e7144c48ed79bc20a33e3d3753a7ba8b0ec08e86
[cascardo/linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35         WARN_ON(transaction->use_count == 0);
36         transaction->use_count--;
37         if (transaction->use_count == 0) {
38                 list_del_init(&transaction->list);
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55         struct btrfs_transaction *cur_trans;
56         cur_trans = root->fs_info->running_transaction;
57         if (!cur_trans) {
58                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59                                              GFP_NOFS);
60                 BUG_ON(!cur_trans);
61                 root->fs_info->generation++;
62                 cur_trans->num_writers = 1;
63                 cur_trans->num_joined = 0;
64                 cur_trans->transid = root->fs_info->generation;
65                 init_waitqueue_head(&cur_trans->writer_wait);
66                 init_waitqueue_head(&cur_trans->commit_wait);
67                 cur_trans->in_commit = 0;
68                 cur_trans->blocked = 0;
69                 cur_trans->use_count = 1;
70                 cur_trans->commit_done = 0;
71                 cur_trans->start_time = get_seconds();
72
73                 cur_trans->delayed_refs.root = RB_ROOT;
74                 cur_trans->delayed_refs.num_entries = 0;
75                 cur_trans->delayed_refs.num_heads_ready = 0;
76                 cur_trans->delayed_refs.num_heads = 0;
77                 cur_trans->delayed_refs.flushing = 0;
78                 cur_trans->delayed_refs.run_delayed_start = 0;
79                 spin_lock_init(&cur_trans->delayed_refs.lock);
80
81                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83                 extent_io_tree_init(&cur_trans->dirty_pages,
84                                      root->fs_info->btree_inode->i_mapping,
85                                      GFP_NOFS);
86                 spin_lock(&root->fs_info->new_trans_lock);
87                 root->fs_info->running_transaction = cur_trans;
88                 spin_unlock(&root->fs_info->new_trans_lock);
89         } else {
90                 cur_trans->num_writers++;
91                 cur_trans->num_joined++;
92         }
93
94         return 0;
95 }
96
97 /*
98  * this does all the record keeping required to make sure that a reference
99  * counted root is properly recorded in a given transaction.  This is required
100  * to make sure the old root from before we joined the transaction is deleted
101  * when the transaction commits
102  */
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104                                          struct btrfs_root *root)
105 {
106         if (root->ref_cows && root->last_trans < trans->transid) {
107                 WARN_ON(root == root->fs_info->extent_root);
108                 WARN_ON(root->commit_root != root->node);
109
110                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111                            (unsigned long)root->root_key.objectid,
112                            BTRFS_ROOT_TRANS_TAG);
113                 root->last_trans = trans->transid;
114                 btrfs_init_reloc_root(trans, root);
115         }
116         return 0;
117 }
118
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120                                struct btrfs_root *root)
121 {
122         if (!root->ref_cows)
123                 return 0;
124
125         mutex_lock(&root->fs_info->trans_mutex);
126         if (root->last_trans == trans->transid) {
127                 mutex_unlock(&root->fs_info->trans_mutex);
128                 return 0;
129         }
130
131         record_root_in_trans(trans, root);
132         mutex_unlock(&root->fs_info->trans_mutex);
133         return 0;
134 }
135
136 /* wait for commit against the current transaction to become unblocked
137  * when this is done, it is safe to start a new transaction, but the current
138  * transaction might not be fully on disk.
