PTR_ERR(trans);
2761                 trans = NULL;
2762                 goto out_unlock;
2763         }
2764
2765         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2766
2767         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2768                 compress_type = ordered_extent->compress_type;
2769         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2770                 BUG_ON(compress_type);
2771                 ret = btrfs_mark_extent_written(trans, inode,
2772                                                 ordered_extent->file_offset,
2773                                                 ordered_extent->file_offset +
2774                                                 logical_len);
2775         } else {
2776                 BUG_ON(root == root->fs_info->tree_root);
2777                 ret = insert_reserved_file_extent(trans, inode,
2778                                                 ordered_extent->file_offset,
2779                                                 ordered_extent->start,
2780                                                 ordered_extent->disk_len,
2781                                                 logical_len, logical_len,
2782                                                 compress_type, 0, 0,
2783                                                 BTRFS_FILE_EXTENT_REG);
2784                 if (!ret)
2785                         btrfs_release_delalloc_bytes(root,
2786                                                      ordered_extent->start,
2787                                                      ordered_extent->disk_len);
2788         }
2789         unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2790                            ordered_extent->file_offset, ordered_extent->len,
2791                            trans->transid);
2792         if (ret < 0) {
2793                 btrfs_abort_transaction(trans, root, ret);
2794                 goto out_unlock;
2795         }
2796
2797         add_pending_csums(trans, inode, ordered_extent->file_offset,
2798                           &ordered_extent->list);
2799
2800         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2801         ret = btrfs_update_inode_fallback(trans, root, inode);
2802         if (ret) { /* -ENOMEM or corruption */
2803                 btrfs_abort_transaction(trans, root, ret);
2804                 goto out_unlock;
2805         }
2806         ret = 0;
2807 out_unlock:
2808         unlock_extent_cached(io_tree, ordered_extent->file_offset,
2809                              ordered_extent->file_offset +
2810                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
2811 out:
2812         if (root != root->fs_info->tree_root)
2813                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2814         if (trans)
2815                 btrfs_end_transaction(trans, root);
2816
2817         if (ret || truncated) {
2818                 u64 start, end;
2819
2820                 if (truncated)
2821                         start = ordered_extent->file_offset + logical_len;
2822                 else
2823                         start = ordered_extent->file_offset;
2824                 end = ordered_extent->file_offset + ordered_extent->len - 1;
2825                 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2826
2827                 /* Drop the cache for the part of the extent we didn't write. */
2828                 btrfs_drop_extent_cache(inode, start, end, 0);
2829
2830                 /*
2831                  * If the ordered extent had an IOERR or something else went
2832                  * wrong we need to return the space for this ordered extent
2833                  * back to the allocator.  We only free the extent in the
2834                  * truncated case if we didn't write out the extent at all.
2835                  */
2836                 if ((ret || !logical_len) &&
2837                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2838                     !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2839                         btrfs_free_reserved_extent(root, ordered_extent->start,
2840                                                    ordered_extent->disk_len, 1);
2841         }
2842
2843
2844         /*
2845          * This needs to be done to make sure anybody waiting knows we are done
2846          * updating everything for this ordered extent.
2847          */
2848         btrfs_remove_ordered_extent(inode, ordered_extent);
2849
2850         /* for snapshot-aware defrag */
2851         if (new) {
2852                 if (ret) {
2853                         free_sa_defrag_extent(new);
2854                         atomic_dec(&root->fs_info->defrag_running);
2855                 } else {
2856                         relink_file_extents(new);
2857                 }
2858         }
2859
2860         /* once for us */
2861         btrfs_put_ordered_extent(ordered_extent);
2862         /* once for the tree */
2863         btrfs_put_ordered_extent(ordered_extent);
2864
2865         return ret;
2866 }
2867
2868 static void finish_ordered_fn(struct btrfs_work *work)
2869 {
2870         struct btrfs_ordered_extent *ordered_extent;
2871         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2872         btrfs_finish_ordered_io(ordered_extent);
2873 }
2874
2875 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2876                                 struct extent_state *state, int uptodate)
2877 {
2878         struct inode *inode = page->mapping->host;
2879         struct btrfs_root *root = BTRFS_I(inode)->root;
2880         struct btrfs_ordered_extent *ordered_extent = NULL;
2881         struct btrfs_workqueue *wq;
2882         btrfs_work_func_t func;
2883
2884         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2885
2886         ClearPagePrivate2(page);
2887         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2888                                             end - start + 1, uptodate))
2889                 return 0;
2890
2891         if (btrfs_is_free_space_inode(inode)) {
2892                 wq = root->fs_info->endio_freespace_worker;
2893                 func = btrfs_freespace_write_helper;
2894         } else {
2895                 wq = root->fs_info->endio_write_workers;
2896                 func = btrfs_endio_write_helper;
2897         }
2898
2899         btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2900                         NULL);
2901         btrfs_queue_work(wq, &ordered_extent->work);
2902
2903         return 0;
2904 }
2905
2906 static int __readpage_endio_check(struct inode *inode,
2907                                   struct btrfs_io_bio *io_bio,
2908                                   int icsum, struct page *page,
2909                                   int pgoff, u64 start, size_t len)
2910 {
2911         char *kaddr;
2912         u32 csum_expected;
2913         u32 csum = ~(u32)0;
2914         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2915                                       DEFAULT_RATELIMIT_BURST);
2916
2917         csum_expected = *(((u32 *)io_bio->csum) + icsum);
2918
2919         kaddr = kmap_atomic(page);
2920         csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
2921         btrfs_csum_final(csum, (char *)&csum);
2922         if (csum != csum_expected)
2923                 goto zeroit;
2924
2925         kunmap_atomic(kaddr);
2926         return 0;
2927 zeroit:
2928         if (__ratelimit(&_rs))
2929                 btrfs_info(BTRFS_I(inode)->root->fs_info,
2930                            "csum failed ino %llu off %llu csum %u expected csum %u",
2931                            btrfs_ino(inode), start, csum, csum_expected);
2932         memset(kaddr + pgoff, 1, len);
2933         flush_dcache_page(page);
2934         kunmap_atomic(kaddr);
2935         if (csum_expected == 0)
2936                 return 0;
2937         return -EIO;
2938 }
2939
2940 /*
2941  * when reads are done, we need to check csums to verify the data is correct
2942  * if there's a match, we allow the bio to finish.  If not, the code in
2943  * extent_io.c will try to find good copies for us.
2944  */
2945 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2946                                       u64 phy_offset, struct page *page,
2947                                       u64 start, u64 end, int mirror)
2948 {
2949         size_t offset = start - page_offset(page);
2950         struct inode *inode = page->mapping->host;
2951         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2952         struct btrfs_root *root = BTRFS_I(inode)->root;
2953
2954         if (PageChecked(page)) {
2955                 ClearPageChecked(page);
2956                 return 0;
2957         }
2958
2959         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2960                 return 0;
2961
2962         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2963             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2964                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2965                                   GFP_NOFS);
2966                 return 0;
2967         }
2968
2969         phy_offset >>= inode->i_sb->s_blocksize_bits;
2970         return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
2971                                       start, (size_t)(end - start + 1));
2972 }
2973
2974 struct delayed_iput {
2975         struct list_head list;
2976         struct inode *inode;
2977 };
2978
2979 /* JDM: If this is fs-wide, why can't we add a pointer to
2980  * btrfs_inode instead and avoid the allocation? */
2981 void btrfs_add_delayed_iput(struct inode *inode)
2982 {
2983         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2984         struct delayed_iput *delayed;
2985
2986         if (atomic_add_unless(&inode->i_count, -1, 1))
2987                 return;
2988
2989         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2990         delayed->inode = inode;
2991
2992         spin_lock(&fs_info->delayed_iput_lock);
2993         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2994         spin_unlock(&fs_info->delayed_iput_lock);
2995 }
2996
2997 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2998 {
2999         LIST_HEAD(list);
3000         struct btrfs_fs_info *fs_info = root->fs_info;
3001         struct delayed_iput *delayed;
3002         int empty;
3003
3004         spin_lock(&fs_info->delayed_iput_lock);
3005         empty = list_empty(&fs_info->delayed_iputs);
3006         spin_unlock(&fs_info->delayed_iput_lock);
3007         if (empty)
3008                 return;
3009
3010         spin_lock(&fs_info->delayed_iput_lock);
3011         list_splice_init(&fs_info->delayed_iputs, &list);
3012         spin_unlock(&fs_info->delayed_iput_lock);
3013
3014         while (!list_empty(&list)) {
3015                 delayed = list_entry(list.next, struct delayed_iput, list);
3016                 list_del(&delayed->list);
3017                 iput(delayed->inode);
3018                 kfree(delayed);
3019         }
3020 }
3021
3022 /*
3023  * This is called in transaction commit time. If there are no orphan
3024  * files in the subvolume, it removes orphan item and frees block_rsv
3025  * structure.
3026  */
3027 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3028                               struct btrfs_root *root)
3029 {
3030         struct btrfs_block_rsv *block_rsv;
3031         int ret;
3032
3033         if (atomic_read(&root->orphan_inodes) ||
3034             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3035                 return;
3036
3037         spin_lock(&root->orphan_lock);
3038         if (atomic_read(&root->orphan_inodes)) {
3039                 spin_unlock(&root->orphan_lock);
3040                 return;
3041         }
3042
3043         if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3044                 spin_unlock(&root->orphan_lock);
3045                 return;
3046         }
3047
3048         block_rsv = root->orphan_block_rsv;
3049         root->orphan_block_rsv = NULL;
3050         spin_unlock(&root->orphan_lock);
3051
3052         if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3053             btrfs_root_refs(&root->root_item) > 0) {
3054                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3055                                             root->root_key.objectid);
3056                 if (ret)
3057                         btrfs_abort_transaction(trans, root, ret);
3058                 else
3059                         clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3060                                   &root->state);
3061         }
3062
3063         if (block_rsv) {
3064                 WARN_ON(block_rsv->size > 0);
3065                 btrfs_free_block_rsv(root, block_rsv);
3066         }
3067 }
3068
3069 /*
3070  * This creates an orphan entry for the given inode in case something goes
3071  * wrong in the middle of an unlink/truncate.
3072  *
3073  * NOTE: caller of this function should reserve 5 units of metadata for
3074  *       this function.
3075  */
3076 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3077 {
3078         struct btrfs_root *root = BTRFS_I(inode)->root;
3079         struct btrfs_block_rsv *block_rsv = NULL;
3080         int reserve = 0;
3081         int insert = 0;
3082         int ret;
3083
3084         if (!root->orphan_block_rsv) {
3085                 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3086                 if (!block_rsv)
3087                         return -ENOMEM;
3088         }
3089
3090         spin_lock(&root->orphan_lock);
3091         if (!root->orphan_block_rsv) {
3092                 root->orphan_block_rsv = block_rsv;
3093         } else if (block_rsv) {
3094                 btrfs_free_block_rsv(root, block_rsv);
3095                 block_rsv = NULL;
3096         }
3097
3098         if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3099                               &BTRFS_I(inode)->runtime_flags)) {
3100 #if 0
3101                 /*
3102                  * For proper ENOSPC handling, we should do orphan
3103                  * cleanup when mounting. But this introduces backward
3104                  * compatibility issue.
3105                  */
3106                 if (!xchg(&root->orphan_item_inserted, 1))
3107                         insert = 2;
3108                 else
3109                         insert = 1;
3110 #endif
3111                 insert = 1;
3112                 atomic_inc(&root->orphan_inodes);
3113         }
3114
3115         if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3116                               &BTRFS_I(inode)->runtime_flags))
3117                 reserve = 1;
3118         spin_unlock(&root->orphan_lock);
3119
3120         /* grab metadata reservation from transaction handle */
3121         if (reserve) {
3122                 ret = btrfs_orphan_reserve_metadata(trans, inode);
3123                 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3124         }
3125
3126         /* insert an orphan item to track this unlinked/truncated file */
3127         if (insert >= 1) {
3128                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3129                 if (ret) {
3130                         atomic_dec(&root->orphan_inodes);
3131                         if (reserve) {
3132                                 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3133                                           &BTRFS_I(inode)->runtime_flags);
3134                                 btrfs_orphan_release_metadata(inode);
3135                         }
3136                         if (ret != -EEXIST) {
3137                                 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3138                                           &BTRFS_I(inode)->runtime_flags);
3139                                 btrfs_abort_transaction(trans, root, ret);
3140                                 return ret;
3141                         }
3142                 }
3143                 ret = 0;
3144         }
3145
3146         /* insert an orphan item to track subvolume contains orphan files */
3147         if (insert >= 2) {
3148                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3149                                                root->root_key.objectid);
3150                 if (ret && ret != -EEXIST) {
3151                         btrfs_abort_transaction(trans, root, ret);
3152                         return ret;
3153                 }
3154         }
3155         return 0;
3156 }
3157
3158 /*
3159  * We have done the truncate/delete so we can go ahead and remove the orphan
3160  * item for this particular inode.
3161  */
3162 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3163                             struct inode *inode)
3164 {
3165         struct btrfs_root *root = BTRFS_I(inode)->root;
3166         int delete_item = 0;
3167         int release_rsv = 0;
3168         int ret = 0;
3169
3170         spin_lock(&root->orphan_lock);
3171         if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3172                                &BTRFS_I(inode)->runtime_flags))
3173                 delete_item = 1;
3174
3175         if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3176                                &BTRFS_I(inode)->runtime_flags))
3177                 release_rsv = 1;
3178         spin_unlock(&root->orphan_lock);
3179
3180         if (delete_item) {
3181                 atomic_dec(&root->orphan_inodes);
3182                 if (trans)
3183                         ret = btrfs_del_orphan_item(trans, root,
3184                                                     btrfs_ino(inode));
3185         }
3186
3187         if (release_rsv)
3188                 btrfs_orphan_release_metadata(inode);
3189
3190         return ret;
3191 }
3192
3193 /*
3194  * this cleans up any orphans that may be left on the list from the last use
3195  * of this root.
3196  */
3197 int btrfs_orphan_cleanup(struct btrfs_root *root)
3198 {
3199         struct btrfs_path *path;
3200         struct extent_buffer *leaf;
3201         struct btrfs_key key, found_key;
3202         struct btrfs_trans_handle *trans;
3203         struct inode *inode;
3204         u64 last_objectid = 0;
3205         int ret = 0, nr_unlink = 0, nr_truncate = 0;
3206
3207         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3208                 return 0;
3209
3210         path = btrfs_alloc_path();
3211         if (!path) {
3212                 ret = -ENOMEM;
3213                 goto out;
3214         }
3215         path->reada = -1;
3216
3217         key.objectid = BTRFS_ORPHAN_OBJECTID;
3218         key.type = BTRFS_ORPHAN_ITEM_KEY;
3219         key.offset = (u64)-1;
3220
3221         while (1) {
3222                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3223                 if (ret < 0)
3224                         goto out;
3225
3226                 /*
3227                  * if ret == 0 means we found what we were searching for, which
3228                  * is weird, but possible, so only screw with path if we didn't
3229                  * find the key and see if we have stuff that matches
3230                  */
3231                 if (ret > 0) {
3232                         ret = 0;
3233                         if (path->slots[0] == 0)
3234                                 break;
3235                         path->slots[0]--;
3236                 }
3237
3238                 /* pull out the item */
3239                 leaf = path->nodes[0];
3240                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3241
3242                 /* make sure the item matches what we want */
3243                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3244                         break;
3245                 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3246                         break;
3247
3248                 /* release the path since we're done with it */
3249                 btrfs_release_path(path);
3250
3251                 /*
3252                  * this is where we are basically btrfs_lookup, without the
3253                  * crossing root thing.  we store the inode number in the
3254                  * offset of the orphan item.
3255                  */
3256
3257                 if (found_key.offset == last_objectid) {
3258                         btrfs_err(root->fs_info,
3259                                 "Error removing orphan entry, stopping orphan cleanup");
3260                         ret = -EINVAL;
3261                         goto out;
3262                 }
3263
3264                 last_objectid = found_key.offset;
3265
3266                 found_key.objectid = found_key.offset;
3267                 found_key.type = BTRFS_INODE_ITEM_KEY;
3268                 found_key.offset = 0;
3269                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3270                 ret = PTR_ERR_OR_ZERO(inode);
3271                 if (ret && ret != -ESTALE)
3272                         goto out;
3273
3274                 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3275                         struct btrfs_root *dead_root;
3276                         struct btrfs_fs_info *fs_info = root->fs_info;
3277                         int is_dead_root = 0;
3278
3279                         /*
3280                          * this is an orphan in the tree root. Currently these
3281                          * could come from 2 sources:
3282                          *  a) a snapshot deletion in progress
3283                          *  b) a free space cache inode
3284                          * We need to distinguish those two, as the snapshot
3285                          * orphan must not get deleted.
3286                          * find_dead_roots already ran before us, so if this
3287                          * is a snapshot deletion, we should find the root
3288                          * in the dead_roots list
3289                          */
3290                         spin_lock(&fs_info->trans_lock);
3291                         list_for_each_entry(dead_root, &fs_info->dead_roots,
3292                                             root_list) {
3293                                 if (dead_root->root_key.objectid ==
3294                                     found_key.objectid) {
3295                                         is_dead_root = 1;
3296                                         break;
3297                                 }
3298                         }
3299                         spin_unlock(&fs_info->trans_lock);
3300                         if (is_dead_root) {
3301                                 /* prevent this orphan from being found again */
3302                                 key.offset = found_key.objectid - 1;
3303                                 continue;
3304                         }
3305                 }
3306                 /*
3307                  * Inode is already gone but the orphan item is still there,
3308                  * kill the orphan item.
3309                  */
3310                 if (ret == -ESTALE) {
3311                         trans = btrfs_start_transaction(root, 1);
3312                         if (IS_ERR(trans)) {
3313                                 ret = PTR_ERR(trans);
3314                                 goto out;
3315                         }
3316                         btrfs_debug(root->fs_info, "auto deleting %Lu",
3317                                 found_key.objectid);
3318                         ret = btrfs_del_orphan_item(trans, root,
3319                                                     found_key.objectid);
3320                         btrfs_end_transaction(trans, root);
3321                         if (ret)
3322                                 goto out;
3323                         continue;
3324                 }
3325
3326                 /*
3327                  * add this inode to the orphan list so btrfs_orphan_del does
3328                  * the proper thing when we hit it
3329                  */
3330                 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3331                         &BTRFS_I(inode)->runtime_flags);
3332                 atomic_inc(&root->orphan_inodes);
3333
3334                 /* if we have links, this was a truncate, lets do that */
3335                 if (inode->i_nlink) {
3336                         if (WARN_ON(!S_ISREG(inode->i_mode))) {
3337                                 iput(inode);
3338                                 continue;
3339                         }
3340                         nr_truncate++;
3341
3342                         /* 1 for the orphan item deletion. */
3343                         trans = btrfs_start_transaction(root, 1);
3344                         if (IS_ERR(trans)) {
3345                                 iput(inode);
3346                                 ret = PTR_ERR(trans);
3347                                 goto out;
3348                         }
3349                         ret = btrfs_orphan_add(trans, inode);
3350                         btrfs_end_transaction(trans, root);
3351                         if (ret) {
3352                                 iput(inode);
3353                                 goto out;
3354                         }
3355
3356                         ret = btrfs_truncate(inode);
3357                         if (ret)
3358                                 btrfs_orphan_del(NULL, inode);
3359                 } else {
3360                         nr_unlink++;
3361                 }
3362
3363                 /* this will do delete_inode and everything for us */
3364                 iput(inode);
3365                 if (ret)
3366                         goto out;
3367         }
3368         /* release the path since we're done with it */
3369         btrfs_release_path(path);
3370
3371         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3372
3373         if (root->orphan_block_rsv)
3374                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3375                                         (u64)-1);
3376
3377         if (root->orphan_block_rsv ||
3378             test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3379                 trans = btrfs_join_transaction(root);
3380                 if (!IS_ERR(trans))
3381                         btrfs_end_transaction(trans, root);
3382         }
3383
3384         if (nr_unlink)
3385                 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3386         if (nr_truncate)
3387                 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3388
3389 out:
3390         if (ret)
3391                 btrfs_crit(root->fs_info,
3392                         "could not do orphan cleanup %d", ret);
3393         btrfs_free_path(path);
3394         return ret;
3395 }
3396
3397 /*
3398  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3399  * don't find any xattrs, we know there can't be any acls.
3400  *
3401  * slot is the slot the inode is in, objectid is the objectid of the inode
3402  */
3403 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3404                                           int slot, u64 objectid,
3405                                           int *first_xattr_slot)
3406 {
3407         u32 nritems = btrfs_header_nritems(leaf);
3408         struct btrfs_key found_key;
3409         static u64 xattr_access = 0;
3410         static u64 xattr_default = 0;
3411         int scanned = 0;
3412
3413         if (!xattr_access) {
3414                 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3415                                         strlen(POSIX_ACL_XATTR_ACCESS));
3416                 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3417                                         strlen(POSIX_ACL_XATTR_DEFAULT));
3418         }
3419
3420         slot++;
3421         *first_xattr_slot = -1;
3422         while (slot < nritems) {
3423                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3424
3425                 /* we found a different objectid, there must not be acls */
3426                 if (found_key.objectid != objectid)
3427                         return 0;
3428
3429                 /* we found an xattr, assume we've got an acl */
3430                 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3431                         if (*first_xattr_slot == -1)
3432                                 *first_xattr_slot = slot;
3433                         if (found_key.offset == xattr_access ||
3434                             found_key.offset == xattr_default)
3435                                 return 1;
3436                 }
3437
3438                 /*
3439                  * we found a key greater than an xattr key, there can't
3440                  * be any acls later on
3441                  */
3442                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3443                         return 0;
3444
3445                 slot++;
3446                 scanned++;
3447
3448                 /*
3449                  * it goes inode, inode backrefs, xattrs, extents,
3450                  * so if there are a ton of hard links to an inode there can
3451                  * be a lot of backrefs.  Don't waste time searching too hard,
3452                  * this is just an optimization
3453                  */
3454                 if (scanned >= 8)
3455                         break;
3456         }
3457         /* we hit the end of the leaf before we found an xattr or
3458          * something larger than an xattr.  We have to assume the inode
3459          * has acls
3460          */
3461         if (*first_xattr_slot == -1)
3462                 *first_xattr_slot = slot;
3463         return 1;
3464 }
3465
3466 /*
3467  * read an inode from the btree into the in-memory inode
3468  */
3469 static void btrfs_read_locked_inode(struct inode *inode)
3470 {
3471         struct btrfs_path *path;
3472         struct extent_buffer *leaf;
3473         struct btrfs_inode_item *inode_item;
3474         struct btrfs_timespec *tspec;
3475         struct btrfs_root *root = BTRFS_I(inode)->root;
3476         struct btrfs_key location;
3477         unsigned long ptr;
3478         int maybe_acls;
3479         u32 rdev;
3480         int ret;
3481         bool filled = false;
3482         int first_xattr_slot;
3483
3484         ret = btrfs_fill_inode(inode, &rdev);
3485         if (!ret)
3486                 filled = true;
3487
3488         path = btrfs_alloc_path();
3489         if (!path)
3490                 goto make_bad;
3491
3492         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3493
3494         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3495         if (ret)
3496                 goto make_bad;
3497
3498         leaf = path->nodes[0];
3499
3500         if (filled)
3501                 goto cache_index;
3502
3503         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3504                                     struct btrfs_inode_item);
3505         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3506         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3507         i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3508         i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3509         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3510
3511         tspec = btrfs_inode_atime(inode_item);
3512         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3513         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3514
3515         tspec = btrfs_inode_mtime(inode_item);
3516         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3517         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3518
3519         tspec = btrfs_inode_ctime(inode_item);
3520         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3521         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3522
3523         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3524         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3525         BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3526
3527         /*
3528          * If we were modified in the current generation and evicted from memory
3529          * and then re-read we need to do a full sync since we don't have any
3530          * idea about which extents were modified before we were evicted from
3531          * cache.
3532          */
3533         if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3534                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3535                         &BTRFS_I(inode)->runtime_flags);
3536
3537         inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3538         inode->i_generation = BTRFS_I(inode)->generation;
3539         inode->i_rdev = 0;
3540         rdev = btrfs_inode_rdev(leaf, inode_item);
3541
3542         BTRFS_I(inode)->index_cnt = (u64)-1;
3543         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3544
3545 cache_index:
3546         path->slots[0]++;
3547         if (inode->i_nlink != 1 ||
3548             path->slots[0] >= btrfs_header_nritems(leaf))
3549                 goto cache_acl;
3550
3551         btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3552         if (location.objectid != btrfs_ino(inode))
3553                 goto cache_acl;
3554
3555         ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3556         if (location.type == BTRFS_INODE_REF_KEY) {
3557                 struct btrfs_inode_ref *ref;
3558
3559                 ref = (struct btrfs_inode_ref *)ptr;
3560                 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3561         } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3562                 struct btrfs_inode_extref *extref;
3563
3564                 extref = (struct btrfs_inode_extref *)ptr;
3565                 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3566                                                                      extref);
3567         }
3568 cache_acl:
3569         /*
3570          * try to precache a NULL acl entry for files that don't have
3571          * any xattrs or acls
3572          */
3573         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3574                                            btrfs_ino(inode), &first_xattr_slot);
3575         if (first_xattr_slot != -1) {
3576                 path->slots[0] = first_xattr_slot;
3577                 ret = btrfs_load_inode_props(inode, path);
3578                 if (ret)
3579                         btrfs_err(root->fs_info,
3580                                   "error loading props for ino %llu (root %llu): %d",
3581                                   btrfs_ino(inode),
3582                                   root->root_key.objectid, ret);
3583         }
3584         btrfs_free_path(path);
3585
3586         if (!maybe_acls)
3587                 cache_no_acl(inode);
3588
3589         switch (inode->i_mode & S_IFMT) {
3590         case S_IFREG:
3591                 inode->i_mapping->a_ops = &btrfs_aops;
3592                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3593                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3594                 inode->i_fop = &btrfs_file_operations;
3595                 inode->i_op = &btrfs_file_inode_operations;
3596                 break;
3597         case S_IFDIR:
3598                 inode->i_fop = &btrfs_dir_file_operations;
3599                 if (root == root->fs_info->tree_root)
3600                         inode->i_op = &btrfs_dir_ro_inode_operations;
3601                 else
3602                         inode->i_op = &btrfs_dir_inode_operations;
3603                 break;
3604         case S_IFLNK:
3605                 inode->i_op = &btrfs_symlink_inode_operations;
3606                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3607                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3608                 break;
3609         default:
3610                 inode->i_op = &btrfs_special_inode_operations;
3611                 init_special_inode(inode, inode->i_mode, rdev);
3612                 break;
3613         }
3614
3615         btrfs_update_iflags(inode);
3616         return;
3617
3618 make_bad:
3619         btrfs_free_path(path);
3620         make_bad_inode(inode);
3621 }
3622
3623 /*
3624  * given a leaf and an inode, copy the inode fields into the leaf
3625  */
3626 static void fill_inode_item(struct btrfs_trans_handle *trans,
3627                             struct extent_buffer *leaf,
3628                             struct btrfs_inode_item *item,
3629                             struct inode *inode)
3630 {
3631         struct btrfs_map_token token;
3632
3633         btrfs_init_map_token(&token);
3634
3635         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3636         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3637         btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3638                                    &token);
3639         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3640         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3641
3642         btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3643                                      inode->i_atime.tv_sec, &token);
3644         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3645                                       inode->i_atime.tv_nsec, &token);
3646
3647         btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3648                                      inode->i_mtime.tv_sec, &token);
3649         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3650                                       inode->i_mtime.tv_nsec, &token);
3651
3652         btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3653                                      inode->i_ctime.tv_sec, &token);
3654         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3655                                       inode->i_ctime.tv_nsec, &token);
3656
3657         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3658                                      &token);
3659         btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3660                                          &token);
3661         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3662         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3663         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3664         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3665         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3666 }
3667
3668 /*
3669  * copy everything in the in-memory inode into the btree.
