Merge tag 'trace-v4.5-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[cascardo/linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34
35 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
36 {
37         struct request_queue *q = bdev->bd_queue;
38         long rc = -EIO;
39
40         dax->addr = (void __pmem *) ERR_PTR(-EIO);
41         if (blk_queue_enter(q, true) != 0)
42                 return rc;
43
44         rc = bdev_direct_access(bdev, dax);
45         if (rc < 0) {
46                 dax->addr = (void __pmem *) ERR_PTR(rc);
47                 blk_queue_exit(q);
48                 return rc;
49         }
50         return rc;
51 }
52
53 static void dax_unmap_atomic(struct block_device *bdev,
54                 const struct blk_dax_ctl *dax)
55 {
56         if (IS_ERR(dax->addr))
57                 return;
58         blk_queue_exit(bdev->bd_queue);
59 }
60
61 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
62 {
63         struct page *page = alloc_pages(GFP_KERNEL, 0);
64         struct blk_dax_ctl dax = {
65                 .size = PAGE_SIZE,
66                 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
67         };
68         long rc;
69
70         if (!page)
71                 return ERR_PTR(-ENOMEM);
72
73         rc = dax_map_atomic(bdev, &dax);
74         if (rc < 0)
75                 return ERR_PTR(rc);
76         memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
77         dax_unmap_atomic(bdev, &dax);
78         return page;
79 }
80
81 /*
82  * dax_clear_blocks() is called from within transaction context from XFS,
83  * and hence this means the stack from this point must follow GFP_NOFS
84  * semantics for all operations.
85  */
86 int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
87 {
88         struct block_device *bdev = inode->i_sb->s_bdev;
89         struct blk_dax_ctl dax = {
90                 .sector = block << (inode->i_blkbits - 9),
91                 .size = _size,
92         };
93
94         might_sleep();
95         do {
96                 long count, sz;
97
98                 count = dax_map_atomic(bdev, &dax);
99                 if (count < 0)
100                         return count;
101                 sz = min_t(long, count, SZ_128K);
102                 clear_pmem(dax.addr, sz);
103                 dax.size -= sz;
104                 dax.sector += sz / 512;
105                 dax_unmap_atomic(bdev, &dax);
106                 cond_resched();
107         } while (dax.size);
108
109         wmb_pmem();
110         return 0;
111 }
112 EXPORT_SYMBOL_GPL(dax_clear_blocks);
113
114 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
115 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
116                 loff_t pos, loff_t end)
117 {
118         loff_t final = end - pos + first; /* The final byte of the buffer */
119
120         if (first > 0)
121                 clear_pmem(addr, first);
122         if (final < size)
123                 clear_pmem(addr + final, size - final);
124 }
125
126 static bool buffer_written(struct buffer_head *bh)
127 {
128         return buffer_mapped(bh) && !buffer_unwritten(bh);
129 }
130
131 /*
132  * When ext4 encounters a hole, it returns without modifying the buffer_head
133  * which means that we can't trust b_size.  To cope with this, we set b_state
134  * to 0 before calling get_block and, if any bit is set, we know we can trust
135  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
136  * and would save us time calling get_block repeatedly.
137  */
138 static bool buffer_size_valid(struct buffer_head *bh)
139 {
140         return bh->b_state != 0;
141 }
142
143
144 static sector_t to_sector(const struct buffer_head *bh,
145                 const struct inode *inode)
146 {
147         sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
148
149         return sector;
150 }
151
152 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
153                       loff_t start, loff_t end, get_block_t get_block,
154                       struct buffer_head *bh)
155 {
156         loff_t pos = start, max = start, bh_max = start;
157         bool hole = false, need_wmb = false;
158         struct block_device *bdev = NULL;
159         int rw = iov_iter_rw(iter), rc;
160         long map_len = 0;
161         struct blk_dax_ctl dax = {
162                 .addr = (void __pmem *) ERR_PTR(-EIO),
163         };
164
165         if (rw == READ)
166                 end = min(end, i_size_read(inode));
167
168         while (pos < end) {
169                 size_t len;
170                 if (pos == max) {
171                         unsigned blkbits = inode->i_blkbits;
172                         long page = pos >> PAGE_SHIFT;
173                         sector_t block = page << (PAGE_SHIFT - blkbits);
174                         unsigned first = pos - (block << blkbits);
175                         long size;
176
177                         if (pos == bh_max) {
178                                 bh->b_size = PAGE_ALIGN(end - pos);
179                                 bh->b_state = 0;
180                                 rc = get_block(inode, block, bh, rw == WRITE);
181                                 if (rc)
182                                         break;
183                                 if (!buffer_size_valid(bh))
