bc015f77f3ea2e2c0500d4428ce2cbd54aa6834f
[cascardo/linux.git] / fs / btrfs / scrub.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "check-integrity.h"
29
30 /*
31  * This is only the first step towards a full-features scrub. It reads all
32  * extent and super block and verifies the checksums. In case a bad checksum
33  * is found or the extent cannot be read, good data will be written back if
34  * any can be found.
35  *
36  * Future enhancements:
37  *  - In case an unrepairable extent is encountered, track which files are
38  *    affected and report them
39  *  - track and record media errors, throw out bad devices
40  *  - add a mode to also read unallocated space
41  */
42
43 struct scrub_block;
44 struct scrub_dev;
45
46 #define SCRUB_PAGES_PER_BIO     16      /* 64k per bio */
47 #define SCRUB_BIOS_PER_DEV      16      /* 1 MB per device in flight */
48 #define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
49
50 struct scrub_page {
51         struct scrub_block      *sblock;
52         struct page             *page;
53         struct block_device     *bdev;
54         u64                     flags;  /* extent flags */
55         u64                     generation;
56         u64                     logical;
57         u64                     physical;
58         struct {
59                 unsigned int    mirror_num:8;
60                 unsigned int    have_csum:1;
61                 unsigned int    io_error:1;
62         };
63         u8                      csum[BTRFS_CSUM_SIZE];
64 };
65
66 struct scrub_bio {
67         int                     index;
68         struct scrub_dev        *sdev;
69         struct bio              *bio;
70         int                     err;
71         u64                     logical;
72         u64                     physical;
73         struct scrub_page       *pagev[SCRUB_PAGES_PER_BIO];
74         int                     page_count;
75         int                     next_free;
76         struct btrfs_work       work;
77 };
78
79 struct scrub_block {
80         struct scrub_page       pagev[SCRUB_MAX_PAGES_PER_BLOCK];
81         int                     page_count;
82         atomic_t                outstanding_pages;
83         atomic_t                ref_count; /* free mem on transition to zero */
84         struct scrub_dev        *sdev;
85         struct {
86                 unsigned int    header_error:1;
87                 unsigned int    checksum_error:1;
88                 unsigned int    no_io_error_seen:1;
89         };
90 };
91
92 struct scrub_dev {
93         struct scrub_bio        *bios[SCRUB_BIOS_PER_DEV];
94         struct btrfs_device     *dev;
95         int                     first_free;
96         int                     curr;
97         atomic_t                in_flight;
98         atomic_t                fixup_cnt;
99         spinlock_t              list_lock;
100         wait_queue_head_t       list_wait;
101         u16                     csum_size;
102         struct list_head        csum_list;
103         atomic_t                cancel_req;
104         int                     readonly;
105         int                     pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
106         u32                     sectorsize;
107         u32                     nodesize;
108         u32                     leafsize;
109         /*
110          * statistics
111          */
112         struct btrfs_scrub_progress stat;
113         spinlock_t              stat_lock;
114 };
115
116 struct scrub_fixup_nodatasum {
117         struct scrub_dev        *sdev;
118         u64                     logical;
119         struct btrfs_root       *root;
120         struct btrfs_work       work;
121         int                     mirror_num;
122 };
123
124 struct scrub_warning {
125         struct btrfs_path       *path;
126         u64                     extent_item_size;
127         char                    *scratch_buf;
128         char                    *msg_buf;
129         const char              *errstr;
130         sector_t                sector;
131         u64                     logical;
132         struct btrfs_device     *dev;
133         int                     msg_bufsize;
134         int                     scratch_bufsize;
135 };
136
137
138 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
139 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
140                                      struct btrfs_mapping_tree *map_tree,
141                                      u64 length, u64 logical,
142                                      struct scrub_block *sblock);
143 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
144                                struct scrub_block *sblock, int is_metadata,
145                                int have_csum, u8 *csum, u64 generation,
146                                u16 csum_size);
147 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
148                                          struct scrub_block *sblock,
149                                          int is_metadata, int have_csum,
150                                          const u8 *csum, u64 generation,
151                                          u16 csum_size);
152 static void scrub_complete_bio_end_io(struct bio *bio, int err);
153 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
154                                              struct scrub_block *sblock_good,
155                                              int force_write);
156 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
157                                             struct scrub_block *sblock_good,
158                                             int page_num, int force_write);
159 static int scrub_checksum_data(struct scrub_block *sblock);
160 static int scrub_checksum_tree_block(struct scrub_block *sblock);
161 static int scrub_checksum_super(struct scrub_block *sblock);
162 static void scrub_block_get(struct scrub_block *sblock);
163 static void scrub_block_put(struct scrub_block *sblock);
164 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
165                                  struct scrub_page *spage);
166 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
167                        u64 physical, u64 flags, u64 gen, int mirror_num,
168                        u8 *csum, int force);
169 static void scrub_bio_end_io(struct bio *bio, int err);
170 static void scrub_bio_end_io_worker(struct btrfs_work *work);
171 static void scrub_block_complete(struct scrub_block *sblock);
172
173
174 static void scrub_free_csums(struct scrub_dev *sdev)
175 {
176         while (!list_empty(&sdev->csum_list)) {
177                 struct btrfs_ordered_sum *sum;
178                 sum = list_first_entry(&sdev->csum_list,
179                                        struct btrfs_ordered_sum, list);
180                 list_del(&sum->list);
181                 kfree(sum);
182         }
183 }
184
185 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
186 {
187         int i;
188
189         if (!sdev)
190                 return;
191
192         /* this can happen when scrub is cancelled */
193         if (sdev->curr != -1) {
194                 struct scrub_bio *sbio = sdev->bios[sdev->curr];
195
196                 for (i = 0; i < sbio->page_count; i++) {
197                         BUG_ON(!sbio->pagev[i]);
198                         BUG_ON(!sbio->pagev[i]->page);
199                         scrub_block_put(sbio->pagev[i]->sblock);
200                 }
201                 bio_put(sbio->bio);
202         }
203
204         for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
205                 struct scrub_bio *sbio = sdev->bios[i];
206
207                 if (!sbio)
208                         break;
209                 kfree(sbio);
210         }
211
212         scrub_free_csums(sdev);
213         kfree(sdev);
214 }
215
216 static noinline_for_stack
217 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
218 {
219         struct scrub_dev *sdev;
220         int             i;
221         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
222         int pages_per_bio;
223
224         pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
225                               bio_get_nr_vecs(dev->bdev));
226         sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
227         if (!sdev)
228                 goto nomem;
229         sdev->dev = dev;
230         sdev->pages_per_bio = pages_per_bio;
231         sdev->curr = -1;
232         for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
233                 struct scrub_bio *sbio;
234
235                 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
236                 if (!sbio)
237                         goto nomem;
238                 sdev->bios[i] = sbio;
239
240                 sbio->index = i;
241                 sbio->sdev = sdev;
242                 sbio->page_count = 0;
243                 sbio->work.func = scrub_bio_end_io_worker;
244
245                 if (i != SCRUB_BIOS_PER_DEV-1)
246                         sdev->bios[i]->next_free = i + 1;
247                 else
248                         sdev->bios[i]->next_free = -1;
249         }
250         sdev->first_free = 0;
251         sdev->nodesize = dev->dev_root->nodesize;
252         sdev->leafsize = dev->dev_root->leafsize;
253         sdev->sectorsize = dev->dev_root->sectorsize;
254         atomic_set(&sdev->in_flight, 0);
255         atomic_set(&sdev->fixup_cnt, 0);
256         atomic_set(&sdev->cancel_req, 0);
257         sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
258         INIT_LIST_HEAD(&sdev->csum_list);
259
260         spin_lock_init(&sdev->list_lock);
261         spin_lock_init(&sdev->stat_lock);
262         init_waitqueue_head(&sdev->list_wait);
263         return sdev;
264
265 nomem:
266         scrub_free_dev(sdev);
267         return ERR_PTR(-ENOMEM);
268 }
269
270 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
271 {
272         u64 isize;
273         u32 nlink;
274         int ret;
275         int i;
276         struct extent_buffer *eb;
277         struct btrfs_inode_item *inode_item;
278         struct scrub_warning *swarn = ctx;
279         struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
280         struct inode_fs_paths *ipath = NULL;
281         struct btrfs_root *local_root;
282         struct btrfs_key root_key;
283
284         root_key.objectid = root;
285         root_key.type = BTRFS_ROOT_ITEM_KEY;
286         root_key.offset = (u64)-1;
287         local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
288         if (IS_ERR(local_root)) {
289                 ret = PTR_ERR(local_root);
290                 goto err;
291         }
292
293         ret = inode_item_info(inum, 0, local_root, swarn->path);
294         if (ret) {
295                 btrfs_release_path(swarn->path);
296                 goto err;
297         }
298
299         eb = swarn->path->nodes[0];
300         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
301                                         struct btrfs_inode_item);
302         isize = btrfs_inode_size(eb, inode_item);
303         nlink = btrfs_inode_nlink(eb, inode_item);
304         btrfs_release_path(swarn->path);
305
306         ipath = init_ipath(4096, local_root, swarn->path);
307         if (IS_ERR(ipath)) {
308                 ret = PTR_ERR(ipath);
309                 ipath = NULL;
310                 goto err;
311         }
312         ret = paths_from_inode(inum, ipath);
313
314         if (ret < 0)
315                 goto err;
316
317         /*
318          * we deliberately ignore the bit ipath might have been too small to
319          * hold all of the paths here
320          */
321         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
322                 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
323                         "%s, sector %llu, root %llu, inode %llu, offset %llu, "
324                         "length %llu, links %u (path: %s)\n", swarn->errstr,
325                         swarn->logical, swarn->dev->name,
326                         (unsigned long long)swarn->sector, root, inum, offset,
327                         min(isize - offset, (u64)PAGE_SIZE), nlink,
328                         (char *)(unsigned long)ipath->fspath->val[i]);
329
330         free_ipath(ipath);
331         return 0;
332
333 err:
334         printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
335                 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
336                 "resolving failed with ret=%d\n", swarn->errstr,
337                 swarn->logical, swarn->dev->name,
338                 (unsigned long long)swarn->sector, root, inum, offset, ret);
