exec: remove the no longer needed remove_arg_zero()->free_arg_page()
[cascardo/linux.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77         BUG_ON(!fmt);
78         if (WARN_ON(!fmt->load_binary))
79                 return;
80         write_lock(&binfmt_lock);
81         insert ? list_add(&fmt->lh, &formats) :
82                  list_add_tail(&fmt->lh, &formats);
83         write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90         write_lock(&binfmt_lock);
91         list_del(&fmt->lh);
92         write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99         module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117         struct linux_binfmt *fmt;
118         struct file *file;
119         struct filename *tmp = getname(library);
120         int error = PTR_ERR(tmp);
121         static const struct open_flags uselib_flags = {
122                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123                 .acc_mode = MAY_READ | MAY_EXEC,
124                 .intent = LOOKUP_OPEN,
125                 .lookup_flags = LOOKUP_FOLLOW,
126         };
127
128         if (IS_ERR(tmp))
129                 goto out;
130
131         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132         putname(tmp);
133         error = PTR_ERR(file);
134         if (IS_ERR(file))
135                 goto out;
136
137         error = -EINVAL;
138         if (!S_ISREG(file_inode(file)->i_mode))
139                 goto exit;
140
141         error = -EACCES;
142         if (path_noexec(&file->f_path))
143                 goto exit;
144
145         fsnotify_open(file);
146
147         error = -ENOEXEC;
148
149         read_lock(&binfmt_lock);
150         list_for_each_entry(fmt, &formats, lh) {
151                 if (!fmt->load_shlib)
152                         continue;
153                 if (!try_module_get(fmt->module))
154                         continue;
155                 read_unlock(&binfmt_lock);
156                 error = fmt->load_shlib(file);
157                 read_lock(&binfmt_lock);
158                 put_binfmt(fmt);
159                 if (error != -ENOEXEC)
160                         break;
161         }
162         read_unlock(&binfmt_lock);
163 exit:
164         fput(file);
165 out:
166         return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179         struct mm_struct *mm = current->mm;
180         long diff = (long)(pages - bprm->vma_pages);
181
182         if (!mm || !diff)
183                 return;
184
185         bprm->vma_pages = pages;
186         add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190                 int write)
191 {
192         struct page *page;
193         int ret;
194
195 #ifdef CONFIG_STACK_GROWSUP
196         if (write) {
197                 ret = expand_downwards(bprm->vma, pos);
198                 if (ret < 0)
199                         return NULL;
200         }
201 #endif
202         /*
203          * We are doing an exec().  'current' is the process
204          * doing the exec and bprm->mm is the new process's mm.
205          */
206         ret = get_user_pages_remote(current, bprm->mm, pos, 1, write,
207                         1, &page, NULL);
208         if (ret <= 0)
209                 return NULL;
210
211         if (write) {
212                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
213                 struct rlimit *rlim;
214
215                 acct_arg_size(bprm, size / PAGE_SIZE);
216
217                 /*
218                  * We've historically supported up to 32 pages (ARG_MAX)
219                  * of argument strings even with small stacks
220                  */
221                 if (size <= ARG_MAX)
222                         return page;
223
224                 /*
225                  * Limit to 1/4-th the stack size for the argv+env strings.
226                  * This ensures that:
227                  *  - the remaining binfmt code will not run out of stack space,
228                  *  - the program will have a reasonable amount of stack left
229                  *    to work from.
230                  */
231                 rlim = current->signal->rlim;
232                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
233                         put_page(page);
234                         return NULL;
235                 }
236         }
237
238         return page;
239 }
240
241 static void put_arg_page(struct page *page)
242 {
243         put_page(page);
244 }
245
246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251                 struct page *page)
252 {
253         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255
256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258         int err;
259         struct vm_area_struct *vma = NULL;
260         struct mm_struct *mm = bprm->mm;
261
262         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263         if (!vma)
264                 return -ENOMEM;
265
266         down_write(&mm->mmap_sem);
267         vma->vm_mm = mm;
268
269         /*
270          * Place the stack at the largest stack address the architecture
271          * supports. Later, we'll move this to an appropriate place. We don't
272          * use STACK_TOP because that can depend on attributes which aren't
273          * configured yet.
274          */
275         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276         vma->vm_end = STACK_TOP_MAX;
277         vma->vm_start = vma->vm_end - PAGE_SIZE;
278         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280         INIT_LIST_HEAD(&vma->anon_vma_chain);
281
282         err = insert_vm_struct(mm, vma);
283         if (err)
284                 goto err;
285
286         mm->stack_vm = mm->total_vm = 1;
287         arch_bprm_mm_init(mm, vma);
288         up_write(&mm->mmap_sem);
289         bprm->p = vma->vm_end - sizeof(void *);
290         return 0;
291 err:
292         up_write(&mm->mmap_sem);
293         bprm->vma = NULL;
294         kmem_cache_free(vm_area_cachep, vma);
295         return err;
296 }
297
298 static bool valid_arg_len(struct linux_binprm *bprm, long len)
299 {
300         return len <= MAX_ARG_STRLEN;
301 }
302
303 #else
304
305 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
306 {
307 }
308
309 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310                 int write)
311 {
312         struct page *page;
313
314         page = bprm->page[pos / PAGE_SIZE];
315         if (!page && write) {
316                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317                 if (!page)
318                         return NULL;
319                 bprm->page[pos / PAGE_SIZE] = page;
320         }
321
322         return page;
323 }
324
325 static void put_arg_page(struct page *page)
326 {
327 }
328
329 static void free_arg_page(struct linux_binprm *bprm, int i)
330 {
331         if (bprm->page[i]) {
332                 __free_page(bprm->page[i]);
333                 bprm->page[i] = NULL;
334         }
335 }
336
337 static void free_arg_pages(struct linux_binprm *bprm)
338 {
339         int i;
340
341         for (i = 0; i < MAX_ARG_PAGES; i++)
342                 free_arg_page(bprm, i);
343 }
344
345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346                 struct page *page)
347 {
348 }
349
350 static int __bprm_mm_init(struct linux_binprm *bprm)
351 {
352         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353         return 0;
354 }
355
356 static bool valid_arg_len(struct linux_binprm *bprm, long len)
357 {
358         return len <= bprm->p;
359 }
360
361 #endif /* CONFIG_MMU */
362
363 /*
364  * Create a new mm_struct and populate it with a temporary stack
365  * vm_area_struct.  We don't have enough context at this point to set the stack
366  * flags, permissions, and offset, so we use temporary values.  We'll update
367  * them later in setup_arg_pages().
