Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !ext4_has_metadata_csum(inode->i_sb))
85                 return 1;
86
87         provided = le16_to_cpu(raw->i_checksum_lo);
88         calculated = ext4_inode_csum(inode, raw, ei);
89         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92         else
93                 calculated &= 0xFFFF;
94
95         return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99                                 struct ext4_inode_info *ei)
100 {
101         __u32 csum;
102
103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104             cpu_to_le32(EXT4_OS_LINUX) ||
105             !ext4_has_metadata_csum(inode->i_sb))
106                 return;
107
108         csum = ext4_inode_csum(inode, raw, ei);
109         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116                                               loff_t new_size)
117 {
118         trace_ext4_begin_ordered_truncate(inode, new_size);
119         /*
120          * If jinode is zero, then we never opened the file for
121          * writing, so there's no need to call
122          * jbd2_journal_begin_ordered_truncate() since there's no
123          * outstanding writes we need to flush.
124          */
125         if (!EXT4_I(inode)->jinode)
126                 return 0;
127         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128                                                    EXT4_I(inode)->jinode,
129                                                    new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133                                 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137                                   int pextents);
138
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147         if (ext4_has_inline_data(inode))
148                 return 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages_final(&inode->i_data);
218
219                 goto no_delete;
220         }
221
222         if (is_bad_inode(inode))
223                 goto no_delete;
224         dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages_final(&inode->i_data);
229
230         /*
231          * Protect us against freezing - iput() caller didn't have to have any
232          * protection against it
233          */
234         sb_start_intwrite(inode->i_sb);
235         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236                                     ext4_blocks_for_truncate(inode)+3);
237         if (IS_ERR(handle)) {
238                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
239                 /*
240                  * If we're going to skip the normal cleanup, we still need to
241                  * make sure that the in-core orphan linked list is properly
242                  * cleaned up.
243                  */
244                 ext4_orphan_del(NULL, inode);
245                 sb_end_intwrite(inode->i_sb);
246                 goto no_delete;
247         }
248
249         if (IS_SYNC(inode))
250                 ext4_handle_sync(handle);
251         inode->i_size = 0;
252         err = ext4_mark_inode_dirty(handle, inode);
253         if (err) {
254                 ext4_warning(inode->i_sb,
255                              "couldn't mark inode dirty (err %d)", err);
256                 goto stop_handle;
257         }
258         if (inode->i_blocks)
259                 ext4_truncate(inode);
260
261         /*
262          * ext4_ext_truncate() doesn't reserve any slop when it
263          * restarts journal transactions; therefore there may not be
264          * enough credits left in the handle to remove the inode from
265          * the orphan list and set the dtime field.
266          */
267         if (!ext4_handle_has_enough_credits(handle, 3)) {
268                 err = ext4_journal_extend(handle, 3);
269                 if (err > 0)
270                         err = ext4_journal_restart(handle, 3);
271                 if (err != 0) {
272                         ext4_warning(inode->i_sb,
273                                      "couldn't extend journal (err %d)", err);
274                 stop_handle:
275                         ext4_journal_stop(handle);
276                         ext4_orphan_del(NULL, inode);
277                         sb_end_intwrite(inode->i_sb);
278                         goto no_delete;
279                 }
280         }
281
282         /*
283          * Kill off the orphan record which ext4_truncate created.
284          * AKPM: I think this can be inside the above `if'.
285          * Note that ext4_orphan_del() has to be able to cope with the
286          * deletion of a non-existent orphan - this is because we don't
287          * know if ext4_truncate() actually created an orphan record.
288          * (Well, we could do this if we need to, but heck - it works)
289          */
290         ext4_orphan_del(handle, inode);
291         EXT4_I(inode)->i_dtime  = get_seconds();
292
293         /*
294          * One subtle ordering requirement: if anything has gone wrong
295          * (transaction abort, IO errors, whatever), then we can still
296          * do these next steps (the fs will already have been marked as
297          * having errors), but we can't free the inode if the mark_dirty
298          * fails.
299          */
300         if (ext4_mark_inode_dirty(handle, inode))
301                 /* If that failed, just do the required in-core inode clear. */
302                 ext4_clear_inode(inode);
303         else
304                 ext4_free_inode(handle, inode);
305         ext4_journal_stop(handle);
306         sb_end_intwrite(inode->i_sb);
307         return;
308 no_delete:
309         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
310 }
311
312 #ifdef CONFIG_QUOTA
313 qsize_t *ext4_get_reserved_space(struct inode *inode)
314 {
315         return &EXT4_I(inode)->i_reserved_quota;
316 }
317 #endif
318
319 /*
320  * Called with i_data_sem down, which is important since we can call
321  * ext4_discard_preallocations() from here.
322  */
323 void ext4_da_update_reserve_space(struct inode *inode,
324                                         int used, int quota_claim)
325 {
326         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327         struct ext4_inode_info *ei = EXT4_I(inode);
328
329         spin_lock(&ei->i_block_reservation_lock);
330         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331         if (unlikely(used > ei->i_reserved_data_blocks)) {
332                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333                          "with only %d reserved data blocks",
334                          __func__, inode->i_ino, used,
335                          ei->i_reserved_data_blocks);
336                 WARN_ON(1);
337                 used = ei->i_reserved_data_blocks;
338         }
339
340         /* Update per-inode reservations */
341         ei->i_reserved_data_blocks -= used;
342         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
343
344         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
345
346         /* Update quota subsystem for data blocks */
347         if (quota_claim)
348                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
349         else {
350                 /*
351                  * We did fallocate with an offset that is already delayed
352                  * allocated. So on delayed allocated writeback we should
353                  * not re-claim the quota for fallocated blocks.
354                  */
355                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
356         }
357
358         /*
359          * If we have done all the pending block allocations and if
360          * there aren't any writers on the inode, we can discard the
361          * inode's preallocations.
362          */
363         if ((ei->i_reserved_data_blocks == 0) &&
364             (atomic_read(&inode->i_writecount) == 0))
365                 ext4_discard_preallocations(inode);
366 }
367
368 static int __check_block_validity(struct inode *inode, const char *func,
369                                 unsigned int line,
370                                 struct ext4_map_blocks *map)
371 {
372         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373                                    map->m_len)) {
374                 ext4_error_inode(inode, func, line, map->m_pblk,
375                                  "lblock %lu mapped to illegal pblock "
376                                  "(length %d)", (unsigned long) map->m_lblk,
377                                  map->m_len);
378                 return -EFSCORRUPTED;
379         }
380         return 0;
381 }
382
383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384                        ext4_lblk_t len)
385 {
386         int ret;
387
388         if (ext4_encrypted_inode(inode))
389                 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390
391         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392         if (ret > 0)
393                 ret = 0;
394
395         return ret;
396 }
397
398 #define check_block_validity(inode, map)        \
399         __check_block_validity((inode), __func__, __LINE__, (map))
400
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t *handle,
403                                        struct inode *inode,
404                                        struct ext4_map_blocks *es_map,
405                                        struct ext4_map_blocks *map,
406                                        int flags)
407 {
408         int retval;
409
410         map->m_flags = 0;
411         /*
412          * There is a race window that the result is not the same.
413          * e.g. xfstests #223 when dioread_nolock enables.  The reason
414          * is that we lookup a block mapping in extent status tree with
415          * out taking i_data_sem.  So at the time the unwritten extent
416          * could be converted.
417          */
418         down_read(&EXT4_I(inode)->i_data_sem);
419         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
421                                              EXT4_GET_BLOCKS_KEEP_SIZE);
422         } else {
423                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
424                                              EXT4_GET_BLOCKS_KEEP_SIZE);
425         }
426         up_read((&EXT4_I(inode)->i_data_sem));
427
428         /*
429          * We don't check m_len because extent will be collpased in status
430          * tree.  So the m_len might not equal.
431          */
432         if (es_map->m_lblk != map->m_lblk ||
433             es_map->m_flags != map->m_flags ||
434             es_map->m_pblk != map->m_pblk) {
435                 printk("ES cache assertion failed for inode: %lu "
436                        "es_cached ex [%d/%d/%llu/%x] != "
437                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438                        inode->i_ino, es_map->m_lblk, es_map->m_len,
439                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
440                        map->m_len, map->m_pblk, map->m_flags,
441                        retval, flags);
442         }
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.  if
459  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
461  *
462  * It returns 0 if plain look up failed (blocks have not been allocated), in
463  * that case, @map is returned as unmapped but we still do fill map->m_len to
464  * indicate the length of a hole starting at map->m_lblk.
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469                     struct ext4_map_blocks *map, int flags)
470 {
471         struct extent_status es;
472         int retval;
473         int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475         struct ext4_map_blocks orig_map;
476
477         memcpy(&orig_map, map, sizeof(*map));
478 #endif
479
480         map->m_flags = 0;
481         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
483                   (unsigned long) map->m_lblk);
484
485         /*
486          * ext4_map_blocks returns an int, and m_len is an unsigned int
487          */
488         if (unlikely(map->m_len > INT_MAX))
489                 map->m_len = INT_MAX;
490
491         /* We can handle the block number less than EXT_MAX_BLOCKS */
492         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493                 return -EFSCORRUPTED;
494
495         /* Lookup extent status tree firstly */
496         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498                         map->m_pblk = ext4_es_pblock(&es) +
499                                         map->m_lblk - es.es_lblk;
500                         map->m_flags |= ext4_es_is_written(&es) ?
501                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502                         retval = es.es_len - (map->m_lblk - es.es_lblk);
503                         if (retval > map->m_len)
504                                 retval = map->m_len;
505                         map->m_len = retval;
506                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507                         map->m_pblk = 0;
508                         retval = es.es_len - (map->m_lblk - es.es_lblk);
509                         if (retval > map->m_len)
510                                 retval = map->m_len;
511                         map->m_len = retval;
512                         retval = 0;
513                 } else {
514                         BUG_ON(1);
515                 }
516 #ifdef ES_AGGRESSIVE_TEST
517                 ext4_map_blocks_es_recheck(handle, inode, map,
518                                            &orig_map, flags);
519 #endif
520                 goto found;
521         }
522
523         /*
524          * Try to see if we can get the block without requesting a new
525          * file system block.
526          */
527         down_read(&EXT4_I(inode)->i_data_sem);
528         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
530                                              EXT4_GET_BLOCKS_KEEP_SIZE);
531         } else {
532                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
533                                              EXT4_GET_BLOCKS_KEEP_SIZE);
534         }
535         if (retval > 0) {
536                 unsigned int status;
537
538                 if (unlikely(retval != map->m_len)) {
539                         ext4_warning(inode->i_sb,
540                                      "ES len assertion failed for inode "
541                                      "%lu: retval %d != map->m_len %d",
542                                      inode->i_ino, retval, map->m_len);
543                         WARN_ON(1);
544                 }
545
546                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549                     !(status & EXTENT_STATUS_WRITTEN) &&
550                     ext4_find_delalloc_range(inode, map->m_lblk,
551                                              map->m_lblk + map->m_len - 1))
552                         status |= EXTENT_STATUS_DELAYED;
553                 ret = ext4_es_insert_extent(inode, map->m_lblk,
554                                             map->m_len, map->m_pblk, status);
555                 if (ret < 0)
556                         retval = ret;
557         }
558         up_read((&EXT4_I(inode)->i_data_sem));
559
560 found:
561         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562                 ret = check_block_validity(inode, map);
563                 if (ret != 0)
564                         return ret;
565         }
566
567         /* If it is only a block(s) look up */
568         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569                 return retval;
570
571         /*
572          * Returns if the blocks have already allocated
573          *
574          * Note that if blocks have been preallocated
575          * ext4_ext_get_block() returns the create = 0
576          * with buffer head unmapped.
577          */
578         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
579                 /*
580                  * If we need to convert extent to unwritten
581                  * we continue and do the actual work in
582                  * ext4_ext_map_blocks()
583                  */
584                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585                         return retval;
586
587         /*
588          * Here we clear m_flags because after allocating an new extent,
589          * it will be set again.
590          */
591         map->m_flags &= ~EXT4_MAP_FLAGS;
592
593         /*
594          * New blocks allocate and/or writing to unwritten extent
595          * will possibly result in updating i_data, so we take
596          * the write lock of i_data_sem, and call get_block()
597          * with create == 1 flag.
598          */
599         down_write(&EXT4_I(inode)->i_data_sem);
600
601         /*
602          * We need to check for EXT4 here because migrate
603          * could have changed the inode type in between
604          */
605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
609
610                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
611                         /*
612                          * We allocated new blocks which will result in
613                          * i_data's format changing.  Force the migrate
614                          * to fail by clearing migrate flags
615                          */
616                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
617                 }
618
619                 /*
620                  * Update reserved blocks/metadata blocks after successful
621                  * block allocation which had been deferred till now. We don't
622                  * support fallocate for non extent files. So we can update
623                  * reserve space here.
624                  */
625                 if ((retval > 0) &&
626                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627                         ext4_da_update_reserve_space(inode, retval, 1);
628         }
629
630         if (retval > 0) {
631                 unsigned int status;
632
633                 if (unlikely(retval != map->m_len)) {
634                         ext4_warning(inode->i_sb,
635                                      "ES len assertion failed for inode "
636                                      "%lu: retval %d != map->m_len %d",
637                                      inode->i_ino, retval, map->m_len);
638                         WARN_ON(1);
639                 }
640
641                 /*
642                  * We have to zeroout blocks before inserting them into extent
643                  * status tree. Otherwise someone could look them up there and
644                  * use them before they are really zeroed.
645                  */
646                 if (flags & EXT4_GET_BLOCKS_ZERO &&
647                     map->m_flags & EXT4_MAP_MAPPED &&
648                     map->m_flags & EXT4_MAP_NEW) {
649                         ret = ext4_issue_zeroout(inode, map->m_lblk,
650                                                  map->m_pblk, map->m_len);
651                         if (ret) {
652                                 retval = ret;
653                                 goto out_sem;
654                         }
655                 }
656
657                 /*
658                  * If the extent has been zeroed out, we don't need to update
659                  * extent status tree.
660                  */
661                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663                         if (ext4_es_is_written(&es))
664                                 goto out_sem;
665                 }
666                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669                     !(status & EXTENT_STATUS_WRITTEN) &&
670                     ext4_find_delalloc_range(inode, map->m_lblk,
671                                              map->m_lblk + map->m_len - 1))
672                         status |= EXTENT_STATUS_DELAYED;
673                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674                                             map->m_pblk, status);
675                 if (ret < 0) {
676                         retval = ret;
677                         goto out_sem;
678                 }
679         }
680
681 out_sem:
682         up_write((&EXT4_I(inode)->i_data_sem));
683         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684                 ret = check_block_validity(inode, map);
685                 if (ret != 0)
686                         return ret;
687         }
688         return retval;
689 }
690
691 /*
692  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
693  * we have to be careful as someone else may be manipulating b_state as well.
694  */
695 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
696 {
697         unsigned long old_state;
698         unsigned long new_state;
699
700         flags &= EXT4_MAP_FLAGS;
701
702         /* Dummy buffer_head? Set non-atomically. */
703         if (!bh->b_page) {
704                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
705                 return;
706         }
707         /*
708          * Someone else may be modifying b_state. Be careful! This is ugly but
709          * once we get rid of using bh as a container for mapping information
710          * to pass to / from get_block functions, this can go away.
711          */
712         do {
713                 old_state = READ_ONCE(bh->b_state);
714                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
715         } while (unlikely(
716                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
717 }
718
719 static int _ext4_get_block(struct inode *inode, sector_t iblock,
720                            struct buffer_head *bh, int flags)
721 {
722         struct ext4_map_blocks map;
723         int ret = 0;
724
725         if (ext4_has_inline_data(inode))
726                 return -ERANGE;
727
728         map.m_lblk = iblock;
729         map.m_len = bh->b_size >> inode->i_blkbits;
730
731         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
732                               flags);
733         if (ret > 0) {
734                 map_bh(bh, inode->i_sb, map.m_pblk);
735                 ext4_update_bh_state(bh, map.m_flags);
736                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737                 ret = 0;
738         }
739         return ret;
740 }
741
742 int ext4_get_block(struct inode *inode, sector_t iblock,
743                    struct buffer_head *bh, int create)
744 {
745         return _ext4_get_block(inode, iblock, bh,
746                                create ? EXT4_GET_BLOCKS_CREATE : 0);
747 }
748
749 /*
750  * Get block function used when preparing for buffered write if we require
751  * creating an unwritten extent if blocks haven't been allocated.  The extent
752  * will be converted to written after the IO is complete.
753  */
754 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
755                              struct buffer_head *bh_result, int create)
756 {
757         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
758                    inode->i_ino, create);
759         return _ext4_get_block(inode, iblock, bh_result,
760                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
761 }
762
763 /* Maximum number of blocks we map for direct IO at once. */
764 #define DIO_MAX_BLOCKS 4096
765
766 static handle_t *start_dio_trans(struct inode *inode,
767                                  struct buffer_head *bh_result)
768 {
769         int dio_credits;
770
771         /* Trim mapping request to maximum we can map at once for DIO */
772         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
773                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
774         dio_credits = ext4_chunk_trans_blocks(inode,
775                                       bh_result->b_size >> inode->i_blkbits);
776         return ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
777 }
778
779 /* Get block function for DIO reads and writes to inodes without extents */
780 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
781                        struct buffer_head *bh, int create)
782 {
783         handle_t *handle;
784         int ret;
785
786         /* We don't expect handle for direct IO */
787         WARN_ON_ONCE(ext4_journal_current_handle());
788
789         if (create) {
790                 handle = start_dio_trans(inode, bh);
791                 if (IS_ERR(handle))
792                         return PTR_ERR(handle);
793         }
794         ret = _ext4_get_block(inode, iblock, bh,
795                               create ? EXT4_GET_BLOCKS_CREATE : 0);
796         if (create)
797                 ext4_journal_stop(handle);
798         return ret;
799 }
800
801 /*
802  * Get block function for AIO DIO writes when we create unwritten extent if
803  * blocks are not allocated yet. The extent will be converted to written
804  * after IO is complete.
805  */
806 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
807                 sector_t iblock, struct buffer_head *bh_result, int create)
808 {
809         handle_t *handle;
810         int ret;
811
812         /* We don't expect handle for direct IO */
813         WARN_ON_ONCE(ext4_journal_current_handle());
814
815         handle = start_dio_trans(inode, bh_result);
816         if (IS_ERR(handle))
817                 return PTR_ERR(handle);
818         ret = _ext4_get_block(inode, iblock, bh_result,
819                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
820         ext4_journal_stop(handle);
821
822         /*
823          * When doing DIO using unwritten extents, we need io_end to convert
824          * unwritten extents to written on IO completion. We allocate io_end
825          * once we spot unwritten extent and store it in b_private. Generic
826          * DIO code keeps b_private set and furthermore passes the value to
827          * our completion callback in 'private' argument.
828          */
829         if (!ret && buffer_unwritten(bh_result)) {
830                 if (!bh_result->b_private) {
831                         ext4_io_end_t *io_end;
832
833                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
834                         if (!io_end)
835                                 return -ENOMEM;
836                         bh_result->b_private = io_end;
837                         ext4_set_io_unwritten_flag(inode, io_end);
838                 }
839                 set_buffer_defer_completion(bh_result);
840         }
841
842         return ret;
843 }
844
845 /*
846  * Get block function for non-AIO DIO writes when we create unwritten extent if
847  * blocks are not allocated yet. The extent will be converted to written
848  * after IO is complete from ext4_ext_direct_IO() function.
849  */
850 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
851                 sector_t iblock, struct buffer_head *bh_result, int create)
852 {
853         handle_t *handle;
854         int ret;
855
856         /* We don't expect handle for direct IO */
857         WARN_ON_ONCE(ext4_journal_current_handle());
858
859         handle = start_dio_trans(inode, bh_result);
860         if (IS_ERR(handle))
861                 return PTR_ERR(handle);
862         ret = _ext4_get_block(inode, iblock, bh_result,
863                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
864         ext4_journal_stop(handle);
865
866         /*
867          * Mark inode as having pending DIO writes to unwritten extents.
868          * ext4_ext_direct_IO() checks this flag and converts extents to
869          * written.
870          */
871         if (!ret && buffer_unwritten(bh_result))
872                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
873
874         return ret;
875 }
876
877 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
878                    struct buffer_head *bh_result, int create)
879 {
880         int ret;
881
882         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
883                    inode->i_ino, create);
884         /* We don't expect handle for direct IO */
885         WARN_ON_ONCE(ext4_journal_current_handle());
886
887         ret = _ext4_get_block(inode, iblock, bh_result, 0);
888         /*
889          * Blocks should have been preallocated! ext4_file_write_iter() checks
890          * that.
891          */
892         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
893
894         return ret;
895 }
896
897
898 /*
899  * `handle' can be NULL if create is zero
900  */
901 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
902                                 ext4_lblk_t block, int map_flags)
903 {
904         struct ext4_map_blocks map;
905         struct buffer_head *bh;
906         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
907         int err;
908
909         J_ASSERT(handle != NULL || create == 0);
910
911         map.m_lblk = block;
912         map.m_len = 1;
913         err = ext4_map_blocks(handle, inode, &map, map_flags);
914
915         if (err == 0)
916                 return create ? ERR_PTR(-ENOSPC) : NULL;
917         if (err < 0)
918                 return ERR_PTR(err);
919
920         bh = sb_getblk(inode->i_sb, map.m_pblk);
921         if (unlikely(!bh))
922                 return ERR_PTR(-ENOMEM);
923         if (map.m_flags & EXT4_MAP_NEW) {
924                 J_ASSERT(create != 0);
925                 J_ASSERT(handle != NULL);
926
927                 /*
928                  * Now that we do not always journal data, we should
929                  * keep in mind whether this should always journal the
930                  * new buffer as metadata.  For now, regular file
931                  * writes use ext4_get_block instead, so it's not a
932                  * problem.