339
340         free_ipath(ipath);
341         return 0;
342 }
343
344 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
345 {
346         struct btrfs_device *dev = sblock->sdev->dev;
347         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
348         struct btrfs_path *path;
349         struct btrfs_key found_key;
350         struct extent_buffer *eb;
351         struct btrfs_extent_item *ei;
352         struct scrub_warning swarn;
353         u32 item_size;
354         int ret;
355         u64 ref_root;
356         u8 ref_level;
357         unsigned long ptr = 0;
358         const int bufsize = 4096;
359         u64 extent_item_pos;
360
361         path = btrfs_alloc_path();
362
363         swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
364         swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
365         BUG_ON(sblock->page_count < 1);
366         swarn.sector = (sblock->pagev[0].physical) >> 9;
367         swarn.logical = sblock->pagev[0].logical;
368         swarn.errstr = errstr;
369         swarn.dev = dev;
370         swarn.msg_bufsize = bufsize;
371         swarn.scratch_bufsize = bufsize;
372
373         if (!path || !swarn.scratch_buf || !swarn.msg_buf)
374                 goto out;
375
376         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
377         if (ret < 0)
378                 goto out;
379
380         extent_item_pos = swarn.logical - found_key.objectid;
381         swarn.extent_item_size = found_key.offset;
382
383         eb = path->nodes[0];
384         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
385         item_size = btrfs_item_size_nr(eb, path->slots[0]);
386         btrfs_release_path(path);
387
388         if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
389                 do {
390                         ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
391                                                         &ref_root, &ref_level);
392                         printk(KERN_WARNING
393                                 "btrfs: %s at logical %llu on dev %s, "
394                                 "sector %llu: metadata %s (level %d) in tree "
395                                 "%llu\n", errstr, swarn.logical, dev->name,
396                                 (unsigned long long)swarn.sector,
397                                 ref_level ? "node" : "leaf",
398                                 ret < 0 ? -1 : ref_level,
399                                 ret < 0 ? -1 : ref_root);
400                 } while (ret != 1);
401         } else {
402                 swarn.path = path;
403                 iterate_extent_inodes(fs_info, found_key.objectid,
404                                         extent_item_pos, 1,
405                                         scrub_print_warning_inode, &swarn);
406         }
407
408 out:
409         btrfs_free_path(path);
410         kfree(swarn.scratch_buf);
411         kfree(swarn.msg_buf);
412 }
413
414 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
415 {
416         struct page *page = NULL;
417         unsigned long index;
418         struct scrub_fixup_nodatasum *fixup = ctx;
419         int ret;
420         int corrected = 0;
421         struct btrfs_key key;
422         struct inode *inode = NULL;
423         u64 end = offset + PAGE_SIZE - 1;
424         struct btrfs_root *local_root;
425
426         key.objectid = root;
427         key.type = BTRFS_ROOT_ITEM_KEY;
428         key.offset = (u64)-1;
429         local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
430         if (IS_ERR(local_root))
431                 return PTR_ERR(local_root);
432
433         key.type = BTRFS_INODE_ITEM_KEY;
434         key.objectid = inum;
435         key.offset = 0;
436         inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
437         if (IS_ERR(inode))
438                 return PTR_ERR(inode);
439
440         index = offset >> PAGE_CACHE_SHIFT;
441
442         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
443         if (!page) {
444                 ret = -ENOMEM;
445                 goto out;
446         }
447
448         if (PageUptodate(page)) {
449                 struct btrfs_mapping_tree *map_tree;
450                 if (PageDirty(page)) {
451                         /*
452                          * we need to write the data to the defect sector. the
453                          * data that was in that sector is not in memory,
454                          * because the page was modified. we must not write the
455                          * modified page to that sector.
456                          *
457                          * TODO: what could be done here: wait for the delalloc
458                          *       runner to write out that page (might involve
459                          *       COW) and see whether the sector is still
460                          *       referenced afterwards.
461                          *
462                          * For the meantime, we'll treat this error
463                          * incorrectable, although there is a chance that a
464                          * later scrub will find the bad sector again and that
465                          * there's no dirty page in memory, then.
466                          */
467                         ret = -EIO;
468                         goto out;
469                 }
470                 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
471                 ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
472                                         fixup->logical, page,
473                                         fixup->mirror_num);
474                 unlock_page(page);
475                 corrected = !ret;
476         } else {
477                 /*
478                  * we need to get good data first. the general readpage path
479                  * will call repair_io_failure for us, we just have to make
480                  * sure we read the bad mirror.
481                  */
482                 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
483                                         EXTENT_DAMAGED, GFP_NOFS);
484                 if (ret) {
485                         /* set_extent_bits should give proper error */
486                         WARN_ON(ret > 0);
487                         if (ret > 0)
488                                 ret = -EFAULT;
489                         goto out;
490                 }
491
492                 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
493                                                 btrfs_get_extent,
494                                                 fixup->mirror_num);
495                 wait_on_page_locked(page);
496
497                 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
498                                                 end, EXTENT_DAMAGED, 0, NULL);
499                 if (!corrected)
500                         clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
501                                                 EXTENT_DAMAGED, GFP_NOFS);
502         }
503
504 out:
505         if (page)
506                 put_page(page);
507         if (inode)
508                 iput(inode);
509
510         if (ret < 0)
511                 return ret;
512
513         if (ret == 0 && corrected) {
514                 /*
515                  * we only need to call readpage for one of the inodes belonging
516                  * to this extent. so make iterate_extent_inodes stop
517                  */
518                 return 1;
519         }
520
521         return -EIO;
522 }
523
524 static void scrub_fixup_nodatasum(struct btrfs_work *work)
525 {
526         int ret;
527         struct scrub_fixup_nodatasum *fixup;
528         struct scrub_dev *sdev;
529         struct btrfs_trans_handle *trans = NULL;
530         struct btrfs_fs_info *fs_info;
531         struct btrfs_path *path;
532         int uncorrectable = 0;
533
534         fixup = container_of(work, struct scrub_fixup_nodatasum, work);
535         sdev = fixup->sdev;
536         fs_info = fixup->root->fs_info;
537
538         path = btrfs_alloc_path();
539         if (!path) {
540                 spin_lock(&sdev->stat_lock);
541                 ++sdev->stat.malloc_errors;
542                 spin_unlock(&sdev->stat_lock);
543                 uncorrectable = 1;
544                 goto out;
545         }
546
547         trans = btrfs_join_transaction(fixup->root);
548         if (IS_ERR(trans)) {
549                 uncorrectable = 1;
550                 goto out;
551         }
552
553         /*
554          * the idea is to trigger a regular read through the standard path. we
555          * read a page from the (failed) logical address by specifying the
556          * corresponding copynum of the failed sector. thus, that readpage is
557          * expected to fail.
558          * that is the point where on-the-fly error correction will kick in
559          * (once it's finished) and rewrite the failed sector if a good copy
560          * can be found.
561          */
562         ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
563                                                 path, scrub_fixup_readpage,
564                                                 fixup);
565         if (ret < 0) {
566                 uncorrectable = 1;
567                 goto out;
568         }
569         WARN_ON(ret != 1);
570
571         spin_lock(&sdev->stat_lock);
572         ++sdev->stat.corrected_errors;
573         spin_unlock(&sdev->stat_lock);
574
575 out:
576         if (trans && !IS_ERR(trans))
577                 btrfs_end_transaction(trans, fixup->root);
578         if (uncorrectable) {
579                 spin_lock(&sdev->stat_lock);
580                 ++sdev->stat.uncorrectable_errors;
581                 spin_unlock(&sdev->stat_lock);
582                 printk_ratelimited(KERN_ERR
583                         "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
584                         (unsigned long long)fixup->logical, sdev->dev->name);
585         }
586
587         btrfs_free_path(path);
588         kfree(fixup);
589
590         /* see caller why we're pretending to be paused in the scrub counters */
591         mutex_lock(&fs_info->scrub_lock);
592         atomic_dec(&fs_info->scrubs_running);
593         atomic_dec(&fs_info->scrubs_paused);
594         mutex_unlock(&fs_info->scrub_lock);
595         atomic_dec(&sdev->fixup_cnt);
596         wake_up(&fs_info->scrub_pause_wait);
597         wake_up(&sdev->list_wait);
598 }
599
600 /*
601  * scrub_handle_errored_block gets called when either verification of the
602  * pages failed or the bio failed to read, e.g. with EIO. In the latter
603  * case, this function handles all pages in the bio, even though only one
604  * may be bad.
605  * The goal of this function is to repair the errored block by using the
606  * contents of one of the mirrors.
607  */
608 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
609 {
610         struct scrub_dev *sdev = sblock_to_check->sdev;
611         struct btrfs_fs_info *fs_info;
612         u64 length;
613         u64 logical;
614         u64 generation;
615         unsigned int failed_mirror_index;
616         unsigned int is_metadata;
617         unsigned int have_csum;
618         u8 *csum;
619         struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
620         struct scrub_block *sblock_bad;
621         int ret;
622         int mirror_index;
623         int page_num;
624         int success;
625         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
626                                       DEFAULT_RATELIMIT_BURST);
627
628         BUG_ON(sblock_to_check->page_count < 1);
629         fs_info = sdev->dev->dev_root->fs_info;
630         length = sblock_to_check->page_count * PAGE_SIZE;
631         logical = sblock_to_check->pagev[0].logical;
632         generation = sblock_to_check->pagev[0].generation;
633         BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
634         failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
635         is_metadata = !(sblock_to_check->pagev[0].flags &
636                         BTRFS_EXTENT_FLAG_DATA);
637         have_csum = sblock_to_check->pagev[0].have_csum;
638         csum = sblock_to_check->pagev[0].csum;
639
640         /*
641          * read all mirrors one after the other. This includes to
642          * re-read the extent or metadata block that failed (that was
643          * the cause that this fixup code is called) another time,
644          * page by page this time in order to know which pages
645          * caused I/O errors and which ones are good (for all mirrors).