3670  */
3671 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3672                                 struct btrfs_root *root, struct inode *inode)
3673 {
3674         struct btrfs_inode_item *inode_item;
3675         struct btrfs_path *path;
3676         struct extent_buffer *leaf;
3677         int ret;
3678
3679         path = btrfs_alloc_path();
3680         if (!path)
3681                 return -ENOMEM;
3682
3683         path->leave_spinning = 1;
3684         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3685                                  1);
3686         if (ret) {
3687                 if (ret > 0)
3688                         ret = -ENOENT;
3689                 goto failed;
3690         }
3691
3692         leaf = path->nodes[0];
3693         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3694                                     struct btrfs_inode_item);
3695
3696         fill_inode_item(trans, leaf, inode_item, inode);
3697         btrfs_mark_buffer_dirty(leaf);
3698         btrfs_set_inode_last_trans(trans, inode);
3699         ret = 0;
3700 failed:
3701         btrfs_free_path(path);
3702         return ret;
3703 }
3704
3705 /*
3706  * copy everything in the in-memory inode into the btree.
3707  */
3708 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3709                                 struct btrfs_root *root, struct inode *inode)
3710 {
3711         int ret;
3712
3713         /*
3714          * If the inode is a free space inode, we can deadlock during commit
3715          * if we put it into the delayed code.
3716          *
3717          * The data relocation inode should also be directly updated
3718          * without delay
3719          */
3720         if (!btrfs_is_free_space_inode(inode)
3721             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3722             && !root->fs_info->log_root_recovering) {
3723                 btrfs_update_root_times(trans, root);
3724
3725                 ret = btrfs_delayed_update_inode(trans, root, inode);
3726                 if (!ret)
3727                         btrfs_set_inode_last_trans(trans, inode);
3728                 return ret;
3729         }
3730
3731         return btrfs_update_inode_item(trans, root, inode);
3732 }
3733
3734 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3735                                          struct btrfs_root *root,
3736                                          struct inode *inode)
3737 {
3738         int ret;
3739
3740         ret = btrfs_update_inode(trans, root, inode);
3741         if (ret == -ENOSPC)
3742                 return btrfs_update_inode_item(trans, root, inode);
3743         return ret;
3744 }
3745
3746 /*
3747  * unlink helper that gets used here in inode.c and in the tree logging
3748  * recovery code.  It remove a link in a directory with a given name, and
3749  * also drops the back refs in the inode to the directory
3750  */
3751 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3752                                 struct btrfs_root *root,
3753                                 struct inode *dir, struct inode *inode,
3754                                 const char *name, int name_len)
3755 {
3756         struct btrfs_path *path;
3757         int ret = 0;
3758         struct extent_buffer *leaf;
3759         struct btrfs_dir_item *di;
3760         struct btrfs_key key;
3761         u64 index;
3762         u64 ino = btrfs_ino(inode);
3763         u64 dir_ino = btrfs_ino(dir);
3764
3765         path = btrfs_alloc_path();
3766         if (!path) {
3767                 ret = -ENOMEM;
3768                 goto out;
3769         }
3770
3771         path->leave_spinning = 1;
3772         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3773                                     name, name_len, -1);
3774         if (IS_ERR(di)) {
3775                 ret = PTR_ERR(di);
3776                 goto err;
3777         }
3778         if (!di) {
3779                 ret = -ENOENT;
3780                 goto err;
3781         }
3782         leaf = path->nodes[0];
3783         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3784         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3785         if (ret)
3786                 goto err;
3787         btrfs_release_path(path);
3788
3789         /*
3790          * If we don't have dir index, we have to get it by looking up
3791          * the inode ref, since we get the inode ref, remove it directly,
3792          * it is unnecessary to do delayed deletion.
3793          *
3794          * But if we have dir index, needn't search inode ref to get it.
3795          * Since the inode ref is close to the inode item, it is better
3796          * that we delay to delete it, and just do this deletion when
3797          * we update the inode item.
3798          */
3799         if (BTRFS_I(inode)->dir_index) {
3800                 ret = btrfs_delayed_delete_inode_ref(inode);
3801                 if (!ret) {
3802                         index = BTRFS_I(inode)->dir_index;
3803                         goto skip_backref;
3804                 }
3805         }
3806
3807         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3808                                   dir_ino, &index);
3809         if (ret) {
3810                 btrfs_info(root->fs_info,
3811                         "failed to delete reference to %.*s, inode %llu parent %llu",
3812                         name_len, name, ino, dir_ino);
3813                 btrfs_abort_transaction(trans, root, ret);
3814                 goto err;
3815         }
3816 skip_backref:
3817         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3818         if (ret) {
3819                 btrfs_abort_transaction(trans, root, ret);
3820                 goto err;
3821         }
3822
3823         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3824                                          inode, dir_ino);
3825         if (ret != 0 && ret != -ENOENT) {
3826                 btrfs_abort_transaction(trans, root, ret);
3827                 goto err;
3828         }
3829
3830         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3831                                            dir, index);
3832         if (ret == -ENOENT)
3833                 ret = 0;
3834         else if (ret)
3835                 btrfs_abort_transaction(trans, root, ret);
3836 err:
3837         btrfs_free_path(path);
3838         if (ret)
3839                 goto out;
3840
3841         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3842         inode_inc_iversion(inode);
3843         inode_inc_iversion(dir);
3844         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3845         ret = btrfs_update_inode(trans, root, dir);
3846 out:
3847         return ret;
3848 }
3849
3850 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3851                        struct btrfs_root *root,
3852                        struct inode *dir, struct inode *inode,
3853                        const char *name, int name_len)
3854 {
3855         int ret;
3856         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3857         if (!ret) {
3858                 drop_nlink(inode);
3859                 ret = btrfs_update_inode(trans, root, inode);
3860         }
3861         return ret;
3862 }
3863
3864 /*
3865  * helper to start transaction for unlink and rmdir.
3866  *
3867  * unlink and rmdir are special in btrfs, they do not always free space, so
3868  * if we cannot make our reservations the normal way try and see if there is
3869  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3870  * allow the unlink to occur.
3871  */
3872 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3873 {
3874         struct btrfs_trans_handle *trans;
3875         struct btrfs_root *root = BTRFS_I(dir)->root;
3876         int ret;
3877
3878         /*
3879          * 1 for the possible orphan item
3880          * 1 for the dir item
3881          * 1 for the dir index
3882          * 1 for the inode ref
3883          * 1 for the inode
3884          */
3885         trans = btrfs_start_transaction(root, 5);
3886         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3887                 return trans;
3888
3889         if (PTR_ERR(trans) == -ENOSPC) {
3890                 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3891
3892                 trans = btrfs_start_transaction(root, 0);
3893                 if (IS_ERR(trans))
3894                         return trans;
3895                 ret = btrfs_cond_migrate_bytes(root->fs_info,
3896                                                &root->fs_info->trans_block_rsv,
3897                                                num_bytes, 5);
3898                 if (ret) {
3899                         btrfs_end_transaction(trans, root);
3900                         return ERR_PTR(ret);
3901                 }
3902                 trans->block_rsv = &root->fs_info->trans_block_rsv;
3903                 trans->bytes_reserved = num_bytes;
3904         }
3905         return trans;
3906 }
3907
3908 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3909 {
3910         struct btrfs_root *root = BTRFS_I(dir)->root;
3911         struct btrfs_trans_handle *trans;
3912         struct inode *inode = dentry->d_inode;
3913         int ret;
3914
3915         trans = __unlink_start_trans(dir);
3916         if (IS_ERR(trans))
3917                 return PTR_ERR(trans);
3918
3919         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3920
3921         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3922                                  dentry->d_name.name, dentry->d_name.len);
3923         if (ret)
3924                 goto out;
3925
3926         if (inode->i_nlink == 0) {
3927                 ret = btrfs_orphan_add(trans, inode);
3928                 if (ret)
3929                         goto out;
3930         }
3931
3932 out:
3933         btrfs_end_transaction(trans, root);
3934         btrfs_btree_balance_dirty(root);
3935         return ret;
3936 }
3937
3938 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3939                         struct btrfs_root *root,
3940                         struct inode *dir, u64 objectid,
3941                         const char *name, int name_len)
3942 {
3943         struct btrfs_path *path;
3944         struct extent_buffer *leaf;
3945         struct btrfs_dir_item *di;
3946         struct btrfs_key key;
3947         u64 index;
3948         int ret;
3949         u64 dir_ino = btrfs_ino(dir);
3950
3951         path = btrfs_alloc_path();
3952         if (!path)
3953                 return -ENOMEM;
3954
3955         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3956                                    name, name_len, -1);
3957         if (IS_ERR_OR_NULL(di)) {
3958                 if (!di)
3959                         ret = -ENOENT;
3960                 else
3961                         ret = PTR_ERR(di);
3962                 goto out;
3963         }
3964
3965         leaf = path->nodes[0];
3966         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3967         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3968         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3969         if (ret) {
3970                 btrfs_abort_transaction(trans, root, ret);
3971                 goto out;
3972         }
3973         btrfs_release_path(path);
3974
3975         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3976                                  objectid, root->root_key.objectid,
3977                                  dir_ino, &index, name, name_len);
3978         if (ret < 0) {
3979                 if (ret != -ENOENT) {
3980                         btrfs_abort_transaction(trans, root, ret);
3981                         goto out;
3982                 }
3983                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3984                                                  name, name_len);
3985                 if (IS_ERR_OR_NULL(di)) {
3986                         if (!di)
3987                                 ret = -ENOENT;
3988                         else
3989                                 ret = PTR_ERR(di);
3990                         btrfs_abort_transaction(trans, root, ret);
3991                         goto out;
3992                 }
3993
3994                 leaf = path->nodes[0];
3995                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3996                 btrfs_release_path(path);
3997                 index = key.offset;
3998         }
3999         btrfs_release_path(path);
4000
4001         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4002         if (ret) {
4003                 btrfs_abort_transaction(trans, root, ret);
4004                 goto out;
4005         }
4006
4007         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4008         inode_inc_iversion(dir);
4009         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4010         ret = btrfs_update_inode_fallback(trans, root, dir);
4011         if (ret)
4012                 btrfs_abort_transaction(trans, root, ret);
4013 out:
4014         btrfs_free_path(path);
4015         return ret;
4016 }
4017
4018 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4019 {
4020         struct inode *inode = dentry->d_inode;
4021         int err = 0;
4022         struct btrfs_root *root = BTRFS_I(dir)->root;
4023         struct btrfs_trans_handle *trans;
4024
4025         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4026                 return -ENOTEMPTY;
4027         if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4028                 return -EPERM;
4029
4030         trans = __unlink_start_trans(dir);
4031         if (IS_ERR(trans))
4032                 return PTR_ERR(trans);
4033
4034         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4035                 err = btrfs_unlink_subvol(trans, root, dir,
4036                                           BTRFS_I(inode)->location.objectid,
4037                                           dentry->d_name.name,
4038                                           dentry->d_name.len);
4039                 goto out;
4040         }
4041
4042         err = btrfs_orphan_add(trans, inode);
4043         if (err)
4044                 goto out;
4045
4046         /* now the directory is empty */
4047         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4048                                  dentry->d_name.name, dentry->d_name.len);
4049         if (!err)
4050                 btrfs_i_size_write(inode, 0);
4051 out:
4052         btrfs_end_transaction(trans, root);
4053         btrfs_btree_balance_dirty(root);
4054
4055         return err;
4056 }
4057
4058 /*
4059  * this can truncate away extent items, csum items and directory items.
4060  * It starts at a high offset and removes keys until it can't find
4061  * any higher than new_size
4062  *
4063  * csum items that cross the new i_size are truncated to the new size
4064  * as well.
4065  *
4066  * min_type is the minimum key type to truncate down to.  If set to 0, this
4067  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4068  */
4069 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4070                                struct btrfs_root *root,
4071                                struct inode *inode,
4072                                u64 new_size, u32 min_type)
4073 {
4074         struct btrfs_path *path;
4075         struct extent_buffer *leaf;
4076         struct btrfs_file_extent_item *fi;
4077         struct btrfs_key key;
4078         struct btrfs_key found_key;
4079         u64 extent_start = 0;
4080         u64 extent_num_bytes = 0;
4081         u64 extent_offset = 0;
4082         u64 item_end = 0;
4083         u64 last_size = (u64)-1;
4084         u32 found_type = (u8)-1;
4085         int found_extent;
4086         int del_item;
4087         int pending_del_nr = 0;
4088         int pending_del_slot = 0;
4089         int extent_type = -1;
4090         int ret;
4091         int err = 0;
4092         u64 ino = btrfs_ino(inode);
4093
4094         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4095
4096         path = btrfs_alloc_path();
4097         if (!path)
4098                 return -ENOMEM;
4099         path->reada = -1;
4100
4101         /*
4102          * We want to drop from the next block forward in case this new size is
4103          * not block aligned since we will be keeping the last block of the
4104          * extent just the way it is.
4105          */
4106         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4107             root == root->fs_info->tree_root)
4108                 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4109                                         root->sectorsize), (u64)-1, 0);
4110
4111         /*
4112          * This function is also used to drop the items in the log tree before
4113          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4114          * it is used to drop the loged items. So we shouldn't kill the delayed
4115          * items.
4116          */
4117         if (min_type == 0 && root == BTRFS_I(inode)->root)
4118                 btrfs_kill_delayed_inode_items(inode);
4119
4120         key.objectid = ino;
4121         key.offset = (u64)-1;
4122         key.type = (u8)-1;
4123
4124 search_again:
4125         path->leave_spinning = 1;
4126         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4127         if (ret < 0) {
4128                 err = ret;
4129                 goto out;
4130         }
4131
4132         if (ret > 0) {
4133                 /* there are no items in the tree for us to truncate, we're
4134                  * done
4135                  */
4136                 if (path->slots[0] == 0)
4137                         goto out;
4138                 path->slots[0]--;
4139         }
4140
4141         while (1) {
4142                 fi = NULL;
4143                 leaf = path->nodes[0];
4144                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4145                 found_type = found_key.type;
4146
4147                 if (found_key.objectid != ino)
4148                         break;
4149
4150                 if (found_type < min_type)
4151                         break;
4152
4153                 item_end = found_key.offset;
4154                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4155                         fi = btrfs_item_ptr(leaf, path->slots[0],
4156                                             struct btrfs_file_extent_item);
4157                         extent_type = btrfs_file_extent_type(leaf, fi);
4158                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4159                                 item_end +=
4160                                     btrfs_file_extent_num_bytes(leaf, fi);
4161                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4162                                 item_end += btrfs_file_extent_inline_len(leaf,
4163                                                          path->slots[0], fi);
4164                         }
4165                         item_end--;
4166                 }
4167                 if (found_type > min_type) {
4168                         del_item = 1;
4169                 } else {
4170                         if (item_end < new_size)
4171                                 break;
4172                         if (found_key.offset >= new_size)
4173                                 del_item = 1;
4174                         else
4175                                 del_item = 0;
4176                 }
4177                 found_extent = 0;
4178                 /* FIXME, shrink the extent if the ref count is only 1 */
4179                 if (found_type != BTRFS_EXTENT_DATA_KEY)
4180                         goto delete;
4181
4182                 if (del_item)
4183                         last_size = found_key.offset;
4184                 else
4185                         last_size = new_size;
4186
4187                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4188                         u64 num_dec;
4189                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4190                         if (!del_item) {
4191                                 u64 orig_num_bytes =
4192                                         btrfs_file_extent_num_bytes(leaf, fi);
4193                                 extent_num_bytes = ALIGN(new_size -
4194                                                 found_key.offset,
4195                                                 root->sectorsize);
4196                                 btrfs_set_file_extent_num_bytes(leaf, fi,
4197                                                          extent_num_bytes);
4198                                 num_dec = (orig_num_bytes -
4199                                            extent_num_bytes);
4200                                 if (test_bit(BTRFS_ROOT_REF_COWS,
4201                                              &root->state) &&
4202                                     extent_start != 0)
4203                                         inode_sub_bytes(inode, num_dec);
4204                                 btrfs_mark_buffer_dirty(leaf);
4205                         } else {
4206                                 extent_num_bytes =
4207                                         btrfs_file_extent_disk_num_bytes(leaf,
4208                                                                          fi);
4209                                 extent_offset = found_key.offset -
4210                                         btrfs_file_extent_offset(leaf, fi);
4211
4212                                 /* FIXME blocksize != 4096 */
4213                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4214                                 if (extent_start != 0) {
4215                                         found_extent = 1;
4216                                         if (test_bit(BTRFS_ROOT_REF_COWS,
4217                                                      &root->state))
4218                                                 inode_sub_bytes(inode, num_dec);
4219                                 }
4220                         }
4221                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4222                         /*
4223                          * we can't truncate inline items that have had
4224                          * special encodings
4225                          */
4226                         if (!del_item &&
4227                             btrfs_file_extent_compression(leaf, fi) == 0 &&
4228                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
4229                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4230                                 u32 size = new_size - found_key.offset;
4231
4232                                 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4233                                         inode_sub_bytes(inode, item_end + 1 -
4234                                                         new_size);
4235
4236                                 /*
4237                                  * update the ram bytes to properly reflect
4238                                  * the new size of our item
4239                                  */
4240                                 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4241                                 size =
4242                                     btrfs_file_extent_calc_inline_size(size);
4243                                 btrfs_truncate_item(root, path, size, 1);
4244                         } else if (test_bit(BTRFS_ROOT_REF_COWS,
4245                                             &root->state)) {
4246                                 inode_sub_bytes(inode, item_end + 1 -
4247                                                 found_key.offset);
4248                         }
4249                 }
4250 delete:
4251                 if (del_item) {
4252                         if (!pending_del_nr) {
4253                                 /* no pending yet, add ourselves */
4254                                 pending_del_slot = path->slots[0];
4255                                 pending_del_nr = 1;
4256                         } else if (pending_del_nr &&
4257                                    path->slots[0] + 1 == pending_del_slot) {
4258                                 /* hop on the pending chunk */
4259                                 pending_del_nr++;
4260                                 pending_del_slot = path->slots[0];
4261                         } else {
4262                                 BUG();
4263                         }
4264                 } else {
4265                         break;
4266                 }
4267                 if (found_extent &&
4268                     (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4269                      root == root->fs_info->tree_root)) {
4270                         btrfs_set_path_blocking(path);
4271                         ret = btrfs_free_extent(trans, root, extent_start,
4272                                                 extent_num_bytes, 0,
4273                                                 btrfs_header_owner(leaf),
4274                                                 ino, extent_offset, 0);
4275                         BUG_ON(ret);
4276                 }
4277
4278                 if (found_type == BTRFS_INODE_ITEM_KEY)
4279                         break;
4280
4281                 if (path->slots[0] == 0 ||
4282                     path->slots[0] != pending_del_slot) {
4283                         if (pending_del_nr) {
4284                                 ret = btrfs_del_items(trans, root, path,
4285                                                 pending_del_slot,
4286                                                 pending_del_nr);
4287                                 if (ret) {
4288                                         btrfs_abort_transaction(trans,
4289                                                                 root, ret);
4290                                         goto error;
4291                                 }
4292                                 pending_del_nr = 0;
4293                         }
4294                         btrfs_release_path(path);
4295                         goto search_again;
4296                 } else {
4297                         path->slots[0]--;
4298                 }
4299         }
4300 out:
4301         if (pending_del_nr) {
4302                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4303                                       pending_del_nr);
4304                 if (ret)
4305                         btrfs_abort_transaction(trans, root, ret);
4306         }
4307 error:
4308         if (last_size != (u64)-1 &&
4309             root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4310                 btrfs_ordered_update_i_size(inode, last_size, NULL);
4311         btrfs_free_path(path);
4312         return err;
4313 }
4314
4315 /*
4316  * btrfs_truncate_page - read, zero a chunk and write a page
4317  * @inode - inode that we're zeroing
4318  * @from - the offset to start zeroing
4319  * @len - the length to zero, 0 to zero the entire range respective to the
4320  *      offset
4321  * @front - zero up to the offset instead of from the offset on
4322  *
4323  * This will find the page for the "from" offset and cow the page and zero the
4324  * part we want to zero.  This is used with truncate and hole punching.
4325  */
4326 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4327                         int front)
4328 {
4329         struct address_space *mapping = inode->i_mapping;
4330         struct btrfs_root *root = BTRFS_I(inode)->root;
4331         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4332         struct btrfs_ordered_extent *ordered;
4333         struct extent_state *cached_state = NULL;
4334         char *kaddr;
4335         u32 blocksize = root->sectorsize;
4336         pgoff_t index = from >> PAGE_CACHE_SHIFT;
4337         unsigned offset = from & (PAGE_CACHE_SIZE-1);
4338         struct page *page;
4339         gfp_t mask = btrfs_alloc_write_mask(mapping);
4340         int ret = 0;
4341         u64 page_start;
4342         u64 page_end;
4343
4344         if ((offset & (blocksize - 1)) == 0 &&
4345             (!len || ((len & (blocksize - 1)) == 0)))
4346                 goto out;
4347         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4348         if (ret)
4349                 goto out;
4350
4351 again:
4352         page = find_or_create_page(mapping, index, mask);
4353         if (!page) {
4354                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4355                 ret = -ENOMEM;
4356                 goto out;
4357         }
4358
4359         page_start = page_offset(page);
4360         page_end = page_start + PAGE_CACHE_SIZE - 1;
4361
4362         if (!PageUptodate(page)) {
4363                 ret = btrfs_readpage(NULL, page);
4364                 lock_page(page);
4365                 if (page->mapping != mapping) {
4366                         unlock_page(page);
4367                         page_cache_release(page);
4368                         goto again;
4369                 }
4370                 if (!PageUptodate(page)) {
4371                         ret = -EIO;
4372                         goto out_unlock;
4373                 }
4374         }
4375         wait_on_page_writeback(page);
4376
4377         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4378         set_page_extent_mapped(page);
4379
4380         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4381         if (ordered) {
4382                 unlock_extent_cached(io_tree, page_start, page_end,
4383                                      &cached_state, GFP_NOFS);
4384                 unlock_page(page);
4385                 page_cache_release(page);
4386                 btrfs_start_ordered_extent(inode, ordered, 1);
4387                 btrfs_put_ordered_extent(ordered);
4388                 goto again;
4389         }
4390
4391         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4392                           EXTENT_DIRTY | EXTENT_DELALLOC |
4393                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4394                           0, 0, &cached_state, GFP_NOFS);
4395
4396         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4397                                         &cached_state);
4398         if (ret) {
4399                 unlock_extent_cached(io_tree, page_start, page_end,
4400                                      &cached_state, GFP_NOFS);
4401                 goto out_unlock;
4402         }
4403
4404         if (offset != PAGE_CACHE_SIZE) {
4405                 if (!len)
4406                         len = PAGE_CACHE_SIZE - offset;
4407                 kaddr = kmap(page);
4408                 if (front)
4409                         memset(kaddr, 0, offset);
4410                 else
4411                         memset(kaddr + offset, 0, len);
4412                 flush_dcache_page(page);
4413                 kunmap(page);
4414         }
4415         ClearPageChecked(page);
4416         set_page_dirty(page);
4417         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4418                              GFP_NOFS);
4419
4420 out_unlock:
4421         if (ret)
4422                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4423         unlock_page(page);
4424         page_cache_release(page);
4425 out:
4426         return ret;
4427 }
4428
4429 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4430                              u64 offset, u64 len)
4431 {
4432         struct btrfs_trans_handle *trans;
4433         int ret;
4434
4435         /*
4436          * Still need to make sure the inode looks like it's been updated so
4437          * that any holes get logged if we fsync.
4438          */
4439         if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4440                 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4441                 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4442                 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4443                 return 0;
4444         }
4445
4446         /*
4447          * 1 - for the one we're dropping
4448          * 1 - for the one we're adding
4449          * 1 - for updating the inode.
4450          */
4451         trans = btrfs_start_transaction(root, 3);
4452         if (IS_ERR(trans))
4453                 return PTR_ERR(trans);
4454
4455         ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4456         if (ret) {
4457                 btrfs_abort_transaction(trans, root, ret);
4458                 btrfs_end_transaction(trans, root);
4459                 return ret;
4460         }
4461
4462         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4463                                        0, 0, len, 0, len, 0, 0, 0);
4464         if (ret)
4465                 btrfs_abort_transaction(trans, root, ret);
4466         else
4467                 btrfs_update_inode(trans, root, inode);
4468         btrfs_end_transaction(trans, root);
4469         return ret;
4470 }
4471
4472 /*
4473  * This function puts in dummy file extents for the area we're creating a hole
4474  * for.  So if we are truncating this file to a larger size we need to insert
4475  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4476  * the range between oldsize and size
4477  */
4478 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4479 {
4480         struct btrfs_root *root = BTRFS_I(inode)->root;
4481         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4482         struct extent_map *em = NULL;
4483         struct extent_state *cached_state = NULL;
4484         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4485         u64 hole_start = ALIGN(oldsize, root->sectorsize);
4486         u64 block_end = ALIGN(size, root->sectorsize);
4487         u64 last_byte;
4488         u64 cur_offset;
4489         u64 hole_size;
4490         int err = 0;
4491
4492         /*
4493          * If our size started in the middle of a page we need to zero out the
4494          * rest of the page before we expand the i_size, otherwise we could
4495          * expose stale data.