933                  */
934                 lock_buffer(bh);
935                 BUFFER_TRACE(bh, "call get_create_access");
936                 err = ext4_journal_get_create_access(handle, bh);
937                 if (unlikely(err)) {
938                         unlock_buffer(bh);
939                         goto errout;
940                 }
941                 if (!buffer_uptodate(bh)) {
942                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
943                         set_buffer_uptodate(bh);
944                 }
945                 unlock_buffer(bh);
946                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
947                 err = ext4_handle_dirty_metadata(handle, inode, bh);
948                 if (unlikely(err))
949                         goto errout;
950         } else
951                 BUFFER_TRACE(bh, "not a new buffer");
952         return bh;
953 errout:
954         brelse(bh);
955         return ERR_PTR(err);
956 }
957
958 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
959                                ext4_lblk_t block, int map_flags)
960 {
961         struct buffer_head *bh;
962
963         bh = ext4_getblk(handle, inode, block, map_flags);
964         if (IS_ERR(bh))
965                 return bh;
966         if (!bh || buffer_uptodate(bh))
967                 return bh;
968         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
969         wait_on_buffer(bh);
970         if (buffer_uptodate(bh))
971                 return bh;
972         put_bh(bh);
973         return ERR_PTR(-EIO);
974 }
975
976 int ext4_walk_page_buffers(handle_t *handle,
977                            struct buffer_head *head,
978                            unsigned from,
979                            unsigned to,
980                            int *partial,
981                            int (*fn)(handle_t *handle,
982                                      struct buffer_head *bh))
983 {
984         struct buffer_head *bh;
985         unsigned block_start, block_end;
986         unsigned blocksize = head->b_size;
987         int err, ret = 0;
988         struct buffer_head *next;
989
990         for (bh = head, block_start = 0;
991              ret == 0 && (bh != head || !block_start);
992              block_start = block_end, bh = next) {
993                 next = bh->b_this_page;
994                 block_end = block_start + blocksize;
995                 if (block_end <= from || block_start >= to) {
996                         if (partial && !buffer_uptodate(bh))
997                                 *partial = 1;
998                         continue;
999                 }
1000                 err = (*fn)(handle, bh);
1001                 if (!ret)
1002                         ret = err;
1003         }
1004         return ret;
1005 }
1006
1007 /*
1008  * To preserve ordering, it is essential that the hole instantiation and
1009  * the data write be encapsulated in a single transaction.  We cannot
1010  * close off a transaction and start a new one between the ext4_get_block()
1011  * and the commit_write().  So doing the jbd2_journal_start at the start of
1012  * prepare_write() is the right place.
1013  *
1014  * Also, this function can nest inside ext4_writepage().  In that case, we
1015  * *know* that ext4_writepage() has generated enough buffer credits to do the
1016  * whole page.  So we won't block on the journal in that case, which is good,
1017  * because the caller may be PF_MEMALLOC.
1018  *
1019  * By accident, ext4 can be reentered when a transaction is open via
1020  * quota file writes.  If we were to commit the transaction while thus
1021  * reentered, there can be a deadlock - we would be holding a quota
1022  * lock, and the commit would never complete if another thread had a
1023  * transaction open and was blocking on the quota lock - a ranking
1024  * violation.
1025  *
1026  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1027  * will _not_ run commit under these circumstances because handle->h_ref
1028  * is elevated.  We'll still have enough credits for the tiny quotafile
1029  * write.
1030  */
1031 int do_journal_get_write_access(handle_t *handle,
1032                                 struct buffer_head *bh)
1033 {
1034         int dirty = buffer_dirty(bh);
1035         int ret;
1036
1037         if (!buffer_mapped(bh) || buffer_freed(bh))
1038                 return 0;
1039         /*
1040          * __block_write_begin() could have dirtied some buffers. Clean
1041          * the dirty bit as jbd2_journal_get_write_access() could complain
1042          * otherwise about fs integrity issues. Setting of the dirty bit
1043          * by __block_write_begin() isn't a real problem here as we clear
1044          * the bit before releasing a page lock and thus writeback cannot
1045          * ever write the buffer.
1046          */
1047         if (dirty)
1048                 clear_buffer_dirty(bh);
1049         BUFFER_TRACE(bh, "get write access");
1050         ret = ext4_journal_get_write_access(handle, bh);
1051         if (!ret && dirty)
1052                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1053         return ret;
1054 }
1055
1056 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1057 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1058                                   get_block_t *get_block)
1059 {
1060         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1061         unsigned to = from + len;
1062         struct inode *inode = page->mapping->host;
1063         unsigned block_start, block_end;
1064         sector_t block;
1065         int err = 0;
1066         unsigned blocksize = inode->i_sb->s_blocksize;
1067         unsigned bbits;
1068         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1069         bool decrypt = false;
1070
1071         BUG_ON(!PageLocked(page));
1072         BUG_ON(from > PAGE_CACHE_SIZE);
1073         BUG_ON(to > PAGE_CACHE_SIZE);
1074         BUG_ON(from > to);
1075
1076         if (!page_has_buffers(page))
1077                 create_empty_buffers(page, blocksize, 0);
1078         head = page_buffers(page);
1079         bbits = ilog2(blocksize);
1080         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1081
1082         for (bh = head, block_start = 0; bh != head || !block_start;
1083             block++, block_start = block_end, bh = bh->b_this_page) {
1084                 block_end = block_start + blocksize;
1085                 if (block_end <= from || block_start >= to) {
1086                         if (PageUptodate(page)) {
1087                                 if (!buffer_uptodate(bh))
1088                                         set_buffer_uptodate(bh);
1089                         }
1090                         continue;
1091                 }
1092                 if (buffer_new(bh))
1093                         clear_buffer_new(bh);
1094                 if (!buffer_mapped(bh)) {
1095                         WARN_ON(bh->b_size != blocksize);
1096                         err = get_block(inode, block, bh, 1);
1097                         if (err)
1098                                 break;
1099                         if (buffer_new(bh)) {
1100                                 unmap_underlying_metadata(bh->b_bdev,
1101                                                           bh->b_blocknr);
1102                                 if (PageUptodate(page)) {
1103                                         clear_buffer_new(bh);
1104                                         set_buffer_uptodate(bh);
1105                                         mark_buffer_dirty(bh);
1106                                         continue;
1107                                 }
1108                                 if (block_end > to || block_start < from)
1109                                         zero_user_segments(page, to, block_end,
1110                                                            block_start, from);
1111                                 continue;
1112                         }
1113                 }
1114                 if (PageUptodate(page)) {
1115                         if (!buffer_uptodate(bh))
1116                                 set_buffer_uptodate(bh);
1117                         continue;
1118                 }
1119                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1120                     !buffer_unwritten(bh) &&
1121                     (block_start < from || block_end > to)) {
1122                         ll_rw_block(READ, 1, &bh);
1123                         *wait_bh++ = bh;
1124                         decrypt = ext4_encrypted_inode(inode) &&
1125                                 S_ISREG(inode->i_mode);
1126                 }
1127         }
1128         /*
1129          * If we issued read requests, let them complete.
1130          */
1131         while (wait_bh > wait) {
1132                 wait_on_buffer(*--wait_bh);
1133                 if (!buffer_uptodate(*wait_bh))
1134                         err = -EIO;
1135         }
1136         if (unlikely(err))
1137                 page_zero_new_buffers(page, from, to);
1138         else if (decrypt)
1139                 err = ext4_decrypt(page);
1140         return err;
1141 }
1142 #endif
1143
1144 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145                             loff_t pos, unsigned len, unsigned flags,
1146                             struct page **pagep, void **fsdata)
1147 {
1148         struct inode *inode = mapping->host;
1149         int ret, needed_blocks;
1150         handle_t *handle;
1151         int retries = 0;
1152         struct page *page;
1153         pgoff_t index;
1154         unsigned from, to;
1155
1156         trace_ext4_write_begin(inode, pos, len, flags);
1157         /*
1158          * Reserve one block more for addition to orphan list in case
1159          * we allocate blocks but write fails for some reason
1160          */
1161         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1162         index = pos >> PAGE_CACHE_SHIFT;
1163         from = pos & (PAGE_CACHE_SIZE - 1);
1164         to = from + len;
1165
1166         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1167                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1168                                                     flags, pagep);
1169                 if (ret < 0)
1170                         return ret;
1171                 if (ret == 1)
1172                         return 0;
1173         }
1174
1175         /*
1176          * grab_cache_page_write_begin() can take a long time if the
1177          * system is thrashing due to memory pressure, or if the page
1178          * is being written back.  So grab it first before we start
1179          * the transaction handle.  This also allows us to allocate
1180          * the page (if needed) without using GFP_NOFS.
1181          */
1182 retry_grab:
1183         page = grab_cache_page_write_begin(mapping, index, flags);
1184         if (!page)
1185                 return -ENOMEM;
1186         unlock_page(page);
1187
1188 retry_journal:
1189         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1190         if (IS_ERR(handle)) {
1191                 page_cache_release(page);
1192                 return PTR_ERR(handle);
1193         }
1194
1195         lock_page(page);
1196         if (page->mapping != mapping) {
1197                 /* The page got truncated from under us */
1198                 unlock_page(page);
1199                 page_cache_release(page);
1200                 ext4_journal_stop(handle);
1201                 goto retry_grab;
1202         }
1203         /* In case writeback began while the page was unlocked */
1204         wait_for_stable_page(page);
1205
1206 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1207         if (ext4_should_dioread_nolock(inode))
1208                 ret = ext4_block_write_begin(page, pos, len,
1209                                              ext4_get_block_unwritten);
1210         else
1211                 ret = ext4_block_write_begin(page, pos, len,
1212                                              ext4_get_block);
1213 #else
1214         if (ext4_should_dioread_nolock(inode))
1215                 ret = __block_write_begin(page, pos, len,
1216                                           ext4_get_block_unwritten);
1217         else
1218                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1219 #endif
1220         if (!ret && ext4_should_journal_data(inode)) {
1221                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1222                                              from, to, NULL,
1223                                              do_journal_get_write_access);
1224         }
1225
1226         if (ret) {
1227                 unlock_page(page);
1228                 /*
1229                  * __block_write_begin may have instantiated a few blocks
1230                  * outside i_size.  Trim these off again. Don't need
1231                  * i_size_read because we hold i_mutex.
1232                  *
1233                  * Add inode to orphan list in case we crash before
1234                  * truncate finishes
1235                  */
1236                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1237                         ext4_orphan_add(handle, inode);
1238
1239                 ext4_journal_stop(handle);
1240                 if (pos + len > inode->i_size) {
1241                         ext4_truncate_failed_write(inode);
1242                         /*
1243                          * If truncate failed early the inode might
1244                          * still be on the orphan list; we need to
1245                          * make sure the inode is removed from the
1246                          * orphan list in that case.
1247                          */
1248                         if (inode->i_nlink)
1249                                 ext4_orphan_del(NULL, inode);
1250                 }
1251
1252                 if (ret == -ENOSPC &&
1253                     ext4_should_retry_alloc(inode->i_sb, &retries))
1254                         goto retry_journal;
1255                 page_cache_release(page);
1256                 return ret;
1257         }
1258         *pagep = page;
1259         return ret;
1260 }
1261
1262 /* For write_end() in data=journal mode */
1263 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1264 {
1265         int ret;
1266         if (!buffer_mapped(bh) || buffer_freed(bh))
1267                 return 0;
1268         set_buffer_uptodate(bh);
1269         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1270         clear_buffer_meta(bh);
1271         clear_buffer_prio(bh);
1272         return ret;
1273 }
1274
1275 /*
1276  * We need to pick up the new inode size which generic_commit_write gave us
1277  * `file' can be NULL - eg, when called from page_symlink().
1278  *
1279  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1280  * buffers are managed internally.
1281  */
1282 static int ext4_write_end(struct file *file,
1283                           struct address_space *mapping,
1284                           loff_t pos, unsigned len, unsigned copied,
1285                           struct page *page, void *fsdata)
1286 {
1287         handle_t *handle = ext4_journal_current_handle();
1288         struct inode *inode = mapping->host;
1289         loff_t old_size = inode->i_size;
1290         int ret = 0, ret2;
1291         int i_size_changed = 0;
1292
1293         trace_ext4_write_end(inode, pos, len, copied);
1294         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1295                 ret = ext4_jbd2_file_inode(handle, inode);
1296                 if (ret) {
1297                         unlock_page(page);
1298                         page_cache_release(page);
1299                         goto errout;
1300                 }
1301         }
1302
1303         if (ext4_has_inline_data(inode)) {
1304                 ret = ext4_write_inline_data_end(inode, pos, len,
1305                                                  copied, page);
1306                 if (ret < 0)
1307                         goto errout;
1308                 copied = ret;
1309         } else
1310                 copied = block_write_end(file, mapping, pos,
1311                                          len, copied, page, fsdata);
1312         /*
1313          * it's important to update i_size while still holding page lock:
1314          * page writeout could otherwise come in and zero beyond i_size.
1315          */
1316         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1317         unlock_page(page);
1318         page_cache_release(page);
1319
1320         if (old_size < pos)
1321                 pagecache_isize_extended(inode, old_size, pos);
1322         /*
1323          * Don't mark the inode dirty under page lock. First, it unnecessarily
1324          * makes the holding time of page lock longer. Second, it forces lock
1325          * ordering of page lock and transaction start for journaling
1326          * filesystems.
1327          */
1328         if (i_size_changed)
1329                 ext4_mark_inode_dirty(handle, inode);
1330
1331         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1332                 /* if we have allocated more blocks and copied
1333                  * less. We will have blocks allocated outside
1334                  * inode->i_size. So truncate them
1335                  */
1336                 ext4_orphan_add(handle, inode);
1337 errout:
1338         ret2 = ext4_journal_stop(handle);
1339         if (!ret)
1340                 ret = ret2;
1341
1342         if (pos + len > inode->i_size) {
1343                 ext4_truncate_failed_write(inode);
1344                 /*
1345                  * If truncate failed early the inode might still be
1346                  * on the orphan list; we need to make sure the inode
1347                  * is removed from the orphan list in that case.
1348                  */
1349                 if (inode->i_nlink)
1350                         ext4_orphan_del(NULL, inode);
1351         }
1352
1353         return ret ? ret : copied;
1354 }
1355
1356 /*
1357  * This is a private version of page_zero_new_buffers() which doesn't
1358  * set the buffer to be dirty, since in data=journalled mode we need
1359  * to call ext4_handle_dirty_metadata() instead.
1360  */
1361 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1362 {
1363         unsigned int block_start = 0, block_end;
1364         struct buffer_head *head, *bh;
1365
1366         bh = head = page_buffers(page);
1367         do {
1368                 block_end = block_start + bh->b_size;
1369                 if (buffer_new(bh)) {
1370                         if (block_end > from && block_start < to) {
1371                                 if (!PageUptodate(page)) {
1372                                         unsigned start, size;
1373
1374                                         start = max(from, block_start);
1375                                         size = min(to, block_end) - start;
1376
1377                                         zero_user(page, start, size);
1378                                         set_buffer_uptodate(bh);
1379                                 }
1380                                 clear_buffer_new(bh);
1381                         }
1382                 }
1383                 block_start = block_end;
1384                 bh = bh->b_this_page;
1385         } while (bh != head);
1386 }
1387
1388 static int ext4_journalled_write_end(struct file *file,
1389                                      struct address_space *mapping,
1390                                      loff_t pos, unsigned len, unsigned copied,
1391                                      struct page *page, void *fsdata)
1392 {
1393         handle_t *handle = ext4_journal_current_handle();
1394         struct inode *inode = mapping->host;
1395         loff_t old_size = inode->i_size;
1396         int ret = 0, ret2;
1397         int partial = 0;
1398         unsigned from, to;
1399         int size_changed = 0;
1400
1401         trace_ext4_journalled_write_end(inode, pos, len, copied);
1402         from = pos & (PAGE_CACHE_SIZE - 1);
1403         to = from + len;
1404
1405         BUG_ON(!ext4_handle_valid(handle));
1406
1407         if (ext4_has_inline_data(inode))
1408                 copied = ext4_write_inline_data_end(inode, pos, len,
1409                                                     copied, page);
1410         else {
1411                 if (copied < len) {
1412                         if (!PageUptodate(page))
1413                                 copied = 0;
1414                         zero_new_buffers(page, from+copied, to);
1415                 }
1416
1417                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1418                                              to, &partial, write_end_fn);
1419                 if (!partial)
1420                         SetPageUptodate(page);
1421         }
1422         size_changed = ext4_update_inode_size(inode, pos + copied);
1423         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1424         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1425         unlock_page(page);
1426         page_cache_release(page);
1427
1428         if (old_size < pos)
1429                 pagecache_isize_extended(inode, old_size, pos);
1430
1431         if (size_changed) {
1432                 ret2 = ext4_mark_inode_dirty(handle, inode);
1433                 if (!ret)
1434                         ret = ret2;
1435         }
1436
1437         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1438                 /* if we have allocated more blocks and copied
1439                  * less. We will have blocks allocated outside
1440                  * inode->i_size. So truncate them
1441                  */
1442                 ext4_orphan_add(handle, inode);
1443
1444         ret2 = ext4_journal_stop(handle);
1445         if (!ret)
1446                 ret = ret2;
1447         if (pos + len > inode->i_size) {
1448                 ext4_truncate_failed_write(inode);
1449                 /*
1450                  * If truncate failed early the inode might still be
1451                  * on the orphan list; we need to make sure the inode
1452                  * is removed from the orphan list in that case.
1453                  */
1454                 if (inode->i_nlink)
1455                         ext4_orphan_del(NULL, inode);
1456         }
1457
1458         return ret ? ret : copied;
1459 }
1460
1461 /*
1462  * Reserve space for a single cluster
1463  */
1464 static int ext4_da_reserve_space(struct inode *inode)
1465 {
1466         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1467         struct ext4_inode_info *ei = EXT4_I(inode);
1468         int ret;
1469
1470         /*
1471          * We will charge metadata quota at writeout time; this saves
1472          * us from metadata over-estimation, though we may go over by
1473          * a small amount in the end.  Here we just reserve for data.
1474          */
1475         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1476         if (ret)
1477                 return ret;
1478
1479         spin_lock(&ei->i_block_reservation_lock);
1480         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1481                 spin_unlock(&ei->i_block_reservation_lock);
1482                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1483                 return -ENOSPC;
1484         }
1485         ei->i_reserved_data_blocks++;
1486         trace_ext4_da_reserve_space(inode);
1487         spin_unlock(&ei->i_block_reservation_lock);
1488
1489         return 0;       /* success */
1490 }
1491
1492 static void ext4_da_release_space(struct inode *inode, int to_free)
1493 {
1494         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1495         struct ext4_inode_info *ei = EXT4_I(inode);
1496
1497         if (!to_free)
1498                 return;         /* Nothing to release, exit */
1499
1500         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1501
1502         trace_ext4_da_release_space(inode, to_free);
1503         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1504                 /*
1505                  * if there aren't enough reserved blocks, then the
1506                  * counter is messed up somewhere.  Since this
1507                  * function is called from invalidate page, it's
1508                  * harmless to return without any action.
1509                  */
1510                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1511                          "ino %lu, to_free %d with only %d reserved "
1512                          "data blocks", inode->i_ino, to_free,
1513                          ei->i_reserved_data_blocks);
1514                 WARN_ON(1);
1515                 to_free = ei->i_reserved_data_blocks;
1516         }
1517         ei->i_reserved_data_blocks -= to_free;
1518
1519         /* update fs dirty data blocks counter */
1520         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1521
1522         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1523
1524         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1525 }
1526
1527 static void ext4_da_page_release_reservation(struct page *page,
1528                                              unsigned int offset,
1529                                              unsigned int length)
1530 {
1531         int to_release = 0, contiguous_blks = 0;
1532         struct buffer_head *head, *bh;
1533         unsigned int curr_off = 0;
1534         struct inode *inode = page->mapping->host;
1535         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1536         unsigned int stop = offset + length;
1537         int num_clusters;
1538         ext4_fsblk_t lblk;
1539
1540         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1541
1542         head = page_buffers(page);
1543         bh = head;
1544         do {
1545                 unsigned int next_off = curr_off + bh->b_size;
1546
1547                 if (next_off > stop)
1548                         break;
1549
1550                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1551                         to_release++;
1552                         contiguous_blks++;
1553                         clear_buffer_delay(bh);
1554                 } else if (contiguous_blks) {
1555                         lblk = page->index <<
1556                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1557                         lblk += (curr_off >> inode->i_blkbits) -
1558                                 contiguous_blks;
1559                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1560                         contiguous_blks = 0;
1561                 }
1562                 curr_off = next_off;
1563         } while ((bh = bh->b_this_page) != head);
1564
1565         if (contiguous_blks) {
1566                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1567                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1568                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1569         }
1570
1571         /* If we have released all the blocks belonging to a cluster, then we
1572          * need to release the reserved space for that cluster. */
1573         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1574         while (num_clusters > 0) {
1575                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1576                         ((num_clusters - 1) << sbi->s_cluster_bits);
1577                 if (sbi->s_cluster_ratio == 1 ||
1578                     !ext4_find_delalloc_cluster(inode, lblk))
1579                         ext4_da_release_space(inode, 1);
1580
1581                 num_clusters--;
1582         }
1583 }
1584
1585 /*
1586  * Delayed allocation stuff
1587  */
1588
1589 struct mpage_da_data {
1590         struct inode *inode;
1591         struct writeback_control *wbc;
1592
1593         pgoff_t first_page;     /* The first page to write */
1594         pgoff_t next_page;      /* Current page to examine */
1595         pgoff_t last_page;      /* Last page to examine */
1596         /*
1597          * Extent to map - this can be after first_page because that can be
1598          * fully mapped. We somewhat abuse m_flags to store whether the extent
1599          * is delalloc or unwritten.