184                                         bh->b_size = 1 << blkbits;
185                                 bh_max = pos - first + bh->b_size;
186                                 bdev = bh->b_bdev;
187                         } else {
188                                 unsigned done = bh->b_size -
189                                                 (bh_max - (pos - first));
190                                 bh->b_blocknr += done >> blkbits;
191                                 bh->b_size -= done;
192                         }
193
194                         hole = rw == READ && !buffer_written(bh);
195                         if (hole) {
196                                 size = bh->b_size - first;
197                         } else {
198                                 dax_unmap_atomic(bdev, &dax);
199                                 dax.sector = to_sector(bh, inode);
200                                 dax.size = bh->b_size;
201                                 map_len = dax_map_atomic(bdev, &dax);
202                                 if (map_len < 0) {
203                                         rc = map_len;
204                                         break;
205                                 }
206                                 if (buffer_unwritten(bh) || buffer_new(bh)) {
207                                         dax_new_buf(dax.addr, map_len, first,
208                                                         pos, end);
209                                         need_wmb = true;
210                                 }
211                                 dax.addr += first;
212                                 size = map_len - first;
213                         }
214                         max = min(pos + size, end);
215                 }
216
217                 if (iov_iter_rw(iter) == WRITE) {
218                         len = copy_from_iter_pmem(dax.addr, max - pos, iter);
219                         need_wmb = true;
220                 } else if (!hole)
221                         len = copy_to_iter((void __force *) dax.addr, max - pos,
222                                         iter);
223                 else
224                         len = iov_iter_zero(max - pos, iter);
225
226                 if (!len) {
227                         rc = -EFAULT;
228                         break;
229                 }
230
231                 pos += len;
232                 if (!IS_ERR(dax.addr))
233                         dax.addr += len;
234         }
235
236         if (need_wmb)
237                 wmb_pmem();
238         dax_unmap_atomic(bdev, &dax);
239
240         return (pos == start) ? rc : pos - start;
241 }
242
243 /**
244  * dax_do_io - Perform I/O to a DAX file
245  * @iocb: The control block for this I/O
246  * @inode: The file which the I/O is directed at
247  * @iter: The addresses to do I/O from or to
248  * @pos: The file offset where the I/O starts
249  * @get_block: The filesystem method used to translate file offsets to blocks
250  * @end_io: A filesystem callback for I/O completion
251  * @flags: See below
252  *
253  * This function uses the same locking scheme as do_blockdev_direct_IO:
254  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
255  * caller for writes.  For reads, we take and release the i_mutex ourselves.
256  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
257  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
258  * is in progress.
259  */
260 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
261                   struct iov_iter *iter, loff_t pos, get_block_t get_block,
262                   dio_iodone_t end_io, int flags)
263 {
264         struct buffer_head bh;
265         ssize_t retval = -EINVAL;
266         loff_t end = pos + iov_iter_count(iter);
267
268         memset(&bh, 0, sizeof(bh));
269         bh.b_bdev = inode->i_sb->s_bdev;
270
271         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
272                 struct address_space *mapping = inode->i_mapping;
273                 inode_lock(inode);
274                 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
275                 if (retval) {
276                         inode_unlock(inode);
277                         goto out;
278                 }
279         }
280
281         /* Protects against truncate */
282         if (!(flags & DIO_SKIP_DIO_COUNT))
283                 inode_dio_begin(inode);
284
285         retval = dax_io(inode, iter, pos, end, get_block, &bh);
286
287         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
288                 inode_unlock(inode);
289
290         if ((retval > 0) && end_io)
291                 end_io(iocb, pos, retval, bh.b_private);
292
293         if (!(flags & DIO_SKIP_DIO_COUNT))
294                 inode_dio_end(inode);
295  out:
296         return retval;
297 }
298 EXPORT_SYMBOL_GPL(dax_do_io);
299
300 /*
301  * The user has performed a load from a hole in the file.  Allocating
302  * a new page in the file would cause excessive storage usage for
303  * workloads with sparse files.  We allocate a page cache page instead.
304  * We'll kick it out of the page cache if it's ever written to,
305  * otherwise it will simply fall out of the page cache under memory
306  * pressure without ever having been dirtied.