368  */
369 static int bprm_mm_init(struct linux_binprm *bprm)
370 {
371         int err;
372         struct mm_struct *mm = NULL;
373
374         bprm->mm = mm = mm_alloc();
375         err = -ENOMEM;
376         if (!mm)
377                 goto err;
378
379         err = __bprm_mm_init(bprm);
380         if (err)
381                 goto err;
382
383         return 0;
384
385 err:
386         if (mm) {
387                 bprm->mm = NULL;
388                 mmdrop(mm);
389         }
390
391         return err;
392 }
393
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396         bool is_compat;
397 #endif
398         union {
399                 const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401                 const compat_uptr_t __user *compat;
402 #endif
403         } ptr;
404 };
405
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407 {
408         const char __user *native;
409
410 #ifdef CONFIG_COMPAT
411         if (unlikely(argv.is_compat)) {
412                 compat_uptr_t compat;
413
414                 if (get_user(compat, argv.ptr.compat + nr))
415                         return ERR_PTR(-EFAULT);
416
417                 return compat_ptr(compat);
418         }
419 #endif
420
421         if (get_user(native, argv.ptr.native + nr))
422                 return ERR_PTR(-EFAULT);
423
424         return native;
425 }
426
427 /*
428  * count() counts the number of strings in array ARGV.
429  */
430 static int count(struct user_arg_ptr argv, int max)
431 {
432         int i = 0;
433
434         if (argv.ptr.native != NULL) {
435                 for (;;) {
436                         const char __user *p = get_user_arg_ptr(argv, i);
437
438                         if (!p)
439                                 break;
440
441                         if (IS_ERR(p))
442                                 return -EFAULT;
443
444                         if (i >= max)
445                                 return -E2BIG;
446                         ++i;
447
448                         if (fatal_signal_pending(current))
449                                 return -ERESTARTNOHAND;
450                         cond_resched();
451                 }
452         }
453         return i;
454 }
455
456 /*
457  * 'copy_strings()' copies argument/environment strings from the old
458  * processes's memory to the new process's stack.  The call to get_user_pages()
459  * ensures the destination page is created and not swapped out.
460  */
461 static int copy_strings(int argc, struct user_arg_ptr argv,
462                         struct linux_binprm *bprm)
463 {
464         struct page *kmapped_page = NULL;
465         char *kaddr = NULL;
466         unsigned long kpos = 0;
467         int ret;
468
469         while (argc-- > 0) {
470                 const char __user *str;
471                 int len;
472                 unsigned long pos;
473
474                 ret = -EFAULT;
475                 str = get_user_arg_ptr(argv, argc);
476                 if (IS_ERR(str))
477                         goto out;
478
479                 len = strnlen_user(str, MAX_ARG_STRLEN);
480                 if (!len)
481                         goto out;
482
483                 ret = -E2BIG;
484                 if (!valid_arg_len(bprm, len))
485                         goto out;
486
487                 /* We're going to work our way backwords. */
488                 pos = bprm->p;
489                 str += len;
490                 bprm->p -= len;
491
492                 while (len > 0) {
493                         int offset, bytes_to_copy;
494
495                         if (fatal_signal_pending(current)) {
496                                 ret = -ERESTARTNOHAND;
497                                 goto out;
498                         }
499                         cond_resched();
500
501                         offset = pos % PAGE_SIZE;
502                         if (offset == 0)
503                                 offset = PAGE_SIZE;
504
505                         bytes_to_copy = offset;
506                         if (bytes_to_copy > len)
507                                 bytes_to_copy = len;
508
509                         offset -= bytes_to_copy;
510                         pos -= bytes_to_copy;
511                         str -= bytes_to_copy;
512                         len -= bytes_to_copy;
513
514                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
515                                 struct page *page;
516
517                                 page = get_arg_page(bprm, pos, 1);
518                                 if (!page) {
519                                         ret = -E2BIG;
520                                         goto out;
521                                 }
522
523                                 if (kmapped_page) {
524                                         flush_kernel_dcache_page(kmapped_page);
525                                         kunmap(kmapped_page);
526                                         put_arg_page(kmapped_page);
527                                 }
528                                 kmapped_page = page;
529                                 kaddr = kmap(kmapped_page);
530                                 kpos = pos & PAGE_MASK;
531                                 flush_arg_page(bprm, kpos, kmapped_page);
532                         }
533                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
534                                 ret = -EFAULT;
535                                 goto out;
536                         }
537                 }
538         }
539         ret = 0;
540 out:
541         if (kmapped_page) {
542                 flush_kernel_dcache_page(kmapped_page);
543                 kunmap(kmapped_page);
544                 put_arg_page(kmapped_page);
545         }
546         return ret;
547 }
548
549 /*
550  * Like copy_strings, but get argv and its values from kernel memory.
551  */
552 int copy_strings_kernel(int argc, const char *const *__argv,
553                         struct linux_binprm *bprm)
554 {
555         int r;
556         mm_segment_t oldfs = get_fs();
557         struct user_arg_ptr argv = {
558                 .ptr.native = (const char __user *const  __user *)__argv,
559         };
560
561         set_fs(KERNEL_DS);
562         r = copy_strings(argc, argv, bprm);
563         set_fs(oldfs);
564
565         return r;
566 }
567 EXPORT_SYMBOL(copy_strings_kernel);
568
569 #ifdef CONFIG_MMU
570
571 /*
572  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
573  * the binfmt code determines where the new stack should reside, we shift it to
574  * its final location.  The process proceeds as follows:
575  *
576  * 1) Use shift to calculate the new vma endpoints.
577  * 2) Extend vma to cover both the old and new ranges.  This ensures the
578  *    arguments passed to subsequent functions are consistent.
579  * 3) Move vma's page tables to the new range.
580  * 4) Free up any cleared pgd range.
581  * 5) Shrink the vma to cover only the new range.
582  */
583 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
584 {
585         struct mm_struct *mm = vma->vm_mm;
586         unsigned long old_start = vma->vm_start;
587         unsigned long old_end = vma->vm_end;
588         unsigned long length = old_end - old_start;
589         unsigned long new_start = old_start - shift;
590         unsigned long new_end = old_end - shift;
591         struct mmu_gather tlb;
592
593         BUG_ON(new_start > new_end);
594
595         /*
596          * ensure there are no vmas between where we want to go
597          * and where we are
598          */
599         if (vma != find_vma(mm, new_start))
600                 return -EFAULT;
601
602         /*
603          * cover the whole range: [new_start, old_end)
604          */
605         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
606                 return -ENOMEM;
607
608         /*
609          * move the page tables downwards, on failure we rely on
610          * process cleanup to remove whatever mess we made.