4496          */
4497         err = btrfs_truncate_page(inode, oldsize, 0, 0);
4498         if (err)
4499                 return err;
4500
4501         if (size <= hole_start)
4502                 return 0;
4503
4504         while (1) {
4505                 struct btrfs_ordered_extent *ordered;
4506
4507                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4508                                  &cached_state);
4509                 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4510                                                      block_end - hole_start);
4511                 if (!ordered)
4512                         break;
4513                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4514                                      &cached_state, GFP_NOFS);
4515                 btrfs_start_ordered_extent(inode, ordered, 1);
4516                 btrfs_put_ordered_extent(ordered);
4517         }
4518
4519         cur_offset = hole_start;
4520         while (1) {
4521                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4522                                 block_end - cur_offset, 0);
4523                 if (IS_ERR(em)) {
4524                         err = PTR_ERR(em);
4525                         em = NULL;
4526                         break;
4527                 }
4528                 last_byte = min(extent_map_end(em), block_end);
4529                 last_byte = ALIGN(last_byte , root->sectorsize);
4530                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4531                         struct extent_map *hole_em;
4532                         hole_size = last_byte - cur_offset;
4533
4534                         err = maybe_insert_hole(root, inode, cur_offset,
4535                                                 hole_size);
4536                         if (err)
4537                                 break;
4538                         btrfs_drop_extent_cache(inode, cur_offset,
4539                                                 cur_offset + hole_size - 1, 0);
4540                         hole_em = alloc_extent_map();
4541                         if (!hole_em) {
4542                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4543                                         &BTRFS_I(inode)->runtime_flags);
4544                                 goto next;
4545                         }
4546                         hole_em->start = cur_offset;
4547                         hole_em->len = hole_size;
4548                         hole_em->orig_start = cur_offset;
4549
4550                         hole_em->block_start = EXTENT_MAP_HOLE;
4551                         hole_em->block_len = 0;
4552                         hole_em->orig_block_len = 0;
4553                         hole_em->ram_bytes = hole_size;
4554                         hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4555                         hole_em->compress_type = BTRFS_COMPRESS_NONE;
4556                         hole_em->generation = root->fs_info->generation;
4557
4558                         while (1) {
4559                                 write_lock(&em_tree->lock);
4560                                 err = add_extent_mapping(em_tree, hole_em, 1);
4561                                 write_unlock(&em_tree->lock);
4562                                 if (err != -EEXIST)
4563                                         break;
4564                                 btrfs_drop_extent_cache(inode, cur_offset,
4565                                                         cur_offset +
4566                                                         hole_size - 1, 0);
4567                         }
4568                         free_extent_map(hole_em);
4569                 }
4570 next:
4571                 free_extent_map(em);
4572                 em = NULL;
4573                 cur_offset = last_byte;
4574                 if (cur_offset >= block_end)
4575                         break;
4576         }
4577         free_extent_map(em);
4578         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4579                              GFP_NOFS);
4580         return err;
4581 }
4582
4583 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4584 {
4585         struct btrfs_root *root = BTRFS_I(inode)->root;
4586         struct btrfs_trans_handle *trans;
4587         loff_t oldsize = i_size_read(inode);
4588         loff_t newsize = attr->ia_size;
4589         int mask = attr->ia_valid;
4590         int ret;
4591
4592         /*
4593          * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4594          * special case where we need to update the times despite not having
4595          * these flags set.  For all other operations the VFS set these flags
4596          * explicitly if it wants a timestamp update.
4597          */
4598         if (newsize != oldsize) {
4599                 inode_inc_iversion(inode);
4600                 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4601                         inode->i_ctime = inode->i_mtime =
4602                                 current_fs_time(inode->i_sb);
4603         }
4604
4605         if (newsize > oldsize) {
4606                 truncate_pagecache(inode, newsize);
4607                 ret = btrfs_cont_expand(inode, oldsize, newsize);
4608                 if (ret)
4609                         return ret;
4610
4611                 trans = btrfs_start_transaction(root, 1);
4612                 if (IS_ERR(trans))
4613                         return PTR_ERR(trans);
4614
4615                 i_size_write(inode, newsize);
4616                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4617                 ret = btrfs_update_inode(trans, root, inode);
4618                 btrfs_end_transaction(trans, root);
4619         } else {
4620
4621                 /*
4622                  * We're truncating a file that used to have good data down to
4623                  * zero. Make sure it gets into the ordered flush list so that
4624                  * any new writes get down to disk quickly.
4625                  */
4626                 if (newsize == 0)
4627                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4628                                 &BTRFS_I(inode)->runtime_flags);
4629
4630                 /*
4631                  * 1 for the orphan item we're going to add
4632                  * 1 for the orphan item deletion.
4633                  */
4634                 trans = btrfs_start_transaction(root, 2);
4635                 if (IS_ERR(trans))
4636                         return PTR_ERR(trans);
4637
4638                 /*
4639                  * We need to do this in case we fail at _any_ point during the
4640                  * actual truncate.  Once we do the truncate_setsize we could
4641                  * invalidate pages which forces any outstanding ordered io to
4642                  * be instantly completed which will give us extents that need
4643                  * to be truncated.  If we fail to get an orphan inode down we
4644                  * could have left over extents that were never meant to live,
4645                  * so we need to garuntee from this point on that everything
4646                  * will be consistent.
4647                  */
4648                 ret = btrfs_orphan_add(trans, inode);
4649                 btrfs_end_transaction(trans, root);
4650                 if (ret)
4651                         return ret;
4652
4653                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4654                 truncate_setsize(inode, newsize);
4655
4656                 /* Disable nonlocked read DIO to avoid the end less truncate */
4657                 btrfs_inode_block_unlocked_dio(inode);
4658                 inode_dio_wait(inode);
4659                 btrfs_inode_resume_unlocked_dio(inode);
4660
4661                 ret = btrfs_truncate(inode);
4662                 if (ret && inode->i_nlink) {
4663                         int err;
4664
4665                         /*
4666                          * failed to truncate, disk_i_size is only adjusted down
4667                          * as we remove extents, so it should represent the true
4668                          * size of the inode, so reset the in memory size and
4669                          * delete our orphan entry.
4670                          */
4671                         trans = btrfs_join_transaction(root);
4672                         if (IS_ERR(trans)) {
4673                                 btrfs_orphan_del(NULL, inode);
4674                                 return ret;
4675                         }
4676                         i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4677                         err = btrfs_orphan_del(trans, inode);
4678                         if (err)
4679                                 btrfs_abort_transaction(trans, root, err);
4680                         btrfs_end_transaction(trans, root);
4681                 }
4682         }
4683
4684         return ret;
4685 }
4686
4687 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4688 {
4689         struct inode *inode = dentry->d_inode;
4690         struct btrfs_root *root = BTRFS_I(inode)->root;
4691         int err;
4692
4693         if (btrfs_root_readonly(root))
4694                 return -EROFS;
4695
4696         err = inode_change_ok(inode, attr);
4697         if (err)
4698                 return err;
4699
4700         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4701                 err = btrfs_setsize(inode, attr);
4702                 if (err)
4703                         return err;
4704         }
4705
4706         if (attr->ia_valid) {
4707                 setattr_copy(inode, attr);
4708                 inode_inc_iversion(inode);
4709                 err = btrfs_dirty_inode(inode);
4710
4711                 if (!err && attr->ia_valid & ATTR_MODE)
4712                         err = posix_acl_chmod(inode, inode->i_mode);
4713         }
4714
4715         return err;
4716 }
4717
4718 /*
4719  * While truncating the inode pages during eviction, we get the VFS calling
4720  * btrfs_invalidatepage() against each page of the inode. This is slow because
4721  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4722  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4723  * extent_state structures over and over, wasting lots of time.
4724  *
4725  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4726  * those expensive operations on a per page basis and do only the ordered io
4727  * finishing, while we release here the extent_map and extent_state structures,
4728  * without the excessive merging and splitting.
4729  */
4730 static void evict_inode_truncate_pages(struct inode *inode)
4731 {
4732         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4733         struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4734         struct rb_node *node;
4735
4736         ASSERT(inode->i_state & I_FREEING);
4737         truncate_inode_pages_final(&inode->i_data);
4738
4739         write_lock(&map_tree->lock);
4740         while (!RB_EMPTY_ROOT(&map_tree->map)) {
4741                 struct extent_map *em;
4742
4743                 node = rb_first(&map_tree->map);
4744                 em = rb_entry(node, struct extent_map, rb_node);
4745                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4746                 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4747                 remove_extent_mapping(map_tree, em);
4748                 free_extent_map(em);
4749                 if (need_resched()) {
4750                         write_unlock(&map_tree->lock);
4751                         cond_resched();
4752                         write_lock(&map_tree->lock);
4753                 }
4754         }
4755         write_unlock(&map_tree->lock);
4756
4757         spin_lock(&io_tree->lock);
4758         while (!RB_EMPTY_ROOT(&io_tree->state)) {
4759                 struct extent_state *state;
4760                 struct extent_state *cached_state = NULL;
4761
4762                 node = rb_first(&io_tree->state);
4763                 state = rb_entry(node, struct extent_state, rb_node);
4764                 atomic_inc(&state->refs);
4765                 spin_unlock(&io_tree->lock);
4766
4767                 lock_extent_bits(io_tree, state->start, state->end,
4768                                  0, &cached_state);
4769                 clear_extent_bit(io_tree, state->start, state->end,
4770                                  EXTENT_LOCKED | EXTENT_DIRTY |
4771                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4772                                  EXTENT_DEFRAG, 1, 1,
4773                                  &cached_state, GFP_NOFS);
4774                 free_extent_state(state);
4775
4776                 cond_resched();
4777                 spin_lock(&io_tree->lock);
4778         }
4779         spin_unlock(&io_tree->lock);
4780 }
4781
4782 void btrfs_evict_inode(struct inode *inode)
4783 {
4784         struct btrfs_trans_handle *trans;
4785         struct btrfs_root *root = BTRFS_I(inode)->root;
4786         struct btrfs_block_rsv *rsv, *global_rsv;
4787         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4788         int ret;
4789
4790         trace_btrfs_inode_evict(inode);
4791
4792         evict_inode_truncate_pages(inode);
4793
4794         if (inode->i_nlink &&
4795             ((btrfs_root_refs(&root->root_item) != 0 &&
4796               root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4797              btrfs_is_free_space_inode(inode)))
4798                 goto no_delete;
4799
4800         if (is_bad_inode(inode)) {
4801                 btrfs_orphan_del(NULL, inode);
4802                 goto no_delete;
4803         }
4804         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4805         btrfs_wait_ordered_range(inode, 0, (u64)-1);
4806
4807         btrfs_free_io_failure_record(inode, 0, (u64)-1);
4808
4809         if (root->fs_info->log_root_recovering) {
4810                 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4811                                  &BTRFS_I(inode)->runtime_flags));
4812                 goto no_delete;
4813         }
4814
4815         if (inode->i_nlink > 0) {
4816                 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4817                        root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4818                 goto no_delete;
4819         }
4820
4821         ret = btrfs_commit_inode_delayed_inode(inode);
4822         if (ret) {
4823                 btrfs_orphan_del(NULL, inode);
4824                 goto no_delete;
4825         }
4826
4827         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4828         if (!rsv) {
4829                 btrfs_orphan_del(NULL, inode);
4830                 goto no_delete;
4831         }
4832         rsv->size = min_size;
4833         rsv->failfast = 1;
4834         global_rsv = &root->fs_info->global_block_rsv;
4835
4836         btrfs_i_size_write(inode, 0);
4837
4838         /*
4839          * This is a bit simpler than btrfs_truncate since we've already
4840          * reserved our space for our orphan item in the unlink, so we just
4841          * need to reserve some slack space in case we add bytes and update
4842          * inode item when doing the truncate.
4843          */
4844         while (1) {
4845                 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4846                                              BTRFS_RESERVE_FLUSH_LIMIT);
4847
4848                 /*
4849                  * Try and steal from the global reserve since we will
4850                  * likely not use this space anyway, we want to try as
4851                  * hard as possible to get this to work.
4852                  */
4853                 if (ret)
4854                         ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4855
4856                 if (ret) {
4857                         btrfs_warn(root->fs_info,
4858                                 "Could not get space for a delete, will truncate on mount %d",
4859                                 ret);
4860                         btrfs_orphan_del(NULL, inode);
4861                         btrfs_free_block_rsv(root, rsv);
4862                         goto no_delete;
4863                 }
4864
4865                 trans = btrfs_join_transaction(root);
4866                 if (IS_ERR(trans)) {
4867                         btrfs_orphan_del(NULL, inode);
4868                         btrfs_free_block_rsv(root, rsv);
4869                         goto no_delete;
4870                 }
4871
4872                 trans->block_rsv = rsv;
4873
4874                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4875                 if (ret != -ENOSPC)
4876                         break;
4877
4878                 trans->block_rsv = &root->fs_info->trans_block_rsv;
4879                 btrfs_end_transaction(trans, root);
4880                 trans = NULL;
4881                 btrfs_btree_balance_dirty(root);
4882         }
4883
4884         btrfs_free_block_rsv(root, rsv);
4885
4886         /*
4887          * Errors here aren't a big deal, it just means we leave orphan items
4888          * in the tree.  They will be cleaned up on the next mount.
4889          */
4890         if (ret == 0) {
4891                 trans->block_rsv = root->orphan_block_rsv;
4892                 btrfs_orphan_del(trans, inode);
4893         } else {
4894                 btrfs_orphan_del(NULL, inode);
4895         }
4896
4897         trans->block_rsv = &root->fs_info->trans_block_rsv;
4898         if (!(root == root->fs_info->tree_root ||
4899               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4900                 btrfs_return_ino(root, btrfs_ino(inode));
4901
4902         btrfs_end_transaction(trans, root);
4903         btrfs_btree_balance_dirty(root);
4904 no_delete:
4905         btrfs_remove_delayed_node(inode);
4906         clear_inode(inode);
4907         return;
4908 }
4909
4910 /*
4911  * this returns the key found in the dir entry in the location pointer.
4912  * If no dir entries were found, location->objectid is 0.
4913  */
4914 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4915                                struct btrfs_key *location)
4916 {
4917         const char *name = dentry->d_name.name;
4918         int namelen = dentry->d_name.len;
4919         struct btrfs_dir_item *di;
4920         struct btrfs_path *path;
4921         struct btrfs_root *root = BTRFS_I(dir)->root;
4922         int ret = 0;
4923
4924         path = btrfs_alloc_path();
4925         if (!path)
4926                 return -ENOMEM;
4927
4928         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4929                                     namelen, 0);
4930         if (IS_ERR(di))
4931                 ret = PTR_ERR(di);
4932
4933         if (IS_ERR_OR_NULL(di))
4934                 goto out_err;
4935
4936         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4937 out:
4938         btrfs_free_path(path);
4939         return ret;
4940 out_err:
4941         location->objectid = 0;
4942         goto out;
4943 }
4944
4945 /*
4946  * when we hit a tree root in a directory, the btrfs part of the inode
4947  * needs to be changed to reflect the root directory of the tree root.  This
4948  * is kind of like crossing a mount point.
4949  */
4950 static int fixup_tree_root_location(struct btrfs_root *root,
4951                                     struct inode *dir,
4952                                     struct dentry *dentry,
4953                                     struct btrfs_key *location,
4954                                     struct btrfs_root **sub_root)
4955 {
4956         struct btrfs_path *path;
4957         struct btrfs_root *new_root;
4958         struct btrfs_root_ref *ref;
4959         struct extent_buffer *leaf;
4960         int ret;
4961         int err = 0;
4962
4963         path = btrfs_alloc_path();
4964         if (!path) {
4965                 err = -ENOMEM;
4966                 goto out;
4967         }
4968
4969         err = -ENOENT;
4970         ret = btrfs_find_item(root->fs_info->tree_root, path,
4971                                 BTRFS_I(dir)->root->root_key.objectid,
4972                                 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4973         if (ret) {
4974                 if (ret < 0)
4975                         err = ret;
4976                 goto out;
4977         }
4978
4979         leaf = path->nodes[0];
4980         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4981         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4982             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4983                 goto out;
4984
4985         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4986                                    (unsigned long)(ref + 1),
4987                                    dentry->d_name.len);
4988         if (ret)
4989                 goto out;
4990
4991         btrfs_release_path(path);
4992
4993         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4994         if (IS_ERR(new_root)) {
4995                 err = PTR_ERR(new_root);
4996                 goto out;
4997         }
4998
4999         *sub_root = new_root;
5000         location->objectid = btrfs_root_dirid(&new_root->root_item);
5001         location->type = BTRFS_INODE_ITEM_KEY;
5002         location->offset = 0;
5003         err = 0;
5004 out:
5005         btrfs_free_path(path);
5006         return err;
5007 }
5008
5009 static void inode_tree_add(struct inode *inode)
5010 {
5011         struct btrfs_root *root = BTRFS_I(inode)->root;
5012         struct btrfs_inode *entry;
5013         struct rb_node **p;
5014         struct rb_node *parent;
5015         struct rb_node *new = &BTRFS_I(inode)->rb_node;
5016         u64 ino = btrfs_ino(inode);
5017
5018         if (inode_unhashed(inode))
5019                 return;
5020         parent = NULL;
5021         spin_lock(&root->inode_lock);
5022         p = &root->inode_tree.rb_node;
5023         while (*p) {
5024                 parent = *p;
5025                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5026
5027                 if (ino < btrfs_ino(&entry->vfs_inode))
5028                         p = &parent->rb_left;
5029                 else if (ino > btrfs_ino(&entry->vfs_inode))
5030                         p = &parent->rb_right;
5031                 else {
5032                         WARN_ON(!(entry->vfs_inode.i_state &
5033                                   (I_WILL_FREE | I_FREEING)));
5034                         rb_replace_node(parent, new, &root->inode_tree);
5035                         RB_CLEAR_NODE(parent);
5036                         spin_unlock(&root->inode_lock);
5037                         return;
5038                 }
5039         }
5040         rb_link_node(new, parent, p);
5041         rb_insert_color(new, &root->inode_tree);
5042         spin_unlock(&root->inode_lock);
5043 }
5044
5045 static void inode_tree_del(struct inode *inode)
5046 {
5047         struct btrfs_root *root = BTRFS_I(inode)->root;
5048         int empty = 0;
5049
5050         spin_lock(&root->inode_lock);
5051         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5052                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5053                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5054                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5055         }
5056         spin_unlock(&root->inode_lock);
5057
5058         if (empty && btrfs_root_refs(&root->root_item) == 0) {
5059                 synchronize_srcu(&root->fs_info->subvol_srcu);
5060                 spin_lock(&root->inode_lock);
5061                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5062                 spin_unlock(&root->inode_lock);
5063                 if (empty)
5064                         btrfs_add_dead_root(root);
5065         }
5066 }
5067
5068 void btrfs_invalidate_inodes(struct btrfs_root *root)
5069 {
5070         struct rb_node *node;
5071         struct rb_node *prev;
5072         struct btrfs_inode *entry;
5073         struct inode *inode;
5074         u64 objectid = 0;
5075
5076         if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5077                 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5078
5079         spin_lock(&root->inode_lock);
5080 again:
5081         node = root->inode_tree.rb_node;
5082         prev = NULL;
5083         while (node) {
5084                 prev = node;
5085                 entry = rb_entry(node, struct btrfs_inode, rb_node);
5086
5087                 if (objectid < btrfs_ino(&entry->vfs_inode))
5088                         node = node->rb_left;
5089                 else if (objectid > btrfs_ino(&entry->vfs_inode))
5090                         node = node->rb_right;
5091                 else
5092                         break;
5093         }
5094         if (!node) {
5095                 while (prev) {
5096                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
5097                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5098                                 node = prev;
5099                                 break;
5100                         }
5101                         prev = rb_next(prev);
5102                 }
5103         }
5104         while (node) {
5105                 entry = rb_entry(node, struct btrfs_inode, rb_node);
5106                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5107                 inode = igrab(&entry->vfs_inode);
5108                 if (inode) {
5109                         spin_unlock(&root->inode_lock);
5110                         if (atomic_read(&inode->i_count) > 1)
5111                                 d_prune_aliases(inode);
5112                         /*
5113                          * btrfs_drop_inode will have it removed from
5114                          * the inode cache when its usage count
5115                          * hits zero.
5116                          */
5117                         iput(inode);
5118                         cond_resched();
5119                         spin_lock(&root->inode_lock);
5120                         goto again;
5121                 }
5122
5123                 if (cond_resched_lock(&root->inode_lock))
5124                         goto again;
5125
5126                 node = rb_next(node);
5127         }
5128         spin_unlock(&root->inode_lock);
5129 }
5130
5131 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5132 {
5133         struct btrfs_iget_args *args = p;
5134         inode->i_ino = args->location->objectid;
5135         memcpy(&BTRFS_I(inode)->location, args->location,
5136                sizeof(*args->location));
5137         BTRFS_I(inode)->root = args->root;
5138         return 0;
5139 }
5140
5141 static int btrfs_find_actor(struct inode *inode, void *opaque)
5142 {
5143         struct btrfs_iget_args *args = opaque;
5144         return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5145                 args->root == BTRFS_I(inode)->root;
5146 }
5147
5148 static struct inode *btrfs_iget_locked(struct super_block *s,
5149                                        struct btrfs_key *location,
5150                                        struct btrfs_root *root)
5151 {
5152         struct inode *inode;
5153         struct btrfs_iget_args args;
5154         unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5155
5156         args.location = location;
5157         args.root = root;
5158
5159         inode = iget5_locked(s, hashval, btrfs_find_actor,
5160                              btrfs_init_locked_inode,
5161                              (void *)&args);
5162         return inode;
5163 }
5164
5165 /* Get an inode object given its location and corresponding root.
5166  * Returns in *is_new if the inode was read from disk
5167  */
5168 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5169                          struct btrfs_root *root, int *new)
5170 {
5171         struct inode *inode;
5172
5173         inode = btrfs_iget_locked(s, location, root);
5174         if (!inode)
5175                 return ERR_PTR(-ENOMEM);
5176
5177         if (inode->i_state & I_NEW) {
5178                 btrfs_read_locked_inode(inode);
5179                 if (!is_bad_inode(inode)) {
5180                         inode_tree_add(inode);
5181                         unlock_new_inode(inode);
5182                         if (new)
5183                                 *new = 1;
5184                 } else {
5185                         unlock_new_inode(inode);
5186                         iput(inode);
5187                         inode = ERR_PTR(-ESTALE);
5188                 }
5189         }
5190
5191         return inode;
5192 }
5193
5194 static struct inode *new_simple_dir(struct super_block *s,
5195                                     struct btrfs_key *key,
5196                                     struct btrfs_root *root)
5197 {
5198         struct inode *inode = new_inode(s);
5199
5200         if (!inode)
5201                 return ERR_PTR(-ENOMEM);
5202
5203         BTRFS_I(inode)->root = root;
5204         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5205         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5206
5207         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5208         inode->i_op = &btrfs_dir_ro_inode_operations;
5209         inode->i_fop = &simple_dir_operations;
5210         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5211         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5212
5213         return inode;
5214 }
5215
5216 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5217 {
5218         struct inode *inode;
5219         struct btrfs_root *root = BTRFS_I(dir)->root;
5220         struct btrfs_root *sub_root = root;
5221         struct btrfs_key location;
5222         int index;
5223         int ret = 0;
5224
5225         if (dentry->d_name.len > BTRFS_NAME_LEN)
5226                 return ERR_PTR(-ENAMETOOLONG);
5227
5228         ret = btrfs_inode_by_name(dir, dentry, &location);
5229         if (ret < 0)
5230                 return ERR_PTR(ret);
5231
5232         if (location.objectid == 0)
5233                 return ERR_PTR(-ENOENT);
5234
5235         if (location.type == BTRFS_INODE_ITEM_KEY) {
5236                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5237                 return inode;
5238         }
5239
5240         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5241
5242         index = srcu_read_lock(&root->fs_info->subvol_srcu);
5243         ret = fixup_tree_root_location(root, dir, dentry,
5244                                        &location, &sub_root);
5245         if (ret < 0) {
5246                 if (ret != -ENOENT)
5247                         inode = ERR_PTR(ret);
5248                 else
5249                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
5250         } else {
5251                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5252         }
5253         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5254
5255         if (!IS_ERR(inode) && root != sub_root) {
5256                 down_read(&root->fs_info->cleanup_work_sem);
5257                 if (!(inode->i_sb->s_flags & MS_RDONLY))
5258                         ret = btrfs_orphan_cleanup(sub_root);
5259                 up_read(&root->fs_info->cleanup_work_sem);
5260                 if (ret) {
5261                         iput(inode);
5262                         inode = ERR_PTR(ret);
5263                 }
5264         }
5265
5266         return inode;
5267 }
5268
5269 static int btrfs_dentry_delete(const struct dentry *dentry)
5270 {
5271         struct btrfs_root *root;
5272         struct inode *inode = dentry->d_inode;
5273
5274         if (!inode && !IS_ROOT(dentry))
5275                 inode = dentry->d_parent->d_inode;
5276
5277         if (inode) {
5278                 root = BTRFS_I(inode)->root;
5279                 if (btrfs_root_refs(&root->root_item) == 0)
5280                         return 1;
5281
5282                 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5283                         return 1;
5284         }
5285         return 0;
5286 }
5287
5288 static void btrfs_dentry_release(struct dentry *dentry)
5289 {
5290         kfree(dentry->d_fsdata);
5291 }
5292
5293 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5294                                    unsigned int flags)
5295 {
5296         struct inode *inode;
5297
5298         inode = btrfs_lookup_dentry(dir, dentry);
5299         if (IS_ERR(inode)) {
5300                 if (PTR_ERR(inode) == -ENOENT)
5301                         inode = NULL;
5302                 else
5303                         return ERR_CAST(inode);
5304         }
5305
5306         return d_materialise_unique(dentry, inode);
5307 }
5308
5309 unsigned char btrfs_filetype_table[] = {
5310         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5311 };
5312
5313 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5314 {
5315         struct inode *inode = file_inode(file);
5316         struct btrfs_root *root = BTRFS_I(inode)->root;
5317         struct btrfs_item *item;
5318         struct btrfs_dir_item *di;
5319         struct btrfs_key key;
5320         struct btrfs_key found_key;
5321         struct btrfs_path *path;
5322         struct list_head ins_list;
5323         struct list_head del_list;
5324         int ret;
5325         struct extent_buffer *leaf;
5326         int slot;
5327         unsigned char d_type;
5328         int over = 0;
5329         u32 di_cur;
5330         u32 di_total;
5331         u32 di_len;
5332         int key_type = BTRFS_DIR_INDEX_KEY;
5333         char tmp_name[32];
5334         char *name_ptr;
5335         int name_len;
5336         int is_curr = 0;        /* ctx->pos points to the current index? */
5337
5338         /* FIXME, use a real flag for deciding about the key type */
5339         if (root->fs_info->tree_root == root)
5340                 key_type = BTRFS_DIR_ITEM_KEY;
5341
5342         if (!dir_emit_dots(file, ctx))
5343                 return 0;
5344
5345         path = btrfs_alloc_path();
5346         if (!path)
5347                 return -ENOMEM;
5348
5349         path->reada = 1;
5350
5351         if (key_type == BTRFS_DIR_INDEX_KEY) {
5352                 INIT_LIST_HEAD(&ins_list);
5353                 INIT_LIST_HEAD(&del_list);
5354                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5355         }
5356
5357         key.type = key_type;
5358         key.offset = ctx->pos;
5359         key.objectid = btrfs_ino(inode);
5360
5361         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5362         if (ret < 0)
5363                 goto err;
5364
5365         while (1) {
5366                 leaf = path->nodes[0];
5367                 slot = path->slots[0];
5368                 if (slot >= btrfs_header_nritems(leaf)) {
5369                         ret = btrfs_next_leaf(root, path);
5370                         if (ret < 0)
5371                                 goto err;
5372                         else if (ret > 0)
5373                                 break;
5374                         continue;
5375                 }
5376
5377                 item = btrfs_item_nr(slot);
5378                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5379
5380                 if (found_key.objectid != key.objectid)
5381                         break;
5382                 if (found_key.type != key_type)
5383                         break;
5384                 if (found_key.offset < ctx->pos)
5385                         goto next;
5386                 if (key_type == BTRFS_DIR_INDEX_KEY &&
5387                     btrfs_should_delete_dir_index(&del_list,
5388                                                   found_key.offset))
5389                         goto next;
5390
5391                 ctx->pos = found_key.offset;
5392                 is_curr = 1;
5393
5394                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5395                 di_cur = 0;
5396                 di_total = btrfs_item_size(leaf, item);
5397
5398                 while (di_cur < di_total) {
5399                         struct btrfs_key location;
5400
5401                         if (verify_dir_item(root, leaf, di))
5402                                 break;
5403
5404                         name_len = btrfs_dir_name_len(leaf, di);
5405                         if (name_len <= sizeof(tmp_name)) {
5406                                 name_ptr = tmp_name;
5407                         } else {
5408                                 name_ptr = kmalloc(name_len, GFP_NOFS);
5409                                 if (!name_ptr) {
5410                                         ret = -ENOMEM;
5411                                         goto err;
5412                                 }
5413                         }
5414                         read_extent_buffer(leaf, name_ptr,
5415                                            (unsigned long)(di + 1), name_len);
5416
5417                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5418                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
5419
5420
5421                         /* is this a reference to our own snapshot? If so
5422                          * skip it.