307  */
308 static int dax_load_hole(struct address_space *mapping, struct page *page,
309                                                         struct vm_fault *vmf)
310 {
311         unsigned long size;
312         struct inode *inode = mapping->host;
313         if (!page)
314                 page = find_or_create_page(mapping, vmf->pgoff,
315                                                 GFP_KERNEL | __GFP_ZERO);
316         if (!page)
317                 return VM_FAULT_OOM;
318         /* Recheck i_size under page lock to avoid truncate race */
319         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
320         if (vmf->pgoff >= size) {
321                 unlock_page(page);
322                 page_cache_release(page);
323                 return VM_FAULT_SIGBUS;
324         }
325
326         vmf->page = page;
327         return VM_FAULT_LOCKED;
328 }
329
330 static int copy_user_bh(struct page *to, struct inode *inode,
331                 struct buffer_head *bh, unsigned long vaddr)
332 {
333         struct blk_dax_ctl dax = {
334                 .sector = to_sector(bh, inode),
335                 .size = bh->b_size,
336         };
337         struct block_device *bdev = bh->b_bdev;
338         void *vto;
339
340         if (dax_map_atomic(bdev, &dax) < 0)
341                 return PTR_ERR(dax.addr);
342         vto = kmap_atomic(to);
343         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
344         kunmap_atomic(vto);
345         dax_unmap_atomic(bdev, &dax);
346         return 0;
347 }
348
349 #define NO_SECTOR -1
350 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
351
352 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
353                 sector_t sector, bool pmd_entry, bool dirty)
354 {
355         struct radix_tree_root *page_tree = &mapping->page_tree;
356         pgoff_t pmd_index = DAX_PMD_INDEX(index);
357         int type, error = 0;
358         void *entry;
359
360         WARN_ON_ONCE(pmd_entry && !dirty);
361         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
362
363         spin_lock_irq(&mapping->tree_lock);
364
365         entry = radix_tree_lookup(page_tree, pmd_index);
366         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
367                 index = pmd_index;
368                 goto dirty;
369         }
370
371         entry = radix_tree_lookup(page_tree, index);
372         if (entry) {
373                 type = RADIX_DAX_TYPE(entry);
374                 if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
375                                         type != RADIX_DAX_PMD)) {
376                         error = -EIO;
377                         goto unlock;
378                 }
379
380                 if (!pmd_entry || type == RADIX_DAX_PMD)
381                         goto dirty;
382
383                 /*
384                  * We only insert dirty PMD entries into the radix tree.  This
385                  * means we don't need to worry about removing a dirty PTE
386                  * entry and inserting a clean PMD entry, thus reducing the
387                  * range we would flush with a follow-up fsync/msync call.
388                  */
389                 radix_tree_delete(&mapping->page_tree, index);
390                 mapping->nrexceptional--;
391         }
392
393         if (sector == NO_SECTOR) {
394                 /*
395                  * This can happen during correct operation if our pfn_mkwrite
396                  * fault raced against a hole punch operation.  If this
397                  * happens the pte that was hole punched will have been
398                  * unmapped and the radix tree entry will have been removed by
399                  * the time we are called, but the call will still happen.  We
400                  * will return all the way up to wp_pfn_shared(), where the
401                  * pte_same() check will fail, eventually causing page fault
402                  * to be retried by the CPU.
403                  */
404                 goto unlock;
405         }
406
407         error = radix_tree_insert(page_tree, index,
408                         RADIX_DAX_ENTRY(sector, pmd_entry));
409         if (error)
410                 goto unlock;
411
412         mapping->nrexceptional++;
413  dirty:
414         if (dirty)
415                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
416  unlock:
417         spin_unlock_irq(&mapping->tree_lock);
418         return error;
419 }
420
421 static int dax_writeback_one(struct block_device *bdev,
422                 struct address_space *mapping, pgoff_t index, void *entry)
423 {
424         struct radix_tree_root *page_tree = &mapping->page_tree;
425         int type = RADIX_DAX_TYPE(entry);
426         struct radix_tree_node *node;
427         struct blk_dax_ctl dax;
428         void **slot;
429         int ret = 0;
430
431         spin_lock_irq(&mapping->tree_lock);
432         /*
433          * Regular page slots are stabilized by the page lock even
434          * without the tree itself locked.  These unlocked entries
435          * need verification under the tree lock.
436          */
437         if (!__radix_tree_lookup(page_tree, index, &node, &slot))
438                 goto unlock;
439         if (*slot != entry)
440                 goto unlock;
441
442         /* another fsync thread may have already written back this entry */
443         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
444                 goto unlock;
445
446         if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
447                 ret = -EIO;
448                 goto unlock;
449         }
450
451         dax.sector = RADIX_DAX_SECTOR(entry);
452         dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
453         spin_unlock_irq(&mapping->tree_lock);
454
455         /*
456          * We cannot hold tree_lock while calling dax_map_atomic() because it
457          * eventually calls cond_resched().
