Merge tag 'xtensa-for-next-20140715' of git://github.com/jcmvbkbc/linux-xtensa into...
[cascardo/linux.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39         [TRANS_STATE_RUNNING]           = 0U,
40         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
41                                            __TRANS_START),
42         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
43                                            __TRANS_START |
44                                            __TRANS_ATTACH),
45         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
46                                            __TRANS_START |
47                                            __TRANS_ATTACH |
48                                            __TRANS_JOIN),
49         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
50                                            __TRANS_START |
51                                            __TRANS_ATTACH |
52                                            __TRANS_JOIN |
53                                            __TRANS_JOIN_NOLOCK),
54         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
55                                            __TRANS_START |
56                                            __TRANS_ATTACH |
57                                            __TRANS_JOIN |
58                                            __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63         WARN_ON(atomic_read(&transaction->use_count) == 0);
64         if (atomic_dec_and_test(&transaction->use_count)) {
65                 BUG_ON(!list_empty(&transaction->list));
66                 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67                 while (!list_empty(&transaction->pending_chunks)) {
68                         struct extent_map *em;
69
70                         em = list_first_entry(&transaction->pending_chunks,
71                                               struct extent_map, list);
72                         list_del_init(&em->list);
73                         free_extent_map(em);
74                 }
75                 kmem_cache_free(btrfs_transaction_cachep, transaction);
76         }
77 }
78
79 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
80                                          struct btrfs_fs_info *fs_info)
81 {
82         struct btrfs_root *root, *tmp;
83
84         down_write(&fs_info->commit_root_sem);
85         list_for_each_entry_safe(root, tmp, &trans->switch_commits,
86                                  dirty_list) {
87                 list_del_init(&root->dirty_list);
88                 free_extent_buffer(root->commit_root);
89                 root->commit_root = btrfs_root_node(root);
90                 if (is_fstree(root->objectid))
91                         btrfs_unpin_free_ino(root);
92         }
93         up_write(&fs_info->commit_root_sem);
94 }
95
96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
97                                          unsigned int type)
98 {
99         if (type & TRANS_EXTWRITERS)
100                 atomic_inc(&trans->num_extwriters);
101 }
102
103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
104                                          unsigned int type)
105 {
106         if (type & TRANS_EXTWRITERS)
107                 atomic_dec(&trans->num_extwriters);
108 }
109
110 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
111                                           unsigned int type)
112 {
113         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
114 }
115
116 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
117 {
118         return atomic_read(&trans->num_extwriters);
119 }
120
121 /*
122  * either allocate a new transaction or hop into the existing one
123  */
124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
125 {
126         struct btrfs_transaction *cur_trans;
127         struct btrfs_fs_info *fs_info = root->fs_info;
128
129         spin_lock(&fs_info->trans_lock);
130 loop:
131         /* The file system has been taken offline. No new transactions. */
132         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
133                 spin_unlock(&fs_info->trans_lock);
134                 return -EROFS;
135         }
136
137         cur_trans = fs_info->running_transaction;
138         if (cur_trans) {
139                 if (cur_trans->aborted) {
140                         spin_unlock(&fs_info->trans_lock);
141                         return cur_trans->aborted;
142                 }
143                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
144                         spin_unlock(&fs_info->trans_lock);
145                         return -EBUSY;
146                 }
147                 atomic_inc(&cur_trans->use_count);
148                 atomic_inc(&cur_trans->num_writers);
149                 extwriter_counter_inc(cur_trans, type);
150                 spin_unlock(&fs_info->trans_lock);
151                 return 0;
152         }
153         spin_unlock(&fs_info->trans_lock);
154
155         /*
156          * If we are ATTACH, we just want to catch the current transaction,
157          * and commit it. If there is no transaction, just return ENOENT.
158          */
159         if (type == TRANS_ATTACH)
160                 return -ENOENT;
161
162         /*
163          * JOIN_NOLOCK only happens during the transaction commit, so
164          * it is impossible that ->running_transaction is NULL
165          */
166         BUG_ON(type == TRANS_JOIN_NOLOCK);
167
168         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
169         if (!cur_trans)
170                 return -ENOMEM;
171
172         spin_lock(&fs_info->trans_lock);
173         if (fs_info->running_transaction) {
174                 /*
175                  * someone started a transaction after we unlocked.  Make sure
176                  * to redo the checks above
177                  */
178                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
179                 goto loop;
180         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
181                 spin_unlock(&fs_info->trans_lock);
182                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
183                 return -EROFS;
184         }
185
186         atomic_set(&cur_trans->num_writers, 1);
187         extwriter_counter_init(cur_trans, type);
188         init_waitqueue_head(&cur_trans->writer_wait);
189         init_waitqueue_head(&cur_trans->commit_wait);
190         cur_trans->state = TRANS_STATE_RUNNING;
191         /*
192          * One for this trans handle, one so it will live on until we
193          * commit the transaction.
194          */
195         atomic_set(&cur_trans->use_count, 2);
196         cur_trans->start_time = get_seconds();
197
198         cur_trans->delayed_refs.href_root = RB_ROOT;
199         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
200         cur_trans->delayed_refs.num_heads_ready = 0;
201         cur_trans->delayed_refs.num_heads = 0;
202         cur_trans->delayed_refs.flushing = 0;
203         cur_trans->delayed_refs.run_delayed_start = 0;
204
205         /*
206          * although the tree mod log is per file system and not per transaction,
207          * the log must never go across transaction boundaries.
208          */
209         smp_mb();
210         if (!list_empty(&fs_info->tree_mod_seq_list))
211                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
212                         "creating a fresh transaction\n");
213         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
214                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
215                         "creating a fresh transaction\n");
216         atomic64_set(&fs_info->tree_mod_seq, 0);
217
218         spin_lock_init(&cur_trans->delayed_refs.lock);
219
220         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
221         INIT_LIST_HEAD(&cur_trans->ordered_operations);
222         INIT_LIST_HEAD(&cur_trans->pending_chunks);
223         INIT_LIST_HEAD(&cur_trans->switch_commits);
224         list_add_tail(&cur_trans->list, &fs_info->trans_list);
225         extent_io_tree_init(&cur_trans->dirty_pages,
226                              fs_info->btree_inode->i_mapping);
227         fs_info->generation++;
228         cur_trans->transid = fs_info->generation;
229         fs_info->running_transaction = cur_trans;
230         cur_trans->aborted = 0;
231         spin_unlock(&fs_info->trans_lock);
232
233         return 0;
234 }
235
236 /*
237  * this does all the record keeping required to make sure that a reference
238  * counted root is properly recorded in a given transaction.  This is required
239  * to make sure the old root from before we joined the transaction is deleted
240  * when the transaction commits
241  */
242 static int record_root_in_trans(struct btrfs_trans_handle *trans,
243                                struct btrfs_root *root)
244 {
245         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
246             root->last_trans < trans->transid) {
247                 WARN_ON(root == root->fs_info->extent_root);
248                 WARN_ON(root->commit_root != root->node);
249
250                 /*
251                  * see below for IN_TRANS_SETUP usage rules
252                  * we have the reloc mutex held now, so there
253                  * is only one writer in this function
254                  */
255                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
256
257                 /* make sure readers find IN_TRANS_SETUP before
258                  * they find our root->last_trans update
259                  */
260                 smp_wmb();
261
262                 spin_lock(&root->fs_info->fs_roots_radix_lock);
263                 if (root->last_trans == trans->transid) {
264                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
265                         return 0;
266                 }
267                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
268                            (unsigned long)root->root_key.objectid,
269                            BTRFS_ROOT_TRANS_TAG);
270                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
271                 root->last_trans = trans->transid;
272
273                 /* this is pretty tricky.  We don't want to
274                  * take the relocation lock in btrfs_record_root_in_trans
275                  * unless we're really doing the first setup for this root in
276                  * this transaction.
277                  *
278                  * Normally we'd use root->last_trans as a flag to decide
279                  * if we want to take the expensive mutex.
