Merge tag 'soc-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         if (inode->i_nlink) {
189                 /*
190                  * When journalling data dirty buffers are tracked only in the
191                  * journal. So although mm thinks everything is clean and
192                  * ready for reaping the inode might still have some pages to
193                  * write in the running transaction or waiting to be
194                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
195                  * (via truncate_inode_pages()) to discard these buffers can
196                  * cause data loss. Also even if we did not discard these
197                  * buffers, we would have no way to find them after the inode
198                  * is reaped and thus user could see stale data if he tries to
199                  * read them before the transaction is checkpointed. So be
200                  * careful and force everything to disk here... We use
201                  * ei->i_datasync_tid to store the newest transaction
202                  * containing inode's data.
203                  *
204                  * Note that directories do not have this problem because they
205                  * don't use page cache.
206                  */
207                 if (ext4_should_journal_data(inode) &&
208                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209                     inode->i_ino != EXT4_JOURNAL_INO) {
210                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213                         jbd2_complete_transaction(journal, commit_tid);
214                         filemap_write_and_wait(&inode->i_data);
215                 }
216                 truncate_inode_pages(&inode->i_data, 0);
217                 ext4_ioend_shutdown(inode);
218                 goto no_delete;
219         }
220
221         if (!is_bad_inode(inode))
222                 dquot_initialize(inode);
223
224         if (ext4_should_order_data(inode))
225                 ext4_begin_ordered_truncate(inode, 0);
226         truncate_inode_pages(&inode->i_data, 0);
227         ext4_ioend_shutdown(inode);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328                 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330         return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356                         "with only %d reserved metadata blocks "
357                         "(releasing %d blocks with reserved %d data blocks)",
358                         inode->i_ino, ei->i_allocated_meta_blocks,
359                              ei->i_reserved_meta_blocks, used,
360                              ei->i_reserved_data_blocks);
361                 WARN_ON(1);
362                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363         }
364
365         /* Update per-inode reservations */
366         ei->i_reserved_data_blocks -= used;
367         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369                            used + ei->i_allocated_meta_blocks);
370         ei->i_allocated_meta_blocks = 0;
371
372         if (ei->i_reserved_data_blocks == 0) {
373                 /*
374                  * We can release all of the reserved metadata blocks
375                  * only when we have written all of the delayed
376                  * allocation blocks.
377                  */
378                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379                                    ei->i_reserved_meta_blocks);
380                 ei->i_reserved_meta_blocks = 0;
381                 ei->i_da_metadata_calc_len = 0;
382         }
383         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385         /* Update quota subsystem for data blocks */
386         if (quota_claim)
387                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388         else {
389                 /*
390                  * We did fallocate with an offset that is already delayed
391                  * allocated. So on delayed allocated writeback we should
392                  * not re-claim the quota for fallocated blocks.
393                  */
394                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395         }
396
397         /*
398          * If we have done all the pending block allocations and if
399          * there aren't any writers on the inode, we can discard the
400          * inode's preallocations.
401          */
402         if ((ei->i_reserved_data_blocks == 0) &&
403             (atomic_read(&inode->i_writecount) == 0))
404                 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408                                 unsigned int line,
409                                 struct ext4_map_blocks *map)
410 {
411         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412                                    map->m_len)) {
413                 ext4_error_inode(inode, func, line, map->m_pblk,
414                                  "lblock %lu mapped to illegal pblock "
415                                  "(length %d)", (unsigned long) map->m_lblk,
416                                  map->m_len);
417                 return -EIO;
418         }
419         return 0;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430                                     unsigned int max_pages)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         pgoff_t index;
434         struct pagevec pvec;
435         pgoff_t num = 0;
436         int i, nr_pages, done = 0;
437
438         if (max_pages == 0)
439                 return 0;
440         pagevec_init(&pvec, 0);
441         while (!done) {
442                 index = idx;
443                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444                                               PAGECACHE_TAG_DIRTY,
445                                               (pgoff_t)PAGEVEC_SIZE);
446                 if (nr_pages == 0)
447                         break;
448                 for (i = 0; i < nr_pages; i++) {
449                         struct page *page = pvec.pages[i];
450                         struct buffer_head *bh, *head;
451
452                         lock_page(page);
453                         if (unlikely(page->mapping != mapping) ||
454                             !PageDirty(page) ||
455                             PageWriteback(page) ||
456                             page->index != idx) {
457                                 done = 1;
458                                 unlock_page(page);
459                                 break;
460                         }
461                         if (page_has_buffers(page)) {
462                                 bh = head = page_buffers(page);
463                                 do {
464                                         if (!buffer_delay(bh) &&
465                                             !buffer_unwritten(bh))
466                                                 done = 1;
467                                         bh = bh->b_this_page;
468                                 } while (!done && (bh != head));
469                         }
470                         unlock_page(page);
471                         if (done)
472                                 break;
473                         idx++;
474                         num++;
475                         if (num >= max_pages) {
476                                 done = 1;
477                                 break;
478                         }
479                 }
480                 pagevec_release(&pvec);
481         }
482         return num;
483 }
484
485 #ifdef ES_AGGRESSIVE_TEST
486 static void ext4_map_blocks_es_recheck(handle_t *handle,
487                                        struct inode *inode,
488                                        struct ext4_map_blocks *es_map,
489                                        struct ext4_map_blocks *map,
490                                        int flags)
491 {
492         int retval;
493
494         map->m_flags = 0;
495         /*
496          * There is a race window that the result is not the same.
497          * e.g. xfstests #223 when dioread_nolock enables.  The reason
498          * is that we lookup a block mapping in extent status tree with
499          * out taking i_data_sem.  So at the time the unwritten extent
500          * could be converted.
501          */
502         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503                 down_read((&EXT4_I(inode)->i_data_sem));
504         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506                                              EXT4_GET_BLOCKS_KEEP_SIZE);
507         } else {
508                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509                                              EXT4_GET_BLOCKS_KEEP_SIZE);
510         }
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 up_read((&EXT4_I(inode)->i_data_sem));
513         /*
514          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515          * because it shouldn't be marked in es_map->m_flags.
516          */
517         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518
519         /*
520          * We don't check m_len because extent will be collpased in status
521          * tree.  So the m_len might not equal.
522          */
523         if (es_map->m_lblk != map->m_lblk ||
524             es_map->m_flags != map->m_flags ||
525             es_map->m_pblk != map->m_pblk) {
526                 printk("ES cache assertation failed for inode: %lu "
527                        "es_cached ex [%d/%d/%llu/%x] != "
528                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529                        inode->i_ino, es_map->m_lblk, es_map->m_len,
530                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
531                        map->m_len, map->m_pblk, map->m_flags,
532                        retval, flags);
533         }
534 }
535 #endif /* ES_AGGRESSIVE_TEST */
536
537 /*
538  * The ext4_map_blocks() function tries to look up the requested blocks,
539  * and returns if the blocks are already mapped.
540  *
541  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542  * and store the allocated blocks in the result buffer head and mark it
543  * mapped.
544  *
545  * If file type is extents based, it will call ext4_ext_map_blocks(),
546  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547  * based files
548  *
549  * On success, it returns the number of blocks being mapped or allocate.
550  * if create==0 and the blocks are pre-allocated and uninitialized block,
551  * the result buffer head is unmapped. If the create ==1, it will make sure
552  * the buffer head is mapped.
553  *
554  * It returns 0 if plain look up failed (blocks have not been allocated), in
555  * that case, buffer head is unmapped
556  *
557  * It returns the error in case of allocation failure.
558  */
559 int ext4_map_blocks(handle_t *handle, struct inode *inode,
560                     struct ext4_map_blocks *map, int flags)
561 {
562         struct extent_status es;
563         int retval;
564 #ifdef ES_AGGRESSIVE_TEST
565         struct ext4_map_blocks orig_map;
566
567         memcpy(&orig_map, map, sizeof(*map));
568 #endif
569
570         map->m_flags = 0;
571         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
573                   (unsigned long) map->m_lblk);
574
575         /* Lookup extent status tree firstly */
576         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578                         map->m_pblk = ext4_es_pblock(&es) +
579                                         map->m_lblk - es.es_lblk;
580                         map->m_flags |= ext4_es_is_written(&es) ?
581                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582                         retval = es.es_len - (map->m_lblk - es.es_lblk);
583                         if (retval > map->m_len)
584                                 retval = map->m_len;
585                         map->m_len = retval;
586                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587                         retval = 0;
588                 } else {
589                         BUG_ON(1);
590                 }
591 #ifdef ES_AGGRESSIVE_TEST
592                 ext4_map_blocks_es_recheck(handle, inode, map,
593                                            &orig_map, flags);
594 #endif
595                 goto found;
596         }
597
598         /*
599          * Try to see if we can get the block without requesting a new
600          * file system block.
601          */
602         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603                 down_read((&EXT4_I(inode)->i_data_sem));
604         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606                                              EXT4_GET_BLOCKS_KEEP_SIZE);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609                                              EXT4_GET_BLOCKS_KEEP_SIZE);
610         }
611         if (retval > 0) {
612                 int ret;
613                 unsigned long long status;
614
615 #ifdef ES_AGGRESSIVE_TEST
616                 if (retval != map->m_len) {
617                         printk("ES len assertation failed for inode: %lu "
618                                "retval %d != map->m_len %d "
619                                "in %s (lookup)\n", inode->i_ino, retval,
620                                map->m_len, __func__);
621                 }
622 #endif
623
624                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627                     ext4_find_delalloc_range(inode, map->m_lblk,
628                                              map->m_lblk + map->m_len - 1))
629                         status |= EXTENT_STATUS_DELAYED;
630                 ret = ext4_es_insert_extent(inode, map->m_lblk,
631                                             map->m_len, map->m_pblk, status);
632                 if (ret < 0)
633                         retval = ret;
634         }
635         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636                 up_read((&EXT4_I(inode)->i_data_sem));
637
638 found:
639         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640                 int ret = check_block_validity(inode, map);
641                 if (ret != 0)
642                         return ret;
643         }
644
645         /* If it is only a block(s) look up */
646         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647                 return retval;
648
649         /*
650          * Returns if the blocks have already allocated
651          *
652          * Note that if blocks have been preallocated
653          * ext4_ext_get_block() returns the create = 0
654          * with buffer head unmapped.
655          */
656         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657                 return retval;
658
659         /*
660          * Here we clear m_flags because after allocating an new extent,
661          * it will be set again.
662          */
663         map->m_flags &= ~EXT4_MAP_FLAGS;
664
665         /*
666          * New blocks allocate and/or writing to uninitialized extent
667          * will possibly result in updating i_data, so we take
668          * the write lock of i_data_sem, and call get_blocks()
669          * with create == 1 flag.
670          */
671         down_write((&EXT4_I(inode)->i_data_sem));
672
673         /*
674          * if the caller is from delayed allocation writeout path
675          * we have already reserved fs blocks for allocation
676          * let the underlying get_block() function know to
677          * avoid double accounting
678          */
679         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681         /*
682          * We need to check for EXT4 here because migrate
683          * could have changed the inode type in between
684          */
685         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
687         } else {
688                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
689
690                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691                         /*
692                          * We allocated new blocks which will result in
693                          * i_data's format changing.  Force the migrate
694                          * to fail by clearing migrate flags
695                          */
696                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697                 }
698
699                 /*
700                  * Update reserved blocks/metadata blocks after successful
701                  * block allocation which had been deferred till now. We don't
702                  * support fallocate for non extent files. So we can update
703                  * reserve space here.
704                  */
705                 if ((retval > 0) &&
706                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707                         ext4_da_update_reserve_space(inode, retval, 1);
708         }
709         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711
712         if (retval > 0) {
713                 int ret;
714                 unsigned long long status;
715
716 #ifdef ES_AGGRESSIVE_TEST
717                 if (retval != map->m_len) {
718                         printk("ES len assertation failed for inode: %lu "
719                                "retval %d != map->m_len %d "
720                                "in %s (allocation)\n", inode->i_ino, retval,
721                                map->m_len, __func__);
722                 }
723 #endif
724
725                 /*
726                  * If the extent has been zeroed out, we don't need to update
727                  * extent status tree.
728                  */
729                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731                         if (ext4_es_is_written(&es))
732                                 goto has_zeroout;
733                 }
734                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737                     ext4_find_delalloc_range(inode, map->m_lblk,
738                                              map->m_lblk + map->m_len - 1))
739                         status |= EXTENT_STATUS_DELAYED;
740                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741                                             map->m_pblk, status);
742                 if (ret < 0)
743                         retval = ret;
744         }
745
746 has_zeroout:
747         up_write((&EXT4_I(inode)->i_data_sem));
748         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749                 int ret = check_block_validity(inode, map);
750                 if (ret != 0)
751                         return ret;
752         }
753         return retval;
754 }
755
756 /* Maximum number of blocks we map for direct IO at once. */
757 #define DIO_MAX_BLOCKS 4096
758
759 static int _ext4_get_block(struct inode *inode, sector_t iblock,
760                            struct buffer_head *bh, int flags)
761 {
762         handle_t *handle = ext4_journal_current_handle();
763         struct ext4_map_blocks map;
764         int ret = 0, started = 0;
765         int dio_credits;
766
767         if (ext4_has_inline_data(inode))
768                 return -ERANGE;
769
770         map.m_lblk = iblock;
771         map.m_len = bh->b_size >> inode->i_blkbits;
772
773         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
774                 /* Direct IO write... */
775                 if (map.m_len > DIO_MAX_BLOCKS)
776                         map.m_len = DIO_MAX_BLOCKS;
777                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779                                             dio_credits);
780                 if (IS_ERR(handle)) {
781                         ret = PTR_ERR(handle);
782                         return ret;
783                 }
784                 started = 1;
785         }
786
787         ret = ext4_map_blocks(handle, inode, &map, flags);
788         if (ret > 0) {
789                 map_bh(bh, inode->i_sb, map.m_pblk);
790                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792                 ret = 0;
793         }
794         if (started)
795                 ext4_journal_stop(handle);
796         return ret;
797 }
798
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800                    struct buffer_head *bh, int create)
801 {
802         return _ext4_get_block(inode, iblock, bh,
803                                create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805
806 /*
807  * `handle' can be NULL if create is zero
808  */
809 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
810                                 ext4_lblk_t block, int create, int *errp)
811 {
812         struct ext4_map_blocks map;
813         struct buffer_head *bh;
814         int fatal = 0, err;
815
816         J_ASSERT(handle != NULL || create == 0);
817
818         map.m_lblk = block;
819         map.m_len = 1;
820         err = ext4_map_blocks(handle, inode, &map,
821                               create ? EXT4_GET_BLOCKS_CREATE : 0);
822
823         /* ensure we send some value back into *errp */
824         *errp = 0;
825
826         if (create && err == 0)
827                 err = -ENOSPC;  /* should never happen */
828         if (err < 0)
829                 *errp = err;
830         if (err <= 0)
831                 return NULL;
832
833         bh = sb_getblk(inode->i_sb, map.m_pblk);
834         if (unlikely(!bh)) {
835                 *errp = -ENOMEM;
836                 return NULL;
837         }
838         if (map.m_flags & EXT4_MAP_NEW) {
839                 J_ASSERT(create != 0);
840                 J_ASSERT(handle != NULL);
841
842                 /*
843                  * Now that we do not always journal data, we should
844                  * keep in mind whether this should always journal the
845                  * new buffer as metadata.  For now, regular file
846                  * writes use ext4_get_block instead, so it's not a
847                  * problem.