458          */
459         ret = dax_map_atomic(bdev, &dax);
460         if (ret < 0)
461                 return ret;
462
463         if (WARN_ON_ONCE(ret < dax.size)) {
464                 ret = -EIO;
465                 goto unmap;
466         }
467
468         wb_cache_pmem(dax.addr, dax.size);
469
470         spin_lock_irq(&mapping->tree_lock);
471         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
472         spin_unlock_irq(&mapping->tree_lock);
473  unmap:
474         dax_unmap_atomic(bdev, &dax);
475         return ret;
476
477  unlock:
478         spin_unlock_irq(&mapping->tree_lock);
479         return ret;
480 }
481
482 /*
483  * Flush the mapping to the persistent domain within the byte range of [start,
484  * end]. This is required by data integrity operations to ensure file data is
485  * on persistent storage prior to completion of the operation.
486  */
487 int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
488                 loff_t end)
489 {
490         struct inode *inode = mapping->host;
491         struct block_device *bdev = inode->i_sb->s_bdev;
492         pgoff_t start_index, end_index, pmd_index;
493         pgoff_t indices[PAGEVEC_SIZE];
494         struct pagevec pvec;
495         bool done = false;
496         int i, ret = 0;
497         void *entry;
498
499         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
500                 return -EIO;
501
502         start_index = start >> PAGE_CACHE_SHIFT;
503         end_index = end >> PAGE_CACHE_SHIFT;
504         pmd_index = DAX_PMD_INDEX(start_index);
505
506         rcu_read_lock();
507         entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
508         rcu_read_unlock();
509
510         /* see if the start of our range is covered by a PMD entry */
511         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
512                 start_index = pmd_index;
513
514         tag_pages_for_writeback(mapping, start_index, end_index);
515
516         pagevec_init(&pvec, 0);
517         while (!done) {
518                 pvec.nr = find_get_entries_tag(mapping, start_index,
519                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
520                                 pvec.pages, indices);
521
522                 if (pvec.nr == 0)
523                         break;
524
525                 for (i = 0; i < pvec.nr; i++) {
526                         if (indices[i] > end_index) {
527                                 done = true;
528                                 break;
529                         }
530
531                         ret = dax_writeback_one(bdev, mapping, indices[i],
532                                         pvec.pages[i]);
533                         if (ret < 0)
534                                 return ret;
535                 }
536         }
537         wmb_pmem();
538         return 0;
539 }
540 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
541
542 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
543                         struct vm_area_struct *vma, struct vm_fault *vmf)
544 {
545         unsigned long vaddr = (unsigned long)vmf->virtual_address;
546         struct address_space *mapping = inode->i_mapping;
547         struct block_device *bdev = bh->b_bdev;
548         struct blk_dax_ctl dax = {
549                 .sector = to_sector(bh, inode),
550                 .size = bh->b_size,
551         };
552         pgoff_t size;
553         int error;
554
555         i_mmap_lock_read(mapping);
556
557         /*
558          * Check truncate didn't happen while we were allocating a block.
559          * If it did, this block may or may not be still allocated to the
560          * file.  We can't tell the filesystem to free it because we can't
561          * take i_mutex here.  In the worst case, the file still has blocks
562          * allocated past the end of the file.
563          */
564         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
565         if (unlikely(vmf->pgoff >= size)) {
566                 error = -EIO;
567                 goto out;
568         }
569
570         if (dax_map_atomic(bdev, &dax) < 0) {
571                 error = PTR_ERR(dax.addr);
572                 goto out;
573         }
574
575         if (buffer_unwritten(bh) || buffer_new(bh)) {
576                 clear_pmem(dax.addr, PAGE_SIZE);
577                 wmb_pmem();
578         }
579         dax_unmap_atomic(bdev, &dax);
580
581         error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
582                         vmf->flags & FAULT_FLAG_WRITE);
583         if (error)
584                 goto out;
585
586         error = vm_insert_mixed(vma, vaddr, dax.pfn);
587
588  out:
589         i_mmap_unlock_read(mapping);
590
591         return error;
592 }
593
594 /**
595  * __dax_fault - handle a page fault on a DAX file
596  * @vma: The virtual memory area where the fault occurred
597  * @vmf: The description of the fault
598  * @get_block: The filesystem method used to translate file offsets to blocks
599  * @complete_unwritten: The filesystem method used to convert unwritten blocks
600  *      to written so the data written to them is exposed. This is required for
601  *      required by write faults for filesystems that will return unwritten
602  *      extent mappings from @get_block, but it is optional for reads as
603  *      dax_insert_mapping() will always zero unwritten blocks. If the fs does
604  *      not support unwritten extents, the it should pass NULL.
605  *
606  * When a page fault occurs, filesystems may call this helper in their
607  * fault handler for DAX files. __dax_fault() assumes the caller has done all
608  * the necessary locking for the page fault to proceed successfully.