139  */
140 static void wait_current_trans(struct btrfs_root *root)
141 {
142         struct btrfs_transaction *cur_trans;
143
144         cur_trans = root->fs_info->running_transaction;
145         if (cur_trans && cur_trans->blocked) {
146                 DEFINE_WAIT(wait);
147                 cur_trans->use_count++;
148                 while (1) {
149                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150                                         TASK_UNINTERRUPTIBLE);
151                         if (!cur_trans->blocked)
152                                 break;
153                         mutex_unlock(&root->fs_info->trans_mutex);
154                         schedule();
155                         mutex_lock(&root->fs_info->trans_mutex);
156                 }
157                 finish_wait(&root->fs_info->transaction_wait, &wait);
158                 put_transaction(cur_trans);
159         }
160 }
161
162 enum btrfs_trans_type {
163         TRANS_START,
164         TRANS_JOIN,
165         TRANS_USERSPACE,
166         TRANS_JOIN_NOLOCK,
167 };
168
169 static int may_wait_transaction(struct btrfs_root *root, int type)
170 {
171         if (!root->fs_info->log_root_recovering &&
172             ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
173              type == TRANS_USERSPACE))
174                 return 1;
175         return 0;
176 }
177
178 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
179                                                     u64 num_items, int type)
180 {
181         struct btrfs_trans_handle *h;
182         struct btrfs_transaction *cur_trans;
183         int retries = 0;
184         int ret;
185 again:
186         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
187         if (!h)
188                 return ERR_PTR(-ENOMEM);
189
190         if (type != TRANS_JOIN_NOLOCK)
191                 mutex_lock(&root->fs_info->trans_mutex);
192         if (may_wait_transaction(root, type))
193                 wait_current_trans(root);
194
195         ret = join_transaction(root);
196         BUG_ON(ret);
197
198         cur_trans = root->fs_info->running_transaction;
199         cur_trans->use_count++;
200         if (type != TRANS_JOIN_NOLOCK)
201                 mutex_unlock(&root->fs_info->trans_mutex);
202
203         h->transid = cur_trans->transid;
204         h->transaction = cur_trans;
205         h->blocks_used = 0;
206         h->block_group = 0;
207         h->bytes_reserved = 0;
208         h->delayed_ref_updates = 0;
209         h->block_rsv = NULL;
210
211         smp_mb();
212         if (cur_trans->blocked && may_wait_transaction(root, type)) {
213                 btrfs_commit_transaction(h, root);
214                 goto again;
215         }
216
217         if (num_items > 0) {
218                 ret = btrfs_trans_reserve_metadata(h, root, num_items,
219                                                    &retries);
220                 if (ret == -EAGAIN) {
221                         btrfs_commit_transaction(h, root);
222                         goto again;
223                 }
224                 if (ret < 0) {
225                         btrfs_end_transaction(h, root);
226                         return ERR_PTR(ret);
227                 }
228         }
229
230         if (type != TRANS_JOIN_NOLOCK)
231                 mutex_lock(&root->fs_info->trans_mutex);
232         record_root_in_trans(h, root);
233         if (type != TRANS_JOIN_NOLOCK)
234                 mutex_unlock(&root->fs_info->trans_mutex);
235
236         if (!current->journal_info && type != TRANS_USERSPACE)
237                 current->journal_info = h;
238         return h;
239 }
240
241 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
242                                                    int num_items)
243 {
244         return start_transaction(root, num_items, TRANS_START);
245 }
246 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
247                                                    int num_blocks)
248 {
249         return start_transaction(root, 0, TRANS_JOIN);
250 }
251
252 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
253                                                           int num_blocks)
254 {
255         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
256 }
257
258 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
259                                                          int num_blocks)
260 {
261         return start_transaction(r, 0, TRANS_USERSPACE);
262 }
263
264 /* wait for a transaction commit to be fully complete */
265 static noinline int wait_for_commit(struct btrfs_root *root,
266                                     struct btrfs_transaction *commit)
267 {
268         DEFINE_WAIT(wait);
269         mutex_lock(&root->fs_info->trans_mutex);
270         while (!commit->commit_done) {
271                 prepare_to_wait(&commit->commit_wait, &wait,
272                                 TASK_UNINTERRUPTIBLE);
273                 if (commit->commit_done)
274                         break;
275                 mutex_unlock(&root->fs_info->trans_mutex);
276                 schedule();
277                 mutex_lock(&root->fs_info->trans_mutex);
278         }
279         mutex_unlock(&root->fs_info->trans_mutex);
280         finish_wait(&commit->commit_wait, &wait);
281         return 0;
282 }
283
284 #if 0
285 /*
286  * rate limit against the drop_snapshot code.  This helps to slow down new
287  * operations if the drop_snapshot code isn't able to keep up.
