ext4: kill i_version support for Hurd-castrated file systems
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445                 down_read((&EXT4_I(inode)->i_data_sem));
446         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         } else {
450                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         }
453         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454                 up_read((&EXT4_I(inode)->i_data_sem));
455         /*
456          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457          * because it shouldn't be marked in es_map->m_flags.
458          */
459         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506         int ret = 0;
507 #ifdef ES_AGGRESSIVE_TEST
508         struct ext4_map_blocks orig_map;
509
510         memcpy(&orig_map, map, sizeof(*map));
511 #endif
512
513         map->m_flags = 0;
514         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
516                   (unsigned long) map->m_lblk);
517
518         /*
519          * ext4_map_blocks returns an int, and m_len is an unsigned int
520          */
521         if (unlikely(map->m_len > INT_MAX))
522                 map->m_len = INT_MAX;
523
524         /* Lookup extent status tree firstly */
525         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
526                 ext4_es_lru_add(inode);
527                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
528                         map->m_pblk = ext4_es_pblock(&es) +
529                                         map->m_lblk - es.es_lblk;
530                         map->m_flags |= ext4_es_is_written(&es) ?
531                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
532                         retval = es.es_len - (map->m_lblk - es.es_lblk);
533                         if (retval > map->m_len)
534                                 retval = map->m_len;
535                         map->m_len = retval;
536                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
537                         retval = 0;
538                 } else {
539                         BUG_ON(1);
540                 }
541 #ifdef ES_AGGRESSIVE_TEST
542                 ext4_map_blocks_es_recheck(handle, inode, map,
543                                            &orig_map, flags);
544 #endif
545                 goto found;
546         }
547
548         /*
549          * Try to see if we can get the block without requesting a new
550          * file system block.
551          */
552         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
553                 down_read((&EXT4_I(inode)->i_data_sem));
554         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
555                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
556                                              EXT4_GET_BLOCKS_KEEP_SIZE);
557         } else {
558                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
559                                              EXT4_GET_BLOCKS_KEEP_SIZE);
560         }
561         if (retval > 0) {
562                 unsigned int status;
563
564                 if (unlikely(retval != map->m_len)) {
565                         ext4_warning(inode->i_sb,
566                                      "ES len assertion failed for inode "
567                                      "%lu: retval %d != map->m_len %d",
568                                      inode->i_ino, retval, map->m_len);
569                         WARN_ON(1);
570                 }
571
572                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
573                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
574                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
575                     ext4_find_delalloc_range(inode, map->m_lblk,
576                                              map->m_lblk + map->m_len - 1))
577                         status |= EXTENT_STATUS_DELAYED;
578                 ret = ext4_es_insert_extent(inode, map->m_lblk,
579                                             map->m_len, map->m_pblk, status);
580                 if (ret < 0)
581                         retval = ret;
582         }
583         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
584                 up_read((&EXT4_I(inode)->i_data_sem));
585
586 found:
587         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
588                 ret = check_block_validity(inode, map);
589                 if (ret != 0)
590                         return ret;
591         }
592
593         /* If it is only a block(s) look up */
594         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
595                 return retval;
596
597         /*
598          * Returns if the blocks have already allocated
599          *
600          * Note that if blocks have been preallocated
601          * ext4_ext_get_block() returns the create = 0
602          * with buffer head unmapped.
603          */
604         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
605                 /*
606                  * If we need to convert extent to unwritten
607                  * we continue and do the actual work in
608                  * ext4_ext_map_blocks()
609                  */
610                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
611                         return retval;
612
613         /*
614          * Here we clear m_flags because after allocating an new extent,
615          * it will be set again.
616          */
617         map->m_flags &= ~EXT4_MAP_FLAGS;
618
619         /*
620          * New blocks allocate and/or writing to uninitialized extent
621          * will possibly result in updating i_data, so we take
622          * the write lock of i_data_sem, and call get_blocks()
623          * with create == 1 flag.
624          */
625         down_write((&EXT4_I(inode)->i_data_sem));
626
627         /*
628          * if the caller is from delayed allocation writeout path
629          * we have already reserved fs blocks for allocation
630          * let the underlying get_block() function know to
631          * avoid double accounting
632          */
633         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
634                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
635         /*
636          * We need to check for EXT4 here because migrate
637          * could have changed the inode type in between
638          */
639         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
641         } else {
642                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
643
644                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645                         /*
646                          * We allocated new blocks which will result in
647                          * i_data's format changing.  Force the migrate
648                          * to fail by clearing migrate flags
649                          */
650                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651                 }
652
653                 /*
654                  * Update reserved blocks/metadata blocks after successful
655                  * block allocation which had been deferred till now. We don't
656                  * support fallocate for non extent files. So we can update
657                  * reserve space here.
658                  */
659                 if ((retval > 0) &&
660                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661                         ext4_da_update_reserve_space(inode, retval, 1);
662         }
663         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
664                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
665
666         if (retval > 0) {
667                 unsigned int status;
668
669                 if (unlikely(retval != map->m_len)) {
670                         ext4_warning(inode->i_sb,
671                                      "ES len assertion failed for inode "
672                                      "%lu: retval %d != map->m_len %d",
673                                      inode->i_ino, retval, map->m_len);
674                         WARN_ON(1);
675                 }
676
677                 /*
678                  * If the extent has been zeroed out, we don't need to update
679                  * extent status tree.
680                  */
681                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
682                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
683                         if (ext4_es_is_written(&es))
684                                 goto has_zeroout;
685                 }
686                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
687                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
688                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
689                     ext4_find_delalloc_range(inode, map->m_lblk,
690                                              map->m_lblk + map->m_len - 1))
691                         status |= EXTENT_STATUS_DELAYED;
692                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
693                                             map->m_pblk, status);
694                 if (ret < 0)
695                         retval = ret;
696         }
697
698 has_zeroout:
699         up_write((&EXT4_I(inode)->i_data_sem));
700         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701                 ret = check_block_validity(inode, map);
702                 if (ret != 0)
703                         return ret;
704         }
705         return retval;
706 }
707
708 /* Maximum number of blocks we map for direct IO at once. */
709 #define DIO_MAX_BLOCKS 4096
710
711 static int _ext4_get_block(struct inode *inode, sector_t iblock,
712                            struct buffer_head *bh, int flags)
713 {
714         handle_t *handle = ext4_journal_current_handle();
715         struct ext4_map_blocks map;
716         int ret = 0, started = 0;
717         int dio_credits;
718
719         if (ext4_has_inline_data(inode))
720                 return -ERANGE;
721
722         map.m_lblk = iblock;
723         map.m_len = bh->b_size >> inode->i_blkbits;
724
725         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
726                 /* Direct IO write... */
727                 if (map.m_len > DIO_MAX_BLOCKS)
728                         map.m_len = DIO_MAX_BLOCKS;
729                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
730                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
731                                             dio_credits);
732                 if (IS_ERR(handle)) {
733                         ret = PTR_ERR(handle);
734                         return ret;
735                 }
736                 started = 1;
737         }
738
739         ret = ext4_map_blocks(handle, inode, &map, flags);
740         if (ret > 0) {
741                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
742
743                 map_bh(bh, inode->i_sb, map.m_pblk);
744                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
745                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
746                         set_buffer_defer_completion(bh);
747                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
748                 ret = 0;
749         }
750         if (started)
751                 ext4_journal_stop(handle);
752         return ret;
753 }
754
755 int ext4_get_block(struct inode *inode, sector_t iblock,
756                    struct buffer_head *bh, int create)
757 {
758         return _ext4_get_block(inode, iblock, bh,
759                                create ? EXT4_GET_BLOCKS_CREATE : 0);
760 }
761
762 /*
763  * `handle' can be NULL if create is zero
764  */
765 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
766                                 ext4_lblk_t block, int create, int *errp)
767 {
768         struct ext4_map_blocks map;
769         struct buffer_head *bh;
770         int fatal = 0, err;
771
772         J_ASSERT(handle != NULL || create == 0);
773
774         map.m_lblk = block;
775         map.m_len = 1;
776         err = ext4_map_blocks(handle, inode, &map,
777                               create ? EXT4_GET_BLOCKS_CREATE : 0);
778
779         /* ensure we send some value back into *errp */
780         *errp = 0;
781
782         if (create && err == 0)
783                 err = -ENOSPC;  /* should never happen */
784         if (err < 0)
785                 *errp = err;
786         if (err <= 0)
787                 return NULL;
788
789         bh = sb_getblk(inode->i_sb, map.m_pblk);
790         if (unlikely(!bh)) {
791                 *errp = -ENOMEM;
792                 return NULL;
793         }
794         if (map.m_flags & EXT4_MAP_NEW) {
795                 J_ASSERT(create != 0);
796                 J_ASSERT(handle != NULL);
797
798                 /*
799                  * Now that we do not always journal data, we should
800                  * keep in mind whether this should always journal the
801                  * new buffer as metadata.  For now, regular file
802                  * writes use ext4_get_block instead, so it's not a
803                  * problem.
804                  */
805                 lock_buffer(bh);
806                 BUFFER_TRACE(bh, "call get_create_access");
807                 fatal = ext4_journal_get_create_access(handle, bh);
808                 if (!fatal && !buffer_uptodate(bh)) {
809                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
810                         set_buffer_uptodate(bh);
811                 }
812                 unlock_buffer(bh);
813                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
814                 err = ext4_handle_dirty_metadata(handle, inode, bh);
815                 if (!fatal)
816                         fatal = err;
817         } else {
818                 BUFFER_TRACE(bh, "not a new buffer");
819         }
820         if (fatal) {
821                 *errp = fatal;
822                 brelse(bh);
823                 bh = NULL;
824         }
825         return bh;
826 }
827
828 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
829                                ext4_lblk_t block, int create, int *err)
830 {
831         struct buffer_head *bh;
832
833         bh = ext4_getblk(handle, inode, block, create, err);
834         if (!bh)
835                 return bh;
836         if (buffer_uptodate(bh))
837                 return bh;
838         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
839         wait_on_buffer(bh);
840         if (buffer_uptodate(bh))
841                 return bh;
842         put_bh(bh);
843         *err = -EIO;
844         return NULL;
845 }
846
847 int ext4_walk_page_buffers(handle_t *handle,
848                            struct buffer_head *head,
849                            unsigned from,
850                            unsigned to,
851                            int *partial,
852                            int (*fn)(handle_t *handle,
853                                      struct buffer_head *bh))
854 {
855         struct buffer_head *bh;
856         unsigned block_start, block_end;
857         unsigned blocksize = head->b_size;
858         int err, ret = 0;
859         struct buffer_head *next;
860
861         for (bh = head, block_start = 0;
862              ret == 0 && (bh != head || !block_start);
863              block_start = block_end, bh = next) {
864                 next = bh->b_this_page;
865                 block_end = block_start + blocksize;
866                 if (block_end <= from || block_start >= to) {
867                         if (partial && !buffer_uptodate(bh))
868                                 *partial = 1;
869                         continue;
870                 }
871                 err = (*fn)(handle, bh);
872                 if (!ret)
873                         ret = err;
874         }
875         return ret;
876 }
877
878 /*
879  * To preserve ordering, it is essential that the hole instantiation and
880  * the data write be encapsulated in a single transaction.  We cannot
881  * close off a transaction and start a new one between the ext4_get_block()
882  * and the commit_write().  So doing the jbd2_journal_start at the start of
883  * prepare_write() is the right place.
884  *
885  * Also, this function can nest inside ext4_writepage().  In that case, we
886  * *know* that ext4_writepage() has generated enough buffer credits to do the
887  * whole page.  So we won't block on the journal in that case, which is good,
888  * because the caller may be PF_MEMALLOC.
889  *
890  * By accident, ext4 can be reentered when a transaction is open via
891  * quota file writes.  If we were to commit the transaction while thus
892  * reentered, there can be a deadlock - we would be holding a quota
893  * lock, and the commit would never complete if another thread had a
894  * transaction open and was blocking on the quota lock - a ranking
895  * violation.
896  *
897  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
898  * will _not_ run commit under these circumstances because handle->h_ref
899  * is elevated.  We'll still have enough credits for the tiny quotafile
900  * write.
901  */
902 int do_journal_get_write_access(handle_t *handle,
903                                 struct buffer_head *bh)
904 {
905         int dirty = buffer_dirty(bh);
906         int ret;
907
908         if (!buffer_mapped(bh) || buffer_freed(bh))
909                 return 0;
910         /*
911          * __block_write_begin() could have dirtied some buffers. Clean
912          * the dirty bit as jbd2_journal_get_write_access() could complain
913          * otherwise about fs integrity issues. Setting of the dirty bit
914          * by __block_write_begin() isn't a real problem here as we clear
915          * the bit before releasing a page lock and thus writeback cannot
916          * ever write the buffer.
917          */
918         if (dirty)
919                 clear_buffer_dirty(bh);
920         ret = ext4_journal_get_write_access(handle, bh);
921         if (!ret && dirty)
922                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
923         return ret;
924 }
925
926 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
927                    struct buffer_head *bh_result, int create);
928 static int ext4_write_begin(struct file *file, struct address_space *mapping,
929                             loff_t pos, unsigned len, unsigned flags,
930                             struct page **pagep, void **fsdata)
931 {
932         struct inode *inode = mapping->host;
933         int ret, needed_blocks;
934         handle_t *handle;
935         int retries = 0;
936         struct page *page;
937         pgoff_t index;
938         unsigned from, to;
939
940         trace_ext4_write_begin(inode, pos, len, flags);
941         /*
942          * Reserve one block more for addition to orphan list in case
943          * we allocate blocks but write fails for some reason
944          */
945         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
946         index = pos >> PAGE_CACHE_SHIFT;
947         from = pos & (PAGE_CACHE_SIZE - 1);
948         to = from + len;
949
950         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
951                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
952                                                     flags, pagep);
953                 if (ret < 0)
954                         return ret;
955                 if (ret == 1)
956                         return 0;
957         }
958
959         /*
960          * grab_cache_page_write_begin() can take a long time if the
961          * system is thrashing due to memory pressure, or if the page
962          * is being written back.  So grab it first before we start
963          * the transaction handle.  This also allows us to allocate
964          * the page (if needed) without using GFP_NOFS.
965          */
966 retry_grab:
967         page = grab_cache_page_write_begin(mapping, index, flags);
968         if (!page)
969                 return -ENOMEM;
970         unlock_page(page);
971
972 retry_journal:
973         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
974         if (IS_ERR(handle)) {
975                 page_cache_release(page);
976                 return PTR_ERR(handle);
977         }
978
979         lock_page(page);
980         if (page->mapping != mapping) {
981                 /* The page got truncated from under us */
982                 unlock_page(page);
983                 page_cache_release(page);
984                 ext4_journal_stop(handle);
985                 goto retry_grab;
986         }
987         /* In case writeback began while the page was unlocked */
988         wait_for_stable_page(page);
989
990         if (ext4_should_dioread_nolock(inode))
991                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
992         else
993                 ret = __block_write_begin(page, pos, len, ext4_get_block);
994
995         if (!ret && ext4_should_journal_data(inode)) {
996                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
997                                              from, to, NULL,
998                                              do_journal_get_write_access);
999         }
1000
1001         if (ret) {
1002                 unlock_page(page);
1003                 /*
1004                  * __block_write_begin may have instantiated a few blocks
1005                  * outside i_size.  Trim these off again. Don't need
1006                  * i_size_read because we hold i_mutex.
1007                  *
1008                  * Add inode to orphan list in case we crash before
1009                  * truncate finishes
1010                  */
1011                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1012                         ext4_orphan_add(handle, inode);
1013
1014                 ext4_journal_stop(handle);
1015                 if (pos + len > inode->i_size) {
1016                         ext4_truncate_failed_write(inode);
1017                         /*
1018                          * If truncate failed early the inode might
1019                          * still be on the orphan list; we need to
1020                          * make sure the inode is removed from the
1021                          * orphan list in that case.
1022                          */
1023                         if (inode->i_nlink)
1024                                 ext4_orphan_del(NULL, inode);
1025                 }
1026
1027                 if (ret == -ENOSPC &&
1028                     ext4_should_retry_alloc(inode->i_sb, &retries))
1029                         goto retry_journal;
1030                 page_cache_release(page);
1031                 return ret;
1032         }
1033         *pagep = page;
1034         return ret;
1035 }
1036
1037 /* For write_end() in data=journal mode */
1038 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1039 {
1040         int ret;
1041         if (!buffer_mapped(bh) || buffer_freed(bh))
1042                 return 0;
1043         set_buffer_uptodate(bh);
1044         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1045         clear_buffer_meta(bh);
1046         clear_buffer_prio(bh);
1047         return ret;
1048 }
1049
1050 /*
1051  * We need to pick up the new inode size which generic_commit_write gave us
1052  * `file' can be NULL - eg, when called from page_symlink().
1053  *
1054  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1055  * buffers are managed internally.
1056  */
1057 static int ext4_write_end(struct file *file,
1058                           struct address_space *mapping,
1059                           loff_t pos, unsigned len, unsigned copied,
1060                           struct page *page, void *fsdata)
1061 {
1062         handle_t *handle = ext4_journal_current_handle();
1063         struct inode *inode = mapping->host;
1064         int ret = 0, ret2;
1065         int i_size_changed = 0;
1066
1067         trace_ext4_write_end(inode, pos, len, copied);
1068         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1069                 ret = ext4_jbd2_file_inode(handle, inode);
1070                 if (ret) {
1071                         unlock_page(page);
1072                         page_cache_release(page);
1073                         goto errout;
1074                 }
1075         }
1076
1077         if (ext4_has_inline_data(inode)) {
1078                 ret = ext4_write_inline_data_end(inode, pos, len,
1079                                                  copied, page);
1080                 if (ret < 0)
1081                         goto errout;
1082                 copied = ret;
1083         } else
1084                 copied = block_write_end(file, mapping, pos,
1085                                          len, copied, page, fsdata);
1086
1087         /*
1088          * No need to use i_size_read() here, the i_size
1089          * cannot change under us because we hole i_mutex.
1090          *
1091          * But it's important to update i_size while still holding page lock:
1092          * page writeout could otherwise come in and zero beyond i_size.
1093          */
1094         if (pos + copied > inode->i_size) {
1095                 i_size_write(inode, pos + copied);
1096                 i_size_changed = 1;
1097         }
1098
1099         if (pos + copied > EXT4_I(inode)->i_disksize) {
1100                 /* We need to mark inode dirty even if
1101                  * new_i_size is less that inode->i_size
1102                  * but greater than i_disksize. (hint delalloc)
1103                  */
1104                 ext4_update_i_disksize(inode, (pos + copied));
1105                 i_size_changed = 1;
1106         }
1107         unlock_page(page);
1108         page_cache_release(page);
1109
1110         /*
1111          * Don't mark the inode dirty under page lock. First, it unnecessarily
1112          * makes the holding time of page lock longer. Second, it forces lock
1113          * ordering of page lock and transaction start for journaling
1114          * filesystems.