5423                          *
5424                          * In contrast to old kernels, we insert the snapshot's
5425                          * dir item and dir index after it has been created, so
5426                          * we won't find a reference to our own snapshot. We
5427                          * still keep the following code for backward
5428                          * compatibility.
5429                          */
5430                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
5431                             location.objectid == root->root_key.objectid) {
5432                                 over = 0;
5433                                 goto skip;
5434                         }
5435                         over = !dir_emit(ctx, name_ptr, name_len,
5436                                        location.objectid, d_type);
5437
5438 skip:
5439                         if (name_ptr != tmp_name)
5440                                 kfree(name_ptr);
5441
5442                         if (over)
5443                                 goto nopos;
5444                         di_len = btrfs_dir_name_len(leaf, di) +
5445                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
5446                         di_cur += di_len;
5447                         di = (struct btrfs_dir_item *)((char *)di + di_len);
5448                 }
5449 next:
5450                 path->slots[0]++;
5451         }
5452
5453         if (key_type == BTRFS_DIR_INDEX_KEY) {
5454                 if (is_curr)
5455                         ctx->pos++;
5456                 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5457                 if (ret)
5458                         goto nopos;
5459         }
5460
5461         /* Reached end of directory/root. Bump pos past the last item. */
5462         ctx->pos++;
5463
5464         /*
5465          * Stop new entries from being returned after we return the last
5466          * entry.
5467          *
5468          * New directory entries are assigned a strictly increasing
5469          * offset.  This means that new entries created during readdir
5470          * are *guaranteed* to be seen in the future by that readdir.
5471          * This has broken buggy programs which operate on names as
5472          * they're returned by readdir.  Until we re-use freed offsets
5473          * we have this hack to stop new entries from being returned
5474          * under the assumption that they'll never reach this huge
5475          * offset.
5476          *
5477          * This is being careful not to overflow 32bit loff_t unless the
5478          * last entry requires it because doing so has broken 32bit apps
5479          * in the past.
5480          */
5481         if (key_type == BTRFS_DIR_INDEX_KEY) {
5482                 if (ctx->pos >= INT_MAX)
5483                         ctx->pos = LLONG_MAX;
5484                 else
5485                         ctx->pos = INT_MAX;
5486         }
5487 nopos:
5488         ret = 0;
5489 err:
5490         if (key_type == BTRFS_DIR_INDEX_KEY)
5491                 btrfs_put_delayed_items(&ins_list, &del_list);
5492         btrfs_free_path(path);
5493         return ret;
5494 }
5495
5496 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5497 {
5498         struct btrfs_root *root = BTRFS_I(inode)->root;
5499         struct btrfs_trans_handle *trans;
5500         int ret = 0;
5501         bool nolock = false;
5502
5503         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5504                 return 0;
5505
5506         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5507                 nolock = true;
5508
5509         if (wbc->sync_mode == WB_SYNC_ALL) {
5510                 if (nolock)
5511                         trans = btrfs_join_transaction_nolock(root);
5512                 else
5513                         trans = btrfs_join_transaction(root);
5514                 if (IS_ERR(trans))
5515                         return PTR_ERR(trans);
5516                 ret = btrfs_commit_transaction(trans, root);
5517         }
5518         return ret;
5519 }
5520
5521 /*
5522  * This is somewhat expensive, updating the tree every time the
5523  * inode changes.  But, it is most likely to find the inode in cache.
5524  * FIXME, needs more benchmarking...there are no reasons other than performance
5525  * to keep or drop this code.
5526  */
5527 static int btrfs_dirty_inode(struct inode *inode)
5528 {
5529         struct btrfs_root *root = BTRFS_I(inode)->root;
5530         struct btrfs_trans_handle *trans;
5531         int ret;
5532
5533         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5534                 return 0;
5535
5536         trans = btrfs_join_transaction(root);
5537         if (IS_ERR(trans))
5538                 return PTR_ERR(trans);
5539
5540         ret = btrfs_update_inode(trans, root, inode);
5541         if (ret && ret == -ENOSPC) {
5542                 /* whoops, lets try again with the full transaction */
5543                 btrfs_end_transaction(trans, root);
5544                 trans = btrfs_start_transaction(root, 1);
5545                 if (IS_ERR(trans))
5546                         return PTR_ERR(trans);
5547
5548                 ret = btrfs_update_inode(trans, root, inode);
5549         }
5550         btrfs_end_transaction(trans, root);
5551         if (BTRFS_I(inode)->delayed_node)
5552                 btrfs_balance_delayed_items(root);
5553
5554         return ret;
5555 }
5556
5557 /*
5558  * This is a copy of file_update_time.  We need this so we can return error on
5559  * ENOSPC for updating the inode in the case of file write and mmap writes.
5560  */
5561 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5562                              int flags)
5563 {
5564         struct btrfs_root *root = BTRFS_I(inode)->root;
5565
5566         if (btrfs_root_readonly(root))
5567                 return -EROFS;
5568
5569         if (flags & S_VERSION)
5570                 inode_inc_iversion(inode);
5571         if (flags & S_CTIME)
5572                 inode->i_ctime = *now;
5573         if (flags & S_MTIME)
5574                 inode->i_mtime = *now;
5575         if (flags & S_ATIME)
5576                 inode->i_atime = *now;
5577         return btrfs_dirty_inode(inode);
5578 }
5579
5580 /*
5581  * find the highest existing sequence number in a directory
5582  * and then set the in-memory index_cnt variable to reflect
5583  * free sequence numbers
5584  */
5585 static int btrfs_set_inode_index_count(struct inode *inode)
5586 {
5587         struct btrfs_root *root = BTRFS_I(inode)->root;
5588         struct btrfs_key key, found_key;
5589         struct btrfs_path *path;
5590         struct extent_buffer *leaf;
5591         int ret;
5592
5593         key.objectid = btrfs_ino(inode);
5594         key.type = BTRFS_DIR_INDEX_KEY;
5595         key.offset = (u64)-1;
5596
5597         path = btrfs_alloc_path();
5598         if (!path)
5599                 return -ENOMEM;
5600
5601         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5602         if (ret < 0)
5603                 goto out;
5604         /* FIXME: we should be able to handle this */
5605         if (ret == 0)
5606                 goto out;
5607         ret = 0;
5608
5609         /*
5610          * MAGIC NUMBER EXPLANATION:
5611          * since we search a directory based on f_pos we have to start at 2
5612          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5613          * else has to start at 2
5614          */
5615         if (path->slots[0] == 0) {
5616                 BTRFS_I(inode)->index_cnt = 2;
5617                 goto out;
5618         }
5619
5620         path->slots[0]--;
5621
5622         leaf = path->nodes[0];
5623         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5624
5625         if (found_key.objectid != btrfs_ino(inode) ||
5626             found_key.type != BTRFS_DIR_INDEX_KEY) {
5627                 BTRFS_I(inode)->index_cnt = 2;
5628                 goto out;
5629         }
5630
5631         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5632 out:
5633         btrfs_free_path(path);
5634         return ret;
5635 }
5636
5637 /*
5638  * helper to find a free sequence number in a given directory.  This current
5639  * code is very simple, later versions will do smarter things in the btree
5640  */
5641 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5642 {
5643         int ret = 0;
5644
5645         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5646                 ret = btrfs_inode_delayed_dir_index_count(dir);
5647                 if (ret) {
5648                         ret = btrfs_set_inode_index_count(dir);
5649                         if (ret)
5650                                 return ret;
5651                 }
5652         }
5653
5654         *index = BTRFS_I(dir)->index_cnt;
5655         BTRFS_I(dir)->index_cnt++;
5656
5657         return ret;
5658 }
5659
5660 static int btrfs_insert_inode_locked(struct inode *inode)
5661 {
5662         struct btrfs_iget_args args;
5663         args.location = &BTRFS_I(inode)->location;
5664         args.root = BTRFS_I(inode)->root;
5665
5666         return insert_inode_locked4(inode,
5667                    btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5668                    btrfs_find_actor, &args);
5669 }
5670
5671 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5672                                      struct btrfs_root *root,
5673                                      struct inode *dir,
5674                                      const char *name, int name_len,
5675                                      u64 ref_objectid, u64 objectid,
5676                                      umode_t mode, u64 *index)
5677 {
5678         struct inode *inode;
5679         struct btrfs_inode_item *inode_item;
5680         struct btrfs_key *location;
5681         struct btrfs_path *path;
5682         struct btrfs_inode_ref *ref;
5683         struct btrfs_key key[2];
5684         u32 sizes[2];
5685         int nitems = name ? 2 : 1;
5686         unsigned long ptr;
5687         int ret;
5688
5689         path = btrfs_alloc_path();
5690         if (!path)
5691                 return ERR_PTR(-ENOMEM);
5692
5693         inode = new_inode(root->fs_info->sb);
5694         if (!inode) {
5695                 btrfs_free_path(path);
5696                 return ERR_PTR(-ENOMEM);
5697         }
5698
5699         /*
5700          * O_TMPFILE, set link count to 0, so that after this point,
5701          * we fill in an inode item with the correct link count.
5702          */
5703         if (!name)
5704                 set_nlink(inode, 0);
5705
5706         /*
5707          * we have to initialize this early, so we can reclaim the inode
5708          * number if we fail afterwards in this function.
5709          */
5710         inode->i_ino = objectid;
5711
5712         if (dir && name) {
5713                 trace_btrfs_inode_request(dir);
5714
5715                 ret = btrfs_set_inode_index(dir, index);
5716                 if (ret) {
5717                         btrfs_free_path(path);
5718                         iput(inode);
5719                         return ERR_PTR(ret);
5720                 }
5721         } else if (dir) {
5722                 *index = 0;
5723         }
5724         /*
5725          * index_cnt is ignored for everything but a dir,
5726          * btrfs_get_inode_index_count has an explanation for the magic
5727          * number
5728          */
5729         BTRFS_I(inode)->index_cnt = 2;
5730         BTRFS_I(inode)->dir_index = *index;
5731         BTRFS_I(inode)->root = root;
5732         BTRFS_I(inode)->generation = trans->transid;
5733         inode->i_generation = BTRFS_I(inode)->generation;
5734
5735         /*
5736          * We could have gotten an inode number from somebody who was fsynced
5737          * and then removed in this same transaction, so let's just set full
5738          * sync since it will be a full sync anyway and this will blow away the
5739          * old info in the log.
5740          */
5741         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5742
5743         key[0].objectid = objectid;
5744         key[0].type = BTRFS_INODE_ITEM_KEY;
5745         key[0].offset = 0;
5746
5747         sizes[0] = sizeof(struct btrfs_inode_item);
5748
5749         if (name) {
5750                 /*
5751                  * Start new inodes with an inode_ref. This is slightly more
5752                  * efficient for small numbers of hard links since they will
5753                  * be packed into one item. Extended refs will kick in if we
5754                  * add more hard links than can fit in the ref item.
5755                  */
5756                 key[1].objectid = objectid;
5757                 key[1].type = BTRFS_INODE_REF_KEY;
5758                 key[1].offset = ref_objectid;
5759
5760                 sizes[1] = name_len + sizeof(*ref);
5761         }
5762
5763         location = &BTRFS_I(inode)->location;
5764         location->objectid = objectid;
5765         location->offset = 0;
5766         location->type = BTRFS_INODE_ITEM_KEY;
5767
5768         ret = btrfs_insert_inode_locked(inode);
5769         if (ret < 0)
5770                 goto fail;
5771
5772         path->leave_spinning = 1;
5773         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5774         if (ret != 0)
5775                 goto fail_unlock;
5776
5777         inode_init_owner(inode, dir, mode);
5778         inode_set_bytes(inode, 0);
5779         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5780         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5781                                   struct btrfs_inode_item);
5782         memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5783                              sizeof(*inode_item));
5784         fill_inode_item(trans, path->nodes[0], inode_item, inode);
5785
5786         if (name) {
5787                 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5788                                      struct btrfs_inode_ref);
5789                 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5790                 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5791                 ptr = (unsigned long)(ref + 1);
5792                 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5793         }
5794
5795         btrfs_mark_buffer_dirty(path->nodes[0]);
5796         btrfs_free_path(path);
5797
5798         btrfs_inherit_iflags(inode, dir);
5799
5800         if (S_ISREG(mode)) {
5801                 if (btrfs_test_opt(root, NODATASUM))
5802                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5803                 if (btrfs_test_opt(root, NODATACOW))
5804                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5805                                 BTRFS_INODE_NODATASUM;
5806         }
5807
5808         inode_tree_add(inode);
5809
5810         trace_btrfs_inode_new(inode);
5811         btrfs_set_inode_last_trans(trans, inode);
5812
5813         btrfs_update_root_times(trans, root);
5814
5815         ret = btrfs_inode_inherit_props(trans, inode, dir);
5816         if (ret)
5817                 btrfs_err(root->fs_info,
5818                           "error inheriting props for ino %llu (root %llu): %d",
5819                           btrfs_ino(inode), root->root_key.objectid, ret);
5820
5821         return inode;
5822
5823 fail_unlock:
5824         unlock_new_inode(inode);
5825 fail:
5826         if (dir && name)
5827                 BTRFS_I(dir)->index_cnt--;
5828         btrfs_free_path(path);
5829         iput(inode);
5830         return ERR_PTR(ret);
5831 }
5832
5833 static inline u8 btrfs_inode_type(struct inode *inode)
5834 {
5835         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5836 }
5837
5838 /*
5839  * utility function to add 'inode' into 'parent_inode' with
5840  * a give name and a given sequence number.
5841  * if 'add_backref' is true, also insert a backref from the
5842  * inode to the parent directory.
5843  */
5844 int btrfs_add_link(struct btrfs_trans_handle *trans,
5845                    struct inode *parent_inode, struct inode *inode,
5846                    const char *name, int name_len, int add_backref, u64 index)
5847 {
5848         int ret = 0;
5849         struct btrfs_key key;
5850         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5851         u64 ino = btrfs_ino(inode);
5852         u64 parent_ino = btrfs_ino(parent_inode);
5853
5854         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5855                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5856         } else {
5857                 key.objectid = ino;
5858                 key.type = BTRFS_INODE_ITEM_KEY;
5859                 key.offset = 0;
5860         }
5861
5862         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5863                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5864                                          key.objectid, root->root_key.objectid,
5865                                          parent_ino, index, name, name_len);
5866         } else if (add_backref) {
5867                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5868                                              parent_ino, index);
5869         }
5870
5871         /* Nothing to clean up yet */
5872         if (ret)
5873                 return ret;
5874
5875         ret = btrfs_insert_dir_item(trans, root, name, name_len,
5876                                     parent_inode, &key,
5877                                     btrfs_inode_type(inode), index);
5878         if (ret == -EEXIST || ret == -EOVERFLOW)
5879                 goto fail_dir_item;
5880         else if (ret) {
5881                 btrfs_abort_transaction(trans, root, ret);
5882                 return ret;
5883         }
5884
5885         btrfs_i_size_write(parent_inode, parent_inode->i_size +
5886                            name_len * 2);
5887         inode_inc_iversion(parent_inode);
5888         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5889         ret = btrfs_update_inode(trans, root, parent_inode);
5890         if (ret)
5891                 btrfs_abort_transaction(trans, root, ret);
5892         return ret;
5893
5894 fail_dir_item:
5895         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5896                 u64 local_index;
5897                 int err;
5898                 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5899                                  key.objectid, root->root_key.objectid,
5900                                  parent_ino, &local_index, name, name_len);
5901
5902         } else if (add_backref) {
5903                 u64 local_index;
5904                 int err;
5905
5906                 err = btrfs_del_inode_ref(trans, root, name, name_len,
5907                                           ino, parent_ino, &local_index);
5908         }
5909         return ret;
5910 }
5911
5912 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5913                             struct inode *dir, struct dentry *dentry,
5914                             struct inode *inode, int backref, u64 index)
5915 {
5916         int err = btrfs_add_link(trans, dir, inode,
5917                                  dentry->d_name.name, dentry->d_name.len,
5918                                  backref, index);
5919         if (err > 0)
5920                 err = -EEXIST;
5921         return err;
5922 }
5923
5924 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5925                         umode_t mode, dev_t rdev)
5926 {
5927         struct btrfs_trans_handle *trans;
5928         struct btrfs_root *root = BTRFS_I(dir)->root;
5929         struct inode *inode = NULL;
5930         int err;
5931         int drop_inode = 0;
5932         u64 objectid;
5933         u64 index = 0;
5934
5935         if (!new_valid_dev(rdev))
5936                 return -EINVAL;
5937
5938         /*
5939          * 2 for inode item and ref
5940          * 2 for dir items
5941          * 1 for xattr if selinux is on
5942          */
5943         trans = btrfs_start_transaction(root, 5);
5944         if (IS_ERR(trans))
5945                 return PTR_ERR(trans);
5946
5947         err = btrfs_find_free_ino(root, &objectid);
5948         if (err)
5949                 goto out_unlock;
5950
5951         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5952                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5953                                 mode, &index);
5954         if (IS_ERR(inode)) {
5955                 err = PTR_ERR(inode);
5956                 goto out_unlock;
5957         }
5958
5959         /*
5960         * If the active LSM wants to access the inode during
5961         * d_instantiate it needs these. Smack checks to see
5962         * if the filesystem supports xattrs by looking at the
5963         * ops vector.
5964         */
5965         inode->i_op = &btrfs_special_inode_operations;
5966         init_special_inode(inode, inode->i_mode, rdev);
5967
5968         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5969         if (err)
5970                 goto out_unlock_inode;
5971
5972         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5973         if (err) {
5974                 goto out_unlock_inode;
5975         } else {
5976                 btrfs_update_inode(trans, root, inode);
5977                 unlock_new_inode(inode);
5978                 d_instantiate(dentry, inode);
5979         }
5980
5981 out_unlock:
5982         btrfs_end_transaction(trans, root);
5983         btrfs_balance_delayed_items(root);
5984         btrfs_btree_balance_dirty(root);
5985         if (drop_inode) {
5986                 inode_dec_link_count(inode);
5987                 iput(inode);
5988         }
5989         return err;
5990
5991 out_unlock_inode:
5992         drop_inode = 1;
5993         unlock_new_inode(inode);
5994         goto out_unlock;
5995
5996 }
5997
5998 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5999                         umode_t mode, bool excl)
6000 {
6001         struct btrfs_trans_handle *trans;
6002         struct btrfs_root *root = BTRFS_I(dir)->root;
6003         struct inode *inode = NULL;
6004         int drop_inode_on_err = 0;
6005         int err;
6006         u64 objectid;
6007         u64 index = 0;
6008
6009         /*
6010          * 2 for inode item and ref
6011          * 2 for dir items
6012          * 1 for xattr if selinux is on
6013          */
6014         trans = btrfs_start_transaction(root, 5);
6015         if (IS_ERR(trans))
6016                 return PTR_ERR(trans);
6017
6018         err = btrfs_find_free_ino(root, &objectid);
6019         if (err)
6020                 goto out_unlock;
6021
6022         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6023                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6024                                 mode, &index);
6025         if (IS_ERR(inode)) {
6026                 err = PTR_ERR(inode);
6027                 goto out_unlock;
6028         }
6029         drop_inode_on_err = 1;
6030         /*
6031         * If the active LSM wants to access the inode during
6032         * d_instantiate it needs these. Smack checks to see
6033         * if the filesystem supports xattrs by looking at the
6034         * ops vector.
6035         */
6036         inode->i_fop = &btrfs_file_operations;
6037         inode->i_op = &btrfs_file_inode_operations;
6038         inode->i_mapping->a_ops = &btrfs_aops;
6039         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6040
6041         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6042         if (err)
6043                 goto out_unlock_inode;
6044
6045         err = btrfs_update_inode(trans, root, inode);
6046         if (err)
6047                 goto out_unlock_inode;
6048
6049         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6050         if (err)
6051                 goto out_unlock_inode;
6052
6053         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6054         unlock_new_inode(inode);
6055         d_instantiate(dentry, inode);
6056
6057 out_unlock:
6058         btrfs_end_transaction(trans, root);
6059         if (err && drop_inode_on_err) {
6060                 inode_dec_link_count(inode);
6061                 iput(inode);
6062         }
6063         btrfs_balance_delayed_items(root);
6064         btrfs_btree_balance_dirty(root);
6065         return err;
6066
6067 out_unlock_inode:
6068         unlock_new_inode(inode);
6069         goto out_unlock;
6070
6071 }
6072
6073 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6074                       struct dentry *dentry)
6075 {
6076         struct btrfs_trans_handle *trans;
6077         struct btrfs_root *root = BTRFS_I(dir)->root;
6078         struct inode *inode = old_dentry->d_inode;
6079         u64 index;
6080         int err;
6081         int drop_inode = 0;
6082
6083         /* do not allow sys_link's with other subvols of the same device */
6084         if (root->objectid != BTRFS_I(inode)->root->objectid)
6085                 return -EXDEV;
6086
6087         if (inode->i_nlink >= BTRFS_LINK_MAX)
6088                 return -EMLINK;
6089
6090         err = btrfs_set_inode_index(dir, &index);
6091         if (err)
6092                 goto fail;
6093
6094         /*
6095          * 2 items for inode and inode ref
6096          * 2 items for dir items
6097          * 1 item for parent inode
6098          */
6099         trans = btrfs_start_transaction(root, 5);
6100         if (IS_ERR(trans)) {
6101                 err = PTR_ERR(trans);
6102                 goto fail;
6103         }
6104
6105         /* There are several dir indexes for this inode, clear the cache. */
6106         BTRFS_I(inode)->dir_index = 0ULL;
6107         inc_nlink(inode);
6108         inode_inc_iversion(inode);
6109         inode->i_ctime = CURRENT_TIME;
6110         ihold(inode);
6111         set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6112
6113         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6114
6115         if (err) {
6116                 drop_inode = 1;
6117         } else {
6118                 struct dentry *parent = dentry->d_parent;
6119                 err = btrfs_update_inode(trans, root, inode);
6120                 if (err)
6121                         goto fail;
6122                 if (inode->i_nlink == 1) {
6123                         /*
6124                          * If new hard link count is 1, it's a file created
6125                          * with open(2) O_TMPFILE flag.
6126                          */
6127                         err = btrfs_orphan_del(trans, inode);
6128                         if (err)
6129                                 goto fail;
6130                 }
6131                 d_instantiate(dentry, inode);
6132                 btrfs_log_new_name(trans, inode, NULL, parent);
6133         }
6134
6135         btrfs_end_transaction(trans, root);
6136         btrfs_balance_delayed_items(root);
6137 fail:
6138         if (drop_inode) {
6139                 inode_dec_link_count(inode);
6140                 iput(inode);
6141         }
6142         btrfs_btree_balance_dirty(root);
6143         return err;
6144 }
6145
6146 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6147 {
6148         struct inode *inode = NULL;
6149         struct btrfs_trans_handle *trans;
6150         struct btrfs_root *root = BTRFS_I(dir)->root;
6151         int err = 0;
6152         int drop_on_err = 0;
6153         u64 objectid = 0;
6154         u64 index = 0;
6155
6156         /*
6157          * 2 items for inode and ref
6158          * 2 items for dir items
6159          * 1 for xattr if selinux is on
6160          */
6161         trans = btrfs_start_transaction(root, 5);
6162         if (IS_ERR(trans))
6163                 return PTR_ERR(trans);
6164
6165         err = btrfs_find_free_ino(root, &objectid);
6166         if (err)
6167                 goto out_fail;
6168
6169         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6170                                 dentry->d_name.len, btrfs_ino(dir), objectid,
6171                                 S_IFDIR | mode, &index);
6172         if (IS_ERR(inode)) {
6173                 err = PTR_ERR(inode);
6174                 goto out_fail;
6175         }
6176
6177         drop_on_err = 1;
6178         /* these must be set before we unlock the inode */
6179         inode->i_op = &btrfs_dir_inode_operations;
6180         inode->i_fop = &btrfs_dir_file_operations;
6181
6182         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6183         if (err)
6184                 goto out_fail_inode;
6185
6186         btrfs_i_size_write(inode, 0);
6187         err = btrfs_update_inode(trans, root, inode);
6188         if (err)
6189                 goto out_fail_inode;
6190
6191         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6192                              dentry->d_name.len, 0, index);
6193         if (err)
6194                 goto out_fail_inode;
6195
6196         d_instantiate(dentry, inode);
6197         /*
6198          * mkdir is special.  We're unlocking after we call d_instantiate
6199          * to avoid a race with nfsd calling d_instantiate.