288  */
289 static void throttle_on_drops(struct btrfs_root *root)
290 {
291         struct btrfs_fs_info *info = root->fs_info;
292         int harder_count = 0;
293
294 harder:
295         if (atomic_read(&info->throttles)) {
296                 DEFINE_WAIT(wait);
297                 int thr;
298                 thr = atomic_read(&info->throttle_gen);
299
300                 do {
301                         prepare_to_wait(&info->transaction_throttle,
302                                         &wait, TASK_UNINTERRUPTIBLE);
303                         if (!atomic_read(&info->throttles)) {
304                                 finish_wait(&info->transaction_throttle, &wait);
305                                 break;
306                         }
307                         schedule();
308                         finish_wait(&info->transaction_throttle, &wait);
309                 } while (thr == atomic_read(&info->throttle_gen));
310                 harder_count++;
311
312                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
313                     harder_count < 2)
314                         goto harder;
315
316                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
317                     harder_count < 10)
318                         goto harder;
319
320                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
321                     harder_count < 20)
322                         goto harder;
323         }
324 }
325 #endif
326
327 void btrfs_throttle(struct btrfs_root *root)
328 {
329         mutex_lock(&root->fs_info->trans_mutex);
330         if (!root->fs_info->open_ioctl_trans)
331                 wait_current_trans(root);
332         mutex_unlock(&root->fs_info->trans_mutex);
333 }
334
335 static int should_end_transaction(struct btrfs_trans_handle *trans,
336                                   struct btrfs_root *root)
337 {
338         int ret;
339         ret = btrfs_block_rsv_check(trans, root,
340                                     &root->fs_info->global_block_rsv, 0, 5);
341         return ret ? 1 : 0;
342 }
343
344 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
345                                  struct btrfs_root *root)
346 {
347         struct btrfs_transaction *cur_trans = trans->transaction;
348         int updates;
349
350         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
351                 return 1;
352
353         updates = trans->delayed_ref_updates;
354         trans->delayed_ref_updates = 0;
355         if (updates)
356                 btrfs_run_delayed_refs(trans, root, updates);
357
358         return should_end_transaction(trans, root);
359 }
360
361 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
362                           struct btrfs_root *root, int throttle, int lock)
363 {
364         struct btrfs_transaction *cur_trans = trans->transaction;
365         struct btrfs_fs_info *info = root->fs_info;
366         int count = 0;
367
368         while (count < 4) {
369                 unsigned long cur = trans->delayed_ref_updates;
370                 trans->delayed_ref_updates = 0;
371                 if (cur &&
372                     trans->transaction->delayed_refs.num_heads_ready > 64) {
373                         trans->delayed_ref_updates = 0;
374
375                         /*
376                          * do a full flush if the transaction is trying
377                          * to close
378                          */
379                         if (trans->transaction->delayed_refs.flushing)
380                                 cur = 0;
381                         btrfs_run_delayed_refs(trans, root, cur);
382                 } else {
383                         break;
384                 }
385                 count++;
386         }
387
388         btrfs_trans_release_metadata(trans, root);
389
390         if (lock && !root->fs_info->open_ioctl_trans &&
391             should_end_transaction(trans, root))
392                 trans->transaction->blocked = 1;
393
394         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
395                 if (throttle)
396                         return btrfs_commit_transaction(trans, root);
397                 else
398                         wake_up_process(info->transaction_kthread);
399         }
400
401         if (lock)
402                 mutex_lock(&info->trans_mutex);
403         WARN_ON(cur_trans != info->running_transaction);
404         WARN_ON(cur_trans->num_writers < 1);
405         cur_trans->num_writers--;
406
407         if (waitqueue_active(&cur_trans->writer_wait))
408                 wake_up(&cur_trans->writer_wait);
409         put_transaction(cur_trans);
410         if (lock)
411                 mutex_unlock(&info->trans_mutex);
412
413         if (current->journal_info == trans)
414                 current->journal_info = NULL;
415         memset(trans, 0, sizeof(*trans));
416         kmem_cache_free(btrfs_trans_handle_cachep, trans);
417
418         if (throttle)
419                 btrfs_run_delayed_iputs(root);
420
421         return 0;
422 }
423
424 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
425                           struct btrfs_root *root)
426 {
427         return __btrfs_end_transaction(trans, root, 0, 1);
428 }
429
430 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
431                                    struct btrfs_root *root)
432 {
433         return __btrfs_end_transaction(trans, root, 1, 1);
434 }
435
436 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
437                                  struct btrfs_root *root)
438 {
439         return __btrfs_end_transaction(trans, root, 0, 0);
440 }
441
442 /*
443  * when btree blocks are allocated, they have some corresponding bits set for
444  * them in one of two extent_io trees.  This is used to make sure all of
445  * those extents are sent to disk but does not wait on them
446  */
447 int btrfs_write_marked_extents(struct btrfs_root *root,
448                                struct extent_io_tree *dirty_pages, int mark)
449 {
450         int ret;
451         int err = 0;
452         int werr = 0;
453         struct page *page;
454         struct inode *btree_inode = root->fs_info->btree_inode;
455         u64 start = 0;
456         u64 end;
457         unsigned long index;
458
459         while (1) {
460                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
461                                             mark);