1115          */
1116         if (i_size_changed)
1117                 ext4_mark_inode_dirty(handle, inode);
1118
1119         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1120                 /* if we have allocated more blocks and copied
1121                  * less. We will have blocks allocated outside
1122                  * inode->i_size. So truncate them
1123                  */
1124                 ext4_orphan_add(handle, inode);
1125 errout:
1126         ret2 = ext4_journal_stop(handle);
1127         if (!ret)
1128                 ret = ret2;
1129
1130         if (pos + len > inode->i_size) {
1131                 ext4_truncate_failed_write(inode);
1132                 /*
1133                  * If truncate failed early the inode might still be
1134                  * on the orphan list; we need to make sure the inode
1135                  * is removed from the orphan list in that case.
1136                  */
1137                 if (inode->i_nlink)
1138                         ext4_orphan_del(NULL, inode);
1139         }
1140
1141         return ret ? ret : copied;
1142 }
1143
1144 static int ext4_journalled_write_end(struct file *file,
1145                                      struct address_space *mapping,
1146                                      loff_t pos, unsigned len, unsigned copied,
1147                                      struct page *page, void *fsdata)
1148 {
1149         handle_t *handle = ext4_journal_current_handle();
1150         struct inode *inode = mapping->host;
1151         int ret = 0, ret2;
1152         int partial = 0;
1153         unsigned from, to;
1154         loff_t new_i_size;
1155
1156         trace_ext4_journalled_write_end(inode, pos, len, copied);
1157         from = pos & (PAGE_CACHE_SIZE - 1);
1158         to = from + len;
1159
1160         BUG_ON(!ext4_handle_valid(handle));
1161
1162         if (ext4_has_inline_data(inode))
1163                 copied = ext4_write_inline_data_end(inode, pos, len,
1164                                                     copied, page);
1165         else {
1166                 if (copied < len) {
1167                         if (!PageUptodate(page))
1168                                 copied = 0;
1169                         page_zero_new_buffers(page, from+copied, to);
1170                 }
1171
1172                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1173                                              to, &partial, write_end_fn);
1174                 if (!partial)
1175                         SetPageUptodate(page);
1176         }
1177         new_i_size = pos + copied;
1178         if (new_i_size > inode->i_size)
1179                 i_size_write(inode, pos+copied);
1180         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1181         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1182         if (new_i_size > EXT4_I(inode)->i_disksize) {
1183                 ext4_update_i_disksize(inode, new_i_size);
1184                 ret2 = ext4_mark_inode_dirty(handle, inode);
1185                 if (!ret)
1186                         ret = ret2;
1187         }
1188
1189         unlock_page(page);
1190         page_cache_release(page);
1191         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1192                 /* if we have allocated more blocks and copied
1193                  * less. We will have blocks allocated outside
1194                  * inode->i_size. So truncate them
1195                  */
1196                 ext4_orphan_add(handle, inode);
1197
1198         ret2 = ext4_journal_stop(handle);
1199         if (!ret)
1200                 ret = ret2;
1201         if (pos + len > inode->i_size) {
1202                 ext4_truncate_failed_write(inode);
1203                 /*
1204                  * If truncate failed early the inode might still be
1205                  * on the orphan list; we need to make sure the inode
1206                  * is removed from the orphan list in that case.
1207                  */
1208                 if (inode->i_nlink)
1209                         ext4_orphan_del(NULL, inode);
1210         }
1211
1212         return ret ? ret : copied;
1213 }
1214
1215 /*
1216  * Reserve a metadata for a single block located at lblock
1217  */
1218 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1219 {
1220         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1221         struct ext4_inode_info *ei = EXT4_I(inode);
1222         unsigned int md_needed;
1223         ext4_lblk_t save_last_lblock;
1224         int save_len;
1225
1226         /*
1227          * recalculate the amount of metadata blocks to reserve
1228          * in order to allocate nrblocks
1229          * worse case is one extent per block
1230          */
1231         spin_lock(&ei->i_block_reservation_lock);
1232         /*
1233          * ext4_calc_metadata_amount() has side effects, which we have
1234          * to be prepared undo if we fail to claim space.
1235          */
1236         save_len = ei->i_da_metadata_calc_len;
1237         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1238         md_needed = EXT4_NUM_B2C(sbi,
1239                                  ext4_calc_metadata_amount(inode, lblock));
1240         trace_ext4_da_reserve_space(inode, md_needed);
1241
1242         /*
1243          * We do still charge estimated metadata to the sb though;
1244          * we cannot afford to run out of free blocks.
1245          */
1246         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1247                 ei->i_da_metadata_calc_len = save_len;
1248                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1249                 spin_unlock(&ei->i_block_reservation_lock);
1250                 return -ENOSPC;
1251         }
1252         ei->i_reserved_meta_blocks += md_needed;
1253         spin_unlock(&ei->i_block_reservation_lock);
1254
1255         return 0;       /* success */
1256 }
1257
1258 /*
1259  * Reserve a single cluster located at lblock
1260  */
1261 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1262 {
1263         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1264         struct ext4_inode_info *ei = EXT4_I(inode);
1265         unsigned int md_needed;
1266         int ret;
1267         ext4_lblk_t save_last_lblock;
1268         int save_len;
1269
1270         /*
1271          * We will charge metadata quota at writeout time; this saves
1272          * us from metadata over-estimation, though we may go over by
1273          * a small amount in the end.  Here we just reserve for data.
1274          */
1275         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1276         if (ret)
1277                 return ret;
1278
1279         /*
1280          * recalculate the amount of metadata blocks to reserve
1281          * in order to allocate nrblocks
1282          * worse case is one extent per block
1283          */
1284         spin_lock(&ei->i_block_reservation_lock);
1285         /*
1286          * ext4_calc_metadata_amount() has side effects, which we have
1287          * to be prepared undo if we fail to claim space.
1288          */
1289         save_len = ei->i_da_metadata_calc_len;
1290         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1291         md_needed = EXT4_NUM_B2C(sbi,
1292                                  ext4_calc_metadata_amount(inode, lblock));
1293         trace_ext4_da_reserve_space(inode, md_needed);
1294
1295         /*
1296          * We do still charge estimated metadata to the sb though;
1297          * we cannot afford to run out of free blocks.
1298          */
1299         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1300                 ei->i_da_metadata_calc_len = save_len;
1301                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1302                 spin_unlock(&ei->i_block_reservation_lock);
1303                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1304                 return -ENOSPC;
1305         }
1306         ei->i_reserved_data_blocks++;
1307         ei->i_reserved_meta_blocks += md_needed;
1308         spin_unlock(&ei->i_block_reservation_lock);
1309
1310         return 0;       /* success */
1311 }
1312
1313 static void ext4_da_release_space(struct inode *inode, int to_free)
1314 {
1315         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1316         struct ext4_inode_info *ei = EXT4_I(inode);
1317
1318         if (!to_free)
1319                 return;         /* Nothing to release, exit */
1320
1321         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1322
1323         trace_ext4_da_release_space(inode, to_free);
1324         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1325                 /*
1326                  * if there aren't enough reserved blocks, then the
1327                  * counter is messed up somewhere.  Since this
1328                  * function is called from invalidate page, it's
1329                  * harmless to return without any action.
1330                  */
1331                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1332                          "ino %lu, to_free %d with only %d reserved "
1333                          "data blocks", inode->i_ino, to_free,
1334                          ei->i_reserved_data_blocks);
1335                 WARN_ON(1);
1336                 to_free = ei->i_reserved_data_blocks;
1337         }
1338         ei->i_reserved_data_blocks -= to_free;
1339
1340         if (ei->i_reserved_data_blocks == 0) {
1341                 /*
1342                  * We can release all of the reserved metadata blocks
1343                  * only when we have written all of the delayed
1344                  * allocation blocks.
1345                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1346                  * i_reserved_data_blocks, etc. refer to number of clusters.
1347                  */
1348                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1349                                    ei->i_reserved_meta_blocks);
1350                 ei->i_reserved_meta_blocks = 0;
1351                 ei->i_da_metadata_calc_len = 0;
1352         }
1353
1354         /* update fs dirty data blocks counter */
1355         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1356
1357         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1358
1359         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1360 }
1361
1362 static void ext4_da_page_release_reservation(struct page *page,
1363                                              unsigned int offset,
1364                                              unsigned int length)
1365 {
1366         int to_release = 0;
1367         struct buffer_head *head, *bh;
1368         unsigned int curr_off = 0;
1369         struct inode *inode = page->mapping->host;
1370         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371         unsigned int stop = offset + length;
1372         int num_clusters;
1373         ext4_fsblk_t lblk;
1374
1375         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1376
1377         head = page_buffers(page);
1378         bh = head;
1379         do {
1380                 unsigned int next_off = curr_off + bh->b_size;
1381
1382                 if (next_off > stop)
1383                         break;
1384
1385                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1386                         to_release++;
1387                         clear_buffer_delay(bh);
1388                 }
1389                 curr_off = next_off;
1390         } while ((bh = bh->b_this_page) != head);
1391
1392         if (to_release) {
1393                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1394                 ext4_es_remove_extent(inode, lblk, to_release);
1395         }
1396
1397         /* If we have released all the blocks belonging to a cluster, then we
1398          * need to release the reserved space for that cluster. */
1399         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1400         while (num_clusters > 0) {
1401                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1402                         ((num_clusters - 1) << sbi->s_cluster_bits);
1403                 if (sbi->s_cluster_ratio == 1 ||
1404                     !ext4_find_delalloc_cluster(inode, lblk))
1405                         ext4_da_release_space(inode, 1);
1406
1407                 num_clusters--;
1408         }
1409 }
1410
1411 /*
1412  * Delayed allocation stuff
1413  */
1414
1415 struct mpage_da_data {
1416         struct inode *inode;
1417         struct writeback_control *wbc;
1418
1419         pgoff_t first_page;     /* The first page to write */
1420         pgoff_t next_page;      /* Current page to examine */
1421         pgoff_t last_page;      /* Last page to examine */
1422         /*
1423          * Extent to map - this can be after first_page because that can be
1424          * fully mapped. We somewhat abuse m_flags to store whether the extent
1425          * is delalloc or unwritten.
1426          */
1427         struct ext4_map_blocks map;
1428         struct ext4_io_submit io_submit;        /* IO submission data */
1429 };
1430
1431 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1432                                        bool invalidate)
1433 {
1434         int nr_pages, i;
1435         pgoff_t index, end;
1436         struct pagevec pvec;
1437         struct inode *inode = mpd->inode;
1438         struct address_space *mapping = inode->i_mapping;
1439
1440         /* This is necessary when next_page == 0. */
1441         if (mpd->first_page >= mpd->next_page)
1442                 return;
1443
1444         index = mpd->first_page;
1445         end   = mpd->next_page - 1;
1446         if (invalidate) {
1447                 ext4_lblk_t start, last;
1448                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1449                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450                 ext4_es_remove_extent(inode, start, last - start + 1);
1451         }
1452
1453         pagevec_init(&pvec, 0);
1454         while (index <= end) {
1455                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1456                 if (nr_pages == 0)
1457                         break;
1458                 for (i = 0; i < nr_pages; i++) {
1459                         struct page *page = pvec.pages[i];
1460                         if (page->index > end)
1461                                 break;
1462                         BUG_ON(!PageLocked(page));
1463                         BUG_ON(PageWriteback(page));
1464                         if (invalidate) {
1465                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1466                                 ClearPageUptodate(page);
1467                         }
1468                         unlock_page(page);
1469                 }
1470                 index = pvec.pages[nr_pages - 1]->index + 1;
1471                 pagevec_release(&pvec);
1472         }
1473 }
1474
1475 static void ext4_print_free_blocks(struct inode *inode)
1476 {
1477         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1478         struct super_block *sb = inode->i_sb;
1479         struct ext4_inode_info *ei = EXT4_I(inode);
1480
1481         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1482                EXT4_C2B(EXT4_SB(inode->i_sb),
1483                         ext4_count_free_clusters(sb)));
1484         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1485         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1486                (long long) EXT4_C2B(EXT4_SB(sb),
1487                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1488         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1489                (long long) EXT4_C2B(EXT4_SB(sb),
1490                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1491         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1492         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1493                  ei->i_reserved_data_blocks);
1494         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1495                ei->i_reserved_meta_blocks);
1496         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1497                ei->i_allocated_meta_blocks);
1498         return;
1499 }
1500
1501 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1502 {
1503         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1504 }
1505
1506 /*
1507  * This function is grabs code from the very beginning of
1508  * ext4_map_blocks, but assumes that the caller is from delayed write
1509  * time. This function looks up the requested blocks and sets the
1510  * buffer delay bit under the protection of i_data_sem.
1511  */
1512 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1513                               struct ext4_map_blocks *map,
1514                               struct buffer_head *bh)
1515 {
1516         struct extent_status es;
1517         int retval;
1518         sector_t invalid_block = ~((sector_t) 0xffff);
1519 #ifdef ES_AGGRESSIVE_TEST
1520         struct ext4_map_blocks orig_map;
1521
1522         memcpy(&orig_map, map, sizeof(*map));
1523 #endif
1524
1525         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1526                 invalid_block = ~0;
1527
1528         map->m_flags = 0;
1529         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1530                   "logical block %lu\n", inode->i_ino, map->m_len,
1531                   (unsigned long) map->m_lblk);
1532
1533         /* Lookup extent status tree firstly */
1534         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1535                 ext4_es_lru_add(inode);
1536                 if (ext4_es_is_hole(&es)) {
1537                         retval = 0;
1538                         down_read((&EXT4_I(inode)->i_data_sem));
1539                         goto add_delayed;
1540                 }
1541
1542                 /*
1543                  * Delayed extent could be allocated by fallocate.
1544                  * So we need to check it.
1545                  */
1546                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1547                         map_bh(bh, inode->i_sb, invalid_block);
1548                         set_buffer_new(bh);
1549                         set_buffer_delay(bh);
1550                         return 0;
1551                 }
1552
1553                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1554                 retval = es.es_len - (iblock - es.es_lblk);
1555                 if (retval > map->m_len)
1556                         retval = map->m_len;
1557                 map->m_len = retval;
1558                 if (ext4_es_is_written(&es))
1559                         map->m_flags |= EXT4_MAP_MAPPED;
1560                 else if (ext4_es_is_unwritten(&es))
1561                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1562                 else
1563                         BUG_ON(1);
1564
1565 #ifdef ES_AGGRESSIVE_TEST
1566                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1567 #endif
1568                 return retval;
1569         }
1570
1571         /*
1572          * Try to see if we can get the block without requesting a new
1573          * file system block.
1574          */
1575         down_read((&EXT4_I(inode)->i_data_sem));
1576         if (ext4_has_inline_data(inode)) {
1577                 /*
1578                  * We will soon create blocks for this page, and let
1579                  * us pretend as if the blocks aren't allocated yet.
1580                  * In case of clusters, we have to handle the work
1581                  * of mapping from cluster so that the reserved space
1582                  * is calculated properly.
1583                  */
1584                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1585                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1586                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1587                 retval = 0;
1588         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1589                 retval = ext4_ext_map_blocks(NULL, inode, map,
1590                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1591         else
1592                 retval = ext4_ind_map_blocks(NULL, inode, map,
1593                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1594
1595 add_delayed:
1596         if (retval == 0) {
1597                 int ret;
1598                 /*
1599                  * XXX: __block_prepare_write() unmaps passed block,
1600                  * is it OK?
1601                  */
1602                 /*
1603                  * If the block was allocated from previously allocated cluster,
1604                  * then we don't need to reserve it again. However we still need
1605                  * to reserve metadata for every block we're going to write.
1606                  */
1607                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1608                         ret = ext4_da_reserve_space(inode, iblock);
1609                         if (ret) {
1610                                 /* not enough space to reserve */
1611                                 retval = ret;
1612                                 goto out_unlock;
1613                         }
1614                 } else {
1615                         ret = ext4_da_reserve_metadata(inode, iblock);
1616                         if (ret) {
1617                                 /* not enough space to reserve */
1618                                 retval = ret;
1619                                 goto out_unlock;
1620                         }
1621                 }
1622
1623                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1624                                             ~0, EXTENT_STATUS_DELAYED);
1625                 if (ret) {
1626                         retval = ret;
1627                         goto out_unlock;
1628                 }
1629
1630                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1631                  * and it should not appear on the bh->b_state.
1632                  */
1633                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1634
1635                 map_bh(bh, inode->i_sb, invalid_block);
1636                 set_buffer_new(bh);
1637                 set_buffer_delay(bh);
1638         } else if (retval > 0) {
1639                 int ret;
1640                 unsigned int status;
1641
1642                 if (unlikely(retval != map->m_len)) {
1643                         ext4_warning(inode->i_sb,
1644                                      "ES len assertion failed for inode "
1645                                      "%lu: retval %d != map->m_len %d",
1646                                      inode->i_ino, retval, map->m_len);
1647                         WARN_ON(1);
1648                 }
1649
1650                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1651                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1652                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1653                                             map->m_pblk, status);
1654                 if (ret != 0)
1655                         retval = ret;
1656         }
1657
1658 out_unlock:
1659         up_read((&EXT4_I(inode)->i_data_sem));
1660
1661         return retval;
1662 }
1663
1664 /*
1665  * This is a special get_blocks_t callback which is used by
1666  * ext4_da_write_begin().  It will either return mapped block or
1667  * reserve space for a single block.
1668  *
1669  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1670  * We also have b_blocknr = -1 and b_bdev initialized properly
1671  *
1672  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1673  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1674  * initialized properly.
1675  */
1676 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1677                            struct buffer_head *bh, int create)
1678 {
1679         struct ext4_map_blocks map;
1680         int ret = 0;
1681
1682         BUG_ON(create == 0);
1683         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1684
1685         map.m_lblk = iblock;
1686         map.m_len = 1;
1687
1688         /*
1689          * first, we need to know whether the block is allocated already
1690          * preallocated blocks are unmapped but should treated
1691          * the same as allocated blocks.
1692          */
1693         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1694         if (ret <= 0)
1695                 return ret;
1696
1697         map_bh(bh, inode->i_sb, map.m_pblk);
1698         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1699
1700         if (buffer_unwritten(bh)) {
1701                 /* A delayed write to unwritten bh should be marked
1702                  * new and mapped.  Mapped ensures that we don't do
1703                  * get_block multiple times when we write to the same
1704                  * offset and new ensures that we do proper zero out
1705                  * for partial write.