646          * It is the goal to handle the situation when more than one
647          * mirror contains I/O errors, but the errors do not
648          * overlap, i.e. the data can be repaired by selecting the
649          * pages from those mirrors without I/O error on the
650          * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
651          * would be that mirror #1 has an I/O error on the first page,
652          * the second page is good, and mirror #2 has an I/O error on
653          * the second page, but the first page is good.
654          * Then the first page of the first mirror can be repaired by
655          * taking the first page of the second mirror, and the
656          * second page of the second mirror can be repaired by
657          * copying the contents of the 2nd page of the 1st mirror.
658          * One more note: if the pages of one mirror contain I/O
659          * errors, the checksum cannot be verified. In order to get
660          * the best data for repairing, the first attempt is to find
661          * a mirror without I/O errors and with a validated checksum.
662          * Only if this is not possible, the pages are picked from
663          * mirrors with I/O errors without considering the checksum.
664          * If the latter is the case, at the end, the checksum of the
665          * repaired area is verified in order to correctly maintain
666          * the statistics.
667          */
668
669         sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
670                                      sizeof(*sblocks_for_recheck),
671                                      GFP_NOFS);
672         if (!sblocks_for_recheck) {
673                 spin_lock(&sdev->stat_lock);
674                 sdev->stat.malloc_errors++;
675                 sdev->stat.read_errors++;
676                 sdev->stat.uncorrectable_errors++;
677                 spin_unlock(&sdev->stat_lock);
678                 goto out;
679         }
680
681         /* setup the context, map the logical blocks and alloc the pages */
682         ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
683                                         logical, sblocks_for_recheck);
684         if (ret) {
685                 spin_lock(&sdev->stat_lock);
686                 sdev->stat.read_errors++;
687                 sdev->stat.uncorrectable_errors++;
688                 spin_unlock(&sdev->stat_lock);
689                 goto out;
690         }
691         BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
692         sblock_bad = sblocks_for_recheck + failed_mirror_index;
693
694         /* build and submit the bios for the failed mirror, check checksums */
695         ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
696                                   csum, generation, sdev->csum_size);
697         if (ret) {
698                 spin_lock(&sdev->stat_lock);
699                 sdev->stat.read_errors++;
700                 sdev->stat.uncorrectable_errors++;
701                 spin_unlock(&sdev->stat_lock);
702                 goto out;
703         }
704
705         if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
706             sblock_bad->no_io_error_seen) {
707                 /*
708                  * the error disappeared after reading page by page, or
709                  * the area was part of a huge bio and other parts of the
710                  * bio caused I/O errors, or the block layer merged several
711                  * read requests into one and the error is caused by a
712                  * different bio (usually one of the two latter cases is
713                  * the cause)
714                  */
715                 spin_lock(&sdev->stat_lock);
716                 sdev->stat.unverified_errors++;
717                 spin_unlock(&sdev->stat_lock);
718
719                 goto out;
720         }
721
722         if (!sblock_bad->no_io_error_seen) {
723                 spin_lock(&sdev->stat_lock);
724                 sdev->stat.read_errors++;
725                 spin_unlock(&sdev->stat_lock);
726                 if (__ratelimit(&_rs))
727                         scrub_print_warning("i/o error", sblock_to_check);
728         } else if (sblock_bad->checksum_error) {
729                 spin_lock(&sdev->stat_lock);
730                 sdev->stat.csum_errors++;
731                 spin_unlock(&sdev->stat_lock);
732                 if (__ratelimit(&_rs))
733                         scrub_print_warning("checksum error", sblock_to_check);
734         } else if (sblock_bad->header_error) {
735                 spin_lock(&sdev->stat_lock);
736                 sdev->stat.verify_errors++;
737                 spin_unlock(&sdev->stat_lock);
738                 if (__ratelimit(&_rs))
739                         scrub_print_warning("checksum/header error",
740                                             sblock_to_check);
741         }
742
743         if (sdev->readonly)
744                 goto did_not_correct_error;
745
746         if (!is_metadata && !have_csum) {
747                 struct scrub_fixup_nodatasum *fixup_nodatasum;
748
749                 /*
750                  * !is_metadata and !have_csum, this means that the data
751                  * might not be COW'ed, that it might be modified
752                  * concurrently. The general strategy to work on the
753                  * commit root does not help in the case when COW is not
754                  * used.
755                  */
756                 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
757                 if (!fixup_nodatasum)
758                         goto did_not_correct_error;
759                 fixup_nodatasum->sdev = sdev;
760                 fixup_nodatasum->logical = logical;
761                 fixup_nodatasum->root = fs_info->extent_root;
762                 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
763                 /*
764                  * increment scrubs_running to prevent cancel requests from
765                  * completing as long as a fixup worker is running. we must also
766                  * increment scrubs_paused to prevent deadlocking on pause
767                  * requests used for transactions commits (as the worker uses a
768                  * transaction context). it is safe to regard the fixup worker
769                  * as paused for all matters practical. effectively, we only
770                  * avoid cancellation requests from completing.
771                  */
772                 mutex_lock(&fs_info->scrub_lock);
773                 atomic_inc(&fs_info->scrubs_running);
774                 atomic_inc(&fs_info->scrubs_paused);
775                 mutex_unlock(&fs_info->scrub_lock);
776                 atomic_inc(&sdev->fixup_cnt);
777                 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
778                 btrfs_queue_worker(&fs_info->scrub_workers,
779                                    &fixup_nodatasum->work);
780                 goto out;
781         }
782
783         /*
784          * now build and submit the bios for the other mirrors, check
785          * checksums
786          */
787         for (mirror_index = 0;
788              mirror_index < BTRFS_MAX_MIRRORS &&
789              sblocks_for_recheck[mirror_index].page_count > 0;
790              mirror_index++) {
791                 if (mirror_index == failed_mirror_index)
792                         continue;
793
794                 /* build and submit the bios, check checksums */
795                 ret = scrub_recheck_block(fs_info,
796                                           sblocks_for_recheck + mirror_index,
797                                           is_metadata, have_csum, csum,
798                                           generation, sdev->csum_size);
799                 if (ret)
800                         goto did_not_correct_error;
801         }
802
803         /*
804          * first try to pick the mirror which is completely without I/O
805          * errors and also does not have a checksum error.
806          * If one is found, and if a checksum is present, the full block
807          * that is known to contain an error is rewritten. Afterwards
808          * the block is known to be corrected.
809          * If a mirror is found which is completely correct, and no
810          * checksum is present, only those pages are rewritten that had
811          * an I/O error in the block to be repaired, since it cannot be
812          * determined, which copy of the other pages is better (and it
813          * could happen otherwise that a correct page would be
814          * overwritten by a bad one).
815          */
816         for (mirror_index = 0;
817              mirror_index < BTRFS_MAX_MIRRORS &&
818              sblocks_for_recheck[mirror_index].page_count > 0;
819              mirror_index++) {
820                 struct scrub_block *sblock_other = sblocks_for_recheck +
821                                                    mirror_index;
822
823                 if (!sblock_other->header_error &&
824                     !sblock_other->checksum_error &&
825                     sblock_other->no_io_error_seen) {
826                         int force_write = is_metadata || have_csum;
827
828                         ret = scrub_repair_block_from_good_copy(sblock_bad,
829                                                                 sblock_other,
830                                                                 force_write);
831                         if (0 == ret)
832                                 goto corrected_error;
833                 }
834         }
835
836         /*
837          * in case of I/O errors in the area that is supposed to be
838          * repaired, continue by picking good copies of those pages.
839          * Select the good pages from mirrors to rewrite bad pages from
840          * the area to fix. Afterwards verify the checksum of the block
841          * that is supposed to be repaired. This verification step is
842          * only done for the purpose of statistic counting and for the
843          * final scrub report, whether errors remain.
844          * A perfect algorithm could make use of the checksum and try
845          * all possible combinations of pages from the different mirrors
846          * until the checksum verification succeeds. For example, when
847          * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
848          * of mirror #2 is readable but the final checksum test fails,
849          * then the 2nd page of mirror #3 could be tried, whether now
850          * the final checksum succeedes. But this would be a rare
851          * exception and is therefore not implemented. At least it is
852          * avoided that the good copy is overwritten.
853          * A more useful improvement would be to pick the sectors
854          * without I/O error based on sector sizes (512 bytes on legacy
855          * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
856          * mirror could be repaired by taking 512 byte of a different
857          * mirror, even if other 512 byte sectors in the same PAGE_SIZE
858          * area are unreadable.
859          */
860
861         /* can only fix I/O errors from here on */
862         if (sblock_bad->no_io_error_seen)
863                 goto did_not_correct_error;
864
865         success = 1;
866         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
867                 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
868
869                 if (!page_bad->io_error)
870                         continue;
871
872                 for (mirror_index = 0;
873                      mirror_index < BTRFS_MAX_MIRRORS &&
874                      sblocks_for_recheck[mirror_index].page_count > 0;
875                      mirror_index++) {
876                         struct scrub_block *sblock_other = sblocks_for_recheck +
877                                                            mirror_index;
878                         struct scrub_page *page_other = sblock_other->pagev +
879                                                         page_num;
880
881                         if (!page_other->io_error) {
882                                 ret = scrub_repair_page_from_good_copy(
883                                         sblock_bad, sblock_other, page_num, 0);
884                                 if (0 == ret) {
885                                         page_bad->io_error = 0;
886                                         break; /* succeeded for this page */
887                                 }
888                         }
889                 }
890
891                 if (page_bad->io_error) {
892                         /* did not find a mirror to copy the page from */
893                         success = 0;
894                 }
895         }
896
897         if (success) {
898                 if (is_metadata || have_csum) {
899                         /*
900                          * need to verify the checksum now that all
901                          * sectors on disk are repaired (the write
902                          * request for data to be repaired is on its way).
903                          * Just be lazy and use scrub_recheck_block()
904                          * which re-reads the data before the checksum
905                          * is verified, but most likely the data comes out
906                          * of the page cache.