280                  *
281                  * But, we have to set root->last_trans before we
282                  * init the relocation root, otherwise, we trip over warnings
283                  * in ctree.c.  The solution used here is to flag ourselves
284                  * with root IN_TRANS_SETUP.  When this is 1, we're still
285                  * fixing up the reloc trees and everyone must wait.
286                  *
287                  * When this is zero, they can trust root->last_trans and fly
288                  * through btrfs_record_root_in_trans without having to take the
289                  * lock.  smp_wmb() makes sure that all the writes above are
290                  * done before we pop in the zero below
291                  */
292                 btrfs_init_reloc_root(trans, root);
293                 smp_mb__before_atomic();
294                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
295         }
296         return 0;
297 }
298
299
300 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
301                                struct btrfs_root *root)
302 {
303         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
304                 return 0;
305
306         /*
307          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
308          * and barriers
309          */
310         smp_rmb();
311         if (root->last_trans == trans->transid &&
312             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
313                 return 0;
314
315         mutex_lock(&root->fs_info->reloc_mutex);
316         record_root_in_trans(trans, root);
317         mutex_unlock(&root->fs_info->reloc_mutex);
318
319         return 0;
320 }
321
322 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
323 {
324         return (trans->state >= TRANS_STATE_BLOCKED &&
325                 trans->state < TRANS_STATE_UNBLOCKED &&
326                 !trans->aborted);
327 }
328
329 /* wait for commit against the current transaction to become unblocked
330  * when this is done, it is safe to start a new transaction, but the current
331  * transaction might not be fully on disk.
332  */
333 static void wait_current_trans(struct btrfs_root *root)
334 {
335         struct btrfs_transaction *cur_trans;
336
337         spin_lock(&root->fs_info->trans_lock);
338         cur_trans = root->fs_info->running_transaction;
339         if (cur_trans && is_transaction_blocked(cur_trans)) {
340                 atomic_inc(&cur_trans->use_count);
341                 spin_unlock(&root->fs_info->trans_lock);
342
343                 wait_event(root->fs_info->transaction_wait,
344                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
345                            cur_trans->aborted);
346                 btrfs_put_transaction(cur_trans);
347         } else {
348                 spin_unlock(&root->fs_info->trans_lock);
349         }
350 }
351
352 static int may_wait_transaction(struct btrfs_root *root, int type)
353 {
354         if (root->fs_info->log_root_recovering)
355                 return 0;
356
357         if (type == TRANS_USERSPACE)
358                 return 1;
359
360         if (type == TRANS_START &&
361             !atomic_read(&root->fs_info->open_ioctl_trans))
362                 return 1;
363
364         return 0;
365 }
366
367 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
368 {
369         if (!root->fs_info->reloc_ctl ||
370             !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
371             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
372             root->reloc_root)
373                 return false;
374
375         return true;
376 }
377
378 static struct btrfs_trans_handle *
379 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
380                   enum btrfs_reserve_flush_enum flush)
381 {
382         struct btrfs_trans_handle *h;
383         struct btrfs_transaction *cur_trans;
384         u64 num_bytes = 0;
385         u64 qgroup_reserved = 0;
386         bool reloc_reserved = false;
387         int ret;
388
389         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
390                 return ERR_PTR(-EROFS);
391
392         if (current->journal_info &&
393             current->journal_info != (void *)BTRFS_SEND_TRANS_STUB) {
394                 WARN_ON(type & TRANS_EXTWRITERS);
395                 h = current->journal_info;
396                 h->use_count++;
397                 WARN_ON(h->use_count > 2);
398                 h->orig_rsv = h->block_rsv;
399                 h->block_rsv = NULL;
400                 goto got_it;
401         }
402
403         /*
404          * Do the reservation before we join the transaction so we can do all
405          * the appropriate flushing if need be.
406          */
407         if (num_items > 0 && root != root->fs_info->chunk_root) {
408                 if (root->fs_info->quota_enabled &&
409                     is_fstree(root->root_key.objectid)) {
410                         qgroup_reserved = num_items * root->leafsize;
411                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
412                         if (ret)
413                                 return ERR_PTR(ret);
414                 }
415
416                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
417                 /*
418                  * Do the reservation for the relocation root creation
419                  */
420                 if (unlikely(need_reserve_reloc_root(root))) {
421                         num_bytes += root->nodesize;
422                         reloc_reserved = true;
423                 }
424
425                 ret = btrfs_block_rsv_add(root,
426                                           &root->fs_info->trans_block_rsv,
427                                           num_bytes, flush);
428                 if (ret)
429                         goto reserve_fail;
430         }
431 again:
432         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
433         if (!h) {
434                 ret = -ENOMEM;
435                 goto alloc_fail;
436         }
437
438         /*
439          * If we are JOIN_NOLOCK we're already committing a transaction and
440          * waiting on this guy, so we don't need to do the sb_start_intwrite
441          * because we're already holding a ref.  We need this because we could
442          * have raced in and did an fsync() on a file which can kick a commit
443          * and then we deadlock with somebody doing a freeze.
444          *
445          * If we are ATTACH, it means we just want to catch the current
446          * transaction and commit it, so we needn't do sb_start_intwrite(). 
447          */
448         if (type & __TRANS_FREEZABLE)
449                 sb_start_intwrite(root->fs_info->sb);
450
451         if (may_wait_transaction(root, type))
452                 wait_current_trans(root);
453
454         do {
455                 ret = join_transaction(root, type);
456                 if (ret == -EBUSY) {
457                         wait_current_trans(root);
458                         if (unlikely(type == TRANS_ATTACH))
459                                 ret = -ENOENT;
460                 }
461         } while (ret == -EBUSY);
462
463         if (ret < 0) {
464                 /* We must get the transaction if we are JOIN_NOLOCK. */
465                 BUG_ON(type == TRANS_JOIN_NOLOCK);
466                 goto join_fail;
467         }
468
469         cur_trans = root->fs_info->running_transaction;
470
471         h->transid = cur_trans->transid;
472         h->transaction = cur_trans;
473         h->blocks_used = 0;
474         h->bytes_reserved = 0;
475         h->root = root;
476         h->delayed_ref_updates = 0;
477         h->use_count = 1;
478         h->adding_csums = 0;
479         h->block_rsv = NULL;
480         h->orig_rsv = NULL;
481         h->aborted = 0;
482         h->qgroup_reserved = 0;
483         h->delayed_ref_elem.seq = 0;
484         h->type = type;
485         h->allocating_chunk = false;
486         h->reloc_reserved = false;
487         h->sync = false;
488         INIT_LIST_HEAD(&h->qgroup_ref_list);
489         INIT_LIST_HEAD(&h->new_bgs);
490
491         smp_mb();
492         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
493             may_wait_transaction(root, type)) {
494                 btrfs_commit_transaction(h, root);
495                 goto again;
496         }
497
498         if (num_bytes) {
499                 trace_btrfs_space_reservation(root->fs_info, "transaction",
500                                               h->transid, num_bytes, 1);
501                 h->block_rsv = &root->fs_info->trans_block_rsv;
502                 h->bytes_reserved = num_bytes;
503                 h->reloc_reserved = reloc_reserved;
504         }
505         h->qgroup_reserved = qgroup_reserved;
506
507 got_it:
508         btrfs_record_root_in_trans(h, root);
509
510         if (!current->journal_info && type != TRANS_USERSPACE)
511                 current->journal_info = h;
512         return h;
513
514 join_fail:
515         if (type & __TRANS_FREEZABLE)
516                 sb_end_intwrite(root->fs_info->sb);
517         kmem_cache_free(btrfs_trans_handle_cachep, h);
518 alloc_fail:
519         if (num_bytes)
520                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
521                                         num_bytes);
522 reserve_fail:
523         if (qgroup_reserved)
524                 btrfs_qgroup_free(root, qgroup_reserved);
525         return ERR_PTR(ret);
526 }
527
528 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
529                                                    int num_items)
530 {
531         return start_transaction(root, num_items, TRANS_START,
532                                  BTRFS_RESERVE_FLUSH_ALL);
533 }
534
535 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
536                                         struct btrfs_root *root, int num_items)
537 {
538         return start_transaction(root, num_items, TRANS_START,
539                                  BTRFS_RESERVE_FLUSH_LIMIT);
540 }
541
542 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
543 {
544         return start_transaction(root, 0, TRANS_JOIN, 0);
545 }
546
547 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
548 {
549         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
550 }
551
552 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
553 {
554         return start_transaction(root, 0, TRANS_USERSPACE, 0);
555 }
556
557 /*
558  * btrfs_attach_transaction() - catch the running transaction
559  *
560  * It is used when we want to commit the current the transaction, but
561  * don't want to start a new one.