611          */
612         if (length != move_page_tables(vma, old_start,
613                                        vma, new_start, length, false))
614                 return -ENOMEM;
615
616         lru_add_drain();
617         tlb_gather_mmu(&tlb, mm, old_start, old_end);
618         if (new_end > old_start) {
619                 /*
620                  * when the old and new regions overlap clear from new_end.
621                  */
622                 free_pgd_range(&tlb, new_end, old_end, new_end,
623                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
624         } else {
625                 /*
626                  * otherwise, clean from old_start; this is done to not touch
627                  * the address space in [new_end, old_start) some architectures
628                  * have constraints on va-space that make this illegal (IA64) -
629                  * for the others its just a little faster.
630                  */
631                 free_pgd_range(&tlb, old_start, old_end, new_end,
632                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
633         }
634         tlb_finish_mmu(&tlb, old_start, old_end);
635
636         /*
637          * Shrink the vma to just the new range.  Always succeeds.
638          */
639         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
640
641         return 0;
642 }
643
644 /*
645  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
646  * the stack is optionally relocated, and some extra space is added.
647  */
648 int setup_arg_pages(struct linux_binprm *bprm,
649                     unsigned long stack_top,
650                     int executable_stack)
651 {
652         unsigned long ret;
653         unsigned long stack_shift;
654         struct mm_struct *mm = current->mm;
655         struct vm_area_struct *vma = bprm->vma;
656         struct vm_area_struct *prev = NULL;
657         unsigned long vm_flags;
658         unsigned long stack_base;
659         unsigned long stack_size;
660         unsigned long stack_expand;
661         unsigned long rlim_stack;
662
663 #ifdef CONFIG_STACK_GROWSUP
664         /* Limit stack size */
665         stack_base = rlimit_max(RLIMIT_STACK);
666         if (stack_base > STACK_SIZE_MAX)
667                 stack_base = STACK_SIZE_MAX;
668
669         /* Add space for stack randomization. */
670         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
671
672         /* Make sure we didn't let the argument array grow too large. */
673         if (vma->vm_end - vma->vm_start > stack_base)
674                 return -ENOMEM;
675
676         stack_base = PAGE_ALIGN(stack_top - stack_base);
677
678         stack_shift = vma->vm_start - stack_base;
679         mm->arg_start = bprm->p - stack_shift;
680         bprm->p = vma->vm_end - stack_shift;
681 #else
682         stack_top = arch_align_stack(stack_top);
683         stack_top = PAGE_ALIGN(stack_top);
684
685         if (unlikely(stack_top < mmap_min_addr) ||
686             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
687                 return -ENOMEM;
688
689         stack_shift = vma->vm_end - stack_top;
690
691         bprm->p -= stack_shift;
692         mm->arg_start = bprm->p;
693 #endif
694
695         if (bprm->loader)
696                 bprm->loader -= stack_shift;
697         bprm->exec -= stack_shift;
698
699         down_write(&mm->mmap_sem);
700         vm_flags = VM_STACK_FLAGS;
701
702         /*
703          * Adjust stack execute permissions; explicitly enable for
704          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
705          * (arch default) otherwise.
706          */
707         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
708                 vm_flags |= VM_EXEC;
709         else if (executable_stack == EXSTACK_DISABLE_X)
710                 vm_flags &= ~VM_EXEC;
711         vm_flags |= mm->def_flags;
712         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
713
714         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
715                         vm_flags);
716         if (ret)
717                 goto out_unlock;
718         BUG_ON(prev != vma);
719
720         /* Move stack pages down in memory. */
721         if (stack_shift) {
722                 ret = shift_arg_pages(vma, stack_shift);
723                 if (ret)
724                         goto out_unlock;
725         }
726
727         /* mprotect_fixup is overkill to remove the temporary stack flags */
728         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
729
730         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
731         stack_size = vma->vm_end - vma->vm_start;
732         /*
733          * Align this down to a page boundary as expand_stack
734          * will align it up.
735          */
736         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
737 #ifdef CONFIG_STACK_GROWSUP
738         if (stack_size + stack_expand > rlim_stack)
739                 stack_base = vma->vm_start + rlim_stack;
740         else
741                 stack_base = vma->vm_end + stack_expand;
742 #else
743         if (stack_size + stack_expand > rlim_stack)
744                 stack_base = vma->vm_end - rlim_stack;
745         else
746                 stack_base = vma->vm_start - stack_expand;
747 #endif
748         current->mm->start_stack = bprm->p;
749         ret = expand_stack(vma, stack_base);
750         if (ret)
751                 ret = -EFAULT;
752
753 out_unlock:
754         up_write(&mm->mmap_sem);
755         return ret;
756 }
757 EXPORT_SYMBOL(setup_arg_pages);
758
759 #endif /* CONFIG_MMU */
760
761 static struct file *do_open_execat(int fd, struct filename *name, int flags)
762 {
763         struct file *file;
764         int err;
765         struct open_flags open_exec_flags = {
766                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
767                 .acc_mode = MAY_EXEC,
768                 .intent = LOOKUP_OPEN,
769                 .lookup_flags = LOOKUP_FOLLOW,
770         };
771
772         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
773                 return ERR_PTR(-EINVAL);
774         if (flags & AT_SYMLINK_NOFOLLOW)
775                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
776         if (flags & AT_EMPTY_PATH)
777                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
778
779         file = do_filp_open(fd, name, &open_exec_flags);
780         if (IS_ERR(file))
781                 goto out;
782
783         err = -EACCES;
784         if (!S_ISREG(file_inode(file)->i_mode))
785                 goto exit;
786
787         if (path_noexec(&file->f_path))
788                 goto exit;
789
790         err = deny_write_access(file);
791         if (err)
792                 goto exit;
793
794         if (name->name[0] != '\0')