907                          */
908                         ret = scrub_recheck_block(fs_info, sblock_bad,
909                                                   is_metadata, have_csum, csum,
910                                                   generation, sdev->csum_size);
911                         if (!ret && !sblock_bad->header_error &&
912                             !sblock_bad->checksum_error &&
913                             sblock_bad->no_io_error_seen)
914                                 goto corrected_error;
915                         else
916                                 goto did_not_correct_error;
917                 } else {
918 corrected_error:
919                         spin_lock(&sdev->stat_lock);
920                         sdev->stat.corrected_errors++;
921                         spin_unlock(&sdev->stat_lock);
922                         printk_ratelimited(KERN_ERR
923                                 "btrfs: fixed up error at logical %llu on dev %s\n",
924                                 (unsigned long long)logical, sdev->dev->name);
925                 }
926         } else {
927 did_not_correct_error:
928                 spin_lock(&sdev->stat_lock);
929                 sdev->stat.uncorrectable_errors++;
930                 spin_unlock(&sdev->stat_lock);
931                 printk_ratelimited(KERN_ERR
932                         "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
933                         (unsigned long long)logical, sdev->dev->name);
934         }
935
936 out:
937         if (sblocks_for_recheck) {
938                 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
939                      mirror_index++) {
940                         struct scrub_block *sblock = sblocks_for_recheck +
941                                                      mirror_index;
942                         int page_index;
943
944                         for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
945                              page_index++)
946                                 if (sblock->pagev[page_index].page)
947                                         __free_page(
948                                                 sblock->pagev[page_index].page);
949                 }
950                 kfree(sblocks_for_recheck);
951         }
952
953         return 0;
954 }
955
956 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
957                                      struct btrfs_mapping_tree *map_tree,
958                                      u64 length, u64 logical,
959                                      struct scrub_block *sblocks_for_recheck)
960 {
961         int page_index;
962         int mirror_index;
963         int ret;
964
965         /*
966          * note: the three members sdev, ref_count and outstanding_pages
967          * are not used (and not set) in the blocks that are used for
968          * the recheck procedure
969          */
970
971         page_index = 0;
972         while (length > 0) {
973                 u64 sublen = min_t(u64, length, PAGE_SIZE);
974                 u64 mapped_length = sublen;
975                 struct btrfs_bio *bbio = NULL;
976
977                 /*
978                  * with a length of PAGE_SIZE, each returned stripe
979                  * represents one mirror
980                  */
981                 ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
982                                       &bbio, 0);
983                 if (ret || !bbio || mapped_length < sublen) {
984                         kfree(bbio);
985                         return -EIO;
986                 }
987
988                 BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
989                 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
990                      mirror_index++) {
991                         struct scrub_block *sblock;
992                         struct scrub_page *page;
993
994                         if (mirror_index >= BTRFS_MAX_MIRRORS)
995                                 continue;
996
997                         sblock = sblocks_for_recheck + mirror_index;
998                         page = sblock->pagev + page_index;
999                         page->logical = logical;
1000                         page->physical = bbio->stripes[mirror_index].physical;
1001                         page->bdev = bbio->stripes[mirror_index].dev->bdev;
1002                         page->mirror_num = mirror_index + 1;
1003                         page->page = alloc_page(GFP_NOFS);
1004                         if (!page->page) {
1005                                 spin_lock(&sdev->stat_lock);
1006                                 sdev->stat.malloc_errors++;
1007                                 spin_unlock(&sdev->stat_lock);
1008                                 return -ENOMEM;
1009                         }
1010                         sblock->page_count++;
1011                 }
1012                 kfree(bbio);
1013                 length -= sublen;
1014                 logical += sublen;
1015                 page_index++;
1016         }
1017
1018         return 0;
1019 }
1020
1021 /*
1022  * this function will check the on disk data for checksum errors, header
1023  * errors and read I/O errors. If any I/O errors happen, the exact pages
1024  * which are errored are marked as being bad. The goal is to enable scrub
1025  * to take those pages that are not errored from all the mirrors so that
1026  * the pages that are errored in the just handled mirror can be repaired.
1027  */
1028 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1029                                struct scrub_block *sblock, int is_metadata,
1030                                int have_csum, u8 *csum, u64 generation,
1031                                u16 csum_size)
1032 {
1033         int page_num;
1034
1035         sblock->no_io_error_seen = 1;
1036         sblock->header_error = 0;
1037         sblock->checksum_error = 0;
1038
1039         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1040                 struct bio *bio;
1041                 int ret;
1042                 struct scrub_page *page = sblock->pagev + page_num;
1043                 DECLARE_COMPLETION_ONSTACK(complete);
1044
1045                 BUG_ON(!page->page);
1046                 bio = bio_alloc(GFP_NOFS, 1);
1047                 if (!bio)
1048                         return -EIO;
1049                 bio->bi_bdev = page->bdev;
1050                 bio->bi_sector = page->physical >> 9;
1051                 bio->bi_end_io = scrub_complete_bio_end_io;
1052                 bio->bi_private = &complete;
1053
1054                 ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1055                 if (PAGE_SIZE != ret) {
1056                         bio_put(bio);
1057                         return -EIO;
1058                 }
1059                 btrfsic_submit_bio(READ, bio);
1060
1061                 /* this will also unplug the queue */
1062                 wait_for_completion(&complete);
1063
1064                 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1065                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1066                         sblock->no_io_error_seen = 0;
1067                 bio_put(bio);
1068         }
1069
1070         if (sblock->no_io_error_seen)
1071                 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1072                                              have_csum, csum, generation,
1073                                              csum_size);
1074
1075         return 0;
1076 }
1077
1078 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1079                                          struct scrub_block *sblock,
1080                                          int is_metadata, int have_csum,
1081                                          const u8 *csum, u64 generation,
1082                                          u16 csum_size)
1083 {
1084         int page_num;
1085         u8 calculated_csum[BTRFS_CSUM_SIZE];
1086         u32 crc = ~(u32)0;
1087         struct btrfs_root *root = fs_info->extent_root;
1088         void *mapped_buffer;
1089
1090         BUG_ON(!sblock->pagev[0].page);
1091         if (is_metadata) {
1092                 struct btrfs_header *h;
1093
1094                 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1095                 h = (struct btrfs_header *)mapped_buffer;
1096
1097                 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1098                     generation != le64_to_cpu(h->generation) ||
1099                     memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1100                     memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1101                            BTRFS_UUID_SIZE))
1102                         sblock->header_error = 1;
1103                 csum = h->csum;
1104         } else {
1105                 if (!have_csum)
1106                         return;
1107
1108                 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1109         }
1110
1111         for (page_num = 0;;) {
1112                 if (page_num == 0 && is_metadata)
1113                         crc = btrfs_csum_data(root,
1114                                 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1115                                 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1116                 else
1117                         crc = btrfs_csum_data(root, mapped_buffer, crc,
1118                                               PAGE_SIZE);
1119
1120                 kunmap_atomic(mapped_buffer);
1121                 page_num++;
1122                 if (page_num >= sblock->page_count)
1123                         break;
1124                 BUG_ON(!sblock->pagev[page_num].page);
1125
1126                 mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1127         }
1128
1129         btrfs_csum_final(crc, calculated_csum);
1130         if (memcmp(calculated_csum, csum, csum_size))
1131                 sblock->checksum_error = 1;
1132 }
1133
1134 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1135 {
1136         complete((struct completion *)bio->bi_private);
1137 }
1138
1139 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1140                                              struct scrub_block *sblock_good,
1141                                              int force_write)
1142 {
1143         int page_num;
1144         int ret = 0;
1145
1146         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1147                 int ret_sub;
1148
1149                 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1150                                                            sblock_good,
1151                                                            page_num,
1152                                                            force_write);
1153                 if (ret_sub)
1154                         ret = ret_sub;
1155         }
1156
1157         return ret;
1158 }
1159
1160 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1161                                             struct scrub_block *sblock_good,
1162                                             int page_num, int force_write)
1163 {
1164         struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1165         struct scrub_page *page_good = sblock_good->pagev + page_num;
1166
1167         BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1168         BUG_ON(sblock_good->pagev[page_num].page == NULL);
1169         if (force_write || sblock_bad->header_error ||
1170             sblock_bad->checksum_error || page_bad->io_error) {
1171                 struct bio *bio;
1172                 int ret;
1173                 DECLARE_COMPLETION_ONSTACK(complete);
1174
1175                 bio = bio_alloc(GFP_NOFS, 1);
1176                 if (!bio)
1177                         return -EIO;
1178                 bio->bi_bdev = page_bad->bdev;
1179                 bio->bi_sector = page_bad->physical >> 9;
1180                 bio->bi_end_io = scrub_complete_bio_end_io;
1181                 bio->bi_private = &complete;
1182
1183                 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1184                 if (PAGE_SIZE != ret) {
1185                         bio_put(bio);
1186                         return -EIO;
1187                 }
1188                 btrfsic_submit_bio(WRITE, bio);
1189
1190                 /* this will also unplug the queue */
1191                 wait_for_completion(&complete);
1192                 bio_put(bio);
1193         }
1194
1195         return 0;
1196 }
1197
1198 static void scrub_checksum(struct scrub_block *sblock)
1199 {
1200         u64 flags;
1201         int ret;
1202
1203         BUG_ON(sblock->page_count < 1);
1204         flags = sblock->pagev[0].flags;
1205         ret = 0;
1206         if (flags & BTRFS_EXTENT_FLAG_DATA)
1207                 ret = scrub_checksum_data(sblock);