1706                  */
1707                 set_buffer_new(bh);
1708                 set_buffer_mapped(bh);
1709         }
1710         return 0;
1711 }
1712
1713 static int bget_one(handle_t *handle, struct buffer_head *bh)
1714 {
1715         get_bh(bh);
1716         return 0;
1717 }
1718
1719 static int bput_one(handle_t *handle, struct buffer_head *bh)
1720 {
1721         put_bh(bh);
1722         return 0;
1723 }
1724
1725 static int __ext4_journalled_writepage(struct page *page,
1726                                        unsigned int len)
1727 {
1728         struct address_space *mapping = page->mapping;
1729         struct inode *inode = mapping->host;
1730         struct buffer_head *page_bufs = NULL;
1731         handle_t *handle = NULL;
1732         int ret = 0, err = 0;
1733         int inline_data = ext4_has_inline_data(inode);
1734         struct buffer_head *inode_bh = NULL;
1735
1736         ClearPageChecked(page);
1737
1738         if (inline_data) {
1739                 BUG_ON(page->index != 0);
1740                 BUG_ON(len > ext4_get_max_inline_size(inode));
1741                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1742                 if (inode_bh == NULL)
1743                         goto out;
1744         } else {
1745                 page_bufs = page_buffers(page);
1746                 if (!page_bufs) {
1747                         BUG();
1748                         goto out;
1749                 }
1750                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1751                                        NULL, bget_one);
1752         }
1753         /* As soon as we unlock the page, it can go away, but we have
1754          * references to buffers so we are safe */
1755         unlock_page(page);
1756
1757         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1758                                     ext4_writepage_trans_blocks(inode));
1759         if (IS_ERR(handle)) {
1760                 ret = PTR_ERR(handle);
1761                 goto out;
1762         }
1763
1764         BUG_ON(!ext4_handle_valid(handle));
1765
1766         if (inline_data) {
1767                 ret = ext4_journal_get_write_access(handle, inode_bh);
1768
1769                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1770
1771         } else {
1772                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1773                                              do_journal_get_write_access);
1774
1775                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1776                                              write_end_fn);
1777         }
1778         if (ret == 0)
1779                 ret = err;
1780         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1781         err = ext4_journal_stop(handle);
1782         if (!ret)
1783                 ret = err;
1784
1785         if (!ext4_has_inline_data(inode))
1786                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1787                                        NULL, bput_one);
1788         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1789 out:
1790         brelse(inode_bh);
1791         return ret;
1792 }
1793
1794 /*
1795  * Note that we don't need to start a transaction unless we're journaling data
1796  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1797  * need to file the inode to the transaction's list in ordered mode because if
1798  * we are writing back data added by write(), the inode is already there and if
1799  * we are writing back data modified via mmap(), no one guarantees in which
1800  * transaction the data will hit the disk. In case we are journaling data, we
1801  * cannot start transaction directly because transaction start ranks above page
1802  * lock so we have to do some magic.
1803  *
1804  * This function can get called via...
1805  *   - ext4_writepages after taking page lock (have journal handle)
1806  *   - journal_submit_inode_data_buffers (no journal handle)
1807  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1808  *   - grab_page_cache when doing write_begin (have journal handle)
1809  *
1810  * We don't do any block allocation in this function. If we have page with
1811  * multiple blocks we need to write those buffer_heads that are mapped. This
1812  * is important for mmaped based write. So if we do with blocksize 1K
1813  * truncate(f, 1024);
1814  * a = mmap(f, 0, 4096);
1815  * a[0] = 'a';
1816  * truncate(f, 4096);
1817  * we have in the page first buffer_head mapped via page_mkwrite call back
1818  * but other buffer_heads would be unmapped but dirty (dirty done via the
1819  * do_wp_page). So writepage should write the first block. If we modify
1820  * the mmap area beyond 1024 we will again get a page_fault and the
1821  * page_mkwrite callback will do the block allocation and mark the
1822  * buffer_heads mapped.
1823  *
1824  * We redirty the page if we have any buffer_heads that is either delay or
1825  * unwritten in the page.
1826  *
1827  * We can get recursively called as show below.
1828  *
1829  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1830  *              ext4_writepage()
1831  *
1832  * But since we don't do any block allocation we should not deadlock.
1833  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1834  */
1835 static int ext4_writepage(struct page *page,
1836                           struct writeback_control *wbc)
1837 {
1838         int ret = 0;
1839         loff_t size;
1840         unsigned int len;
1841         struct buffer_head *page_bufs = NULL;
1842         struct inode *inode = page->mapping->host;
1843         struct ext4_io_submit io_submit;
1844
1845         trace_ext4_writepage(page);
1846         size = i_size_read(inode);
1847         if (page->index == size >> PAGE_CACHE_SHIFT)
1848                 len = size & ~PAGE_CACHE_MASK;
1849         else
1850                 len = PAGE_CACHE_SIZE;
1851
1852         page_bufs = page_buffers(page);
1853         /*
1854          * We cannot do block allocation or other extent handling in this
1855          * function. If there are buffers needing that, we have to redirty
1856          * the page. But we may reach here when we do a journal commit via
1857          * journal_submit_inode_data_buffers() and in that case we must write
1858          * allocated buffers to achieve data=ordered mode guarantees.
1859          */
1860         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1861                                    ext4_bh_delay_or_unwritten)) {
1862                 redirty_page_for_writepage(wbc, page);
1863                 if (current->flags & PF_MEMALLOC) {
1864                         /*
1865                          * For memory cleaning there's no point in writing only
1866                          * some buffers. So just bail out. Warn if we came here
1867                          * from direct reclaim.
1868                          */
1869                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1870                                                         == PF_MEMALLOC);
1871                         unlock_page(page);
1872                         return 0;
1873                 }
1874         }
1875
1876         if (PageChecked(page) && ext4_should_journal_data(inode))
1877                 /*
1878                  * It's mmapped pagecache.  Add buffers and journal it.  There
1879                  * doesn't seem much point in redirtying the page here.
1880                  */
1881                 return __ext4_journalled_writepage(page, len);
1882
1883         ext4_io_submit_init(&io_submit, wbc);
1884         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1885         if (!io_submit.io_end) {
1886                 redirty_page_for_writepage(wbc, page);
1887                 unlock_page(page);
1888                 return -ENOMEM;
1889         }
1890         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1891         ext4_io_submit(&io_submit);
1892         /* Drop io_end reference we got from init */
1893         ext4_put_io_end_defer(io_submit.io_end);
1894         return ret;
1895 }
1896
1897 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1898 {
1899         int len;
1900         loff_t size = i_size_read(mpd->inode);
1901         int err;
1902
1903         BUG_ON(page->index != mpd->first_page);
1904         if (page->index == size >> PAGE_CACHE_SHIFT)
1905                 len = size & ~PAGE_CACHE_MASK;
1906         else
1907                 len = PAGE_CACHE_SIZE;
1908         clear_page_dirty_for_io(page);
1909         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1910         if (!err)
1911                 mpd->wbc->nr_to_write--;
1912         mpd->first_page++;
1913
1914         return err;
1915 }
1916
1917 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1918
1919 /*
1920  * mballoc gives us at most this number of blocks...
1921  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1922  * The rest of mballoc seems to handle chunks up to full group size.
1923  */
1924 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1925
1926 /*
1927  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1928  *
1929  * @mpd - extent of blocks
1930  * @lblk - logical number of the block in the file
1931  * @bh - buffer head we want to add to the extent
1932  *
1933  * The function is used to collect contig. blocks in the same state. If the
1934  * buffer doesn't require mapping for writeback and we haven't started the
1935  * extent of buffers to map yet, the function returns 'true' immediately - the
1936  * caller can write the buffer right away. Otherwise the function returns true
1937  * if the block has been added to the extent, false if the block couldn't be
1938  * added.
1939  */
1940 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1941                                    struct buffer_head *bh)
1942 {
1943         struct ext4_map_blocks *map = &mpd->map;
1944
1945         /* Buffer that doesn't need mapping for writeback? */
1946         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1947             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1948                 /* So far no extent to map => we write the buffer right away */
1949                 if (map->m_len == 0)
1950                         return true;
1951                 return false;
1952         }
1953
1954         /* First block in the extent? */
1955         if (map->m_len == 0) {
1956                 map->m_lblk = lblk;
1957                 map->m_len = 1;
1958                 map->m_flags = bh->b_state & BH_FLAGS;
1959                 return true;
1960         }
1961
1962         /* Don't go larger than mballoc is willing to allocate */
1963         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1964                 return false;
1965
1966         /* Can we merge the block to our big extent? */
1967         if (lblk == map->m_lblk + map->m_len &&
1968             (bh->b_state & BH_FLAGS) == map->m_flags) {
1969                 map->m_len++;
1970                 return true;
1971         }
1972         return false;
1973 }
1974
1975 /*
1976  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1977  *
1978  * @mpd - extent of blocks for mapping
1979  * @head - the first buffer in the page
1980  * @bh - buffer we should start processing from
1981  * @lblk - logical number of the block in the file corresponding to @bh
1982  *
1983  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1984  * the page for IO if all buffers in this page were mapped and there's no
1985  * accumulated extent of buffers to map or add buffers in the page to the
1986  * extent of buffers to map. The function returns 1 if the caller can continue
1987  * by processing the next page, 0 if it should stop adding buffers to the
1988  * extent to map because we cannot extend it anymore. It can also return value
1989  * < 0 in case of error during IO submission.
1990  */
1991 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1992                                    struct buffer_head *head,
1993                                    struct buffer_head *bh,
1994                                    ext4_lblk_t lblk)
1995 {
1996         struct inode *inode = mpd->inode;
1997         int err;
1998         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1999                                                         >> inode->i_blkbits;
2000
2001         do {
2002                 BUG_ON(buffer_locked(bh));
2003
2004                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2005                         /* Found extent to map? */
2006                         if (mpd->map.m_len)
2007                                 return 0;
2008                         /* Everything mapped so far and we hit EOF */
2009                         break;
2010                 }
2011         } while (lblk++, (bh = bh->b_this_page) != head);
2012         /* So far everything mapped? Submit the page for IO. */
2013         if (mpd->map.m_len == 0) {
2014                 err = mpage_submit_page(mpd, head->b_page);
2015                 if (err < 0)
2016                         return err;
2017         }
2018         return lblk < blocks;
2019 }
2020
2021 /*
2022  * mpage_map_buffers - update buffers corresponding to changed extent and
2023  *                     submit fully mapped pages for IO
2024  *
2025  * @mpd - description of extent to map, on return next extent to map
2026  *
2027  * Scan buffers corresponding to changed extent (we expect corresponding pages
2028  * to be already locked) and update buffer state according to new extent state.
2029  * We map delalloc buffers to their physical location, clear unwritten bits,
2030  * and mark buffers as uninit when we perform writes to uninitialized extents
2031  * and do extent conversion after IO is finished. If the last page is not fully
2032  * mapped, we update @map to the next extent in the last page that needs
2033  * mapping. Otherwise we submit the page for IO.
2034  */
2035 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2036 {
2037         struct pagevec pvec;
2038         int nr_pages, i;
2039         struct inode *inode = mpd->inode;
2040         struct buffer_head *head, *bh;
2041         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2042         pgoff_t start, end;
2043         ext4_lblk_t lblk;
2044         sector_t pblock;
2045         int err;
2046
2047         start = mpd->map.m_lblk >> bpp_bits;
2048         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2049         lblk = start << bpp_bits;
2050         pblock = mpd->map.m_pblk;
2051
2052         pagevec_init(&pvec, 0);
2053         while (start <= end) {
2054                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2055                                           PAGEVEC_SIZE);
2056                 if (nr_pages == 0)
2057                         break;
2058                 for (i = 0; i < nr_pages; i++) {
2059                         struct page *page = pvec.pages[i];
2060
2061                         if (page->index > end)
2062                                 break;
2063                         /* Up to 'end' pages must be contiguous */
2064                         BUG_ON(page->index != start);
2065                         bh = head = page_buffers(page);
2066                         do {
2067                                 if (lblk < mpd->map.m_lblk)
2068                                         continue;
2069                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2070                                         /*
2071                                          * Buffer after end of mapped extent.
2072                                          * Find next buffer in the page to map.
2073                                          */
2074                                         mpd->map.m_len = 0;
2075                                         mpd->map.m_flags = 0;
2076                                         /*
2077                                          * FIXME: If dioread_nolock supports
2078                                          * blocksize < pagesize, we need to make
2079                                          * sure we add size mapped so far to
2080                                          * io_end->size as the following call
2081                                          * can submit the page for IO.
2082                                          */
2083                                         err = mpage_process_page_bufs(mpd, head,
2084                                                                       bh, lblk);
2085                                         pagevec_release(&pvec);
2086                                         if (err > 0)
2087                                                 err = 0;
2088                                         return err;
2089                                 }
2090                                 if (buffer_delay(bh)) {
2091                                         clear_buffer_delay(bh);
2092                                         bh->b_blocknr = pblock++;
2093                                 }
2094                                 clear_buffer_unwritten(bh);
2095                         } while (lblk++, (bh = bh->b_this_page) != head);
2096
2097                         /*
2098                          * FIXME: This is going to break if dioread_nolock
2099                          * supports blocksize < pagesize as we will try to
2100                          * convert potentially unmapped parts of inode.
2101                          */
2102                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2103                         /* Page fully mapped - let IO run! */
2104                         err = mpage_submit_page(mpd, page);
2105                         if (err < 0) {
2106                                 pagevec_release(&pvec);
2107                                 return err;
2108                         }
2109                         start++;
2110                 }
2111                 pagevec_release(&pvec);
2112         }
2113         /* Extent fully mapped and matches with page boundary. We are done. */
2114         mpd->map.m_len = 0;
2115         mpd->map.m_flags = 0;
2116         return 0;
2117 }
2118
2119 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2120 {
2121         struct inode *inode = mpd->inode;
2122         struct ext4_map_blocks *map = &mpd->map;
2123         int get_blocks_flags;
2124         int err;
2125
2126         trace_ext4_da_write_pages_extent(inode, map);
2127         /*
2128          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2129          * to convert an uninitialized extent to be initialized (in the case
2130          * where we have written into one or more preallocated blocks).  It is
2131          * possible that we're going to need more metadata blocks than
2132          * previously reserved. However we must not fail because we're in
2133          * writeback and there is nothing we can do about it so it might result
2134          * in data loss.  So use reserved blocks to allocate metadata if
2135          * possible.
2136          *
2137          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2138          * in question are delalloc blocks.  This affects functions in many
2139          * different parts of the allocation call path.  This flag exists
2140          * primarily because we don't want to change *many* call functions, so
2141          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2142          * once the inode's allocation semaphore is taken.
2143          */
2144         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2145                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2146         if (ext4_should_dioread_nolock(inode))
2147                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2148         if (map->m_flags & (1 << BH_Delay))
2149                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2150
2151         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2152         if (err < 0)
2153                 return err;
2154         if (map->m_flags & EXT4_MAP_UNINIT) {
2155                 if (!mpd->io_submit.io_end->handle &&
2156                     ext4_handle_valid(handle)) {
2157                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2158                         handle->h_rsv_handle = NULL;
2159                 }
2160                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2161         }
2162
2163         BUG_ON(map->m_len == 0);
2164         if (map->m_flags & EXT4_MAP_NEW) {
2165                 struct block_device *bdev = inode->i_sb->s_bdev;
2166                 int i;
2167
2168                 for (i = 0; i < map->m_len; i++)
2169                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2170         }
2171         return 0;
2172 }
2173
2174 /*
2175  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2176  *                               mpd->len and submit pages underlying it for IO
2177  *
2178  * @handle - handle for journal operations
2179  * @mpd - extent to map
2180  * @give_up_on_write - we set this to true iff there is a fatal error and there
2181  *                     is no hope of writing the data. The caller should discard
2182  *                     dirty pages to avoid infinite loops.
2183  *
2184  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2185  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2186  * them to initialized or split the described range from larger unwritten
2187  * extent. Note that we need not map all the described range since allocation
2188  * can return less blocks or the range is covered by more unwritten extents. We
2189  * cannot map more because we are limited by reserved transaction credits. On
2190  * the other hand we always make sure that the last touched page is fully
2191  * mapped so that it can be written out (and thus forward progress is
2192  * guaranteed). After mapping we submit all mapped pages for IO.
2193  */
2194 static int mpage_map_and_submit_extent(handle_t *handle,
2195                                        struct mpage_da_data *mpd,
2196                                        bool *give_up_on_write)
2197 {
2198         struct inode *inode = mpd->inode;
2199         struct ext4_map_blocks *map = &mpd->map;
2200         int err;
2201         loff_t disksize;
2202
2203         mpd->io_submit.io_end->offset =
2204                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2205         do {
2206                 err = mpage_map_one_extent(handle, mpd);
2207                 if (err < 0) {
2208                         struct super_block *sb = inode->i_sb;
2209
2210                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2211                                 goto invalidate_dirty_pages;
2212                         /*
2213                          * Let the uper layers retry transient errors.
2214                          * In the case of ENOSPC, if ext4_count_free_blocks()
2215                          * is non-zero, a commit should free up blocks.
2216                          */
2217                         if ((err == -ENOMEM) ||
2218                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2219                                 return err;
2220                         ext4_msg(sb, KERN_CRIT,
2221                                  "Delayed block allocation failed for "
2222                                  "inode %lu at logical offset %llu with"
2223                                  " max blocks %u with error %d",
2224                                  inode->i_ino,
2225                                  (unsigned long long)map->m_lblk,
2226                                  (unsigned)map->m_len, -err);
2227                         ext4_msg(sb, KERN_CRIT,
2228                                  "This should not happen!! Data will "
2229                                  "be lost\n");
2230                         if (err == -ENOSPC)
2231                                 ext4_print_free_blocks(inode);
2232                 invalidate_dirty_pages:
2233                         *give_up_on_write = true;
2234                         return err;
2235                 }
2236                 /*
2237                  * Update buffer state, submit mapped pages, and get us new
2238                  * extent to map
2239                  */
2240                 err = mpage_map_and_submit_buffers(mpd);
2241                 if (err < 0)
2242                         return err;
2243         } while (map->m_len);
2244
2245         /* Update on-disk size after IO is submitted */
2246         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2247         if (disksize > EXT4_I(inode)->i_disksize) {
2248                 int err2;
2249
2250                 ext4_wb_update_i_disksize(inode, disksize);
2251                 err2 = ext4_mark_inode_dirty(handle, inode);
2252                 if (err2)
2253                         ext4_error(inode->i_sb,
2254                                    "Failed to mark inode %lu dirty",
2255                                    inode->i_ino);
2256                 if (!err)
2257                         err = err2;
2258         }
2259         return err;
2260 }
2261
2262 /*
2263  * Calculate the total number of credits to reserve for one writepages
2264  * iteration. This is called from ext4_writepages(). We map an extent of
2265  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2266  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2267  * bpp - 1 blocks in bpp different extents.
2268  */
2269 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2270 {
2271         int bpp = ext4_journal_blocks_per_page(inode);
2272
2273         return ext4_meta_trans_blocks(inode,
2274                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2275 }
2276
2277 /*
2278  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2279  *                               and underlying extent to map
2280  *
2281  * @mpd - where to look for pages
2282  *
2283  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2284  * IO immediately. When we find a page which isn't mapped we start accumulating
2285  * extent of buffers underlying these pages that needs mapping (formed by
2286  * either delayed or unwritten buffers). We also lock the pages containing
2287  * these buffers. The extent found is returned in @mpd structure (starting at
2288  * mpd->lblk with length mpd->len blocks).