795                 fsnotify_open(file);
796
797 out:
798         return file;
799
800 exit:
801         fput(file);
802         return ERR_PTR(err);
803 }
804
805 struct file *open_exec(const char *name)
806 {
807         struct filename *filename = getname_kernel(name);
808         struct file *f = ERR_CAST(filename);
809
810         if (!IS_ERR(filename)) {
811                 f = do_open_execat(AT_FDCWD, filename, 0);
812                 putname(filename);
813         }
814         return f;
815 }
816 EXPORT_SYMBOL(open_exec);
817
818 int kernel_read(struct file *file, loff_t offset,
819                 char *addr, unsigned long count)
820 {
821         mm_segment_t old_fs;
822         loff_t pos = offset;
823         int result;
824
825         old_fs = get_fs();
826         set_fs(get_ds());
827         /* The cast to a user pointer is valid due to the set_fs() */
828         result = vfs_read(file, (void __user *)addr, count, &pos);
829         set_fs(old_fs);
830         return result;
831 }
832
833 EXPORT_SYMBOL(kernel_read);
834
835 int kernel_read_file(struct file *file, void **buf, loff_t *size,
836                      loff_t max_size, enum kernel_read_file_id id)
837 {
838         loff_t i_size, pos;
839         ssize_t bytes = 0;
840         int ret;
841
842         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
843                 return -EINVAL;
844
845         ret = security_kernel_read_file(file, id);
846         if (ret)
847                 return ret;
848
849         ret = deny_write_access(file);
850         if (ret)
851                 return ret;
852
853         i_size = i_size_read(file_inode(file));
854         if (max_size > 0 && i_size > max_size) {
855                 ret = -EFBIG;
856                 goto out;
857         }
858         if (i_size <= 0) {
859                 ret = -EINVAL;
860                 goto out;
861         }
862
863         *buf = vmalloc(i_size);
864         if (!*buf) {
865                 ret = -ENOMEM;
866                 goto out;
867         }
868
869         pos = 0;
870         while (pos < i_size) {
871                 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
872                                     i_size - pos);
873                 if (bytes < 0) {
874                         ret = bytes;
875                         goto out;
876                 }
877
878                 if (bytes == 0)
879                         break;
880                 pos += bytes;
881         }
882
883         if (pos != i_size) {
884                 ret = -EIO;
885                 goto out_free;
886         }
887
888         ret = security_kernel_post_read_file(file, *buf, i_size, id);
889         if (!ret)
890                 *size = pos;
891
892 out_free:
893         if (ret < 0) {
894                 vfree(*buf);
895                 *buf = NULL;
896         }
897
898 out:
899         allow_write_access(file);
900         return ret;
901 }
902 EXPORT_SYMBOL_GPL(kernel_read_file);
903
904 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
905                                loff_t max_size, enum kernel_read_file_id id)
906 {
907         struct file *file;
908         int ret;
909
910         if (!path || !*path)
911                 return -EINVAL;
912
913         file = filp_open(path, O_RDONLY, 0);
914         if (IS_ERR(file))
915                 return PTR_ERR(file);
916
917         ret = kernel_read_file(file, buf, size, max_size, id);
918         fput(file);
919         return ret;
920 }
921 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
922
923 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
924                              enum kernel_read_file_id id)
925 {
926         struct fd f = fdget(fd);
927         int ret = -EBADF;
928
929         if (!f.file)
930                 goto out;
931
932         ret = kernel_read_file(f.file, buf, size, max_size, id);
933 out:
934         fdput(f);
935         return ret;
936 }
937 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
938
939 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
940 {
941         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
942         if (res > 0)
943                 flush_icache_range(addr, addr + len);
944         return res;
945 }
946 EXPORT_SYMBOL(read_code);
947
948 static int exec_mmap(struct mm_struct *mm)
949 {
950         struct task_struct *tsk;
951         struct mm_struct *old_mm, *active_mm;
952
953         /* Notify parent that we're no longer interested in the old VM */
954         tsk = current;
955         old_mm = current->mm;
956         mm_release(tsk, old_mm);
957
958         if (old_mm) {
959                 sync_mm_rss(old_mm);
960                 /*
961                  * Make sure that if there is a core dump in progress
962                  * for the old mm, we get out and die instead of going
963                  * through with the exec.  We must hold mmap_sem around
964                  * checking core_state and changing tsk->mm.
965                  */
966                 down_read(&old_mm->mmap_sem);
967                 if (unlikely(old_mm->core_state)) {
968                         up_read(&old_mm->mmap_sem);
969                         return -EINTR;
970                 }
971         }
972         task_lock(tsk);
973         active_mm = tsk->active_mm;
974         tsk->mm = mm;
975         tsk->active_mm = mm;
976         activate_mm(active_mm, mm);
977         tsk->mm->vmacache_seqnum = 0;
978         vmacache_flush(tsk);
979         task_unlock(tsk);
980         if (old_mm) {
981                 up_read(&old_mm->mmap_sem);
982                 BUG_ON(active_mm != old_mm);
983                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
984                 mm_update_next_owner(old_mm);
985                 mmput(old_mm);
986                 return 0;
987         }
988         mmdrop(active_mm);
989         return 0;
990 }
991
992 /*
993  * This function makes sure the current process has its own signal table,
994  * so that flush_signal_handlers can later reset the handlers without
995  * disturbing other processes.  (Other processes might share the signal
996  * table via the CLONE_SIGHAND option to clone().)
997  */
998 static int de_thread(struct task_struct *tsk)
999 {
1000         struct signal_struct *sig = tsk->signal;
1001         struct sighand_struct *oldsighand = tsk->sighand;
1002         spinlock_t *lock = &oldsighand->siglock;
1003
1004         if (thread_group_empty(tsk))
1005                 goto no_thread_group;
1006
1007         /*
1008          * Kill all other threads in the thread group.
1009          */
1010         spin_lock_irq(lock);
1011         if (signal_group_exit(sig)) {
1012                 /*
1013                  * Another group action in progress, just
1014                  * return so that the signal is processed.