562  *
563  * Note: If this function return -ENOENT, it just means there is no
564  * running transaction. But it is possible that the inactive transaction
565  * is still in the memory, not fully on disk. If you hope there is no
566  * inactive transaction in the fs when -ENOENT is returned, you should
567  * invoke
568  *     btrfs_attach_transaction_barrier()
569  */
570 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
571 {
572         return start_transaction(root, 0, TRANS_ATTACH, 0);
573 }
574
575 /*
576  * btrfs_attach_transaction_barrier() - catch the running transaction
577  *
578  * It is similar to the above function, the differentia is this one
579  * will wait for all the inactive transactions until they fully
580  * complete.
581  */
582 struct btrfs_trans_handle *
583 btrfs_attach_transaction_barrier(struct btrfs_root *root)
584 {
585         struct btrfs_trans_handle *trans;
586
587         trans = start_transaction(root, 0, TRANS_ATTACH, 0);
588         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
589                 btrfs_wait_for_commit(root, 0);
590
591         return trans;
592 }
593
594 /* wait for a transaction commit to be fully complete */
595 static noinline void wait_for_commit(struct btrfs_root *root,
596                                     struct btrfs_transaction *commit)
597 {
598         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
599 }
600
601 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
602 {
603         struct btrfs_transaction *cur_trans = NULL, *t;
604         int ret = 0;
605
606         if (transid) {
607                 if (transid <= root->fs_info->last_trans_committed)
608                         goto out;
609
610                 ret = -EINVAL;
611                 /* find specified transaction */
612                 spin_lock(&root->fs_info->trans_lock);
613                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
614                         if (t->transid == transid) {
615                                 cur_trans = t;
616                                 atomic_inc(&cur_trans->use_count);
617                                 ret = 0;
618                                 break;
619                         }
620                         if (t->transid > transid) {
621                                 ret = 0;
622                                 break;
623                         }
624                 }
625                 spin_unlock(&root->fs_info->trans_lock);
626                 /* The specified transaction doesn't exist */
627                 if (!cur_trans)
628                         goto out;
629         } else {
630                 /* find newest transaction that is committing | committed */
631                 spin_lock(&root->fs_info->trans_lock);
632                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
633                                             list) {
634                         if (t->state >= TRANS_STATE_COMMIT_START) {
635                                 if (t->state == TRANS_STATE_COMPLETED)
636                                         break;
637                                 cur_trans = t;
638                                 atomic_inc(&cur_trans->use_count);
639                                 break;
640                         }
641                 }
642                 spin_unlock(&root->fs_info->trans_lock);
643                 if (!cur_trans)
644                         goto out;  /* nothing committing|committed */
645         }
646
647         wait_for_commit(root, cur_trans);
648         btrfs_put_transaction(cur_trans);
649 out:
650         return ret;
651 }
652
653 void btrfs_throttle(struct btrfs_root *root)
654 {
655         if (!atomic_read(&root->fs_info->open_ioctl_trans))
656                 wait_current_trans(root);
657 }
658
659 static int should_end_transaction(struct btrfs_trans_handle *trans,
660                                   struct btrfs_root *root)
661 {
662         if (root->fs_info->global_block_rsv.space_info->full &&
663             btrfs_check_space_for_delayed_refs(trans, root))
664                 return 1;
665
666         return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
667 }
668
669 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
670                                  struct btrfs_root *root)
671 {
672         struct btrfs_transaction *cur_trans = trans->transaction;
673         int updates;
674         int err;
675
676         smp_mb();
677         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
678             cur_trans->delayed_refs.flushing)
679                 return 1;
680
681         updates = trans->delayed_ref_updates;
682         trans->delayed_ref_updates = 0;
683         if (updates) {
684                 err = btrfs_run_delayed_refs(trans, root, updates);
685                 if (err) /* Error code will also eval true */
686                         return err;
687         }
688
689         return should_end_transaction(trans, root);
690 }
691
692 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
693                           struct btrfs_root *root, int throttle)
694 {
695         struct btrfs_transaction *cur_trans = trans->transaction;
696         struct btrfs_fs_info *info = root->fs_info;
697         unsigned long cur = trans->delayed_ref_updates;
698         int lock = (trans->type != TRANS_JOIN_NOLOCK);
699         int err = 0;
700         int must_run_delayed_refs = 0;
701
702         if (trans->use_count > 1) {
703                 trans->use_count--;
704                 trans->block_rsv = trans->orig_rsv;
705                 return 0;
706         }
707
708         btrfs_trans_release_metadata(trans, root);
709         trans->block_rsv = NULL;
710
711         if (!list_empty(&trans->new_bgs))
712                 btrfs_create_pending_block_groups(trans, root);
713
714         trans->delayed_ref_updates = 0;
715         if (!trans->sync) {
716                 must_run_delayed_refs =
717                         btrfs_should_throttle_delayed_refs(trans, root);
718                 cur = max_t(unsigned long, cur, 32);
719
720                 /*
721                  * don't make the caller wait if they are from a NOLOCK
722                  * or ATTACH transaction, it will deadlock with commit
723                  */
724                 if (must_run_delayed_refs == 1 &&
725                     (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
726                         must_run_delayed_refs = 2;
727         }
728
729         if (trans->qgroup_reserved) {
730                 /*
731                  * the same root has to be passed here between start_transaction
732                  * and end_transaction. Subvolume quota depends on this.