462                 if (ret)
463                         break;
464                 while (start <= end) {
465                         cond_resched();
466
467                         index = start >> PAGE_CACHE_SHIFT;
468                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
469                         page = find_get_page(btree_inode->i_mapping, index);
470                         if (!page)
471                                 continue;
472
473                         btree_lock_page_hook(page);
474                         if (!page->mapping) {
475                                 unlock_page(page);
476                                 page_cache_release(page);
477                                 continue;
478                         }
479
480                         if (PageWriteback(page)) {
481                                 if (PageDirty(page))
482                                         wait_on_page_writeback(page);
483                                 else {
484                                         unlock_page(page);
485                                         page_cache_release(page);
486                                         continue;
487                                 }
488                         }
489                         err = write_one_page(page, 0);
490                         if (err)
491                                 werr = err;
492                         page_cache_release(page);
493                 }
494         }
495         if (err)
496                 werr = err;
497         return werr;
498 }
499
500 /*
501  * when btree blocks are allocated, they have some corresponding bits set for
502  * them in one of two extent_io trees.  This is used to make sure all of
503  * those extents are on disk for transaction or log commit.  We wait
504  * on all the pages and clear them from the dirty pages state tree
505  */
506 int btrfs_wait_marked_extents(struct btrfs_root *root,
507                               struct extent_io_tree *dirty_pages, int mark)
508 {
509         int ret;
510         int err = 0;
511         int werr = 0;
512         struct page *page;
513         struct inode *btree_inode = root->fs_info->btree_inode;
514         u64 start = 0;
515         u64 end;
516         unsigned long index;
517
518         while (1) {
519                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
520                                             mark);
521                 if (ret)
522                         break;
523
524                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
525                 while (start <= end) {
526                         index = start >> PAGE_CACHE_SHIFT;
527                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
528                         page = find_get_page(btree_inode->i_mapping, index);
529                         if (!page)
530                                 continue;
531                         if (PageDirty(page)) {
532                                 btree_lock_page_hook(page);
533                                 wait_on_page_writeback(page);
534                                 err = write_one_page(page, 0);
535                                 if (err)
536                                         werr = err;
537                         }
538                         wait_on_page_writeback(page);
539                         page_cache_release(page);
540                         cond_resched();
541                 }
542         }
543         if (err)
544                 werr = err;
545         return werr;
546 }
547
548 /*
549  * when btree blocks are allocated, they have some corresponding bits set for
550  * them in one of two extent_io trees.  This is used to make sure all of
551  * those extents are on disk for transaction or log commit
552  */
553 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
554                                 struct extent_io_tree *dirty_pages, int mark)
555 {
556         int ret;
557         int ret2;
558
559         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
560         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
561         return ret || ret2;
562 }
563
564 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
565                                      struct btrfs_root *root)
566 {
567         if (!trans || !trans->transaction) {
568                 struct inode *btree_inode;
569                 btree_inode = root->fs_info->btree_inode;
570                 return filemap_write_and_wait(btree_inode->i_mapping);
571         }
572         return btrfs_write_and_wait_marked_extents(root,
573                                            &trans->transaction->dirty_pages,
574                                            EXTENT_DIRTY);
575 }
576
577 /*
578  * this is used to update the root pointer in the tree of tree roots.
579  *
580  * But, in the case of the extent allocation tree, updating the root
581  * pointer may allocate blocks which may change the root of the extent
582  * allocation tree.
583  *
584  * So, this loops and repeats and makes sure the cowonly root didn't
585  * change while the root pointer was being updated in the metadata.
586  */
587 static int update_cowonly_root(struct btrfs_trans_handle *trans,
588                                struct btrfs_root *root)
589 {
590         int ret;
591         u64 old_root_bytenr;
592         u64 old_root_used;
593         struct btrfs_root *tree_root = root->fs_info->tree_root;
594
595         old_root_used = btrfs_root_used(&root->root_item);
596         btrfs_write_dirty_block_groups(trans, root);
597
598         while (1) {
599                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
600                 if (old_root_bytenr == root->node->start &&
601                     old_root_used == btrfs_root_used(&root->root_item))
602                         break;
603
604                 btrfs_set_root_node(&root->root_item, root->node);
605                 ret = btrfs_update_root(trans, tree_root,
606                                         &root->root_key,
607                                         &root->root_item);
608                 BUG_ON(ret);
609
610                 old_root_used = btrfs_root_used(&root->root_item);
611                 ret = btrfs_write_dirty_block_groups(trans, root);
612                 BUG_ON(ret);
613         }
614
615         if (root != root->fs_info->extent_root)
616                 switch_commit_root(root);
617
618         return 0;
619 }
620