6200          */
6201         unlock_new_inode(inode);
6202         drop_on_err = 0;
6203
6204 out_fail:
6205         btrfs_end_transaction(trans, root);
6206         if (drop_on_err)
6207                 iput(inode);
6208         btrfs_balance_delayed_items(root);
6209         btrfs_btree_balance_dirty(root);
6210         return err;
6211
6212 out_fail_inode:
6213         unlock_new_inode(inode);
6214         goto out_fail;
6215 }
6216
6217 /* Find next extent map of a given extent map, caller needs to ensure locks */
6218 static struct extent_map *next_extent_map(struct extent_map *em)
6219 {
6220         struct rb_node *next;
6221
6222         next = rb_next(&em->rb_node);
6223         if (!next)
6224                 return NULL;
6225         return container_of(next, struct extent_map, rb_node);
6226 }
6227
6228 static struct extent_map *prev_extent_map(struct extent_map *em)
6229 {
6230         struct rb_node *prev;
6231
6232         prev = rb_prev(&em->rb_node);
6233         if (!prev)
6234                 return NULL;
6235         return container_of(prev, struct extent_map, rb_node);
6236 }
6237
6238 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6239  * the existing extent is the nearest extent to map_start,
6240  * and an extent that you want to insert, deal with overlap and insert
6241  * the best fitted new extent into the tree.
6242  */
6243 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6244                                 struct extent_map *existing,
6245                                 struct extent_map *em,
6246                                 u64 map_start)
6247 {
6248         struct extent_map *prev;
6249         struct extent_map *next;
6250         u64 start;
6251         u64 end;
6252         u64 start_diff;
6253
6254         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6255
6256         if (existing->start > map_start) {
6257                 next = existing;
6258                 prev = prev_extent_map(next);
6259         } else {
6260                 prev = existing;
6261                 next = next_extent_map(prev);
6262         }
6263
6264         start = prev ? extent_map_end(prev) : em->start;
6265         start = max_t(u64, start, em->start);
6266         end = next ? next->start : extent_map_end(em);
6267         end = min_t(u64, end, extent_map_end(em));
6268         start_diff = start - em->start;
6269         em->start = start;
6270         em->len = end - start;
6271         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6272             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6273                 em->block_start += start_diff;
6274                 em->block_len -= start_diff;
6275         }
6276         return add_extent_mapping(em_tree, em, 0);
6277 }
6278
6279 static noinline int uncompress_inline(struct btrfs_path *path,
6280                                       struct inode *inode, struct page *page,
6281                                       size_t pg_offset, u64 extent_offset,
6282                                       struct btrfs_file_extent_item *item)
6283 {
6284         int ret;
6285         struct extent_buffer *leaf = path->nodes[0];
6286         char *tmp;
6287         size_t max_size;
6288         unsigned long inline_size;
6289         unsigned long ptr;
6290         int compress_type;
6291
6292         WARN_ON(pg_offset != 0);
6293         compress_type = btrfs_file_extent_compression(leaf, item);
6294         max_size = btrfs_file_extent_ram_bytes(leaf, item);
6295         inline_size = btrfs_file_extent_inline_item_len(leaf,
6296                                         btrfs_item_nr(path->slots[0]));
6297         tmp = kmalloc(inline_size, GFP_NOFS);
6298         if (!tmp)
6299                 return -ENOMEM;
6300         ptr = btrfs_file_extent_inline_start(item);
6301
6302         read_extent_buffer(leaf, tmp, ptr, inline_size);
6303
6304         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6305         ret = btrfs_decompress(compress_type, tmp, page,
6306                                extent_offset, inline_size, max_size);
6307         kfree(tmp);
6308         return ret;
6309 }
6310
6311 /*
6312  * a bit scary, this does extent mapping from logical file offset to the disk.
6313  * the ugly parts come from merging extents from the disk with the in-ram
6314  * representation.  This gets more complex because of the data=ordered code,
6315  * where the in-ram extents might be locked pending data=ordered completion.
6316  *
6317  * This also copies inline extents directly into the page.
6318  */
6319
6320 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6321                                     size_t pg_offset, u64 start, u64 len,
6322                                     int create)
6323 {
6324         int ret;
6325         int err = 0;
6326         u64 extent_start = 0;
6327         u64 extent_end = 0;
6328         u64 objectid = btrfs_ino(inode);
6329         u32 found_type;
6330         struct btrfs_path *path = NULL;
6331         struct btrfs_root *root = BTRFS_I(inode)->root;
6332         struct btrfs_file_extent_item *item;
6333         struct extent_buffer *leaf;
6334         struct btrfs_key found_key;
6335         struct extent_map *em = NULL;
6336         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6337         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6338         struct btrfs_trans_handle *trans = NULL;
6339         const bool new_inline = !page || create;
6340
6341 again:
6342         read_lock(&em_tree->lock);
6343         em = lookup_extent_mapping(em_tree, start, len);
6344         if (em)
6345                 em->bdev = root->fs_info->fs_devices->latest_bdev;
6346         read_unlock(&em_tree->lock);
6347
6348         if (em) {
6349                 if (em->start > start || em->start + em->len <= start)
6350                         free_extent_map(em);
6351                 else if (em->block_start == EXTENT_MAP_INLINE && page)
6352                         free_extent_map(em);
6353                 else
6354                         goto out;
6355         }
6356         em = alloc_extent_map();
6357         if (!em) {
6358                 err = -ENOMEM;
6359                 goto out;
6360         }
6361         em->bdev = root->fs_info->fs_devices->latest_bdev;
6362         em->start = EXTENT_MAP_HOLE;
6363         em->orig_start = EXTENT_MAP_HOLE;
6364         em->len = (u64)-1;
6365         em->block_len = (u64)-1;
6366
6367         if (!path) {
6368                 path = btrfs_alloc_path();
6369                 if (!path) {
6370                         err = -ENOMEM;
6371                         goto out;
6372                 }
6373                 /*
6374                  * Chances are we'll be called again, so go ahead and do
6375                  * readahead
6376                  */
6377                 path->reada = 1;
6378         }
6379
6380         ret = btrfs_lookup_file_extent(trans, root, path,
6381                                        objectid, start, trans != NULL);
6382         if (ret < 0) {
6383                 err = ret;
6384                 goto out;
6385         }
6386
6387         if (ret != 0) {
6388                 if (path->slots[0] == 0)
6389                         goto not_found;
6390                 path->slots[0]--;
6391         }
6392
6393         leaf = path->nodes[0];
6394         item = btrfs_item_ptr(leaf, path->slots[0],
6395                               struct btrfs_file_extent_item);
6396         /* are we inside the extent that was found? */
6397         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6398         found_type = found_key.type;
6399         if (found_key.objectid != objectid ||
6400             found_type != BTRFS_EXTENT_DATA_KEY) {
6401                 /*
6402                  * If we backup past the first extent we want to move forward
6403                  * and see if there is an extent in front of us, otherwise we'll
6404                  * say there is a hole for our whole search range which can
6405                  * cause problems.
6406                  */
6407                 extent_end = start;
6408                 goto next;
6409         }
6410
6411         found_type = btrfs_file_extent_type(leaf, item);
6412         extent_start = found_key.offset;
6413         if (found_type == BTRFS_FILE_EXTENT_REG ||
6414             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6415                 extent_end = extent_start +
6416                        btrfs_file_extent_num_bytes(leaf, item);
6417         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6418                 size_t size;
6419                 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6420                 extent_end = ALIGN(extent_start + size, root->sectorsize);
6421         }
6422 next:
6423         if (start >= extent_end) {
6424                 path->slots[0]++;
6425                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6426                         ret = btrfs_next_leaf(root, path);
6427                         if (ret < 0) {
6428                                 err = ret;
6429                                 goto out;
6430                         }
6431                         if (ret > 0)
6432                                 goto not_found;
6433                         leaf = path->nodes[0];
6434                 }
6435                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6436                 if (found_key.objectid != objectid ||
6437                     found_key.type != BTRFS_EXTENT_DATA_KEY)
6438                         goto not_found;
6439                 if (start + len <= found_key.offset)
6440                         goto not_found;
6441                 if (start > found_key.offset)
6442                         goto next;
6443                 em->start = start;
6444                 em->orig_start = start;
6445                 em->len = found_key.offset - start;
6446                 goto not_found_em;
6447         }
6448
6449         btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6450
6451         if (found_type == BTRFS_FILE_EXTENT_REG ||
6452             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6453                 goto insert;
6454         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6455                 unsigned long ptr;
6456                 char *map;
6457                 size_t size;
6458                 size_t extent_offset;
6459                 size_t copy_size;
6460
6461                 if (new_inline)
6462                         goto out;
6463
6464                 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6465                 extent_offset = page_offset(page) + pg_offset - extent_start;
6466                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6467                                 size - extent_offset);
6468                 em->start = extent_start + extent_offset;
6469                 em->len = ALIGN(copy_size, root->sectorsize);
6470                 em->orig_block_len = em->len;
6471                 em->orig_start = em->start;
6472                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6473                 if (create == 0 && !PageUptodate(page)) {
6474                         if (btrfs_file_extent_compression(leaf, item) !=
6475                             BTRFS_COMPRESS_NONE) {
6476                                 ret = uncompress_inline(path, inode, page,
6477                                                         pg_offset,
6478                                                         extent_offset, item);
6479                                 if (ret) {
6480                                         err = ret;
6481                                         goto out;
6482                                 }
6483                         } else {
6484                                 map = kmap(page);
6485                                 read_extent_buffer(leaf, map + pg_offset, ptr,
6486                                                    copy_size);
6487                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6488                                         memset(map + pg_offset + copy_size, 0,
6489                                                PAGE_CACHE_SIZE - pg_offset -
6490                                                copy_size);
6491                                 }
6492                                 kunmap(page);
6493                         }
6494                         flush_dcache_page(page);
6495                 } else if (create && PageUptodate(page)) {
6496                         BUG();
6497                         if (!trans) {
6498                                 kunmap(page);
6499                                 free_extent_map(em);
6500                                 em = NULL;
6501
6502                                 btrfs_release_path(path);
6503                                 trans = btrfs_join_transaction(root);
6504
6505                                 if (IS_ERR(trans))
6506                                         return ERR_CAST(trans);
6507                                 goto again;
6508                         }
6509                         map = kmap(page);
6510                         write_extent_buffer(leaf, map + pg_offset, ptr,
6511                                             copy_size);
6512                         kunmap(page);
6513                         btrfs_mark_buffer_dirty(leaf);
6514                 }
6515                 set_extent_uptodate(io_tree, em->start,
6516                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
6517                 goto insert;
6518         }
6519 not_found:
6520         em->start = start;
6521         em->orig_start = start;
6522         em->len = len;
6523 not_found_em:
6524         em->block_start = EXTENT_MAP_HOLE;
6525         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6526 insert:
6527         btrfs_release_path(path);
6528         if (em->start > start || extent_map_end(em) <= start) {
6529                 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6530                         em->start, em->len, start, len);
6531                 err = -EIO;
6532                 goto out;
6533         }
6534
6535         err = 0;
6536         write_lock(&em_tree->lock);
6537         ret = add_extent_mapping(em_tree, em, 0);
6538         /* it is possible that someone inserted the extent into the tree
6539          * while we had the lock dropped.  It is also possible that
6540          * an overlapping map exists in the tree
6541          */
6542         if (ret == -EEXIST) {
6543                 struct extent_map *existing;
6544
6545                 ret = 0;
6546
6547                 existing = search_extent_mapping(em_tree, start, len);
6548                 /*
6549                  * existing will always be non-NULL, since there must be
6550                  * extent causing the -EEXIST.
6551                  */
6552                 if (start >= extent_map_end(existing) ||
6553                     start <= existing->start) {
6554                         /*
6555                          * The existing extent map is the one nearest to
6556                          * the [start, start + len) range which overlaps
6557                          */
6558                         err = merge_extent_mapping(em_tree, existing,
6559                                                    em, start);
6560                         free_extent_map(existing);
6561                         if (err) {
6562                                 free_extent_map(em);
6563                                 em = NULL;
6564                         }
6565                 } else {
6566                         free_extent_map(em);
6567                         em = existing;
6568                         err = 0;
6569                 }
6570         }
6571         write_unlock(&em_tree->lock);
6572 out:
6573
6574         trace_btrfs_get_extent(root, em);
6575
6576         if (path)
6577                 btrfs_free_path(path);
6578         if (trans) {
6579                 ret = btrfs_end_transaction(trans, root);
6580                 if (!err)
6581                         err = ret;
6582         }
6583         if (err) {
6584                 free_extent_map(em);
6585                 return ERR_PTR(err);
6586         }
6587         BUG_ON(!em); /* Error is always set */
6588         return em;
6589 }
6590
6591 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6592                                            size_t pg_offset, u64 start, u64 len,
6593                                            int create)
6594 {
6595         struct extent_map *em;
6596         struct extent_map *hole_em = NULL;
6597         u64 range_start = start;
6598         u64 end;
6599         u64 found;
6600         u64 found_end;
6601         int err = 0;
6602
6603         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6604         if (IS_ERR(em))
6605                 return em;
6606         if (em) {
6607                 /*
6608                  * if our em maps to
6609                  * -  a hole or
6610                  * -  a pre-alloc extent,
6611                  * there might actually be delalloc bytes behind it.
6612                  */
6613                 if (em->block_start != EXTENT_MAP_HOLE &&
6614                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6615                         return em;
6616                 else
6617                         hole_em = em;
6618         }
6619
6620         /* check to see if we've wrapped (len == -1 or similar) */
6621         end = start + len;
6622         if (end < start)
6623                 end = (u64)-1;
6624         else
6625                 end -= 1;
6626
6627         em = NULL;
6628
6629         /* ok, we didn't find anything, lets look for delalloc */
6630         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6631                                  end, len, EXTENT_DELALLOC, 1);
6632         found_end = range_start + found;
6633         if (found_end < range_start)
6634                 found_end = (u64)-1;
6635
6636         /*
6637          * we didn't find anything useful, return
6638          * the original results from get_extent()
6639          */
6640         if (range_start > end || found_end <= start) {
6641                 em = hole_em;
6642                 hole_em = NULL;
6643                 goto out;
6644         }
6645
6646         /* adjust the range_start to make sure it doesn't
6647          * go backwards from the start they passed in
6648          */
6649         range_start = max(start, range_start);
6650         found = found_end - range_start;
6651
6652         if (found > 0) {
6653                 u64 hole_start = start;
6654                 u64 hole_len = len;
6655
6656                 em = alloc_extent_map();
6657                 if (!em) {
6658                         err = -ENOMEM;
6659                         goto out;
6660                 }
6661                 /*
6662                  * when btrfs_get_extent can't find anything it
6663                  * returns one huge hole
6664                  *
6665                  * make sure what it found really fits our range, and
6666                  * adjust to make sure it is based on the start from
6667                  * the caller
6668                  */
6669                 if (hole_em) {
6670                         u64 calc_end = extent_map_end(hole_em);
6671
6672                         if (calc_end <= start || (hole_em->start > end)) {
6673                                 free_extent_map(hole_em);
6674                                 hole_em = NULL;
6675                         } else {
6676                                 hole_start = max(hole_em->start, start);
6677                                 hole_len = calc_end - hole_start;
6678                         }
6679                 }
6680                 em->bdev = NULL;
6681                 if (hole_em && range_start > hole_start) {
6682                         /* our hole starts before our delalloc, so we
6683                          * have to return just the parts of the hole
6684                          * that go until  the delalloc starts
6685                          */
6686                         em->len = min(hole_len,
6687                                       range_start - hole_start);
6688                         em->start = hole_start;
6689                         em->orig_start = hole_start;
6690                         /*
6691                          * don't adjust block start at all,
6692                          * it is fixed at EXTENT_MAP_HOLE
6693                          */
6694                         em->block_start = hole_em->block_start;
6695                         em->block_len = hole_len;
6696                         if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6697                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6698                 } else {
6699                         em->start = range_start;
6700                         em->len = found;
6701                         em->orig_start = range_start;
6702                         em->block_start = EXTENT_MAP_DELALLOC;
6703                         em->block_len = found;
6704                 }
6705         } else if (hole_em) {
6706                 return hole_em;
6707         }
6708 out:
6709
6710         free_extent_map(hole_em);
6711         if (err) {
6712                 free_extent_map(em);
6713                 return ERR_PTR(err);
6714         }
6715         return em;
6716 }
6717
6718 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6719                                                   u64 start, u64 len)
6720 {
6721         struct btrfs_root *root = BTRFS_I(inode)->root;
6722         struct extent_map *em;
6723         struct btrfs_key ins;
6724         u64 alloc_hint;
6725         int ret;
6726
6727         alloc_hint = get_extent_allocation_hint(inode, start, len);
6728         ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6729                                    alloc_hint, &ins, 1, 1);
6730         if (ret)
6731                 return ERR_PTR(ret);
6732
6733         em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6734                               ins.offset, ins.offset, ins.offset, 0);
6735         if (IS_ERR(em)) {
6736                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6737                 return em;
6738         }
6739
6740         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6741                                            ins.offset, ins.offset, 0);
6742         if (ret) {
6743                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6744                 free_extent_map(em);
6745                 return ERR_PTR(ret);
6746         }
6747
6748         return em;
6749 }
6750
6751 /*
6752  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6753  * block must be cow'd
6754  */
6755 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6756                               u64 *orig_start, u64 *orig_block_len,
6757                               u64 *ram_bytes)
6758 {
6759         struct btrfs_trans_handle *trans;
6760         struct btrfs_path *path;
6761         int ret;
6762         struct extent_buffer *leaf;
6763         struct btrfs_root *root = BTRFS_I(inode)->root;
6764         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6765         struct btrfs_file_extent_item *fi;
6766         struct btrfs_key key;
6767         u64 disk_bytenr;
6768         u64 backref_offset;
6769         u64 extent_end;
6770         u64 num_bytes;
6771         int slot;
6772         int found_type;
6773         bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6774
6775         path = btrfs_alloc_path();
6776         if (!path)
6777                 return -ENOMEM;
6778
6779         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6780                                        offset, 0);
6781         if (ret < 0)
6782                 goto out;
6783
6784         slot = path->slots[0];
6785         if (ret == 1) {
6786                 if (slot == 0) {
6787                         /* can't find the item, must cow */
6788                         ret = 0;
6789                         goto out;
6790                 }
6791                 slot--;
6792         }
6793         ret = 0;
6794         leaf = path->nodes[0];
6795         btrfs_item_key_to_cpu(leaf, &key, slot);
6796         if (key.objectid != btrfs_ino(inode) ||
6797             key.type != BTRFS_EXTENT_DATA_KEY) {
6798                 /* not our file or wrong item type, must cow */
6799                 goto out;
6800         }
6801
6802         if (key.offset > offset) {
6803                 /* Wrong offset, must cow */
6804                 goto out;
6805         }
6806
6807         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6808         found_type = btrfs_file_extent_type(leaf, fi);
6809         if (found_type != BTRFS_FILE_EXTENT_REG &&
6810             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6811                 /* not a regular extent, must cow */
6812                 goto out;
6813         }
6814
6815         if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6816                 goto out;
6817
6818         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6819         if (extent_end <= offset)
6820                 goto out;
6821
6822         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6823         if (disk_bytenr == 0)
6824                 goto out;
6825
6826         if (btrfs_file_extent_compression(leaf, fi) ||
6827             btrfs_file_extent_encryption(leaf, fi) ||
6828             btrfs_file_extent_other_encoding(leaf, fi))
6829                 goto out;
6830
6831         backref_offset = btrfs_file_extent_offset(leaf, fi);
6832
6833         if (orig_start) {
6834                 *orig_start = key.offset - backref_offset;
6835                 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6836                 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6837         }
6838
6839         if (btrfs_extent_readonly(root, disk_bytenr))
6840                 goto out;
6841
6842         num_bytes = min(offset + *len, extent_end) - offset;
6843         if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6844                 u64 range_end;
6845
6846                 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6847                 ret = test_range_bit(io_tree, offset, range_end,
6848                                      EXTENT_DELALLOC, 0, NULL);
6849                 if (ret) {
6850                         ret = -EAGAIN;
6851                         goto out;
6852                 }
6853         }
6854
6855         btrfs_release_path(path);
6856
6857         /*
6858          * look for other files referencing this extent, if we
6859          * find any we must cow
6860          */
6861         trans = btrfs_join_transaction(root);
6862         if (IS_ERR(trans)) {
6863                 ret = 0;
6864                 goto out;
6865         }
6866
6867         ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6868                                     key.offset - backref_offset, disk_bytenr);
6869         btrfs_end_transaction(trans, root);
6870         if (ret) {
6871                 ret = 0;
6872                 goto out;
6873         }
6874
6875         /*
6876          * adjust disk_bytenr and num_bytes to cover just the bytes
6877          * in this extent we are about to write.  If there
6878          * are any csums in that range we have to cow in order
6879          * to keep the csums correct
6880          */
6881         disk_bytenr += backref_offset;
6882         disk_bytenr += offset - key.offset;
6883         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6884                                 goto out;
6885         /*
6886          * all of the above have passed, it is safe to overwrite this extent
6887          * without cow
6888          */
6889         *len = num_bytes;
6890         ret = 1;
6891 out:
6892         btrfs_free_path(path);
6893         return ret;
6894 }
6895
6896 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6897 {
6898         struct radix_tree_root *root = &inode->i_mapping->page_tree;
6899         int found = false;
6900         void **pagep = NULL;
6901         struct page *page = NULL;
6902         int start_idx;
6903         int end_idx;
6904
6905         start_idx = start >> PAGE_CACHE_SHIFT;
6906
6907         /*
6908          * end is the last byte in the last page.  end == start is legal
6909          */
6910         end_idx = end >> PAGE_CACHE_SHIFT;
6911
6912         rcu_read_lock();
6913
6914         /* Most of the code in this while loop is lifted from
6915          * find_get_page.  It's been modified to begin searching from a
6916          * page and return just the first page found in that range.  If the
6917          * found idx is less than or equal to the end idx then we know that
6918          * a page exists.  If no pages are found or if those pages are
6919          * outside of the range then we're fine (yay!) */
6920         while (page == NULL &&
6921                radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6922                 page = radix_tree_deref_slot(pagep);
6923                 if (unlikely(!page))
6924                         break;
6925
6926                 if (radix_tree_exception(page)) {
6927                         if (radix_tree_deref_retry(page)) {
6928                                 page = NULL;
6929                                 continue;
6930                         }
6931                         /*
6932                          * Otherwise, shmem/tmpfs must be storing a swap entry
6933                          * here as an exceptional entry: so return it without
6934                          * attempting to raise page count.
6935                          */
6936                         page = NULL;
6937                         break; /* TODO: Is this relevant for this use case? */
6938                 }
6939
6940                 if (!page_cache_get_speculative(page)) {
6941                         page = NULL;
6942                         continue;
6943                 }
6944
6945                 /*
6946                  * Has the page moved?
6947                  * This is part of the lockless pagecache protocol. See
6948                  * include/linux/pagemap.h for details.
6949                  */
6950                 if (unlikely(page != *pagep)) {
6951                         page_cache_release(page);
6952                         page = NULL;
6953                 }
6954         }
6955
6956         if (page) {
6957                 if (page->index <= end_idx)
6958                         found = true;
6959                 page_cache_release(page);
6960         }
6961
6962         rcu_read_unlock();
6963         return found;
6964 }
6965
6966 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6967                               struct extent_state **cached_state, int writing)
6968 {
6969         struct btrfs_ordered_extent *ordered;
6970         int ret = 0;
6971
6972         while (1) {
6973                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6974                                  0, cached_state);
6975                 /*
6976                  * We're concerned with the entire range that we're going to be
6977                  * doing DIO to, so we need to make sure theres no ordered
6978                  * extents in this range.
6979                  */
6980                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6981                                                      lockend - lockstart + 1);
6982
6983                 /*
6984                  * We need to make sure there are no buffered pages in this
6985                  * range either, we could have raced between the invalidate in
6986                  * generic_file_direct_write and locking the extent.  The
6987                  * invalidate needs to happen so that reads after a write do not
6988                  * get stale data.
6989                  */
6990                 if (!ordered &&
6991                     (!writing ||
6992                      !btrfs_page_exists_in_range(inode, lockstart, lockend)))
6993                         break;
6994
6995                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6996                                      cached_state, GFP_NOFS);
6997
6998                 if (ordered) {
6999                         btrfs_start_ordered_extent(inode, ordered, 1);
7000                         btrfs_put_ordered_extent(ordered);
7001                 } else {
7002                         /* Screw you mmap */
7003                         ret = filemap_write_and_wait_range(inode->i_mapping,
7004                                                            lockstart,
7005                                                            lockend);
7006                         if (ret)
7007                                 break;
7008
7009                         /*
7010                          * If we found a page that couldn't be invalidated just
7011                          * fall back to buffered.
7012                          */
7013                         ret = invalidate_inode_pages2_range(inode->i_mapping,
7014                                         lockstart >> PAGE_CACHE_SHIFT,
7015                                         lockend >> PAGE_CACHE_SHIFT);
7016                         if (ret)
7017                                 break;
7018                 }
7019
7020                 cond_resched();
7021         }
7022
7023         return ret;
7024 }
7025
7026 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7027                                            u64 len, u64 orig_start,
7028                                            u64 block_start, u64 block_len,
7029                                            u64 orig_block_len, u64 ram_bytes,
7030                                            int type)
7031 {
7032         struct extent_map_tree *em_tree;
7033         struct extent_map *em;
7034         struct btrfs_root *root = BTRFS_I(inode)->root;
7035         int ret;
7036
7037         em_tree = &BTRFS_I(inode)->extent_tree;
7038         em = alloc_extent_map();
7039         if (!em)
7040                 return ERR_PTR(-ENOMEM);
7041
7042         em->start = start;
7043         em->orig_start = orig_start;
7044         em->mod_start = start;
7045         em->mod_len = len;
7046         em->len = len;
7047         em->block_len = block_len;
7048         em->block_start = block_start;
7049         em->bdev = root->fs_info->fs_devices->latest_bdev;
7050         em->orig_block_len = orig_block_len;
7051         em->ram_bytes = ram_bytes;
7052         em->generation = -1;
7053         set_bit(EXTENT_FLAG_PINNED, &em->flags);
7054         if (type == BTRFS_ORDERED_PREALLOC)
7055                 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7056
7057         do {
7058                 btrfs_drop_extent_cache(inode, em->start,
7059                                 em->start + em->len - 1, 0);
7060                 write_lock(&em_tree->lock);
7061                 ret = add_extent_mapping(em_tree, em, 1);
7062                 write_unlock(&em_tree->lock);
7063         } while (ret == -EEXIST);
7064
7065         if (ret) {
7066                 free_extent_map(em);
7067                 return ERR_PTR(ret);
7068         }
7069
7070         return em;
7071 }
7072
7073
7074 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7075                                    struct buffer_head *bh_result, int create)
7076 {
7077         struct extent_map *em;
7078         struct btrfs_root *root = BTRFS_I(inode)->root;
7079         struct extent_state *cached_state = NULL;
7080         u64 start = iblock << inode->i_blkbits;
7081         u64 lockstart, lockend;
7082         u64 len = bh_result->b_size;
7083         int unlock_bits = EXTENT_LOCKED;
7084         int ret = 0;
7085
7086         if (create)
7087                 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
7088         else
7089                 len = min_t(u64, len, root->sectorsize);
7090
7091         lockstart = start;
7092         lockend = start + len - 1;
7093
7094         /*
7095          * If this errors out it's because we couldn't invalidate pagecache for
7096          * this range and we need to fallback to buffered.