609  */
610 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
611                         get_block_t get_block, dax_iodone_t complete_unwritten)
612 {
613         struct file *file = vma->vm_file;
614         struct address_space *mapping = file->f_mapping;
615         struct inode *inode = mapping->host;
616         struct page *page;
617         struct buffer_head bh;
618         unsigned long vaddr = (unsigned long)vmf->virtual_address;
619         unsigned blkbits = inode->i_blkbits;
620         sector_t block;
621         pgoff_t size;
622         int error;
623         int major = 0;
624
625         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
626         if (vmf->pgoff >= size)
627                 return VM_FAULT_SIGBUS;
628
629         memset(&bh, 0, sizeof(bh));
630         block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
631         bh.b_bdev = inode->i_sb->s_bdev;
632         bh.b_size = PAGE_SIZE;
633
634  repeat:
635         page = find_get_page(mapping, vmf->pgoff);
636         if (page) {
637                 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
638                         page_cache_release(page);
639                         return VM_FAULT_RETRY;
640                 }
641                 if (unlikely(page->mapping != mapping)) {
642                         unlock_page(page);
643                         page_cache_release(page);
644                         goto repeat;
645                 }
646                 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
647                 if (unlikely(vmf->pgoff >= size)) {
648                         /*
649                          * We have a struct page covering a hole in the file
650                          * from a read fault and we've raced with a truncate
651                          */
652                         error = -EIO;
653                         goto unlock_page;
654                 }
655         }
656
657         error = get_block(inode, block, &bh, 0);
658         if (!error && (bh.b_size < PAGE_SIZE))
659                 error = -EIO;           /* fs corruption? */
660         if (error)
661                 goto unlock_page;
662
663         if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
664                 if (vmf->flags & FAULT_FLAG_WRITE) {
665                         error = get_block(inode, block, &bh, 1);
666                         count_vm_event(PGMAJFAULT);
667                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
668                         major = VM_FAULT_MAJOR;
669                         if (!error && (bh.b_size < PAGE_SIZE))
670                                 error = -EIO;
671                         if (error)
672                                 goto unlock_page;
673                 } else {
674                         return dax_load_hole(mapping, page, vmf);
675                 }
676         }
677
678         if (vmf->cow_page) {
679                 struct page *new_page = vmf->cow_page;
680                 if (buffer_written(&bh))
681                         error = copy_user_bh(new_page, inode, &bh, vaddr);
682                 else
683                         clear_user_highpage(new_page, vaddr);
684                 if (error)
685                         goto unlock_page;
686                 vmf->page = page;
687                 if (!page) {
688                         i_mmap_lock_read(mapping);
689                         /* Check we didn't race with truncate */
690                         size = (i_size_read(inode) + PAGE_SIZE - 1) >>
691                                                                 PAGE_SHIFT;
692                         if (vmf->pgoff >= size) {
693                                 i_mmap_unlock_read(mapping);
694                                 error = -EIO;
695                                 goto out;
696                         }
697                 }
698                 return VM_FAULT_LOCKED;
699         }
700
701         /* Check we didn't race with a read fault installing a new page */
702         if (!page && major)
703                 page = find_lock_page(mapping, vmf->pgoff);
704
705         if (page) {
706                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
707                                                         PAGE_CACHE_SIZE, 0);
708                 delete_from_page_cache(page);
709                 unlock_page(page);
710                 page_cache_release(page);
711                 page = NULL;
712         }
713
714         /*
715          * If we successfully insert the new mapping over an unwritten extent,
716          * we need to ensure we convert the unwritten extent. If there is an
717          * error inserting the mapping, the filesystem needs to leave it as
718          * unwritten to prevent exposure of the stale underlying data to
719          * userspace, but we still need to call the completion function so
720          * the private resources on the mapping buffer can be released. We
721          * indicate what the callback should do via the uptodate variable, same
722          * as for normal BH based IO completions.
723          */
724         error = dax_insert_mapping(inode, &bh, vma, vmf);
725         if (buffer_unwritten(&bh)) {
726                 if (complete_unwritten)
727                         complete_unwritten(&bh, !error);
728                 else
729                         WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
730         }
731
732  out:
733         if (error == -ENOMEM)
734                 return VM_FAULT_OOM | major;
735         /* -EBUSY is fine, somebody else faulted on the same PTE */
736         if ((error < 0) && (error != -EBUSY))
737                 return VM_FAULT_SIGBUS | major;
738         return VM_FAULT_NOPAGE | major;
739
740  unlock_page:
741         if (page) {
742                 unlock_page(page);
743                 page_cache_release(page);
744         }
745         goto out;
746 }
747 EXPORT_SYMBOL(__dax_fault);
748
749 /**
750  * dax_fault - handle a page fault on a DAX file
751  * @vma: The virtual memory area where the fault occurred
752  * @vmf: The description of the fault
753  * @get_block: The filesystem method used to translate file offsets to blocks
754  *
755  * When a page fault occurs, filesystems may call this helper in their
756  * fault handler for DAX files.