733                  */
734                 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
735                 trans->qgroup_reserved = 0;
736         }
737
738         btrfs_trans_release_metadata(trans, root);
739         trans->block_rsv = NULL;
740
741         if (!list_empty(&trans->new_bgs))
742                 btrfs_create_pending_block_groups(trans, root);
743
744         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
745             should_end_transaction(trans, root) &&
746             ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
747                 spin_lock(&info->trans_lock);
748                 if (cur_trans->state == TRANS_STATE_RUNNING)
749                         cur_trans->state = TRANS_STATE_BLOCKED;
750                 spin_unlock(&info->trans_lock);
751         }
752
753         if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
754                 if (throttle)
755                         return btrfs_commit_transaction(trans, root);
756                 else
757                         wake_up_process(info->transaction_kthread);
758         }
759
760         if (trans->type & __TRANS_FREEZABLE)
761                 sb_end_intwrite(root->fs_info->sb);
762
763         WARN_ON(cur_trans != info->running_transaction);
764         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
765         atomic_dec(&cur_trans->num_writers);
766         extwriter_counter_dec(cur_trans, trans->type);
767
768         smp_mb();
769         if (waitqueue_active(&cur_trans->writer_wait))
770                 wake_up(&cur_trans->writer_wait);
771         btrfs_put_transaction(cur_trans);
772
773         if (current->journal_info == trans)
774                 current->journal_info = NULL;
775
776         if (throttle)
777                 btrfs_run_delayed_iputs(root);
778
779         if (trans->aborted ||
780             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
781                 wake_up_process(info->transaction_kthread);
782                 err = -EIO;
783         }
784         assert_qgroups_uptodate(trans);
785
786         kmem_cache_free(btrfs_trans_handle_cachep, trans);
787         if (must_run_delayed_refs) {
788                 btrfs_async_run_delayed_refs(root, cur,
789                                              must_run_delayed_refs == 1);
790         }
791         return err;
792 }
793
794 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
795                           struct btrfs_root *root)
796 {
797         return __btrfs_end_transaction(trans, root, 0);
798 }
799
800 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
801                                    struct btrfs_root *root)
802 {
803         return __btrfs_end_transaction(trans, root, 1);
804 }
805
806 /*
807  * when btree blocks are allocated, they have some corresponding bits set for
808  * them in one of two extent_io trees.  This is used to make sure all of
809  * those extents are sent to disk but does not wait on them
810  */
811 int btrfs_write_marked_extents(struct btrfs_root *root,
812                                struct extent_io_tree *dirty_pages, int mark)
813 {
814         int err = 0;
815         int werr = 0;
816         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
817         struct extent_state *cached_state = NULL;
818         u64 start = 0;
819         u64 end;
820
821         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
822                                       mark, &cached_state)) {
823                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
824                                    mark, &cached_state, GFP_NOFS);
825                 cached_state = NULL;
826                 err = filemap_fdatawrite_range(mapping, start, end);
827                 if (err)
828                         werr = err;
829                 cond_resched();
830                 start = end + 1;
831         }
832         if (err)
833                 werr = err;
834         return werr;
835 }
836
837 /*
838  * when btree blocks are allocated, they have some corresponding bits set for
839  * them in one of two extent_io trees.  This is used to make sure all of
840  * those extents are on disk for transaction or log commit.  We wait
841  * on all the pages and clear them from the dirty pages state tree
842  */
843 int btrfs_wait_marked_extents(struct btrfs_root *root,
844                               struct extent_io_tree *dirty_pages, int mark)
845 {
846         int err = 0;
847         int werr = 0;
848         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
849         struct extent_state *cached_state = NULL;
850         u64 start = 0;
851         u64 end;
852
853         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
854                                       EXTENT_NEED_WAIT, &cached_state)) {
855                 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
856                                  0, 0, &cached_state, GFP_NOFS);
857                 err = filemap_fdatawait_range(mapping, start, end);
858                 if (err)
859                         werr = err;
860                 cond_resched();
861                 start = end + 1;
862         }
863         if (err)
864                 werr = err;
865         return werr;
866 }
867
868 /*
869  * when btree blocks are allocated, they have some corresponding bits set for
870  * them in one of two extent_io trees.  This is used to make sure all of
871  * those extents are on disk for transaction or log commit
872  */
873 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
874                                 struct extent_io_tree *dirty_pages, int mark)
875 {
876         int ret;
877         int ret2;
878         struct blk_plug plug;
879
880         blk_start_plug(&plug);
881         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
882         blk_finish_plug(&plug);
883         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
884
885         if (ret)
886                 return ret;
887         if (ret2)
888                 return ret2;
889         return 0;
890 }
891
892 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
893                                      struct btrfs_root *root)
894 {
895         if (!trans || !trans->transaction) {
896                 struct inode *btree_inode;
897                 btree_inode = root->fs_info->btree_inode;
898                 return filemap_write_and_wait(btree_inode->i_mapping);
899         }
900         return btrfs_write_and_wait_marked_extents(root,
901                                            &trans->transaction->dirty_pages,
902                                            EXTENT_DIRTY);
903 }
904
905 /*
906  * this is used to update the root pointer in the tree of tree roots.
907  *
908  * But, in the case of the extent allocation tree, updating the root
909  * pointer may allocate blocks which may change the root of the extent
910  * allocation tree.
911  *
912  * So, this loops and repeats and makes sure the cowonly root didn't
913  * change while the root pointer was being updated in the metadata.
914  */
915 static int update_cowonly_root(struct btrfs_trans_handle *trans,
916                                struct btrfs_root *root)
917 {
918         int ret;
919         u64 old_root_bytenr;
920         u64 old_root_used;
921         struct btrfs_root *tree_root = root->fs_info->tree_root;
922
923         old_root_used = btrfs_root_used(&root->root_item);
924         btrfs_write_dirty_block_groups(trans, root);
925
926         while (1) {
927                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
928                 if (old_root_bytenr == root->node->start &&
929                     old_root_used == btrfs_root_used(&root->root_item))
930                         break;
931
932                 btrfs_set_root_node(&root->root_item, root->node);
933                 ret = btrfs_update_root(trans, tree_root,
934                                         &root->root_key,
935                                         &root->root_item);
936                 if (ret)
937                         return ret;
938
939                 old_root_used = btrfs_root_used(&root->root_item);
940                 ret = btrfs_write_dirty_block_groups(trans, root);
941                 if (ret)
942                         return ret;
943         }
944
945         return 0;
946 }
947
948 /*
949  * update all the cowonly tree roots on disk
950  *
951  * The error handling in this function may not be obvious. Any of the
952  * failures will cause the file system to go offline. We still need
953  * to clean up the delayed refs.
954  */
955 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
956                                          struct btrfs_root *root)
957 {
958         struct btrfs_fs_info *fs_info = root->fs_info;
959         struct list_head *next;
960         struct extent_buffer *eb;
961         int ret;
962
963         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
964         if (ret)
965                 return ret;
966
967         eb = btrfs_lock_root_node(fs_info->tree_root);
968         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
969                               0, &eb);
970         btrfs_tree_unlock(eb);
971         free_extent_buffer(eb);
972
973         if (ret)
974                 return ret;
975
976         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
977         if (ret)
978                 return ret;
979
980         ret = btrfs_run_dev_stats(trans, root->fs_info);
981         if (ret)
982                 return ret;
983         ret = btrfs_run_dev_replace(trans, root->fs_info);
984         if (ret)
985                 return ret;
986         ret = btrfs_run_qgroups(trans, root->fs_info);
987         if (ret)
988                 return ret;
989
990         /* run_qgroups might have added some more refs */
991         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
992         if (ret)
993                 return ret;
994
995         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
996                 next = fs_info->dirty_cowonly_roots.next;
997                 list_del_init(next);
998                 root = list_entry(next, struct btrfs_root, dirty_list);
999
1000                 if (root != fs_info->extent_root)
1001                         list_add_tail(&root->dirty_list,
1002                                       &trans->transaction->switch_commits);
1003                 ret = update_cowonly_root(trans, root);
1004                 if (ret)
1005                         return ret;
1006         }
1007
1008         list_add_tail(&fs_info->extent_root->dirty_list,
1009                       &trans->transaction->switch_commits);
1010         btrfs_after_dev_replace_commit(fs_info);
1011
1012         return 0;
1013 }
1014
1015 /*
1016  * dead roots are old snapshots that need to be deleted.  This allocates
1017  * a dirty root struct and adds it into the list of dead roots that need to
1018  * be deleted
1019  */
1020 void btrfs_add_dead_root(struct btrfs_root *root)
1021 {
1022         spin_lock(&root->fs_info->trans_lock);
1023         if (list_empty(&root->root_list))
1024                 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1025         spin_unlock(&root->fs_info->trans_lock);
1026 }
1027
1028 /*
1029  * update all the cowonly tree roots on disk
1030  */
1031 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1032                                     struct btrfs_root *root)
1033 {
1034         struct btrfs_root *gang[8];
1035         struct btrfs_fs_info *fs_info = root->fs_info;
1036         int i;
1037         int ret;
1038         int err = 0;
1039
1040         spin_lock(&fs_info->fs_roots_radix_lock);
1041         while (1) {
1042                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1043                                                  (void **)gang, 0,
1044                                                  ARRAY_SIZE(gang),
1045                                                  BTRFS_ROOT_TRANS_TAG);
1046                 if (ret == 0)
1047                         break;
1048                 for (i = 0; i < ret; i++) {
1049                         root = gang[i];
1050                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1051                                         (unsigned long)root->root_key.objectid,
1052                                         BTRFS_ROOT_TRANS_TAG);
1053                         spin_unlock(&fs_info->fs_roots_radix_lock);
1054
1055                         btrfs_free_log(trans, root);
1056                         btrfs_update_reloc_root(trans, root);
1057                         btrfs_orphan_commit_root(trans, root);
1058
1059                         btrfs_save_ino_cache(root, trans);
1060
1061                         /* see comments in should_cow_block() */
1062                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1063                         smp_mb__after_atomic();
1064
1065                         if (root->commit_root != root->node) {
1066                                 list_add_tail(&root->dirty_list,
1067                                         &trans->transaction->switch_commits);
1068                                 btrfs_set_root_node(&root->root_item,
1069                                                     root->node);
1070                         }
1071
1072                         err = btrfs_update_root(trans, fs_info->tree_root,
1073                                                 &root->root_key,
1074                                                 &root->root_item);
1075                         spin_lock(&fs_info->fs_roots_radix_lock);
1076                         if (err)
1077                                 break;
1078                 }
1079         }
1080         spin_unlock(&fs_info->fs_roots_radix_lock);
1081         return err;
1082 }
1083
1084 /*
1085  * defrag a given btree.