848                  */
849                 lock_buffer(bh);
850                 BUFFER_TRACE(bh, "call get_create_access");
851                 fatal = ext4_journal_get_create_access(handle, bh);
852                 if (!fatal && !buffer_uptodate(bh)) {
853                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854                         set_buffer_uptodate(bh);
855                 }
856                 unlock_buffer(bh);
857                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858                 err = ext4_handle_dirty_metadata(handle, inode, bh);
859                 if (!fatal)
860                         fatal = err;
861         } else {
862                 BUFFER_TRACE(bh, "not a new buffer");
863         }
864         if (fatal) {
865                 *errp = fatal;
866                 brelse(bh);
867                 bh = NULL;
868         }
869         return bh;
870 }
871
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873                                ext4_lblk_t block, int create, int *err)
874 {
875         struct buffer_head *bh;
876
877         bh = ext4_getblk(handle, inode, block, create, err);
878         if (!bh)
879                 return bh;
880         if (buffer_uptodate(bh))
881                 return bh;
882         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883         wait_on_buffer(bh);
884         if (buffer_uptodate(bh))
885                 return bh;
886         put_bh(bh);
887         *err = -EIO;
888         return NULL;
889 }
890
891 int ext4_walk_page_buffers(handle_t *handle,
892                            struct buffer_head *head,
893                            unsigned from,
894                            unsigned to,
895                            int *partial,
896                            int (*fn)(handle_t *handle,
897                                      struct buffer_head *bh))
898 {
899         struct buffer_head *bh;
900         unsigned block_start, block_end;
901         unsigned blocksize = head->b_size;
902         int err, ret = 0;
903         struct buffer_head *next;
904
905         for (bh = head, block_start = 0;
906              ret == 0 && (bh != head || !block_start);
907              block_start = block_end, bh = next) {
908                 next = bh->b_this_page;
909                 block_end = block_start + blocksize;
910                 if (block_end <= from || block_start >= to) {
911                         if (partial && !buffer_uptodate(bh))
912                                 *partial = 1;
913                         continue;
914                 }
915                 err = (*fn)(handle, bh);
916                 if (!ret)
917                         ret = err;
918         }
919         return ret;
920 }
921
922 /*
923  * To preserve ordering, it is essential that the hole instantiation and
924  * the data write be encapsulated in a single transaction.  We cannot
925  * close off a transaction and start a new one between the ext4_get_block()
926  * and the commit_write().  So doing the jbd2_journal_start at the start of
927  * prepare_write() is the right place.
928  *
929  * Also, this function can nest inside ext4_writepage().  In that case, we
930  * *know* that ext4_writepage() has generated enough buffer credits to do the
931  * whole page.  So we won't block on the journal in that case, which is good,
932  * because the caller may be PF_MEMALLOC.
933  *
934  * By accident, ext4 can be reentered when a transaction is open via
935  * quota file writes.  If we were to commit the transaction while thus
936  * reentered, there can be a deadlock - we would be holding a quota
937  * lock, and the commit would never complete if another thread had a
938  * transaction open and was blocking on the quota lock - a ranking
939  * violation.
940  *
941  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942  * will _not_ run commit under these circumstances because handle->h_ref
943  * is elevated.  We'll still have enough credits for the tiny quotafile
944  * write.
945  */
946 int do_journal_get_write_access(handle_t *handle,
947                                 struct buffer_head *bh)
948 {
949         int dirty = buffer_dirty(bh);
950         int ret;
951
952         if (!buffer_mapped(bh) || buffer_freed(bh))
953                 return 0;
954         /*
955          * __block_write_begin() could have dirtied some buffers. Clean
956          * the dirty bit as jbd2_journal_get_write_access() could complain
957          * otherwise about fs integrity issues. Setting of the dirty bit
958          * by __block_write_begin() isn't a real problem here as we clear
959          * the bit before releasing a page lock and thus writeback cannot
960          * ever write the buffer.
961          */
962         if (dirty)
963                 clear_buffer_dirty(bh);
964         ret = ext4_journal_get_write_access(handle, bh);
965         if (!ret && dirty)
966                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967         return ret;
968 }
969
970 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971                    struct buffer_head *bh_result, int create);
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973                             loff_t pos, unsigned len, unsigned flags,
974                             struct page **pagep, void **fsdata)
975 {
976         struct inode *inode = mapping->host;
977         int ret, needed_blocks;
978         handle_t *handle;
979         int retries = 0;
980         struct page *page;
981         pgoff_t index;
982         unsigned from, to;
983
984         trace_ext4_write_begin(inode, pos, len, flags);
985         /*
986          * Reserve one block more for addition to orphan list in case
987          * we allocate blocks but write fails for some reason
988          */
989         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990         index = pos >> PAGE_CACHE_SHIFT;
991         from = pos & (PAGE_CACHE_SIZE - 1);
992         to = from + len;
993
994         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996                                                     flags, pagep);
997                 if (ret < 0)
998                         return ret;
999                 if (ret == 1)
1000                         return 0;
1001         }
1002
1003         /*
1004          * grab_cache_page_write_begin() can take a long time if the
1005          * system is thrashing due to memory pressure, or if the page
1006          * is being written back.  So grab it first before we start
1007          * the transaction handle.  This also allows us to allocate
1008          * the page (if needed) without using GFP_NOFS.
1009          */
1010 retry_grab:
1011         page = grab_cache_page_write_begin(mapping, index, flags);
1012         if (!page)
1013                 return -ENOMEM;
1014         unlock_page(page);
1015
1016 retry_journal:
1017         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018         if (IS_ERR(handle)) {
1019                 page_cache_release(page);
1020                 return PTR_ERR(handle);
1021         }
1022
1023         lock_page(page);
1024         if (page->mapping != mapping) {
1025                 /* The page got truncated from under us */
1026                 unlock_page(page);
1027                 page_cache_release(page);
1028                 ext4_journal_stop(handle);
1029                 goto retry_grab;
1030         }
1031         wait_on_page_writeback(page);
1032
1033         if (ext4_should_dioread_nolock(inode))
1034                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035         else
1036                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1037
1038         if (!ret && ext4_should_journal_data(inode)) {
1039                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040                                              from, to, NULL,
1041                                              do_journal_get_write_access);
1042         }
1043
1044         if (ret) {
1045                 unlock_page(page);
1046                 /*
1047                  * __block_write_begin may have instantiated a few blocks
1048                  * outside i_size.  Trim these off again. Don't need
1049                  * i_size_read because we hold i_mutex.
1050                  *
1051                  * Add inode to orphan list in case we crash before
1052                  * truncate finishes
1053                  */
1054                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055                         ext4_orphan_add(handle, inode);
1056
1057                 ext4_journal_stop(handle);
1058                 if (pos + len > inode->i_size) {
1059                         ext4_truncate_failed_write(inode);
1060                         /*
1061                          * If truncate failed early the inode might
1062                          * still be on the orphan list; we need to
1063                          * make sure the inode is removed from the
1064                          * orphan list in that case.
1065                          */
1066                         if (inode->i_nlink)
1067                                 ext4_orphan_del(NULL, inode);
1068                 }
1069
1070                 if (ret == -ENOSPC &&
1071                     ext4_should_retry_alloc(inode->i_sb, &retries))
1072                         goto retry_journal;
1073                 page_cache_release(page);
1074                 return ret;
1075         }
1076         *pagep = page;
1077         return ret;
1078 }
1079
1080 /* For write_end() in data=journal mode */
1081 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 {
1083         int ret;
1084         if (!buffer_mapped(bh) || buffer_freed(bh))
1085                 return 0;
1086         set_buffer_uptodate(bh);
1087         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1088         clear_buffer_meta(bh);
1089         clear_buffer_prio(bh);
1090         return ret;
1091 }
1092
1093 /*
1094  * We need to pick up the new inode size which generic_commit_write gave us
1095  * `file' can be NULL - eg, when called from page_symlink().
1096  *
1097  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1098  * buffers are managed internally.
1099  */
1100 static int ext4_write_end(struct file *file,
1101                           struct address_space *mapping,
1102                           loff_t pos, unsigned len, unsigned copied,
1103                           struct page *page, void *fsdata)
1104 {
1105         handle_t *handle = ext4_journal_current_handle();
1106         struct inode *inode = mapping->host;
1107         int ret = 0, ret2;
1108         int i_size_changed = 0;
1109
1110         trace_ext4_write_end(inode, pos, len, copied);
1111         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1112                 ret = ext4_jbd2_file_inode(handle, inode);
1113                 if (ret) {
1114                         unlock_page(page);
1115                         page_cache_release(page);
1116                         goto errout;
1117                 }
1118         }
1119
1120         if (ext4_has_inline_data(inode))
1121                 copied = ext4_write_inline_data_end(inode, pos, len,
1122                                                     copied, page);
1123         else
1124                 copied = block_write_end(file, mapping, pos,
1125                                          len, copied, page, fsdata);
1126
1127         /*
1128          * No need to use i_size_read() here, the i_size
1129          * cannot change under us because we hole i_mutex.
1130          *
1131          * But it's important to update i_size while still holding page lock:
1132          * page writeout could otherwise come in and zero beyond i_size.
1133          */
1134         if (pos + copied > inode->i_size) {
1135                 i_size_write(inode, pos + copied);
1136                 i_size_changed = 1;
1137         }
1138
1139         if (pos + copied > EXT4_I(inode)->i_disksize) {
1140                 /* We need to mark inode dirty even if
1141                  * new_i_size is less that inode->i_size
1142                  * but greater than i_disksize. (hint delalloc)
1143                  */
1144                 ext4_update_i_disksize(inode, (pos + copied));
1145                 i_size_changed = 1;
1146         }
1147         unlock_page(page);
1148         page_cache_release(page);
1149
1150         /*
1151          * Don't mark the inode dirty under page lock. First, it unnecessarily
1152          * makes the holding time of page lock longer. Second, it forces lock
1153          * ordering of page lock and transaction start for journaling
1154          * filesystems.
1155          */
1156         if (i_size_changed)
1157                 ext4_mark_inode_dirty(handle, inode);
1158
1159         if (copied < 0)
1160                 ret = copied;
1161         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1162                 /* if we have allocated more blocks and copied
1163                  * less. We will have blocks allocated outside
1164                  * inode->i_size. So truncate them
1165                  */
1166                 ext4_orphan_add(handle, inode);
1167 errout:
1168         ret2 = ext4_journal_stop(handle);
1169         if (!ret)
1170                 ret = ret2;
1171
1172         if (pos + len > inode->i_size) {
1173                 ext4_truncate_failed_write(inode);
1174                 /*
1175                  * If truncate failed early the inode might still be
1176                  * on the orphan list; we need to make sure the inode
1177                  * is removed from the orphan list in that case.
1178                  */
1179                 if (inode->i_nlink)
1180                         ext4_orphan_del(NULL, inode);
1181         }
1182
1183         return ret ? ret : copied;
1184 }
1185
1186 static int ext4_journalled_write_end(struct file *file,
1187                                      struct address_space *mapping,
1188                                      loff_t pos, unsigned len, unsigned copied,
1189                                      struct page *page, void *fsdata)
1190 {
1191         handle_t *handle = ext4_journal_current_handle();
1192         struct inode *inode = mapping->host;
1193         int ret = 0, ret2;
1194         int partial = 0;
1195         unsigned from, to;
1196         loff_t new_i_size;
1197
1198         trace_ext4_journalled_write_end(inode, pos, len, copied);
1199         from = pos & (PAGE_CACHE_SIZE - 1);
1200         to = from + len;
1201
1202         BUG_ON(!ext4_handle_valid(handle));
1203
1204         if (ext4_has_inline_data(inode))
1205                 copied = ext4_write_inline_data_end(inode, pos, len,
1206                                                     copied, page);
1207         else {
1208                 if (copied < len) {
1209                         if (!PageUptodate(page))
1210                                 copied = 0;
1211                         page_zero_new_buffers(page, from+copied, to);
1212                 }
1213
1214                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1215                                              to, &partial, write_end_fn);
1216                 if (!partial)
1217                         SetPageUptodate(page);
1218         }
1219         new_i_size = pos + copied;
1220         if (new_i_size > inode->i_size)
1221                 i_size_write(inode, pos+copied);
1222         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1223         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1224         if (new_i_size > EXT4_I(inode)->i_disksize) {
1225                 ext4_update_i_disksize(inode, new_i_size);
1226                 ret2 = ext4_mark_inode_dirty(handle, inode);
1227                 if (!ret)
1228                         ret = ret2;
1229         }
1230
1231         unlock_page(page);
1232         page_cache_release(page);
1233         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1234                 /* if we have allocated more blocks and copied
1235                  * less. We will have blocks allocated outside
1236                  * inode->i_size. So truncate them
1237                  */
1238                 ext4_orphan_add(handle, inode);
1239
1240         ret2 = ext4_journal_stop(handle);
1241         if (!ret)
1242                 ret = ret2;
1243         if (pos + len > inode->i_size) {
1244                 ext4_truncate_failed_write(inode);
1245                 /*
1246                  * If truncate failed early the inode might still be
1247                  * on the orphan list; we need to make sure the inode
1248                  * is removed from the orphan list in that case.
1249                  */
1250                 if (inode->i_nlink)
1251                         ext4_orphan_del(NULL, inode);
1252         }
1253
1254         return ret ? ret : copied;
1255 }
1256
1257 /*
1258  * Reserve a metadata for a single block located at lblock
1259  */
1260 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1261 {
1262         int retries = 0;
1263         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1264         struct ext4_inode_info *ei = EXT4_I(inode);
1265         unsigned int md_needed;
1266         ext4_lblk_t save_last_lblock;
1267         int save_len;
1268
1269         /*
1270          * recalculate the amount of metadata blocks to reserve
1271          * in order to allocate nrblocks
1272          * worse case is one extent per block
1273          */
1274 repeat:
1275         spin_lock(&ei->i_block_reservation_lock);
1276         /*
1277          * ext4_calc_metadata_amount() has side effects, which we have
1278          * to be prepared undo if we fail to claim space.
1279          */
1280         save_len = ei->i_da_metadata_calc_len;
1281         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1282         md_needed = EXT4_NUM_B2C(sbi,
1283                                  ext4_calc_metadata_amount(inode, lblock));
1284         trace_ext4_da_reserve_space(inode, md_needed);
1285
1286         /*
1287          * We do still charge estimated metadata to the sb though;
1288          * we cannot afford to run out of free blocks.
1289          */
1290         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1291                 ei->i_da_metadata_calc_len = save_len;
1292                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1293                 spin_unlock(&ei->i_block_reservation_lock);
1294                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1295                         cond_resched();
1296                         goto repeat;
1297                 }
1298                 return -ENOSPC;
1299         }
1300         ei->i_reserved_meta_blocks += md_needed;
1301         spin_unlock(&ei->i_block_reservation_lock);
1302
1303         return 0;       /* success */
1304 }
1305
1306 /*
1307  * Reserve a single cluster located at lblock
1308  */
1309 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1310 {
1311         int retries = 0;
1312         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1313         struct ext4_inode_info *ei = EXT4_I(inode);
1314         unsigned int md_needed;
1315         int ret;
1316         ext4_lblk_t save_last_lblock;
1317         int save_len;
1318
1319         /*
1320          * We will charge metadata quota at writeout time; this saves
1321          * us from metadata over-estimation, though we may go over by
1322          * a small amount in the end.  Here we just reserve for data.
1323          */
1324         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1325         if (ret)
1326                 return ret;
1327
1328         /*
1329          * recalculate the amount of metadata blocks to reserve
1330          * in order to allocate nrblocks
1331          * worse case is one extent per block
1332          */
1333 repeat:
1334         spin_lock(&ei->i_block_reservation_lock);
1335         /*
1336          * ext4_calc_metadata_amount() has side effects, which we have
1337          * to be prepared undo if we fail to claim space.
1338          */
1339         save_len = ei->i_da_metadata_calc_len;
1340         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1341         md_needed = EXT4_NUM_B2C(sbi,
1342                                  ext4_calc_metadata_amount(inode, lblock));
1343         trace_ext4_da_reserve_space(inode, md_needed);
1344
1345         /*
1346          * We do still charge estimated metadata to the sb though;
1347          * we cannot afford to run out of free blocks.
