Merge remote-tracking branches 'regulator/topic/s5m8767' and 'regulator/topic/vexpres...
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !ext4_has_metadata_csum(inode->i_sb))
85                 return 1;
86
87         provided = le16_to_cpu(raw->i_checksum_lo);
88         calculated = ext4_inode_csum(inode, raw, ei);
89         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92         else
93                 calculated &= 0xFFFF;
94
95         return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99                                 struct ext4_inode_info *ei)
100 {
101         __u32 csum;
102
103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104             cpu_to_le32(EXT4_OS_LINUX) ||
105             !ext4_has_metadata_csum(inode->i_sb))
106                 return;
107
108         csum = ext4_inode_csum(inode, raw, ei);
109         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116                                               loff_t new_size)
117 {
118         trace_ext4_begin_ordered_truncate(inode, new_size);
119         /*
120          * If jinode is zero, then we never opened the file for
121          * writing, so there's no need to call
122          * jbd2_journal_begin_ordered_truncate() since there's no
123          * outstanding writes we need to flush.
124          */
125         if (!EXT4_I(inode)->jinode)
126                 return 0;
127         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128                                                    EXT4_I(inode)->jinode,
129                                                    new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133                                 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137                                   int pextents);
138
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147         if (ext4_has_inline_data(inode))
148                 return 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages_final(&inode->i_data);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (is_bad_inode(inode))
224                 goto no_delete;
225         dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages_final(&inode->i_data);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327                                         int used, int quota_claim)
328 {
329         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330         struct ext4_inode_info *ei = EXT4_I(inode);
331
332         spin_lock(&ei->i_block_reservation_lock);
333         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334         if (unlikely(used > ei->i_reserved_data_blocks)) {
335                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336                          "with only %d reserved data blocks",
337                          __func__, inode->i_ino, used,
338                          ei->i_reserved_data_blocks);
339                 WARN_ON(1);
340                 used = ei->i_reserved_data_blocks;
341         }
342
343         /* Update per-inode reservations */
344         ei->i_reserved_data_blocks -= used;
345         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346
347         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348
349         /* Update quota subsystem for data blocks */
350         if (quota_claim)
351                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
352         else {
353                 /*
354                  * We did fallocate with an offset that is already delayed
355                  * allocated. So on delayed allocated writeback we should
356                  * not re-claim the quota for fallocated blocks.
357                  */
358                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359         }
360
361         /*
362          * If we have done all the pending block allocations and if
363          * there aren't any writers on the inode, we can discard the
364          * inode's preallocations.
365          */
366         if ((ei->i_reserved_data_blocks == 0) &&
367             (atomic_read(&inode->i_writecount) == 0))
368                 ext4_discard_preallocations(inode);
369 }
370
371 static int __check_block_validity(struct inode *inode, const char *func,
372                                 unsigned int line,
373                                 struct ext4_map_blocks *map)
374 {
375         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376                                    map->m_len)) {
377                 ext4_error_inode(inode, func, line, map->m_pblk,
378                                  "lblock %lu mapped to illegal pblock "
379                                  "(length %d)", (unsigned long) map->m_lblk,
380                                  map->m_len);
381                 return -EFSCORRUPTED;
382         }
383         return 0;
384 }
385
386 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
387                        ext4_lblk_t len)
388 {
389         int ret;
390
391         if (ext4_encrypted_inode(inode))
392                 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
393
394         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
395         if (ret > 0)
396                 ret = 0;
397
398         return ret;
399 }
400
401 #define check_block_validity(inode, map)        \
402         __check_block_validity((inode), __func__, __LINE__, (map))
403
404 #ifdef ES_AGGRESSIVE_TEST
405 static void ext4_map_blocks_es_recheck(handle_t *handle,
406                                        struct inode *inode,
407                                        struct ext4_map_blocks *es_map,
408                                        struct ext4_map_blocks *map,
409                                        int flags)
410 {
411         int retval;
412
413         map->m_flags = 0;
414         /*
415          * There is a race window that the result is not the same.
416          * e.g. xfstests #223 when dioread_nolock enables.  The reason
417          * is that we lookup a block mapping in extent status tree with
418          * out taking i_data_sem.  So at the time the unwritten extent
419          * could be converted.
420          */
421         down_read(&EXT4_I(inode)->i_data_sem);
422         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
423                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
424                                              EXT4_GET_BLOCKS_KEEP_SIZE);
425         } else {
426                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
427                                              EXT4_GET_BLOCKS_KEEP_SIZE);
428         }
429         up_read((&EXT4_I(inode)->i_data_sem));
430
431         /*
432          * We don't check m_len because extent will be collpased in status
433          * tree.  So the m_len might not equal.
434          */
435         if (es_map->m_lblk != map->m_lblk ||
436             es_map->m_flags != map->m_flags ||
437             es_map->m_pblk != map->m_pblk) {
438                 printk("ES cache assertion failed for inode: %lu "
439                        "es_cached ex [%d/%d/%llu/%x] != "
440                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
441                        inode->i_ino, es_map->m_lblk, es_map->m_len,
442                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
443                        map->m_len, map->m_pblk, map->m_flags,
444                        retval, flags);
445         }
446 }
447 #endif /* ES_AGGRESSIVE_TEST */
448
449 /*
450  * The ext4_map_blocks() function tries to look up the requested blocks,
451  * and returns if the blocks are already mapped.
452  *
453  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
454  * and store the allocated blocks in the result buffer head and mark it
455  * mapped.
456  *
457  * If file type is extents based, it will call ext4_ext_map_blocks(),
458  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
459  * based files
460  *
461  * On success, it returns the number of blocks being mapped or allocated.
462  * if create==0 and the blocks are pre-allocated and unwritten block,
463  * the result buffer head is unmapped. If the create ==1, it will make sure
464  * the buffer head is mapped.
465  *
466  * It returns 0 if plain look up failed (blocks have not been allocated), in
467  * that case, buffer head is unmapped
468  *
469  * It returns the error in case of allocation failure.
470  */
471 int ext4_map_blocks(handle_t *handle, struct inode *inode,
472                     struct ext4_map_blocks *map, int flags)
473 {
474         struct extent_status es;
475         int retval;
476         int ret = 0;
477 #ifdef ES_AGGRESSIVE_TEST
478         struct ext4_map_blocks orig_map;
479
480         memcpy(&orig_map, map, sizeof(*map));
481 #endif
482
483         map->m_flags = 0;
484         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
485                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
486                   (unsigned long) map->m_lblk);
487
488         /*
489          * ext4_map_blocks returns an int, and m_len is an unsigned int
490          */
491         if (unlikely(map->m_len > INT_MAX))
492                 map->m_len = INT_MAX;
493
494         /* We can handle the block number less than EXT_MAX_BLOCKS */
495         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
496                 return -EFSCORRUPTED;
497
498         /* Lookup extent status tree firstly */
499         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
500                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
501                         map->m_pblk = ext4_es_pblock(&es) +
502                                         map->m_lblk - es.es_lblk;
503                         map->m_flags |= ext4_es_is_written(&es) ?
504                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
505                         retval = es.es_len - (map->m_lblk - es.es_lblk);
506                         if (retval > map->m_len)
507                                 retval = map->m_len;
508                         map->m_len = retval;
509                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
510                         retval = 0;
511                 } else {
512                         BUG_ON(1);
513                 }
514 #ifdef ES_AGGRESSIVE_TEST
515                 ext4_map_blocks_es_recheck(handle, inode, map,
516                                            &orig_map, flags);
517 #endif
518                 goto found;
519         }
520
521         /*
522          * Try to see if we can get the block without requesting a new
523          * file system block.
524          */
525         down_read(&EXT4_I(inode)->i_data_sem);
526         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
527                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
528                                              EXT4_GET_BLOCKS_KEEP_SIZE);
529         } else {
530                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
531                                              EXT4_GET_BLOCKS_KEEP_SIZE);
532         }
533         if (retval > 0) {
534                 unsigned int status;
535
536                 if (unlikely(retval != map->m_len)) {
537                         ext4_warning(inode->i_sb,
538                                      "ES len assertion failed for inode "
539                                      "%lu: retval %d != map->m_len %d",
540                                      inode->i_ino, retval, map->m_len);
541                         WARN_ON(1);
542                 }
543
544                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
545                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
546                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
547                     !(status & EXTENT_STATUS_WRITTEN) &&
548                     ext4_find_delalloc_range(inode, map->m_lblk,
549                                              map->m_lblk + map->m_len - 1))
550                         status |= EXTENT_STATUS_DELAYED;
551                 ret = ext4_es_insert_extent(inode, map->m_lblk,
552                                             map->m_len, map->m_pblk, status);
553                 if (ret < 0)
554                         retval = ret;
555         }
556         up_read((&EXT4_I(inode)->i_data_sem));
557
558 found:
559         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
560                 ret = check_block_validity(inode, map);
561                 if (ret != 0)
562                         return ret;
563         }
564
565         /* If it is only a block(s) look up */
566         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
567                 return retval;
568
569         /*
570          * Returns if the blocks have already allocated
571          *
572          * Note that if blocks have been preallocated
573          * ext4_ext_get_block() returns the create = 0
574          * with buffer head unmapped.
575          */
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
577                 /*
578                  * If we need to convert extent to unwritten
579                  * we continue and do the actual work in
580                  * ext4_ext_map_blocks()
581                  */
582                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
583                         return retval;
584
585         /*
586          * Here we clear m_flags because after allocating an new extent,
587          * it will be set again.
588          */
589         map->m_flags &= ~EXT4_MAP_FLAGS;
590
591         /*
592          * New blocks allocate and/or writing to unwritten extent
593          * will possibly result in updating i_data, so we take
594          * the write lock of i_data_sem, and call get_block()
595          * with create == 1 flag.
596          */
597         down_write(&EXT4_I(inode)->i_data_sem);
598
599         /*
600          * We need to check for EXT4 here because migrate
601          * could have changed the inode type in between
602          */
603         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
604                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
605         } else {
606                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
607
608                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
609                         /*
610                          * We allocated new blocks which will result in
611                          * i_data's format changing.  Force the migrate
612                          * to fail by clearing migrate flags
613                          */
614                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
615                 }
616
617                 /*
618                  * Update reserved blocks/metadata blocks after successful
619                  * block allocation which had been deferred till now. We don't
620                  * support fallocate for non extent files. So we can update
621                  * reserve space here.
622                  */
623                 if ((retval > 0) &&
624                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
625                         ext4_da_update_reserve_space(inode, retval, 1);
626         }
627
628         if (retval > 0) {
629                 unsigned int status;
630
631                 if (unlikely(retval != map->m_len)) {
632                         ext4_warning(inode->i_sb,
633                                      "ES len assertion failed for inode "
634                                      "%lu: retval %d != map->m_len %d",
635                                      inode->i_ino, retval, map->m_len);
636                         WARN_ON(1);
637                 }
638
639                 /*
640                  * We have to zeroout blocks before inserting them into extent
641                  * status tree. Otherwise someone could look them up there and
642                  * use them before they are really zeroed.
643                  */
644                 if (flags & EXT4_GET_BLOCKS_ZERO &&
645                     map->m_flags & EXT4_MAP_MAPPED &&
646                     map->m_flags & EXT4_MAP_NEW) {
647                         ret = ext4_issue_zeroout(inode, map->m_lblk,
648                                                  map->m_pblk, map->m_len);
649                         if (ret) {
650                                 retval = ret;
651                                 goto out_sem;
652                         }
653                 }
654
655                 /*
656                  * If the extent has been zeroed out, we don't need to update
657                  * extent status tree.
658                  */
659                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
660                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
661                         if (ext4_es_is_written(&es))
662                                 goto out_sem;
663                 }
664                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
665                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
666                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
667                     !(status & EXTENT_STATUS_WRITTEN) &&
668                     ext4_find_delalloc_range(inode, map->m_lblk,
669                                              map->m_lblk + map->m_len - 1))
670                         status |= EXTENT_STATUS_DELAYED;
671                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
672                                             map->m_pblk, status);
673                 if (ret < 0) {
674                         retval = ret;
675                         goto out_sem;
676                 }
677         }
678
679 out_sem:
680         up_write((&EXT4_I(inode)->i_data_sem));
681         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
682                 ret = check_block_validity(inode, map);
683                 if (ret != 0)
684                         return ret;
685         }
686         return retval;
687 }
688
689 /*
690  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
691  * we have to be careful as someone else may be manipulating b_state as well.
692  */
693 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
694 {
695         unsigned long old_state;
696         unsigned long new_state;
697
698         flags &= EXT4_MAP_FLAGS;
699
700         /* Dummy buffer_head? Set non-atomically. */
701         if (!bh->b_page) {
702                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
703                 return;
704         }
705         /*
706          * Someone else may be modifying b_state. Be careful! This is ugly but
707          * once we get rid of using bh as a container for mapping information
708          * to pass to / from get_block functions, this can go away.
709          */
710         do {
711                 old_state = READ_ONCE(bh->b_state);
712                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
713         } while (unlikely(
714                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
715 }
716
717 /* Maximum number of blocks we map for direct IO at once. */
718 #define DIO_MAX_BLOCKS 4096
719
720 static int _ext4_get_block(struct inode *inode, sector_t iblock,
721                            struct buffer_head *bh, int flags)
722 {
723         handle_t *handle = ext4_journal_current_handle();
724         struct ext4_map_blocks map;
725         int ret = 0, started = 0;
726         int dio_credits;
727
728         if (ext4_has_inline_data(inode))
729                 return -ERANGE;
730
731         map.m_lblk = iblock;
732         map.m_len = bh->b_size >> inode->i_blkbits;
733
734         if (flags && !handle) {
735                 /* Direct IO write... */
736                 if (map.m_len > DIO_MAX_BLOCKS)
737                         map.m_len = DIO_MAX_BLOCKS;
738                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
739                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
740                                             dio_credits);
741                 if (IS_ERR(handle)) {
742                         ret = PTR_ERR(handle);
743                         return ret;
744                 }
745                 started = 1;
746         }
747
748         ret = ext4_map_blocks(handle, inode, &map, flags);
749         if (ret > 0) {
750                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
751
752                 map_bh(bh, inode->i_sb, map.m_pblk);
753                 ext4_update_bh_state(bh, map.m_flags);
754                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
755                         set_buffer_defer_completion(bh);
756                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
757                 ret = 0;
758         }
759         if (started)
760                 ext4_journal_stop(handle);
761         return ret;
762 }
763
764 int ext4_get_block(struct inode *inode, sector_t iblock,
765                    struct buffer_head *bh, int create)
766 {
767         return _ext4_get_block(inode, iblock, bh,
768                                create ? EXT4_GET_BLOCKS_CREATE : 0);
769 }
770
771 /*
772  * `handle' can be NULL if create is zero
773  */
774 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
775                                 ext4_lblk_t block, int map_flags)
776 {
777         struct ext4_map_blocks map;
778         struct buffer_head *bh;
779         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
780         int err;
781
782         J_ASSERT(handle != NULL || create == 0);
783
784         map.m_lblk = block;
785         map.m_len = 1;
786         err = ext4_map_blocks(handle, inode, &map, map_flags);
787
788         if (err == 0)
789                 return create ? ERR_PTR(-ENOSPC) : NULL;
790         if (err < 0)
791                 return ERR_PTR(err);
792
793         bh = sb_getblk(inode->i_sb, map.m_pblk);
794         if (unlikely(!bh))
795                 return ERR_PTR(-ENOMEM);
796         if (map.m_flags & EXT4_MAP_NEW) {
797                 J_ASSERT(create != 0);
798                 J_ASSERT(handle != NULL);
799
800                 /*
801                  * Now that we do not always journal data, we should
802                  * keep in mind whether this should always journal the
803                  * new buffer as metadata.  For now, regular file
804                  * writes use ext4_get_block instead, so it's not a
805                  * problem.
806                  */
807                 lock_buffer(bh);
808                 BUFFER_TRACE(bh, "call get_create_access");
809                 err = ext4_journal_get_create_access(handle, bh);
810                 if (unlikely(err)) {
811                         unlock_buffer(bh);
812                         goto errout;
813                 }
814                 if (!buffer_uptodate(bh)) {
815                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
816                         set_buffer_uptodate(bh);
817                 }
818                 unlock_buffer(bh);
819                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
820                 err = ext4_handle_dirty_metadata(handle, inode, bh);
821                 if (unlikely(err))
822                         goto errout;
823         } else
824                 BUFFER_TRACE(bh, "not a new buffer");
825         return bh;
826 errout:
827         brelse(bh);
828         return ERR_PTR(err);
829 }
830
831 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
832                                ext4_lblk_t block, int map_flags)
833 {
834         struct buffer_head *bh;
835
836         bh = ext4_getblk(handle, inode, block, map_flags);
837         if (IS_ERR(bh))
838                 return bh;
839         if (!bh || buffer_uptodate(bh))
840                 return bh;
841         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
842         wait_on_buffer(bh);
843         if (buffer_uptodate(bh))
844                 return bh;
845         put_bh(bh);
846         return ERR_PTR(-EIO);
847 }
848
849 int ext4_walk_page_buffers(handle_t *handle,
850                            struct buffer_head *head,
851                            unsigned from,
852                            unsigned to,
853                            int *partial,
854                            int (*fn)(handle_t *handle,
855                                      struct buffer_head *bh))
856 {
857         struct buffer_head *bh;
858         unsigned block_start, block_end;
859         unsigned blocksize = head->b_size;
860         int err, ret = 0;
861         struct buffer_head *next;
862
863         for (bh = head, block_start = 0;
864              ret == 0 && (bh != head || !block_start);
865              block_start = block_end, bh = next) {
866                 next = bh->b_this_page;
867                 block_end = block_start + blocksize;
868                 if (block_end <= from || block_start >= to) {
869                         if (partial && !buffer_uptodate(bh))
870                                 *partial = 1;
871                         continue;
872                 }
873                 err = (*fn)(handle, bh);
874                 if (!ret)
875                         ret = err;
876         }
877         return ret;
878 }
879
880 /*
881  * To preserve ordering, it is essential that the hole instantiation and
882  * the data write be encapsulated in a single transaction.  We cannot
883  * close off a transaction and start a new one between the ext4_get_block()
884  * and the commit_write().  So doing the jbd2_journal_start at the start of
885  * prepare_write() is the right place.
886  *
887  * Also, this function can nest inside ext4_writepage().  In that case, we
888  * *know* that ext4_writepage() has generated enough buffer credits to do the
889  * whole page.  So we won't block on the journal in that case, which is good,
890  * because the caller may be PF_MEMALLOC.
891  *
892  * By accident, ext4 can be reentered when a transaction is open via
893  * quota file writes.  If we were to commit the transaction while thus
894  * reentered, there can be a deadlock - we would be holding a quota
895  * lock, and the commit would never complete if another thread had a
896  * transaction open and was blocking on the quota lock - a ranking
897  * violation.
898  *
899  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
900  * will _not_ run commit under these circumstances because handle->h_ref
901  * is elevated.  We'll still have enough credits for the tiny quotafile
902  * write.
903  */
904 int do_journal_get_write_access(handle_t *handle,
905                                 struct buffer_head *bh)
906 {
907         int dirty = buffer_dirty(bh);
908         int ret;
909
910         if (!buffer_mapped(bh) || buffer_freed(bh))
911                 return 0;
912         /*
913          * __block_write_begin() could have dirtied some buffers. Clean
914          * the dirty bit as jbd2_journal_get_write_access() could complain
915          * otherwise about fs integrity issues. Setting of the dirty bit
916          * by __block_write_begin() isn't a real problem here as we clear
917          * the bit before releasing a page lock and thus writeback cannot
918          * ever write the buffer.
919          */
920         if (dirty)
921                 clear_buffer_dirty(bh);
922         BUFFER_TRACE(bh, "get write access");
923         ret = ext4_journal_get_write_access(handle, bh);
924         if (!ret && dirty)
925                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
926         return ret;
927 }
928
929 #ifdef CONFIG_EXT4_FS_ENCRYPTION
930 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
931                                   get_block_t *get_block)
932 {
933         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
934         unsigned to = from + len;
935         struct inode *inode = page->mapping->host;
936         unsigned block_start, block_end;
937         sector_t block;
938         int err = 0;
939         unsigned blocksize = inode->i_sb->s_blocksize;
940         unsigned bbits;
941         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
942         bool decrypt = false;
943
944         BUG_ON(!PageLocked(page));
945         BUG_ON(from > PAGE_CACHE_SIZE);
946         BUG_ON(to > PAGE_CACHE_SIZE);
947         BUG_ON(from > to);
948
949         if (!page_has_buffers(page))
950                 create_empty_buffers(page, blocksize, 0);
951         head = page_buffers(page);
952         bbits = ilog2(blocksize);
953         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
954
955         for (bh = head, block_start = 0; bh != head || !block_start;
956             block++, block_start = block_end, bh = bh->b_this_page) {
957                 block_end = block_start + blocksize;
958                 if (block_end <= from || block_start >= to) {
959                         if (PageUptodate(page)) {
960                                 if (!buffer_uptodate(bh))
961                                         set_buffer_uptodate(bh);
962                         }
963                         continue;
964                 }
965                 if (buffer_new(bh))
966                         clear_buffer_new(bh);
967                 if (!buffer_mapped(bh)) {
968                         WARN_ON(bh->b_size != blocksize);
969                         err = get_block(inode, block, bh, 1);
970                         if (err)
971                                 break;
972                         if (buffer_new(bh)) {
973                                 unmap_underlying_metadata(bh->b_bdev,
974                                                           bh->b_blocknr);
975                                 if (PageUptodate(page)) {
976                                         clear_buffer_new(bh);
977                                         set_buffer_uptodate(bh);
978                                         mark_buffer_dirty(bh);
979                                         continue;
980                                 }
981                                 if (block_end > to || block_start < from)
982                                         zero_user_segments(page, to, block_end,
983                                                            block_start, from);
984                                 continue;
985                         }
986                 }
987                 if (PageUptodate(page)) {
988                         if (!buffer_uptodate(bh))
989                                 set_buffer_uptodate(bh);
990                         continue;
991                 }
992                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
993                     !buffer_unwritten(bh) &&
994                     (block_start < from || block_end > to)) {
995                         ll_rw_block(READ, 1, &bh);
996                         *wait_bh++ = bh;
997                         decrypt = ext4_encrypted_inode(inode) &&
998                                 S_ISREG(inode->i_mode);
999                 }
1000         }
1001         /*
1002          * If we issued read requests, let them complete.