1086  * Every leaf in the btree is read and defragged.
1087  */
1088 int btrfs_defrag_root(struct btrfs_root *root)
1089 {
1090         struct btrfs_fs_info *info = root->fs_info;
1091         struct btrfs_trans_handle *trans;
1092         int ret;
1093
1094         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1095                 return 0;
1096
1097         while (1) {
1098                 trans = btrfs_start_transaction(root, 0);
1099                 if (IS_ERR(trans))
1100                         return PTR_ERR(trans);
1101
1102                 ret = btrfs_defrag_leaves(trans, root);
1103
1104                 btrfs_end_transaction(trans, root);
1105                 btrfs_btree_balance_dirty(info->tree_root);
1106                 cond_resched();
1107
1108                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1109                         break;
1110
1111                 if (btrfs_defrag_cancelled(root->fs_info)) {
1112                         pr_debug("BTRFS: defrag_root cancelled\n");
1113                         ret = -EAGAIN;
1114                         break;
1115                 }
1116         }
1117         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1118         return ret;
1119 }
1120
1121 /*
1122  * new snapshots need to be created at a very specific time in the
1123  * transaction commit.  This does the actual creation.
1124  *
1125  * Note:
1126  * If the error which may affect the commitment of the current transaction
1127  * happens, we should return the error number. If the error which just affect
1128  * the creation of the pending snapshots, just return 0.
1129  */
1130 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1131                                    struct btrfs_fs_info *fs_info,
1132                                    struct btrfs_pending_snapshot *pending)
1133 {
1134         struct btrfs_key key;
1135         struct btrfs_root_item *new_root_item;
1136         struct btrfs_root *tree_root = fs_info->tree_root;
1137         struct btrfs_root *root = pending->root;
1138         struct btrfs_root *parent_root;
1139         struct btrfs_block_rsv *rsv;
1140         struct inode *parent_inode;
1141         struct btrfs_path *path;
1142         struct btrfs_dir_item *dir_item;
1143         struct dentry *dentry;
1144         struct extent_buffer *tmp;
1145         struct extent_buffer *old;
1146         struct timespec cur_time = CURRENT_TIME;
1147         int ret = 0;
1148         u64 to_reserve = 0;
1149         u64 index = 0;
1150         u64 objectid;
1151         u64 root_flags;
1152         uuid_le new_uuid;
1153
1154         path = btrfs_alloc_path();
1155         if (!path) {
1156                 pending->error = -ENOMEM;
1157                 return 0;
1158         }
1159
1160         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1161         if (!new_root_item) {
1162                 pending->error = -ENOMEM;
1163                 goto root_item_alloc_fail;
1164         }
1165
1166         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1167         if (pending->error)
1168                 goto no_free_objectid;
1169
1170         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1171
1172         if (to_reserve > 0) {
1173                 pending->error = btrfs_block_rsv_add(root,
1174                                                      &pending->block_rsv,
1175                                                      to_reserve,
1176                                                      BTRFS_RESERVE_NO_FLUSH);
1177                 if (pending->error)
1178                         goto no_free_objectid;
1179         }
1180
1181         key.objectid = objectid;
1182         key.offset = (u64)-1;
1183         key.type = BTRFS_ROOT_ITEM_KEY;
1184
1185         rsv = trans->block_rsv;
1186         trans->block_rsv = &pending->block_rsv;
1187         trans->bytes_reserved = trans->block_rsv->reserved;
1188
1189         dentry = pending->dentry;
1190         parent_inode = pending->dir;
1191         parent_root = BTRFS_I(parent_inode)->root;
1192         record_root_in_trans(trans, parent_root);
1193
1194         /*
1195          * insert the directory item
1196          */
1197         ret = btrfs_set_inode_index(parent_inode, &index);
1198         BUG_ON(ret); /* -ENOMEM */
1199
1200         /* check if there is a file/dir which has the same name. */
1201         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1202                                          btrfs_ino(parent_inode),
1203                                          dentry->d_name.name,
1204                                          dentry->d_name.len, 0);
1205         if (dir_item != NULL && !IS_ERR(dir_item)) {
1206                 pending->error = -EEXIST;
1207                 goto dir_item_existed;
1208         } else if (IS_ERR(dir_item)) {
1209                 ret = PTR_ERR(dir_item);
1210                 btrfs_abort_transaction(trans, root, ret);
1211                 goto fail;
1212         }
1213         btrfs_release_path(path);
1214
1215         /*
1216          * pull in the delayed directory update
1217          * and the delayed inode item
1218          * otherwise we corrupt the FS during
1219          * snapshot
1220          */
1221         ret = btrfs_run_delayed_items(trans, root);
1222         if (ret) {      /* Transaction aborted */
1223                 btrfs_abort_transaction(trans, root, ret);
1224                 goto fail;
1225         }
1226
1227         record_root_in_trans(trans, root);
1228         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1229         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1230         btrfs_check_and_init_root_item(new_root_item);
1231
1232         root_flags = btrfs_root_flags(new_root_item);
1233         if (pending->readonly)
1234                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1235         else
1236                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1237         btrfs_set_root_flags(new_root_item, root_flags);
1238
1239         btrfs_set_root_generation_v2(new_root_item,
1240                         trans->transid);
1241         uuid_le_gen(&new_uuid);
1242         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1243         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1244                         BTRFS_UUID_SIZE);
1245         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1246                 memset(new_root_item->received_uuid, 0,
1247                        sizeof(new_root_item->received_uuid));
1248                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1249                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1250                 btrfs_set_root_stransid(new_root_item, 0);
1251                 btrfs_set_root_rtransid(new_root_item, 0);
1252         }
1253         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1254         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1255         btrfs_set_root_otransid(new_root_item, trans->transid);
1256
1257         old = btrfs_lock_root_node(root);
1258         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1259         if (ret) {
1260                 btrfs_tree_unlock(old);
1261                 free_extent_buffer(old);
1262                 btrfs_abort_transaction(trans, root, ret);
1263                 goto fail;
1264         }
1265
1266         btrfs_set_lock_blocking(old);
1267
1268         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1269         /* clean up in any case */
1270         btrfs_tree_unlock(old);
1271         free_extent_buffer(old);
1272         if (ret) {
1273                 btrfs_abort_transaction(trans, root, ret);
1274                 goto fail;
1275         }
1276
1277         /*
1278          * We need to flush delayed refs in order to make sure all of our quota
1279          * operations have been done before we call btrfs_qgroup_inherit.