1348          */
1349         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1350                 ei->i_da_metadata_calc_len = save_len;
1351                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1352                 spin_unlock(&ei->i_block_reservation_lock);
1353                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1354                         cond_resched();
1355                         goto repeat;
1356                 }
1357                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1358                 return -ENOSPC;
1359         }
1360         ei->i_reserved_data_blocks++;
1361         ei->i_reserved_meta_blocks += md_needed;
1362         spin_unlock(&ei->i_block_reservation_lock);
1363
1364         return 0;       /* success */
1365 }
1366
1367 static void ext4_da_release_space(struct inode *inode, int to_free)
1368 {
1369         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1370         struct ext4_inode_info *ei = EXT4_I(inode);
1371
1372         if (!to_free)
1373                 return;         /* Nothing to release, exit */
1374
1375         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1376
1377         trace_ext4_da_release_space(inode, to_free);
1378         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1379                 /*
1380                  * if there aren't enough reserved blocks, then the
1381                  * counter is messed up somewhere.  Since this
1382                  * function is called from invalidate page, it's
1383                  * harmless to return without any action.
1384                  */
1385                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1386                          "ino %lu, to_free %d with only %d reserved "
1387                          "data blocks", inode->i_ino, to_free,
1388                          ei->i_reserved_data_blocks);
1389                 WARN_ON(1);
1390                 to_free = ei->i_reserved_data_blocks;
1391         }
1392         ei->i_reserved_data_blocks -= to_free;
1393
1394         if (ei->i_reserved_data_blocks == 0) {
1395                 /*
1396                  * We can release all of the reserved metadata blocks
1397                  * only when we have written all of the delayed
1398                  * allocation blocks.
1399                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1400                  * i_reserved_data_blocks, etc. refer to number of clusters.
1401                  */
1402                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1403                                    ei->i_reserved_meta_blocks);
1404                 ei->i_reserved_meta_blocks = 0;
1405                 ei->i_da_metadata_calc_len = 0;
1406         }
1407
1408         /* update fs dirty data blocks counter */
1409         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1410
1411         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1412
1413         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1414 }
1415
1416 static void ext4_da_page_release_reservation(struct page *page,
1417                                              unsigned long offset)
1418 {
1419         int to_release = 0;
1420         struct buffer_head *head, *bh;
1421         unsigned int curr_off = 0;
1422         struct inode *inode = page->mapping->host;
1423         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1424         int num_clusters;
1425         ext4_fsblk_t lblk;
1426
1427         head = page_buffers(page);
1428         bh = head;
1429         do {
1430                 unsigned int next_off = curr_off + bh->b_size;
1431
1432                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1433                         to_release++;
1434                         clear_buffer_delay(bh);
1435                 }
1436                 curr_off = next_off;
1437         } while ((bh = bh->b_this_page) != head);
1438
1439         if (to_release) {
1440                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1441                 ext4_es_remove_extent(inode, lblk, to_release);
1442         }
1443
1444         /* If we have released all the blocks belonging to a cluster, then we
1445          * need to release the reserved space for that cluster. */
1446         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1447         while (num_clusters > 0) {
1448                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1449                         ((num_clusters - 1) << sbi->s_cluster_bits);
1450                 if (sbi->s_cluster_ratio == 1 ||
1451                     !ext4_find_delalloc_cluster(inode, lblk))
1452                         ext4_da_release_space(inode, 1);
1453
1454                 num_clusters--;
1455         }
1456 }
1457
1458 /*
1459  * Delayed allocation stuff
1460  */
1461
1462 /*
1463  * mpage_da_submit_io - walks through extent of pages and try to write
1464  * them with writepage() call back
1465  *
1466  * @mpd->inode: inode
1467  * @mpd->first_page: first page of the extent
1468  * @mpd->next_page: page after the last page of the extent
1469  *
1470  * By the time mpage_da_submit_io() is called we expect all blocks
1471  * to be allocated. this may be wrong if allocation failed.
1472  *
1473  * As pages are already locked by write_cache_pages(), we can't use it
1474  */
1475 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1476                               struct ext4_map_blocks *map)
1477 {
1478         struct pagevec pvec;
1479         unsigned long index, end;
1480         int ret = 0, err, nr_pages, i;
1481         struct inode *inode = mpd->inode;
1482         struct address_space *mapping = inode->i_mapping;
1483         loff_t size = i_size_read(inode);
1484         unsigned int len, block_start;
1485         struct buffer_head *bh, *page_bufs = NULL;
1486         sector_t pblock = 0, cur_logical = 0;
1487         struct ext4_io_submit io_submit;
1488
1489         BUG_ON(mpd->next_page <= mpd->first_page);
1490         ext4_io_submit_init(&io_submit, mpd->wbc);
1491         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1492         if (!io_submit.io_end)
1493                 return -ENOMEM;
1494         /*
1495          * We need to start from the first_page to the next_page - 1
1496          * to make sure we also write the mapped dirty buffer_heads.
1497          * If we look at mpd->b_blocknr we would only be looking
1498          * at the currently mapped buffer_heads.
1499          */
1500         index = mpd->first_page;
1501         end = mpd->next_page - 1;
1502
1503         pagevec_init(&pvec, 0);
1504         while (index <= end) {
1505                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1506                 if (nr_pages == 0)
1507                         break;
1508                 for (i = 0; i < nr_pages; i++) {
1509                         int skip_page = 0;
1510                         struct page *page = pvec.pages[i];
1511
1512                         index = page->index;
1513                         if (index > end)
1514                                 break;
1515
1516                         if (index == size >> PAGE_CACHE_SHIFT)
1517                                 len = size & ~PAGE_CACHE_MASK;
1518                         else
1519                                 len = PAGE_CACHE_SIZE;
1520                         if (map) {
1521                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1522                                                         inode->i_blkbits);
1523                                 pblock = map->m_pblk + (cur_logical -
1524                                                         map->m_lblk);
1525                         }
1526                         index++;
1527
1528                         BUG_ON(!PageLocked(page));
1529                         BUG_ON(PageWriteback(page));
1530
1531                         bh = page_bufs = page_buffers(page);
1532                         block_start = 0;
1533                         do {
1534                                 if (map && (cur_logical >= map->m_lblk) &&
1535                                     (cur_logical <= (map->m_lblk +
1536                                                      (map->m_len - 1)))) {
1537                                         if (buffer_delay(bh)) {
1538                                                 clear_buffer_delay(bh);
1539                                                 bh->b_blocknr = pblock;
1540                                         }
1541                                         if (buffer_unwritten(bh) ||
1542                                             buffer_mapped(bh))
1543                                                 BUG_ON(bh->b_blocknr != pblock);
1544                                         if (map->m_flags & EXT4_MAP_UNINIT)
1545                                                 set_buffer_uninit(bh);
1546                                         clear_buffer_unwritten(bh);
1547                                 }
1548
1549                                 /*
1550                                  * skip page if block allocation undone and
1551                                  * block is dirty
1552                                  */
1553                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1554                                         skip_page = 1;
1555                                 bh = bh->b_this_page;
1556                                 block_start += bh->b_size;
1557                                 cur_logical++;
1558                                 pblock++;
1559                         } while (bh != page_bufs);
1560
1561                         if (skip_page) {
1562                                 unlock_page(page);
1563                                 continue;
1564                         }
1565
1566                         clear_page_dirty_for_io(page);
1567                         err = ext4_bio_write_page(&io_submit, page, len,
1568                                                   mpd->wbc);
1569                         if (!err)
1570                                 mpd->pages_written++;
1571                         /*
1572                          * In error case, we have to continue because
1573                          * remaining pages are still locked
1574                          */
1575                         if (ret == 0)
1576                                 ret = err;
1577                 }
1578                 pagevec_release(&pvec);
1579         }
1580         ext4_io_submit(&io_submit);
1581         /* Drop io_end reference we got from init */
1582         ext4_put_io_end_defer(io_submit.io_end);
1583         return ret;
1584 }
1585
1586 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1587 {
1588         int nr_pages, i;
1589         pgoff_t index, end;
1590         struct pagevec pvec;
1591         struct inode *inode = mpd->inode;
1592         struct address_space *mapping = inode->i_mapping;
1593         ext4_lblk_t start, last;
1594
1595         index = mpd->first_page;
1596         end   = mpd->next_page - 1;
1597
1598         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1599         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1600         ext4_es_remove_extent(inode, start, last - start + 1);
1601
1602         pagevec_init(&pvec, 0);
1603         while (index <= end) {
1604                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1605                 if (nr_pages == 0)
1606                         break;
1607                 for (i = 0; i < nr_pages; i++) {
1608                         struct page *page = pvec.pages[i];
1609                         if (page->index > end)
1610                                 break;
1611                         BUG_ON(!PageLocked(page));
1612                         BUG_ON(PageWriteback(page));
1613                         block_invalidatepage(page, 0);
1614                         ClearPageUptodate(page);
1615                         unlock_page(page);
1616                 }
1617                 index = pvec.pages[nr_pages - 1]->index + 1;
1618                 pagevec_release(&pvec);
1619         }
1620         return;
1621 }
1622
1623 static void ext4_print_free_blocks(struct inode *inode)
1624 {
1625         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1626         struct super_block *sb = inode->i_sb;
1627         struct ext4_inode_info *ei = EXT4_I(inode);
1628
1629         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1630                EXT4_C2B(EXT4_SB(inode->i_sb),
1631                         ext4_count_free_clusters(sb)));
1632         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1633         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1634                (long long) EXT4_C2B(EXT4_SB(sb),
1635                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1636         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1637                (long long) EXT4_C2B(EXT4_SB(sb),
1638                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1639         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1640         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1641                  ei->i_reserved_data_blocks);
1642         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1643                ei->i_reserved_meta_blocks);
1644         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1645                ei->i_allocated_meta_blocks);
1646         return;
1647 }
1648
1649 /*
1650  * mpage_da_map_and_submit - go through given space, map them
1651  *       if necessary, and then submit them for I/O
1652  *
1653  * @mpd - bh describing space
1654  *
1655  * The function skips space we know is already mapped to disk blocks.
1656  *
1657  */
1658 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1659 {
1660         int err, blks, get_blocks_flags;
1661         struct ext4_map_blocks map, *mapp = NULL;
1662         sector_t next = mpd->b_blocknr;
1663         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1664         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1665         handle_t *handle = NULL;
1666
1667         /*
1668          * If the blocks are mapped already, or we couldn't accumulate
1669          * any blocks, then proceed immediately to the submission stage.
1670          */
1671         if ((mpd->b_size == 0) ||
1672             ((mpd->b_state  & (1 << BH_Mapped)) &&
1673              !(mpd->b_state & (1 << BH_Delay)) &&
1674              !(mpd->b_state & (1 << BH_Unwritten))))
1675                 goto submit_io;
1676
1677         handle = ext4_journal_current_handle();
1678         BUG_ON(!handle);
1679
1680         /*
1681          * Call ext4_map_blocks() to allocate any delayed allocation
1682          * blocks, or to convert an uninitialized extent to be
1683          * initialized (in the case where we have written into
1684          * one or more preallocated blocks).
1685          *
1686          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1687          * indicate that we are on the delayed allocation path.  This
1688          * affects functions in many different parts of the allocation
1689          * call path.  This flag exists primarily because we don't
1690          * want to change *many* call functions, so ext4_map_blocks()
1691          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1692          * inode's allocation semaphore is taken.
1693          *
1694          * If the blocks in questions were delalloc blocks, set
1695          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1696          * variables are updated after the blocks have been allocated.
1697          */
1698         map.m_lblk = next;
1699         map.m_len = max_blocks;
1700         /*
1701          * We're in delalloc path and it is possible that we're going to
1702          * need more metadata blocks than previously reserved. However
1703          * we must not fail because we're in writeback and there is
1704          * nothing we can do about it so it might result in data loss.
1705          * So use reserved blocks to allocate metadata if possible.
1706          */
1707         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1708                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1709         if (ext4_should_dioread_nolock(mpd->inode))
1710                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1711         if (mpd->b_state & (1 << BH_Delay))
1712                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1713
1714
1715         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1716         if (blks < 0) {
1717                 struct super_block *sb = mpd->inode->i_sb;
1718
1719                 err = blks;
1720                 /*
1721                  * If get block returns EAGAIN or ENOSPC and there
1722                  * appears to be free blocks we will just let
1723                  * mpage_da_submit_io() unlock all of the pages.
1724                  */
1725                 if (err == -EAGAIN)
1726                         goto submit_io;
1727
1728                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1729                         mpd->retval = err;
1730                         goto submit_io;
1731                 }
1732
1733                 /*
1734                  * get block failure will cause us to loop in
1735                  * writepages, because a_ops->writepage won't be able
1736                  * to make progress. The page will be redirtied by
1737                  * writepage and writepages will again try to write
1738                  * the same.
1739                  */
1740                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1741                         ext4_msg(sb, KERN_CRIT,
1742                                  "delayed block allocation failed for inode %lu "
1743                                  "at logical offset %llu with max blocks %zd "
1744                                  "with error %d", mpd->inode->i_ino,
1745                                  (unsigned long long) next,
1746                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1747                         ext4_msg(sb, KERN_CRIT,
1748                                 "This should not happen!! Data will be lost");
1749                         if (err == -ENOSPC)
1750                                 ext4_print_free_blocks(mpd->inode);
1751                 }
1752                 /* invalidate all the pages */
1753                 ext4_da_block_invalidatepages(mpd);
1754
1755                 /* Mark this page range as having been completed */
1756                 mpd->io_done = 1;
1757                 return;
1758         }
1759         BUG_ON(blks == 0);
1760
1761         mapp = &map;
1762         if (map.m_flags & EXT4_MAP_NEW) {
1763                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1764                 int i;
1765
1766                 for (i = 0; i < map.m_len; i++)
1767                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1768         }
1769
1770         /*
1771          * Update on-disk size along with block allocation.
1772          */
1773         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1774         if (disksize > i_size_read(mpd->inode))
1775                 disksize = i_size_read(mpd->inode);
1776         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1777                 ext4_update_i_disksize(mpd->inode, disksize);
1778                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1779                 if (err)
1780                         ext4_error(mpd->inode->i_sb,
1781                                    "Failed to mark inode %lu dirty",
1782                                    mpd->inode->i_ino);
1783         }
1784
1785 submit_io:
1786         mpage_da_submit_io(mpd, mapp);
1787         mpd->io_done = 1;
1788 }
1789
1790 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1791                 (1 << BH_Delay) | (1 << BH_Unwritten))
1792
1793 /*
1794  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1795  *
1796  * @mpd->lbh - extent of blocks
1797  * @logical - logical number of the block in the file
1798  * @b_state - b_state of the buffer head added
1799  *
1800  * the function is used to collect contig. blocks in same state
1801  */
1802 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1803                                    unsigned long b_state)
1804 {
1805         sector_t next;
1806         int blkbits = mpd->inode->i_blkbits;
1807         int nrblocks = mpd->b_size >> blkbits;
1808
1809         /*
1810          * XXX Don't go larger than mballoc is willing to allocate
1811          * This is a stopgap solution.  We eventually need to fold
1812          * mpage_da_submit_io() into this function and then call
1813          * ext4_map_blocks() multiple times in a loop
1814          */
1815         if (nrblocks >= (8*1024*1024 >> blkbits))
1816                 goto flush_it;
1817
1818         /* check if the reserved journal credits might overflow */
1819         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1820                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1821                         /*
1822                          * With non-extent format we are limited by the journal
1823                          * credit available.  Total credit needed to insert
1824                          * nrblocks contiguous blocks is dependent on the
1825                          * nrblocks.  So limit nrblocks.
1826                          */
1827                         goto flush_it;
1828                 }
1829         }
1830         /*
1831          * First block in the extent
1832          */
1833         if (mpd->b_size == 0) {
1834                 mpd->b_blocknr = logical;
1835                 mpd->b_size = 1 << blkbits;
1836                 mpd->b_state = b_state & BH_FLAGS;
1837                 return;
1838         }
1839
1840         next = mpd->b_blocknr + nrblocks;
1841         /*
1842          * Can we merge the block to our big extent?