1208         else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1209                 ret = scrub_checksum_tree_block(sblock);
1210         else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1211                 (void)scrub_checksum_super(sblock);
1212         else
1213                 WARN_ON(1);
1214         if (ret)
1215                 scrub_handle_errored_block(sblock);
1216 }
1217
1218 static int scrub_checksum_data(struct scrub_block *sblock)
1219 {
1220         struct scrub_dev *sdev = sblock->sdev;
1221         u8 csum[BTRFS_CSUM_SIZE];
1222         u8 *on_disk_csum;
1223         struct page *page;
1224         void *buffer;
1225         u32 crc = ~(u32)0;
1226         int fail = 0;
1227         struct btrfs_root *root = sdev->dev->dev_root;
1228         u64 len;
1229         int index;
1230
1231         BUG_ON(sblock->page_count < 1);
1232         if (!sblock->pagev[0].have_csum)
1233                 return 0;
1234
1235         on_disk_csum = sblock->pagev[0].csum;
1236         page = sblock->pagev[0].page;
1237         buffer = kmap_atomic(page);
1238
1239         len = sdev->sectorsize;
1240         index = 0;
1241         for (;;) {
1242                 u64 l = min_t(u64, len, PAGE_SIZE);
1243
1244                 crc = btrfs_csum_data(root, buffer, crc, l);
1245                 kunmap_atomic(buffer);
1246                 len -= l;
1247                 if (len == 0)
1248                         break;
1249                 index++;
1250                 BUG_ON(index >= sblock->page_count);
1251                 BUG_ON(!sblock->pagev[index].page);
1252                 page = sblock->pagev[index].page;
1253                 buffer = kmap_atomic(page);
1254         }
1255
1256         btrfs_csum_final(crc, csum);
1257         if (memcmp(csum, on_disk_csum, sdev->csum_size))
1258                 fail = 1;
1259
1260         if (fail) {
1261                 spin_lock(&sdev->stat_lock);
1262                 ++sdev->stat.csum_errors;
1263                 spin_unlock(&sdev->stat_lock);
1264         }
1265
1266         return fail;
1267 }
1268
1269 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1270 {
1271         struct scrub_dev *sdev = sblock->sdev;
1272         struct btrfs_header *h;
1273         struct btrfs_root *root = sdev->dev->dev_root;
1274         struct btrfs_fs_info *fs_info = root->fs_info;
1275         u8 calculated_csum[BTRFS_CSUM_SIZE];
1276         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1277         struct page *page;
1278         void *mapped_buffer;
1279         u64 mapped_size;
1280         void *p;
1281         u32 crc = ~(u32)0;
1282         int fail = 0;
1283         int crc_fail = 0;
1284         u64 len;
1285         int index;
1286
1287         BUG_ON(sblock->page_count < 1);
1288         page = sblock->pagev[0].page;
1289         mapped_buffer = kmap_atomic(page);
1290         h = (struct btrfs_header *)mapped_buffer;
1291         memcpy(on_disk_csum, h->csum, sdev->csum_size);
1292
1293         /*
1294          * we don't use the getter functions here, as we
1295          * a) don't have an extent buffer and
1296          * b) the page is already kmapped
1297          */
1298
1299         if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1300                 ++fail;
1301
1302         if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1303                 ++fail;
1304
1305         if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1306                 ++fail;
1307
1308         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1309                    BTRFS_UUID_SIZE))
1310                 ++fail;
1311
1312         BUG_ON(sdev->nodesize != sdev->leafsize);
1313         len = sdev->nodesize - BTRFS_CSUM_SIZE;
1314         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1315         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1316         index = 0;
1317         for (;;) {
1318                 u64 l = min_t(u64, len, mapped_size);
1319
1320                 crc = btrfs_csum_data(root, p, crc, l);
1321                 kunmap_atomic(mapped_buffer);
1322                 len -= l;
1323                 if (len == 0)
1324                         break;
1325                 index++;
1326                 BUG_ON(index >= sblock->page_count);
1327                 BUG_ON(!sblock->pagev[index].page);
1328                 page = sblock->pagev[index].page;
1329                 mapped_buffer = kmap_atomic(page);
1330                 mapped_size = PAGE_SIZE;
1331                 p = mapped_buffer;
1332         }
1333
1334         btrfs_csum_final(crc, calculated_csum);
1335         if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1336                 ++crc_fail;
1337
1338         if (crc_fail || fail) {
1339                 spin_lock(&sdev->stat_lock);
1340                 if (crc_fail)
1341                         ++sdev->stat.csum_errors;
1342                 if (fail)
1343                         ++sdev->stat.verify_errors;
1344                 spin_unlock(&sdev->stat_lock);
1345         }
1346
1347         return fail || crc_fail;
1348 }
1349
1350 static int scrub_checksum_super(struct scrub_block *sblock)
1351 {
1352         struct btrfs_super_block *s;
1353         struct scrub_dev *sdev = sblock->sdev;
1354         struct btrfs_root *root = sdev->dev->dev_root;
1355         struct btrfs_fs_info *fs_info = root->fs_info;
1356         u8 calculated_csum[BTRFS_CSUM_SIZE];
1357         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1358         struct page *page;
1359         void *mapped_buffer;
1360         u64 mapped_size;
1361         void *p;
1362         u32 crc = ~(u32)0;
1363         int fail = 0;
1364         u64 len;
1365         int index;
1366
1367         BUG_ON(sblock->page_count < 1);
1368         page = sblock->pagev[0].page;
1369         mapped_buffer = kmap_atomic(page);
1370         s = (struct btrfs_super_block *)mapped_buffer;
1371         memcpy(on_disk_csum, s->csum, sdev->csum_size);
1372
1373         if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1374                 ++fail;
1375
1376         if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1377                 ++fail;
1378
1379         if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1380                 ++fail;
1381
1382         len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1383         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1384         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1385         index = 0;
1386         for (;;) {
1387                 u64 l = min_t(u64, len, mapped_size);
1388
1389                 crc = btrfs_csum_data(root, p, crc, l);
1390                 kunmap_atomic(mapped_buffer);
1391                 len -= l;
1392                 if (len == 0)
1393                         break;
1394                 index++;
1395                 BUG_ON(index >= sblock->page_count);
1396                 BUG_ON(!sblock->pagev[index].page);
1397                 page = sblock->pagev[index].page;
1398                 mapped_buffer = kmap_atomic(page);
1399                 mapped_size = PAGE_SIZE;
1400                 p = mapped_buffer;
1401         }
1402
1403         btrfs_csum_final(crc, calculated_csum);
1404         if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1405                 ++fail;
1406
1407         if (fail) {
1408                 /*
1409                  * if we find an error in a super block, we just report it.
1410                  * They will get written with the next transaction commit
1411                  * anyway
1412                  */
1413                 spin_lock(&sdev->stat_lock);
1414                 ++sdev->stat.super_errors;
1415                 spin_unlock(&sdev->stat_lock);
1416         }
1417
1418         return fail;
1419 }
1420
1421 static void scrub_block_get(struct scrub_block *sblock)
1422 {
1423         atomic_inc(&sblock->ref_count);
1424 }
1425
1426 static void scrub_block_put(struct scrub_block *sblock)
1427 {
1428         if (atomic_dec_and_test(&sblock->ref_count)) {
1429                 int i;
1430
1431                 for (i = 0; i < sblock->page_count; i++)
1432                         if (sblock->pagev[i].page)
1433                                 __free_page(sblock->pagev[i].page);
1434                 kfree(sblock);
1435         }
1436 }
1437
1438 static void scrub_submit(struct scrub_dev *sdev)
1439 {
1440         struct scrub_bio *sbio;
1441
1442         if (sdev->curr == -1)
1443                 return;
1444
1445         sbio = sdev->bios[sdev->curr];
1446         sdev->curr = -1;
1447         atomic_inc(&sdev->in_flight);
1448
1449         btrfsic_submit_bio(READ, sbio->bio);
1450 }
1451
1452 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1453                                  struct scrub_page *spage)
1454 {
1455         struct scrub_block *sblock = spage->sblock;
1456         struct scrub_bio *sbio;
1457         int ret;
1458
1459 again:
1460         /*
1461          * grab a fresh bio or wait for one to become available
1462          */
1463         while (sdev->curr == -1) {
1464                 spin_lock(&sdev->list_lock);
1465                 sdev->curr = sdev->first_free;
1466                 if (sdev->curr != -1) {
1467                         sdev->first_free = sdev->bios[sdev->curr]->next_free;
1468                         sdev->bios[sdev->curr]->next_free = -1;
1469                         sdev->bios[sdev->curr]->page_count = 0;
1470                         spin_unlock(&sdev->list_lock);
1471                 } else {
1472                         spin_unlock(&sdev->list_lock);
1473                         wait_event(sdev->list_wait, sdev->first_free != -1);
1474                 }
1475         }
1476         sbio = sdev->bios[sdev->curr];
1477         if (sbio->page_count == 0) {
1478                 struct bio *bio;
1479
1480                 sbio->physical = spage->physical;
1481                 sbio->logical = spage->logical;
1482                 bio = sbio->bio;
1483                 if (!bio) {
1484                         bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1485                         if (!bio)
1486                                 return -ENOMEM;
1487                         sbio->bio = bio;
1488                 }
1489
1490                 bio->bi_private = sbio;
1491                 bio->bi_end_io = scrub_bio_end_io;
1492                 bio->bi_bdev = sdev->dev->bdev;
1493                 bio->bi_sector = spage->physical >> 9;
1494                 sbio->err = 0;
1495         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1496                    spage->physical ||
1497                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1498                    spage->logical) {
1499                 scrub_submit(sdev);
1500                 goto again;
1501         }
1502
1503         sbio->pagev[sbio->page_count] = spage;
1504         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1505         if (ret != PAGE_SIZE) {
1506                 if (sbio->page_count < 1) {
1507                         bio_put(sbio->bio);
1508                         sbio->bio = NULL;
1509                         return -EIO;
1510                 }
1511                 scrub_submit(sdev);
1512                 goto again;
1513         }
1514
1515         scrub_block_get(sblock); /* one for the added page */
1516         atomic_inc(&sblock->outstanding_pages);
1517         sbio->page_count++;
1518         if (sbio->page_count == sdev->pages_per_bio)
1519                 scrub_submit(sdev);
1520
1521         return 0;
1522 }
1523
1524 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1525                        u64 physical, u64 flags, u64 gen, int mirror_num,
1526                        u8 *csum, int force)
1527 {
1528         struct scrub_block *sblock;
1529         int index;
1530
1531         sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1532         if (!sblock) {
1533                 spin_lock(&sdev->stat_lock);
1534                 sdev->stat.malloc_errors++;
1535                 spin_unlock(&sdev->stat_lock);
1536                 return -ENOMEM;
1537         }
1538
1539         /* one ref inside this function, plus one for each page later on */
1540         atomic_set(&sblock->ref_count, 1);
1541         sblock->sdev = sdev;
1542         sblock->no_io_error_seen = 1;
1543
1544         for (index = 0; len > 0; index++) {
1545                 struct scrub_page *spage = sblock->pagev + index;
1546                 u64 l = min_t(u64, len, PAGE_SIZE);
1547
1548                 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1549                 spage->page = alloc_page(GFP_NOFS);
1550                 if (!spage->page) {
1551                         spin_lock(&sdev->stat_lock);
1552                         sdev->stat.malloc_errors++;
1553                         spin_unlock(&sdev->stat_lock);
1554                         while (index > 0) {