1003          */
1004         while (wait_bh > wait) {
1005                 wait_on_buffer(*--wait_bh);
1006                 if (!buffer_uptodate(*wait_bh))
1007                         err = -EIO;
1008         }
1009         if (unlikely(err))
1010                 page_zero_new_buffers(page, from, to);
1011         else if (decrypt)
1012                 err = ext4_decrypt(page);
1013         return err;
1014 }
1015 #endif
1016
1017 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1018                             loff_t pos, unsigned len, unsigned flags,
1019                             struct page **pagep, void **fsdata)
1020 {
1021         struct inode *inode = mapping->host;
1022         int ret, needed_blocks;
1023         handle_t *handle;
1024         int retries = 0;
1025         struct page *page;
1026         pgoff_t index;
1027         unsigned from, to;
1028
1029         trace_ext4_write_begin(inode, pos, len, flags);
1030         /*
1031          * Reserve one block more for addition to orphan list in case
1032          * we allocate blocks but write fails for some reason
1033          */
1034         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1035         index = pos >> PAGE_CACHE_SHIFT;
1036         from = pos & (PAGE_CACHE_SIZE - 1);
1037         to = from + len;
1038
1039         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1040                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1041                                                     flags, pagep);
1042                 if (ret < 0)
1043                         return ret;
1044                 if (ret == 1)
1045                         return 0;
1046         }
1047
1048         /*
1049          * grab_cache_page_write_begin() can take a long time if the
1050          * system is thrashing due to memory pressure, or if the page
1051          * is being written back.  So grab it first before we start
1052          * the transaction handle.  This also allows us to allocate
1053          * the page (if needed) without using GFP_NOFS.
1054          */
1055 retry_grab:
1056         page = grab_cache_page_write_begin(mapping, index, flags);
1057         if (!page)
1058                 return -ENOMEM;
1059         unlock_page(page);
1060
1061 retry_journal:
1062         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1063         if (IS_ERR(handle)) {
1064                 page_cache_release(page);
1065                 return PTR_ERR(handle);
1066         }
1067
1068         lock_page(page);
1069         if (page->mapping != mapping) {
1070                 /* The page got truncated from under us */
1071                 unlock_page(page);
1072                 page_cache_release(page);
1073                 ext4_journal_stop(handle);
1074                 goto retry_grab;
1075         }
1076         /* In case writeback began while the page was unlocked */
1077         wait_for_stable_page(page);
1078
1079 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1080         if (ext4_should_dioread_nolock(inode))
1081                 ret = ext4_block_write_begin(page, pos, len,
1082                                              ext4_get_block_write);
1083         else
1084                 ret = ext4_block_write_begin(page, pos, len,
1085                                              ext4_get_block);
1086 #else
1087         if (ext4_should_dioread_nolock(inode))
1088                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1089         else
1090                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1091 #endif
1092         if (!ret && ext4_should_journal_data(inode)) {
1093                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1094                                              from, to, NULL,
1095                                              do_journal_get_write_access);
1096         }
1097
1098         if (ret) {
1099                 unlock_page(page);
1100                 /*
1101                  * __block_write_begin may have instantiated a few blocks
1102                  * outside i_size.  Trim these off again. Don't need
1103                  * i_size_read because we hold i_mutex.
1104                  *
1105                  * Add inode to orphan list in case we crash before
1106                  * truncate finishes
1107                  */
1108                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1109                         ext4_orphan_add(handle, inode);
1110
1111                 ext4_journal_stop(handle);
1112                 if (pos + len > inode->i_size) {
1113                         ext4_truncate_failed_write(inode);
1114                         /*
1115                          * If truncate failed early the inode might
1116                          * still be on the orphan list; we need to
1117                          * make sure the inode is removed from the
1118                          * orphan list in that case.
1119                          */
1120                         if (inode->i_nlink)
1121                                 ext4_orphan_del(NULL, inode);
1122                 }
1123
1124                 if (ret == -ENOSPC &&
1125                     ext4_should_retry_alloc(inode->i_sb, &retries))
1126                         goto retry_journal;
1127                 page_cache_release(page);
1128                 return ret;
1129         }
1130         *pagep = page;
1131         return ret;
1132 }
1133
1134 /* For write_end() in data=journal mode */
1135 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1136 {
1137         int ret;
1138         if (!buffer_mapped(bh) || buffer_freed(bh))
1139                 return 0;
1140         set_buffer_uptodate(bh);
1141         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1142         clear_buffer_meta(bh);
1143         clear_buffer_prio(bh);
1144         return ret;
1145 }
1146
1147 /*
1148  * We need to pick up the new inode size which generic_commit_write gave us
1149  * `file' can be NULL - eg, when called from page_symlink().
1150  *
1151  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1152  * buffers are managed internally.
1153  */
1154 static int ext4_write_end(struct file *file,
1155                           struct address_space *mapping,
1156                           loff_t pos, unsigned len, unsigned copied,
1157                           struct page *page, void *fsdata)
1158 {
1159         handle_t *handle = ext4_journal_current_handle();
1160         struct inode *inode = mapping->host;
1161         loff_t old_size = inode->i_size;
1162         int ret = 0, ret2;
1163         int i_size_changed = 0;
1164
1165         trace_ext4_write_end(inode, pos, len, copied);
1166         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1167                 ret = ext4_jbd2_file_inode(handle, inode);
1168                 if (ret) {
1169                         unlock_page(page);
1170                         page_cache_release(page);
1171                         goto errout;
1172                 }
1173         }
1174
1175         if (ext4_has_inline_data(inode)) {
1176                 ret = ext4_write_inline_data_end(inode, pos, len,
1177                                                  copied, page);
1178                 if (ret < 0)
1179                         goto errout;
1180                 copied = ret;
1181         } else
1182                 copied = block_write_end(file, mapping, pos,
1183                                          len, copied, page, fsdata);
1184         /*
1185          * it's important to update i_size while still holding page lock:
1186          * page writeout could otherwise come in and zero beyond i_size.
1187          */
1188         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1189         unlock_page(page);
1190         page_cache_release(page);
1191
1192         if (old_size < pos)
1193                 pagecache_isize_extended(inode, old_size, pos);
1194         /*
1195          * Don't mark the inode dirty under page lock. First, it unnecessarily
1196          * makes the holding time of page lock longer. Second, it forces lock
1197          * ordering of page lock and transaction start for journaling
1198          * filesystems.
1199          */
1200         if (i_size_changed)
1201                 ext4_mark_inode_dirty(handle, inode);
1202
1203         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1204                 /* if we have allocated more blocks and copied
1205                  * less. We will have blocks allocated outside
1206                  * inode->i_size. So truncate them
1207                  */
1208                 ext4_orphan_add(handle, inode);
1209 errout:
1210         ret2 = ext4_journal_stop(handle);
1211         if (!ret)
1212                 ret = ret2;
1213
1214         if (pos + len > inode->i_size) {
1215                 ext4_truncate_failed_write(inode);
1216                 /*
1217                  * If truncate failed early the inode might still be
1218                  * on the orphan list; we need to make sure the inode
1219                  * is removed from the orphan list in that case.
1220                  */
1221                 if (inode->i_nlink)
1222                         ext4_orphan_del(NULL, inode);
1223         }
1224
1225         return ret ? ret : copied;
1226 }
1227
1228 /*
1229  * This is a private version of page_zero_new_buffers() which doesn't
1230  * set the buffer to be dirty, since in data=journalled mode we need
1231  * to call ext4_handle_dirty_metadata() instead.
1232  */
1233 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1234 {
1235         unsigned int block_start = 0, block_end;
1236         struct buffer_head *head, *bh;
1237
1238         bh = head = page_buffers(page);
1239         do {
1240                 block_end = block_start + bh->b_size;
1241                 if (buffer_new(bh)) {
1242                         if (block_end > from && block_start < to) {
1243                                 if (!PageUptodate(page)) {
1244                                         unsigned start, size;
1245
1246                                         start = max(from, block_start);
1247                                         size = min(to, block_end) - start;
1248
1249                                         zero_user(page, start, size);
1250                                         set_buffer_uptodate(bh);
1251                                 }
1252                                 clear_buffer_new(bh);
1253                         }
1254                 }
1255                 block_start = block_end;
1256                 bh = bh->b_this_page;
1257         } while (bh != head);
1258 }
1259
1260 static int ext4_journalled_write_end(struct file *file,
1261                                      struct address_space *mapping,
1262                                      loff_t pos, unsigned len, unsigned copied,
1263                                      struct page *page, void *fsdata)
1264 {
1265         handle_t *handle = ext4_journal_current_handle();
1266         struct inode *inode = mapping->host;
1267         loff_t old_size = inode->i_size;
1268         int ret = 0, ret2;
1269         int partial = 0;
1270         unsigned from, to;
1271         int size_changed = 0;
1272
1273         trace_ext4_journalled_write_end(inode, pos, len, copied);
1274         from = pos & (PAGE_CACHE_SIZE - 1);
1275         to = from + len;
1276
1277         BUG_ON(!ext4_handle_valid(handle));
1278
1279         if (ext4_has_inline_data(inode))
1280                 copied = ext4_write_inline_data_end(inode, pos, len,
1281                                                     copied, page);
1282         else {
1283                 if (copied < len) {
1284                         if (!PageUptodate(page))
1285                                 copied = 0;
1286                         zero_new_buffers(page, from+copied, to);
1287                 }
1288
1289                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1290                                              to, &partial, write_end_fn);
1291                 if (!partial)
1292                         SetPageUptodate(page);
1293         }
1294         size_changed = ext4_update_inode_size(inode, pos + copied);
1295         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1296         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1297         unlock_page(page);
1298         page_cache_release(page);
1299
1300         if (old_size < pos)
1301                 pagecache_isize_extended(inode, old_size, pos);
1302
1303         if (size_changed) {
1304                 ret2 = ext4_mark_inode_dirty(handle, inode);
1305                 if (!ret)
1306                         ret = ret2;
1307         }
1308
1309         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1310                 /* if we have allocated more blocks and copied
1311                  * less. We will have blocks allocated outside
1312                  * inode->i_size. So truncate them
1313                  */
1314                 ext4_orphan_add(handle, inode);
1315
1316         ret2 = ext4_journal_stop(handle);
1317         if (!ret)
1318                 ret = ret2;
1319         if (pos + len > inode->i_size) {
1320                 ext4_truncate_failed_write(inode);
1321                 /*
1322                  * If truncate failed early the inode might still be
1323                  * on the orphan list; we need to make sure the inode
1324                  * is removed from the orphan list in that case.
1325                  */
1326                 if (inode->i_nlink)
1327                         ext4_orphan_del(NULL, inode);
1328         }
1329
1330         return ret ? ret : copied;
1331 }
1332
1333 /*
1334  * Reserve space for a single cluster
1335  */
1336 static int ext4_da_reserve_space(struct inode *inode)
1337 {
1338         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1339         struct ext4_inode_info *ei = EXT4_I(inode);
1340         int ret;
1341
1342         /*
1343          * We will charge metadata quota at writeout time; this saves
1344          * us from metadata over-estimation, though we may go over by
1345          * a small amount in the end.  Here we just reserve for data.
1346          */
1347         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1348         if (ret)
1349                 return ret;
1350
1351         spin_lock(&ei->i_block_reservation_lock);
1352         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1353                 spin_unlock(&ei->i_block_reservation_lock);
1354                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1355                 return -ENOSPC;
1356         }
1357         ei->i_reserved_data_blocks++;
1358         trace_ext4_da_reserve_space(inode);
1359         spin_unlock(&ei->i_block_reservation_lock);
1360
1361         return 0;       /* success */
1362 }
1363
1364 static void ext4_da_release_space(struct inode *inode, int to_free)
1365 {
1366         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367         struct ext4_inode_info *ei = EXT4_I(inode);
1368
1369         if (!to_free)
1370                 return;         /* Nothing to release, exit */
1371
1372         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1373
1374         trace_ext4_da_release_space(inode, to_free);
1375         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1376                 /*
1377                  * if there aren't enough reserved blocks, then the
1378                  * counter is messed up somewhere.  Since this
1379                  * function is called from invalidate page, it's
1380                  * harmless to return without any action.
1381                  */
1382                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1383                          "ino %lu, to_free %d with only %d reserved "
1384                          "data blocks", inode->i_ino, to_free,
1385                          ei->i_reserved_data_blocks);
1386                 WARN_ON(1);
1387                 to_free = ei->i_reserved_data_blocks;
1388         }
1389         ei->i_reserved_data_blocks -= to_free;
1390
1391         /* update fs dirty data blocks counter */
1392         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1393
1394         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1395
1396         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1397 }
1398
1399 static void ext4_da_page_release_reservation(struct page *page,
1400                                              unsigned int offset,
1401                                              unsigned int length)
1402 {
1403         int to_release = 0, contiguous_blks = 0;
1404         struct buffer_head *head, *bh;
1405         unsigned int curr_off = 0;
1406         struct inode *inode = page->mapping->host;
1407         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1408         unsigned int stop = offset + length;
1409         int num_clusters;
1410         ext4_fsblk_t lblk;
1411
1412         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1413
1414         head = page_buffers(page);
1415         bh = head;
1416         do {
1417                 unsigned int next_off = curr_off + bh->b_size;
1418
1419                 if (next_off > stop)
1420                         break;
1421
1422                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1423                         to_release++;
1424                         contiguous_blks++;
1425                         clear_buffer_delay(bh);
1426                 } else if (contiguous_blks) {
1427                         lblk = page->index <<
1428                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1429                         lblk += (curr_off >> inode->i_blkbits) -
1430                                 contiguous_blks;
1431                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1432                         contiguous_blks = 0;
1433                 }
1434                 curr_off = next_off;
1435         } while ((bh = bh->b_this_page) != head);
1436
1437         if (contiguous_blks) {
1438                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1439                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1440                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1441         }
1442
1443         /* If we have released all the blocks belonging to a cluster, then we
1444          * need to release the reserved space for that cluster. */
1445         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1446         while (num_clusters > 0) {
1447                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1448                         ((num_clusters - 1) << sbi->s_cluster_bits);
1449                 if (sbi->s_cluster_ratio == 1 ||
1450                     !ext4_find_delalloc_cluster(inode, lblk))
1451                         ext4_da_release_space(inode, 1);
1452
1453                 num_clusters--;
1454         }
1455 }
1456
1457 /*
1458  * Delayed allocation stuff
1459  */
1460
1461 struct mpage_da_data {
1462         struct inode *inode;
1463         struct writeback_control *wbc;
1464
1465         pgoff_t first_page;     /* The first page to write */
1466         pgoff_t next_page;      /* Current page to examine */
1467         pgoff_t last_page;      /* Last page to examine */
1468         /*
1469          * Extent to map - this can be after first_page because that can be
1470          * fully mapped. We somewhat abuse m_flags to store whether the extent
1471          * is delalloc or unwritten.
1472          */
1473         struct ext4_map_blocks map;
1474         struct ext4_io_submit io_submit;        /* IO submission data */
1475 };
1476
1477 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1478                                        bool invalidate)
1479 {
1480         int nr_pages, i;
1481         pgoff_t index, end;
1482         struct pagevec pvec;
1483         struct inode *inode = mpd->inode;
1484         struct address_space *mapping = inode->i_mapping;
1485
1486         /* This is necessary when next_page == 0. */
1487         if (mpd->first_page >= mpd->next_page)
1488                 return;
1489
1490         index = mpd->first_page;
1491         end   = mpd->next_page - 1;
1492         if (invalidate) {
1493                 ext4_lblk_t start, last;
1494                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1495                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1496                 ext4_es_remove_extent(inode, start, last - start + 1);
1497         }
1498
1499         pagevec_init(&pvec, 0);
1500         while (index <= end) {
1501                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1502                 if (nr_pages == 0)
1503                         break;
1504                 for (i = 0; i < nr_pages; i++) {
1505                         struct page *page = pvec.pages[i];
1506                         if (page->index > end)
1507                                 break;
1508                         BUG_ON(!PageLocked(page));
1509                         BUG_ON(PageWriteback(page));
1510                         if (invalidate) {
1511                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1512                                 ClearPageUptodate(page);
1513                         }
1514                         unlock_page(page);
1515                 }
1516                 index = pvec.pages[nr_pages - 1]->index + 1;
1517                 pagevec_release(&pvec);
1518         }
1519 }
1520
1521 static void ext4_print_free_blocks(struct inode *inode)
1522 {
1523         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1524         struct super_block *sb = inode->i_sb;
1525         struct ext4_inode_info *ei = EXT4_I(inode);
1526
1527         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1528                EXT4_C2B(EXT4_SB(inode->i_sb),
1529                         ext4_count_free_clusters(sb)));
1530         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1531         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1532                (long long) EXT4_C2B(EXT4_SB(sb),
1533                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1534         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1535                (long long) EXT4_C2B(EXT4_SB(sb),
1536                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1537         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1538         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1539                  ei->i_reserved_data_blocks);
1540         return;
1541 }
1542
1543 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1544 {
1545         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1546 }
1547
1548 /*
1549  * This function is grabs code from the very beginning of
1550  * ext4_map_blocks, but assumes that the caller is from delayed write
1551  * time. This function looks up the requested blocks and sets the
1552  * buffer delay bit under the protection of i_data_sem.
1553  */
1554 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1555                               struct ext4_map_blocks *map,
1556                               struct buffer_head *bh)
1557 {
1558         struct extent_status es;
1559         int retval;
1560         sector_t invalid_block = ~((sector_t) 0xffff);
1561 #ifdef ES_AGGRESSIVE_TEST
1562         struct ext4_map_blocks orig_map;
1563
1564         memcpy(&orig_map, map, sizeof(*map));
1565 #endif
1566
1567         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1568                 invalid_block = ~0;
1569
1570         map->m_flags = 0;
1571         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1572                   "logical block %lu\n", inode->i_ino, map->m_len,
1573                   (unsigned long) map->m_lblk);
1574
1575         /* Lookup extent status tree firstly */
1576         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1577                 if (ext4_es_is_hole(&es)) {
1578                         retval = 0;
1579                         down_read(&EXT4_I(inode)->i_data_sem);
1580                         goto add_delayed;
1581                 }
1582
1583                 /*
1584                  * Delayed extent could be allocated by fallocate.
1585                  * So we need to check it.
1586                  */
1587                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1588                         map_bh(bh, inode->i_sb, invalid_block);
1589                         set_buffer_new(bh);
1590                         set_buffer_delay(bh);
1591                         return 0;
1592                 }
1593
1594                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1595                 retval = es.es_len - (iblock - es.es_lblk);
1596                 if (retval > map->m_len)
1597                         retval = map->m_len;
1598                 map->m_len = retval;
1599                 if (ext4_es_is_written(&es))
1600                         map->m_flags |= EXT4_MAP_MAPPED;
1601                 else if (ext4_es_is_unwritten(&es))
1602                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1603                 else
1604                         BUG_ON(1);
1605
1606 #ifdef ES_AGGRESSIVE_TEST
1607                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1608 #endif
1609                 return retval;
1610         }
1611
1612         /*
1613          * Try to see if we can get the block without requesting a new
1614          * file system block.
1615          */
1616         down_read(&EXT4_I(inode)->i_data_sem);
1617         if (ext4_has_inline_data(inode))
1618                 retval = 0;
1619         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1620                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1621         else
1622                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1623
1624 add_delayed:
1625         if (retval == 0) {
1626                 int ret;
1627                 /*
1628                  * XXX: __block_prepare_write() unmaps passed block,
1629                  * is it OK?
1630                  */
1631                 /*
1632                  * If the block was allocated from previously allocated cluster,
1633                  * then we don't need to reserve it again. However we still need
1634                  * to reserve metadata for every block we're going to write.