1015                  */
1016                 spin_unlock_irq(lock);
1017                 return -EAGAIN;
1018         }
1019
1020         sig->group_exit_task = tsk;
1021         sig->notify_count = zap_other_threads(tsk);
1022         if (!thread_group_leader(tsk))
1023                 sig->notify_count--;
1024
1025         while (sig->notify_count) {
1026                 __set_current_state(TASK_KILLABLE);
1027                 spin_unlock_irq(lock);
1028                 schedule();
1029                 if (unlikely(__fatal_signal_pending(tsk)))
1030                         goto killed;
1031                 spin_lock_irq(lock);
1032         }
1033         spin_unlock_irq(lock);
1034
1035         /*
1036          * At this point all other threads have exited, all we have to
1037          * do is to wait for the thread group leader to become inactive,
1038          * and to assume its PID:
1039          */
1040         if (!thread_group_leader(tsk)) {
1041                 struct task_struct *leader = tsk->group_leader;
1042
1043                 for (;;) {
1044                         threadgroup_change_begin(tsk);
1045                         write_lock_irq(&tasklist_lock);
1046                         /*
1047                          * Do this under tasklist_lock to ensure that
1048                          * exit_notify() can't miss ->group_exit_task
1049                          */
1050                         sig->notify_count = -1;
1051                         if (likely(leader->exit_state))
1052                                 break;
1053                         __set_current_state(TASK_KILLABLE);
1054                         write_unlock_irq(&tasklist_lock);
1055                         threadgroup_change_end(tsk);
1056                         schedule();
1057                         if (unlikely(__fatal_signal_pending(tsk)))
1058                                 goto killed;
1059                 }
1060
1061                 /*
1062                  * The only record we have of the real-time age of a
1063                  * process, regardless of execs it's done, is start_time.
1064                  * All the past CPU time is accumulated in signal_struct
1065                  * from sister threads now dead.  But in this non-leader
1066                  * exec, nothing survives from the original leader thread,
1067                  * whose birth marks the true age of this process now.
1068                  * When we take on its identity by switching to its PID, we
1069                  * also take its birthdate (always earlier than our own).
1070                  */
1071                 tsk->start_time = leader->start_time;
1072                 tsk->real_start_time = leader->real_start_time;
1073
1074                 BUG_ON(!same_thread_group(leader, tsk));
1075                 BUG_ON(has_group_leader_pid(tsk));
1076                 /*
1077                  * An exec() starts a new thread group with the
1078                  * TGID of the previous thread group. Rehash the
1079                  * two threads with a switched PID, and release
1080                  * the former thread group leader:
1081                  */
1082
1083                 /* Become a process group leader with the old leader's pid.
1084                  * The old leader becomes a thread of the this thread group.
1085                  * Note: The old leader also uses this pid until release_task
1086                  *       is called.  Odd but simple and correct.
1087                  */
1088                 tsk->pid = leader->pid;
1089                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1090                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1091                 transfer_pid(leader, tsk, PIDTYPE_SID);
1092
1093                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1094                 list_replace_init(&leader->sibling, &tsk->sibling);
1095
1096                 tsk->group_leader = tsk;
1097                 leader->group_leader = tsk;
1098
1099                 tsk->exit_signal = SIGCHLD;
1100                 leader->exit_signal = -1;
1101
1102                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1103                 leader->exit_state = EXIT_DEAD;
1104
1105                 /*
1106                  * We are going to release_task()->ptrace_unlink() silently,
1107                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1108                  * the tracer wont't block again waiting for this thread.
1109                  */
1110                 if (unlikely(leader->ptrace))
1111                         __wake_up_parent(leader, leader->parent);
1112                 write_unlock_irq(&tasklist_lock);
1113                 threadgroup_change_end(tsk);
1114
1115                 release_task(leader);
1116         }
1117
1118         sig->group_exit_task = NULL;
1119         sig->notify_count = 0;
1120
1121 no_thread_group:
1122         /* we have changed execution domain */
1123         tsk->exit_signal = SIGCHLD;
1124
1125         exit_itimers(sig);
1126         flush_itimer_signals();
1127
1128         if (atomic_read(&oldsighand->count) != 1) {
1129                 struct sighand_struct *newsighand;
1130                 /*
1131                  * This ->sighand is shared with the CLONE_SIGHAND
1132                  * but not CLONE_THREAD task, switch to the new one.
1133                  */
1134                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1135                 if (!newsighand)
1136                         return -ENOMEM;
1137
1138                 atomic_set(&newsighand->count, 1);
1139                 memcpy(newsighand->action, oldsighand->action,
1140                        sizeof(newsighand->action));
1141
1142                 write_lock_irq(&tasklist_lock);
1143                 spin_lock(&oldsighand->siglock);
1144                 rcu_assign_pointer(tsk->sighand, newsighand);
1145                 spin_unlock(&oldsighand->siglock);
1146                 write_unlock_irq(&tasklist_lock);
1147
1148                 __cleanup_sighand(oldsighand);
1149         }
1150
1151         BUG_ON(!thread_group_leader(tsk));
1152         return 0;
1153
1154 killed:
1155         /* protects against exit_notify() and __exit_signal() */
1156         read_lock(&tasklist_lock);
1157         sig->group_exit_task = NULL;
1158         sig->notify_count = 0;
1159         read_unlock(&tasklist_lock);
1160         return -EAGAIN;
1161 }
1162
1163 char *get_task_comm(char *buf, struct task_struct *tsk)
1164 {
1165         /* buf must be at least sizeof(tsk->comm) in size */
1166         task_lock(tsk);
1167         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1168         task_unlock(tsk);
1169         return buf;
1170 }
1171 EXPORT_SYMBOL_GPL(get_task_comm);
1172
1173 /*
1174  * These functions flushes out all traces of the currently running executable
1175  * so that a new one can be started
1176  */
1177
1178 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1179 {
1180         task_lock(tsk);
1181         trace_task_rename(tsk, buf);
1182         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1183         task_unlock(tsk);
1184         perf_event_comm(tsk, exec);
1185 }
1186
1187 int flush_old_exec(struct linux_binprm * bprm)
1188 {
1189         int retval;
1190
1191         /*
1192          * Make sure we have a private signal table and that
1193          * we are unassociated from the previous thread group.
1194          */
1195         retval = de_thread(current);
1196         if (retval)
1197                 goto out;
1198
1199         /*
1200          * Must be called _before_ exec_mmap() as bprm->mm is
1201          * not visibile until then. This also enables the update
1202          * to be lockless.