1280          */
1281         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1282         if (ret) {
1283                 btrfs_abort_transaction(trans, root, ret);
1284                 goto fail;
1285         }
1286
1287         ret = btrfs_qgroup_inherit(trans, fs_info,
1288                                    root->root_key.objectid,
1289                                    objectid, pending->inherit);
1290         if (ret) {
1291                 btrfs_abort_transaction(trans, root, ret);
1292                 goto fail;
1293         }
1294
1295         /* see comments in should_cow_block() */
1296         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1297         smp_wmb();
1298
1299         btrfs_set_root_node(new_root_item, tmp);
1300         /* record when the snapshot was created in key.offset */
1301         key.offset = trans->transid;
1302         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1303         btrfs_tree_unlock(tmp);
1304         free_extent_buffer(tmp);
1305         if (ret) {
1306                 btrfs_abort_transaction(trans, root, ret);
1307                 goto fail;
1308         }
1309
1310         /*
1311          * insert root back/forward references
1312          */
1313         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1314                                  parent_root->root_key.objectid,
1315                                  btrfs_ino(parent_inode), index,
1316                                  dentry->d_name.name, dentry->d_name.len);
1317         if (ret) {
1318                 btrfs_abort_transaction(trans, root, ret);
1319                 goto fail;
1320         }
1321
1322         key.offset = (u64)-1;
1323         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1324         if (IS_ERR(pending->snap)) {
1325                 ret = PTR_ERR(pending->snap);
1326                 btrfs_abort_transaction(trans, root, ret);
1327                 goto fail;
1328         }
1329
1330         ret = btrfs_reloc_post_snapshot(trans, pending);
1331         if (ret) {
1332                 btrfs_abort_transaction(trans, root, ret);
1333                 goto fail;
1334         }
1335
1336         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1337         if (ret) {
1338                 btrfs_abort_transaction(trans, root, ret);
1339                 goto fail;
1340         }
1341
1342         ret = btrfs_insert_dir_item(trans, parent_root,
1343                                     dentry->d_name.name, dentry->d_name.len,
1344                                     parent_inode, &key,
1345                                     BTRFS_FT_DIR, index);
1346         /* We have check then name at the beginning, so it is impossible. */
1347         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1348         if (ret) {
1349                 btrfs_abort_transaction(trans, root, ret);
1350                 goto fail;
1351         }
1352
1353         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1354                                          dentry->d_name.len * 2);
1355         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1356         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1357         if (ret) {
1358                 btrfs_abort_transaction(trans, root, ret);
1359                 goto fail;
1360         }
1361         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1362                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1363         if (ret) {
1364                 btrfs_abort_transaction(trans, root, ret);
1365                 goto fail;
1366         }
1367         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1368                 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1369                                           new_root_item->received_uuid,
1370                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1371                                           objectid);
1372                 if (ret && ret != -EEXIST) {
1373                         btrfs_abort_transaction(trans, root, ret);
1374                         goto fail;
1375                 }
1376         }
1377 fail:
1378         pending->error = ret;
1379 dir_item_existed:
1380         trans->block_rsv = rsv;
1381         trans->bytes_reserved = 0;
1382 no_free_objectid:
1383         kfree(new_root_item);
1384 root_item_alloc_fail:
1385         btrfs_free_path(path);
1386         return ret;
1387 }
1388
1389 /*
1390  * create all the snapshots we've scheduled for creation
1391  */
1392 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1393                                              struct btrfs_fs_info *fs_info)
1394 {
1395         struct btrfs_pending_snapshot *pending, *next;
1396         struct list_head *head = &trans->transaction->pending_snapshots;
1397         int ret = 0;
1398
1399         list_for_each_entry_safe(pending, next, head, list) {
1400                 list_del(&pending->list);
1401                 ret = create_pending_snapshot(trans, fs_info, pending);
1402                 if (ret)
1403                         break;
1404         }
1405         return ret;
1406 }
1407
1408 static void update_super_roots(struct btrfs_root *root)
1409 {
1410         struct btrfs_root_item *root_item;
1411         struct btrfs_super_block *super;
1412
1413         super = root->fs_info->super_copy;
1414
1415         root_item = &root->fs_info->chunk_root->root_item;
1416         super->chunk_root = root_item->bytenr;
1417         super->chunk_root_generation = root_item->generation;
1418         super->chunk_root_level = root_item->level;
1419
1420         root_item = &root->fs_info->tree_root->root_item;
1421         super->root = root_item->bytenr;
1422         super->generation = root_item->generation;
1423         super->root_level = root_item->level;
1424         if (btrfs_test_opt(root, SPACE_CACHE))
1425                 super->cache_generation = root_item->generation;
1426         if (root->fs_info->update_uuid_tree_gen)
1427                 super->uuid_tree_generation = root_item->generation;
1428 }
1429
1430 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1431 {
1432         struct btrfs_transaction *trans;
1433         int ret = 0;
1434
1435         spin_lock(&info->trans_lock);
1436         trans = info->running_transaction;
1437         if (trans)
1438                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1439         spin_unlock(&info->trans_lock);
1440         return ret;
1441 }
1442
1443 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1444 {
1445         struct btrfs_transaction *trans;
1446         int ret = 0;
1447
1448         spin_lock(&info->trans_lock);
1449         trans = info->running_transaction;
1450         if (trans)
1451                 ret = is_transaction_blocked(trans);
1452         spin_unlock(&info->trans_lock);
1453         return ret;
1454 }
1455
1456 /*
1457  * wait for the current transaction commit to start and block subsequent
1458  * transaction joins
1459  */
1460 static void wait_current_trans_commit_start(struct btrfs_root *root,
1461                                             struct btrfs_transaction *trans)
1462 {
1463         wait_event(root->fs_info->transaction_blocked_wait,
1464                    trans->state >= TRANS_STATE_COMMIT_START ||
1465                    trans->aborted);
1466 }
1467
1468 /*
1469  * wait for the current transaction to start and then become unblocked.
1470  * caller holds ref.
1471  */
1472 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1473                                          struct btrfs_transaction *trans)
1474 {
1475         wait_event(root->fs_info->transaction_wait,
1476                    trans->state >= TRANS_STATE_UNBLOCKED ||
1477                    trans->aborted);
1478 }
1479
1480 /*
1481  * commit transactions asynchronously. once btrfs_commit_transaction_async
1482  * returns, any subsequent transaction will not be allowed to join.
1483  */
1484 struct btrfs_async_commit {
1485         struct btrfs_trans_handle *newtrans;
1486         struct btrfs_root *root;
1487         struct work_struct work;
1488 };
1489
1490 static void do_async_commit(struct work_struct *work)
1491 {
1492         struct btrfs_async_commit *ac =
1493                 container_of(work, struct btrfs_async_commit, work);
1494
1495         /*
1496          * We've got freeze protection passed with the transaction.
1497          * Tell lockdep about it.
1498          */
1499         if (ac->newtrans->type & __TRANS_FREEZABLE)
1500                 rwsem_acquire_read(
1501                      &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1502                      0, 1, _THIS_IP_);
1503
1504         current->journal_info = ac->newtrans;
1505
1506         btrfs_commit_transaction(ac->newtrans, ac->root);
1507         kfree(ac);
1508 }
1509
1510 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1511                                    struct btrfs_root *root,
1512                                    int wait_for_unblock)
1513 {
1514         struct btrfs_async_commit *ac;
1515         struct btrfs_transaction *cur_trans;
1516
1517         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1518         if (!ac)
1519                 return -ENOMEM;
1520
1521         INIT_WORK(&ac->work, do_async_commit);
1522         ac->root = root;
1523         ac->newtrans = btrfs_join_transaction(root);
1524         if (IS_ERR(ac->newtrans)) {
1525                 int err = PTR_ERR(ac->newtrans);
1526                 kfree(ac);
1527                 return err;
1528         }
1529
1530         /* take transaction reference */
1531         cur_trans = trans->transaction;
1532         atomic_inc(&cur_trans->use_count);
1533
1534         btrfs_end_transaction(trans, root);
1535
1536         /*
1537          * Tell lockdep we've released the freeze rwsem, since the
1538          * async commit thread will be the one to unlock it.