2289  *
2290  * Note that this function can attach bios to one io_end structure which are
2291  * neither logically nor physically contiguous. Although it may seem as an
2292  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2293  * case as we need to track IO to all buffers underlying a page in one io_end.
2294  */
2295 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2296 {
2297         struct address_space *mapping = mpd->inode->i_mapping;
2298         struct pagevec pvec;
2299         unsigned int nr_pages;
2300         long left = mpd->wbc->nr_to_write;
2301         pgoff_t index = mpd->first_page;
2302         pgoff_t end = mpd->last_page;
2303         int tag;
2304         int i, err = 0;
2305         int blkbits = mpd->inode->i_blkbits;
2306         ext4_lblk_t lblk;
2307         struct buffer_head *head;
2308
2309         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2310                 tag = PAGECACHE_TAG_TOWRITE;
2311         else
2312                 tag = PAGECACHE_TAG_DIRTY;
2313
2314         pagevec_init(&pvec, 0);
2315         mpd->map.m_len = 0;
2316         mpd->next_page = index;
2317         while (index <= end) {
2318                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2319                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2320                 if (nr_pages == 0)
2321                         goto out;
2322
2323                 for (i = 0; i < nr_pages; i++) {
2324                         struct page *page = pvec.pages[i];
2325
2326                         /*
2327                          * At this point, the page may be truncated or
2328                          * invalidated (changing page->mapping to NULL), or
2329                          * even swizzled back from swapper_space to tmpfs file
2330                          * mapping. However, page->index will not change
2331                          * because we have a reference on the page.
2332                          */
2333                         if (page->index > end)
2334                                 goto out;
2335
2336                         /*
2337                          * Accumulated enough dirty pages? This doesn't apply
2338                          * to WB_SYNC_ALL mode. For integrity sync we have to
2339                          * keep going because someone may be concurrently
2340                          * dirtying pages, and we might have synced a lot of
2341                          * newly appeared dirty pages, but have not synced all
2342                          * of the old dirty pages.
2343                          */
2344                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2345                                 goto out;
2346
2347                         /* If we can't merge this page, we are done. */
2348                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2349                                 goto out;
2350
2351                         lock_page(page);
2352                         /*
2353                          * If the page is no longer dirty, or its mapping no
2354                          * longer corresponds to inode we are writing (which
2355                          * means it has been truncated or invalidated), or the
2356                          * page is already under writeback and we are not doing
2357                          * a data integrity writeback, skip the page
2358                          */
2359                         if (!PageDirty(page) ||
2360                             (PageWriteback(page) &&
2361                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2362                             unlikely(page->mapping != mapping)) {
2363                                 unlock_page(page);
2364                                 continue;
2365                         }
2366
2367                         wait_on_page_writeback(page);
2368                         BUG_ON(PageWriteback(page));
2369
2370                         if (mpd->map.m_len == 0)
2371                                 mpd->first_page = page->index;
2372                         mpd->next_page = page->index + 1;
2373                         /* Add all dirty buffers to mpd */
2374                         lblk = ((ext4_lblk_t)page->index) <<
2375                                 (PAGE_CACHE_SHIFT - blkbits);
2376                         head = page_buffers(page);
2377                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2378                         if (err <= 0)
2379                                 goto out;
2380                         err = 0;
2381                         left--;
2382                 }
2383                 pagevec_release(&pvec);
2384                 cond_resched();
2385         }
2386         return 0;
2387 out:
2388         pagevec_release(&pvec);
2389         return err;
2390 }
2391
2392 static int __writepage(struct page *page, struct writeback_control *wbc,
2393                        void *data)
2394 {
2395         struct address_space *mapping = data;
2396         int ret = ext4_writepage(page, wbc);
2397         mapping_set_error(mapping, ret);
2398         return ret;
2399 }
2400
2401 static int ext4_writepages(struct address_space *mapping,
2402                            struct writeback_control *wbc)
2403 {
2404         pgoff_t writeback_index = 0;
2405         long nr_to_write = wbc->nr_to_write;
2406         int range_whole = 0;
2407         int cycled = 1;
2408         handle_t *handle = NULL;
2409         struct mpage_da_data mpd;
2410         struct inode *inode = mapping->host;
2411         int needed_blocks, rsv_blocks = 0, ret = 0;
2412         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2413         bool done;
2414         struct blk_plug plug;
2415         bool give_up_on_write = false;
2416
2417         trace_ext4_writepages(inode, wbc);
2418
2419         /*
2420          * No pages to write? This is mainly a kludge to avoid starting
2421          * a transaction for special inodes like journal inode on last iput()
2422          * because that could violate lock ordering on umount
2423          */
2424         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2425                 goto out_writepages;
2426
2427         if (ext4_should_journal_data(inode)) {
2428                 struct blk_plug plug;
2429
2430                 blk_start_plug(&plug);
2431                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2432                 blk_finish_plug(&plug);
2433                 goto out_writepages;
2434         }
2435
2436         /*
2437          * If the filesystem has aborted, it is read-only, so return
2438          * right away instead of dumping stack traces later on that
2439          * will obscure the real source of the problem.  We test
2440          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2441          * the latter could be true if the filesystem is mounted
2442          * read-only, and in that case, ext4_writepages should
2443          * *never* be called, so if that ever happens, we would want
2444          * the stack trace.
2445          */
2446         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2447                 ret = -EROFS;
2448                 goto out_writepages;
2449         }
2450
2451         if (ext4_should_dioread_nolock(inode)) {
2452                 /*
2453                  * We may need to convert up to one extent per block in
2454                  * the page and we may dirty the inode.
2455                  */
2456                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2457         }
2458
2459         /*
2460          * If we have inline data and arrive here, it means that
2461          * we will soon create the block for the 1st page, so
2462          * we'd better clear the inline data here.
2463          */
2464         if (ext4_has_inline_data(inode)) {
2465                 /* Just inode will be modified... */
2466                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2467                 if (IS_ERR(handle)) {
2468                         ret = PTR_ERR(handle);
2469                         goto out_writepages;
2470                 }
2471                 BUG_ON(ext4_test_inode_state(inode,
2472                                 EXT4_STATE_MAY_INLINE_DATA));
2473                 ext4_destroy_inline_data(handle, inode);
2474                 ext4_journal_stop(handle);
2475         }
2476
2477         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2478                 range_whole = 1;
2479
2480         if (wbc->range_cyclic) {
2481                 writeback_index = mapping->writeback_index;
2482                 if (writeback_index)
2483                         cycled = 0;
2484                 mpd.first_page = writeback_index;
2485                 mpd.last_page = -1;
2486         } else {
2487                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2488                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2489         }
2490
2491         mpd.inode = inode;
2492         mpd.wbc = wbc;
2493         ext4_io_submit_init(&mpd.io_submit, wbc);
2494 retry:
2495         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2496                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2497         done = false;
2498         blk_start_plug(&plug);
2499         while (!done && mpd.first_page <= mpd.last_page) {
2500                 /* For each extent of pages we use new io_end */
2501                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2502                 if (!mpd.io_submit.io_end) {
2503                         ret = -ENOMEM;
2504                         break;
2505                 }
2506
2507                 /*
2508                  * We have two constraints: We find one extent to map and we
2509                  * must always write out whole page (makes a difference when
2510                  * blocksize < pagesize) so that we don't block on IO when we
2511                  * try to write out the rest of the page. Journalled mode is
2512                  * not supported by delalloc.
2513                  */
2514                 BUG_ON(ext4_should_journal_data(inode));
2515                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2516
2517                 /* start a new transaction */
2518                 handle = ext4_journal_start_with_reserve(inode,
2519                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2520                 if (IS_ERR(handle)) {
2521                         ret = PTR_ERR(handle);
2522                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2523                                "%ld pages, ino %lu; err %d", __func__,
2524                                 wbc->nr_to_write, inode->i_ino, ret);
2525                         /* Release allocated io_end */
2526                         ext4_put_io_end(mpd.io_submit.io_end);
2527                         break;
2528                 }
2529
2530                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2531                 ret = mpage_prepare_extent_to_map(&mpd);
2532                 if (!ret) {
2533                         if (mpd.map.m_len)
2534                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2535                                         &give_up_on_write);
2536                         else {
2537                                 /*
2538                                  * We scanned the whole range (or exhausted
2539                                  * nr_to_write), submitted what was mapped and
2540                                  * didn't find anything needing mapping. We are
2541                                  * done.
2542                                  */
2543                                 done = true;
2544                         }
2545                 }
2546                 ext4_journal_stop(handle);
2547                 /* Submit prepared bio */
2548                 ext4_io_submit(&mpd.io_submit);
2549                 /* Unlock pages we didn't use */
2550                 mpage_release_unused_pages(&mpd, give_up_on_write);
2551                 /* Drop our io_end reference we got from init */
2552                 ext4_put_io_end(mpd.io_submit.io_end);
2553
2554                 if (ret == -ENOSPC && sbi->s_journal) {
2555                         /*
2556                          * Commit the transaction which would
2557                          * free blocks released in the transaction
2558                          * and try again
2559                          */
2560                         jbd2_journal_force_commit_nested(sbi->s_journal);
2561                         ret = 0;
2562                         continue;
2563                 }
2564                 /* Fatal error - ENOMEM, EIO... */
2565                 if (ret)
2566                         break;
2567         }
2568         blk_finish_plug(&plug);
2569         if (!ret && !cycled && wbc->nr_to_write > 0) {
2570                 cycled = 1;
2571                 mpd.last_page = writeback_index - 1;
2572                 mpd.first_page = 0;
2573                 goto retry;
2574         }
2575
2576         /* Update index */
2577         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2578                 /*
2579                  * Set the writeback_index so that range_cyclic
2580                  * mode will write it back later
2581                  */
2582                 mapping->writeback_index = mpd.first_page;
2583
2584 out_writepages:
2585         trace_ext4_writepages_result(inode, wbc, ret,
2586                                      nr_to_write - wbc->nr_to_write);
2587         return ret;
2588 }
2589
2590 static int ext4_nonda_switch(struct super_block *sb)
2591 {
2592         s64 free_clusters, dirty_clusters;
2593         struct ext4_sb_info *sbi = EXT4_SB(sb);
2594
2595         /*
2596          * switch to non delalloc mode if we are running low
2597          * on free block. The free block accounting via percpu
2598          * counters can get slightly wrong with percpu_counter_batch getting
2599          * accumulated on each CPU without updating global counters
2600          * Delalloc need an accurate free block accounting. So switch
2601          * to non delalloc when we are near to error range.
2602          */
2603         free_clusters =
2604                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2605         dirty_clusters =
2606                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2607         /*
2608          * Start pushing delalloc when 1/2 of free blocks are dirty.
2609          */
2610         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2611                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2612
2613         if (2 * free_clusters < 3 * dirty_clusters ||
2614             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2615                 /*
2616                  * free block count is less than 150% of dirty blocks
2617                  * or free blocks is less than watermark
2618                  */
2619                 return 1;
2620         }
2621         return 0;
2622 }
2623
2624 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2625                                loff_t pos, unsigned len, unsigned flags,
2626                                struct page **pagep, void **fsdata)
2627 {
2628         int ret, retries = 0;
2629         struct page *page;
2630         pgoff_t index;
2631         struct inode *inode = mapping->host;
2632         handle_t *handle;
2633
2634         index = pos >> PAGE_CACHE_SHIFT;
2635
2636         if (ext4_nonda_switch(inode->i_sb)) {
2637                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2638                 return ext4_write_begin(file, mapping, pos,
2639                                         len, flags, pagep, fsdata);
2640         }
2641         *fsdata = (void *)0;
2642         trace_ext4_da_write_begin(inode, pos, len, flags);
2643
2644         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2645                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2646                                                       pos, len, flags,
2647                                                       pagep, fsdata);
2648                 if (ret < 0)
2649                         return ret;
2650                 if (ret == 1)
2651                         return 0;
2652         }
2653
2654         /*
2655          * grab_cache_page_write_begin() can take a long time if the
2656          * system is thrashing due to memory pressure, or if the page
2657          * is being written back.  So grab it first before we start
2658          * the transaction handle.  This also allows us to allocate
2659          * the page (if needed) without using GFP_NOFS.
2660          */
2661 retry_grab:
2662         page = grab_cache_page_write_begin(mapping, index, flags);
2663         if (!page)
2664                 return -ENOMEM;
2665         unlock_page(page);
2666
2667         /*
2668          * With delayed allocation, we don't log the i_disksize update
2669          * if there is delayed block allocation. But we still need
2670          * to journalling the i_disksize update if writes to the end
2671          * of file which has an already mapped buffer.
2672          */
2673 retry_journal:
2674         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2675         if (IS_ERR(handle)) {
2676                 page_cache_release(page);
2677                 return PTR_ERR(handle);
2678         }
2679
2680         lock_page(page);
2681         if (page->mapping != mapping) {
2682                 /* The page got truncated from under us */
2683                 unlock_page(page);
2684                 page_cache_release(page);
2685                 ext4_journal_stop(handle);
2686                 goto retry_grab;
2687         }
2688         /* In case writeback began while the page was unlocked */
2689         wait_for_stable_page(page);
2690
2691         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2692         if (ret < 0) {
2693                 unlock_page(page);
2694                 ext4_journal_stop(handle);
2695                 /*
2696                  * block_write_begin may have instantiated a few blocks
2697                  * outside i_size.  Trim these off again. Don't need
2698                  * i_size_read because we hold i_mutex.
2699                  */
2700                 if (pos + len > inode->i_size)
2701                         ext4_truncate_failed_write(inode);
2702
2703                 if (ret == -ENOSPC &&
2704                     ext4_should_retry_alloc(inode->i_sb, &retries))
2705                         goto retry_journal;
2706
2707                 page_cache_release(page);
2708                 return ret;
2709         }
2710
2711         *pagep = page;
2712         return ret;
2713 }
2714
2715 /*
2716  * Check if we should update i_disksize
2717  * when write to the end of file but not require block allocation
2718  */
2719 static int ext4_da_should_update_i_disksize(struct page *page,
2720                                             unsigned long offset)
2721 {
2722         struct buffer_head *bh;
2723         struct inode *inode = page->mapping->host;
2724         unsigned int idx;
2725         int i;
2726
2727         bh = page_buffers(page);
2728         idx = offset >> inode->i_blkbits;
2729
2730         for (i = 0; i < idx; i++)
2731                 bh = bh->b_this_page;
2732
2733         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2734                 return 0;
2735         return 1;
2736 }
2737
2738 static int ext4_da_write_end(struct file *file,
2739                              struct address_space *mapping,
2740                              loff_t pos, unsigned len, unsigned copied,
2741                              struct page *page, void *fsdata)
2742 {
2743         struct inode *inode = mapping->host;
2744         int ret = 0, ret2;
2745         handle_t *handle = ext4_journal_current_handle();
2746         loff_t new_i_size;
2747         unsigned long start, end;
2748         int write_mode = (int)(unsigned long)fsdata;
2749
2750         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2751                 return ext4_write_end(file, mapping, pos,
2752                                       len, copied, page, fsdata);
2753
2754         trace_ext4_da_write_end(inode, pos, len, copied);
2755         start = pos & (PAGE_CACHE_SIZE - 1);
2756         end = start + copied - 1;
2757
2758         /*
2759          * generic_write_end() will run mark_inode_dirty() if i_size
2760          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2761          * into that.
2762          */
2763         new_i_size = pos + copied;
2764         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2765                 if (ext4_has_inline_data(inode) ||
2766                     ext4_da_should_update_i_disksize(page, end)) {
2767                         down_write(&EXT4_I(inode)->i_data_sem);
2768                         if (new_i_size > EXT4_I(inode)->i_disksize)
2769                                 EXT4_I(inode)->i_disksize = new_i_size;
2770                         up_write(&EXT4_I(inode)->i_data_sem);
2771                         /* We need to mark inode dirty even if
2772                          * new_i_size is less that inode->i_size
2773                          * bu greater than i_disksize.(hint delalloc)
2774                          */
2775                         ext4_mark_inode_dirty(handle, inode);
2776                 }
2777         }
2778
2779         if (write_mode != CONVERT_INLINE_DATA &&
2780             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2781             ext4_has_inline_data(inode))
2782                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2783                                                      page);
2784         else
2785                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2786                                                         page, fsdata);
2787
2788         copied = ret2;
2789         if (ret2 < 0)
2790                 ret = ret2;
2791         ret2 = ext4_journal_stop(handle);
2792         if (!ret)
2793                 ret = ret2;
2794
2795         return ret ? ret : copied;
2796 }
2797
2798 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2799                                    unsigned int length)
2800 {
2801         /*
2802          * Drop reserved blocks
2803          */
2804         BUG_ON(!PageLocked(page));
2805         if (!page_has_buffers(page))
2806                 goto out;
2807
2808         ext4_da_page_release_reservation(page, offset, length);
2809
2810 out:
2811         ext4_invalidatepage(page, offset, length);
2812
2813         return;
2814 }
2815
2816 /*
2817  * Force all delayed allocation blocks to be allocated for a given inode.
2818  */
2819 int ext4_alloc_da_blocks(struct inode *inode)
2820 {
2821         trace_ext4_alloc_da_blocks(inode);
2822
2823         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2824             !EXT4_I(inode)->i_reserved_meta_blocks)
2825                 return 0;
2826
2827         /*
2828          * We do something simple for now.  The filemap_flush() will
2829          * also start triggering a write of the data blocks, which is
2830          * not strictly speaking necessary (and for users of
2831          * laptop_mode, not even desirable).  However, to do otherwise
2832          * would require replicating code paths in:
2833          *
2834          * ext4_writepages() ->
2835          *    write_cache_pages() ---> (via passed in callback function)
2836          *        __mpage_da_writepage() -->
2837          *           mpage_add_bh_to_extent()
2838          *           mpage_da_map_blocks()
2839          *
2840          * The problem is that write_cache_pages(), located in
2841          * mm/page-writeback.c, marks pages clean in preparation for
2842          * doing I/O, which is not desirable if we're not planning on
2843          * doing I/O at all.
2844          *
2845          * We could call write_cache_pages(), and then redirty all of
2846          * the pages by calling redirty_page_for_writepage() but that
2847          * would be ugly in the extreme.  So instead we would need to
2848          * replicate parts of the code in the above functions,
2849          * simplifying them because we wouldn't actually intend to
2850          * write out the pages, but rather only collect contiguous
2851          * logical block extents, call the multi-block allocator, and
2852          * then update the buffer heads with the block allocations.
2853          *
2854          * For now, though, we'll cheat by calling filemap_flush(),
2855          * which will map the blocks, and start the I/O, but not
2856          * actually wait for the I/O to complete.
2857          */
2858         return filemap_flush(inode->i_mapping);
2859 }
2860
2861 /*
2862  * bmap() is special.  It gets used by applications such as lilo and by
2863  * the swapper to find the on-disk block of a specific piece of data.