1635                  */
1636                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1637                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1638                         ret = ext4_da_reserve_space(inode);
1639                         if (ret) {
1640                                 /* not enough space to reserve */
1641                                 retval = ret;
1642                                 goto out_unlock;
1643                         }
1644                 }
1645
1646                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1647                                             ~0, EXTENT_STATUS_DELAYED);
1648                 if (ret) {
1649                         retval = ret;
1650                         goto out_unlock;
1651                 }
1652
1653                 map_bh(bh, inode->i_sb, invalid_block);
1654                 set_buffer_new(bh);
1655                 set_buffer_delay(bh);
1656         } else if (retval > 0) {
1657                 int ret;
1658                 unsigned int status;
1659
1660                 if (unlikely(retval != map->m_len)) {
1661                         ext4_warning(inode->i_sb,
1662                                      "ES len assertion failed for inode "
1663                                      "%lu: retval %d != map->m_len %d",
1664                                      inode->i_ino, retval, map->m_len);
1665                         WARN_ON(1);
1666                 }
1667
1668                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1669                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1670                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1671                                             map->m_pblk, status);
1672                 if (ret != 0)
1673                         retval = ret;
1674         }
1675
1676 out_unlock:
1677         up_read((&EXT4_I(inode)->i_data_sem));
1678
1679         return retval;
1680 }
1681
1682 /*
1683  * This is a special get_block_t callback which is used by
1684  * ext4_da_write_begin().  It will either return mapped block or
1685  * reserve space for a single block.
1686  *
1687  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1688  * We also have b_blocknr = -1 and b_bdev initialized properly
1689  *
1690  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1691  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1692  * initialized properly.
1693  */
1694 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1695                            struct buffer_head *bh, int create)
1696 {
1697         struct ext4_map_blocks map;
1698         int ret = 0;
1699
1700         BUG_ON(create == 0);
1701         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1702
1703         map.m_lblk = iblock;
1704         map.m_len = 1;
1705
1706         /*
1707          * first, we need to know whether the block is allocated already
1708          * preallocated blocks are unmapped but should treated
1709          * the same as allocated blocks.
1710          */
1711         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1712         if (ret <= 0)
1713                 return ret;
1714
1715         map_bh(bh, inode->i_sb, map.m_pblk);
1716         ext4_update_bh_state(bh, map.m_flags);
1717
1718         if (buffer_unwritten(bh)) {
1719                 /* A delayed write to unwritten bh should be marked
1720                  * new and mapped.  Mapped ensures that we don't do
1721                  * get_block multiple times when we write to the same
1722                  * offset and new ensures that we do proper zero out
1723                  * for partial write.
1724                  */
1725                 set_buffer_new(bh);
1726                 set_buffer_mapped(bh);
1727         }
1728         return 0;
1729 }
1730
1731 static int bget_one(handle_t *handle, struct buffer_head *bh)
1732 {
1733         get_bh(bh);
1734         return 0;
1735 }
1736
1737 static int bput_one(handle_t *handle, struct buffer_head *bh)
1738 {
1739         put_bh(bh);
1740         return 0;
1741 }
1742
1743 static int __ext4_journalled_writepage(struct page *page,
1744                                        unsigned int len)
1745 {
1746         struct address_space *mapping = page->mapping;
1747         struct inode *inode = mapping->host;
1748         struct buffer_head *page_bufs = NULL;
1749         handle_t *handle = NULL;
1750         int ret = 0, err = 0;
1751         int inline_data = ext4_has_inline_data(inode);
1752         struct buffer_head *inode_bh = NULL;
1753
1754         ClearPageChecked(page);
1755
1756         if (inline_data) {
1757                 BUG_ON(page->index != 0);
1758                 BUG_ON(len > ext4_get_max_inline_size(inode));
1759                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1760                 if (inode_bh == NULL)
1761                         goto out;
1762         } else {
1763                 page_bufs = page_buffers(page);
1764                 if (!page_bufs) {
1765                         BUG();
1766                         goto out;
1767                 }
1768                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1769                                        NULL, bget_one);
1770         }
1771         /*
1772          * We need to release the page lock before we start the
1773          * journal, so grab a reference so the page won't disappear
1774          * out from under us.
1775          */
1776         get_page(page);
1777         unlock_page(page);
1778
1779         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1780                                     ext4_writepage_trans_blocks(inode));
1781         if (IS_ERR(handle)) {
1782                 ret = PTR_ERR(handle);
1783                 put_page(page);
1784                 goto out_no_pagelock;
1785         }
1786         BUG_ON(!ext4_handle_valid(handle));
1787
1788         lock_page(page);
1789         put_page(page);
1790         if (page->mapping != mapping) {
1791                 /* The page got truncated from under us */
1792                 ext4_journal_stop(handle);
1793                 ret = 0;
1794                 goto out;
1795         }
1796
1797         if (inline_data) {
1798                 BUFFER_TRACE(inode_bh, "get write access");
1799                 ret = ext4_journal_get_write_access(handle, inode_bh);
1800
1801                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1802
1803         } else {
1804                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1805                                              do_journal_get_write_access);
1806
1807                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1808                                              write_end_fn);
1809         }
1810         if (ret == 0)
1811                 ret = err;
1812         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1813         err = ext4_journal_stop(handle);
1814         if (!ret)
1815                 ret = err;
1816
1817         if (!ext4_has_inline_data(inode))
1818                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1819                                        NULL, bput_one);
1820         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1821 out:
1822         unlock_page(page);
1823 out_no_pagelock:
1824         brelse(inode_bh);
1825         return ret;
1826 }
1827
1828 /*
1829  * Note that we don't need to start a transaction unless we're journaling data
1830  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1831  * need to file the inode to the transaction's list in ordered mode because if
1832  * we are writing back data added by write(), the inode is already there and if
1833  * we are writing back data modified via mmap(), no one guarantees in which
1834  * transaction the data will hit the disk. In case we are journaling data, we
1835  * cannot start transaction directly because transaction start ranks above page
1836  * lock so we have to do some magic.
1837  *
1838  * This function can get called via...
1839  *   - ext4_writepages after taking page lock (have journal handle)
1840  *   - journal_submit_inode_data_buffers (no journal handle)
1841  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1842  *   - grab_page_cache when doing write_begin (have journal handle)
1843  *
1844  * We don't do any block allocation in this function. If we have page with
1845  * multiple blocks we need to write those buffer_heads that are mapped. This
1846  * is important for mmaped based write. So if we do with blocksize 1K
1847  * truncate(f, 1024);
1848  * a = mmap(f, 0, 4096);
1849  * a[0] = 'a';
1850  * truncate(f, 4096);
1851  * we have in the page first buffer_head mapped via page_mkwrite call back
1852  * but other buffer_heads would be unmapped but dirty (dirty done via the
1853  * do_wp_page). So writepage should write the first block. If we modify
1854  * the mmap area beyond 1024 we will again get a page_fault and the
1855  * page_mkwrite callback will do the block allocation and mark the
1856  * buffer_heads mapped.
1857  *
1858  * We redirty the page if we have any buffer_heads that is either delay or
1859  * unwritten in the page.
1860  *
1861  * We can get recursively called as show below.
1862  *
1863  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1864  *              ext4_writepage()
1865  *
1866  * But since we don't do any block allocation we should not deadlock.
1867  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1868  */
1869 static int ext4_writepage(struct page *page,
1870                           struct writeback_control *wbc)
1871 {
1872         int ret = 0;
1873         loff_t size;
1874         unsigned int len;
1875         struct buffer_head *page_bufs = NULL;
1876         struct inode *inode = page->mapping->host;
1877         struct ext4_io_submit io_submit;
1878         bool keep_towrite = false;
1879
1880         trace_ext4_writepage(page);
1881         size = i_size_read(inode);
1882         if (page->index == size >> PAGE_CACHE_SHIFT)
1883                 len = size & ~PAGE_CACHE_MASK;
1884         else
1885                 len = PAGE_CACHE_SIZE;
1886
1887         page_bufs = page_buffers(page);
1888         /*
1889          * We cannot do block allocation or other extent handling in this
1890          * function. If there are buffers needing that, we have to redirty
1891          * the page. But we may reach here when we do a journal commit via
1892          * journal_submit_inode_data_buffers() and in that case we must write
1893          * allocated buffers to achieve data=ordered mode guarantees.
1894          *
1895          * Also, if there is only one buffer per page (the fs block
1896          * size == the page size), if one buffer needs block
1897          * allocation or needs to modify the extent tree to clear the
1898          * unwritten flag, we know that the page can't be written at
1899          * all, so we might as well refuse the write immediately.
1900          * Unfortunately if the block size != page size, we can't as
1901          * easily detect this case using ext4_walk_page_buffers(), but
1902          * for the extremely common case, this is an optimization that
1903          * skips a useless round trip through ext4_bio_write_page().
1904          */
1905         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1906                                    ext4_bh_delay_or_unwritten)) {
1907                 redirty_page_for_writepage(wbc, page);
1908                 if ((current->flags & PF_MEMALLOC) ||
1909                     (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1910                         /*
1911                          * For memory cleaning there's no point in writing only
1912                          * some buffers. So just bail out. Warn if we came here
1913                          * from direct reclaim.
1914                          */
1915                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1916                                                         == PF_MEMALLOC);
1917                         unlock_page(page);
1918                         return 0;
1919                 }
1920                 keep_towrite = true;
1921         }
1922
1923         if (PageChecked(page) && ext4_should_journal_data(inode))
1924                 /*
1925                  * It's mmapped pagecache.  Add buffers and journal it.  There
1926                  * doesn't seem much point in redirtying the page here.
1927                  */
1928                 return __ext4_journalled_writepage(page, len);
1929
1930         ext4_io_submit_init(&io_submit, wbc);
1931         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1932         if (!io_submit.io_end) {
1933                 redirty_page_for_writepage(wbc, page);
1934                 unlock_page(page);
1935                 return -ENOMEM;
1936         }
1937         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1938         ext4_io_submit(&io_submit);
1939         /* Drop io_end reference we got from init */
1940         ext4_put_io_end_defer(io_submit.io_end);
1941         return ret;
1942 }
1943
1944 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1945 {
1946         int len;
1947         loff_t size = i_size_read(mpd->inode);
1948         int err;
1949
1950         BUG_ON(page->index != mpd->first_page);
1951         if (page->index == size >> PAGE_CACHE_SHIFT)
1952                 len = size & ~PAGE_CACHE_MASK;
1953         else
1954                 len = PAGE_CACHE_SIZE;
1955         clear_page_dirty_for_io(page);
1956         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1957         if (!err)
1958                 mpd->wbc->nr_to_write--;
1959         mpd->first_page++;
1960
1961         return err;
1962 }
1963
1964 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1965
1966 /*
1967  * mballoc gives us at most this number of blocks...
1968  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1969  * The rest of mballoc seems to handle chunks up to full group size.
1970  */
1971 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1972
1973 /*
1974  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1975  *
1976  * @mpd - extent of blocks
1977  * @lblk - logical number of the block in the file
1978  * @bh - buffer head we want to add to the extent
1979  *
1980  * The function is used to collect contig. blocks in the same state. If the
1981  * buffer doesn't require mapping for writeback and we haven't started the
1982  * extent of buffers to map yet, the function returns 'true' immediately - the
1983  * caller can write the buffer right away. Otherwise the function returns true
1984  * if the block has been added to the extent, false if the block couldn't be
1985  * added.
1986  */
1987 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1988                                    struct buffer_head *bh)
1989 {
1990         struct ext4_map_blocks *map = &mpd->map;
1991
1992         /* Buffer that doesn't need mapping for writeback? */
1993         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1994             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1995                 /* So far no extent to map => we write the buffer right away */
1996                 if (map->m_len == 0)
1997                         return true;
1998                 return false;
1999         }
2000
2001         /* First block in the extent? */
2002         if (map->m_len == 0) {
2003                 map->m_lblk = lblk;
2004                 map->m_len = 1;
2005                 map->m_flags = bh->b_state & BH_FLAGS;
2006                 return true;
2007         }
2008
2009         /* Don't go larger than mballoc is willing to allocate */
2010         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2011                 return false;
2012
2013         /* Can we merge the block to our big extent? */
2014         if (lblk == map->m_lblk + map->m_len &&
2015             (bh->b_state & BH_FLAGS) == map->m_flags) {
2016                 map->m_len++;
2017                 return true;
2018         }
2019         return false;
2020 }
2021
2022 /*
2023  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2024  *
2025  * @mpd - extent of blocks for mapping
2026  * @head - the first buffer in the page
2027  * @bh - buffer we should start processing from
2028  * @lblk - logical number of the block in the file corresponding to @bh
2029  *
2030  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2031  * the page for IO if all buffers in this page were mapped and there's no
2032  * accumulated extent of buffers to map or add buffers in the page to the
2033  * extent of buffers to map. The function returns 1 if the caller can continue
2034  * by processing the next page, 0 if it should stop adding buffers to the
2035  * extent to map because we cannot extend it anymore. It can also return value
2036  * < 0 in case of error during IO submission.
2037  */
2038 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2039                                    struct buffer_head *head,
2040                                    struct buffer_head *bh,
2041                                    ext4_lblk_t lblk)
2042 {
2043         struct inode *inode = mpd->inode;
2044         int err;
2045         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2046                                                         >> inode->i_blkbits;
2047
2048         do {
2049                 BUG_ON(buffer_locked(bh));
2050
2051                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2052                         /* Found extent to map? */
2053                         if (mpd->map.m_len)
2054                                 return 0;
2055                         /* Everything mapped so far and we hit EOF */
2056                         break;
2057                 }
2058         } while (lblk++, (bh = bh->b_this_page) != head);
2059         /* So far everything mapped? Submit the page for IO. */
2060         if (mpd->map.m_len == 0) {
2061                 err = mpage_submit_page(mpd, head->b_page);
2062                 if (err < 0)
2063                         return err;
2064         }
2065         return lblk < blocks;
2066 }
2067
2068 /*
2069  * mpage_map_buffers - update buffers corresponding to changed extent and
2070  *                     submit fully mapped pages for IO
2071  *
2072  * @mpd - description of extent to map, on return next extent to map
2073  *
2074  * Scan buffers corresponding to changed extent (we expect corresponding pages
2075  * to be already locked) and update buffer state according to new extent state.
2076  * We map delalloc buffers to their physical location, clear unwritten bits,
2077  * and mark buffers as uninit when we perform writes to unwritten extents
2078  * and do extent conversion after IO is finished. If the last page is not fully
2079  * mapped, we update @map to the next extent in the last page that needs
2080  * mapping. Otherwise we submit the page for IO.
2081  */
2082 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2083 {
2084         struct pagevec pvec;
2085         int nr_pages, i;
2086         struct inode *inode = mpd->inode;
2087         struct buffer_head *head, *bh;
2088         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2089         pgoff_t start, end;
2090         ext4_lblk_t lblk;
2091         sector_t pblock;
2092         int err;
2093
2094         start = mpd->map.m_lblk >> bpp_bits;
2095         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2096         lblk = start << bpp_bits;
2097         pblock = mpd->map.m_pblk;
2098
2099         pagevec_init(&pvec, 0);
2100         while (start <= end) {
2101                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2102                                           PAGEVEC_SIZE);
2103                 if (nr_pages == 0)
2104                         break;
2105                 for (i = 0; i < nr_pages; i++) {
2106                         struct page *page = pvec.pages[i];
2107
2108                         if (page->index > end)
2109                                 break;
2110                         /* Up to 'end' pages must be contiguous */
2111                         BUG_ON(page->index != start);
2112                         bh = head = page_buffers(page);
2113                         do {
2114                                 if (lblk < mpd->map.m_lblk)
2115                                         continue;
2116                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2117                                         /*
2118                                          * Buffer after end of mapped extent.
2119                                          * Find next buffer in the page to map.
2120                                          */
2121                                         mpd->map.m_len = 0;
2122                                         mpd->map.m_flags = 0;
2123                                         /*
2124                                          * FIXME: If dioread_nolock supports
2125                                          * blocksize < pagesize, we need to make
2126                                          * sure we add size mapped so far to
2127                                          * io_end->size as the following call
2128                                          * can submit the page for IO.
2129                                          */
2130                                         err = mpage_process_page_bufs(mpd, head,
2131                                                                       bh, lblk);
2132                                         pagevec_release(&pvec);
2133                                         if (err > 0)
2134                                                 err = 0;
2135                                         return err;
2136                                 }
2137                                 if (buffer_delay(bh)) {
2138                                         clear_buffer_delay(bh);
2139                                         bh->b_blocknr = pblock++;
2140                                 }
2141                                 clear_buffer_unwritten(bh);
2142                         } while (lblk++, (bh = bh->b_this_page) != head);
2143
2144                         /*
2145                          * FIXME: This is going to break if dioread_nolock
2146                          * supports blocksize < pagesize as we will try to
2147                          * convert potentially unmapped parts of inode.
2148                          */
2149                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2150                         /* Page fully mapped - let IO run! */
2151                         err = mpage_submit_page(mpd, page);
2152                         if (err < 0) {
2153                                 pagevec_release(&pvec);
2154                                 return err;
2155                         }
2156                         start++;
2157                 }
2158                 pagevec_release(&pvec);
2159         }
2160         /* Extent fully mapped and matches with page boundary. We are done. */
2161         mpd->map.m_len = 0;
2162         mpd->map.m_flags = 0;
2163         return 0;
2164 }
2165
2166 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2167 {
2168         struct inode *inode = mpd->inode;
2169         struct ext4_map_blocks *map = &mpd->map;
2170         int get_blocks_flags;
2171         int err, dioread_nolock;
2172
2173         trace_ext4_da_write_pages_extent(inode, map);
2174         /*
2175          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2176          * to convert an unwritten extent to be initialized (in the case
2177          * where we have written into one or more preallocated blocks).  It is
2178          * possible that we're going to need more metadata blocks than
2179          * previously reserved. However we must not fail because we're in
2180          * writeback and there is nothing we can do about it so it might result
2181          * in data loss.  So use reserved blocks to allocate metadata if
2182          * possible.
2183          *
2184          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2185          * the blocks in question are delalloc blocks.  This indicates
2186          * that the blocks and quotas has already been checked when
2187          * the data was copied into the page cache.
2188          */
2189         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2190                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2191         dioread_nolock = ext4_should_dioread_nolock(inode);
2192         if (dioread_nolock)
2193                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2194         if (map->m_flags & (1 << BH_Delay))
2195                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2196
2197         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2198         if (err < 0)
2199                 return err;
2200         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2201                 if (!mpd->io_submit.io_end->handle &&
2202                     ext4_handle_valid(handle)) {
2203                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2204                         handle->h_rsv_handle = NULL;
2205                 }
2206                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2207         }
2208
2209         BUG_ON(map->m_len == 0);
2210         if (map->m_flags & EXT4_MAP_NEW) {
2211                 struct block_device *bdev = inode->i_sb->s_bdev;
2212                 int i;
2213
2214                 for (i = 0; i < map->m_len; i++)
2215                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2216         }
2217         return 0;
2218 }
2219
2220 /*
2221  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2222  *                               mpd->len and submit pages underlying it for IO
2223  *
2224  * @handle - handle for journal operations
2225  * @mpd - extent to map
2226  * @give_up_on_write - we set this to true iff there is a fatal error and there
2227  *                     is no hope of writing the data. The caller should discard
2228  *                     dirty pages to avoid infinite loops.
2229  *
2230  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2231  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2232  * them to initialized or split the described range from larger unwritten
2233  * extent. Note that we need not map all the described range since allocation
2234  * can return less blocks or the range is covered by more unwritten extents. We
2235  * cannot map more because we are limited by reserved transaction credits. On
2236  * the other hand we always make sure that the last touched page is fully
2237  * mapped so that it can be written out (and thus forward progress is
2238  * guaranteed). After mapping we submit all mapped pages for IO.
2239  */
2240 static int mpage_map_and_submit_extent(handle_t *handle,
2241                                        struct mpage_da_data *mpd,
2242                                        bool *give_up_on_write)
2243 {
2244         struct inode *inode = mpd->inode;
2245         struct ext4_map_blocks *map = &mpd->map;
2246         int err;
2247         loff_t disksize;
2248         int progress = 0;
2249
2250         mpd->io_submit.io_end->offset =
2251                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2252         do {
2253                 err = mpage_map_one_extent(handle, mpd);
2254                 if (err < 0) {
2255                         struct super_block *sb = inode->i_sb;
2256
2257                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2258                                 goto invalidate_dirty_pages;
2259                         /*
2260                          * Let the uper layers retry transient errors.
2261                          * In the case of ENOSPC, if ext4_count_free_blocks()
2262                          * is non-zero, a commit should free up blocks.
2263                          */
2264                         if ((err == -ENOMEM) ||
2265                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2266                                 if (progress)
2267                                         goto update_disksize;
2268                                 return err;
2269                         }
2270                         ext4_msg(sb, KERN_CRIT,
2271                                  "Delayed block allocation failed for "
2272                                  "inode %lu at logical offset %llu with"
2273                                  " max blocks %u with error %d",
2274                                  inode->i_ino,
2275                                  (unsigned long long)map->m_lblk,
2276                                  (unsigned)map->m_len, -err);
2277                         ext4_msg(sb, KERN_CRIT,
2278                                  "This should not happen!! Data will "
2279                                  "be lost\n");
2280                         if (err == -ENOSPC)
2281                                 ext4_print_free_blocks(inode);
2282                 invalidate_dirty_pages:
2283                         *give_up_on_write = true;
2284                         return err;
2285                 }
2286                 progress = 1;
2287                 /*
2288                  * Update buffer state, submit mapped pages, and get us new
2289                  * extent to map
2290                  */
2291                 err = mpage_map_and_submit_buffers(mpd);
2292                 if (err < 0)
2293                         goto update_disksize;
2294         } while (map->m_len);
2295
2296 update_disksize:
2297         /*
2298          * Update on-disk size after IO is submitted.  Races with
2299          * truncate are avoided by checking i_size under i_data_sem.