1600          */
1601         struct ext4_map_blocks map;
1602         struct ext4_io_submit io_submit;        /* IO submission data */
1603 };
1604
1605 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1606                                        bool invalidate)
1607 {
1608         int nr_pages, i;
1609         pgoff_t index, end;
1610         struct pagevec pvec;
1611         struct inode *inode = mpd->inode;
1612         struct address_space *mapping = inode->i_mapping;
1613
1614         /* This is necessary when next_page == 0. */
1615         if (mpd->first_page >= mpd->next_page)
1616                 return;
1617
1618         index = mpd->first_page;
1619         end   = mpd->next_page - 1;
1620         if (invalidate) {
1621                 ext4_lblk_t start, last;
1622                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1623                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1624                 ext4_es_remove_extent(inode, start, last - start + 1);
1625         }
1626
1627         pagevec_init(&pvec, 0);
1628         while (index <= end) {
1629                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1630                 if (nr_pages == 0)
1631                         break;
1632                 for (i = 0; i < nr_pages; i++) {
1633                         struct page *page = pvec.pages[i];
1634                         if (page->index > end)
1635                                 break;
1636                         BUG_ON(!PageLocked(page));
1637                         BUG_ON(PageWriteback(page));
1638                         if (invalidate) {
1639                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1640                                 ClearPageUptodate(page);
1641                         }
1642                         unlock_page(page);
1643                 }
1644                 index = pvec.pages[nr_pages - 1]->index + 1;
1645                 pagevec_release(&pvec);
1646         }
1647 }
1648
1649 static void ext4_print_free_blocks(struct inode *inode)
1650 {
1651         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652         struct super_block *sb = inode->i_sb;
1653         struct ext4_inode_info *ei = EXT4_I(inode);
1654
1655         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1656                EXT4_C2B(EXT4_SB(inode->i_sb),
1657                         ext4_count_free_clusters(sb)));
1658         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1659         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1660                (long long) EXT4_C2B(EXT4_SB(sb),
1661                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1662         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1663                (long long) EXT4_C2B(EXT4_SB(sb),
1664                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1665         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1666         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1667                  ei->i_reserved_data_blocks);
1668         return;
1669 }
1670
1671 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1672 {
1673         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1674 }
1675
1676 /*
1677  * This function is grabs code from the very beginning of
1678  * ext4_map_blocks, but assumes that the caller is from delayed write
1679  * time. This function looks up the requested blocks and sets the
1680  * buffer delay bit under the protection of i_data_sem.
1681  */
1682 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1683                               struct ext4_map_blocks *map,
1684                               struct buffer_head *bh)
1685 {
1686         struct extent_status es;
1687         int retval;
1688         sector_t invalid_block = ~((sector_t) 0xffff);
1689 #ifdef ES_AGGRESSIVE_TEST
1690         struct ext4_map_blocks orig_map;
1691
1692         memcpy(&orig_map, map, sizeof(*map));
1693 #endif
1694
1695         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1696                 invalid_block = ~0;
1697
1698         map->m_flags = 0;
1699         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1700                   "logical block %lu\n", inode->i_ino, map->m_len,
1701                   (unsigned long) map->m_lblk);
1702
1703         /* Lookup extent status tree firstly */
1704         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1705                 if (ext4_es_is_hole(&es)) {
1706                         retval = 0;
1707                         down_read(&EXT4_I(inode)->i_data_sem);
1708                         goto add_delayed;
1709                 }
1710
1711                 /*
1712                  * Delayed extent could be allocated by fallocate.
1713                  * So we need to check it.
1714                  */
1715                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716                         map_bh(bh, inode->i_sb, invalid_block);
1717                         set_buffer_new(bh);
1718                         set_buffer_delay(bh);
1719                         return 0;
1720                 }
1721
1722                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723                 retval = es.es_len - (iblock - es.es_lblk);
1724                 if (retval > map->m_len)
1725                         retval = map->m_len;
1726                 map->m_len = retval;
1727                 if (ext4_es_is_written(&es))
1728                         map->m_flags |= EXT4_MAP_MAPPED;
1729                 else if (ext4_es_is_unwritten(&es))
1730                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1731                 else
1732                         BUG_ON(1);
1733
1734 #ifdef ES_AGGRESSIVE_TEST
1735                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736 #endif
1737                 return retval;
1738         }
1739
1740         /*
1741          * Try to see if we can get the block without requesting a new
1742          * file system block.
1743          */
1744         down_read(&EXT4_I(inode)->i_data_sem);
1745         if (ext4_has_inline_data(inode))
1746                 retval = 0;
1747         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1748                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1749         else
1750                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1751
1752 add_delayed:
1753         if (retval == 0) {
1754                 int ret;
1755                 /*
1756                  * XXX: __block_prepare_write() unmaps passed block,
1757                  * is it OK?
1758                  */
1759                 /*
1760                  * If the block was allocated from previously allocated cluster,
1761                  * then we don't need to reserve it again. However we still need
1762                  * to reserve metadata for every block we're going to write.
1763                  */
1764                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1765                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1766                         ret = ext4_da_reserve_space(inode);
1767                         if (ret) {
1768                                 /* not enough space to reserve */
1769                                 retval = ret;
1770                                 goto out_unlock;
1771                         }
1772                 }
1773
1774                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1775                                             ~0, EXTENT_STATUS_DELAYED);
1776                 if (ret) {
1777                         retval = ret;
1778                         goto out_unlock;
1779                 }
1780
1781                 map_bh(bh, inode->i_sb, invalid_block);
1782                 set_buffer_new(bh);
1783                 set_buffer_delay(bh);
1784         } else if (retval > 0) {
1785                 int ret;
1786                 unsigned int status;
1787
1788                 if (unlikely(retval != map->m_len)) {
1789                         ext4_warning(inode->i_sb,
1790                                      "ES len assertion failed for inode "
1791                                      "%lu: retval %d != map->m_len %d",
1792                                      inode->i_ino, retval, map->m_len);
1793                         WARN_ON(1);
1794                 }
1795
1796                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1797                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1798                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1799                                             map->m_pblk, status);
1800                 if (ret != 0)
1801                         retval = ret;
1802         }
1803
1804 out_unlock:
1805         up_read((&EXT4_I(inode)->i_data_sem));
1806
1807         return retval;
1808 }
1809
1810 /*
1811  * This is a special get_block_t callback which is used by
1812  * ext4_da_write_begin().  It will either return mapped block or
1813  * reserve space for a single block.
1814  *
1815  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1816  * We also have b_blocknr = -1 and b_bdev initialized properly
1817  *
1818  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1819  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1820  * initialized properly.
1821  */
1822 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1823                            struct buffer_head *bh, int create)
1824 {
1825         struct ext4_map_blocks map;
1826         int ret = 0;
1827
1828         BUG_ON(create == 0);
1829         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1830
1831         map.m_lblk = iblock;
1832         map.m_len = 1;
1833
1834         /*
1835          * first, we need to know whether the block is allocated already
1836          * preallocated blocks are unmapped but should treated
1837          * the same as allocated blocks.
1838          */
1839         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1840         if (ret <= 0)
1841                 return ret;
1842
1843         map_bh(bh, inode->i_sb, map.m_pblk);
1844         ext4_update_bh_state(bh, map.m_flags);
1845
1846         if (buffer_unwritten(bh)) {
1847                 /* A delayed write to unwritten bh should be marked
1848                  * new and mapped.  Mapped ensures that we don't do
1849                  * get_block multiple times when we write to the same
1850                  * offset and new ensures that we do proper zero out
1851                  * for partial write.
1852                  */
1853                 set_buffer_new(bh);
1854                 set_buffer_mapped(bh);
1855         }
1856         return 0;
1857 }
1858
1859 static int bget_one(handle_t *handle, struct buffer_head *bh)
1860 {
1861         get_bh(bh);
1862         return 0;
1863 }
1864
1865 static int bput_one(handle_t *handle, struct buffer_head *bh)
1866 {
1867         put_bh(bh);
1868         return 0;
1869 }
1870
1871 static int __ext4_journalled_writepage(struct page *page,
1872                                        unsigned int len)
1873 {
1874         struct address_space *mapping = page->mapping;
1875         struct inode *inode = mapping->host;
1876         struct buffer_head *page_bufs = NULL;
1877         handle_t *handle = NULL;
1878         int ret = 0, err = 0;
1879         int inline_data = ext4_has_inline_data(inode);
1880         struct buffer_head *inode_bh = NULL;
1881
1882         ClearPageChecked(page);
1883
1884         if (inline_data) {
1885                 BUG_ON(page->index != 0);
1886                 BUG_ON(len > ext4_get_max_inline_size(inode));
1887                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1888                 if (inode_bh == NULL)
1889                         goto out;
1890         } else {
1891                 page_bufs = page_buffers(page);
1892                 if (!page_bufs) {
1893                         BUG();
1894                         goto out;
1895                 }
1896                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1897                                        NULL, bget_one);
1898         }
1899         /*
1900          * We need to release the page lock before we start the
1901          * journal, so grab a reference so the page won't disappear
1902          * out from under us.
1903          */
1904         get_page(page);
1905         unlock_page(page);
1906
1907         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1908                                     ext4_writepage_trans_blocks(inode));
1909         if (IS_ERR(handle)) {
1910                 ret = PTR_ERR(handle);
1911                 put_page(page);
1912                 goto out_no_pagelock;
1913         }
1914         BUG_ON(!ext4_handle_valid(handle));
1915
1916         lock_page(page);
1917         put_page(page);
1918         if (page->mapping != mapping) {
1919                 /* The page got truncated from under us */
1920                 ext4_journal_stop(handle);
1921                 ret = 0;
1922                 goto out;
1923         }
1924
1925         if (inline_data) {
1926                 BUFFER_TRACE(inode_bh, "get write access");
1927                 ret = ext4_journal_get_write_access(handle, inode_bh);
1928
1929                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1930
1931         } else {
1932                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1933                                              do_journal_get_write_access);
1934
1935                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1936                                              write_end_fn);
1937         }
1938         if (ret == 0)
1939                 ret = err;
1940         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1941         err = ext4_journal_stop(handle);
1942         if (!ret)
1943                 ret = err;
1944
1945         if (!ext4_has_inline_data(inode))
1946                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1947                                        NULL, bput_one);
1948         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1949 out:
1950         unlock_page(page);
1951 out_no_pagelock:
1952         brelse(inode_bh);
1953         return ret;
1954 }
1955
1956 /*
1957  * Note that we don't need to start a transaction unless we're journaling data
1958  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1959  * need to file the inode to the transaction's list in ordered mode because if
1960  * we are writing back data added by write(), the inode is already there and if
1961  * we are writing back data modified via mmap(), no one guarantees in which
1962  * transaction the data will hit the disk. In case we are journaling data, we
1963  * cannot start transaction directly because transaction start ranks above page
1964  * lock so we have to do some magic.
1965  *
1966  * This function can get called via...
1967  *   - ext4_writepages after taking page lock (have journal handle)
1968  *   - journal_submit_inode_data_buffers (no journal handle)
1969  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1970  *   - grab_page_cache when doing write_begin (have journal handle)
1971  *
1972  * We don't do any block allocation in this function. If we have page with
1973  * multiple blocks we need to write those buffer_heads that are mapped. This
1974  * is important for mmaped based write. So if we do with blocksize 1K
1975  * truncate(f, 1024);
1976  * a = mmap(f, 0, 4096);
1977  * a[0] = 'a';
1978  * truncate(f, 4096);
1979  * we have in the page first buffer_head mapped via page_mkwrite call back
1980  * but other buffer_heads would be unmapped but dirty (dirty done via the
1981  * do_wp_page). So writepage should write the first block. If we modify
1982  * the mmap area beyond 1024 we will again get a page_fault and the
1983  * page_mkwrite callback will do the block allocation and mark the
1984  * buffer_heads mapped.
1985  *
1986  * We redirty the page if we have any buffer_heads that is either delay or
1987  * unwritten in the page.
1988  *
1989  * We can get recursively called as show below.
1990  *
1991  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1992  *              ext4_writepage()
1993  *
1994  * But since we don't do any block allocation we should not deadlock.
1995  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1996  */
1997 static int ext4_writepage(struct page *page,
1998                           struct writeback_control *wbc)
1999 {
2000         int ret = 0;
2001         loff_t size;
2002         unsigned int len;
2003         struct buffer_head *page_bufs = NULL;
2004         struct inode *inode = page->mapping->host;
2005         struct ext4_io_submit io_submit;
2006         bool keep_towrite = false;
2007
2008         trace_ext4_writepage(page);
2009         size = i_size_read(inode);
2010         if (page->index == size >> PAGE_CACHE_SHIFT)
2011                 len = size & ~PAGE_CACHE_MASK;
2012         else
2013                 len = PAGE_CACHE_SIZE;
2014
2015         page_bufs = page_buffers(page);
2016         /*
2017          * We cannot do block allocation or other extent handling in this
2018          * function. If there are buffers needing that, we have to redirty
2019          * the page. But we may reach here when we do a journal commit via
2020          * journal_submit_inode_data_buffers() and in that case we must write
2021          * allocated buffers to achieve data=ordered mode guarantees.
2022          *
2023          * Also, if there is only one buffer per page (the fs block
2024          * size == the page size), if one buffer needs block
2025          * allocation or needs to modify the extent tree to clear the
2026          * unwritten flag, we know that the page can't be written at
2027          * all, so we might as well refuse the write immediately.
2028          * Unfortunately if the block size != page size, we can't as
2029          * easily detect this case using ext4_walk_page_buffers(), but
2030          * for the extremely common case, this is an optimization that
2031          * skips a useless round trip through ext4_bio_write_page().
2032          */
2033         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2034                                    ext4_bh_delay_or_unwritten)) {
2035                 redirty_page_for_writepage(wbc, page);
2036                 if ((current->flags & PF_MEMALLOC) ||
2037                     (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
2038                         /*
2039                          * For memory cleaning there's no point in writing only
2040                          * some buffers. So just bail out. Warn if we came here
2041                          * from direct reclaim.
2042                          */
2043                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2044                                                         == PF_MEMALLOC);
2045                         unlock_page(page);
2046                         return 0;
2047                 }
2048                 keep_towrite = true;
2049         }
2050
2051         if (PageChecked(page) && ext4_should_journal_data(inode))
2052                 /*
2053                  * It's mmapped pagecache.  Add buffers and journal it.  There
2054                  * doesn't seem much point in redirtying the page here.
2055                  */
2056                 return __ext4_journalled_writepage(page, len);
2057
2058         ext4_io_submit_init(&io_submit, wbc);
2059         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2060         if (!io_submit.io_end) {
2061                 redirty_page_for_writepage(wbc, page);
2062                 unlock_page(page);
2063                 return -ENOMEM;
2064         }
2065         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2066         ext4_io_submit(&io_submit);
2067         /* Drop io_end reference we got from init */
2068         ext4_put_io_end_defer(io_submit.io_end);
2069         return ret;
2070 }
2071
2072 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2073 {
2074         int len;
2075         loff_t size = i_size_read(mpd->inode);
2076         int err;
2077
2078         BUG_ON(page->index != mpd->first_page);
2079         if (page->index == size >> PAGE_CACHE_SHIFT)
2080                 len = size & ~PAGE_CACHE_MASK;
2081         else
2082                 len = PAGE_CACHE_SIZE;
2083         clear_page_dirty_for_io(page);
2084         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2085         if (!err)
2086                 mpd->wbc->nr_to_write--;
2087         mpd->first_page++;
2088
2089         return err;
2090 }
2091
2092 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2093
2094 /*
2095  * mballoc gives us at most this number of blocks...
2096  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2097  * The rest of mballoc seems to handle chunks up to full group size.
2098  */
2099 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2100
2101 /*
2102  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2103  *
2104  * @mpd - extent of blocks
2105  * @lblk - logical number of the block in the file
2106  * @bh - buffer head we want to add to the extent
2107  *
2108  * The function is used to collect contig. blocks in the same state. If the
2109  * buffer doesn't require mapping for writeback and we haven't started the
2110  * extent of buffers to map yet, the function returns 'true' immediately - the
2111  * caller can write the buffer right away. Otherwise the function returns true
2112  * if the block has been added to the extent, false if the block couldn't be
2113  * added.
2114  */
2115 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2116                                    struct buffer_head *bh)
2117 {
2118         struct ext4_map_blocks *map = &mpd->map;
2119
2120         /* Buffer that doesn't need mapping for writeback? */
2121         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2122             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2123                 /* So far no extent to map => we write the buffer right away */
2124                 if (map->m_len == 0)
2125                         return true;
2126                 return false;
2127         }
2128
2129         /* First block in the extent? */
2130         if (map->m_len == 0) {
2131                 map->m_lblk = lblk;
2132                 map->m_len = 1;
2133                 map->m_flags = bh->b_state & BH_FLAGS;
2134                 return true;
2135         }
2136
2137         /* Don't go larger than mballoc is willing to allocate */
2138         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2139                 return false;
2140
2141         /* Can we merge the block to our big extent? */
2142         if (lblk == map->m_lblk + map->m_len &&
2143             (bh->b_state & BH_FLAGS) == map->m_flags) {
2144                 map->m_len++;
2145                 return true;
2146         }
2147         return false;
2148 }
2149
2150 /*
2151  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2152  *
2153  * @mpd - extent of blocks for mapping
2154  * @head - the first buffer in the page
2155  * @bh - buffer we should start processing from
2156  * @lblk - logical number of the block in the file corresponding to @bh
2157  *
2158  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2159  * the page for IO if all buffers in this page were mapped and there's no
2160  * accumulated extent of buffers to map or add buffers in the page to the
2161  * extent of buffers to map. The function returns 1 if the caller can continue
2162  * by processing the next page, 0 if it should stop adding buffers to the
2163  * extent to map because we cannot extend it anymore. It can also return value
2164  * < 0 in case of error during IO submission.
2165  */
2166 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2167                                    struct buffer_head *head,
2168                                    struct buffer_head *bh,
2169                                    ext4_lblk_t lblk)
2170 {
2171         struct inode *inode = mpd->inode;
2172         int err;
2173         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2174                                                         >> inode->i_blkbits;
2175
2176         do {
2177                 BUG_ON(buffer_locked(bh));
2178
2179                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2180                         /* Found extent to map? */
2181                         if (mpd->map.m_len)
2182                                 return 0;
2183                         /* Everything mapped so far and we hit EOF */
2184                         break;
2185                 }
2186         } while (lblk++, (bh = bh->b_this_page) != head);
2187         /* So far everything mapped? Submit the page for IO. */
2188         if (mpd->map.m_len == 0) {
2189                 err = mpage_submit_page(mpd, head->b_page);
2190                 if (err < 0)
2191                         return err;
2192         }
2193         return lblk < blocks;
2194 }
2195
2196 /*
2197  * mpage_map_buffers - update buffers corresponding to changed extent and
2198  *                     submit fully mapped pages for IO
2199  *
2200  * @mpd - description of extent to map, on return next extent to map
2201  *
2202  * Scan buffers corresponding to changed extent (we expect corresponding pages
2203  * to be already locked) and update buffer state according to new extent state.
2204  * We map delalloc buffers to their physical location, clear unwritten bits,
2205  * and mark buffers as uninit when we perform writes to unwritten extents
2206  * and do extent conversion after IO is finished. If the last page is not fully
2207  * mapped, we update @map to the next extent in the last page that needs
2208  * mapping. Otherwise we submit the page for IO.
2209  */
2210 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2211 {
2212         struct pagevec pvec;
2213         int nr_pages, i;
2214         struct inode *inode = mpd->inode;
2215         struct buffer_head *head, *bh;
2216         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2217         pgoff_t start, end;
2218         ext4_lblk_t lblk;
2219         sector_t pblock;
2220         int err;
2221
2222         start = mpd->map.m_lblk >> bpp_bits;
2223         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2224         lblk = start << bpp_bits;
2225         pblock = mpd->map.m_pblk;
2226
2227         pagevec_init(&pvec, 0);
2228         while (start <= end) {
2229                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2230                                           PAGEVEC_SIZE);
2231                 if (nr_pages == 0)
2232                         break;
2233                 for (i = 0; i < nr_pages; i++) {
2234                         struct page *page = pvec.pages[i];
2235
2236                         if (page->index > end)
2237                                 break;
2238                         /* Up to 'end' pages must be contiguous */
2239                         BUG_ON(page->index != start);
2240                         bh = head = page_buffers(page);
2241                         do {
2242                                 if (lblk < mpd->map.m_lblk)
2243                                         continue;
2244                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2245                                         /*
2246                                          * Buffer after end of mapped extent.
2247                                          * Find next buffer in the page to map.
2248                                          */
2249                                         mpd->map.m_len = 0;
2250                                         mpd->map.m_flags = 0;
2251                                         /*
2252                                          * FIXME: If dioread_nolock supports
2253                                          * blocksize < pagesize, we need to make
2254                                          * sure we add size mapped so far to
2255                                          * io_end->size as the following call
2256                                          * can submit the page for IO.
2257                                          */
2258                                         err = mpage_process_page_bufs(mpd, head,
2259                                                                       bh, lblk);
2260                                         pagevec_release(&pvec);
2261                                         if (err > 0)
2262                                                 err = 0;
2263                                         return err;
2264                                 }
2265                                 if (buffer_delay(bh)) {
2266                                         clear_buffer_delay(bh);
2267                                         bh->b_blocknr = pblock++;
2268                                 }
2269                                 clear_buffer_unwritten(bh);
2270                         } while (lblk++, (bh = bh->b_this_page) != head);
2271
2272                         /*
2273                          * FIXME: This is going to break if dioread_nolock
2274                          * supports blocksize < pagesize as we will try to
2275                          * convert potentially unmapped parts of inode.