2864  *
2865  * Naturally, this is dangerous if the block concerned is still in the
2866  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2867  * filesystem and enables swap, then they may get a nasty shock when the
2868  * data getting swapped to that swapfile suddenly gets overwritten by
2869  * the original zero's written out previously to the journal and
2870  * awaiting writeback in the kernel's buffer cache.
2871  *
2872  * So, if we see any bmap calls here on a modified, data-journaled file,
2873  * take extra steps to flush any blocks which might be in the cache.
2874  */
2875 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2876 {
2877         struct inode *inode = mapping->host;
2878         journal_t *journal;
2879         int err;
2880
2881         /*
2882          * We can get here for an inline file via the FIBMAP ioctl
2883          */
2884         if (ext4_has_inline_data(inode))
2885                 return 0;
2886
2887         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2888                         test_opt(inode->i_sb, DELALLOC)) {
2889                 /*
2890                  * With delalloc we want to sync the file
2891                  * so that we can make sure we allocate
2892                  * blocks for file
2893                  */
2894                 filemap_write_and_wait(mapping);
2895         }
2896
2897         if (EXT4_JOURNAL(inode) &&
2898             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2899                 /*
2900                  * This is a REALLY heavyweight approach, but the use of
2901                  * bmap on dirty files is expected to be extremely rare:
2902                  * only if we run lilo or swapon on a freshly made file
2903                  * do we expect this to happen.
2904                  *
2905                  * (bmap requires CAP_SYS_RAWIO so this does not
2906                  * represent an unprivileged user DOS attack --- we'd be
2907                  * in trouble if mortal users could trigger this path at
2908                  * will.)
2909                  *
2910                  * NB. EXT4_STATE_JDATA is not set on files other than
2911                  * regular files.  If somebody wants to bmap a directory
2912                  * or symlink and gets confused because the buffer
2913                  * hasn't yet been flushed to disk, they deserve
2914                  * everything they get.
2915                  */
2916
2917                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2918                 journal = EXT4_JOURNAL(inode);
2919                 jbd2_journal_lock_updates(journal);
2920                 err = jbd2_journal_flush(journal);
2921                 jbd2_journal_unlock_updates(journal);
2922
2923                 if (err)
2924                         return 0;
2925         }
2926
2927         return generic_block_bmap(mapping, block, ext4_get_block);
2928 }
2929
2930 static int ext4_readpage(struct file *file, struct page *page)
2931 {
2932         int ret = -EAGAIN;
2933         struct inode *inode = page->mapping->host;
2934
2935         trace_ext4_readpage(page);
2936
2937         if (ext4_has_inline_data(inode))
2938                 ret = ext4_readpage_inline(inode, page);
2939
2940         if (ret == -EAGAIN)
2941                 return mpage_readpage(page, ext4_get_block);
2942
2943         return ret;
2944 }
2945
2946 static int
2947 ext4_readpages(struct file *file, struct address_space *mapping,
2948                 struct list_head *pages, unsigned nr_pages)
2949 {
2950         struct inode *inode = mapping->host;
2951
2952         /* If the file has inline data, no need to do readpages. */
2953         if (ext4_has_inline_data(inode))
2954                 return 0;
2955
2956         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2957 }
2958
2959 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2960                                 unsigned int length)
2961 {
2962         trace_ext4_invalidatepage(page, offset, length);
2963
2964         /* No journalling happens on data buffers when this function is used */
2965         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2966
2967         block_invalidatepage(page, offset, length);
2968 }
2969
2970 static int __ext4_journalled_invalidatepage(struct page *page,
2971                                             unsigned int offset,
2972                                             unsigned int length)
2973 {
2974         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2975
2976         trace_ext4_journalled_invalidatepage(page, offset, length);
2977
2978         /*
2979          * If it's a full truncate we just forget about the pending dirtying
2980          */
2981         if (offset == 0 && length == PAGE_CACHE_SIZE)
2982                 ClearPageChecked(page);
2983
2984         return jbd2_journal_invalidatepage(journal, page, offset, length);
2985 }
2986
2987 /* Wrapper for aops... */
2988 static void ext4_journalled_invalidatepage(struct page *page,
2989                                            unsigned int offset,
2990                                            unsigned int length)
2991 {
2992         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2993 }
2994
2995 static int ext4_releasepage(struct page *page, gfp_t wait)
2996 {
2997         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2998
2999         trace_ext4_releasepage(page);
3000
3001         /* Page has dirty journalled data -> cannot release */
3002         if (PageChecked(page))
3003                 return 0;
3004         if (journal)
3005                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3006         else
3007                 return try_to_free_buffers(page);
3008 }
3009
3010 /*
3011  * ext4_get_block used when preparing for a DIO write or buffer write.
3012  * We allocate an uinitialized extent if blocks haven't been allocated.
3013  * The extent will be converted to initialized after the IO is complete.
3014  */
3015 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3016                    struct buffer_head *bh_result, int create)
3017 {
3018         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3019                    inode->i_ino, create);
3020         return _ext4_get_block(inode, iblock, bh_result,
3021                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3022 }
3023
3024 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3025                    struct buffer_head *bh_result, int create)
3026 {
3027         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3028                    inode->i_ino, create);
3029         return _ext4_get_block(inode, iblock, bh_result,
3030                                EXT4_GET_BLOCKS_NO_LOCK);
3031 }
3032
3033 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3034                             ssize_t size, void *private)
3035 {
3036         ext4_io_end_t *io_end = iocb->private;
3037
3038         /* if not async direct IO just return */
3039         if (!io_end)
3040                 return;
3041
3042         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3043                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3044                   iocb->private, io_end->inode->i_ino, iocb, offset,
3045                   size);
3046
3047         iocb->private = NULL;
3048         io_end->offset = offset;
3049         io_end->size = size;
3050         ext4_put_io_end(io_end);
3051 }
3052
3053 /*
3054  * For ext4 extent files, ext4 will do direct-io write to holes,
3055  * preallocated extents, and those write extend the file, no need to
3056  * fall back to buffered IO.
3057  *
3058  * For holes, we fallocate those blocks, mark them as uninitialized
3059  * If those blocks were preallocated, we mark sure they are split, but
3060  * still keep the range to write as uninitialized.
3061  *
3062  * The unwritten extents will be converted to written when DIO is completed.
3063  * For async direct IO, since the IO may still pending when return, we
3064  * set up an end_io call back function, which will do the conversion
3065  * when async direct IO completed.
3066  *
3067  * If the O_DIRECT write will extend the file then add this inode to the
3068  * orphan list.  So recovery will truncate it back to the original size
3069  * if the machine crashes during the write.
3070  *
3071  */
3072 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3073                               const struct iovec *iov, loff_t offset,
3074                               unsigned long nr_segs)
3075 {
3076         struct file *file = iocb->ki_filp;
3077         struct inode *inode = file->f_mapping->host;
3078         ssize_t ret;
3079         size_t count = iov_length(iov, nr_segs);
3080         int overwrite = 0;
3081         get_block_t *get_block_func = NULL;
3082         int dio_flags = 0;
3083         loff_t final_size = offset + count;
3084         ext4_io_end_t *io_end = NULL;
3085
3086         /* Use the old path for reads and writes beyond i_size. */
3087         if (rw != WRITE || final_size > inode->i_size)
3088                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3089
3090         BUG_ON(iocb->private == NULL);
3091
3092         /*
3093          * Make all waiters for direct IO properly wait also for extent
3094          * conversion. This also disallows race between truncate() and
3095          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3096          */
3097         if (rw == WRITE)
3098                 atomic_inc(&inode->i_dio_count);
3099
3100         /* If we do a overwrite dio, i_mutex locking can be released */
3101         overwrite = *((int *)iocb->private);
3102
3103         if (overwrite) {
3104                 down_read(&EXT4_I(inode)->i_data_sem);
3105                 mutex_unlock(&inode->i_mutex);
3106         }
3107
3108         /*
3109          * We could direct write to holes and fallocate.
3110          *
3111          * Allocated blocks to fill the hole are marked as
3112          * uninitialized to prevent parallel buffered read to expose
3113          * the stale data before DIO complete the data IO.
3114          *
3115          * As to previously fallocated extents, ext4 get_block will
3116          * just simply mark the buffer mapped but still keep the
3117          * extents uninitialized.
3118          *
3119          * For non AIO case, we will convert those unwritten extents
3120          * to written after return back from blockdev_direct_IO.
3121          *
3122          * For async DIO, the conversion needs to be deferred when the
3123          * IO is completed. The ext4 end_io callback function will be
3124          * called to take care of the conversion work.  Here for async
3125          * case, we allocate an io_end structure to hook to the iocb.
3126          */
3127         iocb->private = NULL;
3128         ext4_inode_aio_set(inode, NULL);
3129         if (!is_sync_kiocb(iocb)) {
3130                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3131                 if (!io_end) {
3132                         ret = -ENOMEM;
3133                         goto retake_lock;
3134                 }
3135                 /*
3136                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3137                  */
3138                 iocb->private = ext4_get_io_end(io_end);
3139                 /*
3140                  * we save the io structure for current async direct
3141                  * IO, so that later ext4_map_blocks() could flag the
3142                  * io structure whether there is a unwritten extents
3143                  * needs to be converted when IO is completed.
3144                  */
3145                 ext4_inode_aio_set(inode, io_end);
3146         }
3147
3148         if (overwrite) {
3149                 get_block_func = ext4_get_block_write_nolock;
3150         } else {
3151                 get_block_func = ext4_get_block_write;
3152                 dio_flags = DIO_LOCKING;
3153         }
3154         ret = __blockdev_direct_IO(rw, iocb, inode,
3155                                    inode->i_sb->s_bdev, iov,
3156                                    offset, nr_segs,
3157                                    get_block_func,
3158                                    ext4_end_io_dio,
3159                                    NULL,
3160                                    dio_flags);
3161
3162         /*
3163          * Put our reference to io_end. This can free the io_end structure e.g.
3164          * in sync IO case or in case of error. It can even perform extent
3165          * conversion if all bios we submitted finished before we got here.
3166          * Note that in that case iocb->private can be already set to NULL
3167          * here.
3168          */
3169         if (io_end) {
3170                 ext4_inode_aio_set(inode, NULL);
3171                 ext4_put_io_end(io_end);
3172                 /*
3173                  * When no IO was submitted ext4_end_io_dio() was not
3174                  * called so we have to put iocb's reference.
3175                  */
3176                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3177                         WARN_ON(iocb->private != io_end);
3178                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3179                         ext4_put_io_end(io_end);
3180                         iocb->private = NULL;
3181                 }
3182         }
3183         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3184                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3185                 int err;
3186                 /*
3187                  * for non AIO case, since the IO is already
3188                  * completed, we could do the conversion right here
3189                  */
3190                 err = ext4_convert_unwritten_extents(NULL, inode,
3191                                                      offset, ret);
3192                 if (err < 0)
3193                         ret = err;
3194                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3195         }
3196
3197 retake_lock:
3198         if (rw == WRITE)
3199                 inode_dio_done(inode);
3200         /* take i_mutex locking again if we do a ovewrite dio */
3201         if (overwrite) {
3202                 up_read(&EXT4_I(inode)->i_data_sem);
3203                 mutex_lock(&inode->i_mutex);
3204         }
3205
3206         return ret;
3207 }
3208
3209 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3210                               const struct iovec *iov, loff_t offset,
3211                               unsigned long nr_segs)
3212 {
3213         struct file *file = iocb->ki_filp;
3214         struct inode *inode = file->f_mapping->host;
3215         ssize_t ret;
3216
3217         /*
3218          * If we are doing data journalling we don't support O_DIRECT
3219          */
3220         if (ext4_should_journal_data(inode))
3221                 return 0;
3222
3223         /* Let buffer I/O handle the inline data case. */
3224         if (ext4_has_inline_data(inode))
3225                 return 0;
3226
3227         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3228         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3229                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3230         else
3231                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3232         trace_ext4_direct_IO_exit(inode, offset,
3233                                 iov_length(iov, nr_segs), rw, ret);
3234         return ret;
3235 }
3236
3237 /*
3238  * Pages can be marked dirty completely asynchronously from ext4's journalling
3239  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3240  * much here because ->set_page_dirty is called under VFS locks.  The page is
3241  * not necessarily locked.
3242  *
3243  * We cannot just dirty the page and leave attached buffers clean, because the
3244  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3245  * or jbddirty because all the journalling code will explode.
3246  *
3247  * So what we do is to mark the page "pending dirty" and next time writepage
3248  * is called, propagate that into the buffers appropriately.
3249  */
3250 static int ext4_journalled_set_page_dirty(struct page *page)
3251 {
3252         SetPageChecked(page);
3253         return __set_page_dirty_nobuffers(page);
3254 }
3255
3256 static const struct address_space_operations ext4_aops = {
3257         .readpage               = ext4_readpage,
3258         .readpages              = ext4_readpages,
3259         .writepage              = ext4_writepage,
3260         .writepages             = ext4_writepages,
3261         .write_begin            = ext4_write_begin,
3262         .write_end              = ext4_write_end,
3263         .bmap                   = ext4_bmap,
3264         .invalidatepage         = ext4_invalidatepage,
3265         .releasepage            = ext4_releasepage,
3266         .direct_IO              = ext4_direct_IO,
3267         .migratepage            = buffer_migrate_page,
3268         .is_partially_uptodate  = block_is_partially_uptodate,
3269         .error_remove_page      = generic_error_remove_page,
3270 };
3271
3272 static const struct address_space_operations ext4_journalled_aops = {
3273         .readpage               = ext4_readpage,
3274         .readpages              = ext4_readpages,
3275         .writepage              = ext4_writepage,
3276         .writepages             = ext4_writepages,
3277         .write_begin            = ext4_write_begin,
3278         .write_end              = ext4_journalled_write_end,
3279         .set_page_dirty         = ext4_journalled_set_page_dirty,
3280         .bmap                   = ext4_bmap,
3281         .invalidatepage         = ext4_journalled_invalidatepage,
3282         .releasepage            = ext4_releasepage,
3283         .direct_IO              = ext4_direct_IO,
3284         .is_partially_uptodate  = block_is_partially_uptodate,
3285         .error_remove_page      = generic_error_remove_page,
3286 };
3287
3288 static const struct address_space_operations ext4_da_aops = {
3289         .readpage               = ext4_readpage,
3290         .readpages              = ext4_readpages,
3291         .writepage              = ext4_writepage,
3292         .writepages             = ext4_writepages,
3293         .write_begin            = ext4_da_write_begin,
3294         .write_end              = ext4_da_write_end,
3295         .bmap                   = ext4_bmap,
3296         .invalidatepage         = ext4_da_invalidatepage,
3297         .releasepage            = ext4_releasepage,
3298         .direct_IO              = ext4_direct_IO,
3299         .migratepage            = buffer_migrate_page,
3300         .is_partially_uptodate  = block_is_partially_uptodate,
3301         .error_remove_page      = generic_error_remove_page,
3302 };
3303
3304 void ext4_set_aops(struct inode *inode)
3305 {
3306         switch (ext4_inode_journal_mode(inode)) {
3307         case EXT4_INODE_ORDERED_DATA_MODE:
3308                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3309                 break;
3310         case EXT4_INODE_WRITEBACK_DATA_MODE:
3311                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3312                 break;
3313         case EXT4_INODE_JOURNAL_DATA_MODE:
3314                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3315                 return;
3316         default:
3317                 BUG();
3318         }
3319         if (test_opt(inode->i_sb, DELALLOC))
3320                 inode->i_mapping->a_ops = &ext4_da_aops;
3321         else
3322                 inode->i_mapping->a_ops = &ext4_aops;
3323 }
3324
3325 /*
3326  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3327  * up to the end of the block which corresponds to `from'.
3328  * This required during truncate. We need to physically zero the tail end
3329  * of that block so it doesn't yield old data if the file is later grown.
3330  */
3331 int ext4_block_truncate_page(handle_t *handle,
3332                 struct address_space *mapping, loff_t from)
3333 {
3334         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3335         unsigned length;
3336         unsigned blocksize;
3337         struct inode *inode = mapping->host;
3338
3339         blocksize = inode->i_sb->s_blocksize;
3340         length = blocksize - (offset & (blocksize - 1));
3341
3342         return ext4_block_zero_page_range(handle, mapping, from, length);
3343 }
3344
3345 /*
3346  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3347  * starting from file offset 'from'.  The range to be zero'd must
3348  * be contained with in one block.  If the specified range exceeds
3349  * the end of the block it will be shortened to end of the block
3350  * that cooresponds to 'from'
3351  */
3352 int ext4_block_zero_page_range(handle_t *handle,
3353                 struct address_space *mapping, loff_t from, loff_t length)
3354 {
3355         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3356         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3357         unsigned blocksize, max, pos;
3358         ext4_lblk_t iblock;
3359         struct inode *inode = mapping->host;
3360         struct buffer_head *bh;
3361         struct page *page;
3362         int err = 0;
3363
3364         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3365                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3366         if (!page)
3367                 return -ENOMEM;
3368
3369         blocksize = inode->i_sb->s_blocksize;
3370         max = blocksize - (offset & (blocksize - 1));
3371
3372         /*
3373          * correct length if it does not fall between
3374          * 'from' and the end of the block
3375          */
3376         if (length > max || length < 0)
3377                 length = max;
3378
3379         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3380
3381         if (!page_has_buffers(page))
3382                 create_empty_buffers(page, blocksize, 0);
3383
3384         /* Find the buffer that contains "offset" */
3385         bh = page_buffers(page);
3386         pos = blocksize;
3387         while (offset >= pos) {
3388                 bh = bh->b_this_page;
3389                 iblock++;
3390                 pos += blocksize;
3391         }
3392         if (buffer_freed(bh)) {
3393                 BUFFER_TRACE(bh, "freed: skip");
3394                 goto unlock;
3395         }
3396         if (!buffer_mapped(bh)) {
3397                 BUFFER_TRACE(bh, "unmapped");
3398                 ext4_get_block(inode, iblock, bh, 0);
3399                 /* unmapped? It's a hole - nothing to do */
3400                 if (!buffer_mapped(bh)) {
3401                         BUFFER_TRACE(bh, "still unmapped");
3402                         goto unlock;
3403                 }
3404         }
3405
3406         /* Ok, it's mapped. Make sure it's up-to-date */
3407         if (PageUptodate(page))
3408                 set_buffer_uptodate(bh);
3409
3410         if (!buffer_uptodate(bh)) {
3411                 err = -EIO;
3412                 ll_rw_block(READ, 1, &bh);
3413                 wait_on_buffer(bh);
3414                 /* Uhhuh. Read error. Complain and punt. */
3415                 if (!buffer_uptodate(bh))
3416                         goto unlock;
3417         }
3418         if (ext4_should_journal_data(inode)) {
3419                 BUFFER_TRACE(bh, "get write access");
3420                 err = ext4_journal_get_write_access(handle, bh);
3421                 if (err)
3422                         goto unlock;
3423         }
3424         zero_user(page, offset, length);
3425         BUFFER_TRACE(bh, "zeroed end of block");
3426
3427         if (ext4_should_journal_data(inode)) {
3428                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3429         } else {
3430                 err = 0;
3431                 mark_buffer_dirty(bh);
3432                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3433                         err = ext4_jbd2_file_inode(handle, inode);
3434         }
3435
3436 unlock:
3437         unlock_page(page);
3438         page_cache_release(page);
3439         return err;
3440 }
3441
3442 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3443                              loff_t lstart, loff_t length)
3444 {
3445         struct super_block *sb = inode->i_sb;
3446         struct address_space *mapping = inode->i_mapping;
3447         unsigned partial_start, partial_end;
3448         ext4_fsblk_t start, end;
3449         loff_t byte_end = (lstart + length - 1);
3450         int err = 0;
3451
3452         partial_start = lstart & (sb->s_blocksize - 1);
3453         partial_end = byte_end & (sb->s_blocksize - 1);
3454
3455         start = lstart >> sb->s_blocksize_bits;
3456         end = byte_end >> sb->s_blocksize_bits;
3457
3458         /* Handle partial zero within the single block */
3459         if (start == end &&
3460             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3461                 err = ext4_block_zero_page_range(handle, mapping,
3462                                                  lstart, length);
3463                 return err;
3464         }
3465         /* Handle partial zero out on the start of the range */
3466         if (partial_start) {
3467                 err = ext4_block_zero_page_range(handle, mapping,
3468                                                  lstart, sb->s_blocksize);
3469                 if (err)
3470                         return err;
3471         }
3472         /* Handle partial zero out on the end of the range */
3473         if (partial_end != sb->s_blocksize - 1)
3474                 err = ext4_block_zero_page_range(handle, mapping,
3475                                                  byte_end - partial_end,
3476                                                  partial_end + 1);
3477         return err;
3478 }
3479
3480 int ext4_can_truncate(struct inode *inode)
3481 {
3482         if (S_ISREG(inode->i_mode))
3483                 return 1;
3484         if (S_ISDIR(inode->i_mode))
3485                 return 1;
3486         if (S_ISLNK(inode->i_mode))
3487                 return !ext4_inode_is_fast_symlink(inode);
3488         return 0;
3489 }
3490
3491 /*
3492  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3493  * associated with the given offset and length
3494  *
3495  * @inode:  File inode
3496  * @offset: The offset where the hole will begin
3497  * @len:    The length of the hole
3498  *
3499  * Returns: 0 on success or negative on failure
3500  */
3501
3502 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3503 {
3504         struct super_block *sb = inode->i_sb;
3505         ext4_lblk_t first_block, stop_block;
3506         struct address_space *mapping = inode->i_mapping;
3507         loff_t first_block_offset, last_block_offset;
3508         handle_t *handle;
3509         unsigned int credits;
3510         int ret = 0;
3511
3512         if (!S_ISREG(inode->i_mode))
3513                 return -EOPNOTSUPP;
3514
3515         trace_ext4_punch_hole(inode, offset, length, 0);
3516
3517         /*
3518          * Write out all dirty pages to avoid race conditions
3519          * Then release them.