1555                                 index--;
1556                                 __free_page(sblock->pagev[index].page);
1557                         }
1558                         kfree(sblock);
1559                         return -ENOMEM;
1560                 }
1561                 spage->sblock = sblock;
1562                 spage->bdev = sdev->dev->bdev;
1563                 spage->flags = flags;
1564                 spage->generation = gen;
1565                 spage->logical = logical;
1566                 spage->physical = physical;
1567                 spage->mirror_num = mirror_num;
1568                 if (csum) {
1569                         spage->have_csum = 1;
1570                         memcpy(spage->csum, csum, sdev->csum_size);
1571                 } else {
1572                         spage->have_csum = 0;
1573                 }
1574                 sblock->page_count++;
1575                 len -= l;
1576                 logical += l;
1577                 physical += l;
1578         }
1579
1580         BUG_ON(sblock->page_count == 0);
1581         for (index = 0; index < sblock->page_count; index++) {
1582                 struct scrub_page *spage = sblock->pagev + index;
1583                 int ret;
1584
1585                 ret = scrub_add_page_to_bio(sdev, spage);
1586                 if (ret) {
1587                         scrub_block_put(sblock);
1588                         return ret;
1589                 }
1590         }
1591
1592         if (force)
1593                 scrub_submit(sdev);
1594
1595         /* last one frees, either here or in bio completion for last page */
1596         scrub_block_put(sblock);
1597         return 0;
1598 }
1599
1600 static void scrub_bio_end_io(struct bio *bio, int err)
1601 {
1602         struct scrub_bio *sbio = bio->bi_private;
1603         struct scrub_dev *sdev = sbio->sdev;
1604         struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1605
1606         sbio->err = err;
1607         sbio->bio = bio;
1608
1609         btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1610 }
1611
1612 static void scrub_bio_end_io_worker(struct btrfs_work *work)
1613 {
1614         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1615         struct scrub_dev *sdev = sbio->sdev;
1616         int i;
1617
1618         BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1619         if (sbio->err) {
1620                 for (i = 0; i < sbio->page_count; i++) {
1621                         struct scrub_page *spage = sbio->pagev[i];
1622
1623                         spage->io_error = 1;
1624                         spage->sblock->no_io_error_seen = 0;
1625                 }
1626         }
1627
1628         /* now complete the scrub_block items that have all pages completed */
1629         for (i = 0; i < sbio->page_count; i++) {
1630                 struct scrub_page *spage = sbio->pagev[i];
1631                 struct scrub_block *sblock = spage->sblock;
1632
1633                 if (atomic_dec_and_test(&sblock->outstanding_pages))
1634                         scrub_block_complete(sblock);
1635                 scrub_block_put(sblock);
1636         }
1637
1638         if (sbio->err) {
1639                 /* what is this good for??? */
1640                 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1641                 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1642                 sbio->bio->bi_phys_segments = 0;
1643                 sbio->bio->bi_idx = 0;
1644
1645                 for (i = 0; i < sbio->page_count; i++) {
1646                         struct bio_vec *bi;
1647                         bi = &sbio->bio->bi_io_vec[i];
1648                         bi->bv_offset = 0;
1649                         bi->bv_len = PAGE_SIZE;
1650                 }
1651         }
1652
1653         bio_put(sbio->bio);
1654         sbio->bio = NULL;
1655         spin_lock(&sdev->list_lock);
1656         sbio->next_free = sdev->first_free;
1657         sdev->first_free = sbio->index;
1658         spin_unlock(&sdev->list_lock);
1659         atomic_dec(&sdev->in_flight);
1660         wake_up(&sdev->list_wait);
1661 }
1662
1663 static void scrub_block_complete(struct scrub_block *sblock)
1664 {
1665         if (!sblock->no_io_error_seen)
1666                 scrub_handle_errored_block(sblock);
1667         else
1668                 scrub_checksum(sblock);
1669 }
1670
1671 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1672                            u8 *csum)
1673 {
1674         struct btrfs_ordered_sum *sum = NULL;
1675         int ret = 0;
1676         unsigned long i;
1677         unsigned long num_sectors;
1678
1679         while (!list_empty(&sdev->csum_list)) {
1680                 sum = list_first_entry(&sdev->csum_list,
1681                                        struct btrfs_ordered_sum, list);
1682                 if (sum->bytenr > logical)
1683                         return 0;
1684                 if (sum->bytenr + sum->len > logical)
1685                         break;
1686
1687                 ++sdev->stat.csum_discards;
1688                 list_del(&sum->list);
1689                 kfree(sum);
1690                 sum = NULL;
1691         }
1692         if (!sum)
1693                 return 0;
1694
1695         num_sectors = sum->len / sdev->sectorsize;
1696         for (i = 0; i < num_sectors; ++i) {
1697                 if (sum->sums[i].bytenr == logical) {
1698                         memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1699                         ret = 1;
1700                         break;
1701                 }
1702         }
1703         if (ret && i == num_sectors - 1) {
1704                 list_del(&sum->list);
1705                 kfree(sum);
1706         }
1707         return ret;
1708 }
1709
1710 /* scrub extent tries to collect up to 64 kB for each bio */
1711 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1712                         u64 physical, u64 flags, u64 gen, int mirror_num)
1713 {
1714         int ret;
1715         u8 csum[BTRFS_CSUM_SIZE];
1716         u32 blocksize;
1717
1718         if (flags & BTRFS_EXTENT_FLAG_DATA) {
1719                 blocksize = sdev->sectorsize;
1720                 spin_lock(&sdev->stat_lock);
1721                 sdev->stat.data_extents_scrubbed++;
1722                 sdev->stat.data_bytes_scrubbed += len;
1723                 spin_unlock(&sdev->stat_lock);
1724         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1725                 BUG_ON(sdev->nodesize != sdev->leafsize);
1726                 blocksize = sdev->nodesize;
1727                 spin_lock(&sdev->stat_lock);
1728                 sdev->stat.tree_extents_scrubbed++;
1729                 sdev->stat.tree_bytes_scrubbed += len;
1730                 spin_unlock(&sdev->stat_lock);
1731         } else {
1732                 blocksize = sdev->sectorsize;
1733                 BUG_ON(1);
1734         }
1735
1736         while (len) {
1737                 u64 l = min_t(u64, len, blocksize);
1738                 int have_csum = 0;
1739
1740                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1741                         /* push csums to sbio */
1742                         have_csum = scrub_find_csum(sdev, logical, l, csum);
1743                         if (have_csum == 0)
1744                                 ++sdev->stat.no_csum;
1745                 }
1746                 ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1747                                   mirror_num, have_csum ? csum : NULL, 0);
1748                 if (ret)
1749                         return ret;
1750                 len -= l;
1751                 logical += l;
1752                 physical += l;
1753         }
1754         return 0;
1755 }
1756
1757 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1758         struct map_lookup *map, int num, u64 base, u64 length)
1759 {
1760         struct btrfs_path *path;
1761         struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1762         struct btrfs_root *root = fs_info->extent_root;
1763         struct btrfs_root *csum_root = fs_info->csum_root;
1764         struct btrfs_extent_item *extent;
1765         struct blk_plug plug;
1766         u64 flags;
1767         int ret;
1768         int slot;
1769         int i;
1770         u64 nstripes;
1771         struct extent_buffer *l;
1772         struct btrfs_key key;
1773         u64 physical;
1774         u64 logical;
1775         u64 generation;
1776         int mirror_num;
1777         struct reada_control *reada1;
1778         struct reada_control *reada2;
1779         struct btrfs_key key_start;
1780         struct btrfs_key key_end;
1781
1782         u64 increment = map->stripe_len;
1783         u64 offset;
1784
1785         nstripes = length;
1786         offset = 0;
1787         do_div(nstripes, map->stripe_len);
1788         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1789                 offset = map->stripe_len * num;
1790                 increment = map->stripe_len * map->num_stripes;
1791                 mirror_num = 1;
1792         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1793                 int factor = map->num_stripes / map->sub_stripes;
1794                 offset = map->stripe_len * (num / map->sub_stripes);
1795                 increment = map->stripe_len * factor;
1796                 mirror_num = num % map->sub_stripes + 1;
1797         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1798                 increment = map->stripe_len;
1799                 mirror_num = num % map->num_stripes + 1;
1800         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1801                 increment = map->stripe_len;
1802                 mirror_num = num % map->num_stripes + 1;
1803         } else {
1804                 increment = map->stripe_len;
1805                 mirror_num = 1;
1806         }
1807
1808         path = btrfs_alloc_path();
1809         if (!path)
1810                 return -ENOMEM;
1811
1812         /*
1813          * work on commit root. The related disk blocks are static as
1814          * long as COW is applied. This means, it is save to rewrite
1815          * them to repair disk errors without any race conditions
1816          */
1817         path->search_commit_root = 1;
1818         path->skip_locking = 1;
1819
1820         /*
1821          * trigger the readahead for extent tree csum tree and wait for
1822          * completion. During readahead, the scrub is officially paused
1823          * to not hold off transaction commits
1824          */
1825         logical = base + offset;
1826
1827         wait_event(sdev->list_wait,
1828                    atomic_read(&sdev->in_flight) == 0);
1829         atomic_inc(&fs_info->scrubs_paused);
1830         wake_up(&fs_info->scrub_pause_wait);
1831
1832         /* FIXME it might be better to start readahead at commit root */
1833         key_start.objectid = logical;
1834         key_start.type = BTRFS_EXTENT_ITEM_KEY;
1835         key_start.offset = (u64)0;
1836         key_end.objectid = base + offset + nstripes * increment;
1837         key_end.type = BTRFS_EXTENT_ITEM_KEY;
1838         key_end.offset = (u64)0;
1839         reada1 = btrfs_reada_add(root, &key_start, &key_end);
1840
1841         key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1842         key_start.type = BTRFS_EXTENT_CSUM_KEY;
1843         key_start.offset = logical;
1844         key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1845         key_end.type = BTRFS_EXTENT_CSUM_KEY;
1846         key_end.offset = base + offset + nstripes * increment;
1847         reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1848
1849         if (!IS_ERR(reada1))
1850                 btrfs_reada_wait(reada1);
1851         if (!IS_ERR(reada2))
1852                 btrfs_reada_wait(reada2);
1853
1854         mutex_lock(&fs_info->scrub_lock);
1855         while (atomic_read(&fs_info->scrub_pause_req)) {
1856                 mutex_unlock(&fs_info->scrub_lock);
1857                 wait_event(fs_info->scrub_pause_wait,
1858                    atomic_read(&fs_info->scrub_pause_req) == 0);
1859                 mutex_lock(&fs_info->scrub_lock);
1860         }
1861         atomic_dec(&fs_info->scrubs_paused);
1862         mutex_unlock(&fs_info->scrub_lock);
1863         wake_up(&fs_info->scrub_pause_wait);
1864
1865         /*
1866          * collect all data csums for the stripe to avoid seeking during
1867          * the scrub. This might currently (crc32) end up to be about 1MB
1868          */
1869         blk_start_plug(&plug);
1870
1871         /*
1872          * now find all extents for each stripe and scrub them
1873          */
1874         logical = base + offset;
1875         physical = map->stripes[num].physical;
1876         ret = 0;
1877         for (i = 0; i < nstripes; ++i) {
1878                 /*
1879                  * canceled?