2300          */
2301         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2302         if (disksize > EXT4_I(inode)->i_disksize) {
2303                 int err2;
2304                 loff_t i_size;
2305
2306                 down_write(&EXT4_I(inode)->i_data_sem);
2307                 i_size = i_size_read(inode);
2308                 if (disksize > i_size)
2309                         disksize = i_size;
2310                 if (disksize > EXT4_I(inode)->i_disksize)
2311                         EXT4_I(inode)->i_disksize = disksize;
2312                 err2 = ext4_mark_inode_dirty(handle, inode);
2313                 up_write(&EXT4_I(inode)->i_data_sem);
2314                 if (err2)
2315                         ext4_error(inode->i_sb,
2316                                    "Failed to mark inode %lu dirty",
2317                                    inode->i_ino);
2318                 if (!err)
2319                         err = err2;
2320         }
2321         return err;
2322 }
2323
2324 /*
2325  * Calculate the total number of credits to reserve for one writepages
2326  * iteration. This is called from ext4_writepages(). We map an extent of
2327  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2328  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2329  * bpp - 1 blocks in bpp different extents.
2330  */
2331 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2332 {
2333         int bpp = ext4_journal_blocks_per_page(inode);
2334
2335         return ext4_meta_trans_blocks(inode,
2336                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2337 }
2338
2339 /*
2340  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2341  *                               and underlying extent to map
2342  *
2343  * @mpd - where to look for pages
2344  *
2345  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2346  * IO immediately. When we find a page which isn't mapped we start accumulating
2347  * extent of buffers underlying these pages that needs mapping (formed by
2348  * either delayed or unwritten buffers). We also lock the pages containing
2349  * these buffers. The extent found is returned in @mpd structure (starting at
2350  * mpd->lblk with length mpd->len blocks).
2351  *
2352  * Note that this function can attach bios to one io_end structure which are
2353  * neither logically nor physically contiguous. Although it may seem as an
2354  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2355  * case as we need to track IO to all buffers underlying a page in one io_end.
2356  */
2357 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2358 {
2359         struct address_space *mapping = mpd->inode->i_mapping;
2360         struct pagevec pvec;
2361         unsigned int nr_pages;
2362         long left = mpd->wbc->nr_to_write;
2363         pgoff_t index = mpd->first_page;
2364         pgoff_t end = mpd->last_page;
2365         int tag;
2366         int i, err = 0;
2367         int blkbits = mpd->inode->i_blkbits;
2368         ext4_lblk_t lblk;
2369         struct buffer_head *head;
2370
2371         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2372                 tag = PAGECACHE_TAG_TOWRITE;
2373         else
2374                 tag = PAGECACHE_TAG_DIRTY;
2375
2376         pagevec_init(&pvec, 0);
2377         mpd->map.m_len = 0;
2378         mpd->next_page = index;
2379         while (index <= end) {
2380                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2381                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2382                 if (nr_pages == 0)
2383                         goto out;
2384
2385                 for (i = 0; i < nr_pages; i++) {
2386                         struct page *page = pvec.pages[i];
2387
2388                         /*
2389                          * At this point, the page may be truncated or
2390                          * invalidated (changing page->mapping to NULL), or
2391                          * even swizzled back from swapper_space to tmpfs file
2392                          * mapping. However, page->index will not change
2393                          * because we have a reference on the page.
2394                          */
2395                         if (page->index > end)
2396                                 goto out;
2397
2398                         /*
2399                          * Accumulated enough dirty pages? This doesn't apply
2400                          * to WB_SYNC_ALL mode. For integrity sync we have to
2401                          * keep going because someone may be concurrently
2402                          * dirtying pages, and we might have synced a lot of
2403                          * newly appeared dirty pages, but have not synced all
2404                          * of the old dirty pages.
2405                          */
2406                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2407                                 goto out;
2408
2409                         /* If we can't merge this page, we are done. */
2410                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2411                                 goto out;
2412
2413                         lock_page(page);
2414                         /*
2415                          * If the page is no longer dirty, or its mapping no
2416                          * longer corresponds to inode we are writing (which
2417                          * means it has been truncated or invalidated), or the
2418                          * page is already under writeback and we are not doing
2419                          * a data integrity writeback, skip the page
2420                          */
2421                         if (!PageDirty(page) ||
2422                             (PageWriteback(page) &&
2423                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2424                             unlikely(page->mapping != mapping)) {
2425                                 unlock_page(page);
2426                                 continue;
2427                         }
2428
2429                         wait_on_page_writeback(page);
2430                         BUG_ON(PageWriteback(page));
2431
2432                         if (mpd->map.m_len == 0)
2433                                 mpd->first_page = page->index;
2434                         mpd->next_page = page->index + 1;
2435                         /* Add all dirty buffers to mpd */
2436                         lblk = ((ext4_lblk_t)page->index) <<
2437                                 (PAGE_CACHE_SHIFT - blkbits);
2438                         head = page_buffers(page);
2439                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2440                         if (err <= 0)
2441                                 goto out;
2442                         err = 0;
2443                         left--;
2444                 }
2445                 pagevec_release(&pvec);
2446                 cond_resched();
2447         }
2448         return 0;
2449 out:
2450         pagevec_release(&pvec);
2451         return err;
2452 }
2453
2454 static int __writepage(struct page *page, struct writeback_control *wbc,
2455                        void *data)
2456 {
2457         struct address_space *mapping = data;
2458         int ret = ext4_writepage(page, wbc);
2459         mapping_set_error(mapping, ret);
2460         return ret;
2461 }
2462
2463 static int ext4_writepages(struct address_space *mapping,
2464                            struct writeback_control *wbc)
2465 {
2466         pgoff_t writeback_index = 0;
2467         long nr_to_write = wbc->nr_to_write;
2468         int range_whole = 0;
2469         int cycled = 1;
2470         handle_t *handle = NULL;
2471         struct mpage_da_data mpd;
2472         struct inode *inode = mapping->host;
2473         int needed_blocks, rsv_blocks = 0, ret = 0;
2474         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2475         bool done;
2476         struct blk_plug plug;
2477         bool give_up_on_write = false;
2478
2479         trace_ext4_writepages(inode, wbc);
2480
2481         if (dax_mapping(mapping))
2482                 return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2483                                                    wbc);
2484
2485         /*
2486          * No pages to write? This is mainly a kludge to avoid starting
2487          * a transaction for special inodes like journal inode on last iput()
2488          * because that could violate lock ordering on umount
2489          */
2490         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2491                 goto out_writepages;
2492
2493         if (ext4_should_journal_data(inode)) {
2494                 struct blk_plug plug;
2495
2496                 blk_start_plug(&plug);
2497                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2498                 blk_finish_plug(&plug);
2499                 goto out_writepages;
2500         }
2501
2502         /*
2503          * If the filesystem has aborted, it is read-only, so return
2504          * right away instead of dumping stack traces later on that
2505          * will obscure the real source of the problem.  We test
2506          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2507          * the latter could be true if the filesystem is mounted
2508          * read-only, and in that case, ext4_writepages should
2509          * *never* be called, so if that ever happens, we would want
2510          * the stack trace.
2511          */
2512         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2513                 ret = -EROFS;
2514                 goto out_writepages;
2515         }
2516
2517         if (ext4_should_dioread_nolock(inode)) {
2518                 /*
2519                  * We may need to convert up to one extent per block in
2520                  * the page and we may dirty the inode.
2521                  */
2522                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2523         }
2524
2525         /*
2526          * If we have inline data and arrive here, it means that
2527          * we will soon create the block for the 1st page, so
2528          * we'd better clear the inline data here.
2529          */
2530         if (ext4_has_inline_data(inode)) {
2531                 /* Just inode will be modified... */
2532                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2533                 if (IS_ERR(handle)) {
2534                         ret = PTR_ERR(handle);
2535                         goto out_writepages;
2536                 }
2537                 BUG_ON(ext4_test_inode_state(inode,
2538                                 EXT4_STATE_MAY_INLINE_DATA));
2539                 ext4_destroy_inline_data(handle, inode);
2540                 ext4_journal_stop(handle);
2541         }
2542
2543         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2544                 range_whole = 1;
2545
2546         if (wbc->range_cyclic) {
2547                 writeback_index = mapping->writeback_index;
2548                 if (writeback_index)
2549                         cycled = 0;
2550                 mpd.first_page = writeback_index;
2551                 mpd.last_page = -1;
2552         } else {
2553                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2554                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2555         }
2556
2557         mpd.inode = inode;
2558         mpd.wbc = wbc;
2559         ext4_io_submit_init(&mpd.io_submit, wbc);
2560 retry:
2561         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2562                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2563         done = false;
2564         blk_start_plug(&plug);
2565         while (!done && mpd.first_page <= mpd.last_page) {
2566                 /* For each extent of pages we use new io_end */
2567                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2568                 if (!mpd.io_submit.io_end) {
2569                         ret = -ENOMEM;
2570                         break;
2571                 }
2572
2573                 /*
2574                  * We have two constraints: We find one extent to map and we
2575                  * must always write out whole page (makes a difference when
2576                  * blocksize < pagesize) so that we don't block on IO when we
2577                  * try to write out the rest of the page. Journalled mode is
2578                  * not supported by delalloc.
2579                  */
2580                 BUG_ON(ext4_should_journal_data(inode));
2581                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2582
2583                 /* start a new transaction */
2584                 handle = ext4_journal_start_with_reserve(inode,
2585                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2586                 if (IS_ERR(handle)) {
2587                         ret = PTR_ERR(handle);
2588                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2589                                "%ld pages, ino %lu; err %d", __func__,
2590                                 wbc->nr_to_write, inode->i_ino, ret);
2591                         /* Release allocated io_end */
2592                         ext4_put_io_end(mpd.io_submit.io_end);
2593                         break;
2594                 }
2595
2596                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2597                 ret = mpage_prepare_extent_to_map(&mpd);
2598                 if (!ret) {
2599                         if (mpd.map.m_len)
2600                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2601                                         &give_up_on_write);
2602                         else {
2603                                 /*
2604                                  * We scanned the whole range (or exhausted
2605                                  * nr_to_write), submitted what was mapped and
2606                                  * didn't find anything needing mapping. We are
2607                                  * done.
2608                                  */
2609                                 done = true;
2610                         }
2611                 }
2612                 ext4_journal_stop(handle);
2613                 /* Submit prepared bio */
2614                 ext4_io_submit(&mpd.io_submit);
2615                 /* Unlock pages we didn't use */
2616                 mpage_release_unused_pages(&mpd, give_up_on_write);
2617                 /* Drop our io_end reference we got from init */
2618                 ext4_put_io_end(mpd.io_submit.io_end);
2619
2620                 if (ret == -ENOSPC && sbi->s_journal) {
2621                         /*
2622                          * Commit the transaction which would
2623                          * free blocks released in the transaction
2624                          * and try again
2625                          */
2626                         jbd2_journal_force_commit_nested(sbi->s_journal);
2627                         ret = 0;
2628                         continue;
2629                 }
2630                 /* Fatal error - ENOMEM, EIO... */
2631                 if (ret)
2632                         break;
2633         }
2634         blk_finish_plug(&plug);
2635         if (!ret && !cycled && wbc->nr_to_write > 0) {
2636                 cycled = 1;
2637                 mpd.last_page = writeback_index - 1;
2638                 mpd.first_page = 0;
2639                 goto retry;
2640         }
2641
2642         /* Update index */
2643         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2644                 /*
2645                  * Set the writeback_index so that range_cyclic
2646                  * mode will write it back later
2647                  */
2648                 mapping->writeback_index = mpd.first_page;
2649
2650 out_writepages:
2651         trace_ext4_writepages_result(inode, wbc, ret,
2652                                      nr_to_write - wbc->nr_to_write);
2653         return ret;
2654 }
2655
2656 static int ext4_nonda_switch(struct super_block *sb)
2657 {
2658         s64 free_clusters, dirty_clusters;
2659         struct ext4_sb_info *sbi = EXT4_SB(sb);
2660
2661         /*
2662          * switch to non delalloc mode if we are running low
2663          * on free block. The free block accounting via percpu
2664          * counters can get slightly wrong with percpu_counter_batch getting
2665          * accumulated on each CPU without updating global counters
2666          * Delalloc need an accurate free block accounting. So switch
2667          * to non delalloc when we are near to error range.
2668          */
2669         free_clusters =
2670                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2671         dirty_clusters =
2672                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2673         /*
2674          * Start pushing delalloc when 1/2 of free blocks are dirty.
2675          */
2676         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2677                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2678
2679         if (2 * free_clusters < 3 * dirty_clusters ||
2680             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2681                 /*
2682                  * free block count is less than 150% of dirty blocks
2683                  * or free blocks is less than watermark
2684                  */
2685                 return 1;
2686         }
2687         return 0;
2688 }
2689
2690 /* We always reserve for an inode update; the superblock could be there too */
2691 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2692 {
2693         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2694                 return 1;
2695
2696         if (pos + len <= 0x7fffffffULL)
2697                 return 1;
2698
2699         /* We might need to update the superblock to set LARGE_FILE */
2700         return 2;
2701 }
2702
2703 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2704                                loff_t pos, unsigned len, unsigned flags,
2705                                struct page **pagep, void **fsdata)
2706 {
2707         int ret, retries = 0;
2708         struct page *page;
2709         pgoff_t index;
2710         struct inode *inode = mapping->host;
2711         handle_t *handle;
2712
2713         index = pos >> PAGE_CACHE_SHIFT;
2714
2715         if (ext4_nonda_switch(inode->i_sb)) {
2716                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2717                 return ext4_write_begin(file, mapping, pos,
2718                                         len, flags, pagep, fsdata);
2719         }
2720         *fsdata = (void *)0;
2721         trace_ext4_da_write_begin(inode, pos, len, flags);
2722
2723         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2724                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2725                                                       pos, len, flags,
2726                                                       pagep, fsdata);
2727                 if (ret < 0)
2728                         return ret;
2729                 if (ret == 1)
2730                         return 0;
2731         }
2732
2733         /*
2734          * grab_cache_page_write_begin() can take a long time if the
2735          * system is thrashing due to memory pressure, or if the page
2736          * is being written back.  So grab it first before we start
2737          * the transaction handle.  This also allows us to allocate
2738          * the page (if needed) without using GFP_NOFS.
2739          */
2740 retry_grab:
2741         page = grab_cache_page_write_begin(mapping, index, flags);
2742         if (!page)
2743                 return -ENOMEM;
2744         unlock_page(page);
2745
2746         /*
2747          * With delayed allocation, we don't log the i_disksize update
2748          * if there is delayed block allocation. But we still need
2749          * to journalling the i_disksize update if writes to the end
2750          * of file which has an already mapped buffer.
2751          */
2752 retry_journal:
2753         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2754                                 ext4_da_write_credits(inode, pos, len));
2755         if (IS_ERR(handle)) {
2756                 page_cache_release(page);
2757                 return PTR_ERR(handle);
2758         }
2759
2760         lock_page(page);
2761         if (page->mapping != mapping) {
2762                 /* The page got truncated from under us */
2763                 unlock_page(page);
2764                 page_cache_release(page);
2765                 ext4_journal_stop(handle);
2766                 goto retry_grab;
2767         }
2768         /* In case writeback began while the page was unlocked */
2769         wait_for_stable_page(page);
2770
2771 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2772         ret = ext4_block_write_begin(page, pos, len,
2773                                      ext4_da_get_block_prep);
2774 #else
2775         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2776 #endif
2777         if (ret < 0) {
2778                 unlock_page(page);
2779                 ext4_journal_stop(handle);
2780                 /*
2781                  * block_write_begin may have instantiated a few blocks
2782                  * outside i_size.  Trim these off again. Don't need
2783                  * i_size_read because we hold i_mutex.
2784                  */
2785                 if (pos + len > inode->i_size)
2786                         ext4_truncate_failed_write(inode);
2787
2788                 if (ret == -ENOSPC &&
2789                     ext4_should_retry_alloc(inode->i_sb, &retries))
2790                         goto retry_journal;
2791
2792                 page_cache_release(page);
2793                 return ret;
2794         }
2795
2796         *pagep = page;
2797         return ret;
2798 }
2799
2800 /*
2801  * Check if we should update i_disksize
2802  * when write to the end of file but not require block allocation
2803  */
2804 static int ext4_da_should_update_i_disksize(struct page *page,
2805                                             unsigned long offset)
2806 {
2807         struct buffer_head *bh;
2808         struct inode *inode = page->mapping->host;
2809         unsigned int idx;
2810         int i;
2811
2812         bh = page_buffers(page);
2813         idx = offset >> inode->i_blkbits;
2814
2815         for (i = 0; i < idx; i++)
2816                 bh = bh->b_this_page;
2817
2818         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2819                 return 0;
2820         return 1;
2821 }
2822
2823 static int ext4_da_write_end(struct file *file,
2824                              struct address_space *mapping,
2825                              loff_t pos, unsigned len, unsigned copied,
2826                              struct page *page, void *fsdata)
2827 {
2828         struct inode *inode = mapping->host;
2829         int ret = 0, ret2;
2830         handle_t *handle = ext4_journal_current_handle();
2831         loff_t new_i_size;
2832         unsigned long start, end;
2833         int write_mode = (int)(unsigned long)fsdata;
2834
2835         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2836                 return ext4_write_end(file, mapping, pos,
2837                                       len, copied, page, fsdata);
2838
2839         trace_ext4_da_write_end(inode, pos, len, copied);
2840         start = pos & (PAGE_CACHE_SIZE - 1);
2841         end = start + copied - 1;
2842
2843         /*
2844          * generic_write_end() will run mark_inode_dirty() if i_size
2845          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2846          * into that.
2847          */
2848         new_i_size = pos + copied;
2849         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2850                 if (ext4_has_inline_data(inode) ||
2851                     ext4_da_should_update_i_disksize(page, end)) {
2852                         ext4_update_i_disksize(inode, new_i_size);
2853                         /* We need to mark inode dirty even if
2854                          * new_i_size is less that inode->i_size
2855                          * bu greater than i_disksize.(hint delalloc)
2856                          */
2857                         ext4_mark_inode_dirty(handle, inode);
2858                 }
2859         }
2860
2861         if (write_mode != CONVERT_INLINE_DATA &&
2862             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2863             ext4_has_inline_data(inode))
2864                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2865                                                      page);
2866         else
2867                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2868                                                         page, fsdata);
2869
2870         copied = ret2;
2871         if (ret2 < 0)
2872                 ret = ret2;
2873         ret2 = ext4_journal_stop(handle);
2874         if (!ret)
2875                 ret = ret2;
2876
2877         return ret ? ret : copied;
2878 }
2879
2880 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2881                                    unsigned int length)
2882 {
2883         /*
2884          * Drop reserved blocks
2885          */
2886         BUG_ON(!PageLocked(page));
2887         if (!page_has_buffers(page))
2888                 goto out;
2889
2890         ext4_da_page_release_reservation(page, offset, length);
2891
2892 out:
2893         ext4_invalidatepage(page, offset, length);
2894
2895         return;
2896 }
2897
2898 /*
2899  * Force all delayed allocation blocks to be allocated for a given inode.
2900  */
2901 int ext4_alloc_da_blocks(struct inode *inode)
2902 {
2903         trace_ext4_alloc_da_blocks(inode);
2904
2905         if (!EXT4_I(inode)->i_reserved_data_blocks)
2906                 return 0;
2907
2908         /*
2909          * We do something simple for now.  The filemap_flush() will
2910          * also start triggering a write of the data blocks, which is
2911          * not strictly speaking necessary (and for users of
2912          * laptop_mode, not even desirable).  However, to do otherwise
2913          * would require replicating code paths in:
2914          *
2915          * ext4_writepages() ->
2916          *    write_cache_pages() ---> (via passed in callback function)
2917          *        __mpage_da_writepage() -->
2918          *           mpage_add_bh_to_extent()
2919          *           mpage_da_map_blocks()
2920          *
2921          * The problem is that write_cache_pages(), located in
2922          * mm/page-writeback.c, marks pages clean in preparation for
2923          * doing I/O, which is not desirable if we're not planning on
2924          * doing I/O at all.
2925          *
2926          * We could call write_cache_pages(), and then redirty all of
2927          * the pages by calling redirty_page_for_writepage() but that
2928          * would be ugly in the extreme.  So instead we would need to
2929          * replicate parts of the code in the above functions,
2930          * simplifying them because we wouldn't actually intend to
2931          * write out the pages, but rather only collect contiguous
2932          * logical block extents, call the multi-block allocator, and
2933          * then update the buffer heads with the block allocations.