621 /*
622  * update all the cowonly tree roots on disk
623  */
624 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
625                                          struct btrfs_root *root)
626 {
627         struct btrfs_fs_info *fs_info = root->fs_info;
628         struct list_head *next;
629         struct extent_buffer *eb;
630         int ret;
631
632         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
633         BUG_ON(ret);
634
635         eb = btrfs_lock_root_node(fs_info->tree_root);
636         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
637         btrfs_tree_unlock(eb);
638         free_extent_buffer(eb);
639
640         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
641         BUG_ON(ret);
642
643         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
644                 next = fs_info->dirty_cowonly_roots.next;
645                 list_del_init(next);
646                 root = list_entry(next, struct btrfs_root, dirty_list);
647
648                 update_cowonly_root(trans, root);
649         }
650
651         down_write(&fs_info->extent_commit_sem);
652         switch_commit_root(fs_info->extent_root);
653         up_write(&fs_info->extent_commit_sem);
654
655         return 0;
656 }
657
658 /*
659  * dead roots are old snapshots that need to be deleted.  This allocates
660  * a dirty root struct and adds it into the list of dead roots that need to
661  * be deleted
662  */
663 int btrfs_add_dead_root(struct btrfs_root *root)
664 {
665         mutex_lock(&root->fs_info->trans_mutex);
666         list_add(&root->root_list, &root->fs_info->dead_roots);
667         mutex_unlock(&root->fs_info->trans_mutex);
668         return 0;
669 }
670
671 /*
672  * update all the cowonly tree roots on disk
673  */
674 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
675                                     struct btrfs_root *root)
676 {
677         struct btrfs_root *gang[8];
678         struct btrfs_fs_info *fs_info = root->fs_info;
679         int i;
680         int ret;
681         int err = 0;
682
683         while (1) {
684                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
685                                                  (void **)gang, 0,
686                                                  ARRAY_SIZE(gang),
687                                                  BTRFS_ROOT_TRANS_TAG);
688                 if (ret == 0)
689                         break;
690                 for (i = 0; i < ret; i++) {
691                         root = gang[i];
692                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
693                                         (unsigned long)root->root_key.objectid,
694                                         BTRFS_ROOT_TRANS_TAG);
695
696                         btrfs_free_log(trans, root);
697                         btrfs_update_reloc_root(trans, root);
698                         btrfs_orphan_commit_root(trans, root);
699
700                         if (root->commit_root != root->node) {
701                                 switch_commit_root(root);
702                                 btrfs_set_root_node(&root->root_item,
703                                                     root->node);
704                         }
705
706                         err = btrfs_update_root(trans, fs_info->tree_root,
707                                                 &root->root_key,
708                                                 &root->root_item);
709                         if (err)
710                                 break;
711                 }
712         }
713         return err;
714 }
715
716 /*
717  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
718  * otherwise every leaf in the btree is read and defragged.
719  */
720 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
721 {
722         struct btrfs_fs_info *info = root->fs_info;
723         struct btrfs_trans_handle *trans;
724         int ret;
725         unsigned long nr;
726
727         if (xchg(&root->defrag_running, 1))
728                 return 0;
729
730         while (1) {
731                 trans = btrfs_start_transaction(root, 0);
732                 if (IS_ERR(trans))
733                         return PTR_ERR(trans);
734
735                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
736
737                 nr = trans->blocks_used;
738                 btrfs_end_transaction(trans, root);
739                 btrfs_btree_balance_dirty(info->tree_root, nr);
740                 cond_resched();
741
742                 if (root->fs_info->closing || ret != -EAGAIN)
743                         break;
744         }
745         root->defrag_running = 0;
746         return ret;
747 }
748
749 #if 0
750 /*
751  * when dropping snapshots, we generate a ton of delayed refs, and it makes
752  * sense not to join the transaction while it is trying to flush the current
753  * queue of delayed refs out.
754  *
755  * This is used by the drop snapshot code only
756  */
757 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
758 {
759         DEFINE_WAIT(wait);
760
761         mutex_lock(&info->trans_mutex);
762         while (info->running_transaction &&
763                info->running_transaction->delayed_refs.flushing) {
764                 prepare_to_wait(&info->transaction_wait, &wait,
765                                 TASK_UNINTERRUPTIBLE);
766                 mutex_unlock(&info->trans_mutex);
767
768                 schedule();
769
770                 mutex_lock(&info->trans_mutex);
771                 finish_wait(&info->transaction_wait, &wait);
772         }
773         mutex_unlock(&info->trans_mutex);
774         return 0;
775 }
776
777 /*
778  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
779  * all of them
780  */
781 int btrfs_drop_dead_root(struct btrfs_root *root)
782 {
783         struct btrfs_trans_handle *trans;
784         struct btrfs_root *tree_root = root->fs_info->tree_root;
785         unsigned long nr;
786         int ret;
787
788         while (1) {
789                 /*
790                  * we don't want to jump in and create a bunch of
791                  * delayed refs if the transaction is starting to close
792                  */
793                 wait_transaction_pre_flush(tree_root->fs_info);
794                 trans = btrfs_start_transaction(tree_root, 1);
795
796                 /*
797                  * we've joined a transaction, make sure it isn't
798                  * closing right now