3520          */
3521         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3522                 ret = filemap_write_and_wait_range(mapping, offset,
3523                                                    offset + length - 1);
3524                 if (ret)
3525                         return ret;
3526         }
3527
3528         mutex_lock(&inode->i_mutex);
3529         /* It's not possible punch hole on append only file */
3530         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3531                 ret = -EPERM;
3532                 goto out_mutex;
3533         }
3534         if (IS_SWAPFILE(inode)) {
3535                 ret = -ETXTBSY;
3536                 goto out_mutex;
3537         }
3538
3539         /* No need to punch hole beyond i_size */
3540         if (offset >= inode->i_size)
3541                 goto out_mutex;
3542
3543         /*
3544          * If the hole extends beyond i_size, set the hole
3545          * to end after the page that contains i_size
3546          */
3547         if (offset + length > inode->i_size) {
3548                 length = inode->i_size +
3549                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3550                    offset;
3551         }
3552
3553         if (offset & (sb->s_blocksize - 1) ||
3554             (offset + length) & (sb->s_blocksize - 1)) {
3555                 /*
3556                  * Attach jinode to inode for jbd2 if we do any zeroing of
3557                  * partial block
3558                  */
3559                 ret = ext4_inode_attach_jinode(inode);
3560                 if (ret < 0)
3561                         goto out_mutex;
3562
3563         }
3564
3565         first_block_offset = round_up(offset, sb->s_blocksize);
3566         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3567
3568         /* Now release the pages and zero block aligned part of pages*/
3569         if (last_block_offset > first_block_offset)
3570                 truncate_pagecache_range(inode, first_block_offset,
3571                                          last_block_offset);
3572
3573         /* Wait all existing dio workers, newcomers will block on i_mutex */
3574         ext4_inode_block_unlocked_dio(inode);
3575         inode_dio_wait(inode);
3576
3577         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3578                 credits = ext4_writepage_trans_blocks(inode);
3579         else
3580                 credits = ext4_blocks_for_truncate(inode);
3581         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3582         if (IS_ERR(handle)) {
3583                 ret = PTR_ERR(handle);
3584                 ext4_std_error(sb, ret);
3585                 goto out_dio;
3586         }
3587
3588         ret = ext4_zero_partial_blocks(handle, inode, offset,
3589                                        length);
3590         if (ret)
3591                 goto out_stop;
3592
3593         first_block = (offset + sb->s_blocksize - 1) >>
3594                 EXT4_BLOCK_SIZE_BITS(sb);
3595         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3596
3597         /* If there are no blocks to remove, return now */
3598         if (first_block >= stop_block)
3599                 goto out_stop;
3600
3601         down_write(&EXT4_I(inode)->i_data_sem);
3602         ext4_discard_preallocations(inode);
3603
3604         ret = ext4_es_remove_extent(inode, first_block,
3605                                     stop_block - first_block);
3606         if (ret) {
3607                 up_write(&EXT4_I(inode)->i_data_sem);
3608                 goto out_stop;
3609         }
3610
3611         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3612                 ret = ext4_ext_remove_space(inode, first_block,
3613                                             stop_block - 1);
3614         else
3615                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3616                                             stop_block);
3617
3618         ext4_discard_preallocations(inode);
3619         up_write(&EXT4_I(inode)->i_data_sem);
3620         if (IS_SYNC(inode))
3621                 ext4_handle_sync(handle);
3622
3623         /* Now release the pages again to reduce race window */
3624         if (last_block_offset > first_block_offset)
3625                 truncate_pagecache_range(inode, first_block_offset,
3626                                          last_block_offset);
3627
3628         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3629         ext4_mark_inode_dirty(handle, inode);
3630 out_stop:
3631         ext4_journal_stop(handle);
3632 out_dio:
3633         ext4_inode_resume_unlocked_dio(inode);
3634 out_mutex:
3635         mutex_unlock(&inode->i_mutex);
3636         return ret;
3637 }
3638
3639 int ext4_inode_attach_jinode(struct inode *inode)
3640 {
3641         struct ext4_inode_info *ei = EXT4_I(inode);
3642         struct jbd2_inode *jinode;
3643
3644         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3645                 return 0;
3646
3647         jinode = jbd2_alloc_inode(GFP_KERNEL);
3648         spin_lock(&inode->i_lock);
3649         if (!ei->jinode) {
3650                 if (!jinode) {
3651                         spin_unlock(&inode->i_lock);
3652                         return -ENOMEM;
3653                 }
3654                 ei->jinode = jinode;
3655                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3656                 jinode = NULL;
3657         }
3658         spin_unlock(&inode->i_lock);
3659         if (unlikely(jinode != NULL))
3660                 jbd2_free_inode(jinode);
3661         return 0;
3662 }
3663
3664 /*
3665  * ext4_truncate()
3666  *
3667  * We block out ext4_get_block() block instantiations across the entire
3668  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3669  * simultaneously on behalf of the same inode.
3670  *
3671  * As we work through the truncate and commit bits of it to the journal there
3672  * is one core, guiding principle: the file's tree must always be consistent on
3673  * disk.  We must be able to restart the truncate after a crash.
3674  *
3675  * The file's tree may be transiently inconsistent in memory (although it
3676  * probably isn't), but whenever we close off and commit a journal transaction,
3677  * the contents of (the filesystem + the journal) must be consistent and
3678  * restartable.  It's pretty simple, really: bottom up, right to left (although
3679  * left-to-right works OK too).
3680  *
3681  * Note that at recovery time, journal replay occurs *before* the restart of
3682  * truncate against the orphan inode list.
3683  *
3684  * The committed inode has the new, desired i_size (which is the same as
3685  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3686  * that this inode's truncate did not complete and it will again call
3687  * ext4_truncate() to have another go.  So there will be instantiated blocks
3688  * to the right of the truncation point in a crashed ext4 filesystem.  But
3689  * that's fine - as long as they are linked from the inode, the post-crash
3690  * ext4_truncate() run will find them and release them.
3691  */
3692 void ext4_truncate(struct inode *inode)
3693 {
3694         struct ext4_inode_info *ei = EXT4_I(inode);
3695         unsigned int credits;
3696         handle_t *handle;
3697         struct address_space *mapping = inode->i_mapping;
3698
3699         /*
3700          * There is a possibility that we're either freeing the inode
3701          * or it completely new indode. In those cases we might not
3702          * have i_mutex locked because it's not necessary.
3703          */
3704         if (!(inode->i_state & (I_NEW|I_FREEING)))
3705                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3706         trace_ext4_truncate_enter(inode);
3707
3708         if (!ext4_can_truncate(inode))
3709                 return;
3710
3711         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3712
3713         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3714                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3715
3716         if (ext4_has_inline_data(inode)) {
3717                 int has_inline = 1;
3718
3719                 ext4_inline_data_truncate(inode, &has_inline);
3720                 if (has_inline)
3721                         return;
3722         }
3723
3724         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3725         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3726                 if (ext4_inode_attach_jinode(inode) < 0)
3727                         return;
3728         }
3729
3730         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3731                 credits = ext4_writepage_trans_blocks(inode);
3732         else
3733                 credits = ext4_blocks_for_truncate(inode);
3734
3735         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3736         if (IS_ERR(handle)) {
3737                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3738                 return;
3739         }
3740
3741         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3742                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3743
3744         /*
3745          * We add the inode to the orphan list, so that if this
3746          * truncate spans multiple transactions, and we crash, we will
3747          * resume the truncate when the filesystem recovers.  It also
3748          * marks the inode dirty, to catch the new size.
3749          *
3750          * Implication: the file must always be in a sane, consistent
3751          * truncatable state while each transaction commits.
3752          */
3753         if (ext4_orphan_add(handle, inode))
3754                 goto out_stop;
3755
3756         down_write(&EXT4_I(inode)->i_data_sem);
3757
3758         ext4_discard_preallocations(inode);
3759
3760         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3761                 ext4_ext_truncate(handle, inode);
3762         else
3763                 ext4_ind_truncate(handle, inode);
3764
3765         up_write(&ei->i_data_sem);
3766
3767         if (IS_SYNC(inode))
3768                 ext4_handle_sync(handle);
3769
3770 out_stop:
3771         /*
3772          * If this was a simple ftruncate() and the file will remain alive,
3773          * then we need to clear up the orphan record which we created above.
3774          * However, if this was a real unlink then we were called by
3775          * ext4_delete_inode(), and we allow that function to clean up the
3776          * orphan info for us.
3777          */
3778         if (inode->i_nlink)
3779                 ext4_orphan_del(handle, inode);
3780
3781         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3782         ext4_mark_inode_dirty(handle, inode);
3783         ext4_journal_stop(handle);
3784
3785         trace_ext4_truncate_exit(inode);
3786 }
3787
3788 /*
3789  * ext4_get_inode_loc returns with an extra refcount against the inode's
3790  * underlying buffer_head on success. If 'in_mem' is true, we have all
3791  * data in memory that is needed to recreate the on-disk version of this
3792  * inode.
3793  */
3794 static int __ext4_get_inode_loc(struct inode *inode,
3795                                 struct ext4_iloc *iloc, int in_mem)
3796 {
3797         struct ext4_group_desc  *gdp;
3798         struct buffer_head      *bh;
3799         struct super_block      *sb = inode->i_sb;
3800         ext4_fsblk_t            block;
3801         int                     inodes_per_block, inode_offset;
3802
3803         iloc->bh = NULL;
3804         if (!ext4_valid_inum(sb, inode->i_ino))
3805                 return -EIO;
3806
3807         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3808         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3809         if (!gdp)
3810                 return -EIO;
3811
3812         /*
3813          * Figure out the offset within the block group inode table
3814          */
3815         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3816         inode_offset = ((inode->i_ino - 1) %
3817                         EXT4_INODES_PER_GROUP(sb));
3818         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3819         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3820
3821         bh = sb_getblk(sb, block);
3822         if (unlikely(!bh))
3823                 return -ENOMEM;
3824         if (!buffer_uptodate(bh)) {
3825                 lock_buffer(bh);
3826
3827                 /*
3828                  * If the buffer has the write error flag, we have failed
3829                  * to write out another inode in the same block.  In this
3830                  * case, we don't have to read the block because we may
3831                  * read the old inode data successfully.
3832                  */
3833                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3834                         set_buffer_uptodate(bh);
3835
3836                 if (buffer_uptodate(bh)) {
3837                         /* someone brought it uptodate while we waited */
3838                         unlock_buffer(bh);
3839                         goto has_buffer;
3840                 }
3841
3842                 /*
3843                  * If we have all information of the inode in memory and this
3844                  * is the only valid inode in the block, we need not read the
3845                  * block.
3846                  */
3847                 if (in_mem) {
3848                         struct buffer_head *bitmap_bh;
3849                         int i, start;
3850
3851                         start = inode_offset & ~(inodes_per_block - 1);
3852
3853                         /* Is the inode bitmap in cache? */
3854                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3855                         if (unlikely(!bitmap_bh))
3856                                 goto make_io;
3857
3858                         /*
3859                          * If the inode bitmap isn't in cache then the
3860                          * optimisation may end up performing two reads instead
3861                          * of one, so skip it.
3862                          */
3863                         if (!buffer_uptodate(bitmap_bh)) {
3864                                 brelse(bitmap_bh);
3865                                 goto make_io;
3866                         }
3867                         for (i = start; i < start + inodes_per_block; i++) {
3868                                 if (i == inode_offset)
3869                                         continue;
3870                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3871                                         break;
3872                         }
3873                         brelse(bitmap_bh);
3874                         if (i == start + inodes_per_block) {
3875                                 /* all other inodes are free, so skip I/O */
3876                                 memset(bh->b_data, 0, bh->b_size);
3877                                 set_buffer_uptodate(bh);
3878                                 unlock_buffer(bh);
3879                                 goto has_buffer;
3880                         }
3881                 }
3882
3883 make_io:
3884                 /*
3885                  * If we need to do any I/O, try to pre-readahead extra
3886                  * blocks from the inode table.
3887                  */
3888                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3889                         ext4_fsblk_t b, end, table;
3890                         unsigned num;
3891                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3892
3893                         table = ext4_inode_table(sb, gdp);
3894                         /* s_inode_readahead_blks is always a power of 2 */
3895                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3896                         if (table > b)
3897                                 b = table;
3898                         end = b + ra_blks;
3899                         num = EXT4_INODES_PER_GROUP(sb);
3900                         if (ext4_has_group_desc_csum(sb))
3901                                 num -= ext4_itable_unused_count(sb, gdp);
3902                         table += num / inodes_per_block;
3903                         if (end > table)
3904                                 end = table;
3905                         while (b <= end)
3906                                 sb_breadahead(sb, b++);
3907                 }
3908
3909                 /*
3910                  * There are other valid inodes in the buffer, this inode
3911                  * has in-inode xattrs, or we don't have this inode in memory.
3912                  * Read the block from disk.
3913                  */
3914                 trace_ext4_load_inode(inode);
3915                 get_bh(bh);
3916                 bh->b_end_io = end_buffer_read_sync;
3917                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3918                 wait_on_buffer(bh);
3919                 if (!buffer_uptodate(bh)) {
3920                         EXT4_ERROR_INODE_BLOCK(inode, block,
3921                                                "unable to read itable block");
3922                         brelse(bh);
3923                         return -EIO;
3924                 }
3925         }
3926 has_buffer:
3927         iloc->bh = bh;
3928         return 0;
3929 }
3930
3931 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3932 {
3933         /* We have all inode data except xattrs in memory here. */
3934         return __ext4_get_inode_loc(inode, iloc,
3935                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3936 }
3937
3938 void ext4_set_inode_flags(struct inode *inode)
3939 {
3940         unsigned int flags = EXT4_I(inode)->i_flags;
3941
3942         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3943         if (flags & EXT4_SYNC_FL)
3944                 inode->i_flags |= S_SYNC;
3945         if (flags & EXT4_APPEND_FL)
3946                 inode->i_flags |= S_APPEND;
3947         if (flags & EXT4_IMMUTABLE_FL)
3948                 inode->i_flags |= S_IMMUTABLE;
3949         if (flags & EXT4_NOATIME_FL)
3950                 inode->i_flags |= S_NOATIME;
3951         if (flags & EXT4_DIRSYNC_FL)
3952                 inode->i_flags |= S_DIRSYNC;
3953 }
3954
3955 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3956 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3957 {
3958         unsigned int vfs_fl;
3959         unsigned long old_fl, new_fl;
3960
3961         do {
3962                 vfs_fl = ei->vfs_inode.i_flags;
3963                 old_fl = ei->i_flags;
3964                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3965                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3966                                 EXT4_DIRSYNC_FL);
3967                 if (vfs_fl & S_SYNC)
3968                         new_fl |= EXT4_SYNC_FL;
3969                 if (vfs_fl & S_APPEND)
3970                         new_fl |= EXT4_APPEND_FL;
3971                 if (vfs_fl & S_IMMUTABLE)
3972                         new_fl |= EXT4_IMMUTABLE_FL;
3973                 if (vfs_fl & S_NOATIME)
3974                         new_fl |= EXT4_NOATIME_FL;
3975                 if (vfs_fl & S_DIRSYNC)
3976                         new_fl |= EXT4_DIRSYNC_FL;
3977         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3978 }
3979
3980 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3981                                   struct ext4_inode_info *ei)
3982 {
3983         blkcnt_t i_blocks ;
3984         struct inode *inode = &(ei->vfs_inode);
3985         struct super_block *sb = inode->i_sb;
3986
3987         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3988                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3989                 /* we are using combined 48 bit field */
3990                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3991                                         le32_to_cpu(raw_inode->i_blocks_lo);
3992                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3993                         /* i_blocks represent file system block size */
3994                         return i_blocks  << (inode->i_blkbits - 9);
3995                 } else {
3996                         return i_blocks;
3997                 }
3998         } else {
3999                 return le32_to_cpu(raw_inode->i_blocks_lo);
4000         }
4001 }
4002
4003 static inline void ext4_iget_extra_inode(struct inode *inode,
4004                                          struct ext4_inode *raw_inode,
4005                                          struct ext4_inode_info *ei)
4006 {
4007         __le32 *magic = (void *)raw_inode +
4008                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4009         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4010                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4011                 ext4_find_inline_data_nolock(inode);
4012         } else
4013                 EXT4_I(inode)->i_inline_off = 0;
4014 }
4015
4016 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4017 {
4018         struct ext4_iloc iloc;
4019         struct ext4_inode *raw_inode;
4020         struct ext4_inode_info *ei;
4021         struct inode *inode;
4022         journal_t *journal = EXT4_SB(sb)->s_journal;
4023         long ret;
4024         int block;
4025         uid_t i_uid;
4026         gid_t i_gid;
4027
4028         inode = iget_locked(sb, ino);
4029         if (!inode)
4030                 return ERR_PTR(-ENOMEM);
4031         if (!(inode->i_state & I_NEW))
4032                 return inode;
4033
4034         ei = EXT4_I(inode);
4035         iloc.bh = NULL;
4036
4037         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4038         if (ret < 0)
4039                 goto bad_inode;
4040         raw_inode = ext4_raw_inode(&iloc);
4041
4042         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4043                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4044                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4045                     EXT4_INODE_SIZE(inode->i_sb)) {
4046                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4047                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4048                                 EXT4_INODE_SIZE(inode->i_sb));
4049                         ret = -EIO;
4050                         goto bad_inode;
4051                 }
4052         } else
4053                 ei->i_extra_isize = 0;
4054
4055         /* Precompute checksum seed for inode metadata */
4056         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4057                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4058                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4059                 __u32 csum;
4060                 __le32 inum = cpu_to_le32(inode->i_ino);
4061                 __le32 gen = raw_inode->i_generation;
4062                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4063                                    sizeof(inum));
4064                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4065                                               sizeof(gen));
4066         }
4067
4068         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4069                 EXT4_ERROR_INODE(inode, "checksum invalid");
4070                 ret = -EIO;
4071                 goto bad_inode;
4072         }
4073
4074         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4075         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4076         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4077         if (!(test_opt(inode->i_sb, NO_UID32))) {
4078                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4079                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4080         }
4081         i_uid_write(inode, i_uid);
4082         i_gid_write(inode, i_gid);
4083         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4084
4085         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4086         ei->i_inline_off = 0;
4087         ei->i_dir_start_lookup = 0;
4088         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4089         /* We now have enough fields to check if the inode was active or not.