2934          *
2935          * For now, though, we'll cheat by calling filemap_flush(),
2936          * which will map the blocks, and start the I/O, but not
2937          * actually wait for the I/O to complete.
2938          */
2939         return filemap_flush(inode->i_mapping);
2940 }
2941
2942 /*
2943  * bmap() is special.  It gets used by applications such as lilo and by
2944  * the swapper to find the on-disk block of a specific piece of data.
2945  *
2946  * Naturally, this is dangerous if the block concerned is still in the
2947  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2948  * filesystem and enables swap, then they may get a nasty shock when the
2949  * data getting swapped to that swapfile suddenly gets overwritten by
2950  * the original zero's written out previously to the journal and
2951  * awaiting writeback in the kernel's buffer cache.
2952  *
2953  * So, if we see any bmap calls here on a modified, data-journaled file,
2954  * take extra steps to flush any blocks which might be in the cache.
2955  */
2956 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2957 {
2958         struct inode *inode = mapping->host;
2959         journal_t *journal;
2960         int err;
2961
2962         /*
2963          * We can get here for an inline file via the FIBMAP ioctl
2964          */
2965         if (ext4_has_inline_data(inode))
2966                 return 0;
2967
2968         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2969                         test_opt(inode->i_sb, DELALLOC)) {
2970                 /*
2971                  * With delalloc we want to sync the file
2972                  * so that we can make sure we allocate
2973                  * blocks for file
2974                  */
2975                 filemap_write_and_wait(mapping);
2976         }
2977
2978         if (EXT4_JOURNAL(inode) &&
2979             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2980                 /*
2981                  * This is a REALLY heavyweight approach, but the use of
2982                  * bmap on dirty files is expected to be extremely rare:
2983                  * only if we run lilo or swapon on a freshly made file
2984                  * do we expect this to happen.
2985                  *
2986                  * (bmap requires CAP_SYS_RAWIO so this does not
2987                  * represent an unprivileged user DOS attack --- we'd be
2988                  * in trouble if mortal users could trigger this path at
2989                  * will.)
2990                  *
2991                  * NB. EXT4_STATE_JDATA is not set on files other than
2992                  * regular files.  If somebody wants to bmap a directory
2993                  * or symlink and gets confused because the buffer
2994                  * hasn't yet been flushed to disk, they deserve
2995                  * everything they get.
2996                  */
2997
2998                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2999                 journal = EXT4_JOURNAL(inode);
3000                 jbd2_journal_lock_updates(journal);
3001                 err = jbd2_journal_flush(journal);
3002                 jbd2_journal_unlock_updates(journal);
3003
3004                 if (err)
3005                         return 0;
3006         }
3007
3008         return generic_block_bmap(mapping, block, ext4_get_block);
3009 }
3010
3011 static int ext4_readpage(struct file *file, struct page *page)
3012 {
3013         int ret = -EAGAIN;
3014         struct inode *inode = page->mapping->host;
3015
3016         trace_ext4_readpage(page);
3017
3018         if (ext4_has_inline_data(inode))
3019                 ret = ext4_readpage_inline(inode, page);
3020
3021         if (ret == -EAGAIN)
3022                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3023
3024         return ret;
3025 }
3026
3027 static int
3028 ext4_readpages(struct file *file, struct address_space *mapping,
3029                 struct list_head *pages, unsigned nr_pages)
3030 {
3031         struct inode *inode = mapping->host;
3032
3033         /* If the file has inline data, no need to do readpages. */
3034         if (ext4_has_inline_data(inode))
3035                 return 0;
3036
3037         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3038 }
3039
3040 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3041                                 unsigned int length)
3042 {
3043         trace_ext4_invalidatepage(page, offset, length);
3044
3045         /* No journalling happens on data buffers when this function is used */
3046         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3047
3048         block_invalidatepage(page, offset, length);
3049 }
3050
3051 static int __ext4_journalled_invalidatepage(struct page *page,
3052                                             unsigned int offset,
3053                                             unsigned int length)
3054 {
3055         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3056
3057         trace_ext4_journalled_invalidatepage(page, offset, length);
3058
3059         /*
3060          * If it's a full truncate we just forget about the pending dirtying
3061          */
3062         if (offset == 0 && length == PAGE_CACHE_SIZE)
3063                 ClearPageChecked(page);
3064
3065         return jbd2_journal_invalidatepage(journal, page, offset, length);
3066 }
3067
3068 /* Wrapper for aops... */
3069 static void ext4_journalled_invalidatepage(struct page *page,
3070                                            unsigned int offset,
3071                                            unsigned int length)
3072 {
3073         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3074 }
3075
3076 static int ext4_releasepage(struct page *page, gfp_t wait)
3077 {
3078         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3079
3080         trace_ext4_releasepage(page);
3081
3082         /* Page has dirty journalled data -> cannot release */
3083         if (PageChecked(page))
3084                 return 0;
3085         if (journal)
3086                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3087         else
3088                 return try_to_free_buffers(page);
3089 }
3090
3091 /*
3092  * ext4_get_block used when preparing for a DIO write or buffer write.
3093  * We allocate an uinitialized extent if blocks haven't been allocated.
3094  * The extent will be converted to initialized after the IO is complete.
3095  */
3096 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3097                    struct buffer_head *bh_result, int create)
3098 {
3099         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3100                    inode->i_ino, create);
3101         return _ext4_get_block(inode, iblock, bh_result,
3102                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3103 }
3104
3105 static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock,
3106                    struct buffer_head *bh_result, int create)
3107 {
3108         int ret;
3109
3110         ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n",
3111                    inode->i_ino, create);
3112         ret = _ext4_get_block(inode, iblock, bh_result, 0);
3113         /*
3114          * Blocks should have been preallocated! ext4_file_write_iter() checks
3115          * that.
3116          */
3117         WARN_ON_ONCE(!buffer_mapped(bh_result));
3118
3119         return ret;
3120 }
3121
3122 #ifdef CONFIG_FS_DAX
3123 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3124                             struct buffer_head *bh_result, int create)
3125 {
3126         int ret, err;
3127         int credits;
3128         struct ext4_map_blocks map;
3129         handle_t *handle = NULL;
3130         int flags = 0;
3131
3132         ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3133                    inode->i_ino, create);
3134         map.m_lblk = iblock;
3135         map.m_len = bh_result->b_size >> inode->i_blkbits;
3136         credits = ext4_chunk_trans_blocks(inode, map.m_len);
3137         if (create) {
3138                 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3139                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3140                 if (IS_ERR(handle)) {
3141                         ret = PTR_ERR(handle);
3142                         return ret;
3143                 }
3144         }
3145
3146         ret = ext4_map_blocks(handle, inode, &map, flags);
3147         if (create) {
3148                 err = ext4_journal_stop(handle);
3149                 if (ret >= 0 && err < 0)
3150                         ret = err;
3151         }
3152         if (ret <= 0)
3153                 goto out;
3154         if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3155                 int err2;
3156
3157                 /*
3158                  * We are protected by i_mmap_sem so we know block cannot go
3159                  * away from under us even though we dropped i_data_sem.
3160                  * Convert extent to written and write zeros there.
3161                  *
3162                  * Note: We may get here even when create == 0.
3163                  */
3164                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3165                 if (IS_ERR(handle)) {
3166                         ret = PTR_ERR(handle);
3167                         goto out;
3168                 }
3169
3170                 err = ext4_map_blocks(handle, inode, &map,
3171                       EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3172                 if (err < 0)
3173                         ret = err;
3174                 err2 = ext4_journal_stop(handle);
3175                 if (err2 < 0 && ret > 0)
3176                         ret = err2;
3177         }
3178 out:
3179         WARN_ON_ONCE(ret == 0 && create);
3180         if (ret > 0) {
3181                 map_bh(bh_result, inode->i_sb, map.m_pblk);
3182                 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
3183                                         map.m_flags;
3184                 /*
3185                  * At least for now we have to clear BH_New so that DAX code
3186                  * doesn't attempt to zero blocks again in a racy way.
3187                  */
3188                 bh_result->b_state &= ~(1 << BH_New);
3189                 bh_result->b_size = map.m_len << inode->i_blkbits;
3190                 ret = 0;
3191         }
3192         return ret;
3193 }
3194 #endif
3195
3196 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3197                             ssize_t size, void *private)
3198 {
3199         ext4_io_end_t *io_end = iocb->private;
3200
3201         /* if not async direct IO just return */
3202         if (!io_end)
3203                 return;
3204
3205         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3206                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3207                   iocb->private, io_end->inode->i_ino, iocb, offset,
3208                   size);
3209
3210         iocb->private = NULL;
3211         io_end->offset = offset;
3212         io_end->size = size;
3213         ext4_put_io_end(io_end);
3214 }
3215
3216 /*
3217  * For ext4 extent files, ext4 will do direct-io write to holes,
3218  * preallocated extents, and those write extend the file, no need to
3219  * fall back to buffered IO.
3220  *
3221  * For holes, we fallocate those blocks, mark them as unwritten
3222  * If those blocks were preallocated, we mark sure they are split, but
3223  * still keep the range to write as unwritten.
3224  *
3225  * The unwritten extents will be converted to written when DIO is completed.
3226  * For async direct IO, since the IO may still pending when return, we
3227  * set up an end_io call back function, which will do the conversion
3228  * when async direct IO completed.
3229  *
3230  * If the O_DIRECT write will extend the file then add this inode to the
3231  * orphan list.  So recovery will truncate it back to the original size
3232  * if the machine crashes during the write.
3233  *
3234  */
3235 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3236                                   loff_t offset)
3237 {
3238         struct file *file = iocb->ki_filp;
3239         struct inode *inode = file->f_mapping->host;
3240         ssize_t ret;
3241         size_t count = iov_iter_count(iter);
3242         int overwrite = 0;
3243         get_block_t *get_block_func = NULL;
3244         int dio_flags = 0;
3245         loff_t final_size = offset + count;
3246         ext4_io_end_t *io_end = NULL;
3247
3248         /* Use the old path for reads and writes beyond i_size. */
3249         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3250                 return ext4_ind_direct_IO(iocb, iter, offset);
3251
3252         BUG_ON(iocb->private == NULL);
3253
3254         /*
3255          * Make all waiters for direct IO properly wait also for extent
3256          * conversion. This also disallows race between truncate() and
3257          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3258          */
3259         if (iov_iter_rw(iter) == WRITE)
3260                 inode_dio_begin(inode);
3261
3262         /* If we do a overwrite dio, i_mutex locking can be released */
3263         overwrite = *((int *)iocb->private);
3264
3265         if (overwrite)
3266                 inode_unlock(inode);
3267
3268         /*
3269          * We could direct write to holes and fallocate.
3270          *
3271          * Allocated blocks to fill the hole are marked as
3272          * unwritten to prevent parallel buffered read to expose
3273          * the stale data before DIO complete the data IO.
3274          *
3275          * As to previously fallocated extents, ext4 get_block will
3276          * just simply mark the buffer mapped but still keep the
3277          * extents unwritten.
3278          *
3279          * For non AIO case, we will convert those unwritten extents
3280          * to written after return back from blockdev_direct_IO.
3281          *
3282          * For async DIO, the conversion needs to be deferred when the
3283          * IO is completed. The ext4 end_io callback function will be
3284          * called to take care of the conversion work.  Here for async
3285          * case, we allocate an io_end structure to hook to the iocb.
3286          */
3287         iocb->private = NULL;
3288         if (overwrite) {
3289                 get_block_func = ext4_get_block_overwrite;
3290         } else {
3291                 ext4_inode_aio_set(inode, NULL);
3292                 if (!is_sync_kiocb(iocb)) {
3293                         io_end = ext4_init_io_end(inode, GFP_NOFS);
3294                         if (!io_end) {
3295                                 ret = -ENOMEM;
3296                                 goto retake_lock;
3297                         }
3298                         /*
3299                          * Grab reference for DIO. Will be dropped in
3300                          * ext4_end_io_dio()
3301                          */
3302                         iocb->private = ext4_get_io_end(io_end);
3303                         /*
3304                          * we save the io structure for current async direct
3305                          * IO, so that later ext4_map_blocks() could flag the
3306                          * io structure whether there is a unwritten extents
3307                          * needs to be converted when IO is completed.
3308                          */
3309                         ext4_inode_aio_set(inode, io_end);
3310                 }
3311                 get_block_func = ext4_get_block_write;
3312                 dio_flags = DIO_LOCKING;
3313         }
3314 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3315         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3316 #endif
3317         if (IS_DAX(inode))
3318                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3319                                 ext4_end_io_dio, dio_flags);
3320         else
3321                 ret = __blockdev_direct_IO(iocb, inode,
3322                                            inode->i_sb->s_bdev, iter, offset,
3323                                            get_block_func,
3324                                            ext4_end_io_dio, NULL, dio_flags);
3325
3326         /*
3327          * Put our reference to io_end. This can free the io_end structure e.g.
3328          * in sync IO case or in case of error. It can even perform extent
3329          * conversion if all bios we submitted finished before we got here.
3330          * Note that in that case iocb->private can be already set to NULL
3331          * here.
3332          */
3333         if (io_end) {
3334                 ext4_inode_aio_set(inode, NULL);
3335                 ext4_put_io_end(io_end);
3336                 /*
3337                  * When no IO was submitted ext4_end_io_dio() was not
3338                  * called so we have to put iocb's reference.
3339                  */
3340                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3341                         WARN_ON(iocb->private != io_end);
3342                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3343                         ext4_put_io_end(io_end);
3344                         iocb->private = NULL;
3345                 }
3346         }
3347         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3348                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3349                 int err;
3350                 /*
3351                  * for non AIO case, since the IO is already
3352                  * completed, we could do the conversion right here
3353                  */
3354                 err = ext4_convert_unwritten_extents(NULL, inode,
3355                                                      offset, ret);
3356                 if (err < 0)
3357                         ret = err;
3358                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3359         }
3360
3361 retake_lock:
3362         if (iov_iter_rw(iter) == WRITE)
3363                 inode_dio_end(inode);
3364         /* take i_mutex locking again if we do a ovewrite dio */
3365         if (overwrite)
3366                 inode_lock(inode);
3367
3368         return ret;
3369 }
3370
3371 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3372                               loff_t offset)
3373 {
3374         struct file *file = iocb->ki_filp;
3375         struct inode *inode = file->f_mapping->host;
3376         size_t count = iov_iter_count(iter);
3377         ssize_t ret;
3378
3379 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3380         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3381                 return 0;
3382 #endif
3383
3384         /*
3385          * If we are doing data journalling we don't support O_DIRECT
3386          */
3387         if (ext4_should_journal_data(inode))
3388                 return 0;
3389
3390         /* Let buffer I/O handle the inline data case. */
3391         if (ext4_has_inline_data(inode))
3392                 return 0;
3393
3394         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3395         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3396                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3397         else
3398                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3399         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3400         return ret;
3401 }
3402
3403 /*
3404  * Pages can be marked dirty completely asynchronously from ext4's journalling
3405  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3406  * much here because ->set_page_dirty is called under VFS locks.  The page is
3407  * not necessarily locked.
3408  *
3409  * We cannot just dirty the page and leave attached buffers clean, because the
3410  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3411  * or jbddirty because all the journalling code will explode.
3412  *
3413  * So what we do is to mark the page "pending dirty" and next time writepage
3414  * is called, propagate that into the buffers appropriately.
3415  */
3416 static int ext4_journalled_set_page_dirty(struct page *page)
3417 {
3418         SetPageChecked(page);
3419         return __set_page_dirty_nobuffers(page);
3420 }
3421
3422 static const struct address_space_operations ext4_aops = {
3423         .readpage               = ext4_readpage,
3424         .readpages              = ext4_readpages,
3425         .writepage              = ext4_writepage,
3426         .writepages             = ext4_writepages,
3427         .write_begin            = ext4_write_begin,
3428         .write_end              = ext4_write_end,
3429         .bmap                   = ext4_bmap,
3430         .invalidatepage         = ext4_invalidatepage,
3431         .releasepage            = ext4_releasepage,
3432         .direct_IO              = ext4_direct_IO,
3433         .migratepage            = buffer_migrate_page,
3434         .is_partially_uptodate  = block_is_partially_uptodate,
3435         .error_remove_page      = generic_error_remove_page,
3436 };
3437
3438 static const struct address_space_operations ext4_journalled_aops = {
3439         .readpage               = ext4_readpage,
3440         .readpages              = ext4_readpages,
3441         .writepage              = ext4_writepage,
3442         .writepages             = ext4_writepages,
3443         .write_begin            = ext4_write_begin,
3444         .write_end              = ext4_journalled_write_end,
3445         .set_page_dirty         = ext4_journalled_set_page_dirty,
3446         .bmap                   = ext4_bmap,
3447         .invalidatepage         = ext4_journalled_invalidatepage,
3448         .releasepage            = ext4_releasepage,
3449         .direct_IO              = ext4_direct_IO,
3450         .is_partially_uptodate  = block_is_partially_uptodate,
3451         .error_remove_page      = generic_error_remove_page,
3452 };
3453
3454 static const struct address_space_operations ext4_da_aops = {
3455         .readpage               = ext4_readpage,
3456         .readpages              = ext4_readpages,
3457         .writepage              = ext4_writepage,
3458         .writepages             = ext4_writepages,
3459         .write_begin            = ext4_da_write_begin,
3460         .write_end              = ext4_da_write_end,
3461         .bmap                   = ext4_bmap,
3462         .invalidatepage         = ext4_da_invalidatepage,
3463         .releasepage            = ext4_releasepage,
3464         .direct_IO              = ext4_direct_IO,
3465         .migratepage            = buffer_migrate_page,
3466         .is_partially_uptodate  = block_is_partially_uptodate,
3467         .error_remove_page      = generic_error_remove_page,
3468 };
3469
3470 void ext4_set_aops(struct inode *inode)
3471 {
3472         switch (ext4_inode_journal_mode(inode)) {
3473         case EXT4_INODE_ORDERED_DATA_MODE:
3474                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3475                 break;
3476         case EXT4_INODE_WRITEBACK_DATA_MODE:
3477                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3478                 break;
3479         case EXT4_INODE_JOURNAL_DATA_MODE:
3480                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3481                 return;
3482         default:
3483                 BUG();
3484         }
3485         if (test_opt(inode->i_sb, DELALLOC))
3486                 inode->i_mapping->a_ops = &ext4_da_aops;
3487         else
3488                 inode->i_mapping->a_ops = &ext4_aops;
3489 }
3490
3491 static int __ext4_block_zero_page_range(handle_t *handle,
3492                 struct address_space *mapping, loff_t from, loff_t length)
3493 {
3494         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3495         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3496         unsigned blocksize, pos;
3497         ext4_lblk_t iblock;
3498         struct inode *inode = mapping->host;
3499         struct buffer_head *bh;
3500         struct page *page;
3501         int err = 0;
3502
3503         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3504                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3505         if (!page)
3506                 return -ENOMEM;
3507
3508         blocksize = inode->i_sb->s_blocksize;
3509
3510         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3511
3512         if (!page_has_buffers(page))
3513                 create_empty_buffers(page, blocksize, 0);
3514
3515         /* Find the buffer that contains "offset" */
3516         bh = page_buffers(page);
3517         pos = blocksize;
3518         while (offset >= pos) {
3519                 bh = bh->b_this_page;
3520                 iblock++;
3521                 pos += blocksize;
3522         }
3523         if (buffer_freed(bh)) {
3524                 BUFFER_TRACE(bh, "freed: skip");
3525                 goto unlock;
3526         }
3527         if (!buffer_mapped(bh)) {
3528                 BUFFER_TRACE(bh, "unmapped");
3529                 ext4_get_block(inode, iblock, bh, 0);
3530                 /* unmapped? It's a hole - nothing to do */
3531                 if (!buffer_mapped(bh)) {
3532                         BUFFER_TRACE(bh, "still unmapped");
3533                         goto unlock;
3534                 }
3535         }
3536
3537         /* Ok, it's mapped. Make sure it's up-to-date */
3538         if (PageUptodate(page))
3539                 set_buffer_uptodate(bh);
3540
3541         if (!buffer_uptodate(bh)) {
3542                 err = -EIO;
3543                 ll_rw_block(READ, 1, &bh);
3544                 wait_on_buffer(bh);
3545                 /* Uhhuh. Read error. Complain and punt. */
3546                 if (!buffer_uptodate(bh))
3547                         goto unlock;
3548                 if (S_ISREG(inode->i_mode) &&
3549                     ext4_encrypted_inode(inode)) {
3550                         /* We expect the key to be set. */
3551                         BUG_ON(!ext4_has_encryption_key(inode));
3552                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3553                         WARN_ON_ONCE(ext4_decrypt(page));
3554                 }
3555         }
3556         if (ext4_should_journal_data(inode)) {
3557                 BUFFER_TRACE(bh, "get write access");
3558                 err = ext4_journal_get_write_access(handle, bh);
3559                 if (err)
3560                         goto unlock;
3561         }
3562         zero_user(page, offset, length);
3563         BUFFER_TRACE(bh, "zeroed end of block");
3564
3565         if (ext4_should_journal_data(inode)) {
3566                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3567         } else {
3568                 err = 0;
3569                 mark_buffer_dirty(bh);
3570                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3571                         err = ext4_jbd2_file_inode(handle, inode);
3572         }
3573
3574 unlock:
3575         unlock_page(page);
3576         page_cache_release(page);
3577         return err;
3578 }
3579
3580 /*
3581  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3582  * starting from file offset 'from'.  The range to be zero'd must
3583  * be contained with in one block.  If the specified range exceeds
3584  * the end of the block it will be shortened to end of the block
3585  * that cooresponds to 'from'
3586  */
3587 static int ext4_block_zero_page_range(handle_t *handle,
3588                 struct address_space *mapping, loff_t from, loff_t length)
3589 {
3590         struct inode *inode = mapping->host;
3591         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3592         unsigned blocksize = inode->i_sb->s_blocksize;
3593         unsigned max = blocksize - (offset & (blocksize - 1));
3594
3595         /*
3596          * correct length if it does not fall between
3597          * 'from' and the end of the block
3598          */
3599         if (length > max || length < 0)
3600                 length = max;
3601
3602         if (IS_DAX(inode))
3603                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3604         return __ext4_block_zero_page_range(handle, mapping, from, length);
3605 }
3606
3607 /*
3608  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3609  * up to the end of the block which corresponds to `from'.