7097          */
7098         if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7099                 return -ENOTBLK;
7100
7101         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7102         if (IS_ERR(em)) {
7103                 ret = PTR_ERR(em);
7104                 goto unlock_err;
7105         }
7106
7107         /*
7108          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7109          * io.  INLINE is special, and we could probably kludge it in here, but
7110          * it's still buffered so for safety lets just fall back to the generic
7111          * buffered path.
7112          *
7113          * For COMPRESSED we _have_ to read the entire extent in so we can
7114          * decompress it, so there will be buffering required no matter what we
7115          * do, so go ahead and fallback to buffered.
7116          *
7117          * We return -ENOTBLK because thats what makes DIO go ahead and go back
7118          * to buffered IO.  Don't blame me, this is the price we pay for using
7119          * the generic code.
7120          */
7121         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7122             em->block_start == EXTENT_MAP_INLINE) {
7123                 free_extent_map(em);
7124                 ret = -ENOTBLK;
7125                 goto unlock_err;
7126         }
7127
7128         /* Just a good old fashioned hole, return */
7129         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7130                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7131                 free_extent_map(em);
7132                 goto unlock_err;
7133         }
7134
7135         /*
7136          * We don't allocate a new extent in the following cases
7137          *
7138          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7139          * existing extent.
7140          * 2) The extent is marked as PREALLOC.  We're good to go here and can
7141          * just use the extent.
7142          *
7143          */
7144         if (!create) {
7145                 len = min(len, em->len - (start - em->start));
7146                 lockstart = start + len;
7147                 goto unlock;
7148         }
7149
7150         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7151             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7152              em->block_start != EXTENT_MAP_HOLE)) {
7153                 int type;
7154                 int ret;
7155                 u64 block_start, orig_start, orig_block_len, ram_bytes;
7156
7157                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7158                         type = BTRFS_ORDERED_PREALLOC;
7159                 else
7160                         type = BTRFS_ORDERED_NOCOW;
7161                 len = min(len, em->len - (start - em->start));
7162                 block_start = em->block_start + (start - em->start);
7163
7164                 if (can_nocow_extent(inode, start, &len, &orig_start,
7165                                      &orig_block_len, &ram_bytes) == 1) {
7166                         if (type == BTRFS_ORDERED_PREALLOC) {
7167                                 free_extent_map(em);
7168                                 em = create_pinned_em(inode, start, len,
7169                                                        orig_start,
7170                                                        block_start, len,
7171                                                        orig_block_len,
7172                                                        ram_bytes, type);
7173                                 if (IS_ERR(em)) {
7174                                         ret = PTR_ERR(em);
7175                                         goto unlock_err;
7176                                 }
7177                         }
7178
7179                         ret = btrfs_add_ordered_extent_dio(inode, start,
7180                                            block_start, len, len, type);
7181                         if (ret) {
7182                                 free_extent_map(em);
7183                                 goto unlock_err;
7184                         }
7185                         goto unlock;
7186                 }
7187         }
7188
7189         /*
7190          * this will cow the extent, reset the len in case we changed
7191          * it above
7192          */
7193         len = bh_result->b_size;
7194         free_extent_map(em);
7195         em = btrfs_new_extent_direct(inode, start, len);
7196         if (IS_ERR(em)) {
7197                 ret = PTR_ERR(em);
7198                 goto unlock_err;
7199         }
7200         len = min(len, em->len - (start - em->start));
7201 unlock:
7202         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7203                 inode->i_blkbits;
7204         bh_result->b_size = len;
7205         bh_result->b_bdev = em->bdev;
7206         set_buffer_mapped(bh_result);
7207         if (create) {
7208                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7209                         set_buffer_new(bh_result);
7210
7211                 /*
7212                  * Need to update the i_size under the extent lock so buffered
7213                  * readers will get the updated i_size when we unlock.
7214                  */
7215                 if (start + len > i_size_read(inode))
7216                         i_size_write(inode, start + len);
7217
7218                 spin_lock(&BTRFS_I(inode)->lock);
7219                 BTRFS_I(inode)->outstanding_extents++;
7220                 spin_unlock(&BTRFS_I(inode)->lock);
7221
7222                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7223                                      lockstart + len - 1, EXTENT_DELALLOC, NULL,
7224                                      &cached_state, GFP_NOFS);
7225                 BUG_ON(ret);
7226         }
7227
7228         /*
7229          * In the case of write we need to clear and unlock the entire range,
7230          * in the case of read we need to unlock only the end area that we
7231          * aren't using if there is any left over space.
7232          */
7233         if (lockstart < lockend) {
7234                 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7235                                  lockend, unlock_bits, 1, 0,
7236                                  &cached_state, GFP_NOFS);
7237         } else {
7238                 free_extent_state(cached_state);
7239         }
7240
7241         free_extent_map(em);
7242
7243         return 0;
7244
7245 unlock_err:
7246         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7247                          unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7248         return ret;
7249 }
7250
7251 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7252                                         int rw, int mirror_num)
7253 {
7254         struct btrfs_root *root = BTRFS_I(inode)->root;
7255         int ret;
7256
7257         BUG_ON(rw & REQ_WRITE);
7258
7259         bio_get(bio);
7260
7261         ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7262                                   BTRFS_WQ_ENDIO_DIO_REPAIR);
7263         if (ret)
7264                 goto err;
7265
7266         ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7267 err:
7268         bio_put(bio);
7269         return ret;
7270 }
7271
7272 static int btrfs_check_dio_repairable(struct inode *inode,
7273                                       struct bio *failed_bio,
7274                                       struct io_failure_record *failrec,
7275                                       int failed_mirror)
7276 {
7277         int num_copies;
7278
7279         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7280                                       failrec->logical, failrec->len);
7281         if (num_copies == 1) {
7282                 /*
7283                  * we only have a single copy of the data, so don't bother with
7284                  * all the retry and error correction code that follows. no
7285                  * matter what the error is, it is very likely to persist.
7286                  */
7287                 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7288                          num_copies, failrec->this_mirror, failed_mirror);
7289                 return 0;
7290         }
7291
7292         failrec->failed_mirror = failed_mirror;
7293         failrec->this_mirror++;
7294         if (failrec->this_mirror == failed_mirror)
7295                 failrec->this_mirror++;
7296
7297         if (failrec->this_mirror > num_copies) {
7298                 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7299                          num_copies, failrec->this_mirror, failed_mirror);
7300                 return 0;
7301         }
7302
7303         return 1;
7304 }
7305
7306 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7307                           struct page *page, u64 start, u64 end,
7308                           int failed_mirror, bio_end_io_t *repair_endio,
7309                           void *repair_arg)
7310 {
7311         struct io_failure_record *failrec;
7312         struct bio *bio;
7313         int isector;
7314         int read_mode;
7315         int ret;
7316
7317         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7318
7319         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7320         if (ret)
7321                 return ret;
7322
7323         ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7324                                          failed_mirror);
7325         if (!ret) {
7326                 free_io_failure(inode, failrec);
7327                 return -EIO;
7328         }
7329
7330         if (failed_bio->bi_vcnt > 1)
7331                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7332         else
7333                 read_mode = READ_SYNC;
7334
7335         isector = start - btrfs_io_bio(failed_bio)->logical;
7336         isector >>= inode->i_sb->s_blocksize_bits;
7337         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7338                                       0, isector, repair_endio, repair_arg);
7339         if (!bio) {
7340                 free_io_failure(inode, failrec);
7341                 return -EIO;
7342         }
7343
7344         btrfs_debug(BTRFS_I(inode)->root->fs_info,
7345                     "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7346                     read_mode, failrec->this_mirror, failrec->in_validation);
7347
7348         ret = submit_dio_repair_bio(inode, bio, read_mode,
7349                                     failrec->this_mirror);
7350         if (ret) {
7351                 free_io_failure(inode, failrec);
7352                 bio_put(bio);
7353         }
7354
7355         return ret;
7356 }
7357
7358 struct btrfs_retry_complete {
7359         struct completion done;
7360         struct inode *inode;
7361         u64 start;
7362         int uptodate;
7363 };
7364
7365 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7366 {
7367         struct btrfs_retry_complete *done = bio->bi_private;
7368         struct bio_vec *bvec;
7369         int i;
7370
7371         if (err)
7372                 goto end;
7373
7374         done->uptodate = 1;
7375         bio_for_each_segment_all(bvec, bio, i)
7376                 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7377 end:
7378         complete(&done->done);
7379         bio_put(bio);
7380 }
7381
7382 static int __btrfs_correct_data_nocsum(struct inode *inode,
7383                                        struct btrfs_io_bio *io_bio)
7384 {
7385         struct bio_vec *bvec;
7386         struct btrfs_retry_complete done;
7387         u64 start;
7388         int i;
7389         int ret;
7390
7391         start = io_bio->logical;
7392         done.inode = inode;
7393
7394         bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7395 try_again:
7396                 done.uptodate = 0;
7397                 done.start = start;
7398                 init_completion(&done.done);
7399
7400                 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7401                                      start + bvec->bv_len - 1,
7402                                      io_bio->mirror_num,
7403                                      btrfs_retry_endio_nocsum, &done);
7404                 if (ret)
7405                         return ret;
7406
7407                 wait_for_completion(&done.done);
7408
7409                 if (!done.uptodate) {
7410                         /* We might have another mirror, so try again */
7411                         goto try_again;
7412                 }
7413
7414                 start += bvec->bv_len;
7415         }
7416
7417         return 0;
7418 }
7419
7420 static void btrfs_retry_endio(struct bio *bio, int err)
7421 {
7422         struct btrfs_retry_complete *done = bio->bi_private;
7423         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7424         struct bio_vec *bvec;
7425         int uptodate;
7426         int ret;
7427         int i;
7428
7429         if (err)
7430                 goto end;
7431
7432         uptodate = 1;
7433         bio_for_each_segment_all(bvec, bio, i) {
7434                 ret = __readpage_endio_check(done->inode, io_bio, i,
7435                                              bvec->bv_page, 0,
7436                                              done->start, bvec->bv_len);
7437                 if (!ret)
7438                         clean_io_failure(done->inode, done->start,
7439                                          bvec->bv_page, 0);
7440                 else
7441                         uptodate = 0;
7442         }
7443
7444         done->uptodate = uptodate;
7445 end:
7446         complete(&done->done);
7447         bio_put(bio);
7448 }
7449
7450 static int __btrfs_subio_endio_read(struct inode *inode,
7451                                     struct btrfs_io_bio *io_bio, int err)
7452 {
7453         struct bio_vec *bvec;
7454         struct btrfs_retry_complete done;
7455         u64 start;
7456         u64 offset = 0;
7457         int i;
7458         int ret;
7459
7460         err = 0;
7461         start = io_bio->logical;
7462         done.inode = inode;
7463
7464         bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7465                 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7466                                              0, start, bvec->bv_len);
7467                 if (likely(!ret))
7468                         goto next;
7469 try_again:
7470                 done.uptodate = 0;
7471                 done.start = start;
7472                 init_completion(&done.done);
7473
7474                 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7475                                      start + bvec->bv_len - 1,
7476                                      io_bio->mirror_num,
7477                                      btrfs_retry_endio, &done);
7478                 if (ret) {
7479                         err = ret;
7480                         goto next;
7481                 }
7482
7483                 wait_for_completion(&done.done);
7484
7485                 if (!done.uptodate) {
7486                         /* We might have another mirror, so try again */
7487                         goto try_again;
7488                 }
7489 next:
7490                 offset += bvec->bv_len;
7491                 start += bvec->bv_len;
7492         }
7493
7494         return err;
7495 }
7496
7497 static int btrfs_subio_endio_read(struct inode *inode,
7498                                   struct btrfs_io_bio *io_bio, int err)
7499 {
7500         bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7501
7502         if (skip_csum) {
7503                 if (unlikely(err))
7504                         return __btrfs_correct_data_nocsum(inode, io_bio);
7505                 else
7506                         return 0;
7507         } else {
7508                 return __btrfs_subio_endio_read(inode, io_bio, err);
7509         }
7510 }
7511
7512 static void btrfs_endio_direct_read(struct bio *bio, int err)
7513 {
7514         struct btrfs_dio_private *dip = bio->bi_private;
7515         struct inode *inode = dip->inode;
7516         struct bio *dio_bio;
7517         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7518
7519         if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7520                 err = btrfs_subio_endio_read(inode, io_bio, err);
7521
7522         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7523                       dip->logical_offset + dip->bytes - 1);
7524         dio_bio = dip->dio_bio;
7525
7526         kfree(dip);
7527
7528         /* If we had a csum failure make sure to clear the uptodate flag */
7529         if (err)
7530                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7531         dio_end_io(dio_bio, err);
7532
7533         if (io_bio->end_io)
7534                 io_bio->end_io(io_bio, err);
7535         bio_put(bio);
7536 }
7537
7538 static void btrfs_endio_direct_write(struct bio *bio, int err)
7539 {
7540         struct btrfs_dio_private *dip = bio->bi_private;
7541         struct inode *inode = dip->inode;
7542         struct btrfs_root *root = BTRFS_I(inode)->root;
7543         struct btrfs_ordered_extent *ordered = NULL;
7544         u64 ordered_offset = dip->logical_offset;
7545         u64 ordered_bytes = dip->bytes;
7546         struct bio *dio_bio;
7547         int ret;
7548
7549         if (err)
7550                 goto out_done;
7551 again:
7552         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7553                                                    &ordered_offset,
7554                                                    ordered_bytes, !err);
7555         if (!ret)
7556                 goto out_test;
7557
7558         btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7559                         finish_ordered_fn, NULL, NULL);
7560         btrfs_queue_work(root->fs_info->endio_write_workers,
7561                          &ordered->work);
7562 out_test:
7563         /*
7564          * our bio might span multiple ordered extents.  If we haven't
7565          * completed the accounting for the whole dio, go back and try again
7566          */
7567         if (ordered_offset < dip->logical_offset + dip->bytes) {
7568                 ordered_bytes = dip->logical_offset + dip->bytes -
7569                         ordered_offset;
7570                 ordered = NULL;
7571                 goto again;
7572         }
7573 out_done:
7574         dio_bio = dip->dio_bio;
7575
7576         kfree(dip);
7577
7578         /* If we had an error make sure to clear the uptodate flag */
7579         if (err)
7580                 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7581         dio_end_io(dio_bio, err);
7582         bio_put(bio);
7583 }
7584
7585 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7586                                     struct bio *bio, int mirror_num,
7587                                     unsigned long bio_flags, u64 offset)
7588 {
7589         int ret;
7590         struct btrfs_root *root = BTRFS_I(inode)->root;
7591         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7592         BUG_ON(ret); /* -ENOMEM */
7593         return 0;
7594 }
7595
7596 static void btrfs_end_dio_bio(struct bio *bio, int err)
7597 {
7598         struct btrfs_dio_private *dip = bio->bi_private;
7599
7600         if (err)
7601                 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7602                            "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7603                            btrfs_ino(dip->inode), bio->bi_rw,
7604                            (unsigned long long)bio->bi_iter.bi_sector,
7605                            bio->bi_iter.bi_size, err);
7606
7607         if (dip->subio_endio)
7608                 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7609
7610         if (err) {
7611                 dip->errors = 1;
7612
7613                 /*
7614                  * before atomic variable goto zero, we must make sure
7615                  * dip->errors is perceived to be set.
7616                  */
7617                 smp_mb__before_atomic();
7618         }
7619
7620         /* if there are more bios still pending for this dio, just exit */
7621         if (!atomic_dec_and_test(&dip->pending_bios))
7622                 goto out;
7623
7624         if (dip->errors) {
7625                 bio_io_error(dip->orig_bio);
7626         } else {
7627                 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7628                 bio_endio(dip->orig_bio, 0);
7629         }
7630 out:
7631         bio_put(bio);
7632 }
7633
7634 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7635                                        u64 first_sector, gfp_t gfp_flags)
7636 {
7637         int nr_vecs = bio_get_nr_vecs(bdev);
7638         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7639 }
7640
7641 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7642                                                  struct inode *inode,
7643                                                  struct btrfs_dio_private *dip,
7644                                                  struct bio *bio,
7645                                                  u64 file_offset)
7646 {
7647         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7648         struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7649         int ret;
7650
7651         /*
7652          * We load all the csum data we need when we submit
7653          * the first bio to reduce the csum tree search and
7654          * contention.
7655          */
7656         if (dip->logical_offset == file_offset) {
7657                 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7658                                                 file_offset);
7659                 if (ret)
7660                         return ret;
7661         }
7662
7663         if (bio == dip->orig_bio)
7664                 return 0;
7665
7666         file_offset -= dip->logical_offset;
7667         file_offset >>= inode->i_sb->s_blocksize_bits;
7668         io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7669
7670         return 0;
7671 }
7672
7673 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7674                                          int rw, u64 file_offset, int skip_sum,
7675                                          int async_submit)
7676 {
7677         struct btrfs_dio_private *dip = bio->bi_private;
7678         int write = rw & REQ_WRITE;
7679         struct btrfs_root *root = BTRFS_I(inode)->root;
7680         int ret;
7681
7682         if (async_submit)
7683                 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7684
7685         bio_get(bio);
7686
7687         if (!write) {
7688                 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7689                                 BTRFS_WQ_ENDIO_DATA);
7690                 if (ret)
7691                         goto err;
7692         }
7693
7694         if (skip_sum)
7695                 goto map;
7696
7697         if (write && async_submit) {
7698                 ret = btrfs_wq_submit_bio(root->fs_info,
7699                                    inode, rw, bio, 0, 0,
7700                                    file_offset,
7701                                    __btrfs_submit_bio_start_direct_io,
7702                                    __btrfs_submit_bio_done);
7703                 goto err;
7704         } else if (write) {
7705                 /*
7706                  * If we aren't doing async submit, calculate the csum of the
7707                  * bio now.
7708                  */
7709                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7710                 if (ret)
7711                         goto err;
7712         } else {
7713                 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7714                                                      file_offset);
7715                 if (ret)
7716                         goto err;
7717         }
7718 map:
7719         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7720 err:
7721         bio_put(bio);
7722         return ret;
7723 }
7724
7725 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7726                                     int skip_sum)
7727 {
7728         struct inode *inode = dip->inode;
7729         struct btrfs_root *root = BTRFS_I(inode)->root;
7730         struct bio *bio;
7731         struct bio *orig_bio = dip->orig_bio;
7732         struct bio_vec *bvec = orig_bio->bi_io_vec;
7733         u64 start_sector = orig_bio->bi_iter.bi_sector;
7734         u64 file_offset = dip->logical_offset;
7735         u64 submit_len = 0;
7736         u64 map_length;
7737         int nr_pages = 0;
7738         int ret;
7739         int async_submit = 0;
7740
7741         map_length = orig_bio->bi_iter.bi_size;
7742         ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7743                               &map_length, NULL, 0);
7744         if (ret)
7745                 return -EIO;
7746
7747         if (map_length >= orig_bio->bi_iter.bi_size) {
7748                 bio = orig_bio;
7749                 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7750                 goto submit;
7751         }
7752
7753         /* async crcs make it difficult to collect full stripe writes. */
7754         if (btrfs_get_alloc_profile(root, 1) &
7755             (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7756                 async_submit = 0;
7757         else
7758                 async_submit = 1;
7759
7760         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7761         if (!bio)
7762                 return -ENOMEM;
7763
7764         bio->bi_private = dip;
7765         bio->bi_end_io = btrfs_end_dio_bio;
7766         btrfs_io_bio(bio)->logical = file_offset;
7767         atomic_inc(&dip->pending_bios);
7768
7769         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7770                 if (map_length < submit_len + bvec->bv_len ||
7771                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7772                                  bvec->bv_offset) < bvec->bv_len) {
7773                         /*
7774                          * inc the count before we submit the bio so
7775                          * we know the end IO handler won't happen before
7776                          * we inc the count. Otherwise, the dip might get freed
7777                          * before we're done setting it up
7778                          */
7779                         atomic_inc(&dip->pending_bios);
7780                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
7781                                                      file_offset, skip_sum,
7782                                                      async_submit);
7783                         if (ret) {
7784                                 bio_put(bio);
7785                                 atomic_dec(&dip->pending_bios);
7786                                 goto out_err;
7787                         }
7788
7789                         start_sector += submit_len >> 9;
7790                         file_offset += submit_len;
7791
7792                         submit_len = 0;
7793                         nr_pages = 0;
7794
7795                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7796                                                   start_sector, GFP_NOFS);
7797                         if (!bio)
7798                                 goto out_err;
7799                         bio->bi_private = dip;
7800                         bio->bi_end_io = btrfs_end_dio_bio;
7801                         btrfs_io_bio(bio)->logical = file_offset;
7802
7803                         map_length = orig_bio->bi_iter.bi_size;
7804                         ret = btrfs_map_block(root->fs_info, rw,
7805                                               start_sector << 9,
7806                                               &map_length, NULL, 0);
7807                         if (ret) {
7808                                 bio_put(bio);
7809                                 goto out_err;
7810                         }
7811                 } else {
7812                         submit_len += bvec->bv_len;
7813                         nr_pages++;
7814                         bvec++;
7815                 }
7816         }
7817
7818 submit:
7819         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7820                                      async_submit);
7821         if (!ret)
7822                 return 0;
7823
7824         bio_put(bio);
7825 out_err:
7826         dip->errors = 1;
7827         /*
7828          * before atomic variable goto zero, we must
7829          * make sure dip->errors is perceived to be set.
7830          */
7831         smp_mb__before_atomic();
7832         if (atomic_dec_and_test(&dip->pending_bios))
7833                 bio_io_error(dip->orig_bio);
7834
7835         /* bio_end_io() will handle error, so we needn't return it */
7836         return 0;
7837 }
7838
7839 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7840                                 struct inode *inode, loff_t file_offset)
7841 {
7842         struct btrfs_root *root = BTRFS_I(inode)->root;
7843         struct btrfs_dio_private *dip;
7844         struct bio *io_bio;
7845         struct btrfs_io_bio *btrfs_bio;
7846         int skip_sum;
7847         int write = rw & REQ_WRITE;
7848         int ret = 0;
7849
7850         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7851
7852         io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7853         if (!io_bio) {
7854                 ret = -ENOMEM;
7855                 goto free_ordered;
7856         }
7857
7858         dip = kzalloc(sizeof(*dip), GFP_NOFS);
7859         if (!dip) {
7860                 ret = -ENOMEM;
7861                 goto free_io_bio;
7862         }
7863
7864         dip->private = dio_bio->bi_private;
7865         dip->inode = inode;
7866         dip->logical_offset = file_offset;
7867         dip->bytes = dio_bio->bi_iter.bi_size;
7868         dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7869         io_bio->bi_private = dip;
7870         dip->orig_bio = io_bio;
7871         dip->dio_bio = dio_bio;
7872         atomic_set(&dip->pending_bios, 0);
7873         btrfs_bio = btrfs_io_bio(io_bio);
7874         btrfs_bio->logical = file_offset;
7875
7876         if (write) {
7877                 io_bio->bi_end_io = btrfs_endio_direct_write;
7878         } else {
7879                 io_bio->bi_end_io = btrfs_endio_direct_read;
7880                 dip->subio_endio = btrfs_subio_endio_read;
7881         }
7882
7883         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7884         if (!ret)
7885                 return;
7886
7887         if (btrfs_bio->end_io)
7888                 btrfs_bio->end_io(btrfs_bio, ret);
7889 free_io_bio:
7890         bio_put(io_bio);
7891
7892 free_ordered:
7893         /*
7894          * If this is a write, we need to clean up the reserved space and kill
7895          * the ordered extent.
7896          */
7897         if (write) {
7898                 struct btrfs_ordered_extent *ordered;
7899                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7900                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7901                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7902                         btrfs_free_reserved_extent(root, ordered->start,
7903                                                    ordered->disk_len, 1);
7904                 btrfs_put_ordered_extent(ordered);
7905                 btrfs_put_ordered_extent(ordered);
7906         }
7907         bio_endio(dio_bio, ret);
7908 }
7909
7910 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7911                         const struct iov_iter *iter, loff_t offset)
7912 {
7913         int seg;
7914         int i;
7915         unsigned blocksize_mask = root->sectorsize - 1;
7916         ssize_t retval = -EINVAL;
7917
7918         if (offset & blocksize_mask)
7919                 goto out;
7920
7921         if (iov_iter_alignment(iter) & blocksize_mask)
7922                 goto out;
7923
7924         /* If this is a write we don't need to check anymore */
7925         if (rw & WRITE)
7926                 return 0;
7927         /*
7928          * Check to make sure we don't have duplicate iov_base's in this
7929          * iovec, if so return EINVAL, otherwise we'll get csum errors
7930          * when reading back.
7931          */
7932         for (seg = 0; seg < iter->nr_segs; seg++) {
7933                 for (i = seg + 1; i < iter->nr_segs; i++) {
7934                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7935                                 goto out;
7936                 }
7937         }
7938         retval = 0;
7939 out:
7940         return retval;
7941 }
7942
7943 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7944                         struct iov_iter *iter, loff_t offset)
7945 {
7946         struct file *file = iocb->ki_filp;
7947         struct inode *inode = file->f_mapping->host;
7948         size_t count = 0;
7949         int flags = 0;
7950         bool wakeup = true;
7951         bool relock = false;
7952         ssize_t ret;
7953
7954         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
7955                 return 0;
7956
7957         atomic_inc(&inode->i_dio_count);
7958         smp_mb__after_atomic();
7959
7960         /*
7961          * The generic stuff only does filemap_write_and_wait_range, which
7962          * isn't enough if we've written compressed pages to this area, so
7963          * we need to flush the dirty pages again to make absolutely sure
7964          * that any outstanding dirty pages are on disk.
7965          */
7966         count = iov_iter_count(iter);
7967         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7968                      &BTRFS_I(inode)->runtime_flags))
7969                 filemap_fdatawrite_range(inode->i_mapping, offset,
7970                                          offset + count - 1);
7971
7972         if (rw & WRITE) {
7973                 /*
7974                  * If the write DIO is beyond the EOF, we need update
7975                  * the isize, but it is protected by i_mutex. So we can
7976                  * not unlock the i_mutex at this case.