1203          */
1204         set_mm_exe_file(bprm->mm, bprm->file);
1205
1206         /*
1207          * Release all of the old mmap stuff
1208          */
1209         acct_arg_size(bprm, 0);
1210         retval = exec_mmap(bprm->mm);
1211         if (retval)
1212                 goto out;
1213
1214         bprm->mm = NULL;                /* We're using it now */
1215
1216         set_fs(USER_DS);
1217         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1218                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1219         flush_thread();
1220         current->personality &= ~bprm->per_clear;
1221
1222         return 0;
1223
1224 out:
1225         return retval;
1226 }
1227 EXPORT_SYMBOL(flush_old_exec);
1228
1229 void would_dump(struct linux_binprm *bprm, struct file *file)
1230 {
1231         if (inode_permission(file_inode(file), MAY_READ) < 0)
1232                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1233 }
1234 EXPORT_SYMBOL(would_dump);
1235
1236 void setup_new_exec(struct linux_binprm * bprm)
1237 {
1238         arch_pick_mmap_layout(current->mm);
1239
1240         /* This is the point of no return */
1241         current->sas_ss_sp = current->sas_ss_size = 0;
1242
1243         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1244                 set_dumpable(current->mm, SUID_DUMP_USER);
1245         else
1246                 set_dumpable(current->mm, suid_dumpable);
1247
1248         perf_event_exec();
1249         __set_task_comm(current, kbasename(bprm->filename), true);
1250
1251         /* Set the new mm task size. We have to do that late because it may
1252          * depend on TIF_32BIT which is only updated in flush_thread() on
1253          * some architectures like powerpc
1254          */
1255         current->mm->task_size = TASK_SIZE;
1256
1257         /* install the new credentials */
1258         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1259             !gid_eq(bprm->cred->gid, current_egid())) {
1260                 current->pdeath_signal = 0;
1261         } else {
1262                 would_dump(bprm, bprm->file);
1263                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1264                         set_dumpable(current->mm, suid_dumpable);
1265         }
1266
1267         /* An exec changes our domain. We are no longer part of the thread
1268            group */
1269         current->self_exec_id++;
1270         flush_signal_handlers(current, 0);
1271         do_close_on_exec(current->files);
1272 }
1273 EXPORT_SYMBOL(setup_new_exec);
1274
1275 /*
1276  * Prepare credentials and lock ->cred_guard_mutex.
1277  * install_exec_creds() commits the new creds and drops the lock.
1278  * Or, if exec fails before, free_bprm() should release ->cred and
1279  * and unlock.
1280  */
1281 int prepare_bprm_creds(struct linux_binprm *bprm)
1282 {
1283         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1284                 return -ERESTARTNOINTR;
1285
1286         bprm->cred = prepare_exec_creds();
1287         if (likely(bprm->cred))
1288                 return 0;
1289
1290         mutex_unlock(&current->signal->cred_guard_mutex);
1291         return -ENOMEM;
1292 }
1293
1294 static void free_bprm(struct linux_binprm *bprm)
1295 {
1296         free_arg_pages(bprm);
1297         if (bprm->cred) {
1298                 mutex_unlock(&current->signal->cred_guard_mutex);
1299                 abort_creds(bprm->cred);
1300         }
1301         if (bprm->file) {
1302                 allow_write_access(bprm->file);
1303                 fput(bprm->file);
1304         }
1305         /* If a binfmt changed the interp, free it. */
1306         if (bprm->interp != bprm->filename)
1307                 kfree(bprm->interp);
1308         kfree(bprm);
1309 }
1310
1311 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1312 {
1313         /* If a binfmt changed the interp, free it first. */
1314         if (bprm->interp != bprm->filename)
1315                 kfree(bprm->interp);
1316         bprm->interp = kstrdup(interp, GFP_KERNEL);
1317         if (!bprm->interp)
1318                 return -ENOMEM;
1319         return 0;
1320 }
1321 EXPORT_SYMBOL(bprm_change_interp);
1322
1323 /*
1324  * install the new credentials for this executable
1325  */
1326 void install_exec_creds(struct linux_binprm *bprm)
1327 {
1328         security_bprm_committing_creds(bprm);
1329
1330         commit_creds(bprm->cred);
1331         bprm->cred = NULL;
1332
1333         /*
1334          * Disable monitoring for regular users
1335          * when executing setuid binaries. Must
1336          * wait until new credentials are committed
1337          * by commit_creds() above
1338          */
1339         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1340                 perf_event_exit_task(current);
1341         /*
1342          * cred_guard_mutex must be held at least to this point to prevent
1343          * ptrace_attach() from altering our determination of the task's
1344          * credentials; any time after this it may be unlocked.
1345          */
1346         security_bprm_committed_creds(bprm);
1347         mutex_unlock(&current->signal->cred_guard_mutex);
1348 }
1349 EXPORT_SYMBOL(install_exec_creds);
1350
1351 /*
1352  * determine how safe it is to execute the proposed program
1353  * - the caller must hold ->cred_guard_mutex to protect against
1354  *   PTRACE_ATTACH or seccomp thread-sync
1355  */
1356 static void check_unsafe_exec(struct linux_binprm *bprm)
1357 {
1358         struct task_struct *p = current, *t;
1359         unsigned n_fs;
1360
1361         if (p->ptrace) {
1362                 if (p->ptrace & PT_PTRACE_CAP)
1363                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1364                 else
1365                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1366         }
1367
1368         /*
1369          * This isn't strictly necessary, but it makes it harder for LSMs to
1370          * mess up.
1371          */
1372         if (task_no_new_privs(current))
1373                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1374
1375         t = p;
1376         n_fs = 1;
1377         spin_lock(&p->fs->lock);
1378         rcu_read_lock();
1379         while_each_thread(p, t) {
1380                 if (t->fs == p->fs)
1381                         n_fs++;
1382         }
1383         rcu_read_unlock();
1384
1385         if (p->fs->users > n_fs)
1386                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1387         else
1388                 p->fs->in_exec = 1;
1389         spin_unlock(&p->fs->lock);
1390 }
1391
1392 static void bprm_fill_uid(struct linux_binprm *bprm)
1393 {
1394         struct inode *inode;
1395         unsigned int mode;
1396         kuid_t uid;
1397         kgid_t gid;
1398
1399         /*
1400          * Since this can be called multiple times (via prepare_binprm),
1401          * we must clear any previous work done when setting set[ug]id
1402          * bits from any earlier bprm->file uses (for example when run
1403          * first for a setuid script then again for its interpreter).
1404          */
1405         bprm->cred->euid = current_euid();
1406         bprm->cred->egid = current_egid();
1407
1408         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1409                 return;
1410
1411         if (task_no_new_privs(current))
1412                 return;
1413
1414         inode = file_inode(bprm->file);
1415         mode = READ_ONCE(inode->i_mode);
1416         if (!(mode & (S_ISUID|S_ISGID)))
1417                 return;
1418
1419         /* Be careful if suid/sgid is set */
1420         inode_lock(inode);
1421
1422         /* reload atomically mode/uid/gid now that lock held */
1423         mode = inode->i_mode;
1424         uid = inode->i_uid;
1425         gid = inode->i_gid;
1426         inode_unlock(inode);
1427
1428         /* We ignore suid/sgid if there are no mappings for them in the ns */
1429         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1430                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1431                 return;
1432
1433         if (mode & S_ISUID) {
1434                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1435                 bprm->cred->euid = uid;
1436         }
1437
1438         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1439                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1440                 bprm->cred->egid = gid;
1441         }
1442 }
1443
1444 /*
1445  * Fill the binprm structure from the inode.