1843          */
1844         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1845                 mpd->b_size += 1 << blkbits;
1846                 return;
1847         }
1848
1849 flush_it:
1850         /*
1851          * We couldn't merge the block to our extent, so we
1852          * need to flush current  extent and start new one
1853          */
1854         mpage_da_map_and_submit(mpd);
1855         return;
1856 }
1857
1858 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1859 {
1860         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1861 }
1862
1863 /*
1864  * This function is grabs code from the very beginning of
1865  * ext4_map_blocks, but assumes that the caller is from delayed write
1866  * time. This function looks up the requested blocks and sets the
1867  * buffer delay bit under the protection of i_data_sem.
1868  */
1869 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1870                               struct ext4_map_blocks *map,
1871                               struct buffer_head *bh)
1872 {
1873         struct extent_status es;
1874         int retval;
1875         sector_t invalid_block = ~((sector_t) 0xffff);
1876 #ifdef ES_AGGRESSIVE_TEST
1877         struct ext4_map_blocks orig_map;
1878
1879         memcpy(&orig_map, map, sizeof(*map));
1880 #endif
1881
1882         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1883                 invalid_block = ~0;
1884
1885         map->m_flags = 0;
1886         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1887                   "logical block %lu\n", inode->i_ino, map->m_len,
1888                   (unsigned long) map->m_lblk);
1889
1890         /* Lookup extent status tree firstly */
1891         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1892
1893                 if (ext4_es_is_hole(&es)) {
1894                         retval = 0;
1895                         down_read((&EXT4_I(inode)->i_data_sem));
1896                         goto add_delayed;
1897                 }
1898
1899                 /*
1900                  * Delayed extent could be allocated by fallocate.
1901                  * So we need to check it.
1902                  */
1903                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1904                         map_bh(bh, inode->i_sb, invalid_block);
1905                         set_buffer_new(bh);
1906                         set_buffer_delay(bh);
1907                         return 0;
1908                 }
1909
1910                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1911                 retval = es.es_len - (iblock - es.es_lblk);
1912                 if (retval > map->m_len)
1913                         retval = map->m_len;
1914                 map->m_len = retval;
1915                 if (ext4_es_is_written(&es))
1916                         map->m_flags |= EXT4_MAP_MAPPED;
1917                 else if (ext4_es_is_unwritten(&es))
1918                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1919                 else
1920                         BUG_ON(1);
1921
1922 #ifdef ES_AGGRESSIVE_TEST
1923                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1924 #endif
1925                 return retval;
1926         }
1927
1928         /*
1929          * Try to see if we can get the block without requesting a new
1930          * file system block.
1931          */
1932         down_read((&EXT4_I(inode)->i_data_sem));
1933         if (ext4_has_inline_data(inode)) {
1934                 /*
1935                  * We will soon create blocks for this page, and let
1936                  * us pretend as if the blocks aren't allocated yet.
1937                  * In case of clusters, we have to handle the work
1938                  * of mapping from cluster so that the reserved space
1939                  * is calculated properly.
1940                  */
1941                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1942                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1943                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1944                 retval = 0;
1945         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1946                 retval = ext4_ext_map_blocks(NULL, inode, map,
1947                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1948         else
1949                 retval = ext4_ind_map_blocks(NULL, inode, map,
1950                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1951
1952 add_delayed:
1953         if (retval == 0) {
1954                 int ret;
1955                 /*
1956                  * XXX: __block_prepare_write() unmaps passed block,
1957                  * is it OK?
1958                  */
1959                 /*
1960                  * If the block was allocated from previously allocated cluster,
1961                  * then we don't need to reserve it again. However we still need
1962                  * to reserve metadata for every block we're going to write.
1963                  */
1964                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1965                         ret = ext4_da_reserve_space(inode, iblock);
1966                         if (ret) {
1967                                 /* not enough space to reserve */
1968                                 retval = ret;
1969                                 goto out_unlock;
1970                         }
1971                 } else {
1972                         ret = ext4_da_reserve_metadata(inode, iblock);
1973                         if (ret) {
1974                                 /* not enough space to reserve */
1975                                 retval = ret;
1976                                 goto out_unlock;
1977                         }
1978                 }
1979
1980                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1981                                             ~0, EXTENT_STATUS_DELAYED);
1982                 if (ret) {
1983                         retval = ret;
1984                         goto out_unlock;
1985                 }
1986
1987                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1988                  * and it should not appear on the bh->b_state.
1989                  */
1990                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1991
1992                 map_bh(bh, inode->i_sb, invalid_block);
1993                 set_buffer_new(bh);
1994                 set_buffer_delay(bh);
1995         } else if (retval > 0) {
1996                 int ret;
1997                 unsigned long long status;
1998
1999 #ifdef ES_AGGRESSIVE_TEST
2000                 if (retval != map->m_len) {
2001                         printk("ES len assertation failed for inode: %lu "
2002                                "retval %d != map->m_len %d "
2003                                "in %s (lookup)\n", inode->i_ino, retval,
2004                                map->m_len, __func__);
2005                 }
2006 #endif
2007
2008                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2009                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2010                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2011                                             map->m_pblk, status);
2012                 if (ret != 0)
2013                         retval = ret;
2014         }
2015
2016 out_unlock:
2017         up_read((&EXT4_I(inode)->i_data_sem));
2018
2019         return retval;
2020 }
2021
2022 /*
2023  * This is a special get_blocks_t callback which is used by
2024  * ext4_da_write_begin().  It will either return mapped block or
2025  * reserve space for a single block.
2026  *
2027  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2028  * We also have b_blocknr = -1 and b_bdev initialized properly
2029  *
2030  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2031  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2032  * initialized properly.
2033  */
2034 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2035                            struct buffer_head *bh, int create)
2036 {
2037         struct ext4_map_blocks map;
2038         int ret = 0;
2039
2040         BUG_ON(create == 0);
2041         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2042
2043         map.m_lblk = iblock;
2044         map.m_len = 1;
2045
2046         /*
2047          * first, we need to know whether the block is allocated already
2048          * preallocated blocks are unmapped but should treated
2049          * the same as allocated blocks.
2050          */
2051         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2052         if (ret <= 0)
2053                 return ret;
2054
2055         map_bh(bh, inode->i_sb, map.m_pblk);
2056         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2057
2058         if (buffer_unwritten(bh)) {
2059                 /* A delayed write to unwritten bh should be marked
2060                  * new and mapped.  Mapped ensures that we don't do
2061                  * get_block multiple times when we write to the same
2062                  * offset and new ensures that we do proper zero out
2063                  * for partial write.
2064                  */
2065                 set_buffer_new(bh);
2066                 set_buffer_mapped(bh);
2067         }
2068         return 0;
2069 }
2070
2071 static int bget_one(handle_t *handle, struct buffer_head *bh)
2072 {
2073         get_bh(bh);
2074         return 0;
2075 }
2076
2077 static int bput_one(handle_t *handle, struct buffer_head *bh)
2078 {
2079         put_bh(bh);
2080         return 0;
2081 }
2082
2083 static int __ext4_journalled_writepage(struct page *page,
2084                                        unsigned int len)
2085 {
2086         struct address_space *mapping = page->mapping;
2087         struct inode *inode = mapping->host;
2088         struct buffer_head *page_bufs = NULL;
2089         handle_t *handle = NULL;
2090         int ret = 0, err = 0;
2091         int inline_data = ext4_has_inline_data(inode);
2092         struct buffer_head *inode_bh = NULL;
2093
2094         ClearPageChecked(page);
2095
2096         if (inline_data) {
2097                 BUG_ON(page->index != 0);
2098                 BUG_ON(len > ext4_get_max_inline_size(inode));
2099                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2100                 if (inode_bh == NULL)
2101                         goto out;
2102         } else {
2103                 page_bufs = page_buffers(page);
2104                 if (!page_bufs) {
2105                         BUG();
2106                         goto out;
2107                 }
2108                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2109                                        NULL, bget_one);
2110         }
2111         /* As soon as we unlock the page, it can go away, but we have
2112          * references to buffers so we are safe */
2113         unlock_page(page);
2114
2115         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2116                                     ext4_writepage_trans_blocks(inode));
2117         if (IS_ERR(handle)) {
2118                 ret = PTR_ERR(handle);
2119                 goto out;
2120         }
2121
2122         BUG_ON(!ext4_handle_valid(handle));
2123
2124         if (inline_data) {
2125                 ret = ext4_journal_get_write_access(handle, inode_bh);
2126
2127                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2128
2129         } else {
2130                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2131                                              do_journal_get_write_access);
2132
2133                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2134                                              write_end_fn);
2135         }
2136         if (ret == 0)
2137                 ret = err;
2138         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2139         err = ext4_journal_stop(handle);
2140         if (!ret)
2141                 ret = err;
2142
2143         if (!ext4_has_inline_data(inode))
2144                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2145                                        NULL, bput_one);
2146         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2147 out:
2148         brelse(inode_bh);
2149         return ret;
2150 }
2151
2152 /*
2153  * Note that we don't need to start a transaction unless we're journaling data
2154  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2155  * need to file the inode to the transaction's list in ordered mode because if
2156  * we are writing back data added by write(), the inode is already there and if
2157  * we are writing back data modified via mmap(), no one guarantees in which
2158  * transaction the data will hit the disk. In case we are journaling data, we
2159  * cannot start transaction directly because transaction start ranks above page
2160  * lock so we have to do some magic.
2161  *
2162  * This function can get called via...
2163  *   - ext4_da_writepages after taking page lock (have journal handle)
2164  *   - journal_submit_inode_data_buffers (no journal handle)
2165  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2166  *   - grab_page_cache when doing write_begin (have journal handle)
2167  *
2168  * We don't do any block allocation in this function. If we have page with
2169  * multiple blocks we need to write those buffer_heads that are mapped. This
2170  * is important for mmaped based write. So if we do with blocksize 1K
2171  * truncate(f, 1024);
2172  * a = mmap(f, 0, 4096);
2173  * a[0] = 'a';
2174  * truncate(f, 4096);
2175  * we have in the page first buffer_head mapped via page_mkwrite call back
2176  * but other buffer_heads would be unmapped but dirty (dirty done via the
2177  * do_wp_page). So writepage should write the first block. If we modify
2178  * the mmap area beyond 1024 we will again get a page_fault and the
2179  * page_mkwrite callback will do the block allocation and mark the
2180  * buffer_heads mapped.
2181  *
2182  * We redirty the page if we have any buffer_heads that is either delay or
2183  * unwritten in the page.
2184  *
2185  * We can get recursively called as show below.
2186  *
2187  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2188  *              ext4_writepage()
2189  *
2190  * But since we don't do any block allocation we should not deadlock.
2191  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2192  */
2193 static int ext4_writepage(struct page *page,
2194                           struct writeback_control *wbc)
2195 {
2196         int ret = 0;
2197         loff_t size;
2198         unsigned int len;
2199         struct buffer_head *page_bufs = NULL;
2200         struct inode *inode = page->mapping->host;
2201         struct ext4_io_submit io_submit;
2202
2203         trace_ext4_writepage(page);
2204         size = i_size_read(inode);
2205         if (page->index == size >> PAGE_CACHE_SHIFT)
2206                 len = size & ~PAGE_CACHE_MASK;
2207         else
2208                 len = PAGE_CACHE_SIZE;
2209
2210         page_bufs = page_buffers(page);
2211         /*
2212          * We cannot do block allocation or other extent handling in this
2213          * function. If there are buffers needing that, we have to redirty
2214          * the page. But we may reach here when we do a journal commit via
2215          * journal_submit_inode_data_buffers() and in that case we must write
2216          * allocated buffers to achieve data=ordered mode guarantees.
2217          */
2218         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2219                                    ext4_bh_delay_or_unwritten)) {
2220                 redirty_page_for_writepage(wbc, page);
2221                 if (current->flags & PF_MEMALLOC) {
2222                         /*
2223                          * For memory cleaning there's no point in writing only
2224                          * some buffers. So just bail out. Warn if we came here
2225                          * from direct reclaim.
2226                          */
2227                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2228                                                         == PF_MEMALLOC);
2229                         unlock_page(page);
2230                         return 0;
2231                 }
2232         }
2233
2234         if (PageChecked(page) && ext4_should_journal_data(inode))
2235                 /*
2236                  * It's mmapped pagecache.  Add buffers and journal it.  There
2237                  * doesn't seem much point in redirtying the page here.
2238                  */
2239                 return __ext4_journalled_writepage(page, len);
2240
2241         ext4_io_submit_init(&io_submit, wbc);
2242         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2243         if (!io_submit.io_end) {
2244                 redirty_page_for_writepage(wbc, page);
2245                 return -ENOMEM;
2246         }
2247         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2248         ext4_io_submit(&io_submit);
2249         /* Drop io_end reference we got from init */
2250         ext4_put_io_end_defer(io_submit.io_end);
2251         return ret;
2252 }
2253
2254 /*
2255  * This is called via ext4_da_writepages() to
2256  * calculate the total number of credits to reserve to fit
2257  * a single extent allocation into a single transaction,
2258  * ext4_da_writpeages() will loop calling this before
2259  * the block allocation.
2260  */
2261
2262 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2263 {
2264         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2265
2266         /*
2267          * With non-extent format the journal credit needed to
2268          * insert nrblocks contiguous block is dependent on
2269          * number of contiguous block. So we will limit
2270          * number of contiguous block to a sane value
2271          */
2272         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2273             (max_blocks > EXT4_MAX_TRANS_DATA))
2274                 max_blocks = EXT4_MAX_TRANS_DATA;
2275
2276         return ext4_chunk_trans_blocks(inode, max_blocks);
2277 }
2278
2279 /*
2280  * write_cache_pages_da - walk the list of dirty pages of the given
2281  * address space and accumulate pages that need writing, and call
2282  * mpage_da_map_and_submit to map a single contiguous memory region
2283  * and then write them.
2284  */
2285 static int write_cache_pages_da(handle_t *handle,
2286                                 struct address_space *mapping,
2287                                 struct writeback_control *wbc,
2288                                 struct mpage_da_data *mpd,
2289                                 pgoff_t *done_index)
2290 {
2291         struct buffer_head      *bh, *head;
2292         struct inode            *inode = mapping->host;
2293         struct pagevec          pvec;
2294         unsigned int            nr_pages;
2295         sector_t                logical;
2296         pgoff_t                 index, end;
2297         long                    nr_to_write = wbc->nr_to_write;
2298         int                     i, tag, ret = 0;
2299
2300         memset(mpd, 0, sizeof(struct mpage_da_data));
2301         mpd->wbc = wbc;
2302         mpd->inode = inode;
2303         pagevec_init(&pvec, 0);
2304         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2305         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2306
2307         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2308                 tag = PAGECACHE_TAG_TOWRITE;
2309         else
2310                 tag = PAGECACHE_TAG_DIRTY;
2311
2312         *done_index = index;
2313         while (index <= end) {
2314                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2315                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2316                 if (nr_pages == 0)
2317                         return 0;
2318
2319                 for (i = 0; i < nr_pages; i++) {
2320                         struct page *page = pvec.pages[i];
2321
2322                         /*
2323                          * At this point, the page may be truncated or
2324                          * invalidated (changing page->mapping to NULL), or
2325                          * even swizzled back from swapper_space to tmpfs file
2326                          * mapping. However, page->index will not change
2327                          * because we have a reference on the page.