1539          */
1540         if (ac->newtrans->type & __TRANS_FREEZABLE)
1541                 rwsem_release(
1542                         &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1543                         1, _THIS_IP_);
1544
1545         schedule_work(&ac->work);
1546
1547         /* wait for transaction to start and unblock */
1548         if (wait_for_unblock)
1549                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1550         else
1551                 wait_current_trans_commit_start(root, cur_trans);
1552
1553         if (current->journal_info == trans)
1554                 current->journal_info = NULL;
1555
1556         btrfs_put_transaction(cur_trans);
1557         return 0;
1558 }
1559
1560
1561 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1562                                 struct btrfs_root *root, int err)
1563 {
1564         struct btrfs_transaction *cur_trans = trans->transaction;
1565         DEFINE_WAIT(wait);
1566
1567         WARN_ON(trans->use_count > 1);
1568
1569         btrfs_abort_transaction(trans, root, err);
1570
1571         spin_lock(&root->fs_info->trans_lock);
1572
1573         /*
1574          * If the transaction is removed from the list, it means this
1575          * transaction has been committed successfully, so it is impossible
1576          * to call the cleanup function.
1577          */
1578         BUG_ON(list_empty(&cur_trans->list));
1579
1580         list_del_init(&cur_trans->list);
1581         if (cur_trans == root->fs_info->running_transaction) {
1582                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1583                 spin_unlock(&root->fs_info->trans_lock);
1584                 wait_event(cur_trans->writer_wait,
1585                            atomic_read(&cur_trans->num_writers) == 1);
1586
1587                 spin_lock(&root->fs_info->trans_lock);
1588         }
1589         spin_unlock(&root->fs_info->trans_lock);
1590
1591         btrfs_cleanup_one_transaction(trans->transaction, root);
1592
1593         spin_lock(&root->fs_info->trans_lock);
1594         if (cur_trans == root->fs_info->running_transaction)
1595                 root->fs_info->running_transaction = NULL;
1596         spin_unlock(&root->fs_info->trans_lock);
1597
1598         if (trans->type & __TRANS_FREEZABLE)
1599                 sb_end_intwrite(root->fs_info->sb);
1600         btrfs_put_transaction(cur_trans);
1601         btrfs_put_transaction(cur_trans);
1602
1603         trace_btrfs_transaction_commit(root);
1604
1605         if (current->journal_info == trans)
1606                 current->journal_info = NULL;
1607         btrfs_scrub_cancel(root->fs_info);
1608
1609         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1610 }
1611
1612 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1613                                           struct btrfs_root *root)
1614 {
1615         int ret;
1616
1617         ret = btrfs_run_delayed_items(trans, root);
1618         /*
1619          * running the delayed items may have added new refs. account
1620          * them now so that they hinder processing of more delayed refs
1621          * as little as possible.
1622          */
1623         if (ret)
1624                 return ret;
1625
1626         /*
1627          * rename don't use btrfs_join_transaction, so, once we
1628          * set the transaction to blocked above, we aren't going
1629          * to get any new ordered operations.  We can safely run
1630          * it here and no for sure that nothing new will be added
1631          * to the list
1632          */
1633         ret = btrfs_run_ordered_operations(trans, root, 1);
1634
1635         return ret;
1636 }
1637
1638 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1639 {
1640         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1641                 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1642         return 0;
1643 }
1644
1645 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1646 {
1647         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1648                 btrfs_wait_ordered_roots(fs_info, -1);
1649 }
1650
1651 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1652                              struct btrfs_root *root)
1653 {
1654         struct btrfs_transaction *cur_trans = trans->transaction;
1655         struct btrfs_transaction *prev_trans = NULL;
1656         int ret;
1657
1658         ret = btrfs_run_ordered_operations(trans, root, 0);
1659         if (ret) {
1660                 btrfs_abort_transaction(trans, root, ret);
1661                 btrfs_end_transaction(trans, root);
1662                 return ret;
1663         }
1664
1665         /* Stop the commit early if ->aborted is set */
1666         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1667                 ret = cur_trans->aborted;
1668                 btrfs_end_transaction(trans, root);
1669                 return ret;
1670         }
1671
1672         /* make a pass through all the delayed refs we have so far
1673          * any runnings procs may add more while we are here
1674          */
1675         ret = btrfs_run_delayed_refs(trans, root, 0);
1676         if (ret) {
1677                 btrfs_end_transaction(trans, root);
1678                 return ret;
1679         }
1680
1681         btrfs_trans_release_metadata(trans, root);
1682         trans->block_rsv = NULL;
1683         if (trans->qgroup_reserved) {
1684                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1685                 trans->qgroup_reserved = 0;
1686         }
1687
1688         cur_trans = trans->transaction;
1689
1690         /*
1691          * set the flushing flag so procs in this transaction have to
1692          * start sending their work down.
1693          */
1694         cur_trans->delayed_refs.flushing = 1;
1695         smp_wmb();
1696
1697         if (!list_empty(&trans->new_bgs))
1698                 btrfs_create_pending_block_groups(trans, root);
1699
1700         ret = btrfs_run_delayed_refs(trans, root, 0);
1701         if (ret) {
1702                 btrfs_end_transaction(trans, root);
1703                 return ret;
1704         }
1705
1706         spin_lock(&root->fs_info->trans_lock);
1707         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1708                 spin_unlock(&root->fs_info->trans_lock);
1709                 atomic_inc(&cur_trans->use_count);
1710                 ret = btrfs_end_transaction(trans, root);
1711
1712                 wait_for_commit(root, cur_trans);
1713
1714                 btrfs_put_transaction(cur_trans);
1715
1716                 return ret;
1717         }
1718
1719         cur_trans->state = TRANS_STATE_COMMIT_START;
1720         wake_up(&root->fs_info->transaction_blocked_wait);
1721
1722         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1723                 prev_trans = list_entry(cur_trans->list.prev,
1724                                         struct btrfs_transaction, list);
1725                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1726                         atomic_inc(&prev_trans->use_count);
1727                         spin_unlock(&root->fs_info->trans_lock);
1728
1729                         wait_for_commit(root, prev_trans);
1730
1731                         btrfs_put_transaction(prev_trans);
1732                 } else {
1733                         spin_unlock(&root->fs_info->trans_lock);
1734                 }
1735         } else {
1736                 spin_unlock(&root->fs_info->trans_lock);
1737         }
1738
1739         extwriter_counter_dec(cur_trans, trans->type);
1740
1741         ret = btrfs_start_delalloc_flush(root->fs_info);
1742         if (ret)
1743                 goto cleanup_transaction;
1744
1745         ret = btrfs_flush_all_pending_stuffs(trans, root);
1746         if (ret)
1747                 goto cleanup_transaction;
1748
1749         wait_event(cur_trans->writer_wait,
1750                    extwriter_counter_read(cur_trans) == 0);
1751
1752         /* some pending stuffs might be added after the previous flush. */
1753         ret = btrfs_flush_all_pending_stuffs(trans, root);
1754         if (ret)
1755                 goto cleanup_transaction;
1756
1757         btrfs_wait_delalloc_flush(root->fs_info);
1758
1759         btrfs_scrub_pause(root);
1760         /*
1761          * Ok now we need to make sure to block out any other joins while we
1762          * commit the transaction.  We could have started a join before setting
1763          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1764          */
1765         spin_lock(&root->fs_info->trans_lock);
1766         cur_trans->state = TRANS_STATE_COMMIT_DOING;
1767         spin_unlock(&root->fs_info->trans_lock);
1768         wait_event(cur_trans->writer_wait,
1769                    atomic_read(&cur_trans->num_writers) == 1);
1770
1771         /* ->aborted might be set after the previous check, so check it */
1772         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1773                 ret = cur_trans->aborted;
1774                 goto scrub_continue;
1775         }
1776         /*
1777          * the reloc mutex makes sure that we stop
1778          * the balancing code from coming in and moving
1779          * extents around in the middle of the commit
1780          */
1781         mutex_lock(&root->fs_info->reloc_mutex);
1782
1783         /*
1784          * We needn't worry about the delayed items because we will
1785          * deal with them in create_pending_snapshot(), which is the
1786          * core function of the snapshot creation.