1446  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1447  *
1448  * This may be called multiple times for binary chains (scripts for example).
1449  */
1450 int prepare_binprm(struct linux_binprm *bprm)
1451 {
1452         int retval;
1453
1454         bprm_fill_uid(bprm);
1455
1456         /* fill in binprm security blob */
1457         retval = security_bprm_set_creds(bprm);
1458         if (retval)
1459                 return retval;
1460         bprm->cred_prepared = 1;
1461
1462         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1463         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1464 }
1465
1466 EXPORT_SYMBOL(prepare_binprm);
1467
1468 /*
1469  * Arguments are '\0' separated strings found at the location bprm->p
1470  * points to; chop off the first by relocating brpm->p to right after
1471  * the first '\0' encountered.
1472  */
1473 int remove_arg_zero(struct linux_binprm *bprm)
1474 {
1475         int ret = 0;
1476         unsigned long offset;
1477         char *kaddr;
1478         struct page *page;
1479
1480         if (!bprm->argc)
1481                 return 0;
1482
1483         do {
1484                 offset = bprm->p & ~PAGE_MASK;
1485                 page = get_arg_page(bprm, bprm->p, 0);
1486                 if (!page) {
1487                         ret = -EFAULT;
1488                         goto out;
1489                 }
1490                 kaddr = kmap_atomic(page);
1491
1492                 for (; offset < PAGE_SIZE && kaddr[offset];
1493                                 offset++, bprm->p++)
1494                         ;
1495
1496                 kunmap_atomic(kaddr);
1497                 put_arg_page(page);
1498         } while (offset == PAGE_SIZE);
1499
1500         bprm->p++;
1501         bprm->argc--;
1502         ret = 0;
1503
1504 out:
1505         return ret;
1506 }
1507 EXPORT_SYMBOL(remove_arg_zero);
1508
1509 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1510 /*
1511  * cycle the list of binary formats handler, until one recognizes the image
1512  */
1513 int search_binary_handler(struct linux_binprm *bprm)
1514 {
1515         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1516         struct linux_binfmt *fmt;
1517         int retval;
1518
1519         /* This allows 4 levels of binfmt rewrites before failing hard. */
1520         if (bprm->recursion_depth > 5)
1521                 return -ELOOP;
1522
1523         retval = security_bprm_check(bprm);
1524         if (retval)
1525                 return retval;
1526
1527         retval = -ENOENT;
1528  retry:
1529         read_lock(&binfmt_lock);
1530         list_for_each_entry(fmt, &formats, lh) {
1531                 if (!try_module_get(fmt->module))
1532                         continue;
1533                 read_unlock(&binfmt_lock);
1534                 bprm->recursion_depth++;
1535                 retval = fmt->load_binary(bprm);
1536                 read_lock(&binfmt_lock);
1537                 put_binfmt(fmt);
1538                 bprm->recursion_depth--;
1539                 if (retval < 0 && !bprm->mm) {
1540                         /* we got to flush_old_exec() and failed after it */
1541                         read_unlock(&binfmt_lock);
1542                         force_sigsegv(SIGSEGV, current);
1543                         return retval;
1544                 }
1545                 if (retval != -ENOEXEC || !bprm->file) {
1546                         read_unlock(&binfmt_lock);
1547                         return retval;
1548                 }
1549         }
1550         read_unlock(&binfmt_lock);
1551
1552         if (need_retry) {
1553                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1554                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1555                         return retval;
1556                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1557                         return retval;
1558                 need_retry = false;
1559                 goto retry;
1560         }
1561
1562         return retval;
1563 }
1564 EXPORT_SYMBOL(search_binary_handler);
1565
1566 static int exec_binprm(struct linux_binprm *bprm)
1567 {
1568         pid_t old_pid, old_vpid;
1569         int ret;
1570
1571         /* Need to fetch pid before load_binary changes it */
1572         old_pid = current->pid;
1573         rcu_read_lock();
1574         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1575         rcu_read_unlock();
1576
1577         ret = search_binary_handler(bprm);
1578         if (ret >= 0) {
1579                 audit_bprm(bprm);
1580                 trace_sched_process_exec(current, old_pid, bprm);
1581                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1582                 proc_exec_connector(current);
1583         }
1584
1585         return ret;
1586 }
1587
1588 /*
1589  * sys_execve() executes a new program.
1590  */
1591 static int do_execveat_common(int fd, struct filename *filename,
1592                               struct user_arg_ptr argv,
1593                               struct user_arg_ptr envp,
1594                               int flags)
1595 {
1596         char *pathbuf = NULL;
1597         struct linux_binprm *bprm;
1598         struct file *file;
1599         struct files_struct *displaced;
1600         int retval;
1601
1602         if (IS_ERR(filename))
1603                 return PTR_ERR(filename);
1604
1605         /*
1606          * We move the actual failure in case of RLIMIT_NPROC excess from
1607          * set*uid() to execve() because too many poorly written programs
1608          * don't check setuid() return code.  Here we additionally recheck
1609          * whether NPROC limit is still exceeded.
1610          */
1611         if ((current->flags & PF_NPROC_EXCEEDED) &&
1612             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1613                 retval = -EAGAIN;
1614                 goto out_ret;
1615         }
1616
1617         /* We're below the limit (still or again), so we don't want to make
1618          * further execve() calls fail. */
1619         current->flags &= ~PF_NPROC_EXCEEDED;
1620
1621         retval = unshare_files(&displaced);
1622         if (retval)
1623                 goto out_ret;
1624
1625         retval = -ENOMEM;
1626         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1627         if (!bprm)
1628                 goto out_files;
1629
1630         retval = prepare_bprm_creds(bprm);
1631         if (retval)
1632                 goto out_free;
1633
1634         check_unsafe_exec(bprm);
1635         current->in_execve = 1;
1636
1637         file = do_open_execat(fd, filename, flags);
1638         retval = PTR_ERR(file);
1639         if (IS_ERR(file))
1640                 goto out_unmark;
1641
1642         sched_exec();
1643
1644         bprm->file = file;
1645         if (fd == AT_FDCWD || filename->name[0] == '/') {
1646                 bprm->filename = filename->name;
1647         } else {
1648                 if (filename->name[0] == '\0')
1649                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1650                 else
1651                         pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1652                                             fd, filename->name);
1653                 if (!pathbuf) {
1654                         retval = -ENOMEM;
1655                         goto out_unmark;
1656                 }
1657                 /*
1658                  * Record that a name derived from an O_CLOEXEC fd will be
1659                  * inaccessible after exec. Relies on having exclusive access to
1660                  * current->files (due to unshare_files above).