757  */
758 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
759               get_block_t get_block, dax_iodone_t complete_unwritten)
760 {
761         int result;
762         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
763
764         if (vmf->flags & FAULT_FLAG_WRITE) {
765                 sb_start_pagefault(sb);
766                 file_update_time(vma->vm_file);
767         }
768         result = __dax_fault(vma, vmf, get_block, complete_unwritten);
769         if (vmf->flags & FAULT_FLAG_WRITE)
770                 sb_end_pagefault(sb);
771
772         return result;
773 }
774 EXPORT_SYMBOL_GPL(dax_fault);
775
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
777 /*
778  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
779  * more often than one might expect in the below function.
780  */
781 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
782
783 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
784                 const char *reason, const char *fn)
785 {
786         if (bh) {
787                 char bname[BDEVNAME_SIZE];
788                 bdevname(bh->b_bdev, bname);
789                 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
790                         "length %zd fallback: %s\n", fn, current->comm,
791                         address, bname, bh->b_state, (u64)bh->b_blocknr,
792                         bh->b_size, reason);
793         } else {
794                 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
795                         current->comm, address, reason);
796         }
797 }
798
799 #define dax_pmd_dbg(bh, address, reason)        __dax_dbg(bh, address, reason, "dax_pmd")
800
801 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
802                 pmd_t *pmd, unsigned int flags, get_block_t get_block,
803                 dax_iodone_t complete_unwritten)
804 {
805         struct file *file = vma->vm_file;
806         struct address_space *mapping = file->f_mapping;
807         struct inode *inode = mapping->host;
808         struct buffer_head bh;
809         unsigned blkbits = inode->i_blkbits;
810         unsigned long pmd_addr = address & PMD_MASK;
811         bool write = flags & FAULT_FLAG_WRITE;
812         struct block_device *bdev;
813         pgoff_t size, pgoff;
814         sector_t block;
815         int error, result = 0;
816         bool alloc = false;
817
818         /* dax pmd mappings require pfn_t_devmap() */
819         if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
820                 return VM_FAULT_FALLBACK;
821
822         /* Fall back to PTEs if we're going to COW */
823         if (write && !(vma->vm_flags & VM_SHARED)) {
824                 split_huge_pmd(vma, pmd, address);
825                 dax_pmd_dbg(NULL, address, "cow write");
826                 return VM_FAULT_FALLBACK;
827         }
828         /* If the PMD would extend outside the VMA */
829         if (pmd_addr < vma->vm_start) {
830                 dax_pmd_dbg(NULL, address, "vma start unaligned");
831                 return VM_FAULT_FALLBACK;
832         }
833         if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
834                 dax_pmd_dbg(NULL, address, "vma end unaligned");
835                 return VM_FAULT_FALLBACK;
836         }
837
838         pgoff = linear_page_index(vma, pmd_addr);
839         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
840         if (pgoff >= size)
841                 return VM_FAULT_SIGBUS;
842         /* If the PMD would cover blocks out of the file */
843         if ((pgoff | PG_PMD_COLOUR) >= size) {
844                 dax_pmd_dbg(NULL, address,
845                                 "offset + huge page size > file size");
846                 return VM_FAULT_FALLBACK;
847         }
848
849         memset(&bh, 0, sizeof(bh));
850         bh.b_bdev = inode->i_sb->s_bdev;
851         block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
852
853         bh.b_size = PMD_SIZE;
854
855         if (get_block(inode, block, &bh, 0) != 0)
856                 return VM_FAULT_SIGBUS;
857
858         if (!buffer_mapped(&bh) && write) {
859                 if (get_block(inode, block, &bh, 1) != 0)
860                         return VM_FAULT_SIGBUS;
861                 alloc = true;
862         }
863
864         bdev = bh.b_bdev;
865
866         /*
867          * If the filesystem isn't willing to tell us the length of a hole,
868          * just fall back to PTEs.  Calling get_block 512 times in a loop
869          * would be silly.