2328                          */
2329                         if (page->index > end)
2330                                 goto out;
2331
2332                         *done_index = page->index + 1;
2333
2334                         /*
2335                          * If we can't merge this page, and we have
2336                          * accumulated an contiguous region, write it
2337                          */
2338                         if ((mpd->next_page != page->index) &&
2339                             (mpd->next_page != mpd->first_page)) {
2340                                 mpage_da_map_and_submit(mpd);
2341                                 goto ret_extent_tail;
2342                         }
2343
2344                         lock_page(page);
2345
2346                         /*
2347                          * If the page is no longer dirty, or its
2348                          * mapping no longer corresponds to inode we
2349                          * are writing (which means it has been
2350                          * truncated or invalidated), or the page is
2351                          * already under writeback and we are not
2352                          * doing a data integrity writeback, skip the page
2353                          */
2354                         if (!PageDirty(page) ||
2355                             (PageWriteback(page) &&
2356                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2357                             unlikely(page->mapping != mapping)) {
2358                                 unlock_page(page);
2359                                 continue;
2360                         }
2361
2362                         wait_on_page_writeback(page);
2363                         BUG_ON(PageWriteback(page));
2364
2365                         /*
2366                          * If we have inline data and arrive here, it means that
2367                          * we will soon create the block for the 1st page, so
2368                          * we'd better clear the inline data here.
2369                          */
2370                         if (ext4_has_inline_data(inode)) {
2371                                 BUG_ON(ext4_test_inode_state(inode,
2372                                                 EXT4_STATE_MAY_INLINE_DATA));
2373                                 ext4_destroy_inline_data(handle, inode);
2374                         }
2375
2376                         if (mpd->next_page != page->index)
2377                                 mpd->first_page = page->index;
2378                         mpd->next_page = page->index + 1;
2379                         logical = (sector_t) page->index <<
2380                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2381
2382                         /* Add all dirty buffers to mpd */
2383                         head = page_buffers(page);
2384                         bh = head;
2385                         do {
2386                                 BUG_ON(buffer_locked(bh));
2387                                 /*
2388                                  * We need to try to allocate unmapped blocks
2389                                  * in the same page.  Otherwise we won't make
2390                                  * progress with the page in ext4_writepage
2391                                  */
2392                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2393                                         mpage_add_bh_to_extent(mpd, logical,
2394                                                                bh->b_state);
2395                                         if (mpd->io_done)
2396                                                 goto ret_extent_tail;
2397                                 } else if (buffer_dirty(bh) &&
2398                                            buffer_mapped(bh)) {
2399                                         /*
2400                                          * mapped dirty buffer. We need to
2401                                          * update the b_state because we look
2402                                          * at b_state in mpage_da_map_blocks.
2403                                          * We don't update b_size because if we
2404                                          * find an unmapped buffer_head later
2405                                          * we need to use the b_state flag of
2406                                          * that buffer_head.
2407                                          */
2408                                         if (mpd->b_size == 0)
2409                                                 mpd->b_state =
2410                                                         bh->b_state & BH_FLAGS;
2411                                 }
2412                                 logical++;
2413                         } while ((bh = bh->b_this_page) != head);
2414
2415                         if (nr_to_write > 0) {
2416                                 nr_to_write--;
2417                                 if (nr_to_write == 0 &&
2418                                     wbc->sync_mode == WB_SYNC_NONE)
2419                                         /*
2420                                          * We stop writing back only if we are
2421                                          * not doing integrity sync. In case of
2422                                          * integrity sync we have to keep going
2423                                          * because someone may be concurrently
2424                                          * dirtying pages, and we might have
2425                                          * synced a lot of newly appeared dirty
2426                                          * pages, but have not synced all of the
2427                                          * old dirty pages.
2428                                          */
2429                                         goto out;
2430                         }
2431                 }
2432                 pagevec_release(&pvec);
2433                 cond_resched();
2434         }
2435         return 0;
2436 ret_extent_tail:
2437         ret = MPAGE_DA_EXTENT_TAIL;
2438 out:
2439         pagevec_release(&pvec);
2440         cond_resched();
2441         return ret;
2442 }
2443
2444
2445 static int ext4_da_writepages(struct address_space *mapping,
2446                               struct writeback_control *wbc)
2447 {
2448         pgoff_t index;
2449         int range_whole = 0;
2450         handle_t *handle = NULL;
2451         struct mpage_da_data mpd;
2452         struct inode *inode = mapping->host;
2453         int pages_written = 0;
2454         unsigned int max_pages;
2455         int range_cyclic, cycled = 1, io_done = 0;
2456         int needed_blocks, ret = 0;
2457         long desired_nr_to_write, nr_to_writebump = 0;
2458         loff_t range_start = wbc->range_start;
2459         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2460         pgoff_t done_index = 0;
2461         pgoff_t end;
2462         struct blk_plug plug;
2463
2464         trace_ext4_da_writepages(inode, wbc);
2465
2466         /*
2467          * No pages to write? This is mainly a kludge to avoid starting
2468          * a transaction for special inodes like journal inode on last iput()
2469          * because that could violate lock ordering on umount
2470          */
2471         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2472                 return 0;
2473
2474         /*
2475          * If the filesystem has aborted, it is read-only, so return
2476          * right away instead of dumping stack traces later on that
2477          * will obscure the real source of the problem.  We test
2478          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2479          * the latter could be true if the filesystem is mounted
2480          * read-only, and in that case, ext4_da_writepages should
2481          * *never* be called, so if that ever happens, we would want
2482          * the stack trace.
2483          */
2484         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2485                 return -EROFS;
2486
2487         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2488                 range_whole = 1;
2489
2490         range_cyclic = wbc->range_cyclic;
2491         if (wbc->range_cyclic) {
2492                 index = mapping->writeback_index;
2493                 if (index)
2494                         cycled = 0;
2495                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2496                 wbc->range_end  = LLONG_MAX;
2497                 wbc->range_cyclic = 0;
2498                 end = -1;
2499         } else {
2500                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2501                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2502         }
2503
2504         /*
2505          * This works around two forms of stupidity.  The first is in
2506          * the writeback code, which caps the maximum number of pages
2507          * written to be 1024 pages.  This is wrong on multiple
2508          * levels; different architectues have a different page size,
2509          * which changes the maximum amount of data which gets
2510          * written.  Secondly, 4 megabytes is way too small.  XFS
2511          * forces this value to be 16 megabytes by multiplying
2512          * nr_to_write parameter by four, and then relies on its
2513          * allocator to allocate larger extents to make them
2514          * contiguous.  Unfortunately this brings us to the second
2515          * stupidity, which is that ext4's mballoc code only allocates
2516          * at most 2048 blocks.  So we force contiguous writes up to
2517          * the number of dirty blocks in the inode, or
2518          * sbi->max_writeback_mb_bump whichever is smaller.
2519          */
2520         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2521         if (!range_cyclic && range_whole) {
2522                 if (wbc->nr_to_write == LONG_MAX)
2523                         desired_nr_to_write = wbc->nr_to_write;
2524                 else
2525                         desired_nr_to_write = wbc->nr_to_write * 8;
2526         } else
2527                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2528                                                            max_pages);
2529         if (desired_nr_to_write > max_pages)
2530                 desired_nr_to_write = max_pages;
2531
2532         if (wbc->nr_to_write < desired_nr_to_write) {
2533                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2534                 wbc->nr_to_write = desired_nr_to_write;
2535         }
2536
2537 retry:
2538         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2539                 tag_pages_for_writeback(mapping, index, end);
2540
2541         blk_start_plug(&plug);
2542         while (!ret && wbc->nr_to_write > 0) {
2543
2544                 /*
2545                  * we  insert one extent at a time. So we need
2546                  * credit needed for single extent allocation.
2547                  * journalled mode is currently not supported
2548                  * by delalloc
2549                  */
2550                 BUG_ON(ext4_should_journal_data(inode));
2551                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2552
2553                 /* start a new transaction*/
2554                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2555                                             needed_blocks);
2556                 if (IS_ERR(handle)) {
2557                         ret = PTR_ERR(handle);
2558                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2559                                "%ld pages, ino %lu; err %d", __func__,
2560                                 wbc->nr_to_write, inode->i_ino, ret);
2561                         blk_finish_plug(&plug);
2562                         goto out_writepages;
2563                 }
2564
2565                 /*
2566                  * Now call write_cache_pages_da() to find the next
2567                  * contiguous region of logical blocks that need
2568                  * blocks to be allocated by ext4 and submit them.
2569                  */
2570                 ret = write_cache_pages_da(handle, mapping,
2571                                            wbc, &mpd, &done_index);
2572                 /*
2573                  * If we have a contiguous extent of pages and we
2574                  * haven't done the I/O yet, map the blocks and submit
2575                  * them for I/O.
2576                  */
2577                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2578                         mpage_da_map_and_submit(&mpd);
2579                         ret = MPAGE_DA_EXTENT_TAIL;
2580                 }
2581                 trace_ext4_da_write_pages(inode, &mpd);
2582                 wbc->nr_to_write -= mpd.pages_written;
2583
2584                 ext4_journal_stop(handle);
2585
2586                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2587                         /* commit the transaction which would
2588                          * free blocks released in the transaction
2589                          * and try again
2590                          */
2591                         jbd2_journal_force_commit_nested(sbi->s_journal);
2592                         ret = 0;
2593                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2594                         /*
2595                          * Got one extent now try with rest of the pages.
2596                          * If mpd.retval is set -EIO, journal is aborted.
2597                          * So we don't need to write any more.
2598                          */
2599                         pages_written += mpd.pages_written;
2600                         ret = mpd.retval;
2601                         io_done = 1;
2602                 } else if (wbc->nr_to_write)
2603                         /*
2604                          * There is no more writeout needed
2605                          * or we requested for a noblocking writeout
2606                          * and we found the device congested
2607                          */
2608                         break;
2609         }
2610         blk_finish_plug(&plug);
2611         if (!io_done && !cycled) {
2612                 cycled = 1;
2613                 index = 0;
2614                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2615                 wbc->range_end  = mapping->writeback_index - 1;
2616                 goto retry;
2617         }
2618
2619         /* Update index */
2620         wbc->range_cyclic = range_cyclic;
2621         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2622                 /*
2623                  * set the writeback_index so that range_cyclic
2624                  * mode will write it back later
2625                  */
2626                 mapping->writeback_index = done_index;
2627
2628 out_writepages:
2629         wbc->nr_to_write -= nr_to_writebump;
2630         wbc->range_start = range_start;
2631         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2632         return ret;
2633 }
2634
2635 static int ext4_nonda_switch(struct super_block *sb)
2636 {
2637         s64 free_clusters, dirty_clusters;
2638         struct ext4_sb_info *sbi = EXT4_SB(sb);
2639
2640         /*
2641          * switch to non delalloc mode if we are running low
2642          * on free block. The free block accounting via percpu
2643          * counters can get slightly wrong with percpu_counter_batch getting
2644          * accumulated on each CPU without updating global counters
2645          * Delalloc need an accurate free block accounting. So switch
2646          * to non delalloc when we are near to error range.
2647          */
2648         free_clusters =
2649                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2650         dirty_clusters =
2651                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2652         /*
2653          * Start pushing delalloc when 1/2 of free blocks are dirty.
2654          */
2655         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2656                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2657
2658         if (2 * free_clusters < 3 * dirty_clusters ||
2659             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2660                 /*
2661                  * free block count is less than 150% of dirty blocks
2662                  * or free blocks is less than watermark
2663                  */
2664                 return 1;
2665         }
2666         return 0;
2667 }
2668
2669 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2670                                loff_t pos, unsigned len, unsigned flags,
2671                                struct page **pagep, void **fsdata)
2672 {
2673         int ret, retries = 0;
2674         struct page *page;
2675         pgoff_t index;
2676         struct inode *inode = mapping->host;
2677         handle_t *handle;
2678
2679         index = pos >> PAGE_CACHE_SHIFT;
2680
2681         if (ext4_nonda_switch(inode->i_sb)) {
2682                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2683                 return ext4_write_begin(file, mapping, pos,
2684                                         len, flags, pagep, fsdata);
2685         }
2686         *fsdata = (void *)0;
2687         trace_ext4_da_write_begin(inode, pos, len, flags);
2688
2689         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2690                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2691                                                       pos, len, flags,
2692                                                       pagep, fsdata);
2693                 if (ret < 0)
2694                         return ret;
2695                 if (ret == 1)
2696                         return 0;
2697         }
2698
2699         /*
2700          * grab_cache_page_write_begin() can take a long time if the
2701          * system is thrashing due to memory pressure, or if the page
2702          * is being written back.  So grab it first before we start
2703          * the transaction handle.  This also allows us to allocate
2704          * the page (if needed) without using GFP_NOFS.
2705          */
2706 retry_grab:
2707         page = grab_cache_page_write_begin(mapping, index, flags);
2708         if (!page)
2709                 return -ENOMEM;
2710         unlock_page(page);
2711
2712         /*
2713          * With delayed allocation, we don't log the i_disksize update
2714          * if there is delayed block allocation. But we still need
2715          * to journalling the i_disksize update if writes to the end
2716          * of file which has an already mapped buffer.
2717          */
2718 retry_journal:
2719         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2720         if (IS_ERR(handle)) {
2721                 page_cache_release(page);
2722                 return PTR_ERR(handle);
2723         }
2724
2725         lock_page(page);
2726         if (page->mapping != mapping) {
2727                 /* The page got truncated from under us */
2728                 unlock_page(page);
2729                 page_cache_release(page);
2730                 ext4_journal_stop(handle);
2731                 goto retry_grab;
2732         }
2733         /* In case writeback began while the page was unlocked */
2734         wait_on_page_writeback(page);
2735
2736         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2737         if (ret < 0) {
2738                 unlock_page(page);
2739                 ext4_journal_stop(handle);
2740                 /*
2741                  * block_write_begin may have instantiated a few blocks
2742                  * outside i_size.  Trim these off again. Don't need
2743                  * i_size_read because we hold i_mutex.
2744                  */
2745                 if (pos + len > inode->i_size)
2746                         ext4_truncate_failed_write(inode);
2747
2748                 if (ret == -ENOSPC &&
2749                     ext4_should_retry_alloc(inode->i_sb, &retries))
2750                         goto retry_journal;
2751
2752                 page_cache_release(page);
2753                 return ret;
2754         }
2755
2756         *pagep = page;
2757         return ret;
2758 }
2759
2760 /*
2761  * Check if we should update i_disksize
2762  * when write to the end of file but not require block allocation
2763  */
2764 static int ext4_da_should_update_i_disksize(struct page *page,
2765                                             unsigned long offset)
2766 {
2767         struct buffer_head *bh;
2768         struct inode *inode = page->mapping->host;
2769         unsigned int idx;
2770         int i;
2771
2772         bh = page_buffers(page);
2773         idx = offset >> inode->i_blkbits;
2774
2775         for (i = 0; i < idx; i++)
2776                 bh = bh->b_this_page;
2777
2778         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2779                 return 0;
2780         return 1;
2781 }
2782
2783 static int ext4_da_write_end(struct file *file,
2784                              struct address_space *mapping,
2785                              loff_t pos, unsigned len, unsigned copied,
2786                              struct page *page, void *fsdata)
2787 {
2788         struct inode *inode = mapping->host;
2789         int ret = 0, ret2;
2790         handle_t *handle = ext4_journal_current_handle();
2791         loff_t new_i_size;
2792         unsigned long start, end;
2793         int write_mode = (int)(unsigned long)fsdata;
2794
2795         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2796                 return ext4_write_end(file, mapping, pos,
2797                                       len, copied, page, fsdata);
2798
2799         trace_ext4_da_write_end(inode, pos, len, copied);
2800         start = pos & (PAGE_CACHE_SIZE - 1);
2801         end = start + copied - 1;
2802
2803         /*
2804          * generic_write_end() will run mark_inode_dirty() if i_size
2805          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2806          * into that.