799                  */
800                 if (trans->transaction->delayed_refs.flushing) {
801                         btrfs_end_transaction(trans, tree_root);
802                         continue;
803                 }
804
805                 ret = btrfs_drop_snapshot(trans, root);
806                 if (ret != -EAGAIN)
807                         break;
808
809                 ret = btrfs_update_root(trans, tree_root,
810                                         &root->root_key,
811                                         &root->root_item);
812                 if (ret)
813                         break;
814
815                 nr = trans->blocks_used;
816                 ret = btrfs_end_transaction(trans, tree_root);
817                 BUG_ON(ret);
818
819                 btrfs_btree_balance_dirty(tree_root, nr);
820                 cond_resched();
821         }
822         BUG_ON(ret);
823
824         ret = btrfs_del_root(trans, tree_root, &root->root_key);
825         BUG_ON(ret);
826
827         nr = trans->blocks_used;
828         ret = btrfs_end_transaction(trans, tree_root);
829         BUG_ON(ret);
830
831         free_extent_buffer(root->node);
832         free_extent_buffer(root->commit_root);
833         kfree(root);
834
835         btrfs_btree_balance_dirty(tree_root, nr);
836         return ret;
837 }
838 #endif
839
840 /*
841  * new snapshots need to be created at a very specific time in the
842  * transaction commit.  This does the actual creation
843  */
844 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
845                                    struct btrfs_fs_info *fs_info,
846                                    struct btrfs_pending_snapshot *pending)
847 {
848         struct btrfs_key key;
849         struct btrfs_root_item *new_root_item;
850         struct btrfs_root *tree_root = fs_info->tree_root;
851         struct btrfs_root *root = pending->root;
852         struct btrfs_root *parent_root;
853         struct inode *parent_inode;
854         struct dentry *dentry;
855         struct extent_buffer *tmp;
856         struct extent_buffer *old;
857         int ret;
858         int retries = 0;
859         u64 to_reserve = 0;
860         u64 index = 0;
861         u64 objectid;
862
863         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
864         if (!new_root_item) {
865                 pending->error = -ENOMEM;
866                 goto fail;
867         }
868
869         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
870         if (ret) {
871                 pending->error = ret;
872                 goto fail;
873         }
874
875         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
876         btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
877
878         if (to_reserve > 0) {
879                 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
880                                           to_reserve, &retries);
881                 if (ret) {
882                         pending->error = ret;
883                         goto fail;
884                 }
885         }
886
887         key.objectid = objectid;
888         key.offset = (u64)-1;
889         key.type = BTRFS_ROOT_ITEM_KEY;
890
891         trans->block_rsv = &pending->block_rsv;
892
893         dentry = pending->dentry;
894         parent_inode = dentry->d_parent->d_inode;
895         parent_root = BTRFS_I(parent_inode)->root;
896         record_root_in_trans(trans, parent_root);
897
898         /*
899          * insert the directory item
900          */
901         ret = btrfs_set_inode_index(parent_inode, &index);
902         BUG_ON(ret);
903         ret = btrfs_insert_dir_item(trans, parent_root,
904                                 dentry->d_name.name, dentry->d_name.len,
905                                 parent_inode->i_ino, &key,
906                                 BTRFS_FT_DIR, index);
907         BUG_ON(ret);
908
909         btrfs_i_size_write(parent_inode, parent_inode->i_size +
910                                          dentry->d_name.len * 2);
911         ret = btrfs_update_inode(trans, parent_root, parent_inode);
912         BUG_ON(ret);
913
914         record_root_in_trans(trans, root);
915         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
916         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
917
918         old = btrfs_lock_root_node(root);
919         btrfs_cow_block(trans, root, old, NULL, 0, &old);
920         btrfs_set_lock_blocking(old);
921
922         btrfs_copy_root(trans, root, old, &tmp, objectid);
923         btrfs_tree_unlock(old);
924         free_extent_buffer(old);
925
926         btrfs_set_root_node(new_root_item, tmp);
927         /* record when the snapshot was created in key.offset */
928         key.offset = trans->transid;
929         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
930         btrfs_tree_unlock(tmp);
931         free_extent_buffer(tmp);
932         BUG_ON(ret);
933
934         /*
935          * insert root back/forward references
936          */
937         ret = btrfs_add_root_ref(trans, tree_root, objectid,
938                                  parent_root->root_key.objectid,
939                                  parent_inode->i_ino, index,
940                                  dentry->d_name.name, dentry->d_name.len);
941         BUG_ON(ret);
942
943         key.offset = (u64)-1;
944         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
945         BUG_ON(IS_ERR(pending->snap));
946
947         btrfs_reloc_post_snapshot(trans, pending);
948         btrfs_orphan_post_snapshot(trans, pending);
949 fail:
950         kfree(new_root_item);
951         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
952         return 0;
953 }
954
955 /*
956  * create all the snapshots we've scheduled for creation
957  */
958 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
959                                              struct btrfs_fs_info *fs_info)
960 {
961         struct btrfs_pending_snapshot *pending;
962         struct list_head *head = &trans->transaction->pending_snapshots;
963         int ret;
964
965         list_for_each_entry(pending, head, list) {
966                 ret = create_pending_snapshot(trans, fs_info, pending);
967                 BUG_ON(ret);
968         }
969         return 0;
970 }
971
972 static void update_super_roots(struct btrfs_root *root)
973 {
974         struct btrfs_root_item *root_item;
975         struct btrfs_super_block *super;