1787          */
1788         ret = create_pending_snapshots(trans, root->fs_info);
1789         if (ret) {
1790                 mutex_unlock(&root->fs_info->reloc_mutex);
1791                 goto scrub_continue;
1792         }
1793
1794         /*
1795          * We insert the dir indexes of the snapshots and update the inode
1796          * of the snapshots' parents after the snapshot creation, so there
1797          * are some delayed items which are not dealt with. Now deal with
1798          * them.
1799          *
1800          * We needn't worry that this operation will corrupt the snapshots,
1801          * because all the tree which are snapshoted will be forced to COW
1802          * the nodes and leaves.
1803          */
1804         ret = btrfs_run_delayed_items(trans, root);
1805         if (ret) {
1806                 mutex_unlock(&root->fs_info->reloc_mutex);
1807                 goto scrub_continue;
1808         }
1809
1810         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1811         if (ret) {
1812                 mutex_unlock(&root->fs_info->reloc_mutex);
1813                 goto scrub_continue;
1814         }
1815
1816         /*
1817          * make sure none of the code above managed to slip in a
1818          * delayed item
1819          */
1820         btrfs_assert_delayed_root_empty(root);
1821
1822         WARN_ON(cur_trans != trans->transaction);
1823
1824         /* btrfs_commit_tree_roots is responsible for getting the
1825          * various roots consistent with each other.  Every pointer
1826          * in the tree of tree roots has to point to the most up to date
1827          * root for every subvolume and other tree.  So, we have to keep
1828          * the tree logging code from jumping in and changing any
1829          * of the trees.
1830          *
1831          * At this point in the commit, there can't be any tree-log
1832          * writers, but a little lower down we drop the trans mutex
1833          * and let new people in.  By holding the tree_log_mutex
1834          * from now until after the super is written, we avoid races
1835          * with the tree-log code.
1836          */
1837         mutex_lock(&root->fs_info->tree_log_mutex);
1838
1839         ret = commit_fs_roots(trans, root);
1840         if (ret) {
1841                 mutex_unlock(&root->fs_info->tree_log_mutex);
1842                 mutex_unlock(&root->fs_info->reloc_mutex);
1843                 goto scrub_continue;
1844         }
1845
1846         /*
1847          * Since the transaction is done, we should set the inode map cache flag
1848          * before any other comming transaction.
1849          */
1850         if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1851                 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1852         else
1853                 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1854
1855         /* commit_fs_roots gets rid of all the tree log roots, it is now
1856          * safe to free the root of tree log roots
1857          */
1858         btrfs_free_log_root_tree(trans, root->fs_info);
1859
1860         ret = commit_cowonly_roots(trans, root);
1861         if (ret) {
1862                 mutex_unlock(&root->fs_info->tree_log_mutex);
1863                 mutex_unlock(&root->fs_info->reloc_mutex);
1864                 goto scrub_continue;
1865         }
1866
1867         /*
1868          * The tasks which save the space cache and inode cache may also
1869          * update ->aborted, check it.
1870          */
1871         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1872                 ret = cur_trans->aborted;
1873                 mutex_unlock(&root->fs_info->tree_log_mutex);
1874                 mutex_unlock(&root->fs_info->reloc_mutex);
1875                 goto scrub_continue;
1876         }
1877
1878         btrfs_prepare_extent_commit(trans, root);
1879
1880         cur_trans = root->fs_info->running_transaction;
1881
1882         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1883                             root->fs_info->tree_root->node);
1884         list_add_tail(&root->fs_info->tree_root->dirty_list,
1885                       &cur_trans->switch_commits);
1886
1887         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1888                             root->fs_info->chunk_root->node);
1889         list_add_tail(&root->fs_info->chunk_root->dirty_list,
1890                       &cur_trans->switch_commits);
1891
1892         switch_commit_roots(cur_trans, root->fs_info);
1893
1894         assert_qgroups_uptodate(trans);
1895         update_super_roots(root);
1896
1897         btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1898         btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1899         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1900                sizeof(*root->fs_info->super_copy));
1901
1902         spin_lock(&root->fs_info->trans_lock);
1903         cur_trans->state = TRANS_STATE_UNBLOCKED;
1904         root->fs_info->running_transaction = NULL;
1905         spin_unlock(&root->fs_info->trans_lock);
1906         mutex_unlock(&root->fs_info->reloc_mutex);
1907
1908         wake_up(&root->fs_info->transaction_wait);
1909
1910         ret = btrfs_write_and_wait_transaction(trans, root);
1911         if (ret) {
1912                 btrfs_error(root->fs_info, ret,
1913                             "Error while writing out transaction");
1914                 mutex_unlock(&root->fs_info->tree_log_mutex);
1915                 goto scrub_continue;
1916         }
1917
1918         ret = write_ctree_super(trans, root, 0);
1919         if (ret) {
1920                 mutex_unlock(&root->fs_info->tree_log_mutex);
1921                 goto scrub_continue;
1922         }
1923
1924         /*
1925          * the super is written, we can safely allow the tree-loggers
1926          * to go about their business
1927          */
1928         mutex_unlock(&root->fs_info->tree_log_mutex);
1929
1930         btrfs_finish_extent_commit(trans, root);
1931
1932         root->fs_info->last_trans_committed = cur_trans->transid;
1933         /*
1934          * We needn't acquire the lock here because there is no other task
1935          * which can change it.
1936          */
1937         cur_trans->state = TRANS_STATE_COMPLETED;
1938         wake_up(&cur_trans->commit_wait);
1939
1940         spin_lock(&root->fs_info->trans_lock);
1941         list_del_init(&cur_trans->list);
1942         spin_unlock(&root->fs_info->trans_lock);
1943
1944         btrfs_put_transaction(cur_trans);
1945         btrfs_put_transaction(cur_trans);
1946
1947         if (trans->type & __TRANS_FREEZABLE)
1948                 sb_end_intwrite(root->fs_info->sb);
1949
1950         trace_btrfs_transaction_commit(root);
1951
1952         btrfs_scrub_continue(root);
1953
1954         if (current->journal_info == trans)
1955                 current->journal_info = NULL;
1956
1957         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1958
1959         if (current != root->fs_info->transaction_kthread)
1960                 btrfs_run_delayed_iputs(root);
1961
1962         return ret;
1963
1964 scrub_continue:
1965         btrfs_scrub_continue(root);
1966 cleanup_transaction:
1967         btrfs_trans_release_metadata(trans, root);
1968         trans->block_rsv = NULL;
1969         if (trans->qgroup_reserved) {
1970                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1971                 trans->qgroup_reserved = 0;
1972         }
1973         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1974         if (current->journal_info == trans)
1975                 current->journal_info = NULL;
1976         cleanup_transaction(trans, root, ret);
1977
1978         return ret;
1979 }
1980
1981 /*
1982  * return < 0 if error
1983  * 0 if there are no more dead_roots at the time of call
1984  * 1 there are more to be processed, call me again
1985  *
1986  * The return value indicates there are certainly more snapshots to delete, but
1987  * if there comes a new one during processing, it may return 0. We don't mind,
1988  * because btrfs_commit_super will poke cleaner thread and it will process it a
1989  * few seconds later.
1990  */
1991 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1992 {
1993         int ret;
1994         struct btrfs_fs_info *fs_info = root->fs_info;
1995
1996         spin_lock(&fs_info->trans_lock);
1997         if (list_empty(&fs_info->dead_roots)) {
1998                 spin_unlock(&fs_info->trans_lock);
1999                 return 0;
2000         }
2001         root = list_first_entry(&fs_info->dead_roots,
2002                         struct btrfs_root, root_list);
2003         list_del_init(&root->root_list);
2004         spin_unlock(&fs_info->trans_lock);
2005
2006         pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2007
2008         btrfs_kill_all_delayed_nodes(root);
2009
2010         if (btrfs_header_backref_rev(root->node) <
2011                         BTRFS_MIXED_BACKREF_REV)
2012                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2013         else
2014                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2015         /*
2016          * If we encounter a transaction abort during snapshot cleaning, we
2017          * don't want to crash here
2018          */
2019         return (ret < 0) ? 0 : 1;
2020 }