1661                  */
1662                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1663                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1664                 bprm->filename = pathbuf;
1665         }
1666         bprm->interp = bprm->filename;
1667
1668         retval = bprm_mm_init(bprm);
1669         if (retval)
1670                 goto out_unmark;
1671
1672         bprm->argc = count(argv, MAX_ARG_STRINGS);
1673         if ((retval = bprm->argc) < 0)
1674                 goto out;
1675
1676         bprm->envc = count(envp, MAX_ARG_STRINGS);
1677         if ((retval = bprm->envc) < 0)
1678                 goto out;
1679
1680         retval = prepare_binprm(bprm);
1681         if (retval < 0)
1682                 goto out;
1683
1684         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1685         if (retval < 0)
1686                 goto out;
1687
1688         bprm->exec = bprm->p;
1689         retval = copy_strings(bprm->envc, envp, bprm);
1690         if (retval < 0)
1691                 goto out;
1692
1693         retval = copy_strings(bprm->argc, argv, bprm);
1694         if (retval < 0)
1695                 goto out;
1696
1697         retval = exec_binprm(bprm);
1698         if (retval < 0)
1699                 goto out;
1700
1701         /* execve succeeded */
1702         current->fs->in_exec = 0;
1703         current->in_execve = 0;
1704         acct_update_integrals(current);
1705         task_numa_free(current);
1706         free_bprm(bprm);
1707         kfree(pathbuf);
1708         putname(filename);
1709         if (displaced)
1710                 put_files_struct(displaced);
1711         return retval;
1712
1713 out:
1714         if (bprm->mm) {
1715                 acct_arg_size(bprm, 0);
1716                 mmput(bprm->mm);
1717         }
1718
1719 out_unmark:
1720         current->fs->in_exec = 0;
1721         current->in_execve = 0;
1722
1723 out_free:
1724         free_bprm(bprm);
1725         kfree(pathbuf);
1726
1727 out_files:
1728         if (displaced)
1729                 reset_files_struct(displaced);
1730 out_ret:
1731         putname(filename);
1732         return retval;
1733 }
1734
1735 int do_execve(struct filename *filename,
1736         const char __user *const __user *__argv,
1737         const char __user *const __user *__envp)
1738 {
1739         struct user_arg_ptr argv = { .ptr.native = __argv };
1740         struct user_arg_ptr envp = { .ptr.native = __envp };
1741         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1742 }
1743
1744 int do_execveat(int fd, struct filename *filename,
1745                 const char __user *const __user *__argv,
1746                 const char __user *const __user *__envp,
1747                 int flags)
1748 {
1749         struct user_arg_ptr argv = { .ptr.native = __argv };
1750         struct user_arg_ptr envp = { .ptr.native = __envp };
1751
1752         return do_execveat_common(fd, filename, argv, envp, flags);
1753 }
1754
1755 #ifdef CONFIG_COMPAT
1756 static int compat_do_execve(struct filename *filename,
1757         const compat_uptr_t __user *__argv,
1758         const compat_uptr_t __user *__envp)
1759 {
1760         struct user_arg_ptr argv = {
1761                 .is_compat = true,
1762                 .ptr.compat = __argv,
1763         };
1764         struct user_arg_ptr envp = {
1765                 .is_compat = true,
1766                 .ptr.compat = __envp,
1767         };
1768         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1769 }
1770
1771 static int compat_do_execveat(int fd, struct filename *filename,
1772                               const compat_uptr_t __user *__argv,
1773                               const compat_uptr_t __user *__envp,
1774                               int flags)
1775 {
1776         struct user_arg_ptr argv = {
1777                 .is_compat = true,
1778                 .ptr.compat = __argv,
1779         };
1780         struct user_arg_ptr envp = {
1781                 .is_compat = true,
1782                 .ptr.compat = __envp,
1783         };
1784         return do_execveat_common(fd, filename, argv, envp, flags);
1785 }
1786 #endif
1787
1788 void set_binfmt(struct linux_binfmt *new)
1789 {
1790         struct mm_struct *mm = current->mm;
1791
1792         if (mm->binfmt)
1793                 module_put(mm->binfmt->module);
1794
1795         mm->binfmt = new;
1796         if (new)
1797                 __module_get(new->module);
1798 }
1799 EXPORT_SYMBOL(set_binfmt);
1800
1801 /*
1802  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1803  */
1804 void set_dumpable(struct mm_struct *mm, int value)
1805 {
1806         unsigned long old, new;
1807
1808         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1809                 return;
1810
1811         do {
1812                 old = ACCESS_ONCE(mm->flags);
1813                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1814         } while (cmpxchg(&mm->flags, old, new) != old);
1815 }
1816
1817 SYSCALL_DEFINE3(execve,
1818                 const char __user *, filename,
1819                 const char __user *const __user *, argv,
1820                 const char __user *const __user *, envp)
1821 {
1822         return do_execve(getname(filename), argv, envp);
1823 }
1824
1825 SYSCALL_DEFINE5(execveat,
1826                 int, fd, const char __user *, filename,
1827                 const char __user *const __user *, argv,
1828                 const char __user *const __user *, envp,
1829                 int, flags)
1830 {
1831         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1832
1833         return do_execveat(fd,
1834                            getname_flags(filename, lookup_flags, NULL),
1835                            argv, envp, flags);
1836 }
1837
1838 #ifdef CONFIG_COMPAT
1839 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1840         const compat_uptr_t __user *, argv,
1841         const compat_uptr_t __user *, envp)
1842 {
1843         return compat_do_execve(getname(filename), argv, envp);
1844 }
1845
1846 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1847                        const char __user *, filename,
1848                        const compat_uptr_t __user *, argv,
1849                        const compat_uptr_t __user *, envp,
1850                        int,  flags)
1851 {
1852         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1853
1854         return compat_do_execveat(fd,
1855                                   getname_flags(filename, lookup_flags, NULL),
1856                                   argv, envp, flags);
1857 }
1858 #endif