870          */
871         if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
872                 dax_pmd_dbg(&bh, address, "allocated block too small");
873                 return VM_FAULT_FALLBACK;
874         }
875
876         /*
877          * If we allocated new storage, make sure no process has any
878          * zero pages covering this hole
879          */
880         if (alloc) {
881                 loff_t lstart = pgoff << PAGE_SHIFT;
882                 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
883
884                 truncate_pagecache_range(inode, lstart, lend);
885         }
886
887         i_mmap_lock_read(mapping);
888
889         /*
890          * If a truncate happened while we were allocating blocks, we may
891          * leave blocks allocated to the file that are beyond EOF.  We can't
892          * take i_mutex here, so just leave them hanging; they'll be freed
893          * when the file is deleted.
894          */
895         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
896         if (pgoff >= size) {
897                 result = VM_FAULT_SIGBUS;
898                 goto out;
899         }
900         if ((pgoff | PG_PMD_COLOUR) >= size) {
901                 dax_pmd_dbg(&bh, address,
902                                 "offset + huge page size > file size");
903                 goto fallback;
904         }
905
906         if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
907                 spinlock_t *ptl;
908                 pmd_t entry;
909                 struct page *zero_page = get_huge_zero_page();
910
911                 if (unlikely(!zero_page)) {
912                         dax_pmd_dbg(&bh, address, "no zero page");
913                         goto fallback;
914                 }
915
916                 ptl = pmd_lock(vma->vm_mm, pmd);
917                 if (!pmd_none(*pmd)) {
918                         spin_unlock(ptl);
919                         dax_pmd_dbg(&bh, address, "pmd already present");
920                         goto fallback;
921                 }
922
923                 dev_dbg(part_to_dev(bdev->bd_part),
924                                 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
925                                 __func__, current->comm, address,
926                                 (unsigned long long) to_sector(&bh, inode));
927
928                 entry = mk_pmd(zero_page, vma->vm_page_prot);
929                 entry = pmd_mkhuge(entry);
930                 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
931                 result = VM_FAULT_NOPAGE;
932                 spin_unlock(ptl);
933         } else {
934                 struct blk_dax_ctl dax = {
935                         .sector = to_sector(&bh, inode),
936                         .size = PMD_SIZE,
937                 };
938                 long length = dax_map_atomic(bdev, &dax);
939
940                 if (length < 0) {
941                         result = VM_FAULT_SIGBUS;
942                         goto out;
943                 }
944                 if (length < PMD_SIZE) {
945                         dax_pmd_dbg(&bh, address, "dax-length too small");
946                         dax_unmap_atomic(bdev, &dax);
947                         goto fallback;
948                 }
949                 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
950                         dax_pmd_dbg(&bh, address, "pfn unaligned");
951                         dax_unmap_atomic(bdev, &dax);
952                         goto fallback;
953                 }
954
955                 if (!pfn_t_devmap(dax.pfn)) {
956                         dax_unmap_atomic(bdev, &dax);
957                         dax_pmd_dbg(&bh, address, "pfn not in memmap");
958                         goto fallback;
959                 }
960
961                 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
962                         clear_pmem(dax.addr, PMD_SIZE);
963                         wmb_pmem();
964                         count_vm_event(PGMAJFAULT);
965                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
966                         result |= VM_FAULT_MAJOR;
967                 }
968                 dax_unmap_atomic(bdev, &dax);
969
970                 /*
971                  * For PTE faults we insert a radix tree entry for reads, and
972                  * leave it clean.  Then on the first write we dirty the radix
973                  * tree entry via the dax_pfn_mkwrite() path.  This sequence
974                  * allows the dax_pfn_mkwrite() call to be simpler and avoid a
975                  * call into get_block() to translate the pgoff to a sector in
976                  * order to be able to create a new radix tree entry.
977                  *
978                  * The PMD path doesn't have an equivalent to
979                  * dax_pfn_mkwrite(), though, so for a read followed by a
980                  * write we traverse all the way through __dax_pmd_fault()
981                  * twice.  This means we can just skip inserting a radix tree
982                  * entry completely on the initial read and just wait until
983                  * the write to insert a dirty entry.
984                  */
985                 if (write) {
986                         error = dax_radix_entry(mapping, pgoff, dax.sector,
987                                         true, true);
988                         if (error) {
989                                 dax_pmd_dbg(&bh, address,
990                                                 "PMD radix insertion failed");
991                                 goto fallback;
992                         }
993                 }
994
995                 dev_dbg(part_to_dev(bdev->bd_part),
996                                 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
997                                 __func__, current->comm, address,
998                                 pfn_t_to_pfn(dax.pfn),
999                                 (unsigned long long) dax.sector);
1000                 result |= vmf_insert_pfn_pmd(vma, address, pmd,
1001                                 dax.pfn, write);
1002         }
1003
1004  out:
1005         i_mmap_unlock_read(mapping);
1006
1007         if (buffer_unwritten(&bh))
1008                 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
1009
1010         return result;
1011
1012  fallback:
1013         count_vm_event(THP_FAULT_FALLBACK);
1014         result = VM_FAULT_FALLBACK;
1015         goto out;
1016 }
1017 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1018
1019 /**
1020  * dax_pmd_fault - handle a PMD fault on a DAX file
1021  * @vma: The virtual memory area where the fault occurred
1022  * @vmf: The description of the fault
1023  * @get_block: The filesystem method used to translate file offsets to blocks
1024  *
1025  * When a page fault occurs, filesystems may call this helper in their
1026  * pmd_fault handler for DAX files.