4090          * This is needed because nfsd might try to access dead inodes
4091          * the test is that same one that e2fsck uses
4092          * NeilBrown 1999oct15
4093          */
4094         if (inode->i_nlink == 0) {
4095                 if ((inode->i_mode == 0 ||
4096                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4097                     ino != EXT4_BOOT_LOADER_INO) {
4098                         /* this inode is deleted */
4099                         ret = -ESTALE;
4100                         goto bad_inode;
4101                 }
4102                 /* The only unlinked inodes we let through here have
4103                  * valid i_mode and are being read by the orphan
4104                  * recovery code: that's fine, we're about to complete
4105                  * the process of deleting those.
4106                  * OR it is the EXT4_BOOT_LOADER_INO which is
4107                  * not initialized on a new filesystem. */
4108         }
4109         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4110         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4111         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4112         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4113                 ei->i_file_acl |=
4114                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4115         inode->i_size = ext4_isize(raw_inode);
4116         ei->i_disksize = inode->i_size;
4117 #ifdef CONFIG_QUOTA
4118         ei->i_reserved_quota = 0;
4119 #endif
4120         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4121         ei->i_block_group = iloc.block_group;
4122         ei->i_last_alloc_group = ~0;
4123         /*
4124          * NOTE! The in-memory inode i_data array is in little-endian order
4125          * even on big-endian machines: we do NOT byteswap the block numbers!
4126          */
4127         for (block = 0; block < EXT4_N_BLOCKS; block++)
4128                 ei->i_data[block] = raw_inode->i_block[block];
4129         INIT_LIST_HEAD(&ei->i_orphan);
4130
4131         /*
4132          * Set transaction id's of transactions that have to be committed
4133          * to finish f[data]sync. We set them to currently running transaction
4134          * as we cannot be sure that the inode or some of its metadata isn't
4135          * part of the transaction - the inode could have been reclaimed and
4136          * now it is reread from disk.
4137          */
4138         if (journal) {
4139                 transaction_t *transaction;
4140                 tid_t tid;
4141
4142                 read_lock(&journal->j_state_lock);
4143                 if (journal->j_running_transaction)
4144                         transaction = journal->j_running_transaction;
4145                 else
4146                         transaction = journal->j_committing_transaction;
4147                 if (transaction)
4148                         tid = transaction->t_tid;
4149                 else
4150                         tid = journal->j_commit_sequence;
4151                 read_unlock(&journal->j_state_lock);
4152                 ei->i_sync_tid = tid;
4153                 ei->i_datasync_tid = tid;
4154         }
4155
4156         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4157                 if (ei->i_extra_isize == 0) {
4158                         /* The extra space is currently unused. Use it. */
4159                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4160                                             EXT4_GOOD_OLD_INODE_SIZE;
4161                 } else {
4162                         ext4_iget_extra_inode(inode, raw_inode, ei);
4163                 }
4164         }
4165
4166         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4167         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4168         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4169         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4170
4171         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4172             cpu_to_le32(EXT4_OS_HURD)) {
4173                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4174                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4175                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4176                                 inode->i_version |=
4177                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4178                 }
4179         }
4180
4181         ret = 0;
4182         if (ei->i_file_acl &&
4183             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4184                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4185                                  ei->i_file_acl);
4186                 ret = -EIO;
4187                 goto bad_inode;
4188         } else if (!ext4_has_inline_data(inode)) {
4189                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4190                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4191                             (S_ISLNK(inode->i_mode) &&
4192                              !ext4_inode_is_fast_symlink(inode))))
4193                                 /* Validate extent which is part of inode */
4194                                 ret = ext4_ext_check_inode(inode);
4195                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4196                            (S_ISLNK(inode->i_mode) &&
4197                             !ext4_inode_is_fast_symlink(inode))) {
4198                         /* Validate block references which are part of inode */
4199                         ret = ext4_ind_check_inode(inode);
4200                 }
4201         }
4202         if (ret)
4203                 goto bad_inode;
4204
4205         if (S_ISREG(inode->i_mode)) {
4206                 inode->i_op = &ext4_file_inode_operations;
4207                 inode->i_fop = &ext4_file_operations;
4208                 ext4_set_aops(inode);
4209         } else if (S_ISDIR(inode->i_mode)) {
4210                 inode->i_op = &ext4_dir_inode_operations;
4211                 inode->i_fop = &ext4_dir_operations;
4212         } else if (S_ISLNK(inode->i_mode)) {
4213                 if (ext4_inode_is_fast_symlink(inode)) {
4214                         inode->i_op = &ext4_fast_symlink_inode_operations;
4215                         nd_terminate_link(ei->i_data, inode->i_size,
4216                                 sizeof(ei->i_data) - 1);
4217                 } else {
4218                         inode->i_op = &ext4_symlink_inode_operations;
4219                         ext4_set_aops(inode);
4220                 }
4221         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4222               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4223                 inode->i_op = &ext4_special_inode_operations;
4224                 if (raw_inode->i_block[0])
4225                         init_special_inode(inode, inode->i_mode,
4226                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4227                 else
4228                         init_special_inode(inode, inode->i_mode,
4229                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4230         } else if (ino == EXT4_BOOT_LOADER_INO) {
4231                 make_bad_inode(inode);
4232         } else {
4233                 ret = -EIO;
4234                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4235                 goto bad_inode;
4236         }
4237         brelse(iloc.bh);
4238         ext4_set_inode_flags(inode);
4239         unlock_new_inode(inode);
4240         return inode;
4241
4242 bad_inode:
4243         brelse(iloc.bh);
4244         iget_failed(inode);
4245         return ERR_PTR(ret);
4246 }
4247
4248 static int ext4_inode_blocks_set(handle_t *handle,
4249                                 struct ext4_inode *raw_inode,
4250                                 struct ext4_inode_info *ei)
4251 {
4252         struct inode *inode = &(ei->vfs_inode);
4253         u64 i_blocks = inode->i_blocks;
4254         struct super_block *sb = inode->i_sb;
4255
4256         if (i_blocks <= ~0U) {
4257                 /*
4258                  * i_blocks can be represented in a 32 bit variable
4259                  * as multiple of 512 bytes
4260                  */
4261                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4262                 raw_inode->i_blocks_high = 0;
4263                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4264                 return 0;
4265         }
4266         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4267                 return -EFBIG;
4268
4269         if (i_blocks <= 0xffffffffffffULL) {
4270                 /*
4271                  * i_blocks can be represented in a 48 bit variable
4272                  * as multiple of 512 bytes
4273                  */
4274                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4275                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4276                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4277         } else {
4278                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4279                 /* i_block is stored in file system block size */
4280                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4281                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4282                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4283         }
4284         return 0;
4285 }
4286
4287 /*
4288  * Post the struct inode info into an on-disk inode location in the
4289  * buffer-cache.  This gobbles the caller's reference to the
4290  * buffer_head in the inode location struct.
4291  *
4292  * The caller must have write access to iloc->bh.
4293  */
4294 static int ext4_do_update_inode(handle_t *handle,
4295                                 struct inode *inode,
4296                                 struct ext4_iloc *iloc)
4297 {
4298         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4299         struct ext4_inode_info *ei = EXT4_I(inode);
4300         struct buffer_head *bh = iloc->bh;
4301         int err = 0, rc, block;
4302         int need_datasync = 0;
4303         uid_t i_uid;
4304         gid_t i_gid;
4305
4306         /* For fields not not tracking in the in-memory inode,
4307          * initialise them to zero for new inodes. */
4308         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4309                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4310
4311         ext4_get_inode_flags(ei);
4312         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4313         i_uid = i_uid_read(inode);
4314         i_gid = i_gid_read(inode);
4315         if (!(test_opt(inode->i_sb, NO_UID32))) {
4316                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4317                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4318 /*
4319  * Fix up interoperability with old kernels. Otherwise, old inodes get
4320  * re-used with the upper 16 bits of the uid/gid intact
4321  */
4322                 if (!ei->i_dtime) {
4323                         raw_inode->i_uid_high =
4324                                 cpu_to_le16(high_16_bits(i_uid));
4325                         raw_inode->i_gid_high =
4326                                 cpu_to_le16(high_16_bits(i_gid));
4327                 } else {
4328                         raw_inode->i_uid_high = 0;
4329                         raw_inode->i_gid_high = 0;
4330                 }
4331         } else {
4332                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4333                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4334                 raw_inode->i_uid_high = 0;
4335                 raw_inode->i_gid_high = 0;
4336         }
4337         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4338
4339         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4340         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4341         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4342         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4343
4344         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4345                 goto out_brelse;
4346         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4347         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4348         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4349             cpu_to_le32(EXT4_OS_HURD))
4350                 raw_inode->i_file_acl_high =
4351                         cpu_to_le16(ei->i_file_acl >> 32);
4352         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4353         if (ei->i_disksize != ext4_isize(raw_inode)) {
4354                 ext4_isize_set(raw_inode, ei->i_disksize);
4355                 need_datasync = 1;
4356         }
4357         if (ei->i_disksize > 0x7fffffffULL) {
4358                 struct super_block *sb = inode->i_sb;
4359                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4360                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4361                                 EXT4_SB(sb)->s_es->s_rev_level ==
4362                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4363                         /* If this is the first large file
4364                          * created, add a flag to the superblock.
4365                          */
4366                         err = ext4_journal_get_write_access(handle,
4367                                         EXT4_SB(sb)->s_sbh);
4368                         if (err)
4369                                 goto out_brelse;
4370                         ext4_update_dynamic_rev(sb);
4371                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4372                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4373                         ext4_handle_sync(handle);
4374                         err = ext4_handle_dirty_super(handle, sb);
4375                 }
4376         }
4377         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4378         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4379                 if (old_valid_dev(inode->i_rdev)) {
4380                         raw_inode->i_block[0] =
4381                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4382                         raw_inode->i_block[1] = 0;
4383                 } else {
4384                         raw_inode->i_block[0] = 0;
4385                         raw_inode->i_block[1] =
4386                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4387                         raw_inode->i_block[2] = 0;
4388                 }
4389         } else if (!ext4_has_inline_data(inode)) {
4390                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4391                         raw_inode->i_block[block] = ei->i_data[block];
4392         }
4393
4394         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4395             cpu_to_le32(EXT4_OS_HURD)) {
4396                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4397                 if (ei->i_extra_isize) {
4398                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4399                                 raw_inode->i_version_hi =
4400                                         cpu_to_le32(inode->i_version >> 32);
4401                         raw_inode->i_extra_isize =
4402                                 cpu_to_le16(ei->i_extra_isize);
4403                 }
4404         }
4405
4406         ext4_inode_csum_set(inode, raw_inode, ei);
4407
4408         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4409         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4410         if (!err)
4411                 err = rc;
4412         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4413
4414         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4415 out_brelse:
4416         brelse(bh);
4417         ext4_std_error(inode->i_sb, err);
4418         return err;
4419 }
4420
4421 /*
4422  * ext4_write_inode()
4423  *
4424  * We are called from a few places:
4425  *
4426  * - Within generic_file_write() for O_SYNC files.
4427  *   Here, there will be no transaction running. We wait for any running
4428  *   transaction to commit.
4429  *
4430  * - Within sys_sync(), kupdate and such.
4431  *   We wait on commit, if tol to.
4432  *
4433  * - Within prune_icache() (PF_MEMALLOC == true)
4434  *   Here we simply return.  We can't afford to block kswapd on the
4435  *   journal commit.
4436  *
4437  * In all cases it is actually safe for us to return without doing anything,
4438  * because the inode has been copied into a raw inode buffer in
4439  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4440  * knfsd.
4441  *
4442  * Note that we are absolutely dependent upon all inode dirtiers doing the
4443  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4444  * which we are interested.
4445  *
4446  * It would be a bug for them to not do this.  The code:
4447  *
4448  *      mark_inode_dirty(inode)
4449  *      stuff();
4450  *      inode->i_size = expr;
4451  *
4452  * is in error because a kswapd-driven write_inode() could occur while
4453  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4454  * will no longer be on the superblock's dirty inode list.
4455  */
4456 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4457 {
4458         int err;
4459
4460         if (current->flags & PF_MEMALLOC)
4461                 return 0;
4462
4463         if (EXT4_SB(inode->i_sb)->s_journal) {
4464                 if (ext4_journal_current_handle()) {
4465                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4466                         dump_stack();
4467                         return -EIO;
4468                 }
4469
4470                 /*
4471                  * No need to force transaction in WB_SYNC_NONE mode. Also
4472                  * ext4_sync_fs() will force the commit after everything is
4473                  * written.
4474                  */
4475                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4476                         return 0;
4477
4478                 err = ext4_force_commit(inode->i_sb);
4479         } else {
4480                 struct ext4_iloc iloc;
4481
4482                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4483                 if (err)
4484                         return err;
4485                 /*
4486                  * sync(2) will flush the whole buffer cache. No need to do
4487                  * it here separately for each inode.
4488                  */
4489                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4490                         sync_dirty_buffer(iloc.bh);
4491                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4492                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4493                                          "IO error syncing inode");
4494                         err = -EIO;
4495                 }
4496                 brelse(iloc.bh);
4497         }
4498         return err;
4499 }
4500
4501 /*
4502  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4503  * buffers that are attached to a page stradding i_size and are undergoing
4504  * commit. In that case we have to wait for commit to finish and try again.
4505  */
4506 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4507 {
4508         struct page *page;
4509         unsigned offset;
4510         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4511         tid_t commit_tid = 0;
4512         int ret;
4513
4514         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4515         /*
4516          * All buffers in the last page remain valid? Then there's nothing to
4517          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4518          * blocksize case
4519          */
4520         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4521                 return;
4522         while (1) {
4523                 page = find_lock_page(inode->i_mapping,
4524                                       inode->i_size >> PAGE_CACHE_SHIFT);
4525                 if (!page)
4526                         return;
4527                 ret = __ext4_journalled_invalidatepage(page, offset,
4528                                                 PAGE_CACHE_SIZE - offset);
4529                 unlock_page(page);
4530                 page_cache_release(page);
4531                 if (ret != -EBUSY)
4532                         return;
4533                 commit_tid = 0;
4534                 read_lock(&journal->j_state_lock);
4535                 if (journal->j_committing_transaction)
4536                         commit_tid = journal->j_committing_transaction->t_tid;
4537                 read_unlock(&journal->j_state_lock);
4538                 if (commit_tid)
4539                         jbd2_log_wait_commit(journal, commit_tid);
4540         }
4541 }
4542
4543 /*
4544  * ext4_setattr()
4545  *
4546  * Called from notify_change.
4547  *
4548  * We want to trap VFS attempts to truncate the file as soon as
4549  * possible.  In particular, we want to make sure that when the VFS
4550  * shrinks i_size, we put the inode on the orphan list and modify
4551  * i_disksize immediately, so that during the subsequent flushing of
4552  * dirty pages and freeing of disk blocks, we can guarantee that any
4553  * commit will leave the blocks being flushed in an unused state on
4554  * disk.  (On recovery, the inode will get truncated and the blocks will
4555  * be freed, so we have a strong guarantee that no future commit will
4556  * leave these blocks visible to the user.)
4557  *
4558  * Another thing we have to assure is that if we are in ordered mode
4559  * and inode is still attached to the committing transaction, we must
4560  * we start writeout of all the dirty pages which are being truncated.
4561  * This way we are sure that all the data written in the previous
4562  * transaction are already on disk (truncate waits for pages under
4563  * writeback).
4564  *
4565  * Called with inode->i_mutex down.