2807          */
2808         new_i_size = pos + copied;
2809         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2810                 if (ext4_has_inline_data(inode) ||
2811                     ext4_da_should_update_i_disksize(page, end)) {
2812                         down_write(&EXT4_I(inode)->i_data_sem);
2813                         if (new_i_size > EXT4_I(inode)->i_disksize)
2814                                 EXT4_I(inode)->i_disksize = new_i_size;
2815                         up_write(&EXT4_I(inode)->i_data_sem);
2816                         /* We need to mark inode dirty even if
2817                          * new_i_size is less that inode->i_size
2818                          * bu greater than i_disksize.(hint delalloc)
2819                          */
2820                         ext4_mark_inode_dirty(handle, inode);
2821                 }
2822         }
2823
2824         if (write_mode != CONVERT_INLINE_DATA &&
2825             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2826             ext4_has_inline_data(inode))
2827                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2828                                                      page);
2829         else
2830                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2831                                                         page, fsdata);
2832
2833         copied = ret2;
2834         if (ret2 < 0)
2835                 ret = ret2;
2836         ret2 = ext4_journal_stop(handle);
2837         if (!ret)
2838                 ret = ret2;
2839
2840         return ret ? ret : copied;
2841 }
2842
2843 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2844 {
2845         /*
2846          * Drop reserved blocks
2847          */
2848         BUG_ON(!PageLocked(page));
2849         if (!page_has_buffers(page))
2850                 goto out;
2851
2852         ext4_da_page_release_reservation(page, offset);
2853
2854 out:
2855         ext4_invalidatepage(page, offset);
2856
2857         return;
2858 }
2859
2860 /*
2861  * Force all delayed allocation blocks to be allocated for a given inode.
2862  */
2863 int ext4_alloc_da_blocks(struct inode *inode)
2864 {
2865         trace_ext4_alloc_da_blocks(inode);
2866
2867         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2868             !EXT4_I(inode)->i_reserved_meta_blocks)
2869                 return 0;
2870
2871         /*
2872          * We do something simple for now.  The filemap_flush() will
2873          * also start triggering a write of the data blocks, which is
2874          * not strictly speaking necessary (and for users of
2875          * laptop_mode, not even desirable).  However, to do otherwise
2876          * would require replicating code paths in:
2877          *
2878          * ext4_da_writepages() ->
2879          *    write_cache_pages() ---> (via passed in callback function)
2880          *        __mpage_da_writepage() -->
2881          *           mpage_add_bh_to_extent()
2882          *           mpage_da_map_blocks()
2883          *
2884          * The problem is that write_cache_pages(), located in
2885          * mm/page-writeback.c, marks pages clean in preparation for
2886          * doing I/O, which is not desirable if we're not planning on
2887          * doing I/O at all.
2888          *
2889          * We could call write_cache_pages(), and then redirty all of
2890          * the pages by calling redirty_page_for_writepage() but that
2891          * would be ugly in the extreme.  So instead we would need to
2892          * replicate parts of the code in the above functions,
2893          * simplifying them because we wouldn't actually intend to
2894          * write out the pages, but rather only collect contiguous
2895          * logical block extents, call the multi-block allocator, and
2896          * then update the buffer heads with the block allocations.
2897          *
2898          * For now, though, we'll cheat by calling filemap_flush(),
2899          * which will map the blocks, and start the I/O, but not
2900          * actually wait for the I/O to complete.
2901          */
2902         return filemap_flush(inode->i_mapping);
2903 }
2904
2905 /*
2906  * bmap() is special.  It gets used by applications such as lilo and by
2907  * the swapper to find the on-disk block of a specific piece of data.
2908  *
2909  * Naturally, this is dangerous if the block concerned is still in the
2910  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2911  * filesystem and enables swap, then they may get a nasty shock when the
2912  * data getting swapped to that swapfile suddenly gets overwritten by
2913  * the original zero's written out previously to the journal and
2914  * awaiting writeback in the kernel's buffer cache.
2915  *
2916  * So, if we see any bmap calls here on a modified, data-journaled file,
2917  * take extra steps to flush any blocks which might be in the cache.
2918  */
2919 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2920 {
2921         struct inode *inode = mapping->host;
2922         journal_t *journal;
2923         int err;
2924
2925         /*
2926          * We can get here for an inline file via the FIBMAP ioctl
2927          */
2928         if (ext4_has_inline_data(inode))
2929                 return 0;
2930
2931         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2932                         test_opt(inode->i_sb, DELALLOC)) {
2933                 /*
2934                  * With delalloc we want to sync the file
2935                  * so that we can make sure we allocate
2936                  * blocks for file
2937                  */
2938                 filemap_write_and_wait(mapping);
2939         }
2940
2941         if (EXT4_JOURNAL(inode) &&
2942             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2943                 /*
2944                  * This is a REALLY heavyweight approach, but the use of
2945                  * bmap on dirty files is expected to be extremely rare:
2946                  * only if we run lilo or swapon on a freshly made file
2947                  * do we expect this to happen.
2948                  *
2949                  * (bmap requires CAP_SYS_RAWIO so this does not
2950                  * represent an unprivileged user DOS attack --- we'd be
2951                  * in trouble if mortal users could trigger this path at
2952                  * will.)
2953                  *
2954                  * NB. EXT4_STATE_JDATA is not set on files other than
2955                  * regular files.  If somebody wants to bmap a directory
2956                  * or symlink and gets confused because the buffer
2957                  * hasn't yet been flushed to disk, they deserve
2958                  * everything they get.
2959                  */
2960
2961                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2962                 journal = EXT4_JOURNAL(inode);
2963                 jbd2_journal_lock_updates(journal);
2964                 err = jbd2_journal_flush(journal);
2965                 jbd2_journal_unlock_updates(journal);
2966
2967                 if (err)
2968                         return 0;
2969         }
2970
2971         return generic_block_bmap(mapping, block, ext4_get_block);
2972 }
2973
2974 static int ext4_readpage(struct file *file, struct page *page)
2975 {
2976         int ret = -EAGAIN;
2977         struct inode *inode = page->mapping->host;
2978
2979         trace_ext4_readpage(page);
2980
2981         if (ext4_has_inline_data(inode))
2982                 ret = ext4_readpage_inline(inode, page);
2983
2984         if (ret == -EAGAIN)
2985                 return mpage_readpage(page, ext4_get_block);
2986
2987         return ret;
2988 }
2989
2990 static int
2991 ext4_readpages(struct file *file, struct address_space *mapping,
2992                 struct list_head *pages, unsigned nr_pages)
2993 {
2994         struct inode *inode = mapping->host;
2995
2996         /* If the file has inline data, no need to do readpages. */
2997         if (ext4_has_inline_data(inode))
2998                 return 0;
2999
3000         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3001 }
3002
3003 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3004 {
3005         trace_ext4_invalidatepage(page, offset);
3006
3007         /* No journalling happens on data buffers when this function is used */
3008         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3009
3010         block_invalidatepage(page, offset);
3011 }
3012
3013 static int __ext4_journalled_invalidatepage(struct page *page,
3014                                             unsigned long offset)
3015 {
3016         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3017
3018         trace_ext4_journalled_invalidatepage(page, offset);
3019
3020         /*
3021          * If it's a full truncate we just forget about the pending dirtying
3022          */
3023         if (offset == 0)
3024                 ClearPageChecked(page);
3025
3026         return jbd2_journal_invalidatepage(journal, page, offset);
3027 }
3028
3029 /* Wrapper for aops... */
3030 static void ext4_journalled_invalidatepage(struct page *page,
3031                                            unsigned long offset)
3032 {
3033         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3034 }
3035
3036 static int ext4_releasepage(struct page *page, gfp_t wait)
3037 {
3038         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3039
3040         trace_ext4_releasepage(page);
3041
3042         /* Page has dirty journalled data -> cannot release */
3043         if (PageChecked(page))
3044                 return 0;
3045         if (journal)
3046                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3047         else
3048                 return try_to_free_buffers(page);
3049 }
3050
3051 /*
3052  * ext4_get_block used when preparing for a DIO write or buffer write.
3053  * We allocate an uinitialized extent if blocks haven't been allocated.
3054  * The extent will be converted to initialized after the IO is complete.
3055  */
3056 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3057                    struct buffer_head *bh_result, int create)
3058 {
3059         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3060                    inode->i_ino, create);
3061         return _ext4_get_block(inode, iblock, bh_result,
3062                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3063 }
3064
3065 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3066                    struct buffer_head *bh_result, int create)
3067 {
3068         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3069                    inode->i_ino, create);
3070         return _ext4_get_block(inode, iblock, bh_result,
3071                                EXT4_GET_BLOCKS_NO_LOCK);
3072 }
3073
3074 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3075                             ssize_t size, void *private, int ret,
3076                             bool is_async)
3077 {
3078         struct inode *inode = file_inode(iocb->ki_filp);
3079         ext4_io_end_t *io_end = iocb->private;
3080
3081         /* if not async direct IO just return */
3082         if (!io_end) {
3083                 inode_dio_done(inode);
3084                 if (is_async)
3085                         aio_complete(iocb, ret, 0);
3086                 return;
3087         }
3088
3089         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3090                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3091                   iocb->private, io_end->inode->i_ino, iocb, offset,
3092                   size);
3093
3094         iocb->private = NULL;
3095         io_end->offset = offset;
3096         io_end->size = size;
3097         if (is_async) {
3098                 io_end->iocb = iocb;
3099                 io_end->result = ret;
3100         }
3101         ext4_put_io_end_defer(io_end);
3102 }
3103
3104 /*
3105  * For ext4 extent files, ext4 will do direct-io write to holes,
3106  * preallocated extents, and those write extend the file, no need to
3107  * fall back to buffered IO.
3108  *
3109  * For holes, we fallocate those blocks, mark them as uninitialized
3110  * If those blocks were preallocated, we mark sure they are split, but
3111  * still keep the range to write as uninitialized.
3112  *
3113  * The unwritten extents will be converted to written when DIO is completed.
3114  * For async direct IO, since the IO may still pending when return, we
3115  * set up an end_io call back function, which will do the conversion
3116  * when async direct IO completed.
3117  *
3118  * If the O_DIRECT write will extend the file then add this inode to the
3119  * orphan list.  So recovery will truncate it back to the original size
3120  * if the machine crashes during the write.
3121  *
3122  */
3123 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3124                               const struct iovec *iov, loff_t offset,
3125                               unsigned long nr_segs)
3126 {
3127         struct file *file = iocb->ki_filp;
3128         struct inode *inode = file->f_mapping->host;
3129         ssize_t ret;
3130         size_t count = iov_length(iov, nr_segs);
3131         int overwrite = 0;
3132         get_block_t *get_block_func = NULL;
3133         int dio_flags = 0;
3134         loff_t final_size = offset + count;
3135         ext4_io_end_t *io_end = NULL;
3136
3137         /* Use the old path for reads and writes beyond i_size. */
3138         if (rw != WRITE || final_size > inode->i_size)
3139                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3140
3141         BUG_ON(iocb->private == NULL);
3142
3143         /* If we do a overwrite dio, i_mutex locking can be released */
3144         overwrite = *((int *)iocb->private);
3145
3146         if (overwrite) {
3147                 atomic_inc(&inode->i_dio_count);
3148                 down_read(&EXT4_I(inode)->i_data_sem);
3149                 mutex_unlock(&inode->i_mutex);
3150         }
3151
3152         /*
3153          * We could direct write to holes and fallocate.
3154          *
3155          * Allocated blocks to fill the hole are marked as
3156          * uninitialized to prevent parallel buffered read to expose
3157          * the stale data before DIO complete the data IO.
3158          *
3159          * As to previously fallocated extents, ext4 get_block will
3160          * just simply mark the buffer mapped but still keep the
3161          * extents uninitialized.
3162          *
3163          * For non AIO case, we will convert those unwritten extents
3164          * to written after return back from blockdev_direct_IO.
3165          *
3166          * For async DIO, the conversion needs to be deferred when the
3167          * IO is completed. The ext4 end_io callback function will be
3168          * called to take care of the conversion work.  Here for async
3169          * case, we allocate an io_end structure to hook to the iocb.
3170          */
3171         iocb->private = NULL;
3172         ext4_inode_aio_set(inode, NULL);
3173         if (!is_sync_kiocb(iocb)) {
3174                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3175                 if (!io_end) {
3176                         ret = -ENOMEM;
3177                         goto retake_lock;
3178                 }
3179                 io_end->flag |= EXT4_IO_END_DIRECT;
3180                 /*
3181                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3182                  */
3183                 iocb->private = ext4_get_io_end(io_end);
3184                 /*
3185                  * we save the io structure for current async direct
3186                  * IO, so that later ext4_map_blocks() could flag the
3187                  * io structure whether there is a unwritten extents
3188                  * needs to be converted when IO is completed.
3189                  */
3190                 ext4_inode_aio_set(inode, io_end);
3191         }
3192
3193         if (overwrite) {
3194                 get_block_func = ext4_get_block_write_nolock;
3195         } else {
3196                 get_block_func = ext4_get_block_write;
3197                 dio_flags = DIO_LOCKING;
3198         }
3199         ret = __blockdev_direct_IO(rw, iocb, inode,
3200                                    inode->i_sb->s_bdev, iov,
3201                                    offset, nr_segs,
3202                                    get_block_func,
3203                                    ext4_end_io_dio,
3204                                    NULL,
3205                                    dio_flags);
3206
3207         /*
3208          * Put our reference to io_end. This can free the io_end structure e.g.
3209          * in sync IO case or in case of error. It can even perform extent
3210          * conversion if all bios we submitted finished before we got here.
3211          * Note that in that case iocb->private can be already set to NULL
3212          * here.
3213          */
3214         if (io_end) {
3215                 ext4_inode_aio_set(inode, NULL);
3216                 ext4_put_io_end(io_end);
3217                 /*
3218                  * In case of error or no write ext4_end_io_dio() was not
3219                  * called so we have to put iocb's reference.
3220                  */
3221                 if (ret <= 0 && ret != -EIOCBQUEUED) {
3222                         WARN_ON(iocb->private != io_end);
3223                         ext4_put_io_end(io_end);
3224                         iocb->private = NULL;
3225                 }
3226         }
3227         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3228                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3229                 int err;
3230                 /*
3231                  * for non AIO case, since the IO is already
3232                  * completed, we could do the conversion right here
3233                  */
3234                 err = ext4_convert_unwritten_extents(inode,
3235                                                      offset, ret);
3236                 if (err < 0)
3237                         ret = err;
3238                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3239         }
3240
3241 retake_lock:
3242         /* take i_mutex locking again if we do a ovewrite dio */
3243         if (overwrite) {
3244                 inode_dio_done(inode);
3245                 up_read(&EXT4_I(inode)->i_data_sem);
3246                 mutex_lock(&inode->i_mutex);
3247         }
3248
3249         return ret;
3250 }
3251
3252 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3253                               const struct iovec *iov, loff_t offset,
3254                               unsigned long nr_segs)
3255 {
3256         struct file *file = iocb->ki_filp;
3257         struct inode *inode = file->f_mapping->host;
3258         ssize_t ret;
3259
3260         /*
3261          * If we are doing data journalling we don't support O_DIRECT
3262          */
3263         if (ext4_should_journal_data(inode))
3264                 return 0;
3265
3266         /* Let buffer I/O handle the inline data case. */
3267         if (ext4_has_inline_data(inode))
3268                 return 0;
3269
3270         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3271         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3272                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3273         else
3274                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3275         trace_ext4_direct_IO_exit(inode, offset,
3276                                 iov_length(iov, nr_segs), rw, ret);
3277         return ret;
3278 }
3279
3280 /*
3281  * Pages can be marked dirty completely asynchronously from ext4's journalling
3282  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3283  * much here because ->set_page_dirty is called under VFS locks.  The page is
3284  * not necessarily locked.
3285  *
3286  * We cannot just dirty the page and leave attached buffers clean, because the
3287  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3288  * or jbddirty because all the journalling code will explode.
3289  *
3290  * So what we do is to mark the page "pending dirty" and next time writepage
3291  * is called, propagate that into the buffers appropriately.