3610  * This required during truncate. We need to physically zero the tail end
3611  * of that block so it doesn't yield old data if the file is later grown.
3612  */
3613 static int ext4_block_truncate_page(handle_t *handle,
3614                 struct address_space *mapping, loff_t from)
3615 {
3616         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3617         unsigned length;
3618         unsigned blocksize;
3619         struct inode *inode = mapping->host;
3620
3621         blocksize = inode->i_sb->s_blocksize;
3622         length = blocksize - (offset & (blocksize - 1));
3623
3624         return ext4_block_zero_page_range(handle, mapping, from, length);
3625 }
3626
3627 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3628                              loff_t lstart, loff_t length)
3629 {
3630         struct super_block *sb = inode->i_sb;
3631         struct address_space *mapping = inode->i_mapping;
3632         unsigned partial_start, partial_end;
3633         ext4_fsblk_t start, end;
3634         loff_t byte_end = (lstart + length - 1);
3635         int err = 0;
3636
3637         partial_start = lstart & (sb->s_blocksize - 1);
3638         partial_end = byte_end & (sb->s_blocksize - 1);
3639
3640         start = lstart >> sb->s_blocksize_bits;
3641         end = byte_end >> sb->s_blocksize_bits;
3642
3643         /* Handle partial zero within the single block */
3644         if (start == end &&
3645             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3646                 err = ext4_block_zero_page_range(handle, mapping,
3647                                                  lstart, length);
3648                 return err;
3649         }
3650         /* Handle partial zero out on the start of the range */
3651         if (partial_start) {
3652                 err = ext4_block_zero_page_range(handle, mapping,
3653                                                  lstart, sb->s_blocksize);
3654                 if (err)
3655                         return err;
3656         }
3657         /* Handle partial zero out on the end of the range */
3658         if (partial_end != sb->s_blocksize - 1)
3659                 err = ext4_block_zero_page_range(handle, mapping,
3660                                                  byte_end - partial_end,
3661                                                  partial_end + 1);
3662         return err;
3663 }
3664
3665 int ext4_can_truncate(struct inode *inode)
3666 {
3667         if (S_ISREG(inode->i_mode))
3668                 return 1;
3669         if (S_ISDIR(inode->i_mode))
3670                 return 1;
3671         if (S_ISLNK(inode->i_mode))
3672                 return !ext4_inode_is_fast_symlink(inode);
3673         return 0;
3674 }
3675
3676 /*
3677  * We have to make sure i_disksize gets properly updated before we truncate
3678  * page cache due to hole punching or zero range. Otherwise i_disksize update
3679  * can get lost as it may have been postponed to submission of writeback but
3680  * that will never happen after we truncate page cache.
3681  */
3682 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3683                                       loff_t len)
3684 {
3685         handle_t *handle;
3686         loff_t size = i_size_read(inode);
3687
3688         WARN_ON(!inode_is_locked(inode));
3689         if (offset > size || offset + len < size)
3690                 return 0;
3691
3692         if (EXT4_I(inode)->i_disksize >= size)
3693                 return 0;
3694
3695         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3696         if (IS_ERR(handle))
3697                 return PTR_ERR(handle);
3698         ext4_update_i_disksize(inode, size);
3699         ext4_mark_inode_dirty(handle, inode);
3700         ext4_journal_stop(handle);
3701
3702         return 0;
3703 }
3704
3705 /*
3706  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3707  * associated with the given offset and length
3708  *
3709  * @inode:  File inode
3710  * @offset: The offset where the hole will begin
3711  * @len:    The length of the hole
3712  *
3713  * Returns: 0 on success or negative on failure
3714  */
3715
3716 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3717 {
3718         struct super_block *sb = inode->i_sb;
3719         ext4_lblk_t first_block, stop_block;
3720         struct address_space *mapping = inode->i_mapping;
3721         loff_t first_block_offset, last_block_offset;
3722         handle_t *handle;
3723         unsigned int credits;
3724         int ret = 0;
3725
3726         if (!S_ISREG(inode->i_mode))
3727                 return -EOPNOTSUPP;
3728
3729         trace_ext4_punch_hole(inode, offset, length, 0);
3730
3731         /*
3732          * Write out all dirty pages to avoid race conditions
3733          * Then release them.
3734          */
3735         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3736                 ret = filemap_write_and_wait_range(mapping, offset,
3737                                                    offset + length - 1);
3738                 if (ret)
3739                         return ret;
3740         }
3741
3742         inode_lock(inode);
3743
3744         /* No need to punch hole beyond i_size */
3745         if (offset >= inode->i_size)
3746                 goto out_mutex;
3747
3748         /*
3749          * If the hole extends beyond i_size, set the hole
3750          * to end after the page that contains i_size
3751          */
3752         if (offset + length > inode->i_size) {
3753                 length = inode->i_size +
3754                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3755                    offset;
3756         }
3757
3758         if (offset & (sb->s_blocksize - 1) ||
3759             (offset + length) & (sb->s_blocksize - 1)) {
3760                 /*
3761                  * Attach jinode to inode for jbd2 if we do any zeroing of
3762                  * partial block
3763                  */
3764                 ret = ext4_inode_attach_jinode(inode);
3765                 if (ret < 0)
3766                         goto out_mutex;
3767
3768         }
3769
3770         /* Wait all existing dio workers, newcomers will block on i_mutex */
3771         ext4_inode_block_unlocked_dio(inode);
3772         inode_dio_wait(inode);
3773
3774         /*
3775          * Prevent page faults from reinstantiating pages we have released from
3776          * page cache.
3777          */
3778         down_write(&EXT4_I(inode)->i_mmap_sem);
3779         first_block_offset = round_up(offset, sb->s_blocksize);
3780         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3781
3782         /* Now release the pages and zero block aligned part of pages*/
3783         if (last_block_offset > first_block_offset) {
3784                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3785                 if (ret)
3786                         goto out_dio;
3787                 truncate_pagecache_range(inode, first_block_offset,
3788                                          last_block_offset);
3789         }
3790
3791         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3792                 credits = ext4_writepage_trans_blocks(inode);
3793         else
3794                 credits = ext4_blocks_for_truncate(inode);
3795         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3796         if (IS_ERR(handle)) {
3797                 ret = PTR_ERR(handle);
3798                 ext4_std_error(sb, ret);
3799                 goto out_dio;
3800         }
3801
3802         ret = ext4_zero_partial_blocks(handle, inode, offset,
3803                                        length);
3804         if (ret)
3805                 goto out_stop;
3806
3807         first_block = (offset + sb->s_blocksize - 1) >>
3808                 EXT4_BLOCK_SIZE_BITS(sb);
3809         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3810
3811         /* If there are no blocks to remove, return now */
3812         if (first_block >= stop_block)
3813                 goto out_stop;
3814
3815         down_write(&EXT4_I(inode)->i_data_sem);
3816         ext4_discard_preallocations(inode);
3817
3818         ret = ext4_es_remove_extent(inode, first_block,
3819                                     stop_block - first_block);
3820         if (ret) {
3821                 up_write(&EXT4_I(inode)->i_data_sem);
3822                 goto out_stop;
3823         }
3824
3825         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3826                 ret = ext4_ext_remove_space(inode, first_block,
3827                                             stop_block - 1);
3828         else
3829                 ret = ext4_ind_remove_space(handle, inode, first_block,
3830                                             stop_block);
3831
3832         up_write(&EXT4_I(inode)->i_data_sem);
3833         if (IS_SYNC(inode))
3834                 ext4_handle_sync(handle);
3835
3836         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3837         ext4_mark_inode_dirty(handle, inode);
3838 out_stop:
3839         ext4_journal_stop(handle);
3840 out_dio:
3841         up_write(&EXT4_I(inode)->i_mmap_sem);
3842         ext4_inode_resume_unlocked_dio(inode);
3843 out_mutex:
3844         inode_unlock(inode);
3845         return ret;
3846 }
3847
3848 int ext4_inode_attach_jinode(struct inode *inode)
3849 {
3850         struct ext4_inode_info *ei = EXT4_I(inode);
3851         struct jbd2_inode *jinode;
3852
3853         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3854                 return 0;
3855
3856         jinode = jbd2_alloc_inode(GFP_KERNEL);
3857         spin_lock(&inode->i_lock);
3858         if (!ei->jinode) {
3859                 if (!jinode) {
3860                         spin_unlock(&inode->i_lock);
3861                         return -ENOMEM;
3862                 }
3863                 ei->jinode = jinode;
3864                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3865                 jinode = NULL;
3866         }
3867         spin_unlock(&inode->i_lock);
3868         if (unlikely(jinode != NULL))
3869                 jbd2_free_inode(jinode);
3870         return 0;
3871 }
3872
3873 /*
3874  * ext4_truncate()
3875  *
3876  * We block out ext4_get_block() block instantiations across the entire
3877  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3878  * simultaneously on behalf of the same inode.
3879  *
3880  * As we work through the truncate and commit bits of it to the journal there
3881  * is one core, guiding principle: the file's tree must always be consistent on
3882  * disk.  We must be able to restart the truncate after a crash.
3883  *
3884  * The file's tree may be transiently inconsistent in memory (although it
3885  * probably isn't), but whenever we close off and commit a journal transaction,
3886  * the contents of (the filesystem + the journal) must be consistent and
3887  * restartable.  It's pretty simple, really: bottom up, right to left (although
3888  * left-to-right works OK too).
3889  *
3890  * Note that at recovery time, journal replay occurs *before* the restart of
3891  * truncate against the orphan inode list.
3892  *
3893  * The committed inode has the new, desired i_size (which is the same as
3894  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3895  * that this inode's truncate did not complete and it will again call
3896  * ext4_truncate() to have another go.  So there will be instantiated blocks
3897  * to the right of the truncation point in a crashed ext4 filesystem.  But
3898  * that's fine - as long as they are linked from the inode, the post-crash
3899  * ext4_truncate() run will find them and release them.
3900  */
3901 void ext4_truncate(struct inode *inode)
3902 {
3903         struct ext4_inode_info *ei = EXT4_I(inode);
3904         unsigned int credits;
3905         handle_t *handle;
3906         struct address_space *mapping = inode->i_mapping;
3907
3908         /*
3909          * There is a possibility that we're either freeing the inode
3910          * or it's a completely new inode. In those cases we might not
3911          * have i_mutex locked because it's not necessary.
3912          */
3913         if (!(inode->i_state & (I_NEW|I_FREEING)))
3914                 WARN_ON(!inode_is_locked(inode));
3915         trace_ext4_truncate_enter(inode);
3916
3917         if (!ext4_can_truncate(inode))
3918                 return;
3919
3920         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3921
3922         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3923                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3924
3925         if (ext4_has_inline_data(inode)) {
3926                 int has_inline = 1;
3927
3928                 ext4_inline_data_truncate(inode, &has_inline);
3929                 if (has_inline)
3930                         return;
3931         }
3932
3933         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3934         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3935                 if (ext4_inode_attach_jinode(inode) < 0)
3936                         return;
3937         }
3938
3939         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3940                 credits = ext4_writepage_trans_blocks(inode);
3941         else
3942                 credits = ext4_blocks_for_truncate(inode);
3943
3944         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3945         if (IS_ERR(handle)) {
3946                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3947                 return;
3948         }
3949
3950         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3951                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3952
3953         /*
3954          * We add the inode to the orphan list, so that if this
3955          * truncate spans multiple transactions, and we crash, we will
3956          * resume the truncate when the filesystem recovers.  It also
3957          * marks the inode dirty, to catch the new size.
3958          *
3959          * Implication: the file must always be in a sane, consistent
3960          * truncatable state while each transaction commits.
3961          */
3962         if (ext4_orphan_add(handle, inode))
3963                 goto out_stop;
3964
3965         down_write(&EXT4_I(inode)->i_data_sem);
3966
3967         ext4_discard_preallocations(inode);
3968
3969         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3970                 ext4_ext_truncate(handle, inode);
3971         else
3972                 ext4_ind_truncate(handle, inode);
3973
3974         up_write(&ei->i_data_sem);
3975
3976         if (IS_SYNC(inode))
3977                 ext4_handle_sync(handle);
3978
3979 out_stop:
3980         /*
3981          * If this was a simple ftruncate() and the file will remain alive,
3982          * then we need to clear up the orphan record which we created above.
3983          * However, if this was a real unlink then we were called by
3984          * ext4_evict_inode(), and we allow that function to clean up the
3985          * orphan info for us.
3986          */
3987         if (inode->i_nlink)
3988                 ext4_orphan_del(handle, inode);
3989
3990         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3991         ext4_mark_inode_dirty(handle, inode);
3992         ext4_journal_stop(handle);
3993
3994         trace_ext4_truncate_exit(inode);
3995 }
3996
3997 /*
3998  * ext4_get_inode_loc returns with an extra refcount against the inode's
3999  * underlying buffer_head on success. If 'in_mem' is true, we have all
4000  * data in memory that is needed to recreate the on-disk version of this
4001  * inode.
4002  */
4003 static int __ext4_get_inode_loc(struct inode *inode,
4004                                 struct ext4_iloc *iloc, int in_mem)
4005 {
4006         struct ext4_group_desc  *gdp;
4007         struct buffer_head      *bh;
4008         struct super_block      *sb = inode->i_sb;
4009         ext4_fsblk_t            block;
4010         int                     inodes_per_block, inode_offset;
4011
4012         iloc->bh = NULL;
4013         if (!ext4_valid_inum(sb, inode->i_ino))
4014                 return -EFSCORRUPTED;
4015
4016         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4017         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4018         if (!gdp)
4019                 return -EIO;
4020
4021         /*
4022          * Figure out the offset within the block group inode table
4023          */
4024         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4025         inode_offset = ((inode->i_ino - 1) %
4026                         EXT4_INODES_PER_GROUP(sb));
4027         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4028         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4029
4030         bh = sb_getblk(sb, block);
4031         if (unlikely(!bh))
4032                 return -ENOMEM;
4033         if (!buffer_uptodate(bh)) {
4034                 lock_buffer(bh);
4035
4036                 /*
4037                  * If the buffer has the write error flag, we have failed
4038                  * to write out another inode in the same block.  In this
4039                  * case, we don't have to read the block because we may
4040                  * read the old inode data successfully.
4041                  */
4042                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4043                         set_buffer_uptodate(bh);
4044
4045                 if (buffer_uptodate(bh)) {
4046                         /* someone brought it uptodate while we waited */
4047                         unlock_buffer(bh);
4048                         goto has_buffer;
4049                 }
4050
4051                 /*
4052                  * If we have all information of the inode in memory and this
4053                  * is the only valid inode in the block, we need not read the
4054                  * block.
4055                  */
4056                 if (in_mem) {
4057                         struct buffer_head *bitmap_bh;
4058                         int i, start;
4059
4060                         start = inode_offset & ~(inodes_per_block - 1);
4061
4062                         /* Is the inode bitmap in cache? */
4063                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4064                         if (unlikely(!bitmap_bh))
4065                                 goto make_io;
4066
4067                         /*
4068                          * If the inode bitmap isn't in cache then the
4069                          * optimisation may end up performing two reads instead
4070                          * of one, so skip it.
4071                          */
4072                         if (!buffer_uptodate(bitmap_bh)) {
4073                                 brelse(bitmap_bh);
4074                                 goto make_io;
4075                         }
4076                         for (i = start; i < start + inodes_per_block; i++) {
4077                                 if (i == inode_offset)
4078                                         continue;
4079                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4080                                         break;
4081                         }
4082                         brelse(bitmap_bh);
4083                         if (i == start + inodes_per_block) {
4084                                 /* all other inodes are free, so skip I/O */
4085                                 memset(bh->b_data, 0, bh->b_size);
4086                                 set_buffer_uptodate(bh);
4087                                 unlock_buffer(bh);
4088                                 goto has_buffer;
4089                         }
4090                 }
4091
4092 make_io:
4093                 /*
4094                  * If we need to do any I/O, try to pre-readahead extra
4095                  * blocks from the inode table.
4096                  */
4097                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4098                         ext4_fsblk_t b, end, table;
4099                         unsigned num;
4100                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4101
4102                         table = ext4_inode_table(sb, gdp);
4103                         /* s_inode_readahead_blks is always a power of 2 */
4104                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4105                         if (table > b)
4106                                 b = table;
4107                         end = b + ra_blks;
4108                         num = EXT4_INODES_PER_GROUP(sb);
4109                         if (ext4_has_group_desc_csum(sb))
4110                                 num -= ext4_itable_unused_count(sb, gdp);
4111                         table += num / inodes_per_block;
4112                         if (end > table)
4113                                 end = table;
4114                         while (b <= end)
4115                                 sb_breadahead(sb, b++);
4116                 }
4117
4118                 /*
4119                  * There are other valid inodes in the buffer, this inode
4120                  * has in-inode xattrs, or we don't have this inode in memory.
4121                  * Read the block from disk.
4122                  */
4123                 trace_ext4_load_inode(inode);
4124                 get_bh(bh);
4125                 bh->b_end_io = end_buffer_read_sync;
4126                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4127                 wait_on_buffer(bh);
4128                 if (!buffer_uptodate(bh)) {
4129                         EXT4_ERROR_INODE_BLOCK(inode, block,
4130                                                "unable to read itable block");
4131                         brelse(bh);
4132                         return -EIO;
4133                 }
4134         }
4135 has_buffer:
4136         iloc->bh = bh;
4137         return 0;
4138 }
4139
4140 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4141 {
4142         /* We have all inode data except xattrs in memory here. */
4143         return __ext4_get_inode_loc(inode, iloc,
4144                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4145 }
4146
4147 void ext4_set_inode_flags(struct inode *inode)
4148 {
4149         unsigned int flags = EXT4_I(inode)->i_flags;
4150         unsigned int new_fl = 0;
4151
4152         if (flags & EXT4_SYNC_FL)
4153                 new_fl |= S_SYNC;
4154         if (flags & EXT4_APPEND_FL)
4155                 new_fl |= S_APPEND;
4156         if (flags & EXT4_IMMUTABLE_FL)
4157                 new_fl |= S_IMMUTABLE;
4158         if (flags & EXT4_NOATIME_FL)
4159                 new_fl |= S_NOATIME;
4160         if (flags & EXT4_DIRSYNC_FL)
4161                 new_fl |= S_DIRSYNC;
4162         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4163                 new_fl |= S_DAX;
4164         inode_set_flags(inode, new_fl,
4165                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4166 }
4167
4168 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4169 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4170 {
4171         unsigned int vfs_fl;
4172         unsigned long old_fl, new_fl;
4173
4174         do {
4175                 vfs_fl = ei->vfs_inode.i_flags;
4176                 old_fl = ei->i_flags;
4177                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4178                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4179                                 EXT4_DIRSYNC_FL);
4180                 if (vfs_fl & S_SYNC)
4181                         new_fl |= EXT4_SYNC_FL;
4182                 if (vfs_fl & S_APPEND)
4183                         new_fl |= EXT4_APPEND_FL;
4184                 if (vfs_fl & S_IMMUTABLE)
4185                         new_fl |= EXT4_IMMUTABLE_FL;
4186                 if (vfs_fl & S_NOATIME)
4187                         new_fl |= EXT4_NOATIME_FL;
4188                 if (vfs_fl & S_DIRSYNC)
4189                         new_fl |= EXT4_DIRSYNC_FL;
4190         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4191 }
4192
4193 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4194                                   struct ext4_inode_info *ei)
4195 {
4196         blkcnt_t i_blocks ;
4197         struct inode *inode = &(ei->vfs_inode);
4198         struct super_block *sb = inode->i_sb;
4199
4200         if (ext4_has_feature_huge_file(sb)) {
4201                 /* we are using combined 48 bit field */
4202                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4203                                         le32_to_cpu(raw_inode->i_blocks_lo);
4204                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4205                         /* i_blocks represent file system block size */
4206                         return i_blocks  << (inode->i_blkbits - 9);
4207                 } else {
4208                         return i_blocks;
4209                 }
4210         } else {
4211                 return le32_to_cpu(raw_inode->i_blocks_lo);
4212         }
4213 }
4214
4215 static inline void ext4_iget_extra_inode(struct inode *inode,
4216                                          struct ext4_inode *raw_inode,
4217                                          struct ext4_inode_info *ei)
4218 {
4219         __le32 *magic = (void *)raw_inode +
4220                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4221         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4222                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4223                 ext4_find_inline_data_nolock(inode);
4224         } else
4225                 EXT4_I(inode)->i_inline_off = 0;
4226 }
4227
4228 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4229 {
4230         if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4231                 return -EOPNOTSUPP;
4232         *projid = EXT4_I(inode)->i_projid;
4233         return 0;
4234 }
4235
4236 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4237 {
4238         struct ext4_iloc iloc;
4239         struct ext4_inode *raw_inode;
4240         struct ext4_inode_info *ei;
4241         struct inode *inode;
4242         journal_t *journal = EXT4_SB(sb)->s_journal;
4243         long ret;
4244         int block;
4245         uid_t i_uid;
4246         gid_t i_gid;
4247         projid_t i_projid;
4248
4249         inode = iget_locked(sb, ino);
4250         if (!inode)
4251                 return ERR_PTR(-ENOMEM);
4252         if (!(inode->i_state & I_NEW))
4253                 return inode;
4254
4255         ei = EXT4_I(inode);
4256         iloc.bh = NULL;
4257
4258         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4259         if (ret < 0)
4260                 goto bad_inode;
4261         raw_inode = ext4_raw_inode(&iloc);
4262
4263         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4264                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4265                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4266                     EXT4_INODE_SIZE(inode->i_sb)) {
4267                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4268                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4269                                 EXT4_INODE_SIZE(inode->i_sb));
4270                         ret = -EFSCORRUPTED;
4271                         goto bad_inode;
4272                 }
4273         } else
4274                 ei->i_extra_isize = 0;
4275
4276         /* Precompute checksum seed for inode metadata */
4277         if (ext4_has_metadata_csum(sb)) {
4278                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4279                 __u32 csum;
4280                 __le32 inum = cpu_to_le32(inode->i_ino);
4281                 __le32 gen = raw_inode->i_generation;
4282                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4283                                    sizeof(inum));
4284                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4285                                               sizeof(gen));
4286         }
4287
4288         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4289                 EXT4_ERROR_INODE(inode, "checksum invalid");
4290                 ret = -EFSBADCRC;
4291                 goto bad_inode;
4292         }
4293
4294         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4295         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4296         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4297         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4298             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4299             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4300                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4301         else
4302                 i_projid = EXT4_DEF_PROJID;
4303
4304         if (!(test_opt(inode->i_sb, NO_UID32))) {
4305                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4306                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4307         }
4308         i_uid_write(inode, i_uid);
4309         i_gid_write(inode, i_gid);
4310         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4311         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4312
4313         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4314         ei->i_inline_off = 0;
4315         ei->i_dir_start_lookup = 0;
4316         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4317         /* We now have enough fields to check if the inode was active or not.