1027  */
1028 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1029                         pmd_t *pmd, unsigned int flags, get_block_t get_block,
1030                         dax_iodone_t complete_unwritten)
1031 {
1032         int result;
1033         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1034
1035         if (flags & FAULT_FLAG_WRITE) {
1036                 sb_start_pagefault(sb);
1037                 file_update_time(vma->vm_file);
1038         }
1039         result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1040                                 complete_unwritten);
1041         if (flags & FAULT_FLAG_WRITE)
1042                 sb_end_pagefault(sb);
1043
1044         return result;
1045 }
1046 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1047 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1048
1049 /**
1050  * dax_pfn_mkwrite - handle first write to DAX page
1051  * @vma: The virtual memory area where the fault occurred
1052  * @vmf: The description of the fault
1053  */
1054 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1055 {
1056         struct file *file = vma->vm_file;
1057
1058         /*
1059          * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1060          * RADIX_DAX_PTE entry already exists in the radix tree from a
1061          * previous call to __dax_fault().  We just want to look up that PTE
1062          * entry using vmf->pgoff and make sure the dirty tag is set.  This
1063          * saves us from having to make a call to get_block() here to look
1064          * up the sector.
1065          */
1066         dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
1067         return VM_FAULT_NOPAGE;
1068 }
1069 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1070
1071 /**
1072  * dax_zero_page_range - zero a range within a page of a DAX file
1073  * @inode: The file being truncated
1074  * @from: The file offset that is being truncated to
1075  * @length: The number of bytes to zero
1076  * @get_block: The filesystem method used to translate file offsets to blocks
1077  *
1078  * This function can be called by a filesystem when it is zeroing part of a
1079  * page in a DAX file.  This is intended for hole-punch operations.  If
1080  * you are truncating a file, the helper function dax_truncate_page() may be
1081  * more convenient.
1082  *
1083  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1084  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1085  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1086  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1087  * since the file might be mmapped.
1088  */
1089 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1090                                                         get_block_t get_block)
1091 {
1092         struct buffer_head bh;
1093         pgoff_t index = from >> PAGE_CACHE_SHIFT;
1094         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1095         int err;
1096
1097         /* Block boundary? Nothing to do */
1098         if (!length)
1099                 return 0;
1100         BUG_ON((offset + length) > PAGE_CACHE_SIZE);
1101
1102         memset(&bh, 0, sizeof(bh));
1103         bh.b_bdev = inode->i_sb->s_bdev;
1104         bh.b_size = PAGE_CACHE_SIZE;
1105         err = get_block(inode, index, &bh, 0);
1106         if (err < 0)
1107                 return err;
1108         if (buffer_written(&bh)) {
1109                 struct block_device *bdev = bh.b_bdev;
1110                 struct blk_dax_ctl dax = {
1111                         .sector = to_sector(&bh, inode),
1112                         .size = PAGE_CACHE_SIZE,
1113                 };
1114
1115                 if (dax_map_atomic(bdev, &dax) < 0)
1116                         return PTR_ERR(dax.addr);
1117                 clear_pmem(dax.addr + offset, length);
1118                 wmb_pmem();
1119                 dax_unmap_atomic(bdev, &dax);
1120         }
1121
1122         return 0;
1123 }
1124 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1125
1126 /**
1127  * dax_truncate_page - handle a partial page being truncated in a DAX file
1128  * @inode: The file being truncated
1129  * @from: The file offset that is being truncated to
1130  * @get_block: The filesystem method used to translate file offsets to blocks
1131  *
1132  * Similar to block_truncate_page(), this function can be called by a
1133  * filesystem when it is truncating a DAX file to handle the partial page.
1134  *
1135  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1136  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1137  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1138  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1139  * since the file might be mmapped.
1140  */
1141 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1142 {
1143         unsigned length = PAGE_CACHE_ALIGN(from) - from;
1144         return dax_zero_page_range(inode, from, length, get_block);
1145 }
1146 EXPORT_SYMBOL_GPL(dax_truncate_page);