3292  */
3293 static int ext4_journalled_set_page_dirty(struct page *page)
3294 {
3295         SetPageChecked(page);
3296         return __set_page_dirty_nobuffers(page);
3297 }
3298
3299 static const struct address_space_operations ext4_aops = {
3300         .readpage               = ext4_readpage,
3301         .readpages              = ext4_readpages,
3302         .writepage              = ext4_writepage,
3303         .write_begin            = ext4_write_begin,
3304         .write_end              = ext4_write_end,
3305         .bmap                   = ext4_bmap,
3306         .invalidatepage         = ext4_invalidatepage,
3307         .releasepage            = ext4_releasepage,
3308         .direct_IO              = ext4_direct_IO,
3309         .migratepage            = buffer_migrate_page,
3310         .is_partially_uptodate  = block_is_partially_uptodate,
3311         .error_remove_page      = generic_error_remove_page,
3312 };
3313
3314 static const struct address_space_operations ext4_journalled_aops = {
3315         .readpage               = ext4_readpage,
3316         .readpages              = ext4_readpages,
3317         .writepage              = ext4_writepage,
3318         .write_begin            = ext4_write_begin,
3319         .write_end              = ext4_journalled_write_end,
3320         .set_page_dirty         = ext4_journalled_set_page_dirty,
3321         .bmap                   = ext4_bmap,
3322         .invalidatepage         = ext4_journalled_invalidatepage,
3323         .releasepage            = ext4_releasepage,
3324         .direct_IO              = ext4_direct_IO,
3325         .is_partially_uptodate  = block_is_partially_uptodate,
3326         .error_remove_page      = generic_error_remove_page,
3327 };
3328
3329 static const struct address_space_operations ext4_da_aops = {
3330         .readpage               = ext4_readpage,
3331         .readpages              = ext4_readpages,
3332         .writepage              = ext4_writepage,
3333         .writepages             = ext4_da_writepages,
3334         .write_begin            = ext4_da_write_begin,
3335         .write_end              = ext4_da_write_end,
3336         .bmap                   = ext4_bmap,
3337         .invalidatepage         = ext4_da_invalidatepage,
3338         .releasepage            = ext4_releasepage,
3339         .direct_IO              = ext4_direct_IO,
3340         .migratepage            = buffer_migrate_page,
3341         .is_partially_uptodate  = block_is_partially_uptodate,
3342         .error_remove_page      = generic_error_remove_page,
3343 };
3344
3345 void ext4_set_aops(struct inode *inode)
3346 {
3347         switch (ext4_inode_journal_mode(inode)) {
3348         case EXT4_INODE_ORDERED_DATA_MODE:
3349                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3350                 break;
3351         case EXT4_INODE_WRITEBACK_DATA_MODE:
3352                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3353                 break;
3354         case EXT4_INODE_JOURNAL_DATA_MODE:
3355                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3356                 return;
3357         default:
3358                 BUG();
3359         }
3360         if (test_opt(inode->i_sb, DELALLOC))
3361                 inode->i_mapping->a_ops = &ext4_da_aops;
3362         else
3363                 inode->i_mapping->a_ops = &ext4_aops;
3364 }
3365
3366
3367 /*
3368  * ext4_discard_partial_page_buffers()
3369  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3370  * This function finds and locks the page containing the offset
3371  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3372  * Calling functions that already have the page locked should call
3373  * ext4_discard_partial_page_buffers_no_lock directly.
3374  */
3375 int ext4_discard_partial_page_buffers(handle_t *handle,
3376                 struct address_space *mapping, loff_t from,
3377                 loff_t length, int flags)
3378 {
3379         struct inode *inode = mapping->host;
3380         struct page *page;
3381         int err = 0;
3382
3383         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3384                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3385         if (!page)
3386                 return -ENOMEM;
3387
3388         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3389                 from, length, flags);
3390
3391         unlock_page(page);
3392         page_cache_release(page);
3393         return err;
3394 }
3395
3396 /*
3397  * ext4_discard_partial_page_buffers_no_lock()
3398  * Zeros a page range of length 'length' starting from offset 'from'.
3399  * Buffer heads that correspond to the block aligned regions of the
3400  * zeroed range will be unmapped.  Unblock aligned regions
3401  * will have the corresponding buffer head mapped if needed so that
3402  * that region of the page can be updated with the partial zero out.
3403  *
3404  * This function assumes that the page has already been  locked.  The
3405  * The range to be discarded must be contained with in the given page.
3406  * If the specified range exceeds the end of the page it will be shortened
3407  * to the end of the page that corresponds to 'from'.  This function is
3408  * appropriate for updating a page and it buffer heads to be unmapped and
3409  * zeroed for blocks that have been either released, or are going to be
3410  * released.
3411  *
3412  * handle: The journal handle
3413  * inode:  The files inode
3414  * page:   A locked page that contains the offset "from"
3415  * from:   The starting byte offset (from the beginning of the file)
3416  *         to begin discarding
3417  * len:    The length of bytes to discard
3418  * flags:  Optional flags that may be used:
3419  *
3420  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3421  *         Only zero the regions of the page whose buffer heads
3422  *         have already been unmapped.  This flag is appropriate
3423  *         for updating the contents of a page whose blocks may
3424  *         have already been released, and we only want to zero
3425  *         out the regions that correspond to those released blocks.
3426  *
3427  * Returns zero on success or negative on failure.
3428  */
3429 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3430                 struct inode *inode, struct page *page, loff_t from,
3431                 loff_t length, int flags)
3432 {
3433         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3434         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3435         unsigned int blocksize, max, pos;
3436         ext4_lblk_t iblock;
3437         struct buffer_head *bh;
3438         int err = 0;
3439
3440         blocksize = inode->i_sb->s_blocksize;
3441         max = PAGE_CACHE_SIZE - offset;
3442
3443         if (index != page->index)
3444                 return -EINVAL;
3445
3446         /*
3447          * correct length if it does not fall between
3448          * 'from' and the end of the page
3449          */
3450         if (length > max || length < 0)
3451                 length = max;
3452
3453         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3454
3455         if (!page_has_buffers(page))
3456                 create_empty_buffers(page, blocksize, 0);
3457
3458         /* Find the buffer that contains "offset" */
3459         bh = page_buffers(page);
3460         pos = blocksize;
3461         while (offset >= pos) {
3462                 bh = bh->b_this_page;
3463                 iblock++;
3464                 pos += blocksize;
3465         }
3466
3467         pos = offset;
3468         while (pos < offset + length) {
3469                 unsigned int end_of_block, range_to_discard;
3470
3471                 err = 0;
3472
3473                 /* The length of space left to zero and unmap */
3474                 range_to_discard = offset + length - pos;
3475
3476                 /* The length of space until the end of the block */
3477                 end_of_block = blocksize - (pos & (blocksize-1));
3478
3479                 /*
3480                  * Do not unmap or zero past end of block
3481                  * for this buffer head
3482                  */
3483                 if (range_to_discard > end_of_block)
3484                         range_to_discard = end_of_block;
3485
3486
3487                 /*
3488                  * Skip this buffer head if we are only zeroing unampped
3489                  * regions of the page
3490                  */
3491                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3492                         buffer_mapped(bh))
3493                                 goto next;
3494
3495                 /* If the range is block aligned, unmap */
3496                 if (range_to_discard == blocksize) {
3497                         clear_buffer_dirty(bh);
3498                         bh->b_bdev = NULL;
3499                         clear_buffer_mapped(bh);
3500                         clear_buffer_req(bh);
3501                         clear_buffer_new(bh);
3502                         clear_buffer_delay(bh);
3503                         clear_buffer_unwritten(bh);
3504                         clear_buffer_uptodate(bh);
3505                         zero_user(page, pos, range_to_discard);
3506                         BUFFER_TRACE(bh, "Buffer discarded");
3507                         goto next;
3508                 }
3509
3510                 /*
3511                  * If this block is not completely contained in the range
3512                  * to be discarded, then it is not going to be released. Because
3513                  * we need to keep this block, we need to make sure this part
3514                  * of the page is uptodate before we modify it by writeing
3515                  * partial zeros on it.
3516                  */
3517                 if (!buffer_mapped(bh)) {
3518                         /*
3519                          * Buffer head must be mapped before we can read
3520                          * from the block
3521                          */
3522                         BUFFER_TRACE(bh, "unmapped");
3523                         ext4_get_block(inode, iblock, bh, 0);
3524                         /* unmapped? It's a hole - nothing to do */
3525                         if (!buffer_mapped(bh)) {
3526                                 BUFFER_TRACE(bh, "still unmapped");
3527                                 goto next;
3528                         }
3529                 }
3530
3531                 /* Ok, it's mapped. Make sure it's up-to-date */
3532                 if (PageUptodate(page))
3533                         set_buffer_uptodate(bh);
3534
3535                 if (!buffer_uptodate(bh)) {
3536                         err = -EIO;
3537                         ll_rw_block(READ, 1, &bh);
3538                         wait_on_buffer(bh);
3539                         /* Uhhuh. Read error. Complain and punt.*/
3540                         if (!buffer_uptodate(bh))
3541                                 goto next;
3542                 }
3543
3544                 if (ext4_should_journal_data(inode)) {
3545                         BUFFER_TRACE(bh, "get write access");
3546                         err = ext4_journal_get_write_access(handle, bh);
3547                         if (err)
3548                                 goto next;
3549                 }
3550
3551                 zero_user(page, pos, range_to_discard);
3552
3553                 err = 0;
3554                 if (ext4_should_journal_data(inode)) {
3555                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3556                 } else
3557                         mark_buffer_dirty(bh);
3558
3559                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3560 next:
3561                 bh = bh->b_this_page;
3562                 iblock++;
3563                 pos += range_to_discard;
3564         }
3565
3566         return err;
3567 }
3568
3569 int ext4_can_truncate(struct inode *inode)
3570 {
3571         if (S_ISREG(inode->i_mode))
3572                 return 1;
3573         if (S_ISDIR(inode->i_mode))
3574                 return 1;
3575         if (S_ISLNK(inode->i_mode))
3576                 return !ext4_inode_is_fast_symlink(inode);
3577         return 0;
3578 }
3579
3580 /*
3581  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3582  * associated with the given offset and length
3583  *
3584  * @inode:  File inode
3585  * @offset: The offset where the hole will begin
3586  * @len:    The length of the hole
3587  *
3588  * Returns: 0 on success or negative on failure
3589  */
3590
3591 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3592 {
3593         struct inode *inode = file_inode(file);
3594         struct super_block *sb = inode->i_sb;
3595         ext4_lblk_t first_block, stop_block;
3596         struct address_space *mapping = inode->i_mapping;
3597         loff_t first_page, last_page, page_len;
3598         loff_t first_page_offset, last_page_offset;
3599         handle_t *handle;
3600         unsigned int credits;
3601         int ret = 0;
3602
3603         if (!S_ISREG(inode->i_mode))
3604                 return -EOPNOTSUPP;
3605
3606         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3607                 /* TODO: Add support for bigalloc file systems */
3608                 return -EOPNOTSUPP;
3609         }
3610
3611         trace_ext4_punch_hole(inode, offset, length);
3612
3613         /*
3614          * Write out all dirty pages to avoid race conditions
3615          * Then release them.
3616          */
3617         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3618                 ret = filemap_write_and_wait_range(mapping, offset,
3619                                                    offset + length - 1);
3620                 if (ret)
3621                         return ret;
3622         }
3623
3624         mutex_lock(&inode->i_mutex);
3625         /* It's not possible punch hole on append only file */
3626         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3627                 ret = -EPERM;
3628                 goto out_mutex;
3629         }
3630         if (IS_SWAPFILE(inode)) {
3631                 ret = -ETXTBSY;
3632                 goto out_mutex;
3633         }
3634
3635         /* No need to punch hole beyond i_size */
3636         if (offset >= inode->i_size)
3637                 goto out_mutex;
3638
3639         /*
3640          * If the hole extends beyond i_size, set the hole
3641          * to end after the page that contains i_size
3642          */
3643         if (offset + length > inode->i_size) {
3644                 length = inode->i_size +
3645                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3646                    offset;
3647         }
3648
3649         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3650         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3651
3652         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3653         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3654
3655         /* Now release the pages */
3656         if (last_page_offset > first_page_offset) {
3657                 truncate_pagecache_range(inode, first_page_offset,
3658                                          last_page_offset - 1);
3659         }
3660
3661         /* Wait all existing dio workers, newcomers will block on i_mutex */
3662         ext4_inode_block_unlocked_dio(inode);
3663         ret = ext4_flush_unwritten_io(inode);
3664         if (ret)
3665                 goto out_dio;
3666         inode_dio_wait(inode);
3667
3668         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3669                 credits = ext4_writepage_trans_blocks(inode);
3670         else
3671                 credits = ext4_blocks_for_truncate(inode);
3672         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3673         if (IS_ERR(handle)) {
3674                 ret = PTR_ERR(handle);
3675                 ext4_std_error(sb, ret);
3676                 goto out_dio;
3677         }
3678
3679         /*
3680          * Now we need to zero out the non-page-aligned data in the
3681          * pages at the start and tail of the hole, and unmap the
3682          * buffer heads for the block aligned regions of the page that
3683          * were completely zeroed.
3684          */
3685         if (first_page > last_page) {
3686                 /*
3687                  * If the file space being truncated is contained
3688                  * within a page just zero out and unmap the middle of
3689                  * that page
3690                  */
3691                 ret = ext4_discard_partial_page_buffers(handle,
3692                         mapping, offset, length, 0);
3693
3694                 if (ret)
3695                         goto out_stop;
3696         } else {
3697                 /*
3698                  * zero out and unmap the partial page that contains
3699                  * the start of the hole
3700                  */
3701                 page_len = first_page_offset - offset;
3702                 if (page_len > 0) {
3703                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3704                                                 offset, page_len, 0);
3705                         if (ret)
3706                                 goto out_stop;
3707                 }
3708
3709                 /*
3710                  * zero out and unmap the partial page that contains
3711                  * the end of the hole
3712                  */
3713                 page_len = offset + length - last_page_offset;
3714                 if (page_len > 0) {
3715                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3716                                         last_page_offset, page_len, 0);
3717                         if (ret)
3718                                 goto out_stop;
3719                 }
3720         }
3721
3722         /*
3723          * If i_size is contained in the last page, we need to
3724          * unmap and zero the partial page after i_size
3725          */
3726         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3727            inode->i_size % PAGE_CACHE_SIZE != 0) {
3728                 page_len = PAGE_CACHE_SIZE -
3729                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3730
3731                 if (page_len > 0) {
3732                         ret = ext4_discard_partial_page_buffers(handle,
3733                                         mapping, inode->i_size, page_len, 0);
3734
3735                         if (ret)
3736                                 goto out_stop;
3737                 }
3738         }
3739
3740         first_block = (offset + sb->s_blocksize - 1) >>
3741                 EXT4_BLOCK_SIZE_BITS(sb);
3742         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3743
3744         /* If there are no blocks to remove, return now */
3745         if (first_block >= stop_block)
3746                 goto out_stop;
3747
3748         down_write(&EXT4_I(inode)->i_data_sem);
3749         ext4_discard_preallocations(inode);
3750
3751         ret = ext4_es_remove_extent(inode, first_block,
3752                                     stop_block - first_block);
3753         if (ret) {
3754                 up_write(&EXT4_I(inode)->i_data_sem);
3755                 goto out_stop;
3756         }
3757
3758         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3759                 ret = ext4_ext_remove_space(inode, first_block,
3760                                             stop_block - 1);
3761         else
3762                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3763                                             stop_block);
3764
3765         ext4_discard_preallocations(inode);
3766         up_write(&EXT4_I(inode)->i_data_sem);
3767         if (IS_SYNC(inode))
3768                 ext4_handle_sync(handle);
3769         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3770         ext4_mark_inode_dirty(handle, inode);
3771 out_stop:
3772         ext4_journal_stop(handle);
3773 out_dio:
3774         ext4_inode_resume_unlocked_dio(inode);
3775 out_mutex:
3776         mutex_unlock(&inode->i_mutex);
3777         return ret;
3778 }
3779
3780 /*
3781  * ext4_truncate()
3782  *
3783  * We block out ext4_get_block() block instantiations across the entire
3784  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3785  * simultaneously on behalf of the same inode.