2276                          */
2277                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2278                         /* Page fully mapped - let IO run! */
2279                         err = mpage_submit_page(mpd, page);
2280                         if (err < 0) {
2281                                 pagevec_release(&pvec);
2282                                 return err;
2283                         }
2284                         start++;
2285                 }
2286                 pagevec_release(&pvec);
2287         }
2288         /* Extent fully mapped and matches with page boundary. We are done. */
2289         mpd->map.m_len = 0;
2290         mpd->map.m_flags = 0;
2291         return 0;
2292 }
2293
2294 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2295 {
2296         struct inode *inode = mpd->inode;
2297         struct ext4_map_blocks *map = &mpd->map;
2298         int get_blocks_flags;
2299         int err, dioread_nolock;
2300
2301         trace_ext4_da_write_pages_extent(inode, map);
2302         /*
2303          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2304          * to convert an unwritten extent to be initialized (in the case
2305          * where we have written into one or more preallocated blocks).  It is
2306          * possible that we're going to need more metadata blocks than
2307          * previously reserved. However we must not fail because we're in
2308          * writeback and there is nothing we can do about it so it might result
2309          * in data loss.  So use reserved blocks to allocate metadata if
2310          * possible.
2311          *
2312          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2313          * the blocks in question are delalloc blocks.  This indicates
2314          * that the blocks and quotas has already been checked when
2315          * the data was copied into the page cache.
2316          */
2317         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2318                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2319         dioread_nolock = ext4_should_dioread_nolock(inode);
2320         if (dioread_nolock)
2321                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2322         if (map->m_flags & (1 << BH_Delay))
2323                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2324
2325         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2326         if (err < 0)
2327                 return err;
2328         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2329                 if (!mpd->io_submit.io_end->handle &&
2330                     ext4_handle_valid(handle)) {
2331                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2332                         handle->h_rsv_handle = NULL;
2333                 }
2334                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2335         }
2336
2337         BUG_ON(map->m_len == 0);
2338         if (map->m_flags & EXT4_MAP_NEW) {
2339                 struct block_device *bdev = inode->i_sb->s_bdev;
2340                 int i;
2341
2342                 for (i = 0; i < map->m_len; i++)
2343                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2344         }
2345         return 0;
2346 }
2347
2348 /*
2349  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2350  *                               mpd->len and submit pages underlying it for IO
2351  *
2352  * @handle - handle for journal operations
2353  * @mpd - extent to map
2354  * @give_up_on_write - we set this to true iff there is a fatal error and there
2355  *                     is no hope of writing the data. The caller should discard
2356  *                     dirty pages to avoid infinite loops.
2357  *
2358  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2359  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2360  * them to initialized or split the described range from larger unwritten
2361  * extent. Note that we need not map all the described range since allocation
2362  * can return less blocks or the range is covered by more unwritten extents. We
2363  * cannot map more because we are limited by reserved transaction credits. On
2364  * the other hand we always make sure that the last touched page is fully
2365  * mapped so that it can be written out (and thus forward progress is
2366  * guaranteed). After mapping we submit all mapped pages for IO.
2367  */
2368 static int mpage_map_and_submit_extent(handle_t *handle,
2369                                        struct mpage_da_data *mpd,
2370                                        bool *give_up_on_write)
2371 {
2372         struct inode *inode = mpd->inode;
2373         struct ext4_map_blocks *map = &mpd->map;
2374         int err;
2375         loff_t disksize;
2376         int progress = 0;
2377
2378         mpd->io_submit.io_end->offset =
2379                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2380         do {
2381                 err = mpage_map_one_extent(handle, mpd);
2382                 if (err < 0) {
2383                         struct super_block *sb = inode->i_sb;
2384
2385                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2386                                 goto invalidate_dirty_pages;
2387                         /*
2388                          * Let the uper layers retry transient errors.
2389                          * In the case of ENOSPC, if ext4_count_free_blocks()
2390                          * is non-zero, a commit should free up blocks.
2391                          */
2392                         if ((err == -ENOMEM) ||
2393                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2394                                 if (progress)
2395                                         goto update_disksize;
2396                                 return err;
2397                         }
2398                         ext4_msg(sb, KERN_CRIT,
2399                                  "Delayed block allocation failed for "
2400                                  "inode %lu at logical offset %llu with"
2401                                  " max blocks %u with error %d",
2402                                  inode->i_ino,
2403                                  (unsigned long long)map->m_lblk,
2404                                  (unsigned)map->m_len, -err);
2405                         ext4_msg(sb, KERN_CRIT,
2406                                  "This should not happen!! Data will "
2407                                  "be lost\n");
2408                         if (err == -ENOSPC)
2409                                 ext4_print_free_blocks(inode);
2410                 invalidate_dirty_pages:
2411                         *give_up_on_write = true;
2412                         return err;
2413                 }
2414                 progress = 1;
2415                 /*
2416                  * Update buffer state, submit mapped pages, and get us new
2417                  * extent to map
2418                  */
2419                 err = mpage_map_and_submit_buffers(mpd);
2420                 if (err < 0)
2421                         goto update_disksize;
2422         } while (map->m_len);
2423
2424 update_disksize:
2425         /*
2426          * Update on-disk size after IO is submitted.  Races with
2427          * truncate are avoided by checking i_size under i_data_sem.
2428          */
2429         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2430         if (disksize > EXT4_I(inode)->i_disksize) {
2431                 int err2;
2432                 loff_t i_size;
2433
2434                 down_write(&EXT4_I(inode)->i_data_sem);
2435                 i_size = i_size_read(inode);
2436                 if (disksize > i_size)
2437                         disksize = i_size;
2438                 if (disksize > EXT4_I(inode)->i_disksize)
2439                         EXT4_I(inode)->i_disksize = disksize;
2440                 err2 = ext4_mark_inode_dirty(handle, inode);
2441                 up_write(&EXT4_I(inode)->i_data_sem);
2442                 if (err2)
2443                         ext4_error(inode->i_sb,
2444                                    "Failed to mark inode %lu dirty",
2445                                    inode->i_ino);
2446                 if (!err)
2447                         err = err2;
2448         }
2449         return err;
2450 }
2451
2452 /*
2453  * Calculate the total number of credits to reserve for one writepages
2454  * iteration. This is called from ext4_writepages(). We map an extent of
2455  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2456  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2457  * bpp - 1 blocks in bpp different extents.
2458  */
2459 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2460 {
2461         int bpp = ext4_journal_blocks_per_page(inode);
2462
2463         return ext4_meta_trans_blocks(inode,
2464                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2465 }
2466
2467 /*
2468  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2469  *                               and underlying extent to map
2470  *
2471  * @mpd - where to look for pages
2472  *
2473  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2474  * IO immediately. When we find a page which isn't mapped we start accumulating
2475  * extent of buffers underlying these pages that needs mapping (formed by
2476  * either delayed or unwritten buffers). We also lock the pages containing
2477  * these buffers. The extent found is returned in @mpd structure (starting at
2478  * mpd->lblk with length mpd->len blocks).
2479  *
2480  * Note that this function can attach bios to one io_end structure which are
2481  * neither logically nor physically contiguous. Although it may seem as an
2482  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2483  * case as we need to track IO to all buffers underlying a page in one io_end.
2484  */
2485 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2486 {
2487         struct address_space *mapping = mpd->inode->i_mapping;
2488         struct pagevec pvec;
2489         unsigned int nr_pages;
2490         long left = mpd->wbc->nr_to_write;
2491         pgoff_t index = mpd->first_page;
2492         pgoff_t end = mpd->last_page;
2493         int tag;
2494         int i, err = 0;
2495         int blkbits = mpd->inode->i_blkbits;
2496         ext4_lblk_t lblk;
2497         struct buffer_head *head;
2498
2499         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2500                 tag = PAGECACHE_TAG_TOWRITE;
2501         else
2502                 tag = PAGECACHE_TAG_DIRTY;
2503
2504         pagevec_init(&pvec, 0);
2505         mpd->map.m_len = 0;
2506         mpd->next_page = index;
2507         while (index <= end) {
2508                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2509                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2510                 if (nr_pages == 0)
2511                         goto out;
2512
2513                 for (i = 0; i < nr_pages; i++) {
2514                         struct page *page = pvec.pages[i];
2515
2516                         /*
2517                          * At this point, the page may be truncated or
2518                          * invalidated (changing page->mapping to NULL), or
2519                          * even swizzled back from swapper_space to tmpfs file
2520                          * mapping. However, page->index will not change
2521                          * because we have a reference on the page.
2522                          */
2523                         if (page->index > end)
2524                                 goto out;
2525
2526                         /*
2527                          * Accumulated enough dirty pages? This doesn't apply
2528                          * to WB_SYNC_ALL mode. For integrity sync we have to
2529                          * keep going because someone may be concurrently
2530                          * dirtying pages, and we might have synced a lot of
2531                          * newly appeared dirty pages, but have not synced all
2532                          * of the old dirty pages.
2533                          */
2534                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2535                                 goto out;
2536
2537                         /* If we can't merge this page, we are done. */
2538                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2539                                 goto out;
2540
2541                         lock_page(page);
2542                         /*
2543                          * If the page is no longer dirty, or its mapping no
2544                          * longer corresponds to inode we are writing (which
2545                          * means it has been truncated or invalidated), or the
2546                          * page is already under writeback and we are not doing
2547                          * a data integrity writeback, skip the page
2548                          */
2549                         if (!PageDirty(page) ||
2550                             (PageWriteback(page) &&
2551                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2552                             unlikely(page->mapping != mapping)) {
2553                                 unlock_page(page);
2554                                 continue;
2555                         }
2556
2557                         wait_on_page_writeback(page);
2558                         BUG_ON(PageWriteback(page));
2559
2560                         if (mpd->map.m_len == 0)
2561                                 mpd->first_page = page->index;
2562                         mpd->next_page = page->index + 1;
2563                         /* Add all dirty buffers to mpd */
2564                         lblk = ((ext4_lblk_t)page->index) <<
2565                                 (PAGE_CACHE_SHIFT - blkbits);
2566                         head = page_buffers(page);
2567                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2568                         if (err <= 0)
2569                                 goto out;
2570                         err = 0;
2571                         left--;
2572                 }
2573                 pagevec_release(&pvec);
2574                 cond_resched();
2575         }
2576         return 0;
2577 out:
2578         pagevec_release(&pvec);
2579         return err;
2580 }
2581
2582 static int __writepage(struct page *page, struct writeback_control *wbc,
2583                        void *data)
2584 {
2585         struct address_space *mapping = data;
2586         int ret = ext4_writepage(page, wbc);
2587         mapping_set_error(mapping, ret);
2588         return ret;
2589 }
2590
2591 static int ext4_writepages(struct address_space *mapping,
2592                            struct writeback_control *wbc)
2593 {
2594         pgoff_t writeback_index = 0;
2595         long nr_to_write = wbc->nr_to_write;
2596         int range_whole = 0;
2597         int cycled = 1;
2598         handle_t *handle = NULL;
2599         struct mpage_da_data mpd;
2600         struct inode *inode = mapping->host;
2601         int needed_blocks, rsv_blocks = 0, ret = 0;
2602         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2603         bool done;
2604         struct blk_plug plug;
2605         bool give_up_on_write = false;
2606
2607         trace_ext4_writepages(inode, wbc);
2608
2609         if (dax_mapping(mapping))
2610                 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2611                                                    wbc);
2612
2613         /*
2614          * No pages to write? This is mainly a kludge to avoid starting
2615          * a transaction for special inodes like journal inode on last iput()
2616          * because that could violate lock ordering on umount
2617          */
2618         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2619                 goto out_writepages;
2620
2621         if (ext4_should_journal_data(inode)) {
2622                 struct blk_plug plug;
2623
2624                 blk_start_plug(&plug);
2625                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2626                 blk_finish_plug(&plug);
2627                 goto out_writepages;
2628         }
2629
2630         /*
2631          * If the filesystem has aborted, it is read-only, so return
2632          * right away instead of dumping stack traces later on that
2633          * will obscure the real source of the problem.  We test
2634          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2635          * the latter could be true if the filesystem is mounted
2636          * read-only, and in that case, ext4_writepages should
2637          * *never* be called, so if that ever happens, we would want
2638          * the stack trace.
2639          */
2640         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2641                 ret = -EROFS;
2642                 goto out_writepages;
2643         }
2644
2645         if (ext4_should_dioread_nolock(inode)) {
2646                 /*
2647                  * We may need to convert up to one extent per block in
2648                  * the page and we may dirty the inode.
2649                  */
2650                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2651         }
2652
2653         /*
2654          * If we have inline data and arrive here, it means that
2655          * we will soon create the block for the 1st page, so
2656          * we'd better clear the inline data here.
2657          */
2658         if (ext4_has_inline_data(inode)) {
2659                 /* Just inode will be modified... */
2660                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2661                 if (IS_ERR(handle)) {
2662                         ret = PTR_ERR(handle);
2663                         goto out_writepages;
2664                 }
2665                 BUG_ON(ext4_test_inode_state(inode,
2666                                 EXT4_STATE_MAY_INLINE_DATA));
2667                 ext4_destroy_inline_data(handle, inode);
2668                 ext4_journal_stop(handle);
2669         }
2670
2671         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2672                 range_whole = 1;
2673
2674         if (wbc->range_cyclic) {
2675                 writeback_index = mapping->writeback_index;
2676                 if (writeback_index)
2677                         cycled = 0;
2678                 mpd.first_page = writeback_index;
2679                 mpd.last_page = -1;
2680         } else {
2681                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2682                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2683         }
2684
2685         mpd.inode = inode;
2686         mpd.wbc = wbc;
2687         ext4_io_submit_init(&mpd.io_submit, wbc);
2688 retry:
2689         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2690                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2691         done = false;
2692         blk_start_plug(&plug);
2693         while (!done && mpd.first_page <= mpd.last_page) {
2694                 /* For each extent of pages we use new io_end */
2695                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2696                 if (!mpd.io_submit.io_end) {
2697                         ret = -ENOMEM;
2698                         break;
2699                 }
2700
2701                 /*
2702                  * We have two constraints: We find one extent to map and we
2703                  * must always write out whole page (makes a difference when
2704                  * blocksize < pagesize) so that we don't block on IO when we
2705                  * try to write out the rest of the page. Journalled mode is
2706                  * not supported by delalloc.
2707                  */
2708                 BUG_ON(ext4_should_journal_data(inode));
2709                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2710
2711                 /* start a new transaction */
2712                 handle = ext4_journal_start_with_reserve(inode,
2713                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2714                 if (IS_ERR(handle)) {
2715                         ret = PTR_ERR(handle);
2716                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2717                                "%ld pages, ino %lu; err %d", __func__,
2718                                 wbc->nr_to_write, inode->i_ino, ret);
2719                         /* Release allocated io_end */
2720                         ext4_put_io_end(mpd.io_submit.io_end);
2721                         break;
2722                 }
2723
2724                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2725                 ret = mpage_prepare_extent_to_map(&mpd);
2726                 if (!ret) {
2727                         if (mpd.map.m_len)
2728                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2729                                         &give_up_on_write);
2730                         else {
2731                                 /*
2732                                  * We scanned the whole range (or exhausted
2733                                  * nr_to_write), submitted what was mapped and
2734                                  * didn't find anything needing mapping. We are
2735                                  * done.
2736                                  */
2737                                 done = true;
2738                         }
2739                 }
2740                 ext4_journal_stop(handle);
2741                 /* Submit prepared bio */
2742                 ext4_io_submit(&mpd.io_submit);
2743                 /* Unlock pages we didn't use */
2744                 mpage_release_unused_pages(&mpd, give_up_on_write);
2745                 /* Drop our io_end reference we got from init */
2746                 ext4_put_io_end(mpd.io_submit.io_end);
2747
2748                 if (ret == -ENOSPC && sbi->s_journal) {
2749                         /*
2750                          * Commit the transaction which would
2751                          * free blocks released in the transaction
2752                          * and try again
2753                          */
2754                         jbd2_journal_force_commit_nested(sbi->s_journal);
2755                         ret = 0;
2756                         continue;
2757                 }
2758                 /* Fatal error - ENOMEM, EIO... */
2759                 if (ret)
2760                         break;
2761         }
2762         blk_finish_plug(&plug);
2763         if (!ret && !cycled && wbc->nr_to_write > 0) {
2764                 cycled = 1;
2765                 mpd.last_page = writeback_index - 1;
2766                 mpd.first_page = 0;
2767                 goto retry;
2768         }
2769
2770         /* Update index */
2771         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2772                 /*
2773                  * Set the writeback_index so that range_cyclic
2774                  * mode will write it back later
2775                  */
2776                 mapping->writeback_index = mpd.first_page;
2777
2778 out_writepages:
2779         trace_ext4_writepages_result(inode, wbc, ret,
2780                                      nr_to_write - wbc->nr_to_write);
2781         return ret;
2782 }
2783
2784 static int ext4_nonda_switch(struct super_block *sb)
2785 {
2786         s64 free_clusters, dirty_clusters;
2787         struct ext4_sb_info *sbi = EXT4_SB(sb);
2788
2789         /*
2790          * switch to non delalloc mode if we are running low
2791          * on free block. The free block accounting via percpu
2792          * counters can get slightly wrong with percpu_counter_batch getting
2793          * accumulated on each CPU without updating global counters
2794          * Delalloc need an accurate free block accounting. So switch
2795          * to non delalloc when we are near to error range.
2796          */
2797         free_clusters =
2798                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2799         dirty_clusters =
2800                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2801         /*
2802          * Start pushing delalloc when 1/2 of free blocks are dirty.
2803          */
2804         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2805                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2806
2807         if (2 * free_clusters < 3 * dirty_clusters ||
2808             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2809                 /*
2810                  * free block count is less than 150% of dirty blocks
2811                  * or free blocks is less than watermark
2812                  */
2813                 return 1;
2814         }
2815         return 0;
2816 }
2817
2818 /* We always reserve for an inode update; the superblock could be there too */
2819 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2820 {
2821         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2822                 return 1;
2823
2824         if (pos + len <= 0x7fffffffULL)
2825                 return 1;
2826
2827         /* We might need to update the superblock to set LARGE_FILE */
2828         return 2;
2829 }
2830
2831 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2832                                loff_t pos, unsigned len, unsigned flags,
2833                                struct page **pagep, void **fsdata)
2834 {
2835         int ret, retries = 0;
2836         struct page *page;
2837         pgoff_t index;
2838         struct inode *inode = mapping->host;
2839         handle_t *handle;
2840
2841         index = pos >> PAGE_CACHE_SHIFT;
2842
2843         if (ext4_nonda_switch(inode->i_sb)) {
2844                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2845                 return ext4_write_begin(file, mapping, pos,
2846                                         len, flags, pagep, fsdata);
2847         }
2848         *fsdata = (void *)0;
2849         trace_ext4_da_write_begin(inode, pos, len, flags);
2850
2851         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2852                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2853                                                       pos, len, flags,
2854                                                       pagep, fsdata);
2855                 if (ret < 0)
2856                         return ret;
2857                 if (ret == 1)
2858                         return 0;
2859         }
2860
2861         /*
2862          * grab_cache_page_write_begin() can take a long time if the
2863          * system is thrashing due to memory pressure, or if the page
2864          * is being written back.  So grab it first before we start
2865          * the transaction handle.  This also allows us to allocate
2866          * the page (if needed) without using GFP_NOFS.
2867          */
2868 retry_grab:
2869         page = grab_cache_page_write_begin(mapping, index, flags);
2870         if (!page)
2871                 return -ENOMEM;
2872         unlock_page(page);
2873
2874         /*
2875          * With delayed allocation, we don't log the i_disksize update
2876          * if there is delayed block allocation. But we still need
2877          * to journalling the i_disksize update if writes to the end
2878          * of file which has an already mapped buffer.
2879          */
2880 retry_journal:
2881         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2882                                 ext4_da_write_credits(inode, pos, len));
2883         if (IS_ERR(handle)) {
2884                 page_cache_release(page);
2885                 return PTR_ERR(handle);
2886         }
2887
2888         lock_page(page);
2889         if (page->mapping != mapping) {
2890                 /* The page got truncated from under us */
2891                 unlock_page(page);
2892                 page_cache_release(page);
2893                 ext4_journal_stop(handle);
2894                 goto retry_grab;
2895         }
2896         /* In case writeback began while the page was unlocked */
2897         wait_for_stable_page(page);
2898
2899 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2900         ret = ext4_block_write_begin(page, pos, len,
2901                                      ext4_da_get_block_prep);
2902 #else
2903         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2904 #endif
2905         if (ret < 0) {
2906                 unlock_page(page);
2907                 ext4_journal_stop(handle);
2908                 /*
2909                  * block_write_begin may have instantiated a few blocks
2910                  * outside i_size.  Trim these off again. Don't need
2911                  * i_size_read because we hold i_mutex.
2912                  */
2913                 if (pos + len > inode->i_size)
2914                         ext4_truncate_failed_write(inode);
2915
2916                 if (ret == -ENOSPC &&
2917                     ext4_should_retry_alloc(inode->i_sb, &retries))
2918                         goto retry_journal;
2919
2920                 page_cache_release(page);
2921                 return ret;
2922         }
2923
2924         *pagep = page;
2925         return ret;
2926 }
2927
2928 /*
2929  * Check if we should update i_disksize
2930  * when write to the end of file but not require block allocation
2931  */
2932 static int ext4_da_should_update_i_disksize(struct page *page,
2933                                             unsigned long offset)
2934 {
2935         struct buffer_head *bh;
2936         struct inode *inode = page->mapping->host;
2937         unsigned int idx;
2938         int i;
2939
2940         bh = page_buffers(page);
2941         idx = offset >> inode->i_blkbits;
2942
2943         for (i = 0; i < idx; i++)
2944                 bh = bh->b_this_page;
2945
2946         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2947                 return 0;
2948         return 1;
2949 }
2950
2951 static int ext4_da_write_end(struct file *file,
2952                              struct address_space *mapping,
2953                              loff_t pos, unsigned len, unsigned copied,
2954                              struct page *page, void *fsdata)
2955 {
2956         struct inode *inode = mapping->host;
2957         int ret = 0, ret2;
2958         handle_t *handle = ext4_journal_current_handle();
2959         loff_t new_i_size;
2960         unsigned long start, end;
2961         int write_mode = (int)(unsigned long)fsdata;
2962
2963         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2964                 return ext4_write_end(file, mapping, pos,
2965                                       len, copied, page, fsdata);
2966
2967         trace_ext4_da_write_end(inode, pos, len, copied);
2968         start = pos & (PAGE_CACHE_SIZE - 1);
2969         end = start + copied - 1;
2970
2971         /*
2972          * generic_write_end() will run mark_inode_dirty() if i_size
2973          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2974          * into that.