976
977         super = &root->fs_info->super_copy;
978
979         root_item = &root->fs_info->chunk_root->root_item;
980         super->chunk_root = root_item->bytenr;
981         super->chunk_root_generation = root_item->generation;
982         super->chunk_root_level = root_item->level;
983
984         root_item = &root->fs_info->tree_root->root_item;
985         super->root = root_item->bytenr;
986         super->generation = root_item->generation;
987         super->root_level = root_item->level;
988         if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
989                 super->cache_generation = root_item->generation;
990 }
991
992 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
993 {
994         int ret = 0;
995         spin_lock(&info->new_trans_lock);
996         if (info->running_transaction)
997                 ret = info->running_transaction->in_commit;
998         spin_unlock(&info->new_trans_lock);
999         return ret;
1000 }
1001
1002 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1003 {
1004         int ret = 0;
1005         spin_lock(&info->new_trans_lock);
1006         if (info->running_transaction)
1007                 ret = info->running_transaction->blocked;
1008         spin_unlock(&info->new_trans_lock);
1009         return ret;
1010 }
1011
1012 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1013                              struct btrfs_root *root)
1014 {
1015         unsigned long joined = 0;
1016         unsigned long timeout = 1;
1017         struct btrfs_transaction *cur_trans;
1018         struct btrfs_transaction *prev_trans = NULL;
1019         DEFINE_WAIT(wait);
1020         int ret;
1021         int should_grow = 0;
1022         unsigned long now = get_seconds();
1023         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1024
1025         btrfs_run_ordered_operations(root, 0);
1026
1027         /* make a pass through all the delayed refs we have so far
1028          * any runnings procs may add more while we are here
1029          */
1030         ret = btrfs_run_delayed_refs(trans, root, 0);
1031         BUG_ON(ret);
1032
1033         btrfs_trans_release_metadata(trans, root);
1034
1035         cur_trans = trans->transaction;
1036         /*
1037          * set the flushing flag so procs in this transaction have to
1038          * start sending their work down.
1039          */
1040         cur_trans->delayed_refs.flushing = 1;
1041
1042         ret = btrfs_run_delayed_refs(trans, root, 0);
1043         BUG_ON(ret);
1044
1045         mutex_lock(&root->fs_info->trans_mutex);
1046         if (cur_trans->in_commit) {
1047                 cur_trans->use_count++;
1048                 mutex_unlock(&root->fs_info->trans_mutex);
1049                 btrfs_end_transaction(trans, root);
1050
1051                 ret = wait_for_commit(root, cur_trans);
1052                 BUG_ON(ret);
1053
1054                 mutex_lock(&root->fs_info->trans_mutex);
1055                 put_transaction(cur_trans);
1056                 mutex_unlock(&root->fs_info->trans_mutex);
1057
1058                 return 0;
1059         }
1060
1061         trans->transaction->in_commit = 1;
1062         trans->transaction->blocked = 1;
1063         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1064                 prev_trans = list_entry(cur_trans->list.prev,
1065                                         struct btrfs_transaction, list);
1066                 if (!prev_trans->commit_done) {
1067                         prev_trans->use_count++;
1068                         mutex_unlock(&root->fs_info->trans_mutex);
1069
1070                         wait_for_commit(root, prev_trans);
1071
1072                         mutex_lock(&root->fs_info->trans_mutex);
1073                         put_transaction(prev_trans);
1074                 }
1075         }
1076
1077         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1078                 should_grow = 1;
1079
1080         do {
1081                 int snap_pending = 0;
1082                 joined = cur_trans->num_joined;
1083                 if (!list_empty(&trans->transaction->pending_snapshots))
1084                         snap_pending = 1;
1085
1086                 WARN_ON(cur_trans != trans->transaction);
1087                 if (cur_trans->num_writers > 1)
1088                         timeout = MAX_SCHEDULE_TIMEOUT;
1089                 else if (should_grow)
1090                         timeout = 1;
1091
1092                 mutex_unlock(&root->fs_info->trans_mutex);
1093
1094                 if (flush_on_commit || snap_pending) {
1095                         btrfs_start_delalloc_inodes(root, 1);
1096                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1097                         BUG_ON(ret);
1098                 }
1099
1100                 /*
1101                  * rename don't use btrfs_join_transaction, so, once we
1102                  * set the transaction to blocked above, we aren't going
1103                  * to get any new ordered operations.  We can safely run
1104                  * it here and no for sure that nothing new will be added
1105                  * to the list
1106                  */
1107                 btrfs_run_ordered_operations(root, 1);
1108
1109                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1110                                 TASK_UNINTERRUPTIBLE);
1111
1112                 smp_mb();
1113                 if (cur_trans->num_writers > 1 || should_grow)
1114                         schedule_timeout(timeout);
1115
1116                 mutex_lock(&root->fs_info->trans_mutex);
1117                 finish_wait(&cur_trans->writer_wait, &wait);
1118         } while (cur_trans->num_writers > 1 ||
1119                  (should_grow && cur_trans->num_joined != joined));
1120
1121         ret = create_pending_snapshots(trans, root->fs_info);
1122         BUG_ON(ret);
1123
1124         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1125         BUG_ON(ret);
1126
1127         WARN_ON(cur_trans != trans->transaction);
1128
1129         /* btrfs_commit_tree_roots is responsible for getting the
1130          * various roots consistent with each other.  Every pointer
1131          * in the tree of tree roots has to point to the most up to date
1132          * root for every subvolume and other tree.  So, we have to keep
1133          * the tree logging code from jumping in and changing any
1134          * of the trees.