7977                  */
7978                 if (offset + count <= inode->i_size) {
7979                         mutex_unlock(&inode->i_mutex);
7980                         relock = true;
7981                 }
7982                 ret = btrfs_delalloc_reserve_space(inode, count);
7983                 if (ret)
7984                         goto out;
7985         } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7986                                      &BTRFS_I(inode)->runtime_flags)) {
7987                 inode_dio_done(inode);
7988                 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7989                 wakeup = false;
7990         }
7991
7992         ret = __blockdev_direct_IO(rw, iocb, inode,
7993                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7994                         iter, offset, btrfs_get_blocks_direct, NULL,
7995                         btrfs_submit_direct, flags);
7996         if (rw & WRITE) {
7997                 if (ret < 0 && ret != -EIOCBQUEUED)
7998                         btrfs_delalloc_release_space(inode, count);
7999                 else if (ret >= 0 && (size_t)ret < count)
8000                         btrfs_delalloc_release_space(inode,
8001                                                      count - (size_t)ret);
8002                 else
8003                         btrfs_delalloc_release_metadata(inode, 0);
8004         }
8005 out:
8006         if (wakeup)
8007                 inode_dio_done(inode);
8008         if (relock)
8009                 mutex_lock(&inode->i_mutex);
8010
8011         return ret;
8012 }
8013
8014 #define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
8015
8016 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8017                 __u64 start, __u64 len)
8018 {
8019         int     ret;
8020
8021         ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8022         if (ret)
8023                 return ret;
8024
8025         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8026 }
8027
8028 int btrfs_readpage(struct file *file, struct page *page)
8029 {
8030         struct extent_io_tree *tree;
8031         tree = &BTRFS_I(page->mapping->host)->io_tree;
8032         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8033 }
8034
8035 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8036 {
8037         struct extent_io_tree *tree;
8038
8039
8040         if (current->flags & PF_MEMALLOC) {
8041                 redirty_page_for_writepage(wbc, page);
8042                 unlock_page(page);
8043                 return 0;
8044         }
8045         tree = &BTRFS_I(page->mapping->host)->io_tree;
8046         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8047 }
8048
8049 static int btrfs_writepages(struct address_space *mapping,
8050                             struct writeback_control *wbc)
8051 {
8052         struct extent_io_tree *tree;
8053
8054         tree = &BTRFS_I(mapping->host)->io_tree;
8055         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8056 }
8057
8058 static int
8059 btrfs_readpages(struct file *file, struct address_space *mapping,
8060                 struct list_head *pages, unsigned nr_pages)
8061 {
8062         struct extent_io_tree *tree;
8063         tree = &BTRFS_I(mapping->host)->io_tree;
8064         return extent_readpages(tree, mapping, pages, nr_pages,
8065                                 btrfs_get_extent);
8066 }
8067 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8068 {
8069         struct extent_io_tree *tree;
8070         struct extent_map_tree *map;
8071         int ret;
8072
8073         tree = &BTRFS_I(page->mapping->host)->io_tree;
8074         map = &BTRFS_I(page->mapping->host)->extent_tree;
8075         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8076         if (ret == 1) {
8077                 ClearPagePrivate(page);
8078                 set_page_private(page, 0);
8079                 page_cache_release(page);
8080         }
8081         return ret;
8082 }
8083
8084 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8085 {
8086         if (PageWriteback(page) || PageDirty(page))
8087                 return 0;
8088         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8089 }
8090
8091 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8092                                  unsigned int length)
8093 {
8094         struct inode *inode = page->mapping->host;
8095         struct extent_io_tree *tree;
8096         struct btrfs_ordered_extent *ordered;
8097         struct extent_state *cached_state = NULL;
8098         u64 page_start = page_offset(page);
8099         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8100         int inode_evicting = inode->i_state & I_FREEING;
8101
8102         /*
8103          * we have the page locked, so new writeback can't start,
8104          * and the dirty bit won't be cleared while we are here.
8105          *
8106          * Wait for IO on this page so that we can safely clear
8107          * the PagePrivate2 bit and do ordered accounting
8108          */
8109         wait_on_page_writeback(page);
8110
8111         tree = &BTRFS_I(inode)->io_tree;
8112         if (offset) {
8113                 btrfs_releasepage(page, GFP_NOFS);
8114                 return;
8115         }
8116
8117         if (!inode_evicting)
8118                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8119         ordered = btrfs_lookup_ordered_extent(inode, page_start);
8120         if (ordered) {
8121                 /*
8122                  * IO on this page will never be started, so we need
8123                  * to account for any ordered extents now
8124                  */
8125                 if (!inode_evicting)
8126                         clear_extent_bit(tree, page_start, page_end,
8127                                          EXTENT_DIRTY | EXTENT_DELALLOC |
8128                                          EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8129                                          EXTENT_DEFRAG, 1, 0, &cached_state,
8130                                          GFP_NOFS);
8131                 /*
8132                  * whoever cleared the private bit is responsible
8133                  * for the finish_ordered_io
8134                  */
8135                 if (TestClearPagePrivate2(page)) {
8136                         struct btrfs_ordered_inode_tree *tree;
8137                         u64 new_len;
8138
8139                         tree = &BTRFS_I(inode)->ordered_tree;
8140
8141                         spin_lock_irq(&tree->lock);
8142                         set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8143                         new_len = page_start - ordered->file_offset;
8144                         if (new_len < ordered->truncated_len)
8145                                 ordered->truncated_len = new_len;
8146                         spin_unlock_irq(&tree->lock);
8147
8148                         if (btrfs_dec_test_ordered_pending(inode, &ordered,
8149                                                            page_start,
8150                                                            PAGE_CACHE_SIZE, 1))
8151                                 btrfs_finish_ordered_io(ordered);
8152                 }
8153                 btrfs_put_ordered_extent(ordered);
8154                 if (!inode_evicting) {
8155                         cached_state = NULL;
8156                         lock_extent_bits(tree, page_start, page_end, 0,
8157                                          &cached_state);
8158                 }
8159         }
8160
8161         if (!inode_evicting) {
8162                 clear_extent_bit(tree, page_start, page_end,
8163                                  EXTENT_LOCKED | EXTENT_DIRTY |
8164                                  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8165                                  EXTENT_DEFRAG, 1, 1,
8166                                  &cached_state, GFP_NOFS);
8167
8168                 __btrfs_releasepage(page, GFP_NOFS);
8169         }
8170
8171         ClearPageChecked(page);
8172         if (PagePrivate(page)) {
8173                 ClearPagePrivate(page);
8174                 set_page_private(page, 0);
8175                 page_cache_release(page);
8176         }
8177 }
8178
8179 /*
8180  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8181  * called from a page fault handler when a page is first dirtied. Hence we must
8182  * be careful to check for EOF conditions here. We set the page up correctly
8183  * for a written page which means we get ENOSPC checking when writing into
8184  * holes and correct delalloc and unwritten extent mapping on filesystems that
8185  * support these features.
8186  *
8187  * We are not allowed to take the i_mutex here so we have to play games to
8188  * protect against truncate races as the page could now be beyond EOF.  Because
8189  * vmtruncate() writes the inode size before removing pages, once we have the
8190  * page lock we can determine safely if the page is beyond EOF. If it is not
8191  * beyond EOF, then the page is guaranteed safe against truncation until we
8192  * unlock the page.
8193  */
8194 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8195 {
8196         struct page *page = vmf->page;
8197         struct inode *inode = file_inode(vma->vm_file);
8198         struct btrfs_root *root = BTRFS_I(inode)->root;
8199         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8200         struct btrfs_ordered_extent *ordered;
8201         struct extent_state *cached_state = NULL;
8202         char *kaddr;
8203         unsigned long zero_start;
8204         loff_t size;
8205         int ret;
8206         int reserved = 0;
8207         u64 page_start;
8208         u64 page_end;
8209
8210         sb_start_pagefault(inode->i_sb);
8211         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8212         if (!ret) {
8213                 ret = file_update_time(vma->vm_file);
8214                 reserved = 1;
8215         }
8216         if (ret) {
8217                 if (ret == -ENOMEM)
8218                         ret = VM_FAULT_OOM;
8219                 else /* -ENOSPC, -EIO, etc */
8220                         ret = VM_FAULT_SIGBUS;
8221                 if (reserved)
8222                         goto out;
8223                 goto out_noreserve;
8224         }
8225
8226         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8227 again:
8228         lock_page(page);
8229         size = i_size_read(inode);
8230         page_start = page_offset(page);
8231         page_end = page_start + PAGE_CACHE_SIZE - 1;
8232
8233         if ((page->mapping != inode->i_mapping) ||
8234             (page_start >= size)) {
8235                 /* page got truncated out from underneath us */
8236                 goto out_unlock;
8237         }
8238         wait_on_page_writeback(page);
8239
8240         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8241         set_page_extent_mapped(page);
8242
8243         /*
8244          * we can't set the delalloc bits if there are pending ordered
8245          * extents.  Drop our locks and wait for them to finish
8246          */
8247         ordered = btrfs_lookup_ordered_extent(inode, page_start);
8248         if (ordered) {
8249                 unlock_extent_cached(io_tree, page_start, page_end,
8250                                      &cached_state, GFP_NOFS);
8251                 unlock_page(page);
8252                 btrfs_start_ordered_extent(inode, ordered, 1);
8253                 btrfs_put_ordered_extent(ordered);
8254                 goto again;
8255         }
8256
8257         /*
8258          * XXX - page_mkwrite gets called every time the page is dirtied, even
8259          * if it was already dirty, so for space accounting reasons we need to
8260          * clear any delalloc bits for the range we are fixing to save.  There
8261          * is probably a better way to do this, but for now keep consistent with
8262          * prepare_pages in the normal write path.
8263          */
8264         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8265                           EXTENT_DIRTY | EXTENT_DELALLOC |
8266                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8267                           0, 0, &cached_state, GFP_NOFS);
8268
8269         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8270                                         &cached_state);
8271         if (ret) {
8272                 unlock_extent_cached(io_tree, page_start, page_end,
8273                                      &cached_state, GFP_NOFS);
8274                 ret = VM_FAULT_SIGBUS;
8275                 goto out_unlock;
8276         }
8277         ret = 0;
8278
8279         /* page is wholly or partially inside EOF */
8280         if (page_start + PAGE_CACHE_SIZE > size)
8281                 zero_start = size & ~PAGE_CACHE_MASK;
8282         else
8283                 zero_start = PAGE_CACHE_SIZE;
8284
8285         if (zero_start != PAGE_CACHE_SIZE) {
8286                 kaddr = kmap(page);
8287                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8288                 flush_dcache_page(page);
8289                 kunmap(page);
8290         }
8291         ClearPageChecked(page);
8292         set_page_dirty(page);
8293         SetPageUptodate(page);
8294
8295         BTRFS_I(inode)->last_trans = root->fs_info->generation;
8296         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8297         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8298
8299         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8300
8301 out_unlock:
8302         if (!ret) {
8303                 sb_end_pagefault(inode->i_sb);
8304                 return VM_FAULT_LOCKED;
8305         }
8306         unlock_page(page);
8307 out:
8308         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8309 out_noreserve:
8310         sb_end_pagefault(inode->i_sb);
8311         return ret;
8312 }
8313
8314 static int btrfs_truncate(struct inode *inode)
8315 {
8316         struct btrfs_root *root = BTRFS_I(inode)->root;
8317         struct btrfs_block_rsv *rsv;
8318         int ret = 0;
8319         int err = 0;
8320         struct btrfs_trans_handle *trans;
8321         u64 mask = root->sectorsize - 1;
8322         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8323
8324         ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8325                                        (u64)-1);
8326         if (ret)
8327                 return ret;
8328
8329         /*
8330          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8331          * 3 things going on here
8332          *
8333          * 1) We need to reserve space for our orphan item and the space to
8334          * delete our orphan item.  Lord knows we don't want to have a dangling
8335          * orphan item because we didn't reserve space to remove it.
8336          *
8337          * 2) We need to reserve space to update our inode.
8338          *
8339          * 3) We need to have something to cache all the space that is going to
8340          * be free'd up by the truncate operation, but also have some slack
8341          * space reserved in case it uses space during the truncate (thank you
8342          * very much snapshotting).
8343          *
8344          * And we need these to all be seperate.  The fact is we can use alot of
8345          * space doing the truncate, and we have no earthly idea how much space
8346          * we will use, so we need the truncate reservation to be seperate so it
8347          * doesn't end up using space reserved for updating the inode or
8348          * removing the orphan item.  We also need to be able to stop the
8349          * transaction and start a new one, which means we need to be able to
8350          * update the inode several times, and we have no idea of knowing how
8351          * many times that will be, so we can't just reserve 1 item for the
8352          * entirety of the opration, so that has to be done seperately as well.
8353          * Then there is the orphan item, which does indeed need to be held on
8354          * to for the whole operation, and we need nobody to touch this reserved
8355          * space except the orphan code.
8356          *
8357          * So that leaves us with
8358          *
8359          * 1) root->orphan_block_rsv - for the orphan deletion.
8360          * 2) rsv - for the truncate reservation, which we will steal from the
8361          * transaction reservation.
8362          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8363          * updating the inode.
8364          */
8365         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8366         if (!rsv)
8367                 return -ENOMEM;
8368         rsv->size = min_size;
8369         rsv->failfast = 1;
8370
8371         /*
8372          * 1 for the truncate slack space
8373          * 1 for updating the inode.
8374          */
8375         trans = btrfs_start_transaction(root, 2);
8376         if (IS_ERR(trans)) {
8377                 err = PTR_ERR(trans);
8378                 goto out;
8379         }
8380
8381         /* Migrate the slack space for the truncate to our reserve */
8382         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8383                                       min_size);
8384         BUG_ON(ret);
8385
8386         /*
8387          * So if we truncate and then write and fsync we normally would just
8388          * write the extents that changed, which is a problem if we need to
8389          * first truncate that entire inode.  So set this flag so we write out
8390          * all of the extents in the inode to the sync log so we're completely
8391          * safe.
8392          */
8393         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8394         trans->block_rsv = rsv;
8395
8396         while (1) {
8397                 ret = btrfs_truncate_inode_items(trans, root, inode,
8398                                                  inode->i_size,
8399                                                  BTRFS_EXTENT_DATA_KEY);
8400                 if (ret != -ENOSPC) {
8401                         err = ret;
8402                         break;
8403                 }
8404
8405                 trans->block_rsv = &root->fs_info->trans_block_rsv;
8406                 ret = btrfs_update_inode(trans, root, inode);
8407                 if (ret) {
8408                         err = ret;
8409                         break;
8410                 }
8411
8412                 btrfs_end_transaction(trans, root);
8413                 btrfs_btree_balance_dirty(root);
8414
8415                 trans = btrfs_start_transaction(root, 2);
8416                 if (IS_ERR(trans)) {
8417                         ret = err = PTR_ERR(trans);
8418                         trans = NULL;
8419                         break;
8420                 }
8421
8422                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8423                                               rsv, min_size);
8424                 BUG_ON(ret);    /* shouldn't happen */
8425                 trans->block_rsv = rsv;
8426         }
8427
8428         if (ret == 0 && inode->i_nlink > 0) {
8429                 trans->block_rsv = root->orphan_block_rsv;
8430                 ret = btrfs_orphan_del(trans, inode);
8431                 if (ret)
8432                         err = ret;
8433         }
8434
8435         if (trans) {
8436                 trans->block_rsv = &root->fs_info->trans_block_rsv;
8437                 ret = btrfs_update_inode(trans, root, inode);
8438                 if (ret && !err)
8439                         err = ret;
8440
8441                 ret = btrfs_end_transaction(trans, root);
8442                 btrfs_btree_balance_dirty(root);
8443         }
8444
8445 out:
8446         btrfs_free_block_rsv(root, rsv);
8447
8448         if (ret && !err)
8449                 err = ret;
8450
8451         return err;
8452 }
8453
8454 /*
8455  * create a new subvolume directory/inode (helper for the ioctl).
8456  */
8457 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8458                              struct btrfs_root *new_root,
8459                              struct btrfs_root *parent_root,
8460                              u64 new_dirid)
8461 {
8462         struct inode *inode;
8463         int err;
8464         u64 index = 0;
8465
8466         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8467                                 new_dirid, new_dirid,
8468                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
8469                                 &index);
8470         if (IS_ERR(inode))
8471                 return PTR_ERR(inode);
8472         inode->i_op = &btrfs_dir_inode_operations;
8473         inode->i_fop = &btrfs_dir_file_operations;
8474
8475         set_nlink(inode, 1);
8476         btrfs_i_size_write(inode, 0);
8477         unlock_new_inode(inode);
8478
8479         err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8480         if (err)
8481                 btrfs_err(new_root->fs_info,
8482                           "error inheriting subvolume %llu properties: %d",
8483                           new_root->root_key.objectid, err);
8484
8485         err = btrfs_update_inode(trans, new_root, inode);
8486
8487         iput(inode);
8488         return err;
8489 }
8490
8491 struct inode *btrfs_alloc_inode(struct super_block *sb)
8492 {
8493         struct btrfs_inode *ei;
8494         struct inode *inode;
8495
8496         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8497         if (!ei)
8498                 return NULL;
8499
8500         ei->root = NULL;
8501         ei->generation = 0;
8502         ei->last_trans = 0;
8503         ei->last_sub_trans = 0;
8504         ei->logged_trans = 0;
8505         ei->delalloc_bytes = 0;
8506         ei->defrag_bytes = 0;
8507         ei->disk_i_size = 0;
8508         ei->flags = 0;
8509         ei->csum_bytes = 0;
8510         ei->index_cnt = (u64)-1;
8511         ei->dir_index = 0;
8512         ei->last_unlink_trans = 0;
8513         ei->last_log_commit = 0;
8514
8515         spin_lock_init(&ei->lock);
8516         ei->outstanding_extents = 0;
8517         ei->reserved_extents = 0;
8518
8519         ei->runtime_flags = 0;
8520         ei->force_compress = BTRFS_COMPRESS_NONE;
8521
8522         ei->delayed_node = NULL;
8523
8524         inode = &ei->vfs_inode;
8525         extent_map_tree_init(&ei->extent_tree);
8526         extent_io_tree_init(&ei->io_tree, &inode->i_data);
8527         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8528         ei->io_tree.track_uptodate = 1;
8529         ei->io_failure_tree.track_uptodate = 1;
8530         atomic_set(&ei->sync_writers, 0);
8531         mutex_init(&ei->log_mutex);
8532         mutex_init(&ei->delalloc_mutex);
8533         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8534         INIT_LIST_HEAD(&ei->delalloc_inodes);
8535         RB_CLEAR_NODE(&ei->rb_node);
8536
8537         return inode;
8538 }
8539
8540 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8541 void btrfs_test_destroy_inode(struct inode *inode)
8542 {
8543         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8544         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8545 }
8546 #endif
8547
8548 static void btrfs_i_callback(struct rcu_head *head)
8549 {
8550         struct inode *inode = container_of(head, struct inode, i_rcu);
8551         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8552 }
8553
8554 void btrfs_destroy_inode(struct inode *inode)
8555 {
8556         struct btrfs_ordered_extent *ordered;
8557         struct btrfs_root *root = BTRFS_I(inode)->root;
8558
8559         WARN_ON(!hlist_empty(&inode->i_dentry));
8560         WARN_ON(inode->i_data.nrpages);
8561         WARN_ON(BTRFS_I(inode)->outstanding_extents);
8562         WARN_ON(BTRFS_I(inode)->reserved_extents);
8563         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8564         WARN_ON(BTRFS_I(inode)->csum_bytes);
8565         WARN_ON(BTRFS_I(inode)->defrag_bytes);
8566
8567         /*
8568          * This can happen where we create an inode, but somebody else also
8569          * created the same inode and we need to destroy the one we already
8570          * created.
8571          */
8572         if (!root)
8573                 goto free;
8574
8575         if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8576                      &BTRFS_I(inode)->runtime_flags)) {
8577                 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8578                         btrfs_ino(inode));
8579                 atomic_dec(&root->orphan_inodes);
8580         }
8581
8582         while (1) {
8583                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8584                 if (!ordered)
8585                         break;
8586                 else {
8587                         btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8588                                 ordered->file_offset, ordered->len);
8589                         btrfs_remove_ordered_extent(inode, ordered);
8590                         btrfs_put_ordered_extent(ordered);
8591                         btrfs_put_ordered_extent(ordered);
8592                 }
8593         }
8594         inode_tree_del(inode);
8595         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8596 free:
8597         call_rcu(&inode->i_rcu, btrfs_i_callback);
8598 }
8599
8600 int btrfs_drop_inode(struct inode *inode)
8601 {
8602         struct btrfs_root *root = BTRFS_I(inode)->root;
8603
8604         if (root == NULL)
8605                 return 1;
8606
8607         /* the snap/subvol tree is on deleting */
8608         if (btrfs_root_refs(&root->root_item) == 0)
8609                 return 1;
8610         else
8611                 return generic_drop_inode(inode);
8612 }
8613
8614 static void init_once(void *foo)
8615 {
8616         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8617
8618         inode_init_once(&ei->vfs_inode);
8619 }
8620
8621 void btrfs_destroy_cachep(void)
8622 {
8623         /*
8624          * Make sure all delayed rcu free inodes are flushed before we
8625          * destroy cache.
8626          */
8627         rcu_barrier();
8628         if (btrfs_inode_cachep)
8629                 kmem_cache_destroy(btrfs_inode_cachep);
8630         if (btrfs_trans_handle_cachep)
8631                 kmem_cache_destroy(btrfs_trans_handle_cachep);
8632         if (btrfs_transaction_cachep)
8633                 kmem_cache_destroy(btrfs_transaction_cachep);
8634         if (btrfs_path_cachep)
8635                 kmem_cache_destroy(btrfs_path_cachep);
8636         if (btrfs_free_space_cachep)
8637                 kmem_cache_destroy(btrfs_free_space_cachep);
8638         if (btrfs_delalloc_work_cachep)
8639                 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8640 }
8641
8642 int btrfs_init_cachep(void)
8643 {
8644         btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8645                         sizeof(struct btrfs_inode), 0,
8646                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8647         if (!btrfs_inode_cachep)
8648                 goto fail;
8649
8650         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8651                         sizeof(struct btrfs_trans_handle), 0,
8652                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8653         if (!btrfs_trans_handle_cachep)
8654                 goto fail;
8655
8656         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8657                         sizeof(struct btrfs_transaction), 0,
8658                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8659         if (!btrfs_transaction_cachep)
8660                 goto fail;
8661
8662         btrfs_path_cachep = kmem_cache_create("btrfs_path",
8663                         sizeof(struct btrfs_path), 0,
8664                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8665         if (!btrfs_path_cachep)
8666                 goto fail;
8667
8668         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8669                         sizeof(struct btrfs_free_space), 0,
8670                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8671         if (!btrfs_free_space_cachep)
8672                 goto fail;
8673
8674         btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8675                         sizeof(struct btrfs_delalloc_work), 0,
8676                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8677                         NULL);
8678         if (!btrfs_delalloc_work_cachep)
8679                 goto fail;
8680
8681         return 0;
8682 fail:
8683         btrfs_destroy_cachep();
8684         return -ENOMEM;
8685 }
8686
8687 static int btrfs_getattr(struct vfsmount *mnt,
8688                          struct dentry *dentry, struct kstat *stat)
8689 {
8690         u64 delalloc_bytes;
8691         struct inode *inode = dentry->d_inode;
8692         u32 blocksize = inode->i_sb->s_blocksize;
8693
8694         generic_fillattr(inode, stat);
8695         stat->dev = BTRFS_I(inode)->root->anon_dev;
8696         stat->blksize = PAGE_CACHE_SIZE;
8697
8698         spin_lock(&BTRFS_I(inode)->lock);
8699         delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8700         spin_unlock(&BTRFS_I(inode)->lock);
8701         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8702                         ALIGN(delalloc_bytes, blocksize)) >> 9;
8703         return 0;
8704 }
8705
8706 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8707                            struct inode *new_dir, struct dentry *new_dentry)
8708 {
8709         struct btrfs_trans_handle *trans;
8710         struct btrfs_root *root = BTRFS_I(old_dir)->root;
8711         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8712         struct inode *new_inode = new_dentry->d_inode;
8713         struct inode *old_inode = old_dentry->d_inode;
8714         struct timespec ctime = CURRENT_TIME;
8715         u64 index = 0;
8716         u64 root_objectid;
8717         int ret;
8718         u64 old_ino = btrfs_ino(old_inode);
8719
8720         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8721                 return -EPERM;
8722
8723         /* we only allow rename subvolume link between subvolumes */
8724         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8725                 return -EXDEV;
8726
8727         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8728             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8729                 return -ENOTEMPTY;
8730
8731         if (S_ISDIR(old_inode->i_mode) && new_inode &&
8732             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8733                 return -ENOTEMPTY;
8734
8735
8736         /* check for collisions, even if the  name isn't there */
8737         ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8738                              new_dentry->d_name.name,
8739                              new_dentry->d_name.len);
8740
8741         if (ret) {
8742                 if (ret == -EEXIST) {
8743                         /* we shouldn't get
8744                          * eexist without a new_inode */
8745                         if (WARN_ON(!new_inode)) {
8746                                 return ret;
8747                         }
8748                 } else {
8749                         /* maybe -EOVERFLOW */
8750                         return ret;
8751                 }
8752         }
8753         ret = 0;
8754
8755         /*
8756          * we're using rename to replace one file with another.  Start IO on it
8757          * now so  we don't add too much work to the end of the transaction
8758          */
8759         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8760                 filemap_flush(old_inode->i_mapping);
8761
8762         /* close the racy window with snapshot create/destroy ioctl */
8763         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8764                 down_read(&root->fs_info->subvol_sem);
8765         /*
8766          * We want to reserve the absolute worst case amount of items.  So if
8767          * both inodes are subvols and we need to unlink them then that would
8768          * require 4 item modifications, but if they are both normal inodes it
8769          * would require 5 item modifications, so we'll assume their normal
8770          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8771          * should cover the worst case number of items we'll modify.
8772          */
8773         trans = btrfs_start_transaction(root, 11);
8774         if (IS_ERR(trans)) {
8775                 ret = PTR_ERR(trans);
8776                 goto out_notrans;
8777         }
8778
8779         if (dest != root)
8780                 btrfs_record_root_in_trans(trans, dest);
8781
8782         ret = btrfs_set_inode_index(new_dir, &index);
8783         if (ret)
8784                 goto out_fail;
8785
8786         BTRFS_I(old_inode)->dir_index = 0ULL;
8787         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8788                 /* force full log commit if subvolume involved. */
8789                 btrfs_set_log_full_commit(root->fs_info, trans);
8790         } else {
8791                 ret = btrfs_insert_inode_ref(trans, dest,
8792                                              new_dentry->d_name.name,
8793                                              new_dentry->d_name.len,
8794                                              old_ino,
8795                                              btrfs_ino(new_dir), index);
8796                 if (ret)
8797                         goto out_fail;
8798                 /*
8799                  * this is an ugly little race, but the rename is required
8800                  * to make sure that if we crash, the inode is either at the
8801                  * old name or the new one.  pinning the log transaction lets
8802                  * us make sure we don't allow a log commit to come in after
8803                  * we unlink the name but before we add the new name back in.