1880                  */
1881                 if (atomic_read(&fs_info->scrub_cancel_req) ||
1882                     atomic_read(&sdev->cancel_req)) {
1883                         ret = -ECANCELED;
1884                         goto out;
1885                 }
1886                 /*
1887                  * check to see if we have to pause
1888                  */
1889                 if (atomic_read(&fs_info->scrub_pause_req)) {
1890                         /* push queued extents */
1891                         scrub_submit(sdev);
1892                         wait_event(sdev->list_wait,
1893                                    atomic_read(&sdev->in_flight) == 0);
1894                         atomic_inc(&fs_info->scrubs_paused);
1895                         wake_up(&fs_info->scrub_pause_wait);
1896                         mutex_lock(&fs_info->scrub_lock);
1897                         while (atomic_read(&fs_info->scrub_pause_req)) {
1898                                 mutex_unlock(&fs_info->scrub_lock);
1899                                 wait_event(fs_info->scrub_pause_wait,
1900                                    atomic_read(&fs_info->scrub_pause_req) == 0);
1901                                 mutex_lock(&fs_info->scrub_lock);
1902                         }
1903                         atomic_dec(&fs_info->scrubs_paused);
1904                         mutex_unlock(&fs_info->scrub_lock);
1905                         wake_up(&fs_info->scrub_pause_wait);
1906                 }
1907
1908                 ret = btrfs_lookup_csums_range(csum_root, logical,
1909                                                logical + map->stripe_len - 1,
1910                                                &sdev->csum_list, 1);
1911                 if (ret)
1912                         goto out;
1913
1914                 key.objectid = logical;
1915                 key.type = BTRFS_EXTENT_ITEM_KEY;
1916                 key.offset = (u64)0;
1917
1918                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1919                 if (ret < 0)
1920                         goto out;
1921                 if (ret > 0) {
1922                         ret = btrfs_previous_item(root, path, 0,
1923                                                   BTRFS_EXTENT_ITEM_KEY);
1924                         if (ret < 0)
1925                                 goto out;
1926                         if (ret > 0) {
1927                                 /* there's no smaller item, so stick with the
1928                                  * larger one */
1929                                 btrfs_release_path(path);
1930                                 ret = btrfs_search_slot(NULL, root, &key,
1931                                                         path, 0, 0);
1932                                 if (ret < 0)
1933                                         goto out;
1934                         }
1935                 }
1936
1937                 while (1) {
1938                         l = path->nodes[0];
1939                         slot = path->slots[0];
1940                         if (slot >= btrfs_header_nritems(l)) {
1941                                 ret = btrfs_next_leaf(root, path);
1942                                 if (ret == 0)
1943                                         continue;
1944                                 if (ret < 0)
1945                                         goto out;
1946
1947                                 break;
1948                         }
1949                         btrfs_item_key_to_cpu(l, &key, slot);
1950
1951                         if (key.objectid + key.offset <= logical)
1952                                 goto next;
1953
1954                         if (key.objectid >= logical + map->stripe_len)
1955                                 break;
1956
1957                         if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1958                                 goto next;
1959
1960                         extent = btrfs_item_ptr(l, slot,
1961                                                 struct btrfs_extent_item);
1962                         flags = btrfs_extent_flags(l, extent);
1963                         generation = btrfs_extent_generation(l, extent);
1964
1965                         if (key.objectid < logical &&
1966                             (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1967                                 printk(KERN_ERR
1968                                        "btrfs scrub: tree block %llu spanning "
1969                                        "stripes, ignored. logical=%llu\n",
1970                                        (unsigned long long)key.objectid,
1971                                        (unsigned long long)logical);
1972                                 goto next;
1973                         }
1974
1975                         /*
1976                          * trim extent to this stripe
1977                          */
1978                         if (key.objectid < logical) {
1979                                 key.offset -= logical - key.objectid;
1980                                 key.objectid = logical;
1981                         }
1982                         if (key.objectid + key.offset >
1983                             logical + map->stripe_len) {
1984                                 key.offset = logical + map->stripe_len -
1985                                              key.objectid;
1986                         }
1987
1988                         ret = scrub_extent(sdev, key.objectid, key.offset,
1989                                            key.objectid - logical + physical,
1990                                            flags, generation, mirror_num);
1991                         if (ret)
1992                                 goto out;
1993
1994 next:
1995                         path->slots[0]++;
1996                 }
1997                 btrfs_release_path(path);
1998                 logical += increment;
1999                 physical += map->stripe_len;
2000                 spin_lock(&sdev->stat_lock);
2001                 sdev->stat.last_physical = physical;
2002                 spin_unlock(&sdev->stat_lock);
2003         }
2004         /* push queued extents */
2005         scrub_submit(sdev);
2006
2007 out:
2008         blk_finish_plug(&plug);
2009         btrfs_free_path(path);
2010         return ret < 0 ? ret : 0;
2011 }
2012
2013 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2014         u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2015         u64 dev_offset)
2016 {
2017         struct btrfs_mapping_tree *map_tree =
2018                 &sdev->dev->dev_root->fs_info->mapping_tree;
2019         struct map_lookup *map;
2020         struct extent_map *em;
2021         int i;
2022         int ret = -EINVAL;
2023
2024         read_lock(&map_tree->map_tree.lock);
2025         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2026         read_unlock(&map_tree->map_tree.lock);
2027
2028         if (!em)
2029                 return -EINVAL;
2030
2031         map = (struct map_lookup *)em->bdev;
2032         if (em->start != chunk_offset)
2033                 goto out;
2034
2035         if (em->len < length)
2036                 goto out;
2037
2038         for (i = 0; i < map->num_stripes; ++i) {
2039                 if (map->stripes[i].dev == sdev->dev &&
2040                     map->stripes[i].physical == dev_offset) {
2041                         ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2042                         if (ret)
2043                                 goto out;
2044                 }
2045         }
2046 out:
2047         free_extent_map(em);
2048
2049         return ret;
2050 }
2051
2052 static noinline_for_stack
2053 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2054 {
2055         struct btrfs_dev_extent *dev_extent = NULL;
2056         struct btrfs_path *path;
2057         struct btrfs_root *root = sdev->dev->dev_root;
2058         struct btrfs_fs_info *fs_info = root->fs_info;
2059         u64 length;
2060         u64 chunk_tree;
2061         u64 chunk_objectid;
2062         u64 chunk_offset;
2063         int ret;
2064         int slot;
2065         struct extent_buffer *l;
2066         struct btrfs_key key;
2067         struct btrfs_key found_key;
2068         struct btrfs_block_group_cache *cache;
2069
2070         path = btrfs_alloc_path();
2071         if (!path)
2072                 return -ENOMEM;
2073
2074         path->reada = 2;
2075         path->search_commit_root = 1;
2076         path->skip_locking = 1;
2077
2078         key.objectid = sdev->dev->devid;
2079         key.offset = 0ull;
2080         key.type = BTRFS_DEV_EXTENT_KEY;
2081
2082
2083         while (1) {
2084                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2085                 if (ret < 0)
2086                         break;
2087                 if (ret > 0) {
2088                         if (path->slots[0] >=
2089                             btrfs_header_nritems(path->nodes[0])) {
2090                                 ret = btrfs_next_leaf(root, path);
2091                                 if (ret)
2092                                         break;
2093                         }
2094                 }
2095
2096                 l = path->nodes[0];
2097                 slot = path->slots[0];
2098
2099                 btrfs_item_key_to_cpu(l, &found_key, slot);
2100
2101                 if (found_key.objectid != sdev->dev->devid)
2102                         break;
2103
2104                 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2105                         break;
2106
2107                 if (found_key.offset >= end)
2108                         break;
2109
2110                 if (found_key.offset < key.offset)
2111                         break;
2112
2113                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2114                 length = btrfs_dev_extent_length(l, dev_extent);
2115
2116                 if (found_key.offset + length <= start) {
2117                         key.offset = found_key.offset + length;
2118                         btrfs_release_path(path);
2119                         continue;
2120                 }
2121
2122                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2123                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2124                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2125
2126                 /*
2127                  * get a reference on the corresponding block group to prevent
2128                  * the chunk from going away while we scrub it
2129                  */
2130                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2131                 if (!cache) {
2132                         ret = -ENOENT;
2133                         break;
2134                 }
2135                 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2136                                   chunk_offset, length, found_key.offset);
2137                 btrfs_put_block_group(cache);
2138                 if (ret)
2139                         break;
2140
2141                 key.offset = found_key.offset + length;