2975          */
2976         new_i_size = pos + copied;
2977         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2978                 if (ext4_has_inline_data(inode) ||
2979                     ext4_da_should_update_i_disksize(page, end)) {
2980                         ext4_update_i_disksize(inode, new_i_size);
2981                         /* We need to mark inode dirty even if
2982                          * new_i_size is less that inode->i_size
2983                          * bu greater than i_disksize.(hint delalloc)
2984                          */
2985                         ext4_mark_inode_dirty(handle, inode);
2986                 }
2987         }
2988
2989         if (write_mode != CONVERT_INLINE_DATA &&
2990             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2991             ext4_has_inline_data(inode))
2992                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2993                                                      page);
2994         else
2995                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2996                                                         page, fsdata);
2997
2998         copied = ret2;
2999         if (ret2 < 0)
3000                 ret = ret2;
3001         ret2 = ext4_journal_stop(handle);
3002         if (!ret)
3003                 ret = ret2;
3004
3005         return ret ? ret : copied;
3006 }
3007
3008 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3009                                    unsigned int length)
3010 {
3011         /*
3012          * Drop reserved blocks
3013          */
3014         BUG_ON(!PageLocked(page));
3015         if (!page_has_buffers(page))
3016                 goto out;
3017
3018         ext4_da_page_release_reservation(page, offset, length);
3019
3020 out:
3021         ext4_invalidatepage(page, offset, length);
3022
3023         return;
3024 }
3025
3026 /*
3027  * Force all delayed allocation blocks to be allocated for a given inode.
3028  */
3029 int ext4_alloc_da_blocks(struct inode *inode)
3030 {
3031         trace_ext4_alloc_da_blocks(inode);
3032
3033         if (!EXT4_I(inode)->i_reserved_data_blocks)
3034                 return 0;
3035
3036         /*
3037          * We do something simple for now.  The filemap_flush() will
3038          * also start triggering a write of the data blocks, which is
3039          * not strictly speaking necessary (and for users of
3040          * laptop_mode, not even desirable).  However, to do otherwise
3041          * would require replicating code paths in:
3042          *
3043          * ext4_writepages() ->
3044          *    write_cache_pages() ---> (via passed in callback function)
3045          *        __mpage_da_writepage() -->
3046          *           mpage_add_bh_to_extent()
3047          *           mpage_da_map_blocks()
3048          *
3049          * The problem is that write_cache_pages(), located in
3050          * mm/page-writeback.c, marks pages clean in preparation for
3051          * doing I/O, which is not desirable if we're not planning on
3052          * doing I/O at all.
3053          *
3054          * We could call write_cache_pages(), and then redirty all of
3055          * the pages by calling redirty_page_for_writepage() but that
3056          * would be ugly in the extreme.  So instead we would need to
3057          * replicate parts of the code in the above functions,
3058          * simplifying them because we wouldn't actually intend to
3059          * write out the pages, but rather only collect contiguous
3060          * logical block extents, call the multi-block allocator, and
3061          * then update the buffer heads with the block allocations.
3062          *
3063          * For now, though, we'll cheat by calling filemap_flush(),
3064          * which will map the blocks, and start the I/O, but not
3065          * actually wait for the I/O to complete.
3066          */
3067         return filemap_flush(inode->i_mapping);
3068 }
3069
3070 /*
3071  * bmap() is special.  It gets used by applications such as lilo and by
3072  * the swapper to find the on-disk block of a specific piece of data.
3073  *
3074  * Naturally, this is dangerous if the block concerned is still in the
3075  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3076  * filesystem and enables swap, then they may get a nasty shock when the
3077  * data getting swapped to that swapfile suddenly gets overwritten by
3078  * the original zero's written out previously to the journal and
3079  * awaiting writeback in the kernel's buffer cache.
3080  *
3081  * So, if we see any bmap calls here on a modified, data-journaled file,
3082  * take extra steps to flush any blocks which might be in the cache.
3083  */
3084 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3085 {
3086         struct inode *inode = mapping->host;
3087         journal_t *journal;
3088         int err;
3089
3090         /*
3091          * We can get here for an inline file via the FIBMAP ioctl
3092          */
3093         if (ext4_has_inline_data(inode))
3094                 return 0;
3095
3096         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3097                         test_opt(inode->i_sb, DELALLOC)) {
3098                 /*
3099                  * With delalloc we want to sync the file
3100                  * so that we can make sure we allocate
3101                  * blocks for file
3102                  */
3103                 filemap_write_and_wait(mapping);
3104         }
3105
3106         if (EXT4_JOURNAL(inode) &&
3107             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3108                 /*
3109                  * This is a REALLY heavyweight approach, but the use of
3110                  * bmap on dirty files is expected to be extremely rare:
3111                  * only if we run lilo or swapon on a freshly made file
3112                  * do we expect this to happen.
3113                  *
3114                  * (bmap requires CAP_SYS_RAWIO so this does not
3115                  * represent an unprivileged user DOS attack --- we'd be
3116                  * in trouble if mortal users could trigger this path at
3117                  * will.)
3118                  *
3119                  * NB. EXT4_STATE_JDATA is not set on files other than
3120                  * regular files.  If somebody wants to bmap a directory
3121                  * or symlink and gets confused because the buffer
3122                  * hasn't yet been flushed to disk, they deserve
3123                  * everything they get.
3124                  */
3125
3126                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3127                 journal = EXT4_JOURNAL(inode);
3128                 jbd2_journal_lock_updates(journal);
3129                 err = jbd2_journal_flush(journal);
3130                 jbd2_journal_unlock_updates(journal);
3131
3132                 if (err)
3133                         return 0;
3134         }
3135
3136         return generic_block_bmap(mapping, block, ext4_get_block);
3137 }
3138
3139 static int ext4_readpage(struct file *file, struct page *page)
3140 {
3141         int ret = -EAGAIN;
3142         struct inode *inode = page->mapping->host;
3143
3144         trace_ext4_readpage(page);
3145
3146         if (ext4_has_inline_data(inode))
3147                 ret = ext4_readpage_inline(inode, page);
3148
3149         if (ret == -EAGAIN)
3150                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3151
3152         return ret;
3153 }
3154
3155 static int
3156 ext4_readpages(struct file *file, struct address_space *mapping,
3157                 struct list_head *pages, unsigned nr_pages)
3158 {
3159         struct inode *inode = mapping->host;
3160
3161         /* If the file has inline data, no need to do readpages. */
3162         if (ext4_has_inline_data(inode))
3163                 return 0;
3164
3165         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3166 }
3167
3168 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3169                                 unsigned int length)
3170 {
3171         trace_ext4_invalidatepage(page, offset, length);
3172
3173         /* No journalling happens on data buffers when this function is used */
3174         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3175
3176         block_invalidatepage(page, offset, length);
3177 }
3178
3179 static int __ext4_journalled_invalidatepage(struct page *page,
3180                                             unsigned int offset,
3181                                             unsigned int length)
3182 {
3183         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3184
3185         trace_ext4_journalled_invalidatepage(page, offset, length);
3186
3187         /*
3188          * If it's a full truncate we just forget about the pending dirtying
3189          */
3190         if (offset == 0 && length == PAGE_CACHE_SIZE)
3191                 ClearPageChecked(page);
3192
3193         return jbd2_journal_invalidatepage(journal, page, offset, length);
3194 }
3195
3196 /* Wrapper for aops... */
3197 static void ext4_journalled_invalidatepage(struct page *page,
3198                                            unsigned int offset,
3199                                            unsigned int length)
3200 {
3201         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3202 }
3203
3204 static int ext4_releasepage(struct page *page, gfp_t wait)
3205 {
3206         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3207
3208         trace_ext4_releasepage(page);
3209
3210         /* Page has dirty journalled data -> cannot release */
3211         if (PageChecked(page))
3212                 return 0;
3213         if (journal)
3214                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3215         else
3216                 return try_to_free_buffers(page);
3217 }
3218
3219 #ifdef CONFIG_FS_DAX
3220 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3221                             struct buffer_head *bh_result, int create)
3222 {
3223         int ret, err;
3224         int credits;
3225         struct ext4_map_blocks map;
3226         handle_t *handle = NULL;
3227         int flags = 0;
3228
3229         ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3230                    inode->i_ino, create);
3231         map.m_lblk = iblock;
3232         map.m_len = bh_result->b_size >> inode->i_blkbits;
3233         credits = ext4_chunk_trans_blocks(inode, map.m_len);
3234         if (create) {
3235                 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3236                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3237                 if (IS_ERR(handle)) {
3238                         ret = PTR_ERR(handle);
3239                         return ret;
3240                 }
3241         }
3242
3243         ret = ext4_map_blocks(handle, inode, &map, flags);
3244         if (create) {
3245                 err = ext4_journal_stop(handle);
3246                 if (ret >= 0 && err < 0)
3247                         ret = err;
3248         }
3249         if (ret <= 0)
3250                 goto out;
3251         if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3252                 int err2;
3253
3254                 /*
3255                  * We are protected by i_mmap_sem so we know block cannot go
3256                  * away from under us even though we dropped i_data_sem.
3257                  * Convert extent to written and write zeros there.
3258                  *
3259                  * Note: We may get here even when create == 0.
3260                  */
3261                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3262                 if (IS_ERR(handle)) {
3263                         ret = PTR_ERR(handle);
3264                         goto out;
3265                 }
3266
3267                 err = ext4_map_blocks(handle, inode, &map,
3268                       EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3269                 if (err < 0)
3270                         ret = err;
3271                 err2 = ext4_journal_stop(handle);
3272                 if (err2 < 0 && ret > 0)
3273                         ret = err2;
3274         }
3275 out:
3276         WARN_ON_ONCE(ret == 0 && create);
3277         if (ret > 0) {
3278                 map_bh(bh_result, inode->i_sb, map.m_pblk);
3279                 /*
3280                  * At least for now we have to clear BH_New so that DAX code
3281                  * doesn't attempt to zero blocks again in a racy way.
3282                  */
3283                 map.m_flags &= ~EXT4_MAP_NEW;
3284                 ext4_update_bh_state(bh_result, map.m_flags);
3285                 bh_result->b_size = map.m_len << inode->i_blkbits;
3286                 ret = 0;
3287         }
3288         return ret;
3289 }
3290 #endif
3291
3292 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3293                             ssize_t size, void *private)
3294 {
3295         ext4_io_end_t *io_end = private;
3296
3297         /* if not async direct IO just return */
3298         if (!io_end)
3299                 return;
3300
3301         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3302                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3303                   io_end, io_end->inode->i_ino, iocb, offset, size);
3304
3305         io_end->offset = offset;
3306         io_end->size = size;
3307         ext4_put_io_end(io_end);
3308 }
3309
3310 /*
3311  * For ext4 extent files, ext4 will do direct-io write to holes,
3312  * preallocated extents, and those write extend the file, no need to
3313  * fall back to buffered IO.
3314  *
3315  * For holes, we fallocate those blocks, mark them as unwritten
3316  * If those blocks were preallocated, we mark sure they are split, but
3317  * still keep the range to write as unwritten.
3318  *
3319  * The unwritten extents will be converted to written when DIO is completed.
3320  * For async direct IO, since the IO may still pending when return, we
3321  * set up an end_io call back function, which will do the conversion
3322  * when async direct IO completed.
3323  *
3324  * If the O_DIRECT write will extend the file then add this inode to the
3325  * orphan list.  So recovery will truncate it back to the original size
3326  * if the machine crashes during the write.
3327  *
3328  */
3329 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3330                                   loff_t offset)
3331 {
3332         struct file *file = iocb->ki_filp;
3333         struct inode *inode = file->f_mapping->host;
3334         ssize_t ret;
3335         size_t count = iov_iter_count(iter);
3336         int overwrite = 0;
3337         get_block_t *get_block_func = NULL;
3338         int dio_flags = 0;
3339         loff_t final_size = offset + count;
3340
3341         /* Use the old path for reads and writes beyond i_size. */
3342         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3343                 return ext4_ind_direct_IO(iocb, iter, offset);
3344
3345         BUG_ON(iocb->private == NULL);
3346
3347         /*
3348          * Make all waiters for direct IO properly wait also for extent
3349          * conversion. This also disallows race between truncate() and
3350          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3351          */
3352         if (iov_iter_rw(iter) == WRITE)
3353                 inode_dio_begin(inode);
3354
3355         /* If we do a overwrite dio, i_mutex locking can be released */
3356         overwrite = *((int *)iocb->private);
3357
3358         if (overwrite)
3359                 inode_unlock(inode);
3360
3361         /*
3362          * We could direct write to holes and fallocate.
3363          *
3364          * Allocated blocks to fill the hole are marked as unwritten to prevent
3365          * parallel buffered read to expose the stale data before DIO complete
3366          * the data IO.
3367          *
3368          * As to previously fallocated extents, ext4 get_block will just simply
3369          * mark the buffer mapped but still keep the extents unwritten.
3370          *
3371          * For non AIO case, we will convert those unwritten extents to written
3372          * after return back from blockdev_direct_IO. That way we save us from
3373          * allocating io_end structure and also the overhead of offloading
3374          * the extent convertion to a workqueue.
3375          *
3376          * For async DIO, the conversion needs to be deferred when the
3377          * IO is completed. The ext4 end_io callback function will be
3378          * called to take care of the conversion work.  Here for async
3379          * case, we allocate an io_end structure to hook to the iocb.
3380          */
3381         iocb->private = NULL;
3382         if (overwrite)
3383                 get_block_func = ext4_dio_get_block_overwrite;
3384         else if (is_sync_kiocb(iocb)) {
3385                 get_block_func = ext4_dio_get_block_unwritten_sync;
3386                 dio_flags = DIO_LOCKING;
3387         } else {
3388                 get_block_func = ext4_dio_get_block_unwritten_async;
3389                 dio_flags = DIO_LOCKING;
3390         }
3391 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3392         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3393 #endif
3394         if (IS_DAX(inode))
3395                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3396                                 ext4_end_io_dio, dio_flags);
3397         else
3398                 ret = __blockdev_direct_IO(iocb, inode,
3399                                            inode->i_sb->s_bdev, iter, offset,
3400                                            get_block_func,
3401                                            ext4_end_io_dio, NULL, dio_flags);
3402
3403         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3404                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3405                 int err;
3406                 /*
3407                  * for non AIO case, since the IO is already
3408                  * completed, we could do the conversion right here
3409                  */
3410                 err = ext4_convert_unwritten_extents(NULL, inode,
3411                                                      offset, ret);
3412                 if (err < 0)
3413                         ret = err;
3414                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3415         }
3416
3417         if (iov_iter_rw(iter) == WRITE)
3418                 inode_dio_end(inode);
3419         /* take i_mutex locking again if we do a ovewrite dio */
3420         if (overwrite)
3421                 inode_lock(inode);
3422
3423         return ret;
3424 }
3425
3426 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3427                               loff_t offset)
3428 {
3429         struct file *file = iocb->ki_filp;
3430         struct inode *inode = file->f_mapping->host;
3431         size_t count = iov_iter_count(iter);
3432         ssize_t ret;
3433
3434 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3435         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3436                 return 0;
3437 #endif
3438
3439         /*
3440          * If we are doing data journalling we don't support O_DIRECT
3441          */
3442         if (ext4_should_journal_data(inode))
3443                 return 0;
3444
3445         /* Let buffer I/O handle the inline data case. */
3446         if (ext4_has_inline_data(inode))
3447                 return 0;
3448
3449         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3450         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3451                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3452         else
3453                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3454         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3455         return ret;
3456 }
3457
3458 /*
3459  * Pages can be marked dirty completely asynchronously from ext4's journalling
3460  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3461  * much here because ->set_page_dirty is called under VFS locks.  The page is
3462  * not necessarily locked.
3463  *
3464  * We cannot just dirty the page and leave attached buffers clean, because the
3465  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3466  * or jbddirty because all the journalling code will explode.
3467  *
3468  * So what we do is to mark the page "pending dirty" and next time writepage
3469  * is called, propagate that into the buffers appropriately.
3470  */
3471 static int ext4_journalled_set_page_dirty(struct page *page)
3472 {
3473         SetPageChecked(page);
3474         return __set_page_dirty_nobuffers(page);
3475 }
3476
3477 static const struct address_space_operations ext4_aops = {
3478         .readpage               = ext4_readpage,
3479         .readpages              = ext4_readpages,
3480         .writepage              = ext4_writepage,
3481         .writepages             = ext4_writepages,
3482         .write_begin            = ext4_write_begin,
3483         .write_end              = ext4_write_end,
3484         .bmap                   = ext4_bmap,
3485         .invalidatepage         = ext4_invalidatepage,
3486         .releasepage            = ext4_releasepage,
3487         .direct_IO              = ext4_direct_IO,
3488         .migratepage            = buffer_migrate_page,
3489         .is_partially_uptodate  = block_is_partially_uptodate,
3490         .error_remove_page      = generic_error_remove_page,
3491 };
3492
3493 static const struct address_space_operations ext4_journalled_aops = {
3494         .readpage               = ext4_readpage,
3495         .readpages              = ext4_readpages,
3496         .writepage              = ext4_writepage,
3497         .writepages             = ext4_writepages,
3498         .write_begin            = ext4_write_begin,
3499         .write_end              = ext4_journalled_write_end,
3500         .set_page_dirty         = ext4_journalled_set_page_dirty,
3501         .bmap                   = ext4_bmap,
3502         .invalidatepage         = ext4_journalled_invalidatepage,
3503         .releasepage            = ext4_releasepage,
3504         .direct_IO              = ext4_direct_IO,
3505         .is_partially_uptodate  = block_is_partially_uptodate,
3506         .error_remove_page      = generic_error_remove_page,
3507 };
3508
3509 static const struct address_space_operations ext4_da_aops = {
3510         .readpage               = ext4_readpage,
3511         .readpages              = ext4_readpages,
3512         .writepage              = ext4_writepage,
3513         .writepages             = ext4_writepages,
3514         .write_begin            = ext4_da_write_begin,
3515         .write_end              = ext4_da_write_end,
3516         .bmap                   = ext4_bmap,
3517         .invalidatepage         = ext4_da_invalidatepage,
3518         .releasepage            = ext4_releasepage,
3519         .direct_IO              = ext4_direct_IO,
3520         .migratepage            = buffer_migrate_page,
3521         .is_partially_uptodate  = block_is_partially_uptodate,
3522         .error_remove_page      = generic_error_remove_page,
3523 };
3524
3525 void ext4_set_aops(struct inode *inode)
3526 {
3527         switch (ext4_inode_journal_mode(inode)) {
3528         case EXT4_INODE_ORDERED_DATA_MODE:
3529                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3530                 break;
3531         case EXT4_INODE_WRITEBACK_DATA_MODE:
3532                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3533                 break;
3534         case EXT4_INODE_JOURNAL_DATA_MODE:
3535                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3536                 return;
3537         default:
3538                 BUG();
3539         }
3540         if (test_opt(inode->i_sb, DELALLOC))
3541                 inode->i_mapping->a_ops = &ext4_da_aops;
3542         else
3543                 inode->i_mapping->a_ops = &ext4_aops;
3544 }
3545
3546 static int __ext4_block_zero_page_range(handle_t *handle,
3547                 struct address_space *mapping, loff_t from, loff_t length)
3548 {
3549         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3550         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3551         unsigned blocksize, pos;
3552         ext4_lblk_t iblock;
3553         struct inode *inode = mapping->host;
3554         struct buffer_head *bh;
3555         struct page *page;
3556         int err = 0;
3557
3558         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3559                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3560         if (!page)
3561                 return -ENOMEM;
3562
3563         blocksize = inode->i_sb->s_blocksize;
3564
3565         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3566
3567         if (!page_has_buffers(page))
3568                 create_empty_buffers(page, blocksize, 0);
3569
3570         /* Find the buffer that contains "offset" */
3571         bh = page_buffers(page);
3572         pos = blocksize;
3573         while (offset >= pos) {
3574                 bh = bh->b_this_page;
3575                 iblock++;
3576                 pos += blocksize;
3577         }
3578         if (buffer_freed(bh)) {
3579                 BUFFER_TRACE(bh, "freed: skip");
3580                 goto unlock;
3581         }
3582         if (!buffer_mapped(bh)) {
3583                 BUFFER_TRACE(bh, "unmapped");
3584                 ext4_get_block(inode, iblock, bh, 0);
3585                 /* unmapped? It's a hole - nothing to do */
3586                 if (!buffer_mapped(bh)) {
3587                         BUFFER_TRACE(bh, "still unmapped");
3588                         goto unlock;
3589                 }
3590         }
3591
3592         /* Ok, it's mapped. Make sure it's up-to-date */
3593         if (PageUptodate(page))
3594                 set_buffer_uptodate(bh);
3595
3596         if (!buffer_uptodate(bh)) {
3597                 err = -EIO;
3598                 ll_rw_block(READ, 1, &bh);
3599                 wait_on_buffer(bh);
3600                 /* Uhhuh. Read error. Complain and punt. */
3601                 if (!buffer_uptodate(bh))
3602                         goto unlock;
3603                 if (S_ISREG(inode->i_mode) &&
3604                     ext4_encrypted_inode(inode)) {
3605                         /* We expect the key to be set. */
3606                         BUG_ON(!ext4_has_encryption_key(inode));
3607                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3608                         WARN_ON_ONCE(ext4_decrypt(page));
3609                 }
3610         }
3611         if (ext4_should_journal_data(inode)) {
3612                 BUFFER_TRACE(bh, "get write access");
3613                 err = ext4_journal_get_write_access(handle, bh);
3614                 if (err)
3615                         goto unlock;
3616         }
3617         zero_user(page, offset, length);
3618         BUFFER_TRACE(bh, "zeroed end of block");
3619
3620         if (ext4_should_journal_data(inode)) {
3621                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3622         } else {
3623                 err = 0;
3624                 mark_buffer_dirty(bh);
3625                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3626                         err = ext4_jbd2_file_inode(handle, inode);
3627         }
3628
3629 unlock:
3630         unlock_page(page);
3631         page_cache_release(page);
3632         return err;
3633 }
3634
3635 /*
3636  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3637  * starting from file offset 'from'.  The range to be zero'd must
3638  * be contained with in one block.  If the specified range exceeds
3639  * the end of the block it will be shortened to end of the block
3640  * that cooresponds to 'from'
3641  */
3642 static int ext4_block_zero_page_range(handle_t *handle,
3643                 struct address_space *mapping, loff_t from, loff_t length)
3644 {
3645         struct inode *inode = mapping->host;
3646         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3647         unsigned blocksize = inode->i_sb->s_blocksize;
3648         unsigned max = blocksize - (offset & (blocksize - 1));
3649
3650         /*
3651          * correct length if it does not fall between
3652          * 'from' and the end of the block
3653          */
3654         if (length > max || length < 0)
3655                 length = max;
3656
3657         if (IS_DAX(inode))
3658                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3659         return __ext4_block_zero_page_range(handle, mapping, from, length);
3660 }
3661
3662 /*
3663  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3664  * up to the end of the block which corresponds to `from'.