8804                  */
8805                 btrfs_pin_log_trans(root);
8806         }
8807
8808         inode_inc_iversion(old_dir);
8809         inode_inc_iversion(new_dir);
8810         inode_inc_iversion(old_inode);
8811         old_dir->i_ctime = old_dir->i_mtime = ctime;
8812         new_dir->i_ctime = new_dir->i_mtime = ctime;
8813         old_inode->i_ctime = ctime;
8814
8815         if (old_dentry->d_parent != new_dentry->d_parent)
8816                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8817
8818         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8819                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8820                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8821                                         old_dentry->d_name.name,
8822                                         old_dentry->d_name.len);
8823         } else {
8824                 ret = __btrfs_unlink_inode(trans, root, old_dir,
8825                                         old_dentry->d_inode,
8826                                         old_dentry->d_name.name,
8827                                         old_dentry->d_name.len);
8828                 if (!ret)
8829                         ret = btrfs_update_inode(trans, root, old_inode);
8830         }
8831         if (ret) {
8832                 btrfs_abort_transaction(trans, root, ret);
8833                 goto out_fail;
8834         }
8835
8836         if (new_inode) {
8837                 inode_inc_iversion(new_inode);
8838                 new_inode->i_ctime = CURRENT_TIME;
8839                 if (unlikely(btrfs_ino(new_inode) ==
8840                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8841                         root_objectid = BTRFS_I(new_inode)->location.objectid;
8842                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
8843                                                 root_objectid,
8844                                                 new_dentry->d_name.name,
8845                                                 new_dentry->d_name.len);
8846                         BUG_ON(new_inode->i_nlink == 0);
8847                 } else {
8848                         ret = btrfs_unlink_inode(trans, dest, new_dir,
8849                                                  new_dentry->d_inode,
8850                                                  new_dentry->d_name.name,
8851                                                  new_dentry->d_name.len);
8852                 }
8853                 if (!ret && new_inode->i_nlink == 0)
8854                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8855                 if (ret) {
8856                         btrfs_abort_transaction(trans, root, ret);
8857                         goto out_fail;
8858                 }
8859         }
8860
8861         ret = btrfs_add_link(trans, new_dir, old_inode,
8862                              new_dentry->d_name.name,
8863                              new_dentry->d_name.len, 0, index);
8864         if (ret) {
8865                 btrfs_abort_transaction(trans, root, ret);
8866                 goto out_fail;
8867         }
8868
8869         if (old_inode->i_nlink == 1)
8870                 BTRFS_I(old_inode)->dir_index = index;
8871
8872         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8873                 struct dentry *parent = new_dentry->d_parent;
8874                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8875                 btrfs_end_log_trans(root);
8876         }
8877 out_fail:
8878         btrfs_end_transaction(trans, root);
8879 out_notrans:
8880         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8881                 up_read(&root->fs_info->subvol_sem);
8882
8883         return ret;
8884 }
8885
8886 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8887                          struct inode *new_dir, struct dentry *new_dentry,
8888                          unsigned int flags)
8889 {
8890         if (flags & ~RENAME_NOREPLACE)
8891                 return -EINVAL;
8892
8893         return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8894 }
8895
8896 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8897 {
8898         struct btrfs_delalloc_work *delalloc_work;
8899         struct inode *inode;
8900
8901         delalloc_work = container_of(work, struct btrfs_delalloc_work,
8902                                      work);
8903         inode = delalloc_work->inode;
8904         if (delalloc_work->wait) {
8905                 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8906         } else {
8907                 filemap_flush(inode->i_mapping);
8908                 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8909                              &BTRFS_I(inode)->runtime_flags))
8910                         filemap_flush(inode->i_mapping);
8911         }
8912
8913         if (delalloc_work->delay_iput)
8914                 btrfs_add_delayed_iput(inode);
8915         else
8916                 iput(inode);
8917         complete(&delalloc_work->completion);
8918 }
8919
8920 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8921                                                     int wait, int delay_iput)
8922 {
8923         struct btrfs_delalloc_work *work;
8924
8925         work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8926         if (!work)
8927                 return NULL;
8928
8929         init_completion(&work->completion);
8930         INIT_LIST_HEAD(&work->list);
8931         work->inode = inode;
8932         work->wait = wait;
8933         work->delay_iput = delay_iput;
8934         WARN_ON_ONCE(!inode);
8935         btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8936                         btrfs_run_delalloc_work, NULL, NULL);
8937
8938         return work;
8939 }
8940
8941 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8942 {
8943         wait_for_completion(&work->completion);
8944         kmem_cache_free(btrfs_delalloc_work_cachep, work);
8945 }
8946
8947 /*
8948  * some fairly slow code that needs optimization. This walks the list
8949  * of all the inodes with pending delalloc and forces them to disk.
8950  */
8951 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8952                                    int nr)
8953 {
8954         struct btrfs_inode *binode;
8955         struct inode *inode;
8956         struct btrfs_delalloc_work *work, *next;
8957         struct list_head works;
8958         struct list_head splice;
8959         int ret = 0;
8960
8961         INIT_LIST_HEAD(&works);
8962         INIT_LIST_HEAD(&splice);
8963
8964         mutex_lock(&root->delalloc_mutex);
8965         spin_lock(&root->delalloc_lock);
8966         list_splice_init(&root->delalloc_inodes, &splice);
8967         while (!list_empty(&splice)) {
8968                 binode = list_entry(splice.next, struct btrfs_inode,
8969                                     delalloc_inodes);
8970
8971                 list_move_tail(&binode->delalloc_inodes,
8972                                &root->delalloc_inodes);
8973                 inode = igrab(&binode->vfs_inode);
8974                 if (!inode) {
8975                         cond_resched_lock(&root->delalloc_lock);
8976                         continue;
8977                 }
8978                 spin_unlock(&root->delalloc_lock);
8979
8980                 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8981                 if (!work) {
8982                         if (delay_iput)
8983                                 btrfs_add_delayed_iput(inode);
8984                         else
8985                                 iput(inode);
8986                         ret = -ENOMEM;
8987                         goto out;
8988                 }
8989                 list_add_tail(&work->list, &works);
8990                 btrfs_queue_work(root->fs_info->flush_workers,
8991                                  &work->work);
8992                 ret++;
8993                 if (nr != -1 && ret >= nr)
8994                         goto out;
8995                 cond_resched();
8996                 spin_lock(&root->delalloc_lock);
8997         }
8998         spin_unlock(&root->delalloc_lock);
8999
9000 out:
9001         list_for_each_entry_safe(work, next, &works, list) {
9002                 list_del_init(&work->list);
9003                 btrfs_wait_and_free_delalloc_work(work);
9004         }
9005
9006         if (!list_empty_careful(&splice)) {
9007                 spin_lock(&root->delalloc_lock);
9008                 list_splice_tail(&splice, &root->delalloc_inodes);
9009                 spin_unlock(&root->delalloc_lock);
9010         }
9011         mutex_unlock(&root->delalloc_mutex);
9012         return ret;
9013 }
9014
9015 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9016 {
9017         int ret;
9018
9019         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9020                 return -EROFS;
9021
9022         ret = __start_delalloc_inodes(root, delay_iput, -1);
9023         if (ret > 0)
9024                 ret = 0;
9025         /*
9026          * the filemap_flush will queue IO into the worker threads, but
9027          * we have to make sure the IO is actually started and that
9028          * ordered extents get created before we return
9029          */
9030         atomic_inc(&root->fs_info->async_submit_draining);
9031         while (atomic_read(&root->fs_info->nr_async_submits) ||
9032               atomic_read(&root->fs_info->async_delalloc_pages)) {
9033                 wait_event(root->fs_info->async_submit_wait,
9034                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9035                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9036         }
9037         atomic_dec(&root->fs_info->async_submit_draining);
9038         return ret;
9039 }
9040
9041 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9042                                int nr)
9043 {
9044         struct btrfs_root *root;
9045         struct list_head splice;
9046         int ret;
9047
9048         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9049                 return -EROFS;
9050
9051         INIT_LIST_HEAD(&splice);
9052
9053         mutex_lock(&fs_info->delalloc_root_mutex);
9054         spin_lock(&fs_info->delalloc_root_lock);
9055         list_splice_init(&fs_info->delalloc_roots, &splice);
9056         while (!list_empty(&splice) && nr) {
9057                 root = list_first_entry(&splice, struct btrfs_root,
9058                                         delalloc_root);
9059                 root = btrfs_grab_fs_root(root);
9060                 BUG_ON(!root);
9061                 list_move_tail(&root->delalloc_root,
9062                                &fs_info->delalloc_roots);
9063                 spin_unlock(&fs_info->delalloc_root_lock);
9064
9065                 ret = __start_delalloc_inodes(root, delay_iput, nr);
9066                 btrfs_put_fs_root(root);
9067                 if (ret < 0)
9068                         goto out;
9069
9070                 if (nr != -1) {
9071                         nr -= ret;
9072                         WARN_ON(nr < 0);
9073                 }
9074                 spin_lock(&fs_info->delalloc_root_lock);
9075         }
9076         spin_unlock(&fs_info->delalloc_root_lock);
9077
9078         ret = 0;
9079         atomic_inc(&fs_info->async_submit_draining);
9080         while (atomic_read(&fs_info->nr_async_submits) ||
9081               atomic_read(&fs_info->async_delalloc_pages)) {
9082                 wait_event(fs_info->async_submit_wait,
9083                    (atomic_read(&fs_info->nr_async_submits) == 0 &&
9084                     atomic_read(&fs_info->async_delalloc_pages) == 0));
9085         }
9086         atomic_dec(&fs_info->async_submit_draining);
9087 out:
9088         if (!list_empty_careful(&splice)) {
9089                 spin_lock(&fs_info->delalloc_root_lock);
9090                 list_splice_tail(&splice, &fs_info->delalloc_roots);
9091                 spin_unlock(&fs_info->delalloc_root_lock);
9092         }
9093         mutex_unlock(&fs_info->delalloc_root_mutex);
9094         return ret;
9095 }
9096
9097 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9098                          const char *symname)
9099 {
9100         struct btrfs_trans_handle *trans;
9101         struct btrfs_root *root = BTRFS_I(dir)->root;
9102         struct btrfs_path *path;
9103         struct btrfs_key key;
9104         struct inode *inode = NULL;
9105         int err;
9106         int drop_inode = 0;
9107         u64 objectid;
9108         u64 index = 0;
9109         int name_len;
9110         int datasize;
9111         unsigned long ptr;
9112         struct btrfs_file_extent_item *ei;
9113         struct extent_buffer *leaf;
9114
9115         name_len = strlen(symname);
9116         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9117                 return -ENAMETOOLONG;
9118
9119         /*
9120          * 2 items for inode item and ref
9121          * 2 items for dir items
9122          * 1 item for xattr if selinux is on
9123          */
9124         trans = btrfs_start_transaction(root, 5);
9125         if (IS_ERR(trans))
9126                 return PTR_ERR(trans);
9127
9128         err = btrfs_find_free_ino(root, &objectid);
9129         if (err)
9130                 goto out_unlock;
9131
9132         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9133                                 dentry->d_name.len, btrfs_ino(dir), objectid,
9134                                 S_IFLNK|S_IRWXUGO, &index);
9135         if (IS_ERR(inode)) {
9136                 err = PTR_ERR(inode);
9137                 goto out_unlock;
9138         }
9139
9140         /*
9141         * If the active LSM wants to access the inode during
9142         * d_instantiate it needs these. Smack checks to see
9143         * if the filesystem supports xattrs by looking at the
9144         * ops vector.
9145         */
9146         inode->i_fop = &btrfs_file_operations;
9147         inode->i_op = &btrfs_file_inode_operations;
9148         inode->i_mapping->a_ops = &btrfs_aops;
9149         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9150         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9151
9152         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9153         if (err)
9154                 goto out_unlock_inode;
9155
9156         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9157         if (err)
9158                 goto out_unlock_inode;
9159
9160         path = btrfs_alloc_path();
9161         if (!path) {
9162                 err = -ENOMEM;
9163                 goto out_unlock_inode;
9164         }
9165         key.objectid = btrfs_ino(inode);
9166         key.offset = 0;
9167         key.type = BTRFS_EXTENT_DATA_KEY;
9168         datasize = btrfs_file_extent_calc_inline_size(name_len);
9169         err = btrfs_insert_empty_item(trans, root, path, &key,
9170                                       datasize);
9171         if (err) {
9172                 btrfs_free_path(path);
9173                 goto out_unlock_inode;
9174         }
9175         leaf = path->nodes[0];
9176         ei = btrfs_item_ptr(leaf, path->slots[0],
9177                             struct btrfs_file_extent_item);
9178         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9179         btrfs_set_file_extent_type(leaf, ei,
9180                                    BTRFS_FILE_EXTENT_INLINE);
9181         btrfs_set_file_extent_encryption(leaf, ei, 0);
9182         btrfs_set_file_extent_compression(leaf, ei, 0);
9183         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9184         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9185
9186         ptr = btrfs_file_extent_inline_start(ei);
9187         write_extent_buffer(leaf, symname, ptr, name_len);
9188         btrfs_mark_buffer_dirty(leaf);
9189         btrfs_free_path(path);
9190
9191         inode->i_op = &btrfs_symlink_inode_operations;
9192         inode->i_mapping->a_ops = &btrfs_symlink_aops;
9193         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9194         inode_set_bytes(inode, name_len);
9195         btrfs_i_size_write(inode, name_len);
9196         err = btrfs_update_inode(trans, root, inode);
9197         if (err) {
9198                 drop_inode = 1;
9199                 goto out_unlock_inode;
9200         }
9201
9202         unlock_new_inode(inode);
9203         d_instantiate(dentry, inode);
9204
9205 out_unlock:
9206         btrfs_end_transaction(trans, root);
9207         if (drop_inode) {
9208                 inode_dec_link_count(inode);
9209                 iput(inode);
9210         }
9211         btrfs_btree_balance_dirty(root);
9212         return err;
9213
9214 out_unlock_inode:
9215         drop_inode = 1;
9216         unlock_new_inode(inode);
9217         goto out_unlock;
9218 }
9219
9220 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9221                                        u64 start, u64 num_bytes, u64 min_size,
9222                                        loff_t actual_len, u64 *alloc_hint,
9223                                        struct btrfs_trans_handle *trans)
9224 {
9225         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9226         struct extent_map *em;
9227         struct btrfs_root *root = BTRFS_I(inode)->root;
9228         struct btrfs_key ins;
9229         u64 cur_offset = start;
9230         u64 i_size;
9231         u64 cur_bytes;
9232         int ret = 0;
9233         bool own_trans = true;
9234
9235         if (trans)
9236                 own_trans = false;
9237         while (num_bytes > 0) {
9238                 if (own_trans) {
9239                         trans = btrfs_start_transaction(root, 3);
9240                         if (IS_ERR(trans)) {
9241                                 ret = PTR_ERR(trans);
9242                                 break;
9243                         }
9244                 }
9245
9246                 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9247                 cur_bytes = max(cur_bytes, min_size);
9248                 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9249                                            *alloc_hint, &ins, 1, 0);
9250                 if (ret) {
9251                         if (own_trans)
9252                                 btrfs_end_transaction(trans, root);
9253                         break;
9254                 }
9255
9256                 ret = insert_reserved_file_extent(trans, inode,
9257                                                   cur_offset, ins.objectid,
9258                                                   ins.offset, ins.offset,
9259                                                   ins.offset, 0, 0, 0,
9260                                                   BTRFS_FILE_EXTENT_PREALLOC);
9261                 if (ret) {
9262                         btrfs_free_reserved_extent(root, ins.objectid,
9263                                                    ins.offset, 0);
9264                         btrfs_abort_transaction(trans, root, ret);
9265                         if (own_trans)
9266                                 btrfs_end_transaction(trans, root);
9267                         break;
9268                 }
9269                 btrfs_drop_extent_cache(inode, cur_offset,
9270                                         cur_offset + ins.offset -1, 0);
9271
9272                 em = alloc_extent_map();
9273                 if (!em) {
9274                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9275                                 &BTRFS_I(inode)->runtime_flags);
9276                         goto next;
9277                 }
9278
9279                 em->start = cur_offset;
9280                 em->orig_start = cur_offset;
9281                 em->len = ins.offset;
9282                 em->block_start = ins.objectid;
9283                 em->block_len = ins.offset;
9284                 em->orig_block_len = ins.offset;
9285                 em->ram_bytes = ins.offset;
9286                 em->bdev = root->fs_info->fs_devices->latest_bdev;
9287                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9288                 em->generation = trans->transid;
9289
9290                 while (1) {
9291                         write_lock(&em_tree->lock);
9292                         ret = add_extent_mapping(em_tree, em, 1);
9293                         write_unlock(&em_tree->lock);
9294                         if (ret != -EEXIST)
9295                                 break;
9296                         btrfs_drop_extent_cache(inode, cur_offset,
9297                                                 cur_offset + ins.offset - 1,
9298                                                 0);
9299                 }
9300                 free_extent_map(em);
9301 next:
9302                 num_bytes -= ins.offset;
9303                 cur_offset += ins.offset;
9304                 *alloc_hint = ins.objectid + ins.offset;
9305
9306                 inode_inc_iversion(inode);
9307                 inode->i_ctime = CURRENT_TIME;
9308                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9309                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9310                     (actual_len > inode->i_size) &&
9311                     (cur_offset > inode->i_size)) {
9312                         if (cur_offset > actual_len)
9313                                 i_size = actual_len;
9314                         else
9315                                 i_size = cur_offset;
9316                         i_size_write(inode, i_size);
9317                         btrfs_ordered_update_i_size(inode, i_size, NULL);
9318                 }
9319
9320                 ret = btrfs_update_inode(trans, root, inode);
9321
9322                 if (ret) {
9323                         btrfs_abort_transaction(trans, root, ret);
9324                         if (own_trans)
9325                                 btrfs_end_transaction(trans, root);
9326                         break;
9327                 }
9328
9329                 if (own_trans)
9330                         btrfs_end_transaction(trans, root);
9331         }
9332         return ret;
9333 }
9334
9335 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9336                               u64 start, u64 num_bytes, u64 min_size,
9337                               loff_t actual_len, u64 *alloc_hint)
9338 {
9339         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9340                                            min_size, actual_len, alloc_hint,
9341                                            NULL);
9342 }
9343
9344 int btrfs_prealloc_file_range_trans(struct inode *inode,
9345                                     struct btrfs_trans_handle *trans, int mode,
9346                                     u64 start, u64 num_bytes, u64 min_size,
9347                                     loff_t actual_len, u64 *alloc_hint)
9348 {
9349         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9350                                            min_size, actual_len, alloc_hint, trans);
9351 }
9352
9353 static int btrfs_set_page_dirty(struct page *page)
9354 {
9355         return __set_page_dirty_nobuffers(page);
9356 }
9357
9358 static int btrfs_permission(struct inode *inode, int mask)
9359 {
9360         struct btrfs_root *root = BTRFS_I(inode)->root;
9361         umode_t mode = inode->i_mode;
9362
9363         if (mask & MAY_WRITE &&
9364             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9365                 if (btrfs_root_readonly(root))
9366                         return -EROFS;
9367                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9368                         return -EACCES;
9369         }
9370         return generic_permission(inode, mask);
9371 }
9372
9373 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9374 {
9375         struct btrfs_trans_handle *trans;
9376         struct btrfs_root *root = BTRFS_I(dir)->root;
9377         struct inode *inode = NULL;
9378         u64 objectid;
9379         u64 index;
9380         int ret = 0;
9381
9382         /*
9383          * 5 units required for adding orphan entry
9384          */
9385         trans = btrfs_start_transaction(root, 5);
9386         if (IS_ERR(trans))
9387                 return PTR_ERR(trans);
9388
9389         ret = btrfs_find_free_ino(root, &objectid);
9390         if (ret)
9391                 goto out;
9392
9393         inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9394                                 btrfs_ino(dir), objectid, mode, &index);
9395         if (IS_ERR(inode)) {
9396                 ret = PTR_ERR(inode);
9397                 inode = NULL;
9398                 goto out;
9399         }
9400
9401         inode->i_fop = &btrfs_file_operations;
9402         inode->i_op = &btrfs_file_inode_operations;
9403
9404         inode->i_mapping->a_ops = &btrfs_aops;
9405         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9406         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9407
9408         ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9409         if (ret)
9410                 goto out_inode;
9411
9412         ret = btrfs_update_inode(trans, root, inode);
9413         if (ret)
9414                 goto out_inode;
9415         ret = btrfs_orphan_add(trans, inode);
9416         if (ret)
9417                 goto out_inode;
9418
9419         /*
9420          * We set number of links to 0 in btrfs_new_inode(), and here we set
9421          * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9422          * through:
9423          *
9424          *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9425          */
9426         set_nlink(inode, 1);
9427         unlock_new_inode(inode);
9428         d_tmpfile(dentry, inode);
9429         mark_inode_dirty(inode);
9430
9431 out:
9432         btrfs_end_transaction(trans, root);
9433         if (ret)
9434                 iput(inode);
9435         btrfs_balance_delayed_items(root);
9436         btrfs_btree_balance_dirty(root);
9437         return ret;
9438
9439 out_inode:
9440         unlock_new_inode(inode);
9441         goto out;
9442
9443 }
9444
9445 static const struct inode_operations btrfs_dir_inode_operations = {
9446         .getattr        = btrfs_getattr,
9447         .lookup         = btrfs_lookup,
9448         .create         = btrfs_create,
9449         .unlink         = btrfs_unlink,
9450         .link           = btrfs_link,
9451         .mkdir          = btrfs_mkdir,
9452         .rmdir          = btrfs_rmdir,
9453         .rename2        = btrfs_rename2,
9454         .symlink        = btrfs_symlink,
9455         .setattr        = btrfs_setattr,
9456         .mknod          = btrfs_mknod,
9457         .setxattr       = btrfs_setxattr,
9458         .getxattr       = btrfs_getxattr,
9459         .listxattr      = btrfs_listxattr,
9460         .removexattr    = btrfs_removexattr,
9461         .permission     = btrfs_permission,
9462         .get_acl        = btrfs_get_acl,
9463         .set_acl        = btrfs_set_acl,
9464         .update_time    = btrfs_update_time,
9465         .tmpfile        = btrfs_tmpfile,
9466 };
9467 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9468         .lookup         = btrfs_lookup,
9469         .permission     = btrfs_permission,
9470         .get_acl        = btrfs_get_acl,
9471         .set_acl        = btrfs_set_acl,
9472         .update_time    = btrfs_update_time,
9473 };
9474
9475 static const struct file_operations btrfs_dir_file_operations = {
9476         .llseek         = generic_file_llseek,
9477         .read           = generic_read_dir,
9478         .iterate        = btrfs_real_readdir,
9479         .unlocked_ioctl = btrfs_ioctl,
9480 #ifdef CONFIG_COMPAT
9481         .compat_ioctl   = btrfs_ioctl,
9482 #endif
9483         .release        = btrfs_release_file,
9484         .fsync          = btrfs_sync_file,
9485 };
9486
9487 static struct extent_io_ops btrfs_extent_io_ops = {
9488         .fill_delalloc = run_delalloc_range,
9489         .submit_bio_hook = btrfs_submit_bio_hook,
9490         .merge_bio_hook = btrfs_merge_bio_hook,
9491         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9492         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9493         .writepage_start_hook = btrfs_writepage_start_hook,
9494         .set_bit_hook = btrfs_set_bit_hook,
9495         .clear_bit_hook = btrfs_clear_bit_hook,
9496         .merge_extent_hook = btrfs_merge_extent_hook,
9497         .split_extent_hook = btrfs_split_extent_hook,
9498 };
9499
9500 /*
9501  * btrfs doesn't support the bmap operation because swapfiles
9502  * use bmap to make a mapping of extents in the file.  They assume
9503  * these extents won't change over the life of the file and they
9504  * use the bmap result to do IO directly to the drive.
9505  *
9506  * the btrfs bmap call would return logical addresses that aren't
9507  * suitable for IO and they also will change frequently as COW
9508  * operations happen.  So, swapfile + btrfs == corruption.
9509  *
9510  * For now we're avoiding this by dropping bmap.
9511  */
9512 static const struct address_space_operations btrfs_aops = {
9513         .readpage       = btrfs_readpage,
9514         .writepage      = btrfs_writepage,
9515         .writepages     = btrfs_writepages,
9516         .readpages      = btrfs_readpages,
9517         .direct_IO      = btrfs_direct_IO,
9518         .invalidatepage = btrfs_invalidatepage,
9519         .releasepage    = btrfs_releasepage,
9520         .set_page_dirty = btrfs_set_page_dirty,
9521         .error_remove_page = generic_error_remove_page,
9522 };
9523
9524 static const struct address_space_operations btrfs_symlink_aops = {
9525         .readpage       = btrfs_readpage,
9526         .writepage      = btrfs_writepage,
9527         .invalidatepage = btrfs_invalidatepage,
9528         .releasepage    = btrfs_releasepage,
9529 };
9530
9531 static const struct inode_operations btrfs_file_inode_operations = {
9532         .getattr        = btrfs_getattr,
9533         .setattr        = btrfs_setattr,
9534         .setxattr       = btrfs_setxattr,
9535         .getxattr       = btrfs_getxattr,
9536         .listxattr      = btrfs_listxattr,
9537         .removexattr    = btrfs_removexattr,
9538         .permission     = btrfs_permission,
9539         .fiemap         = btrfs_fiemap,
9540         .get_acl        = btrfs_get_acl,
9541         .set_acl        = btrfs_set_acl,
9542         .update_time    = btrfs_update_time,
9543 };
9544 static const struct inode_operations btrfs_special_inode_operations = {
9545         .getattr        = btrfs_getattr,
9546         .setattr        = btrfs_setattr,
9547         .permission     = btrfs_permission,
9548         .setxattr       = btrfs_setxattr,
9549         .getxattr       = btrfs_getxattr,
9550         .listxattr      = btrfs_listxattr,
9551         .removexattr    = btrfs_removexattr,
9552         .get_acl        = btrfs_get_acl,
9553         .set_acl        = btrfs_set_acl,
9554         .update_time    = btrfs_update_time,
9555 };
9556 static const struct inode_operations btrfs_symlink_inode_operations = {
9557         .readlink       = generic_readlink,
9558         .follow_link    = page_follow_link_light,
9559         .put_link       = page_put_link,
9560         .getattr        = btrfs_getattr,
9561         .setattr        = btrfs_setattr,
9562         .permission     = btrfs_permission,
9563         .setxattr       = btrfs_setxattr,
9564         .getxattr       = btrfs_getxattr,
9565         .listxattr      = btrfs_listxattr,
9566         .removexattr    = btrfs_removexattr,
9567         .update_time    = btrfs_update_time,
9568 };
9569
9570 const struct dentry_operations btrfs_dentry_operations = {
9571         .d_delete       = btrfs_dentry_delete,
9572         .d_release      = btrfs_dentry_release,
9573 };