4566  */
4567 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4568 {
4569         struct inode *inode = dentry->d_inode;
4570         int error, rc = 0;
4571         int orphan = 0;
4572         const unsigned int ia_valid = attr->ia_valid;
4573
4574         error = inode_change_ok(inode, attr);
4575         if (error)
4576                 return error;
4577
4578         if (is_quota_modification(inode, attr))
4579                 dquot_initialize(inode);
4580         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4581             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4582                 handle_t *handle;
4583
4584                 /* (user+group)*(old+new) structure, inode write (sb,
4585                  * inode block, ? - but truncate inode update has it) */
4586                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4587                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4588                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4589                 if (IS_ERR(handle)) {
4590                         error = PTR_ERR(handle);
4591                         goto err_out;
4592                 }
4593                 error = dquot_transfer(inode, attr);
4594                 if (error) {
4595                         ext4_journal_stop(handle);
4596                         return error;
4597                 }
4598                 /* Update corresponding info in inode so that everything is in
4599                  * one transaction */
4600                 if (attr->ia_valid & ATTR_UID)
4601                         inode->i_uid = attr->ia_uid;
4602                 if (attr->ia_valid & ATTR_GID)
4603                         inode->i_gid = attr->ia_gid;
4604                 error = ext4_mark_inode_dirty(handle, inode);
4605                 ext4_journal_stop(handle);
4606         }
4607
4608         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4609                 handle_t *handle;
4610
4611                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4612                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4613
4614                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4615                                 return -EFBIG;
4616                 }
4617
4618                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4619                         inode_inc_iversion(inode);
4620
4621                 if (S_ISREG(inode->i_mode) &&
4622                     (attr->ia_size < inode->i_size)) {
4623                         if (ext4_should_order_data(inode)) {
4624                                 error = ext4_begin_ordered_truncate(inode,
4625                                                             attr->ia_size);
4626                                 if (error)
4627                                         goto err_out;
4628                         }
4629                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4630                         if (IS_ERR(handle)) {
4631                                 error = PTR_ERR(handle);
4632                                 goto err_out;
4633                         }
4634                         if (ext4_handle_valid(handle)) {
4635                                 error = ext4_orphan_add(handle, inode);
4636                                 orphan = 1;
4637                         }
4638                         down_write(&EXT4_I(inode)->i_data_sem);
4639                         EXT4_I(inode)->i_disksize = attr->ia_size;
4640                         rc = ext4_mark_inode_dirty(handle, inode);
4641                         if (!error)
4642                                 error = rc;
4643                         /*
4644                          * We have to update i_size under i_data_sem together
4645                          * with i_disksize to avoid races with writeback code
4646                          * running ext4_wb_update_i_disksize().
4647                          */
4648                         if (!error)
4649                                 i_size_write(inode, attr->ia_size);
4650                         up_write(&EXT4_I(inode)->i_data_sem);
4651                         ext4_journal_stop(handle);
4652                         if (error) {
4653                                 ext4_orphan_del(NULL, inode);
4654                                 goto err_out;
4655                         }
4656                 } else
4657                         i_size_write(inode, attr->ia_size);
4658
4659                 /*
4660                  * Blocks are going to be removed from the inode. Wait
4661                  * for dio in flight.  Temporarily disable
4662                  * dioread_nolock to prevent livelock.
4663                  */
4664                 if (orphan) {
4665                         if (!ext4_should_journal_data(inode)) {
4666                                 ext4_inode_block_unlocked_dio(inode);
4667                                 inode_dio_wait(inode);
4668                                 ext4_inode_resume_unlocked_dio(inode);
4669                         } else
4670                                 ext4_wait_for_tail_page_commit(inode);
4671                 }
4672                 /*
4673                  * Truncate pagecache after we've waited for commit
4674                  * in data=journal mode to make pages freeable.
4675                  */
4676                         truncate_pagecache(inode, inode->i_size);
4677         }
4678         /*
4679          * We want to call ext4_truncate() even if attr->ia_size ==
4680          * inode->i_size for cases like truncation of fallocated space
4681          */
4682         if (attr->ia_valid & ATTR_SIZE)
4683                 ext4_truncate(inode);
4684
4685         if (!rc) {
4686                 setattr_copy(inode, attr);
4687                 mark_inode_dirty(inode);
4688         }
4689
4690         /*
4691          * If the call to ext4_truncate failed to get a transaction handle at
4692          * all, we need to clean up the in-core orphan list manually.
4693          */
4694         if (orphan && inode->i_nlink)
4695                 ext4_orphan_del(NULL, inode);
4696
4697         if (!rc && (ia_valid & ATTR_MODE))
4698                 rc = posix_acl_chmod(inode, inode->i_mode);
4699
4700 err_out:
4701         ext4_std_error(inode->i_sb, error);
4702         if (!error)
4703                 error = rc;
4704         return error;
4705 }
4706
4707 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4708                  struct kstat *stat)
4709 {
4710         struct inode *inode;
4711         unsigned long long delalloc_blocks;
4712
4713         inode = dentry->d_inode;
4714         generic_fillattr(inode, stat);
4715
4716         /*
4717          * If there is inline data in the inode, the inode will normally not
4718          * have data blocks allocated (it may have an external xattr block).
4719          * Report at least one sector for such files, so tools like tar, rsync,
4720          * others doen't incorrectly think the file is completely sparse.
4721          */
4722         if (unlikely(ext4_has_inline_data(inode)))
4723                 stat->blocks += (stat->size + 511) >> 9;
4724
4725         /*
4726          * We can't update i_blocks if the block allocation is delayed
4727          * otherwise in the case of system crash before the real block
4728          * allocation is done, we will have i_blocks inconsistent with
4729          * on-disk file blocks.
4730          * We always keep i_blocks updated together with real
4731          * allocation. But to not confuse with user, stat
4732          * will return the blocks that include the delayed allocation
4733          * blocks for this file.
4734          */
4735         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4736                                    EXT4_I(inode)->i_reserved_data_blocks);
4737         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4738         return 0;
4739 }
4740
4741 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4742                                    int pextents)
4743 {
4744         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4745                 return ext4_ind_trans_blocks(inode, lblocks);
4746         return ext4_ext_index_trans_blocks(inode, pextents);
4747 }
4748
4749 /*
4750  * Account for index blocks, block groups bitmaps and block group
4751  * descriptor blocks if modify datablocks and index blocks
4752  * worse case, the indexs blocks spread over different block groups
4753  *
4754  * If datablocks are discontiguous, they are possible to spread over
4755  * different block groups too. If they are contiguous, with flexbg,
4756  * they could still across block group boundary.
4757  *
4758  * Also account for superblock, inode, quota and xattr blocks
4759  */
4760 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4761                                   int pextents)
4762 {
4763         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4764         int gdpblocks;
4765         int idxblocks;
4766         int ret = 0;
4767
4768         /*
4769          * How many index blocks need to touch to map @lblocks logical blocks
4770          * to @pextents physical extents?
4771          */
4772         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4773
4774         ret = idxblocks;
4775
4776         /*
4777          * Now let's see how many group bitmaps and group descriptors need
4778          * to account
4779          */
4780         groups = idxblocks + pextents;
4781         gdpblocks = groups;
4782         if (groups > ngroups)
4783                 groups = ngroups;
4784         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4785                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4786
4787         /* bitmaps and block group descriptor blocks */
4788         ret += groups + gdpblocks;
4789
4790         /* Blocks for super block, inode, quota and xattr blocks */
4791         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4792
4793         return ret;
4794 }
4795
4796 /*
4797  * Calculate the total number of credits to reserve to fit
4798  * the modification of a single pages into a single transaction,
4799  * which may include multiple chunks of block allocations.
4800  *
4801  * This could be called via ext4_write_begin()
4802  *
4803  * We need to consider the worse case, when
4804  * one new block per extent.
4805  */
4806 int ext4_writepage_trans_blocks(struct inode *inode)
4807 {
4808         int bpp = ext4_journal_blocks_per_page(inode);
4809         int ret;
4810
4811         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4812
4813         /* Account for data blocks for journalled mode */
4814         if (ext4_should_journal_data(inode))
4815                 ret += bpp;
4816         return ret;
4817 }
4818
4819 /*
4820  * Calculate the journal credits for a chunk of data modification.
4821  *
4822  * This is called from DIO, fallocate or whoever calling
4823  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4824  *
4825  * journal buffers for data blocks are not included here, as DIO
4826  * and fallocate do no need to journal data buffers.
4827  */
4828 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4829 {
4830         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4831 }
4832
4833 /*
4834  * The caller must have previously called ext4_reserve_inode_write().
4835  * Give this, we know that the caller already has write access to iloc->bh.
4836  */
4837 int ext4_mark_iloc_dirty(handle_t *handle,
4838                          struct inode *inode, struct ext4_iloc *iloc)
4839 {
4840         int err = 0;
4841
4842         if (IS_I_VERSION(inode))
4843                 inode_inc_iversion(inode);
4844
4845         /* the do_update_inode consumes one bh->b_count */
4846         get_bh(iloc->bh);
4847
4848         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4849         err = ext4_do_update_inode(handle, inode, iloc);
4850         put_bh(iloc->bh);
4851         return err;
4852 }
4853
4854 /*
4855  * On success, We end up with an outstanding reference count against
4856  * iloc->bh.  This _must_ be cleaned up later.
4857  */
4858
4859 int
4860 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4861                          struct ext4_iloc *iloc)
4862 {
4863         int err;
4864
4865         err = ext4_get_inode_loc(inode, iloc);
4866         if (!err) {
4867                 BUFFER_TRACE(iloc->bh, "get_write_access");
4868                 err = ext4_journal_get_write_access(handle, iloc->bh);
4869                 if (err) {
4870                         brelse(iloc->bh);
4871                         iloc->bh = NULL;
4872                 }
4873         }
4874         ext4_std_error(inode->i_sb, err);
4875         return err;
4876 }
4877
4878 /*
4879  * Expand an inode by new_extra_isize bytes.
4880  * Returns 0 on success or negative error number on failure.
4881  */
4882 static int ext4_expand_extra_isize(struct inode *inode,
4883                                    unsigned int new_extra_isize,
4884                                    struct ext4_iloc iloc,
4885                                    handle_t *handle)
4886 {
4887         struct ext4_inode *raw_inode;
4888         struct ext4_xattr_ibody_header *header;
4889
4890         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4891                 return 0;
4892
4893         raw_inode = ext4_raw_inode(&iloc);
4894
4895         header = IHDR(inode, raw_inode);
4896
4897         /* No extended attributes present */
4898         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4899             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4900                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4901                         new_extra_isize);
4902                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4903                 return 0;
4904         }
4905
4906         /* try to expand with EAs present */
4907         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4908                                           raw_inode, handle);
4909 }
4910
4911 /*
4912  * What we do here is to mark the in-core inode as clean with respect to inode
4913  * dirtiness (it may still be data-dirty).
4914  * This means that the in-core inode may be reaped by prune_icache
4915  * without having to perform any I/O.  This is a very good thing,
4916  * because *any* task may call prune_icache - even ones which
4917  * have a transaction open against a different journal.
4918  *
4919  * Is this cheating?  Not really.  Sure, we haven't written the
4920  * inode out, but prune_icache isn't a user-visible syncing function.
4921  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4922  * we start and wait on commits.
4923  */
4924 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4925 {
4926         struct ext4_iloc iloc;
4927         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4928         static unsigned int mnt_count;
4929         int err, ret;
4930
4931         might_sleep();
4932         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4933         err = ext4_reserve_inode_write(handle, inode, &iloc);
4934         if (ext4_handle_valid(handle) &&
4935             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4936             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4937                 /*
4938                  * We need extra buffer credits since we may write into EA block
4939                  * with this same handle. If journal_extend fails, then it will
4940                  * only result in a minor loss of functionality for that inode.
4941                  * If this is felt to be critical, then e2fsck should be run to
4942                  * force a large enough s_min_extra_isize.
4943                  */
4944                 if ((jbd2_journal_extend(handle,
4945                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4946                         ret = ext4_expand_extra_isize(inode,
4947                                                       sbi->s_want_extra_isize,
4948                                                       iloc, handle);
4949                         if (ret) {
4950                                 ext4_set_inode_state(inode,
4951                                                      EXT4_STATE_NO_EXPAND);
4952                                 if (mnt_count !=
4953                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4954                                         ext4_warning(inode->i_sb,
4955                                         "Unable to expand inode %lu. Delete"
4956                                         " some EAs or run e2fsck.",
4957                                         inode->i_ino);
4958                                         mnt_count =
4959                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4960                                 }
4961                         }
4962                 }
4963         }
4964         if (!err)
4965                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4966         return err;
4967 }
4968
4969 /*
4970  * ext4_dirty_inode() is called from __mark_inode_dirty()
4971  *
4972  * We're really interested in the case where a file is being extended.
4973  * i_size has been changed by generic_commit_write() and we thus need
4974  * to include the updated inode in the current transaction.
4975  *
4976  * Also, dquot_alloc_block() will always dirty the inode when blocks
4977  * are allocated to the file.
4978  *
4979  * If the inode is marked synchronous, we don't honour that here - doing
4980  * so would cause a commit on atime updates, which we don't bother doing.
4981  * We handle synchronous inodes at the highest possible level.
4982  */
4983 void ext4_dirty_inode(struct inode *inode, int flags)
4984 {
4985         handle_t *handle;
4986
4987         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4988         if (IS_ERR(handle))
4989                 goto out;
4990
4991         ext4_mark_inode_dirty(handle, inode);
4992
4993         ext4_journal_stop(handle);
4994 out:
4995         return;
4996 }
4997
4998 #if 0
4999 /*
5000  * Bind an inode's backing buffer_head into this transaction, to prevent
5001  * it from being flushed to disk early.  Unlike
5002  * ext4_reserve_inode_write, this leaves behind no bh reference and
5003  * returns no iloc structure, so the caller needs to repeat the iloc
5004  * lookup to mark the inode dirty later.
5005  */
5006 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5007 {
5008         struct ext4_iloc iloc;
5009
5010         int err = 0;
5011         if (handle) {
5012                 err = ext4_get_inode_loc(inode, &iloc);
5013                 if (!err) {
5014                         BUFFER_TRACE(iloc.bh, "get_write_access");
5015                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5016                         if (!err)
5017                                 err = ext4_handle_dirty_metadata(handle,
5018                                                                  NULL,
5019                                                                  iloc.bh);
5020                         brelse(iloc.bh);
5021                 }
5022         }
5023         ext4_std_error(inode->i_sb, err);
5024         return err;
5025 }
5026 #endif
5027
5028 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5029 {
5030         journal_t *journal;
5031         handle_t *handle;
5032         int err;
5033
5034         /*
5035          * We have to be very careful here: changing a data block's
5036          * journaling status dynamically is dangerous.  If we write a
5037          * data block to the journal, change the status and then delete
5038          * that block, we risk forgetting to revoke the old log record
5039          * from the journal and so a subsequent replay can corrupt data.
5040          * So, first we make sure that the journal is empty and that
5041          * nobody is changing anything.
5042          */
5043
5044         journal = EXT4_JOURNAL(inode);
5045         if (!journal)
5046                 return 0;
5047         if (is_journal_aborted(journal))
5048                 return -EROFS;
5049         /* We have to allocate physical blocks for delalloc blocks
5050          * before flushing journal. otherwise delalloc blocks can not
5051          * be allocated any more. even more truncate on delalloc blocks
5052          * could trigger BUG by flushing delalloc blocks in journal.
5053          * There is no delalloc block in non-journal data mode.
5054          */
5055         if (val && test_opt(inode->i_sb, DELALLOC)) {
5056                 err = ext4_alloc_da_blocks(inode);
5057                 if (err < 0)
5058                         return err;
5059         }
5060
5061         /* Wait for all existing dio workers */
5062         ext4_inode_block_unlocked_dio(inode);
5063         inode_dio_wait(inode);
5064
5065         jbd2_journal_lock_updates(journal);
5066
5067         /*
5068          * OK, there are no updates running now, and all cached data is
5069          * synced to disk.  We are now in a completely consistent state
5070          * which doesn't have anything in the journal, and we know that
5071          * no filesystem updates are running, so it is safe to modify
5072          * the inode's in-core data-journaling state flag now.
5073          */
5074
5075         if (val)
5076                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5077         else {
5078                 jbd2_journal_flush(journal);
5079                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5080         }
5081         ext4_set_aops(inode);
5082
5083         jbd2_journal_unlock_updates(journal);
5084         ext4_inode_resume_unlocked_dio(inode);
5085
5086         /* Finally we can mark the inode as dirty. */
5087
5088         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5089         if (IS_ERR(handle))
5090                 return PTR_ERR(handle);
5091
5092         err = ext4_mark_inode_dirty(handle, inode);
5093         ext4_handle_sync(handle);
5094         ext4_journal_stop(handle);
5095         ext4_std_error(inode->i_sb, err);
5096
5097         return err;
5098 }
5099
5100 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5101 {
5102         return !buffer_mapped(bh);
5103 }
5104
5105 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5106 {
5107         struct page *page = vmf->page;
5108         loff_t size;
5109         unsigned long len;
5110         int ret;
5111         struct file *file = vma->vm_file;
5112         struct inode *inode = file_inode(file);
5113         struct address_space *mapping = inode->i_mapping;
5114         handle_t *handle;
5115         get_block_t *get_block;
5116         int retries = 0;
5117
5118         sb_start_pagefault(inode->i_sb);
5119         file_update_time(vma->vm_file);
5120         /* Delalloc case is easy... */
5121         if (test_opt(inode->i_sb, DELALLOC) &&
5122             !ext4_should_journal_data(inode) &&
5123             !ext4_nonda_switch(inode->i_sb)) {
5124                 do {
5125                         ret = __block_page_mkwrite(vma, vmf,
5126                                                    ext4_da_get_block_prep);
5127                 } while (ret == -ENOSPC &&
5128                        ext4_should_retry_alloc(inode->i_sb, &retries));
5129                 goto out_ret;
5130         }
5131
5132         lock_page(page);
5133         size = i_size_read(inode);
5134         /* Page got truncated from under us? */
5135         if (page->mapping != mapping || page_offset(page) > size) {
5136                 unlock_page(page);
5137                 ret = VM_FAULT_NOPAGE;
5138                 goto out;
5139         }
5140
5141         if (page->index == size >> PAGE_CACHE_SHIFT)
5142                 len = size & ~PAGE_CACHE_MASK;
5143         else
5144                 len = PAGE_CACHE_SIZE;
5145         /*
5146          * Return if we have all the buffers mapped. This avoids the need to do
5147          * journal_start/journal_stop which can block and take a long time
5148          */
5149         if (page_has_buffers(page)) {
5150                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5151                                             0, len, NULL,
5152                                             ext4_bh_unmapped)) {
5153                         /* Wait so that we don't change page under IO */
5154                         wait_for_stable_page(page);
5155                         ret = VM_FAULT_LOCKED;
5156                         goto out;
5157                 }
5158         }
5159         unlock_page(page);
5160         /* OK, we need to fill the hole... */
5161         if (ext4_should_dioread_nolock(inode))
5162                 get_block = ext4_get_block_write;
5163         else
5164                 get_block = ext4_get_block;
5165 retry_alloc:
5166         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5167                                     ext4_writepage_trans_blocks(inode));
5168         if (IS_ERR(handle)) {
5169                 ret = VM_FAULT_SIGBUS;
5170                 goto out;
5171         }
5172         ret = __block_page_mkwrite(vma, vmf, get_block);
5173         if (!ret && ext4_should_journal_data(inode)) {
5174                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5175                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5176                         unlock_page(page);
5177                         ret = VM_FAULT_SIGBUS;
5178                         ext4_journal_stop(handle);
5179                         goto out;
5180                 }
5181                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5182         }
5183         ext4_journal_stop(handle);
5184         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5185                 goto retry_alloc;
5186 out_ret:
5187         ret = block_page_mkwrite_return(ret);
5188 out:
5189         sb_end_pagefault(inode->i_sb);
5190         return ret;
5191 }