3665  * This required during truncate. We need to physically zero the tail end
3666  * of that block so it doesn't yield old data if the file is later grown.
3667  */
3668 static int ext4_block_truncate_page(handle_t *handle,
3669                 struct address_space *mapping, loff_t from)
3670 {
3671         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3672         unsigned length;
3673         unsigned blocksize;
3674         struct inode *inode = mapping->host;
3675
3676         blocksize = inode->i_sb->s_blocksize;
3677         length = blocksize - (offset & (blocksize - 1));
3678
3679         return ext4_block_zero_page_range(handle, mapping, from, length);
3680 }
3681
3682 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3683                              loff_t lstart, loff_t length)
3684 {
3685         struct super_block *sb = inode->i_sb;
3686         struct address_space *mapping = inode->i_mapping;
3687         unsigned partial_start, partial_end;
3688         ext4_fsblk_t start, end;
3689         loff_t byte_end = (lstart + length - 1);
3690         int err = 0;
3691
3692         partial_start = lstart & (sb->s_blocksize - 1);
3693         partial_end = byte_end & (sb->s_blocksize - 1);
3694
3695         start = lstart >> sb->s_blocksize_bits;
3696         end = byte_end >> sb->s_blocksize_bits;
3697
3698         /* Handle partial zero within the single block */
3699         if (start == end &&
3700             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3701                 err = ext4_block_zero_page_range(handle, mapping,
3702                                                  lstart, length);
3703                 return err;
3704         }
3705         /* Handle partial zero out on the start of the range */
3706         if (partial_start) {
3707                 err = ext4_block_zero_page_range(handle, mapping,
3708                                                  lstart, sb->s_blocksize);
3709                 if (err)
3710                         return err;
3711         }
3712         /* Handle partial zero out on the end of the range */
3713         if (partial_end != sb->s_blocksize - 1)
3714                 err = ext4_block_zero_page_range(handle, mapping,
3715                                                  byte_end - partial_end,
3716                                                  partial_end + 1);
3717         return err;
3718 }
3719
3720 int ext4_can_truncate(struct inode *inode)
3721 {
3722         if (S_ISREG(inode->i_mode))
3723                 return 1;
3724         if (S_ISDIR(inode->i_mode))
3725                 return 1;
3726         if (S_ISLNK(inode->i_mode))
3727                 return !ext4_inode_is_fast_symlink(inode);
3728         return 0;
3729 }
3730
3731 /*
3732  * We have to make sure i_disksize gets properly updated before we truncate
3733  * page cache due to hole punching or zero range. Otherwise i_disksize update
3734  * can get lost as it may have been postponed to submission of writeback but
3735  * that will never happen after we truncate page cache.
3736  */
3737 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3738                                       loff_t len)
3739 {
3740         handle_t *handle;
3741         loff_t size = i_size_read(inode);
3742
3743         WARN_ON(!inode_is_locked(inode));
3744         if (offset > size || offset + len < size)
3745                 return 0;
3746
3747         if (EXT4_I(inode)->i_disksize >= size)
3748                 return 0;
3749
3750         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3751         if (IS_ERR(handle))
3752                 return PTR_ERR(handle);
3753         ext4_update_i_disksize(inode, size);
3754         ext4_mark_inode_dirty(handle, inode);
3755         ext4_journal_stop(handle);
3756
3757         return 0;
3758 }
3759
3760 /*
3761  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3762  * associated with the given offset and length
3763  *
3764  * @inode:  File inode
3765  * @offset: The offset where the hole will begin
3766  * @len:    The length of the hole
3767  *
3768  * Returns: 0 on success or negative on failure
3769  */
3770
3771 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3772 {
3773         struct super_block *sb = inode->i_sb;
3774         ext4_lblk_t first_block, stop_block;
3775         struct address_space *mapping = inode->i_mapping;
3776         loff_t first_block_offset, last_block_offset;
3777         handle_t *handle;
3778         unsigned int credits;
3779         int ret = 0;
3780
3781         if (!S_ISREG(inode->i_mode))
3782                 return -EOPNOTSUPP;
3783
3784         trace_ext4_punch_hole(inode, offset, length, 0);
3785
3786         /*
3787          * Write out all dirty pages to avoid race conditions
3788          * Then release them.
3789          */
3790         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3791                 ret = filemap_write_and_wait_range(mapping, offset,
3792                                                    offset + length - 1);
3793                 if (ret)
3794                         return ret;
3795         }
3796
3797         inode_lock(inode);
3798
3799         /* No need to punch hole beyond i_size */
3800         if (offset >= inode->i_size)
3801                 goto out_mutex;
3802
3803         /*
3804          * If the hole extends beyond i_size, set the hole
3805          * to end after the page that contains i_size
3806          */
3807         if (offset + length > inode->i_size) {
3808                 length = inode->i_size +
3809                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3810                    offset;
3811         }
3812
3813         if (offset & (sb->s_blocksize - 1) ||
3814             (offset + length) & (sb->s_blocksize - 1)) {
3815                 /*
3816                  * Attach jinode to inode for jbd2 if we do any zeroing of
3817                  * partial block
3818                  */
3819                 ret = ext4_inode_attach_jinode(inode);
3820                 if (ret < 0)
3821                         goto out_mutex;
3822
3823         }
3824
3825         /* Wait all existing dio workers, newcomers will block on i_mutex */
3826         ext4_inode_block_unlocked_dio(inode);
3827         inode_dio_wait(inode);
3828
3829         /*
3830          * Prevent page faults from reinstantiating pages we have released from
3831          * page cache.
3832          */
3833         down_write(&EXT4_I(inode)->i_mmap_sem);
3834         first_block_offset = round_up(offset, sb->s_blocksize);
3835         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3836
3837         /* Now release the pages and zero block aligned part of pages*/
3838         if (last_block_offset > first_block_offset) {
3839                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3840                 if (ret)
3841                         goto out_dio;
3842                 truncate_pagecache_range(inode, first_block_offset,
3843                                          last_block_offset);
3844         }
3845
3846         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3847                 credits = ext4_writepage_trans_blocks(inode);
3848         else
3849                 credits = ext4_blocks_for_truncate(inode);
3850         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3851         if (IS_ERR(handle)) {
3852                 ret = PTR_ERR(handle);
3853                 ext4_std_error(sb, ret);
3854                 goto out_dio;
3855         }
3856
3857         ret = ext4_zero_partial_blocks(handle, inode, offset,
3858                                        length);
3859         if (ret)
3860                 goto out_stop;
3861
3862         first_block = (offset + sb->s_blocksize - 1) >>
3863                 EXT4_BLOCK_SIZE_BITS(sb);
3864         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3865
3866         /* If there are no blocks to remove, return now */
3867         if (first_block >= stop_block)
3868                 goto out_stop;
3869
3870         down_write(&EXT4_I(inode)->i_data_sem);
3871         ext4_discard_preallocations(inode);
3872
3873         ret = ext4_es_remove_extent(inode, first_block,
3874                                     stop_block - first_block);
3875         if (ret) {
3876                 up_write(&EXT4_I(inode)->i_data_sem);
3877                 goto out_stop;
3878         }
3879
3880         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3881                 ret = ext4_ext_remove_space(inode, first_block,
3882                                             stop_block - 1);
3883         else
3884                 ret = ext4_ind_remove_space(handle, inode, first_block,
3885                                             stop_block);
3886
3887         up_write(&EXT4_I(inode)->i_data_sem);
3888         if (IS_SYNC(inode))
3889                 ext4_handle_sync(handle);
3890
3891         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3892         ext4_mark_inode_dirty(handle, inode);
3893 out_stop:
3894         ext4_journal_stop(handle);
3895 out_dio:
3896         up_write(&EXT4_I(inode)->i_mmap_sem);
3897         ext4_inode_resume_unlocked_dio(inode);
3898 out_mutex:
3899         inode_unlock(inode);
3900         return ret;
3901 }
3902
3903 int ext4_inode_attach_jinode(struct inode *inode)
3904 {
3905         struct ext4_inode_info *ei = EXT4_I(inode);
3906         struct jbd2_inode *jinode;
3907
3908         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3909                 return 0;
3910
3911         jinode = jbd2_alloc_inode(GFP_KERNEL);
3912         spin_lock(&inode->i_lock);
3913         if (!ei->jinode) {
3914                 if (!jinode) {
3915                         spin_unlock(&inode->i_lock);
3916                         return -ENOMEM;
3917                 }
3918                 ei->jinode = jinode;
3919                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3920                 jinode = NULL;
3921         }
3922         spin_unlock(&inode->i_lock);
3923         if (unlikely(jinode != NULL))
3924                 jbd2_free_inode(jinode);
3925         return 0;
3926 }
3927
3928 /*
3929  * ext4_truncate()
3930  *
3931  * We block out ext4_get_block() block instantiations across the entire
3932  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3933  * simultaneously on behalf of the same inode.
3934  *
3935  * As we work through the truncate and commit bits of it to the journal there
3936  * is one core, guiding principle: the file's tree must always be consistent on
3937  * disk.  We must be able to restart the truncate after a crash.
3938  *
3939  * The file's tree may be transiently inconsistent in memory (although it
3940  * probably isn't), but whenever we close off and commit a journal transaction,
3941  * the contents of (the filesystem + the journal) must be consistent and
3942  * restartable.  It's pretty simple, really: bottom up, right to left (although
3943  * left-to-right works OK too).
3944  *
3945  * Note that at recovery time, journal replay occurs *before* the restart of
3946  * truncate against the orphan inode list.
3947  *
3948  * The committed inode has the new, desired i_size (which is the same as
3949  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3950  * that this inode's truncate did not complete and it will again call
3951  * ext4_truncate() to have another go.  So there will be instantiated blocks
3952  * to the right of the truncation point in a crashed ext4 filesystem.  But
3953  * that's fine - as long as they are linked from the inode, the post-crash
3954  * ext4_truncate() run will find them and release them.
3955  */
3956 void ext4_truncate(struct inode *inode)
3957 {
3958         struct ext4_inode_info *ei = EXT4_I(inode);
3959         unsigned int credits;
3960         handle_t *handle;
3961         struct address_space *mapping = inode->i_mapping;
3962
3963         /*
3964          * There is a possibility that we're either freeing the inode
3965          * or it's a completely new inode. In those cases we might not
3966          * have i_mutex locked because it's not necessary.
3967          */
3968         if (!(inode->i_state & (I_NEW|I_FREEING)))
3969                 WARN_ON(!inode_is_locked(inode));
3970         trace_ext4_truncate_enter(inode);
3971
3972         if (!ext4_can_truncate(inode))
3973                 return;
3974
3975         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3976
3977         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3978                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3979
3980         if (ext4_has_inline_data(inode)) {
3981                 int has_inline = 1;
3982
3983                 ext4_inline_data_truncate(inode, &has_inline);
3984                 if (has_inline)
3985                         return;
3986         }
3987
3988         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3989         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3990                 if (ext4_inode_attach_jinode(inode) < 0)
3991                         return;
3992         }
3993
3994         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3995                 credits = ext4_writepage_trans_blocks(inode);
3996         else
3997                 credits = ext4_blocks_for_truncate(inode);
3998
3999         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4000         if (IS_ERR(handle)) {
4001                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4002                 return;
4003         }
4004
4005         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4006                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4007
4008         /*
4009          * We add the inode to the orphan list, so that if this
4010          * truncate spans multiple transactions, and we crash, we will
4011          * resume the truncate when the filesystem recovers.  It also
4012          * marks the inode dirty, to catch the new size.
4013          *
4014          * Implication: the file must always be in a sane, consistent
4015          * truncatable state while each transaction commits.
4016          */
4017         if (ext4_orphan_add(handle, inode))
4018                 goto out_stop;
4019
4020         down_write(&EXT4_I(inode)->i_data_sem);
4021
4022         ext4_discard_preallocations(inode);
4023
4024         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4025                 ext4_ext_truncate(handle, inode);
4026         else
4027                 ext4_ind_truncate(handle, inode);
4028
4029         up_write(&ei->i_data_sem);
4030
4031         if (IS_SYNC(inode))
4032                 ext4_handle_sync(handle);
4033
4034 out_stop:
4035         /*
4036          * If this was a simple ftruncate() and the file will remain alive,
4037          * then we need to clear up the orphan record which we created above.
4038          * However, if this was a real unlink then we were called by
4039          * ext4_evict_inode(), and we allow that function to clean up the
4040          * orphan info for us.
4041          */
4042         if (inode->i_nlink)
4043                 ext4_orphan_del(handle, inode);
4044
4045         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4046         ext4_mark_inode_dirty(handle, inode);
4047         ext4_journal_stop(handle);
4048
4049         trace_ext4_truncate_exit(inode);
4050 }
4051
4052 /*
4053  * ext4_get_inode_loc returns with an extra refcount against the inode's
4054  * underlying buffer_head on success. If 'in_mem' is true, we have all
4055  * data in memory that is needed to recreate the on-disk version of this
4056  * inode.
4057  */
4058 static int __ext4_get_inode_loc(struct inode *inode,
4059                                 struct ext4_iloc *iloc, int in_mem)
4060 {
4061         struct ext4_group_desc  *gdp;
4062         struct buffer_head      *bh;
4063         struct super_block      *sb = inode->i_sb;
4064         ext4_fsblk_t            block;
4065         int                     inodes_per_block, inode_offset;
4066
4067         iloc->bh = NULL;
4068         if (!ext4_valid_inum(sb, inode->i_ino))
4069                 return -EFSCORRUPTED;
4070
4071         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4072         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4073         if (!gdp)
4074                 return -EIO;
4075
4076         /*
4077          * Figure out the offset within the block group inode table
4078          */
4079         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4080         inode_offset = ((inode->i_ino - 1) %
4081                         EXT4_INODES_PER_GROUP(sb));
4082         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4083         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4084
4085         bh = sb_getblk(sb, block);
4086         if (unlikely(!bh))
4087                 return -ENOMEM;
4088         if (!buffer_uptodate(bh)) {
4089                 lock_buffer(bh);
4090
4091                 /*
4092                  * If the buffer has the write error flag, we have failed
4093                  * to write out another inode in the same block.  In this
4094                  * case, we don't have to read the block because we may
4095                  * read the old inode data successfully.
4096                  */
4097                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4098                         set_buffer_uptodate(bh);
4099
4100                 if (buffer_uptodate(bh)) {
4101                         /* someone brought it uptodate while we waited */
4102                         unlock_buffer(bh);
4103                         goto has_buffer;
4104                 }
4105
4106                 /*
4107                  * If we have all information of the inode in memory and this
4108                  * is the only valid inode in the block, we need not read the
4109                  * block.
4110                  */
4111                 if (in_mem) {
4112                         struct buffer_head *bitmap_bh;
4113                         int i, start;
4114
4115                         start = inode_offset & ~(inodes_per_block - 1);
4116
4117                         /* Is the inode bitmap in cache? */
4118                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4119                         if (unlikely(!bitmap_bh))
4120                                 goto make_io;
4121
4122                         /*
4123                          * If the inode bitmap isn't in cache then the
4124                          * optimisation may end up performing two reads instead
4125                          * of one, so skip it.
4126                          */
4127                         if (!buffer_uptodate(bitmap_bh)) {
4128                                 brelse(bitmap_bh);
4129                                 goto make_io;
4130                         }
4131                         for (i = start; i < start + inodes_per_block; i++) {
4132                                 if (i == inode_offset)
4133                                         continue;
4134                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4135                                         break;
4136                         }
4137                         brelse(bitmap_bh);
4138                         if (i == start + inodes_per_block) {
4139                                 /* all other inodes are free, so skip I/O */
4140                                 memset(bh->b_data, 0, bh->b_size);
4141                                 set_buffer_uptodate(bh);
4142                                 unlock_buffer(bh);
4143                                 goto has_buffer;
4144                         }
4145                 }
4146
4147 make_io:
4148                 /*
4149                  * If we need to do any I/O, try to pre-readahead extra
4150                  * blocks from the inode table.
4151                  */
4152                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4153                         ext4_fsblk_t b, end, table;
4154                         unsigned num;
4155                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4156
4157                         table = ext4_inode_table(sb, gdp);
4158                         /* s_inode_readahead_blks is always a power of 2 */
4159                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4160                         if (table > b)
4161                                 b = table;
4162                         end = b + ra_blks;
4163                         num = EXT4_INODES_PER_GROUP(sb);
4164                         if (ext4_has_group_desc_csum(sb))
4165                                 num -= ext4_itable_unused_count(sb, gdp);
4166                         table += num / inodes_per_block;
4167                         if (end > table)
4168                                 end = table;
4169                         while (b <= end)
4170                                 sb_breadahead(sb, b++);
4171                 }
4172
4173                 /*
4174                  * There are other valid inodes in the buffer, this inode
4175                  * has in-inode xattrs, or we don't have this inode in memory.
4176                  * Read the block from disk.
4177                  */
4178                 trace_ext4_load_inode(inode);
4179                 get_bh(bh);
4180                 bh->b_end_io = end_buffer_read_sync;
4181                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4182                 wait_on_buffer(bh);
4183                 if (!buffer_uptodate(bh)) {
4184                         EXT4_ERROR_INODE_BLOCK(inode, block,
4185                                                "unable to read itable block");
4186                         brelse(bh);
4187                         return -EIO;
4188                 }
4189         }
4190 has_buffer:
4191         iloc->bh = bh;
4192         return 0;
4193 }
4194
4195 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4196 {
4197         /* We have all inode data except xattrs in memory here. */
4198         return __ext4_get_inode_loc(inode, iloc,
4199                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4200 }
4201
4202 void ext4_set_inode_flags(struct inode *inode)
4203 {
4204         unsigned int flags = EXT4_I(inode)->i_flags;
4205         unsigned int new_fl = 0;
4206
4207         if (flags & EXT4_SYNC_FL)
4208                 new_fl |= S_SYNC;
4209         if (flags & EXT4_APPEND_FL)
4210                 new_fl |= S_APPEND;
4211         if (flags & EXT4_IMMUTABLE_FL)
4212                 new_fl |= S_IMMUTABLE;
4213         if (flags & EXT4_NOATIME_FL)
4214                 new_fl |= S_NOATIME;
4215         if (flags & EXT4_DIRSYNC_FL)
4216                 new_fl |= S_DIRSYNC;
4217         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4218                 new_fl |= S_DAX;
4219         inode_set_flags(inode, new_fl,
4220                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4221 }
4222
4223 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4224 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4225 {
4226         unsigned int vfs_fl;
4227         unsigned long old_fl, new_fl;
4228
4229         do {
4230                 vfs_fl = ei->vfs_inode.i_flags;
4231                 old_fl = ei->i_flags;
4232                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4233                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4234                                 EXT4_DIRSYNC_FL);
4235                 if (vfs_fl & S_SYNC)
4236                         new_fl |= EXT4_SYNC_FL;
4237                 if (vfs_fl & S_APPEND)
4238                         new_fl |= EXT4_APPEND_FL;
4239                 if (vfs_fl & S_IMMUTABLE)
4240                         new_fl |= EXT4_IMMUTABLE_FL;
4241                 if (vfs_fl & S_NOATIME)
4242                         new_fl |= EXT4_NOATIME_FL;
4243                 if (vfs_fl & S_DIRSYNC)
4244                         new_fl |= EXT4_DIRSYNC_FL;
4245         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4246 }
4247
4248 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4249                                   struct ext4_inode_info *ei)
4250 {
4251         blkcnt_t i_blocks ;
4252         struct inode *inode = &(ei->vfs_inode);
4253         struct super_block *sb = inode->i_sb;
4254
4255         if (ext4_has_feature_huge_file(sb)) {
4256                 /* we are using combined 48 bit field */
4257                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4258                                         le32_to_cpu(raw_inode->i_blocks_lo);
4259                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4260                         /* i_blocks represent file system block size */
4261                         return i_blocks  << (inode->i_blkbits - 9);
4262                 } else {
4263                         return i_blocks;
4264                 }
4265         } else {
4266                 return le32_to_cpu(raw_inode->i_blocks_lo);
4267         }
4268 }
4269
4270 static inline void ext4_iget_extra_inode(struct inode *inode,
4271                                          struct ext4_inode *raw_inode,
4272                                          struct ext4_inode_info *ei)
4273 {
4274         __le32 *magic = (void *)raw_inode +
4275                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4276         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4277                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4278                 ext4_find_inline_data_nolock(inode);
4279         } else
4280                 EXT4_I(inode)->i_inline_off = 0;
4281 }
4282
4283 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4284 {
4285         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4286                 return -EOPNOTSUPP;
4287         *projid = EXT4_I(inode)->i_projid;
4288         return 0;
4289 }
4290
4291 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4292 {
4293         struct ext4_iloc iloc;
4294         struct ext4_inode *raw_inode;
4295         struct ext4_inode_info *ei;
4296         struct inode *inode;
4297         journal_t *journal = EXT4_SB(sb)->s_journal;
4298         long ret;
4299         int block;
4300         uid_t i_uid;
4301         gid_t i_gid;
4302         projid_t i_projid;
4303
4304         inode = iget_locked(sb, ino);
4305         if (!inode)
4306                 return ERR_PTR(-ENOMEM);
4307         if (!(inode->i_state & I_NEW))
4308                 return inode;
4309
4310         ei = EXT4_I(inode);
4311         iloc.bh = NULL;
4312
4313         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4314         if (ret < 0)
4315                 goto bad_inode;
4316         raw_inode = ext4_raw_inode(&iloc);
4317
4318         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4319                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4320                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4321                     EXT4_INODE_SIZE(inode->i_sb)) {
4322                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4323                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4324                                 EXT4_INODE_SIZE(inode->i_sb));
4325                         ret = -EFSCORRUPTED;
4326                         goto bad_inode;
4327                 }
4328         } else
4329                 ei->i_extra_isize = 0;
4330
4331         /* Precompute checksum seed for inode metadata */
4332         if (ext4_has_metadata_csum(sb)) {
4333                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4334                 __u32 csum;
4335                 __le32 inum = cpu_to_le32(inode->i_ino);
4336                 __le32 gen = raw_inode->i_generation;
4337                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4338                                    sizeof(inum));
4339                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4340                                               sizeof(gen));
4341         }
4342
4343         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4344                 EXT4_ERROR_INODE(inode, "checksum invalid");
4345                 ret = -EFSBADCRC;
4346                 goto bad_inode;
4347         }
4348
4349         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4350         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4351         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4352         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4353             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4354             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4355                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4356         else
4357                 i_projid = EXT4_DEF_PROJID;
4358
4359         if (!(test_opt(inode->i_sb, NO_UID32))) {
4360                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4361                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4362         }
4363         i_uid_write(inode, i_uid);
4364         i_gid_write(inode, i_gid);
4365         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4366         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4367
4368         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4369         ei->i_inline_off = 0;
4370         ei->i_dir_start_lookup = 0;
4371         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4372         /* We now have enough fields to check if the inode was active or not.