4318          * This is needed because nfsd might try to access dead inodes
4319          * the test is that same one that e2fsck uses
4320          * NeilBrown 1999oct15
4321          */
4322         if (inode->i_nlink == 0) {
4323                 if ((inode->i_mode == 0 ||
4324                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4325                     ino != EXT4_BOOT_LOADER_INO) {
4326                         /* this inode is deleted */
4327                         ret = -ESTALE;
4328                         goto bad_inode;
4329                 }
4330                 /* The only unlinked inodes we let through here have
4331                  * valid i_mode and are being read by the orphan
4332                  * recovery code: that's fine, we're about to complete
4333                  * the process of deleting those.
4334                  * OR it is the EXT4_BOOT_LOADER_INO which is
4335                  * not initialized on a new filesystem. */
4336         }
4337         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4338         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4339         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4340         if (ext4_has_feature_64bit(sb))
4341                 ei->i_file_acl |=
4342                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4343         inode->i_size = ext4_isize(raw_inode);
4344         ei->i_disksize = inode->i_size;
4345 #ifdef CONFIG_QUOTA
4346         ei->i_reserved_quota = 0;
4347 #endif
4348         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4349         ei->i_block_group = iloc.block_group;
4350         ei->i_last_alloc_group = ~0;
4351         /*
4352          * NOTE! The in-memory inode i_data array is in little-endian order
4353          * even on big-endian machines: we do NOT byteswap the block numbers!
4354          */
4355         for (block = 0; block < EXT4_N_BLOCKS; block++)
4356                 ei->i_data[block] = raw_inode->i_block[block];
4357         INIT_LIST_HEAD(&ei->i_orphan);
4358
4359         /*
4360          * Set transaction id's of transactions that have to be committed
4361          * to finish f[data]sync. We set them to currently running transaction
4362          * as we cannot be sure that the inode or some of its metadata isn't
4363          * part of the transaction - the inode could have been reclaimed and
4364          * now it is reread from disk.
4365          */
4366         if (journal) {
4367                 transaction_t *transaction;
4368                 tid_t tid;
4369
4370                 read_lock(&journal->j_state_lock);
4371                 if (journal->j_running_transaction)
4372                         transaction = journal->j_running_transaction;
4373                 else
4374                         transaction = journal->j_committing_transaction;
4375                 if (transaction)
4376                         tid = transaction->t_tid;
4377                 else
4378                         tid = journal->j_commit_sequence;
4379                 read_unlock(&journal->j_state_lock);
4380                 ei->i_sync_tid = tid;
4381                 ei->i_datasync_tid = tid;
4382         }
4383
4384         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4385                 if (ei->i_extra_isize == 0) {
4386                         /* The extra space is currently unused. Use it. */
4387                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4388                                             EXT4_GOOD_OLD_INODE_SIZE;
4389                 } else {
4390                         ext4_iget_extra_inode(inode, raw_inode, ei);
4391                 }
4392         }
4393
4394         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4395         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4396         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4397         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4398
4399         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4400                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4401                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4402                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4403                                 inode->i_version |=
4404                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4405                 }
4406         }
4407
4408         ret = 0;
4409         if (ei->i_file_acl &&
4410             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4411                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4412                                  ei->i_file_acl);
4413                 ret = -EFSCORRUPTED;
4414                 goto bad_inode;
4415         } else if (!ext4_has_inline_data(inode)) {
4416                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4417                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4418                             (S_ISLNK(inode->i_mode) &&
4419                              !ext4_inode_is_fast_symlink(inode))))
4420                                 /* Validate extent which is part of inode */
4421                                 ret = ext4_ext_check_inode(inode);
4422                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4423                            (S_ISLNK(inode->i_mode) &&
4424                             !ext4_inode_is_fast_symlink(inode))) {
4425                         /* Validate block references which are part of inode */
4426                         ret = ext4_ind_check_inode(inode);
4427                 }
4428         }
4429         if (ret)
4430                 goto bad_inode;
4431
4432         if (S_ISREG(inode->i_mode)) {
4433                 inode->i_op = &ext4_file_inode_operations;
4434                 inode->i_fop = &ext4_file_operations;
4435                 ext4_set_aops(inode);
4436         } else if (S_ISDIR(inode->i_mode)) {
4437                 inode->i_op = &ext4_dir_inode_operations;
4438                 inode->i_fop = &ext4_dir_operations;
4439         } else if (S_ISLNK(inode->i_mode)) {
4440                 if (ext4_encrypted_inode(inode)) {
4441                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4442                         ext4_set_aops(inode);
4443                 } else if (ext4_inode_is_fast_symlink(inode)) {
4444                         inode->i_link = (char *)ei->i_data;
4445                         inode->i_op = &ext4_fast_symlink_inode_operations;
4446                         nd_terminate_link(ei->i_data, inode->i_size,
4447                                 sizeof(ei->i_data) - 1);
4448                 } else {
4449                         inode->i_op = &ext4_symlink_inode_operations;
4450                         ext4_set_aops(inode);
4451                 }
4452                 inode_nohighmem(inode);
4453         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4454               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4455                 inode->i_op = &ext4_special_inode_operations;
4456                 if (raw_inode->i_block[0])
4457                         init_special_inode(inode, inode->i_mode,
4458                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4459                 else
4460                         init_special_inode(inode, inode->i_mode,
4461                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4462         } else if (ino == EXT4_BOOT_LOADER_INO) {
4463                 make_bad_inode(inode);
4464         } else {
4465                 ret = -EFSCORRUPTED;
4466                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4467                 goto bad_inode;
4468         }
4469         brelse(iloc.bh);
4470         ext4_set_inode_flags(inode);
4471         unlock_new_inode(inode);
4472         return inode;
4473
4474 bad_inode:
4475         brelse(iloc.bh);
4476         iget_failed(inode);
4477         return ERR_PTR(ret);
4478 }
4479
4480 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4481 {
4482         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4483                 return ERR_PTR(-EFSCORRUPTED);
4484         return ext4_iget(sb, ino);
4485 }
4486
4487 static int ext4_inode_blocks_set(handle_t *handle,
4488                                 struct ext4_inode *raw_inode,
4489                                 struct ext4_inode_info *ei)
4490 {
4491         struct inode *inode = &(ei->vfs_inode);
4492         u64 i_blocks = inode->i_blocks;
4493         struct super_block *sb = inode->i_sb;
4494
4495         if (i_blocks <= ~0U) {
4496                 /*
4497                  * i_blocks can be represented in a 32 bit variable
4498                  * as multiple of 512 bytes
4499                  */
4500                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4501                 raw_inode->i_blocks_high = 0;
4502                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4503                 return 0;
4504         }
4505         if (!ext4_has_feature_huge_file(sb))
4506                 return -EFBIG;
4507
4508         if (i_blocks <= 0xffffffffffffULL) {
4509                 /*
4510                  * i_blocks can be represented in a 48 bit variable
4511                  * as multiple of 512 bytes
4512                  */
4513                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4514                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4515                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4516         } else {
4517                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4518                 /* i_block is stored in file system block size */
4519                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4520                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4521                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4522         }
4523         return 0;
4524 }
4525
4526 struct other_inode {
4527         unsigned long           orig_ino;
4528         struct ext4_inode       *raw_inode;
4529 };
4530
4531 static int other_inode_match(struct inode * inode, unsigned long ino,
4532                              void *data)
4533 {
4534         struct other_inode *oi = (struct other_inode *) data;
4535
4536         if ((inode->i_ino != ino) ||
4537             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4538                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4539             ((inode->i_state & I_DIRTY_TIME) == 0))
4540                 return 0;
4541         spin_lock(&inode->i_lock);
4542         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4543                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4544             (inode->i_state & I_DIRTY_TIME)) {
4545                 struct ext4_inode_info  *ei = EXT4_I(inode);
4546
4547                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4548                 spin_unlock(&inode->i_lock);
4549
4550                 spin_lock(&ei->i_raw_lock);
4551                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4552                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4553                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4554                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4555                 spin_unlock(&ei->i_raw_lock);
4556                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4557                 return -1;
4558         }
4559         spin_unlock(&inode->i_lock);
4560         return -1;
4561 }
4562
4563 /*
4564  * Opportunistically update the other time fields for other inodes in
4565  * the same inode table block.
4566  */
4567 static void ext4_update_other_inodes_time(struct super_block *sb,
4568                                           unsigned long orig_ino, char *buf)
4569 {
4570         struct other_inode oi;
4571         unsigned long ino;
4572         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4573         int inode_size = EXT4_INODE_SIZE(sb);
4574
4575         oi.orig_ino = orig_ino;
4576         /*
4577          * Calculate the first inode in the inode table block.  Inode
4578          * numbers are one-based.  That is, the first inode in a block
4579          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4580          */
4581         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4582         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4583                 if (ino == orig_ino)
4584                         continue;
4585                 oi.raw_inode = (struct ext4_inode *) buf;
4586                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4587         }
4588 }
4589
4590 /*
4591  * Post the struct inode info into an on-disk inode location in the
4592  * buffer-cache.  This gobbles the caller's reference to the
4593  * buffer_head in the inode location struct.
4594  *
4595  * The caller must have write access to iloc->bh.
4596  */
4597 static int ext4_do_update_inode(handle_t *handle,
4598                                 struct inode *inode,
4599                                 struct ext4_iloc *iloc)
4600 {
4601         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4602         struct ext4_inode_info *ei = EXT4_I(inode);
4603         struct buffer_head *bh = iloc->bh;
4604         struct super_block *sb = inode->i_sb;
4605         int err = 0, rc, block;
4606         int need_datasync = 0, set_large_file = 0;
4607         uid_t i_uid;
4608         gid_t i_gid;
4609         projid_t i_projid;
4610
4611         spin_lock(&ei->i_raw_lock);
4612
4613         /* For fields not tracked in the in-memory inode,
4614          * initialise them to zero for new inodes. */
4615         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4616                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4617
4618         ext4_get_inode_flags(ei);
4619         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4620         i_uid = i_uid_read(inode);
4621         i_gid = i_gid_read(inode);
4622         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4623         if (!(test_opt(inode->i_sb, NO_UID32))) {
4624                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4625                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4626 /*
4627  * Fix up interoperability with old kernels. Otherwise, old inodes get
4628  * re-used with the upper 16 bits of the uid/gid intact
4629  */
4630                 if (!ei->i_dtime) {
4631                         raw_inode->i_uid_high =
4632                                 cpu_to_le16(high_16_bits(i_uid));
4633                         raw_inode->i_gid_high =
4634                                 cpu_to_le16(high_16_bits(i_gid));
4635                 } else {
4636                         raw_inode->i_uid_high = 0;
4637                         raw_inode->i_gid_high = 0;
4638                 }
4639         } else {
4640                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4641                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4642                 raw_inode->i_uid_high = 0;
4643                 raw_inode->i_gid_high = 0;
4644         }
4645         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4646
4647         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4648         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4649         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4650         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4651
4652         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4653         if (err) {
4654                 spin_unlock(&ei->i_raw_lock);
4655                 goto out_brelse;
4656         }
4657         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4658         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4659         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4660                 raw_inode->i_file_acl_high =
4661                         cpu_to_le16(ei->i_file_acl >> 32);
4662         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4663         if (ei->i_disksize != ext4_isize(raw_inode)) {
4664                 ext4_isize_set(raw_inode, ei->i_disksize);
4665                 need_datasync = 1;
4666         }
4667         if (ei->i_disksize > 0x7fffffffULL) {
4668                 if (!ext4_has_feature_large_file(sb) ||
4669                                 EXT4_SB(sb)->s_es->s_rev_level ==
4670                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4671                         set_large_file = 1;
4672         }
4673         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4674         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4675                 if (old_valid_dev(inode->i_rdev)) {
4676                         raw_inode->i_block[0] =
4677                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4678                         raw_inode->i_block[1] = 0;
4679                 } else {
4680                         raw_inode->i_block[0] = 0;
4681                         raw_inode->i_block[1] =
4682                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4683                         raw_inode->i_block[2] = 0;
4684                 }
4685         } else if (!ext4_has_inline_data(inode)) {
4686                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4687                         raw_inode->i_block[block] = ei->i_data[block];
4688         }
4689
4690         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4691                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4692                 if (ei->i_extra_isize) {
4693                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4694                                 raw_inode->i_version_hi =
4695                                         cpu_to_le32(inode->i_version >> 32);
4696                         raw_inode->i_extra_isize =
4697                                 cpu_to_le16(ei->i_extra_isize);
4698                 }
4699         }
4700
4701         BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4702                         EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4703                i_projid != EXT4_DEF_PROJID);
4704
4705         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4706             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4707                 raw_inode->i_projid = cpu_to_le32(i_projid);
4708
4709         ext4_inode_csum_set(inode, raw_inode, ei);
4710         spin_unlock(&ei->i_raw_lock);
4711         if (inode->i_sb->s_flags & MS_LAZYTIME)
4712                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4713                                               bh->b_data);
4714
4715         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4716         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4717         if (!err)
4718                 err = rc;
4719         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4720         if (set_large_file) {
4721                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4722                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4723                 if (err)
4724                         goto out_brelse;
4725                 ext4_update_dynamic_rev(sb);
4726                 ext4_set_feature_large_file(sb);
4727                 ext4_handle_sync(handle);
4728                 err = ext4_handle_dirty_super(handle, sb);
4729         }
4730         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4731 out_brelse:
4732         brelse(bh);
4733         ext4_std_error(inode->i_sb, err);
4734         return err;
4735 }
4736
4737 /*
4738  * ext4_write_inode()
4739  *
4740  * We are called from a few places:
4741  *
4742  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4743  *   Here, there will be no transaction running. We wait for any running
4744  *   transaction to commit.
4745  *
4746  * - Within flush work (sys_sync(), kupdate and such).
4747  *   We wait on commit, if told to.
4748  *
4749  * - Within iput_final() -> write_inode_now()
4750  *   We wait on commit, if told to.
4751  *
4752  * In all cases it is actually safe for us to return without doing anything,
4753  * because the inode has been copied into a raw inode buffer in
4754  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4755  * writeback.
4756  *
4757  * Note that we are absolutely dependent upon all inode dirtiers doing the
4758  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4759  * which we are interested.
4760  *
4761  * It would be a bug for them to not do this.  The code:
4762  *
4763  *      mark_inode_dirty(inode)
4764  *      stuff();
4765  *      inode->i_size = expr;
4766  *
4767  * is in error because write_inode() could occur while `stuff()' is running,
4768  * and the new i_size will be lost.  Plus the inode will no longer be on the
4769  * superblock's dirty inode list.
4770  */
4771 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4772 {
4773         int err;
4774
4775         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4776                 return 0;
4777
4778         if (EXT4_SB(inode->i_sb)->s_journal) {
4779                 if (ext4_journal_current_handle()) {
4780                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4781                         dump_stack();
4782                         return -EIO;
4783                 }
4784
4785                 /*
4786                  * No need to force transaction in WB_SYNC_NONE mode. Also
4787                  * ext4_sync_fs() will force the commit after everything is
4788                  * written.
4789                  */
4790                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4791                         return 0;
4792
4793                 err = ext4_force_commit(inode->i_sb);
4794         } else {
4795                 struct ext4_iloc iloc;
4796
4797                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4798                 if (err)
4799                         return err;
4800                 /*
4801                  * sync(2) will flush the whole buffer cache. No need to do
4802                  * it here separately for each inode.
4803                  */
4804                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4805                         sync_dirty_buffer(iloc.bh);
4806                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4807                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4808                                          "IO error syncing inode");
4809                         err = -EIO;
4810                 }
4811                 brelse(iloc.bh);
4812         }
4813         return err;
4814 }
4815
4816 /*
4817  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4818  * buffers that are attached to a page stradding i_size and are undergoing
4819  * commit. In that case we have to wait for commit to finish and try again.
4820  */
4821 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4822 {
4823         struct page *page;
4824         unsigned offset;
4825         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4826         tid_t commit_tid = 0;
4827         int ret;
4828
4829         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4830         /*
4831          * All buffers in the last page remain valid? Then there's nothing to
4832          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4833          * blocksize case
4834          */
4835         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4836                 return;
4837         while (1) {
4838                 page = find_lock_page(inode->i_mapping,
4839                                       inode->i_size >> PAGE_CACHE_SHIFT);
4840                 if (!page)
4841                         return;
4842                 ret = __ext4_journalled_invalidatepage(page, offset,
4843                                                 PAGE_CACHE_SIZE - offset);
4844                 unlock_page(page);
4845                 page_cache_release(page);
4846                 if (ret != -EBUSY)
4847                         return;
4848                 commit_tid = 0;
4849                 read_lock(&journal->j_state_lock);
4850                 if (journal->j_committing_transaction)
4851                         commit_tid = journal->j_committing_transaction->t_tid;
4852                 read_unlock(&journal->j_state_lock);
4853                 if (commit_tid)
4854                         jbd2_log_wait_commit(journal, commit_tid);
4855         }
4856 }
4857
4858 /*
4859  * ext4_setattr()
4860  *
4861  * Called from notify_change.
4862  *
4863  * We want to trap VFS attempts to truncate the file as soon as
4864  * possible.  In particular, we want to make sure that when the VFS
4865  * shrinks i_size, we put the inode on the orphan list and modify
4866  * i_disksize immediately, so that during the subsequent flushing of
4867  * dirty pages and freeing of disk blocks, we can guarantee that any
4868  * commit will leave the blocks being flushed in an unused state on
4869  * disk.  (On recovery, the inode will get truncated and the blocks will
4870  * be freed, so we have a strong guarantee that no future commit will
4871  * leave these blocks visible to the user.)
4872  *
4873  * Another thing we have to assure is that if we are in ordered mode
4874  * and inode is still attached to the committing transaction, we must
4875  * we start writeout of all the dirty pages which are being truncated.
4876  * This way we are sure that all the data written in the previous
4877  * transaction are already on disk (truncate waits for pages under
4878  * writeback).
4879  *
4880  * Called with inode->i_mutex down.