2142                 btrfs_release_path(path);
2143         }
2144
2145         btrfs_free_path(path);
2146
2147         /*
2148          * ret can still be 1 from search_slot or next_leaf,
2149          * that's not an error
2150          */
2151         return ret < 0 ? ret : 0;
2152 }
2153
2154 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2155 {
2156         int     i;
2157         u64     bytenr;
2158         u64     gen;
2159         int     ret;
2160         struct btrfs_device *device = sdev->dev;
2161         struct btrfs_root *root = device->dev_root;
2162
2163         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2164                 return -EIO;
2165
2166         gen = root->fs_info->last_trans_committed;
2167
2168         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2169                 bytenr = btrfs_sb_offset(i);
2170                 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2171                         break;
2172
2173                 ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2174                                      BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2175                 if (ret)
2176                         return ret;
2177         }
2178         wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2179
2180         return 0;
2181 }
2182
2183 /*
2184  * get a reference count on fs_info->scrub_workers. start worker if necessary
2185  */
2186 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2187 {
2188         struct btrfs_fs_info *fs_info = root->fs_info;
2189         int ret = 0;
2190
2191         mutex_lock(&fs_info->scrub_lock);
2192         if (fs_info->scrub_workers_refcnt == 0) {
2193                 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2194                            fs_info->thread_pool_size, &fs_info->generic_worker);
2195                 fs_info->scrub_workers.idle_thresh = 4;
2196                 ret = btrfs_start_workers(&fs_info->scrub_workers);
2197                 if (ret)
2198                         goto out;
2199         }
2200         ++fs_info->scrub_workers_refcnt;
2201 out:
2202         mutex_unlock(&fs_info->scrub_lock);
2203
2204         return ret;
2205 }
2206
2207 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2208 {
2209         struct btrfs_fs_info *fs_info = root->fs_info;
2210
2211         mutex_lock(&fs_info->scrub_lock);
2212         if (--fs_info->scrub_workers_refcnt == 0)
2213                 btrfs_stop_workers(&fs_info->scrub_workers);
2214         WARN_ON(fs_info->scrub_workers_refcnt < 0);
2215         mutex_unlock(&fs_info->scrub_lock);
2216 }
2217
2218
2219 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2220                     struct btrfs_scrub_progress *progress, int readonly)
2221 {
2222         struct scrub_dev *sdev;
2223         struct btrfs_fs_info *fs_info = root->fs_info;
2224         int ret;
2225         struct btrfs_device *dev;
2226
2227         if (btrfs_fs_closing(root->fs_info))
2228                 return -EINVAL;
2229
2230         /*
2231          * check some assumptions
2232          */
2233         if (root->nodesize != root->leafsize) {
2234                 printk(KERN_ERR
2235                        "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2236                        root->nodesize, root->leafsize);
2237                 return -EINVAL;
2238         }
2239
2240         if (root->nodesize > BTRFS_STRIPE_LEN) {
2241                 /*
2242                  * in this case scrub is unable to calculate the checksum
2243                  * the way scrub is implemented. Do not handle this
2244                  * situation at all because it won't ever happen.
2245                  */
2246                 printk(KERN_ERR
2247                        "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2248                        root->nodesize, BTRFS_STRIPE_LEN);
2249                 return -EINVAL;
2250         }
2251
2252         if (root->sectorsize != PAGE_SIZE) {
2253                 /* not supported for data w/o checksums */
2254                 printk(KERN_ERR
2255                        "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2256                        root->sectorsize, (unsigned long long)PAGE_SIZE);
2257                 return -EINVAL;
2258         }
2259
2260         ret = scrub_workers_get(root);
2261         if (ret)
2262                 return ret;
2263
2264         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2265         dev = btrfs_find_device(root, devid, NULL, NULL);
2266         if (!dev || dev->missing) {
2267                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2268                 scrub_workers_put(root);
2269                 return -ENODEV;
2270         }
2271         mutex_lock(&fs_info->scrub_lock);
2272
2273         if (!dev->in_fs_metadata) {
2274                 mutex_unlock(&fs_info->scrub_lock);
2275                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2276                 scrub_workers_put(root);
2277                 return -ENODEV;
2278         }
2279
2280         if (dev->scrub_device) {
2281                 mutex_unlock(&fs_info->scrub_lock);
2282                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283                 scrub_workers_put(root);
2284                 return -EINPROGRESS;
2285         }
2286         sdev = scrub_setup_dev(dev);
2287         if (IS_ERR(sdev)) {
2288                 mutex_unlock(&fs_info->scrub_lock);
2289                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2290                 scrub_workers_put(root);
2291                 return PTR_ERR(sdev);
2292         }
2293         sdev->readonly = readonly;
2294         dev->scrub_device = sdev;
2295
2296         atomic_inc(&fs_info->scrubs_running);
2297         mutex_unlock(&fs_info->scrub_lock);
2298         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2299
2300         down_read(&fs_info->scrub_super_lock);
2301         ret = scrub_supers(sdev);
2302         up_read(&fs_info->scrub_super_lock);
2303
2304         if (!ret)
2305                 ret = scrub_enumerate_chunks(sdev, start, end);
2306
2307         wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2308         atomic_dec(&fs_info->scrubs_running);
2309         wake_up(&fs_info->scrub_pause_wait);
2310
2311         wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2312
2313         if (progress)
2314                 memcpy(progress, &sdev->stat, sizeof(*progress));
2315
2316         mutex_lock(&fs_info->scrub_lock);
2317         dev->scrub_device = NULL;
2318         mutex_unlock(&fs_info->scrub_lock);
2319
2320         scrub_free_dev(sdev);
2321         scrub_workers_put(root);
2322
2323         return ret;
2324 }
2325
2326 void btrfs_scrub_pause(struct btrfs_root *root)
2327 {
2328         struct btrfs_fs_info *fs_info = root->fs_info;
2329
2330         mutex_lock(&fs_info->scrub_lock);
2331         atomic_inc(&fs_info->scrub_pause_req);
2332         while (atomic_read(&fs_info->scrubs_paused) !=
2333                atomic_read(&fs_info->scrubs_running)) {
2334                 mutex_unlock(&fs_info->scrub_lock);
2335                 wait_event(fs_info->scrub_pause_wait,
2336                            atomic_read(&fs_info->scrubs_paused) ==
2337                            atomic_read(&fs_info->scrubs_running));
2338                 mutex_lock(&fs_info->scrub_lock);
2339         }
2340         mutex_unlock(&fs_info->scrub_lock);
2341 }
2342
2343 void btrfs_scrub_continue(struct btrfs_root *root)
2344 {
2345         struct btrfs_fs_info *fs_info = root->fs_info;
2346
2347         atomic_dec(&fs_info->scrub_pause_req);
2348         wake_up(&fs_info->scrub_pause_wait);
2349 }
2350
2351 void btrfs_scrub_pause_super(struct btrfs_root *root)
2352 {
2353         down_write(&root->fs_info->scrub_super_lock);
2354 }
2355
2356 void btrfs_scrub_continue_super(struct btrfs_root *root)
2357 {
2358         up_write(&root->fs_info->scrub_super_lock);
2359 }
2360
2361 int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2362 {
2363
2364         mutex_lock(&fs_info->scrub_lock);
2365         if (!atomic_read(&fs_info->scrubs_running)) {
2366                 mutex_unlock(&fs_info->scrub_lock);
2367                 return -ENOTCONN;
2368         }
2369
2370         atomic_inc(&fs_info->scrub_cancel_req);
2371         while (atomic_read(&fs_info->scrubs_running)) {
2372                 mutex_unlock(&fs_info->scrub_lock);
2373                 wait_event(fs_info->scrub_pause_wait,
2374                            atomic_read(&fs_info->scrubs_running) == 0);
2375                 mutex_lock(&fs_info->scrub_lock);
2376         }
2377         atomic_dec(&fs_info->scrub_cancel_req);
2378         mutex_unlock(&fs_info->scrub_lock);
2379
2380         return 0;
2381 }
2382
2383 int btrfs_scrub_cancel(struct btrfs_root *root)
2384 {
2385         return __btrfs_scrub_cancel(root->fs_info);
2386 }
2387
2388 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2389 {
2390         struct btrfs_fs_info *fs_info = root->fs_info;
2391         struct scrub_dev *sdev;
2392
2393         mutex_lock(&fs_info->scrub_lock);
2394         sdev = dev->scrub_device;
2395         if (!sdev) {
2396                 mutex_unlock(&fs_info->scrub_lock);
2397                 return -ENOTCONN;
2398         }
2399         atomic_inc(&sdev->cancel_req);
2400         while (dev->scrub_device) {
2401                 mutex_unlock(&fs_info->scrub_lock);
2402                 wait_event(fs_info->scrub_pause_wait,
2403                            dev->scrub_device == NULL);
2404                 mutex_lock(&fs_info->scrub_lock);
2405         }
2406         mutex_unlock(&fs_info->scrub_lock);
2407
2408         return 0;
2409 }
2410
2411 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2412 {
2413         struct btrfs_fs_info *fs_info = root->fs_info;
2414         struct btrfs_device *dev;
2415         int ret;
2416
2417         /*
2418          * we have to hold the device_list_mutex here so the device
2419          * does not go away in cancel_dev. FIXME: find a better solution
2420          */
2421         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2422         dev = btrfs_find_device(root, devid, NULL, NULL);
2423         if (!dev) {
2424                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2425                 return -ENODEV;
2426         }
2427         ret = btrfs_scrub_cancel_dev(root, dev);
2428         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2429
2430         return ret;
2431 }
2432
2433 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2434                          struct btrfs_scrub_progress *progress)
2435 {
2436         struct btrfs_device *dev;
2437         struct scrub_dev *sdev = NULL;
2438
2439         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2440         dev = btrfs_find_device(root, devid, NULL, NULL);
2441         if (dev)
2442                 sdev = dev->scrub_device;
2443         if (sdev)
2444                 memcpy(progress, &sdev->stat, sizeof(*progress));
2445         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2446
2447         return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2448 }