4373          * This is needed because nfsd might try to access dead inodes
4374          * the test is that same one that e2fsck uses
4375          * NeilBrown 1999oct15
4376          */
4377         if (inode->i_nlink == 0) {
4378                 if ((inode->i_mode == 0 ||
4379                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4380                     ino != EXT4_BOOT_LOADER_INO) {
4381                         /* this inode is deleted */
4382                         ret = -ESTALE;
4383                         goto bad_inode;
4384                 }
4385                 /* The only unlinked inodes we let through here have
4386                  * valid i_mode and are being read by the orphan
4387                  * recovery code: that's fine, we're about to complete
4388                  * the process of deleting those.
4389                  * OR it is the EXT4_BOOT_LOADER_INO which is
4390                  * not initialized on a new filesystem. */
4391         }
4392         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4393         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4394         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4395         if (ext4_has_feature_64bit(sb))
4396                 ei->i_file_acl |=
4397                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4398         inode->i_size = ext4_isize(raw_inode);
4399         ei->i_disksize = inode->i_size;
4400 #ifdef CONFIG_QUOTA
4401         ei->i_reserved_quota = 0;
4402 #endif
4403         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4404         ei->i_block_group = iloc.block_group;
4405         ei->i_last_alloc_group = ~0;
4406         /*
4407          * NOTE! The in-memory inode i_data array is in little-endian order
4408          * even on big-endian machines: we do NOT byteswap the block numbers!
4409          */
4410         for (block = 0; block < EXT4_N_BLOCKS; block++)
4411                 ei->i_data[block] = raw_inode->i_block[block];
4412         INIT_LIST_HEAD(&ei->i_orphan);
4413
4414         /*
4415          * Set transaction id's of transactions that have to be committed
4416          * to finish f[data]sync. We set them to currently running transaction
4417          * as we cannot be sure that the inode or some of its metadata isn't
4418          * part of the transaction - the inode could have been reclaimed and
4419          * now it is reread from disk.
4420          */
4421         if (journal) {
4422                 transaction_t *transaction;
4423                 tid_t tid;
4424
4425                 read_lock(&journal->j_state_lock);
4426                 if (journal->j_running_transaction)
4427                         transaction = journal->j_running_transaction;
4428                 else
4429                         transaction = journal->j_committing_transaction;
4430                 if (transaction)
4431                         tid = transaction->t_tid;
4432                 else
4433                         tid = journal->j_commit_sequence;
4434                 read_unlock(&journal->j_state_lock);
4435                 ei->i_sync_tid = tid;
4436                 ei->i_datasync_tid = tid;
4437         }
4438
4439         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4440                 if (ei->i_extra_isize == 0) {
4441                         /* The extra space is currently unused. Use it. */
4442                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4443                                             EXT4_GOOD_OLD_INODE_SIZE;
4444                 } else {
4445                         ext4_iget_extra_inode(inode, raw_inode, ei);
4446                 }
4447         }
4448
4449         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4450         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4451         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4452         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4453
4454         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4455                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4456                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4457                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4458                                 inode->i_version |=
4459                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4460                 }
4461         }
4462
4463         ret = 0;
4464         if (ei->i_file_acl &&
4465             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4466                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4467                                  ei->i_file_acl);
4468                 ret = -EFSCORRUPTED;
4469                 goto bad_inode;
4470         } else if (!ext4_has_inline_data(inode)) {
4471                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4472                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4473                             (S_ISLNK(inode->i_mode) &&
4474                              !ext4_inode_is_fast_symlink(inode))))
4475                                 /* Validate extent which is part of inode */
4476                                 ret = ext4_ext_check_inode(inode);
4477                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4478                            (S_ISLNK(inode->i_mode) &&
4479                             !ext4_inode_is_fast_symlink(inode))) {
4480                         /* Validate block references which are part of inode */
4481                         ret = ext4_ind_check_inode(inode);
4482                 }
4483         }
4484         if (ret)
4485                 goto bad_inode;
4486
4487         if (S_ISREG(inode->i_mode)) {
4488                 inode->i_op = &ext4_file_inode_operations;
4489                 inode->i_fop = &ext4_file_operations;
4490                 ext4_set_aops(inode);
4491         } else if (S_ISDIR(inode->i_mode)) {
4492                 inode->i_op = &ext4_dir_inode_operations;
4493                 inode->i_fop = &ext4_dir_operations;
4494         } else if (S_ISLNK(inode->i_mode)) {
4495                 if (ext4_encrypted_inode(inode)) {
4496                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4497                         ext4_set_aops(inode);
4498                 } else if (ext4_inode_is_fast_symlink(inode)) {
4499                         inode->i_link = (char *)ei->i_data;
4500                         inode->i_op = &ext4_fast_symlink_inode_operations;
4501                         nd_terminate_link(ei->i_data, inode->i_size,
4502                                 sizeof(ei->i_data) - 1);
4503                 } else {
4504                         inode->i_op = &ext4_symlink_inode_operations;
4505                         ext4_set_aops(inode);
4506                 }
4507                 inode_nohighmem(inode);
4508         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4509               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4510                 inode->i_op = &ext4_special_inode_operations;
4511                 if (raw_inode->i_block[0])
4512                         init_special_inode(inode, inode->i_mode,
4513                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4514                 else
4515                         init_special_inode(inode, inode->i_mode,
4516                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4517         } else if (ino == EXT4_BOOT_LOADER_INO) {
4518                 make_bad_inode(inode);
4519         } else {
4520                 ret = -EFSCORRUPTED;
4521                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4522                 goto bad_inode;
4523         }
4524         brelse(iloc.bh);
4525         ext4_set_inode_flags(inode);
4526         unlock_new_inode(inode);
4527         return inode;
4528
4529 bad_inode:
4530         brelse(iloc.bh);
4531         iget_failed(inode);
4532         return ERR_PTR(ret);
4533 }
4534
4535 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4536 {
4537         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4538                 return ERR_PTR(-EFSCORRUPTED);
4539         return ext4_iget(sb, ino);
4540 }
4541
4542 static int ext4_inode_blocks_set(handle_t *handle,
4543                                 struct ext4_inode *raw_inode,
4544                                 struct ext4_inode_info *ei)
4545 {
4546         struct inode *inode = &(ei->vfs_inode);
4547         u64 i_blocks = inode->i_blocks;
4548         struct super_block *sb = inode->i_sb;
4549
4550         if (i_blocks <= ~0U) {
4551                 /*
4552                  * i_blocks can be represented in a 32 bit variable
4553                  * as multiple of 512 bytes
4554                  */
4555                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4556                 raw_inode->i_blocks_high = 0;
4557                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4558                 return 0;
4559         }
4560         if (!ext4_has_feature_huge_file(sb))
4561                 return -EFBIG;
4562
4563         if (i_blocks <= 0xffffffffffffULL) {
4564                 /*
4565                  * i_blocks can be represented in a 48 bit variable
4566                  * as multiple of 512 bytes
4567                  */
4568                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4569                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4570                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4571         } else {
4572                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4573                 /* i_block is stored in file system block size */
4574                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4575                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4576                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4577         }
4578         return 0;
4579 }
4580
4581 struct other_inode {
4582         unsigned long           orig_ino;
4583         struct ext4_inode       *raw_inode;
4584 };
4585
4586 static int other_inode_match(struct inode * inode, unsigned long ino,
4587                              void *data)
4588 {
4589         struct other_inode *oi = (struct other_inode *) data;
4590
4591         if ((inode->i_ino != ino) ||
4592             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4593                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4594             ((inode->i_state & I_DIRTY_TIME) == 0))
4595                 return 0;
4596         spin_lock(&inode->i_lock);
4597         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4598                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4599             (inode->i_state & I_DIRTY_TIME)) {
4600                 struct ext4_inode_info  *ei = EXT4_I(inode);
4601
4602                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4603                 spin_unlock(&inode->i_lock);
4604
4605                 spin_lock(&ei->i_raw_lock);
4606                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4607                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4608                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4609                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4610                 spin_unlock(&ei->i_raw_lock);
4611                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4612                 return -1;
4613         }
4614         spin_unlock(&inode->i_lock);
4615         return -1;
4616 }
4617
4618 /*
4619  * Opportunistically update the other time fields for other inodes in
4620  * the same inode table block.
4621  */
4622 static void ext4_update_other_inodes_time(struct super_block *sb,
4623                                           unsigned long orig_ino, char *buf)
4624 {
4625         struct other_inode oi;
4626         unsigned long ino;
4627         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4628         int inode_size = EXT4_INODE_SIZE(sb);
4629
4630         oi.orig_ino = orig_ino;
4631         /*
4632          * Calculate the first inode in the inode table block.  Inode
4633          * numbers are one-based.  That is, the first inode in a block
4634          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4635          */
4636         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4637         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4638                 if (ino == orig_ino)
4639                         continue;
4640                 oi.raw_inode = (struct ext4_inode *) buf;
4641                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4642         }
4643 }
4644
4645 /*
4646  * Post the struct inode info into an on-disk inode location in the
4647  * buffer-cache.  This gobbles the caller's reference to the
4648  * buffer_head in the inode location struct.
4649  *
4650  * The caller must have write access to iloc->bh.
4651  */
4652 static int ext4_do_update_inode(handle_t *handle,
4653                                 struct inode *inode,
4654                                 struct ext4_iloc *iloc)
4655 {
4656         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4657         struct ext4_inode_info *ei = EXT4_I(inode);
4658         struct buffer_head *bh = iloc->bh;
4659         struct super_block *sb = inode->i_sb;
4660         int err = 0, rc, block;
4661         int need_datasync = 0, set_large_file = 0;
4662         uid_t i_uid;
4663         gid_t i_gid;
4664         projid_t i_projid;
4665
4666         spin_lock(&ei->i_raw_lock);
4667
4668         /* For fields not tracked in the in-memory inode,
4669          * initialise them to zero for new inodes. */
4670         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4671                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4672
4673         ext4_get_inode_flags(ei);
4674         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4675         i_uid = i_uid_read(inode);
4676         i_gid = i_gid_read(inode);
4677         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4678         if (!(test_opt(inode->i_sb, NO_UID32))) {
4679                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4680                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4681 /*
4682  * Fix up interoperability with old kernels. Otherwise, old inodes get
4683  * re-used with the upper 16 bits of the uid/gid intact
4684  */
4685                 if (!ei->i_dtime) {
4686                         raw_inode->i_uid_high =
4687                                 cpu_to_le16(high_16_bits(i_uid));
4688                         raw_inode->i_gid_high =
4689                                 cpu_to_le16(high_16_bits(i_gid));
4690                 } else {
4691                         raw_inode->i_uid_high = 0;
4692                         raw_inode->i_gid_high = 0;
4693                 }
4694         } else {
4695                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4696                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4697                 raw_inode->i_uid_high = 0;
4698                 raw_inode->i_gid_high = 0;
4699         }
4700         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4701
4702         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4703         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4704         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4705         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4706
4707         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4708         if (err) {
4709                 spin_unlock(&ei->i_raw_lock);
4710                 goto out_brelse;
4711         }
4712         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4713         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4714         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4715                 raw_inode->i_file_acl_high =
4716                         cpu_to_le16(ei->i_file_acl >> 32);
4717         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4718         if (ei->i_disksize != ext4_isize(raw_inode)) {
4719                 ext4_isize_set(raw_inode, ei->i_disksize);
4720                 need_datasync = 1;
4721         }
4722         if (ei->i_disksize > 0x7fffffffULL) {
4723                 if (!ext4_has_feature_large_file(sb) ||
4724                                 EXT4_SB(sb)->s_es->s_rev_level ==
4725                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4726                         set_large_file = 1;
4727         }
4728         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4729         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4730                 if (old_valid_dev(inode->i_rdev)) {
4731                         raw_inode->i_block[0] =
4732                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4733                         raw_inode->i_block[1] = 0;
4734                 } else {
4735                         raw_inode->i_block[0] = 0;
4736                         raw_inode->i_block[1] =
4737                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4738                         raw_inode->i_block[2] = 0;
4739                 }
4740         } else if (!ext4_has_inline_data(inode)) {
4741                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4742                         raw_inode->i_block[block] = ei->i_data[block];
4743         }
4744
4745         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4746                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4747                 if (ei->i_extra_isize) {
4748                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4749                                 raw_inode->i_version_hi =
4750                                         cpu_to_le32(inode->i_version >> 32);
4751                         raw_inode->i_extra_isize =
4752                                 cpu_to_le16(ei->i_extra_isize);
4753                 }
4754         }
4755
4756         BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4757                         EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4758                i_projid != EXT4_DEF_PROJID);
4759
4760         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4761             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4762                 raw_inode->i_projid = cpu_to_le32(i_projid);
4763
4764         ext4_inode_csum_set(inode, raw_inode, ei);
4765         spin_unlock(&ei->i_raw_lock);
4766         if (inode->i_sb->s_flags & MS_LAZYTIME)
4767                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4768                                               bh->b_data);
4769
4770         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4771         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4772         if (!err)
4773                 err = rc;
4774         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4775         if (set_large_file) {
4776                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4777                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4778                 if (err)
4779                         goto out_brelse;
4780                 ext4_update_dynamic_rev(sb);
4781                 ext4_set_feature_large_file(sb);
4782                 ext4_handle_sync(handle);
4783                 err = ext4_handle_dirty_super(handle, sb);
4784         }
4785         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4786 out_brelse:
4787         brelse(bh);
4788         ext4_std_error(inode->i_sb, err);
4789         return err;
4790 }
4791
4792 /*
4793  * ext4_write_inode()
4794  *
4795  * We are called from a few places:
4796  *
4797  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4798  *   Here, there will be no transaction running. We wait for any running
4799  *   transaction to commit.
4800  *
4801  * - Within flush work (sys_sync(), kupdate and such).
4802  *   We wait on commit, if told to.
4803  *
4804  * - Within iput_final() -> write_inode_now()
4805  *   We wait on commit, if told to.
4806  *
4807  * In all cases it is actually safe for us to return without doing anything,
4808  * because the inode has been copied into a raw inode buffer in
4809  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4810  * writeback.
4811  *
4812  * Note that we are absolutely dependent upon all inode dirtiers doing the
4813  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4814  * which we are interested.
4815  *
4816  * It would be a bug for them to not do this.  The code:
4817  *
4818  *      mark_inode_dirty(inode)
4819  *      stuff();
4820  *      inode->i_size = expr;
4821  *
4822  * is in error because write_inode() could occur while `stuff()' is running,
4823  * and the new i_size will be lost.  Plus the inode will no longer be on the
4824  * superblock's dirty inode list.
4825  */
4826 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4827 {
4828         int err;
4829
4830         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4831                 return 0;
4832
4833         if (EXT4_SB(inode->i_sb)->s_journal) {
4834                 if (ext4_journal_current_handle()) {
4835                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4836                         dump_stack();
4837                         return -EIO;
4838                 }
4839
4840                 /*
4841                  * No need to force transaction in WB_SYNC_NONE mode. Also
4842                  * ext4_sync_fs() will force the commit after everything is
4843                  * written.
4844                  */
4845                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4846                         return 0;
4847
4848                 err = ext4_force_commit(inode->i_sb);
4849         } else {
4850                 struct ext4_iloc iloc;
4851
4852                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4853                 if (err)
4854                         return err;
4855                 /*
4856                  * sync(2) will flush the whole buffer cache. No need to do
4857                  * it here separately for each inode.
4858                  */
4859                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4860                         sync_dirty_buffer(iloc.bh);
4861                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4862                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4863                                          "IO error syncing inode");
4864                         err = -EIO;
4865                 }
4866                 brelse(iloc.bh);
4867         }
4868         return err;
4869 }
4870
4871 /*
4872  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4873  * buffers that are attached to a page stradding i_size and are undergoing
4874  * commit. In that case we have to wait for commit to finish and try again.
4875  */
4876 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4877 {
4878         struct page *page;
4879         unsigned offset;
4880         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4881         tid_t commit_tid = 0;
4882         int ret;
4883
4884         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4885         /*
4886          * All buffers in the last page remain valid? Then there's nothing to
4887          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4888          * blocksize case
4889          */
4890         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4891                 return;
4892         while (1) {
4893                 page = find_lock_page(inode->i_mapping,
4894                                       inode->i_size >> PAGE_CACHE_SHIFT);
4895                 if (!page)
4896                         return;
4897                 ret = __ext4_journalled_invalidatepage(page, offset,
4898                                                 PAGE_CACHE_SIZE - offset);
4899                 unlock_page(page);
4900                 page_cache_release(page);
4901                 if (ret != -EBUSY)
4902                         return;
4903                 commit_tid = 0;
4904                 read_lock(&journal->j_state_lock);
4905                 if (journal->j_committing_transaction)
4906                         commit_tid = journal->j_committing_transaction->t_tid;
4907                 read_unlock(&journal->j_state_lock);
4908                 if (commit_tid)
4909                         jbd2_log_wait_commit(journal, commit_tid);
4910         }
4911 }
4912
4913 /*
4914  * ext4_setattr()
4915  *
4916  * Called from notify_change.
4917  *
4918  * We want to trap VFS attempts to truncate the file as soon as
4919  * possible.  In particular, we want to make sure that when the VFS
4920  * shrinks i_size, we put the inode on the orphan list and modify
4921  * i_disksize immediately, so that during the subsequent flushing of
4922  * dirty pages and freeing of disk blocks, we can guarantee that any
4923  * commit will leave the blocks being flushed in an unused state on
4924  * disk.  (On recovery, the inode will get truncated and the blocks will
4925  * be freed, so we have a strong guarantee that no future commit will
4926  * leave these blocks visible to the user.)
4927  *
4928  * Another thing we have to assure is that if we are in ordered mode
4929  * and inode is still attached to the committing transaction, we must
4930  * we start writeout of all the dirty pages which are being truncated.
4931  * This way we are sure that all the data written in the previous
4932  * transaction are already on disk (truncate waits for pages under
4933  * writeback).
4934  *
4935  * Called with inode->i_mutex down.
4936  */
4937 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4938 {
4939         struct inode *inode = d_inode(dentry);
4940         int error, rc = 0;
4941         int orphan = 0;
4942         const unsigned int ia_valid = attr->ia_valid;
4943
4944         error = inode_change_ok(inode, attr);
4945         if (error)
4946                 return error;
4947
4948         if (is_quota_modification(inode, attr)) {
4949                 error = dquot_initialize(inode);
4950                 if (error)
4951                         return error;
4952         }
4953         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4954             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4955                 handle_t *handle;
4956
4957                 /* (user+group)*(old+new) structure, inode write (sb,
4958                  * inode block, ? - but truncate inode update has it) */
4959                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4960                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4961                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4962                 if (IS_ERR(handle)) {
4963                         error = PTR_ERR(handle);
4964                         goto err_out;
4965                 }
4966                 error = dquot_transfer(inode, attr);
4967                 if (error) {
4968                         ext4_journal_stop(handle);
4969                         return error;
4970                 }
4971                 /* Update corresponding info in inode so that everything is in
4972                  * one transaction */
4973                 if (attr->ia_valid & ATTR_UID)
4974                         inode->i_uid = attr->ia_uid;
4975                 if (attr->ia_valid & ATTR_GID)
4976                         inode->i_gid = attr->ia_gid;
4977                 error = ext4_mark_inode_dirty(handle, inode);
4978                 ext4_journal_stop(handle);
4979         }
4980
4981         if (attr->ia_valid & ATTR_SIZE) {
4982                 handle_t *handle;
4983                 loff_t oldsize = inode->i_size;
4984                 int shrink = (attr->ia_size <= inode->i_size);
4985
4986                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4987                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4988
4989                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4990                                 return -EFBIG;
4991                 }
4992                 if (!S_ISREG(inode->i_mode))
4993                         return -EINVAL;
4994
4995                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4996                         inode_inc_iversion(inode);
4997
4998                 if (ext4_should_order_data(inode) &&
4999                     (attr->ia_size < inode->i_size)) {
5000                         error = ext4_begin_ordered_truncate(inode,
5001                                                             attr->ia_size);
5002                         if (error)
5003                                 goto err_out;
5004                 }
5005                 if (attr->ia_size != inode->i_size) {
5006                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5007                         if (IS_ERR(handle)) {
5008                                 error = PTR_ERR(handle);
5009                                 goto err_out;
5010                         }
5011                         if (ext4_handle_valid(handle) && shrink) {
5012                                 error = ext4_orphan_add(handle, inode);
5013                                 orphan = 1;
5014                         }
5015                         /*
5016                          * Update c/mtime on truncate up, ext4_truncate() will
5017                          * update c/mtime in shrink case below
5018                          */
5019                         if (!shrink) {
5020                                 inode->i_mtime = ext4_current_time(inode);
5021                                 inode->i_ctime = inode->i_mtime;
5022                         }
5023                         down_write(&EXT4_I(inode)->i_data_sem);
5024                         EXT4_I(inode)->i_disksize = attr->ia_size;
5025                         rc = ext4_mark_inode_dirty(handle, inode);
5026                         if (!error)
5027                                 error = rc;
5028                         /*
5029                          * We have to update i_size under i_data_sem together
5030                          * with i_disksize to avoid races with writeback code
5031                          * running ext4_wb_update_i_disksize().