4881  */
4882 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4883 {
4884         struct inode *inode = d_inode(dentry);
4885         int error, rc = 0;
4886         int orphan = 0;
4887         const unsigned int ia_valid = attr->ia_valid;
4888
4889         error = inode_change_ok(inode, attr);
4890         if (error)
4891                 return error;
4892
4893         if (is_quota_modification(inode, attr)) {
4894                 error = dquot_initialize(inode);
4895                 if (error)
4896                         return error;
4897         }
4898         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4899             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4900                 handle_t *handle;
4901
4902                 /* (user+group)*(old+new) structure, inode write (sb,
4903                  * inode block, ? - but truncate inode update has it) */
4904                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4905                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4906                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4907                 if (IS_ERR(handle)) {
4908                         error = PTR_ERR(handle);
4909                         goto err_out;
4910                 }
4911                 error = dquot_transfer(inode, attr);
4912                 if (error) {
4913                         ext4_journal_stop(handle);
4914                         return error;
4915                 }
4916                 /* Update corresponding info in inode so that everything is in
4917                  * one transaction */
4918                 if (attr->ia_valid & ATTR_UID)
4919                         inode->i_uid = attr->ia_uid;
4920                 if (attr->ia_valid & ATTR_GID)
4921                         inode->i_gid = attr->ia_gid;
4922                 error = ext4_mark_inode_dirty(handle, inode);
4923                 ext4_journal_stop(handle);
4924         }
4925
4926         if (attr->ia_valid & ATTR_SIZE) {
4927                 handle_t *handle;
4928                 loff_t oldsize = inode->i_size;
4929                 int shrink = (attr->ia_size <= inode->i_size);
4930
4931                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4932                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4933
4934                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4935                                 return -EFBIG;
4936                 }
4937                 if (!S_ISREG(inode->i_mode))
4938                         return -EINVAL;
4939
4940                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4941                         inode_inc_iversion(inode);
4942
4943                 if (ext4_should_order_data(inode) &&
4944                     (attr->ia_size < inode->i_size)) {
4945                         error = ext4_begin_ordered_truncate(inode,
4946                                                             attr->ia_size);
4947                         if (error)
4948                                 goto err_out;
4949                 }
4950                 if (attr->ia_size != inode->i_size) {
4951                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4952                         if (IS_ERR(handle)) {
4953                                 error = PTR_ERR(handle);
4954                                 goto err_out;
4955                         }
4956                         if (ext4_handle_valid(handle) && shrink) {
4957                                 error = ext4_orphan_add(handle, inode);
4958                                 orphan = 1;
4959                         }
4960                         /*
4961                          * Update c/mtime on truncate up, ext4_truncate() will
4962                          * update c/mtime in shrink case below
4963                          */
4964                         if (!shrink) {
4965                                 inode->i_mtime = ext4_current_time(inode);
4966                                 inode->i_ctime = inode->i_mtime;
4967                         }
4968                         down_write(&EXT4_I(inode)->i_data_sem);
4969                         EXT4_I(inode)->i_disksize = attr->ia_size;
4970                         rc = ext4_mark_inode_dirty(handle, inode);
4971                         if (!error)
4972                                 error = rc;
4973                         /*
4974                          * We have to update i_size under i_data_sem together
4975                          * with i_disksize to avoid races with writeback code
4976                          * running ext4_wb_update_i_disksize().
4977                          */
4978                         if (!error)
4979                                 i_size_write(inode, attr->ia_size);
4980                         up_write(&EXT4_I(inode)->i_data_sem);
4981                         ext4_journal_stop(handle);
4982                         if (error) {
4983                                 if (orphan)
4984                                         ext4_orphan_del(NULL, inode);
4985                                 goto err_out;
4986                         }
4987                 }
4988                 if (!shrink)
4989                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4990
4991                 /*
4992                  * Blocks are going to be removed from the inode. Wait
4993                  * for dio in flight.  Temporarily disable
4994                  * dioread_nolock to prevent livelock.
4995                  */
4996                 if (orphan) {
4997                         if (!ext4_should_journal_data(inode)) {
4998                                 ext4_inode_block_unlocked_dio(inode);
4999                                 inode_dio_wait(inode);
5000                                 ext4_inode_resume_unlocked_dio(inode);
5001                         } else
5002                                 ext4_wait_for_tail_page_commit(inode);
5003                 }
5004                 down_write(&EXT4_I(inode)->i_mmap_sem);
5005                 /*
5006                  * Truncate pagecache after we've waited for commit
5007                  * in data=journal mode to make pages freeable.
5008                  */
5009                 truncate_pagecache(inode, inode->i_size);
5010                 if (shrink)
5011                         ext4_truncate(inode);
5012                 up_write(&EXT4_I(inode)->i_mmap_sem);
5013         }
5014
5015         if (!rc) {
5016                 setattr_copy(inode, attr);
5017                 mark_inode_dirty(inode);
5018         }
5019
5020         /*
5021          * If the call to ext4_truncate failed to get a transaction handle at
5022          * all, we need to clean up the in-core orphan list manually.
5023          */
5024         if (orphan && inode->i_nlink)
5025                 ext4_orphan_del(NULL, inode);
5026
5027         if (!rc && (ia_valid & ATTR_MODE))
5028                 rc = posix_acl_chmod(inode, inode->i_mode);
5029
5030 err_out:
5031         ext4_std_error(inode->i_sb, error);
5032         if (!error)
5033                 error = rc;
5034         return error;
5035 }
5036
5037 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5038                  struct kstat *stat)
5039 {
5040         struct inode *inode;
5041         unsigned long long delalloc_blocks;
5042
5043         inode = d_inode(dentry);
5044         generic_fillattr(inode, stat);
5045
5046         /*
5047          * If there is inline data in the inode, the inode will normally not
5048          * have data blocks allocated (it may have an external xattr block).
5049          * Report at least one sector for such files, so tools like tar, rsync,
5050          * others doen't incorrectly think the file is completely sparse.
5051          */
5052         if (unlikely(ext4_has_inline_data(inode)))
5053                 stat->blocks += (stat->size + 511) >> 9;
5054
5055         /*
5056          * We can't update i_blocks if the block allocation is delayed
5057          * otherwise in the case of system crash before the real block
5058          * allocation is done, we will have i_blocks inconsistent with
5059          * on-disk file blocks.
5060          * We always keep i_blocks updated together with real
5061          * allocation. But to not confuse with user, stat
5062          * will return the blocks that include the delayed allocation
5063          * blocks for this file.
5064          */
5065         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5066                                    EXT4_I(inode)->i_reserved_data_blocks);
5067         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5068         return 0;
5069 }
5070
5071 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5072                                    int pextents)
5073 {
5074         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5075                 return ext4_ind_trans_blocks(inode, lblocks);
5076         return ext4_ext_index_trans_blocks(inode, pextents);
5077 }
5078
5079 /*
5080  * Account for index blocks, block groups bitmaps and block group
5081  * descriptor blocks if modify datablocks and index blocks
5082  * worse case, the indexs blocks spread over different block groups
5083  *
5084  * If datablocks are discontiguous, they are possible to spread over
5085  * different block groups too. If they are contiguous, with flexbg,
5086  * they could still across block group boundary.
5087  *
5088  * Also account for superblock, inode, quota and xattr blocks
5089  */
5090 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5091                                   int pextents)
5092 {
5093         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5094         int gdpblocks;
5095         int idxblocks;
5096         int ret = 0;
5097
5098         /*
5099          * How many index blocks need to touch to map @lblocks logical blocks
5100          * to @pextents physical extents?
5101          */
5102         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5103
5104         ret = idxblocks;
5105
5106         /*
5107          * Now let's see how many group bitmaps and group descriptors need
5108          * to account
5109          */
5110         groups = idxblocks + pextents;
5111         gdpblocks = groups;
5112         if (groups > ngroups)
5113                 groups = ngroups;
5114         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5115                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5116
5117         /* bitmaps and block group descriptor blocks */
5118         ret += groups + gdpblocks;
5119
5120         /* Blocks for super block, inode, quota and xattr blocks */
5121         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5122
5123         return ret;
5124 }
5125
5126 /*
5127  * Calculate the total number of credits to reserve to fit
5128  * the modification of a single pages into a single transaction,
5129  * which may include multiple chunks of block allocations.
5130  *
5131  * This could be called via ext4_write_begin()
5132  *
5133  * We need to consider the worse case, when
5134  * one new block per extent.
5135  */
5136 int ext4_writepage_trans_blocks(struct inode *inode)
5137 {
5138         int bpp = ext4_journal_blocks_per_page(inode);
5139         int ret;
5140
5141         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5142
5143         /* Account for data blocks for journalled mode */
5144         if (ext4_should_journal_data(inode))
5145                 ret += bpp;
5146         return ret;
5147 }
5148
5149 /*
5150  * Calculate the journal credits for a chunk of data modification.
5151  *
5152  * This is called from DIO, fallocate or whoever calling
5153  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5154  *
5155  * journal buffers for data blocks are not included here, as DIO
5156  * and fallocate do no need to journal data buffers.
5157  */
5158 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5159 {
5160         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5161 }
5162
5163 /*
5164  * The caller must have previously called ext4_reserve_inode_write().
5165  * Give this, we know that the caller already has write access to iloc->bh.
5166  */
5167 int ext4_mark_iloc_dirty(handle_t *handle,
5168                          struct inode *inode, struct ext4_iloc *iloc)
5169 {
5170         int err = 0;
5171
5172         if (IS_I_VERSION(inode))
5173                 inode_inc_iversion(inode);
5174
5175         /* the do_update_inode consumes one bh->b_count */
5176         get_bh(iloc->bh);
5177
5178         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5179         err = ext4_do_update_inode(handle, inode, iloc);
5180         put_bh(iloc->bh);
5181         return err;
5182 }
5183
5184 /*
5185  * On success, We end up with an outstanding reference count against
5186  * iloc->bh.  This _must_ be cleaned up later.
5187  */
5188
5189 int
5190 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5191                          struct ext4_iloc *iloc)
5192 {
5193         int err;
5194
5195         err = ext4_get_inode_loc(inode, iloc);
5196         if (!err) {
5197                 BUFFER_TRACE(iloc->bh, "get_write_access");
5198                 err = ext4_journal_get_write_access(handle, iloc->bh);
5199                 if (err) {
5200                         brelse(iloc->bh);
5201                         iloc->bh = NULL;
5202                 }
5203         }
5204         ext4_std_error(inode->i_sb, err);
5205         return err;
5206 }
5207
5208 /*
5209  * Expand an inode by new_extra_isize bytes.
5210  * Returns 0 on success or negative error number on failure.
5211  */
5212 static int ext4_expand_extra_isize(struct inode *inode,
5213                                    unsigned int new_extra_isize,
5214                                    struct ext4_iloc iloc,
5215                                    handle_t *handle)
5216 {
5217         struct ext4_inode *raw_inode;
5218         struct ext4_xattr_ibody_header *header;
5219
5220         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5221                 return 0;
5222
5223         raw_inode = ext4_raw_inode(&iloc);
5224
5225         header = IHDR(inode, raw_inode);
5226
5227         /* No extended attributes present */
5228         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5229             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5230                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5231                         new_extra_isize);
5232                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5233                 return 0;
5234         }
5235
5236         /* try to expand with EAs present */
5237         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5238                                           raw_inode, handle);
5239 }
5240
5241 /*
5242  * What we do here is to mark the in-core inode as clean with respect to inode
5243  * dirtiness (it may still be data-dirty).
5244  * This means that the in-core inode may be reaped by prune_icache
5245  * without having to perform any I/O.  This is a very good thing,
5246  * because *any* task may call prune_icache - even ones which
5247  * have a transaction open against a different journal.
5248  *
5249  * Is this cheating?  Not really.  Sure, we haven't written the
5250  * inode out, but prune_icache isn't a user-visible syncing function.
5251  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5252  * we start and wait on commits.
5253  */
5254 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5255 {
5256         struct ext4_iloc iloc;
5257         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5258         static unsigned int mnt_count;
5259         int err, ret;
5260
5261         might_sleep();
5262         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5263         err = ext4_reserve_inode_write(handle, inode, &iloc);
5264         if (ext4_handle_valid(handle) &&
5265             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5266             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5267                 /*
5268                  * We need extra buffer credits since we may write into EA block
5269                  * with this same handle. If journal_extend fails, then it will
5270                  * only result in a minor loss of functionality for that inode.
5271                  * If this is felt to be critical, then e2fsck should be run to
5272                  * force a large enough s_min_extra_isize.
5273                  */
5274                 if ((jbd2_journal_extend(handle,
5275                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5276                         ret = ext4_expand_extra_isize(inode,
5277                                                       sbi->s_want_extra_isize,
5278                                                       iloc, handle);
5279                         if (ret) {
5280                                 ext4_set_inode_state(inode,
5281                                                      EXT4_STATE_NO_EXPAND);
5282                                 if (mnt_count !=
5283                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5284                                         ext4_warning(inode->i_sb,
5285                                         "Unable to expand inode %lu. Delete"
5286                                         " some EAs or run e2fsck.",
5287                                         inode->i_ino);
5288                                         mnt_count =
5289                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5290                                 }
5291                         }
5292                 }
5293         }
5294         if (!err)
5295                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5296         return err;
5297 }
5298
5299 /*
5300  * ext4_dirty_inode() is called from __mark_inode_dirty()
5301  *
5302  * We're really interested in the case where a file is being extended.
5303  * i_size has been changed by generic_commit_write() and we thus need
5304  * to include the updated inode in the current transaction.
5305  *
5306  * Also, dquot_alloc_block() will always dirty the inode when blocks
5307  * are allocated to the file.
5308  *
5309  * If the inode is marked synchronous, we don't honour that here - doing
5310  * so would cause a commit on atime updates, which we don't bother doing.
5311  * We handle synchronous inodes at the highest possible level.
5312  *
5313  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5314  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5315  * to copy into the on-disk inode structure are the timestamp files.
5316  */
5317 void ext4_dirty_inode(struct inode *inode, int flags)
5318 {
5319         handle_t *handle;
5320
5321         if (flags == I_DIRTY_TIME)
5322                 return;
5323         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5324         if (IS_ERR(handle))
5325                 goto out;
5326
5327         ext4_mark_inode_dirty(handle, inode);
5328
5329         ext4_journal_stop(handle);
5330 out:
5331         return;
5332 }
5333
5334 #if 0
5335 /*
5336  * Bind an inode's backing buffer_head into this transaction, to prevent
5337  * it from being flushed to disk early.  Unlike
5338  * ext4_reserve_inode_write, this leaves behind no bh reference and
5339  * returns no iloc structure, so the caller needs to repeat the iloc
5340  * lookup to mark the inode dirty later.
5341  */
5342 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5343 {
5344         struct ext4_iloc iloc;
5345
5346         int err = 0;
5347         if (handle) {
5348                 err = ext4_get_inode_loc(inode, &iloc);
5349                 if (!err) {
5350                         BUFFER_TRACE(iloc.bh, "get_write_access");
5351                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5352                         if (!err)
5353                                 err = ext4_handle_dirty_metadata(handle,
5354                                                                  NULL,
5355                                                                  iloc.bh);
5356                         brelse(iloc.bh);
5357                 }
5358         }
5359         ext4_std_error(inode->i_sb, err);
5360         return err;
5361 }
5362 #endif
5363
5364 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5365 {
5366         journal_t *journal;
5367         handle_t *handle;
5368         int err;
5369
5370         /*
5371          * We have to be very careful here: changing a data block's
5372          * journaling status dynamically is dangerous.  If we write a
5373          * data block to the journal, change the status and then delete
5374          * that block, we risk forgetting to revoke the old log record
5375          * from the journal and so a subsequent replay can corrupt data.
5376          * So, first we make sure that the journal is empty and that
5377          * nobody is changing anything.
5378          */
5379
5380         journal = EXT4_JOURNAL(inode);
5381         if (!journal)
5382                 return 0;
5383         if (is_journal_aborted(journal))
5384                 return -EROFS;
5385         /* We have to allocate physical blocks for delalloc blocks
5386          * before flushing journal. otherwise delalloc blocks can not
5387          * be allocated any more. even more truncate on delalloc blocks
5388          * could trigger BUG by flushing delalloc blocks in journal.
5389          * There is no delalloc block in non-journal data mode.
5390          */
5391         if (val && test_opt(inode->i_sb, DELALLOC)) {
5392                 err = ext4_alloc_da_blocks(inode);
5393                 if (err < 0)
5394                         return err;
5395         }
5396
5397         /* Wait for all existing dio workers */
5398         ext4_inode_block_unlocked_dio(inode);
5399         inode_dio_wait(inode);
5400
5401         jbd2_journal_lock_updates(journal);
5402
5403         /*
5404          * OK, there are no updates running now, and all cached data is
5405          * synced to disk.  We are now in a completely consistent state
5406          * which doesn't have anything in the journal, and we know that
5407          * no filesystem updates are running, so it is safe to modify
5408          * the inode's in-core data-journaling state flag now.
5409          */
5410
5411         if (val)
5412                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5413         else {
5414                 err = jbd2_journal_flush(journal);
5415                 if (err < 0) {
5416                         jbd2_journal_unlock_updates(journal);
5417                         ext4_inode_resume_unlocked_dio(inode);
5418                         return err;
5419                 }
5420                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5421         }
5422         ext4_set_aops(inode);
5423
5424         jbd2_journal_unlock_updates(journal);
5425         ext4_inode_resume_unlocked_dio(inode);
5426
5427         /* Finally we can mark the inode as dirty. */
5428
5429         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5430         if (IS_ERR(handle))
5431                 return PTR_ERR(handle);
5432
5433         err = ext4_mark_inode_dirty(handle, inode);
5434         ext4_handle_sync(handle);
5435         ext4_journal_stop(handle);
5436         ext4_std_error(inode->i_sb, err);
5437
5438         return err;
5439 }
5440
5441 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5442 {
5443         return !buffer_mapped(bh);
5444 }
5445
5446 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5447 {
5448         struct page *page = vmf->page;
5449         loff_t size;
5450         unsigned long len;
5451         int ret;
5452         struct file *file = vma->vm_file;
5453         struct inode *inode = file_inode(file);
5454         struct address_space *mapping = inode->i_mapping;
5455         handle_t *handle;
5456         get_block_t *get_block;
5457         int retries = 0;
5458
5459         sb_start_pagefault(inode->i_sb);
5460         file_update_time(vma->vm_file);
5461
5462         down_read(&EXT4_I(inode)->i_mmap_sem);
5463         /* Delalloc case is easy... */
5464         if (test_opt(inode->i_sb, DELALLOC) &&
5465             !ext4_should_journal_data(inode) &&
5466             !ext4_nonda_switch(inode->i_sb)) {
5467                 do {
5468                         ret = block_page_mkwrite(vma, vmf,
5469                                                    ext4_da_get_block_prep);
5470                 } while (ret == -ENOSPC &&
5471                        ext4_should_retry_alloc(inode->i_sb, &retries));
5472                 goto out_ret;
5473         }
5474
5475         lock_page(page);
5476         size = i_size_read(inode);
5477         /* Page got truncated from under us? */
5478         if (page->mapping != mapping || page_offset(page) > size) {
5479                 unlock_page(page);
5480                 ret = VM_FAULT_NOPAGE;
5481                 goto out;
5482         }
5483
5484         if (page->index == size >> PAGE_CACHE_SHIFT)
5485                 len = size & ~PAGE_CACHE_MASK;
5486         else
5487                 len = PAGE_CACHE_SIZE;
5488         /*
5489          * Return if we have all the buffers mapped. This avoids the need to do
5490          * journal_start/journal_stop which can block and take a long time
5491          */
5492         if (page_has_buffers(page)) {
5493                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5494                                             0, len, NULL,
5495                                             ext4_bh_unmapped)) {
5496                         /* Wait so that we don't change page under IO */
5497                         wait_for_stable_page(page);
5498                         ret = VM_FAULT_LOCKED;
5499                         goto out;
5500                 }
5501         }
5502         unlock_page(page);
5503         /* OK, we need to fill the hole... */
5504         if (ext4_should_dioread_nolock(inode))
5505                 get_block = ext4_get_block_write;
5506         else
5507                 get_block = ext4_get_block;
5508 retry_alloc:
5509         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5510                                     ext4_writepage_trans_blocks(inode));
5511         if (IS_ERR(handle)) {
5512                 ret = VM_FAULT_SIGBUS;
5513                 goto out;
5514         }
5515         ret = block_page_mkwrite(vma, vmf, get_block);
5516         if (!ret && ext4_should_journal_data(inode)) {
5517                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5518                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5519                         unlock_page(page);
5520                         ret = VM_FAULT_SIGBUS;
5521                         ext4_journal_stop(handle);
5522                         goto out;
5523                 }
5524                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5525         }
5526         ext4_journal_stop(handle);
5527         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5528                 goto retry_alloc;
5529 out_ret:
5530         ret = block_page_mkwrite_return(ret);
5531 out:
5532         up_read(&EXT4_I(inode)->i_mmap_sem);
5533         sb_end_pagefault(inode->i_sb);
5534         return ret;
5535 }
5536
5537 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5538 {
5539         struct inode *inode = file_inode(vma->vm_file);
5540         int err;
5541
5542         down_read(&EXT4_I(inode)->i_mmap_sem);
5543         err = filemap_fault(vma, vmf);
5544         up_read(&EXT4_I(inode)->i_mmap_sem);
5545
5546         return err;
5547 }