1135          *
1136          * At this point in the commit, there can't be any tree-log
1137          * writers, but a little lower down we drop the trans mutex
1138          * and let new people in.  By holding the tree_log_mutex
1139          * from now until after the super is written, we avoid races
1140          * with the tree-log code.
1141          */
1142         mutex_lock(&root->fs_info->tree_log_mutex);
1143
1144         ret = commit_fs_roots(trans, root);
1145         BUG_ON(ret);
1146
1147         /* commit_fs_roots gets rid of all the tree log roots, it is now
1148          * safe to free the root of tree log roots
1149          */
1150         btrfs_free_log_root_tree(trans, root->fs_info);
1151
1152         ret = commit_cowonly_roots(trans, root);
1153         BUG_ON(ret);
1154
1155         btrfs_prepare_extent_commit(trans, root);
1156
1157         cur_trans = root->fs_info->running_transaction;
1158         spin_lock(&root->fs_info->new_trans_lock);
1159         root->fs_info->running_transaction = NULL;
1160         spin_unlock(&root->fs_info->new_trans_lock);
1161
1162         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1163                             root->fs_info->tree_root->node);
1164         switch_commit_root(root->fs_info->tree_root);
1165
1166         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1167                             root->fs_info->chunk_root->node);
1168         switch_commit_root(root->fs_info->chunk_root);
1169
1170         update_super_roots(root);
1171
1172         if (!root->fs_info->log_root_recovering) {
1173                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1174                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1175         }
1176
1177         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1178                sizeof(root->fs_info->super_copy));
1179
1180         trans->transaction->blocked = 0;
1181
1182         wake_up(&root->fs_info->transaction_wait);
1183
1184         mutex_unlock(&root->fs_info->trans_mutex);
1185         ret = btrfs_write_and_wait_transaction(trans, root);
1186         BUG_ON(ret);
1187         write_ctree_super(trans, root, 0);
1188
1189         /*
1190          * the super is written, we can safely allow the tree-loggers
1191          * to go about their business
1192          */
1193         mutex_unlock(&root->fs_info->tree_log_mutex);
1194
1195         btrfs_finish_extent_commit(trans, root);
1196
1197         mutex_lock(&root->fs_info->trans_mutex);
1198
1199         cur_trans->commit_done = 1;
1200
1201         root->fs_info->last_trans_committed = cur_trans->transid;
1202
1203         wake_up(&cur_trans->commit_wait);
1204
1205         put_transaction(cur_trans);
1206         put_transaction(cur_trans);
1207
1208         mutex_unlock(&root->fs_info->trans_mutex);
1209
1210         if (current->journal_info == trans)
1211                 current->journal_info = NULL;
1212
1213         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1214
1215         if (current != root->fs_info->transaction_kthread)
1216                 btrfs_run_delayed_iputs(root);
1217
1218         return ret;
1219 }
1220
1221 /*
1222  * interface function to delete all the snapshots we have scheduled for deletion
1223  */
1224 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1225 {
1226         LIST_HEAD(list);
1227         struct btrfs_fs_info *fs_info = root->fs_info;
1228
1229         mutex_lock(&fs_info->trans_mutex);
1230         list_splice_init(&fs_info->dead_roots, &list);
1231         mutex_unlock(&fs_info->trans_mutex);
1232
1233         while (!list_empty(&list)) {
1234                 root = list_entry(list.next, struct btrfs_root, root_list);
1235                 list_del(&root->root_list);
1236
1237                 if (btrfs_header_backref_rev(root->node) <
1238                     BTRFS_MIXED_BACKREF_REV)
1239                         btrfs_drop_snapshot(root, NULL, 0);
1240                 else
1241                         btrfs_drop_snapshot(root, NULL, 1);
1242         }
1243         return 0;
1244 }