5032                          */
5033                         if (!error)
5034                                 i_size_write(inode, attr->ia_size);
5035                         up_write(&EXT4_I(inode)->i_data_sem);
5036                         ext4_journal_stop(handle);
5037                         if (error) {
5038                                 if (orphan)
5039                                         ext4_orphan_del(NULL, inode);
5040                                 goto err_out;
5041                         }
5042                 }
5043                 if (!shrink)
5044                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5045
5046                 /*
5047                  * Blocks are going to be removed from the inode. Wait
5048                  * for dio in flight.  Temporarily disable
5049                  * dioread_nolock to prevent livelock.
5050                  */
5051                 if (orphan) {
5052                         if (!ext4_should_journal_data(inode)) {
5053                                 ext4_inode_block_unlocked_dio(inode);
5054                                 inode_dio_wait(inode);
5055                                 ext4_inode_resume_unlocked_dio(inode);
5056                         } else
5057                                 ext4_wait_for_tail_page_commit(inode);
5058                 }
5059                 down_write(&EXT4_I(inode)->i_mmap_sem);
5060                 /*
5061                  * Truncate pagecache after we've waited for commit
5062                  * in data=journal mode to make pages freeable.
5063                  */
5064                 truncate_pagecache(inode, inode->i_size);
5065                 if (shrink)
5066                         ext4_truncate(inode);
5067                 up_write(&EXT4_I(inode)->i_mmap_sem);
5068         }
5069
5070         if (!rc) {
5071                 setattr_copy(inode, attr);
5072                 mark_inode_dirty(inode);
5073         }
5074
5075         /*
5076          * If the call to ext4_truncate failed to get a transaction handle at
5077          * all, we need to clean up the in-core orphan list manually.
5078          */
5079         if (orphan && inode->i_nlink)
5080                 ext4_orphan_del(NULL, inode);
5081
5082         if (!rc && (ia_valid & ATTR_MODE))
5083                 rc = posix_acl_chmod(inode, inode->i_mode);
5084
5085 err_out:
5086         ext4_std_error(inode->i_sb, error);
5087         if (!error)
5088                 error = rc;
5089         return error;
5090 }
5091
5092 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5093                  struct kstat *stat)
5094 {
5095         struct inode *inode;
5096         unsigned long long delalloc_blocks;
5097
5098         inode = d_inode(dentry);
5099         generic_fillattr(inode, stat);
5100
5101         /*
5102          * If there is inline data in the inode, the inode will normally not
5103          * have data blocks allocated (it may have an external xattr block).
5104          * Report at least one sector for such files, so tools like tar, rsync,
5105          * others doen't incorrectly think the file is completely sparse.
5106          */
5107         if (unlikely(ext4_has_inline_data(inode)))
5108                 stat->blocks += (stat->size + 511) >> 9;
5109
5110         /*
5111          * We can't update i_blocks if the block allocation is delayed
5112          * otherwise in the case of system crash before the real block
5113          * allocation is done, we will have i_blocks inconsistent with
5114          * on-disk file blocks.
5115          * We always keep i_blocks updated together with real
5116          * allocation. But to not confuse with user, stat
5117          * will return the blocks that include the delayed allocation
5118          * blocks for this file.
5119          */
5120         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5121                                    EXT4_I(inode)->i_reserved_data_blocks);
5122         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5123         return 0;
5124 }
5125
5126 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5127                                    int pextents)
5128 {
5129         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5130                 return ext4_ind_trans_blocks(inode, lblocks);
5131         return ext4_ext_index_trans_blocks(inode, pextents);
5132 }
5133
5134 /*
5135  * Account for index blocks, block groups bitmaps and block group
5136  * descriptor blocks if modify datablocks and index blocks
5137  * worse case, the indexs blocks spread over different block groups
5138  *
5139  * If datablocks are discontiguous, they are possible to spread over
5140  * different block groups too. If they are contiguous, with flexbg,
5141  * they could still across block group boundary.
5142  *
5143  * Also account for superblock, inode, quota and xattr blocks
5144  */
5145 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5146                                   int pextents)
5147 {
5148         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5149         int gdpblocks;
5150         int idxblocks;
5151         int ret = 0;
5152
5153         /*
5154          * How many index blocks need to touch to map @lblocks logical blocks
5155          * to @pextents physical extents?
5156          */
5157         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5158
5159         ret = idxblocks;
5160
5161         /*
5162          * Now let's see how many group bitmaps and group descriptors need
5163          * to account
5164          */
5165         groups = idxblocks + pextents;
5166         gdpblocks = groups;
5167         if (groups > ngroups)
5168                 groups = ngroups;
5169         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5170                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5171
5172         /* bitmaps and block group descriptor blocks */
5173         ret += groups + gdpblocks;
5174
5175         /* Blocks for super block, inode, quota and xattr blocks */
5176         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5177
5178         return ret;
5179 }
5180
5181 /*
5182  * Calculate the total number of credits to reserve to fit
5183  * the modification of a single pages into a single transaction,
5184  * which may include multiple chunks of block allocations.
5185  *
5186  * This could be called via ext4_write_begin()
5187  *
5188  * We need to consider the worse case, when
5189  * one new block per extent.
5190  */
5191 int ext4_writepage_trans_blocks(struct inode *inode)
5192 {
5193         int bpp = ext4_journal_blocks_per_page(inode);
5194         int ret;
5195
5196         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5197
5198         /* Account for data blocks for journalled mode */
5199         if (ext4_should_journal_data(inode))
5200                 ret += bpp;
5201         return ret;
5202 }
5203
5204 /*
5205  * Calculate the journal credits for a chunk of data modification.
5206  *
5207  * This is called from DIO, fallocate or whoever calling
5208  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5209  *
5210  * journal buffers for data blocks are not included here, as DIO
5211  * and fallocate do no need to journal data buffers.
5212  */
5213 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5214 {
5215         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5216 }
5217
5218 /*
5219  * The caller must have previously called ext4_reserve_inode_write().
5220  * Give this, we know that the caller already has write access to iloc->bh.
5221  */
5222 int ext4_mark_iloc_dirty(handle_t *handle,
5223                          struct inode *inode, struct ext4_iloc *iloc)
5224 {
5225         int err = 0;
5226
5227         if (IS_I_VERSION(inode))
5228                 inode_inc_iversion(inode);
5229
5230         /* the do_update_inode consumes one bh->b_count */
5231         get_bh(iloc->bh);
5232
5233         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5234         err = ext4_do_update_inode(handle, inode, iloc);
5235         put_bh(iloc->bh);
5236         return err;
5237 }
5238
5239 /*
5240  * On success, We end up with an outstanding reference count against
5241  * iloc->bh.  This _must_ be cleaned up later.
5242  */
5243
5244 int
5245 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5246                          struct ext4_iloc *iloc)
5247 {
5248         int err;
5249
5250         err = ext4_get_inode_loc(inode, iloc);
5251         if (!err) {
5252                 BUFFER_TRACE(iloc->bh, "get_write_access");
5253                 err = ext4_journal_get_write_access(handle, iloc->bh);
5254                 if (err) {
5255                         brelse(iloc->bh);
5256                         iloc->bh = NULL;
5257                 }
5258         }
5259         ext4_std_error(inode->i_sb, err);
5260         return err;
5261 }
5262
5263 /*
5264  * Expand an inode by new_extra_isize bytes.
5265  * Returns 0 on success or negative error number on failure.
5266  */
5267 static int ext4_expand_extra_isize(struct inode *inode,
5268                                    unsigned int new_extra_isize,
5269                                    struct ext4_iloc iloc,
5270                                    handle_t *handle)
5271 {
5272         struct ext4_inode *raw_inode;
5273         struct ext4_xattr_ibody_header *header;
5274
5275         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5276                 return 0;
5277
5278         raw_inode = ext4_raw_inode(&iloc);
5279
5280         header = IHDR(inode, raw_inode);
5281
5282         /* No extended attributes present */
5283         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5284             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5285                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5286                         new_extra_isize);
5287                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5288                 return 0;
5289         }
5290
5291         /* try to expand with EAs present */
5292         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5293                                           raw_inode, handle);
5294 }
5295
5296 /*
5297  * What we do here is to mark the in-core inode as clean with respect to inode
5298  * dirtiness (it may still be data-dirty).
5299  * This means that the in-core inode may be reaped by prune_icache
5300  * without having to perform any I/O.  This is a very good thing,
5301  * because *any* task may call prune_icache - even ones which
5302  * have a transaction open against a different journal.
5303  *
5304  * Is this cheating?  Not really.  Sure, we haven't written the
5305  * inode out, but prune_icache isn't a user-visible syncing function.
5306  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5307  * we start and wait on commits.
5308  */
5309 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5310 {
5311         struct ext4_iloc iloc;
5312         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5313         static unsigned int mnt_count;
5314         int err, ret;
5315
5316         might_sleep();
5317         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5318         err = ext4_reserve_inode_write(handle, inode, &iloc);
5319         if (err)
5320                 return err;
5321         if (ext4_handle_valid(handle) &&
5322             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5323             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5324                 /*
5325                  * We need extra buffer credits since we may write into EA block
5326                  * with this same handle. If journal_extend fails, then it will
5327                  * only result in a minor loss of functionality for that inode.
5328                  * If this is felt to be critical, then e2fsck should be run to
5329                  * force a large enough s_min_extra_isize.
5330                  */
5331                 if ((jbd2_journal_extend(handle,
5332                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5333                         ret = ext4_expand_extra_isize(inode,
5334                                                       sbi->s_want_extra_isize,
5335                                                       iloc, handle);
5336                         if (ret) {
5337                                 ext4_set_inode_state(inode,
5338                                                      EXT4_STATE_NO_EXPAND);
5339                                 if (mnt_count !=
5340                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5341                                         ext4_warning(inode->i_sb,
5342                                         "Unable to expand inode %lu. Delete"
5343                                         " some EAs or run e2fsck.",
5344                                         inode->i_ino);
5345                                         mnt_count =
5346                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5347                                 }
5348                         }
5349                 }
5350         }
5351         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5352 }
5353
5354 /*
5355  * ext4_dirty_inode() is called from __mark_inode_dirty()
5356  *
5357  * We're really interested in the case where a file is being extended.
5358  * i_size has been changed by generic_commit_write() and we thus need
5359  * to include the updated inode in the current transaction.
5360  *
5361  * Also, dquot_alloc_block() will always dirty the inode when blocks
5362  * are allocated to the file.
5363  *
5364  * If the inode is marked synchronous, we don't honour that here - doing
5365  * so would cause a commit on atime updates, which we don't bother doing.
5366  * We handle synchronous inodes at the highest possible level.
5367  *
5368  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5369  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5370  * to copy into the on-disk inode structure are the timestamp files.
5371  */
5372 void ext4_dirty_inode(struct inode *inode, int flags)
5373 {
5374         handle_t *handle;
5375
5376         if (flags == I_DIRTY_TIME)
5377                 return;
5378         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5379         if (IS_ERR(handle))
5380                 goto out;
5381
5382         ext4_mark_inode_dirty(handle, inode);
5383
5384         ext4_journal_stop(handle);
5385 out:
5386         return;
5387 }
5388
5389 #if 0
5390 /*
5391  * Bind an inode's backing buffer_head into this transaction, to prevent
5392  * it from being flushed to disk early.  Unlike
5393  * ext4_reserve_inode_write, this leaves behind no bh reference and
5394  * returns no iloc structure, so the caller needs to repeat the iloc
5395  * lookup to mark the inode dirty later.
5396  */
5397 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5398 {
5399         struct ext4_iloc iloc;
5400
5401         int err = 0;
5402         if (handle) {
5403                 err = ext4_get_inode_loc(inode, &iloc);
5404                 if (!err) {
5405                         BUFFER_TRACE(iloc.bh, "get_write_access");
5406                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5407                         if (!err)
5408                                 err = ext4_handle_dirty_metadata(handle,
5409                                                                  NULL,
5410                                                                  iloc.bh);
5411                         brelse(iloc.bh);
5412                 }
5413         }
5414         ext4_std_error(inode->i_sb, err);
5415         return err;
5416 }
5417 #endif
5418
5419 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5420 {
5421         journal_t *journal;
5422         handle_t *handle;
5423         int err;
5424
5425         /*
5426          * We have to be very careful here: changing a data block's
5427          * journaling status dynamically is dangerous.  If we write a
5428          * data block to the journal, change the status and then delete
5429          * that block, we risk forgetting to revoke the old log record
5430          * from the journal and so a subsequent replay can corrupt data.
5431          * So, first we make sure that the journal is empty and that
5432          * nobody is changing anything.
5433          */
5434
5435         journal = EXT4_JOURNAL(inode);
5436         if (!journal)
5437                 return 0;
5438         if (is_journal_aborted(journal))
5439                 return -EROFS;
5440         /* We have to allocate physical blocks for delalloc blocks
5441          * before flushing journal. otherwise delalloc blocks can not
5442          * be allocated any more. even more truncate on delalloc blocks
5443          * could trigger BUG by flushing delalloc blocks in journal.
5444          * There is no delalloc block in non-journal data mode.
5445          */
5446         if (val && test_opt(inode->i_sb, DELALLOC)) {
5447                 err = ext4_alloc_da_blocks(inode);
5448                 if (err < 0)
5449                         return err;
5450         }
5451
5452         /* Wait for all existing dio workers */
5453         ext4_inode_block_unlocked_dio(inode);
5454         inode_dio_wait(inode);
5455
5456         jbd2_journal_lock_updates(journal);
5457
5458         /*
5459          * OK, there are no updates running now, and all cached data is
5460          * synced to disk.  We are now in a completely consistent state
5461          * which doesn't have anything in the journal, and we know that
5462          * no filesystem updates are running, so it is safe to modify
5463          * the inode's in-core data-journaling state flag now.
5464          */
5465
5466         if (val)
5467                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5468         else {
5469                 err = jbd2_journal_flush(journal);
5470                 if (err < 0) {
5471                         jbd2_journal_unlock_updates(journal);
5472                         ext4_inode_resume_unlocked_dio(inode);
5473                         return err;
5474                 }
5475                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5476         }
5477         ext4_set_aops(inode);
5478
5479         jbd2_journal_unlock_updates(journal);
5480         ext4_inode_resume_unlocked_dio(inode);
5481
5482         /* Finally we can mark the inode as dirty. */
5483
5484         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5485         if (IS_ERR(handle))
5486                 return PTR_ERR(handle);
5487
5488         err = ext4_mark_inode_dirty(handle, inode);
5489         ext4_handle_sync(handle);
5490         ext4_journal_stop(handle);
5491         ext4_std_error(inode->i_sb, err);
5492
5493         return err;
5494 }
5495
5496 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5497 {
5498         return !buffer_mapped(bh);
5499 }
5500
5501 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5502 {
5503         struct page *page = vmf->page;
5504         loff_t size;
5505         unsigned long len;
5506         int ret;
5507         struct file *file = vma->vm_file;
5508         struct inode *inode = file_inode(file);
5509         struct address_space *mapping = inode->i_mapping;
5510         handle_t *handle;
5511         get_block_t *get_block;
5512         int retries = 0;
5513
5514         sb_start_pagefault(inode->i_sb);
5515         file_update_time(vma->vm_file);
5516
5517         down_read(&EXT4_I(inode)->i_mmap_sem);
5518         /* Delalloc case is easy... */
5519         if (test_opt(inode->i_sb, DELALLOC) &&
5520             !ext4_should_journal_data(inode) &&
5521             !ext4_nonda_switch(inode->i_sb)) {
5522                 do {
5523                         ret = block_page_mkwrite(vma, vmf,
5524                                                    ext4_da_get_block_prep);
5525                 } while (ret == -ENOSPC &&
5526                        ext4_should_retry_alloc(inode->i_sb, &retries));
5527                 goto out_ret;
5528         }
5529
5530         lock_page(page);
5531         size = i_size_read(inode);
5532         /* Page got truncated from under us? */
5533         if (page->mapping != mapping || page_offset(page) > size) {
5534                 unlock_page(page);
5535                 ret = VM_FAULT_NOPAGE;
5536                 goto out;
5537         }
5538
5539         if (page->index == size >> PAGE_CACHE_SHIFT)
5540                 len = size & ~PAGE_CACHE_MASK;
5541         else
5542                 len = PAGE_CACHE_SIZE;
5543         /*
5544          * Return if we have all the buffers mapped. This avoids the need to do
5545          * journal_start/journal_stop which can block and take a long time
5546          */
5547         if (page_has_buffers(page)) {
5548                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5549                                             0, len, NULL,
5550                                             ext4_bh_unmapped)) {
5551                         /* Wait so that we don't change page under IO */
5552                         wait_for_stable_page(page);
5553                         ret = VM_FAULT_LOCKED;
5554                         goto out;
5555                 }
5556         }
5557         unlock_page(page);
5558         /* OK, we need to fill the hole... */
5559         if (ext4_should_dioread_nolock(inode))
5560                 get_block = ext4_get_block_unwritten;
5561         else
5562                 get_block = ext4_get_block;
5563 retry_alloc:
5564         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5565                                     ext4_writepage_trans_blocks(inode));
5566         if (IS_ERR(handle)) {
5567                 ret = VM_FAULT_SIGBUS;
5568                 goto out;
5569         }
5570         ret = block_page_mkwrite(vma, vmf, get_block);
5571         if (!ret && ext4_should_journal_data(inode)) {
5572                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5573                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5574                         unlock_page(page);
5575                         ret = VM_FAULT_SIGBUS;
5576                         ext4_journal_stop(handle);
5577                         goto out;
5578                 }
5579                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5580         }
5581         ext4_journal_stop(handle);
5582         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5583                 goto retry_alloc;
5584 out_ret:
5585         ret = block_page_mkwrite_return(ret);
5586 out:
5587         up_read(&EXT4_I(inode)->i_mmap_sem);
5588         sb_end_pagefault(inode->i_sb);
5589         return ret;
5590 }
5591
5592 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5593 {
5594         struct inode *inode = file_inode(vma->vm_file);
5595         int err;
5596
5597         down_read(&EXT4_I(inode)->i_mmap_sem);
5598         err = filemap_fault(vma, vmf);
5599         up_read(&EXT4_I(inode)->i_mmap_sem);
5600
5601         return err;
5602 }
5603
5604 /*
5605  * Find the first extent at or after @lblk in an inode that is not a hole.
5606  * Search for @map_len blocks at most. The extent is returned in @result.
5607  *
5608  * The function returns 1 if we found an extent. The function returns 0 in
5609  * case there is no extent at or after @lblk and in that case also sets
5610  * @result->es_len to 0. In case of error, the error code is returned.
5611  */
5612 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5613                          unsigned int map_len, struct extent_status *result)
5614 {
5615         struct ext4_map_blocks map;
5616         struct extent_status es = {};
5617         int ret;
5618
5619         map.m_lblk = lblk;
5620         map.m_len = map_len;
5621
5622         /*
5623          * For non-extent based files this loop may iterate several times since
5624          * we do not determine full hole size.
5625          */
5626         while (map.m_len > 0) {
5627                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5628                 if (ret < 0)
5629                         return ret;
5630                 /* There's extent covering m_lblk? Just return it. */
5631                 if (ret > 0) {
5632                         int status;
5633
5634                         ext4_es_store_pblock(result, map.m_pblk);
5635                         result->es_lblk = map.m_lblk;
5636                         result->es_len = map.m_len;
5637                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5638                                 status = EXTENT_STATUS_UNWRITTEN;
5639                         else
5640                                 status = EXTENT_STATUS_WRITTEN;
5641                         ext4_es_store_status(result, status);
5642                         return 1;
5643                 }
5644                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5645                                                   map.m_lblk + map.m_len - 1,
5646                                                   &es);
5647                 /* Is delalloc data before next block in extent tree? */
5648                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5649                         ext4_lblk_t offset = 0;
5650
5651                         if (es.es_lblk < lblk)
5652                                 offset = lblk - es.es_lblk;
5653                         result->es_lblk = es.es_lblk + offset;
5654                         ext4_es_store_pblock(result,
5655                                              ext4_es_pblock(&es) + offset);
5656                         result->es_len = es.es_len - offset;
5657                         ext4_es_store_status(result, ext4_es_status(&es));
5658
5659                         return 1;
5660                 }
5661                 /* There's a hole at m_lblk, advance us after it */
5662                 map.m_lblk += map.m_len;
5663                 map_len -= map.m_len;
5664                 map.m_len = map_len;
5665                 cond_resched();
5666         }
5667         result->es_len = 0;
5668         return 0;
5669 }