3786  *
3787  * As we work through the truncate and commit bits of it to the journal there
3788  * is one core, guiding principle: the file's tree must always be consistent on
3789  * disk.  We must be able to restart the truncate after a crash.
3790  *
3791  * The file's tree may be transiently inconsistent in memory (although it
3792  * probably isn't), but whenever we close off and commit a journal transaction,
3793  * the contents of (the filesystem + the journal) must be consistent and
3794  * restartable.  It's pretty simple, really: bottom up, right to left (although
3795  * left-to-right works OK too).
3796  *
3797  * Note that at recovery time, journal replay occurs *before* the restart of
3798  * truncate against the orphan inode list.
3799  *
3800  * The committed inode has the new, desired i_size (which is the same as
3801  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3802  * that this inode's truncate did not complete and it will again call
3803  * ext4_truncate() to have another go.  So there will be instantiated blocks
3804  * to the right of the truncation point in a crashed ext4 filesystem.  But
3805  * that's fine - as long as they are linked from the inode, the post-crash
3806  * ext4_truncate() run will find them and release them.
3807  */
3808 void ext4_truncate(struct inode *inode)
3809 {
3810         struct ext4_inode_info *ei = EXT4_I(inode);
3811         unsigned int credits;
3812         handle_t *handle;
3813         struct address_space *mapping = inode->i_mapping;
3814         loff_t page_len;
3815
3816         /*
3817          * There is a possibility that we're either freeing the inode
3818          * or it completely new indode. In those cases we might not
3819          * have i_mutex locked because it's not necessary.
3820          */
3821         if (!(inode->i_state & (I_NEW|I_FREEING)))
3822                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3823         trace_ext4_truncate_enter(inode);
3824
3825         if (!ext4_can_truncate(inode))
3826                 return;
3827
3828         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3829
3830         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3831                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3832
3833         if (ext4_has_inline_data(inode)) {
3834                 int has_inline = 1;
3835
3836                 ext4_inline_data_truncate(inode, &has_inline);
3837                 if (has_inline)
3838                         return;
3839         }
3840
3841         /*
3842          * finish any pending end_io work so we won't run the risk of
3843          * converting any truncated blocks to initialized later
3844          */
3845         ext4_flush_unwritten_io(inode);
3846
3847         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3848                 credits = ext4_writepage_trans_blocks(inode);
3849         else
3850                 credits = ext4_blocks_for_truncate(inode);
3851
3852         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3853         if (IS_ERR(handle)) {
3854                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3855                 return;
3856         }
3857
3858         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3859                 page_len = PAGE_CACHE_SIZE -
3860                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3861
3862                 if (ext4_discard_partial_page_buffers(handle,
3863                                 mapping, inode->i_size, page_len, 0))
3864                         goto out_stop;
3865         }
3866
3867         /*
3868          * We add the inode to the orphan list, so that if this
3869          * truncate spans multiple transactions, and we crash, we will
3870          * resume the truncate when the filesystem recovers.  It also
3871          * marks the inode dirty, to catch the new size.
3872          *
3873          * Implication: the file must always be in a sane, consistent
3874          * truncatable state while each transaction commits.
3875          */
3876         if (ext4_orphan_add(handle, inode))
3877                 goto out_stop;
3878
3879         down_write(&EXT4_I(inode)->i_data_sem);
3880
3881         ext4_discard_preallocations(inode);
3882
3883         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3884                 ext4_ext_truncate(handle, inode);
3885         else
3886                 ext4_ind_truncate(handle, inode);
3887
3888         up_write(&ei->i_data_sem);
3889
3890         if (IS_SYNC(inode))
3891                 ext4_handle_sync(handle);
3892
3893 out_stop:
3894         /*
3895          * If this was a simple ftruncate() and the file will remain alive,
3896          * then we need to clear up the orphan record which we created above.
3897          * However, if this was a real unlink then we were called by
3898          * ext4_delete_inode(), and we allow that function to clean up the
3899          * orphan info for us.
3900          */
3901         if (inode->i_nlink)
3902                 ext4_orphan_del(handle, inode);
3903
3904         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3905         ext4_mark_inode_dirty(handle, inode);
3906         ext4_journal_stop(handle);
3907
3908         trace_ext4_truncate_exit(inode);
3909 }
3910
3911 /*
3912  * ext4_get_inode_loc returns with an extra refcount against the inode's
3913  * underlying buffer_head on success. If 'in_mem' is true, we have all
3914  * data in memory that is needed to recreate the on-disk version of this
3915  * inode.
3916  */
3917 static int __ext4_get_inode_loc(struct inode *inode,
3918                                 struct ext4_iloc *iloc, int in_mem)
3919 {
3920         struct ext4_group_desc  *gdp;
3921         struct buffer_head      *bh;
3922         struct super_block      *sb = inode->i_sb;
3923         ext4_fsblk_t            block;
3924         int                     inodes_per_block, inode_offset;
3925
3926         iloc->bh = NULL;
3927         if (!ext4_valid_inum(sb, inode->i_ino))
3928                 return -EIO;
3929
3930         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3931         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3932         if (!gdp)
3933                 return -EIO;
3934
3935         /*
3936          * Figure out the offset within the block group inode table
3937          */
3938         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3939         inode_offset = ((inode->i_ino - 1) %
3940                         EXT4_INODES_PER_GROUP(sb));
3941         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3942         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3943
3944         bh = sb_getblk(sb, block);
3945         if (unlikely(!bh))
3946                 return -ENOMEM;
3947         if (!buffer_uptodate(bh)) {
3948                 lock_buffer(bh);
3949
3950                 /*
3951                  * If the buffer has the write error flag, we have failed
3952                  * to write out another inode in the same block.  In this
3953                  * case, we don't have to read the block because we may
3954                  * read the old inode data successfully.
3955                  */
3956                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3957                         set_buffer_uptodate(bh);
3958
3959                 if (buffer_uptodate(bh)) {
3960                         /* someone brought it uptodate while we waited */
3961                         unlock_buffer(bh);
3962                         goto has_buffer;
3963                 }
3964
3965                 /*
3966                  * If we have all information of the inode in memory and this
3967                  * is the only valid inode in the block, we need not read the
3968                  * block.
3969                  */
3970                 if (in_mem) {
3971                         struct buffer_head *bitmap_bh;
3972                         int i, start;
3973
3974                         start = inode_offset & ~(inodes_per_block - 1);
3975
3976                         /* Is the inode bitmap in cache? */
3977                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3978                         if (unlikely(!bitmap_bh))
3979                                 goto make_io;
3980
3981                         /*
3982                          * If the inode bitmap isn't in cache then the
3983                          * optimisation may end up performing two reads instead
3984                          * of one, so skip it.
3985                          */
3986                         if (!buffer_uptodate(bitmap_bh)) {
3987                                 brelse(bitmap_bh);
3988                                 goto make_io;
3989                         }
3990                         for (i = start; i < start + inodes_per_block; i++) {
3991                                 if (i == inode_offset)
3992                                         continue;
3993                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3994                                         break;
3995                         }
3996                         brelse(bitmap_bh);
3997                         if (i == start + inodes_per_block) {
3998                                 /* all other inodes are free, so skip I/O */
3999                                 memset(bh->b_data, 0, bh->b_size);
4000                                 set_buffer_uptodate(bh);
4001                                 unlock_buffer(bh);
4002                                 goto has_buffer;
4003                         }
4004                 }
4005
4006 make_io:
4007                 /*
4008                  * If we need to do any I/O, try to pre-readahead extra
4009                  * blocks from the inode table.
4010                  */
4011                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4012                         ext4_fsblk_t b, end, table;
4013                         unsigned num;
4014                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4015
4016                         table = ext4_inode_table(sb, gdp);
4017                         /* s_inode_readahead_blks is always a power of 2 */
4018                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4019                         if (table > b)
4020                                 b = table;
4021                         end = b + ra_blks;
4022                         num = EXT4_INODES_PER_GROUP(sb);
4023                         if (ext4_has_group_desc_csum(sb))
4024                                 num -= ext4_itable_unused_count(sb, gdp);
4025                         table += num / inodes_per_block;
4026                         if (end > table)
4027                                 end = table;
4028                         while (b <= end)
4029                                 sb_breadahead(sb, b++);
4030                 }
4031
4032                 /*
4033                  * There are other valid inodes in the buffer, this inode
4034                  * has in-inode xattrs, or we don't have this inode in memory.
4035                  * Read the block from disk.
4036                  */
4037                 trace_ext4_load_inode(inode);
4038                 get_bh(bh);
4039                 bh->b_end_io = end_buffer_read_sync;
4040                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4041                 wait_on_buffer(bh);
4042                 if (!buffer_uptodate(bh)) {
4043                         EXT4_ERROR_INODE_BLOCK(inode, block,
4044                                                "unable to read itable block");
4045                         brelse(bh);
4046                         return -EIO;
4047                 }
4048         }
4049 has_buffer:
4050         iloc->bh = bh;
4051         return 0;
4052 }
4053
4054 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4055 {
4056         /* We have all inode data except xattrs in memory here. */
4057         return __ext4_get_inode_loc(inode, iloc,
4058                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4059 }
4060
4061 void ext4_set_inode_flags(struct inode *inode)
4062 {
4063         unsigned int flags = EXT4_I(inode)->i_flags;
4064
4065         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4066         if (flags & EXT4_SYNC_FL)
4067                 inode->i_flags |= S_SYNC;
4068         if (flags & EXT4_APPEND_FL)
4069                 inode->i_flags |= S_APPEND;
4070         if (flags & EXT4_IMMUTABLE_FL)
4071                 inode->i_flags |= S_IMMUTABLE;
4072         if (flags & EXT4_NOATIME_FL)
4073                 inode->i_flags |= S_NOATIME;
4074         if (flags & EXT4_DIRSYNC_FL)
4075                 inode->i_flags |= S_DIRSYNC;
4076 }
4077
4078 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4079 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4080 {
4081         unsigned int vfs_fl;
4082         unsigned long old_fl, new_fl;
4083
4084         do {
4085                 vfs_fl = ei->vfs_inode.i_flags;
4086                 old_fl = ei->i_flags;
4087                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4088                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4089                                 EXT4_DIRSYNC_FL);
4090                 if (vfs_fl & S_SYNC)
4091                         new_fl |= EXT4_SYNC_FL;
4092                 if (vfs_fl & S_APPEND)
4093                         new_fl |= EXT4_APPEND_FL;
4094                 if (vfs_fl & S_IMMUTABLE)
4095                         new_fl |= EXT4_IMMUTABLE_FL;
4096                 if (vfs_fl & S_NOATIME)
4097                         new_fl |= EXT4_NOATIME_FL;
4098                 if (vfs_fl & S_DIRSYNC)
4099                         new_fl |= EXT4_DIRSYNC_FL;
4100         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4101 }
4102
4103 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4104                                   struct ext4_inode_info *ei)
4105 {
4106         blkcnt_t i_blocks ;
4107         struct inode *inode = &(ei->vfs_inode);
4108         struct super_block *sb = inode->i_sb;
4109
4110         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4111                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4112                 /* we are using combined 48 bit field */
4113                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4114                                         le32_to_cpu(raw_inode->i_blocks_lo);
4115                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4116                         /* i_blocks represent file system block size */
4117                         return i_blocks  << (inode->i_blkbits - 9);
4118                 } else {
4119                         return i_blocks;
4120                 }
4121         } else {
4122                 return le32_to_cpu(raw_inode->i_blocks_lo);
4123         }
4124 }
4125
4126 static inline void ext4_iget_extra_inode(struct inode *inode,
4127                                          struct ext4_inode *raw_inode,
4128                                          struct ext4_inode_info *ei)
4129 {
4130         __le32 *magic = (void *)raw_inode +
4131                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4132         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4133                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4134                 ext4_find_inline_data_nolock(inode);
4135         } else
4136                 EXT4_I(inode)->i_inline_off = 0;
4137 }
4138
4139 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4140 {
4141         struct ext4_iloc iloc;
4142         struct ext4_inode *raw_inode;
4143         struct ext4_inode_info *ei;
4144         struct inode *inode;
4145         journal_t *journal = EXT4_SB(sb)->s_journal;
4146         long ret;
4147         int block;
4148         uid_t i_uid;
4149         gid_t i_gid;
4150
4151         inode = iget_locked(sb, ino);
4152         if (!inode)
4153                 return ERR_PTR(-ENOMEM);
4154         if (!(inode->i_state & I_NEW))
4155                 return inode;
4156
4157         ei = EXT4_I(inode);
4158         iloc.bh = NULL;
4159
4160         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4161         if (ret < 0)
4162                 goto bad_inode;
4163         raw_inode = ext4_raw_inode(&iloc);
4164
4165         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4166                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4167                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4168                     EXT4_INODE_SIZE(inode->i_sb)) {
4169                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4170                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4171                                 EXT4_INODE_SIZE(inode->i_sb));
4172                         ret = -EIO;
4173                         goto bad_inode;
4174                 }
4175         } else
4176                 ei->i_extra_isize = 0;
4177
4178         /* Precompute checksum seed for inode metadata */
4179         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4180                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4181                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4182                 __u32 csum;
4183                 __le32 inum = cpu_to_le32(inode->i_ino);
4184                 __le32 gen = raw_inode->i_generation;
4185                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4186                                    sizeof(inum));
4187                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4188                                               sizeof(gen));
4189         }
4190
4191         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4192                 EXT4_ERROR_INODE(inode, "checksum invalid");
4193                 ret = -EIO;
4194                 goto bad_inode;
4195         }
4196
4197         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4198         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4199         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4200         if (!(test_opt(inode->i_sb, NO_UID32))) {
4201                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4202                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4203         }
4204         i_uid_write(inode, i_uid);
4205         i_gid_write(inode, i_gid);
4206         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4207
4208         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4209         ei->i_inline_off = 0;
4210         ei->i_dir_start_lookup = 0;
4211         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4212         /* We now have enough fields to check if the inode was active or not.
4213          * This is needed because nfsd might try to access dead inodes
4214          * the test is that same one that e2fsck uses
4215          * NeilBrown 1999oct15
4216          */
4217         if (inode->i_nlink == 0) {
4218                 if ((inode->i_mode == 0 ||
4219                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4220                     ino != EXT4_BOOT_LOADER_INO) {
4221                         /* this inode is deleted */
4222                         ret = -ESTALE;
4223                         goto bad_inode;
4224                 }
4225                 /* The only unlinked inodes we let through here have
4226                  * valid i_mode and are being read by the orphan
4227                  * recovery code: that's fine, we're about to complete
4228                  * the process of deleting those.
4229                  * OR it is the EXT4_BOOT_LOADER_INO which is
4230                  * not initialized on a new filesystem. */
4231         }
4232         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4233         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4234         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4235         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4236                 ei->i_file_acl |=
4237                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4238         inode->i_size = ext4_isize(raw_inode);
4239         ei->i_disksize = inode->i_size;
4240 #ifdef CONFIG_QUOTA
4241         ei->i_reserved_quota = 0;
4242 #endif
4243         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4244         ei->i_block_group = iloc.block_group;
4245         ei->i_last_alloc_group = ~0;
4246         /*
4247          * NOTE! The in-memory inode i_data array is in little-endian order
4248          * even on big-endian machines: we do NOT byteswap the block numbers!
4249          */
4250         for (block = 0; block < EXT4_N_BLOCKS; block++)
4251                 ei->i_data[block] = raw_inode->i_block[block];
4252         INIT_LIST_HEAD(&ei->i_orphan);
4253
4254         /*
4255          * Set transaction id's of transactions that have to be committed
4256          * to finish f[data]sync. We set them to currently running transaction
4257          * as we cannot be sure that the inode or some of its metadata isn't
4258          * part of the transaction - the inode could have been reclaimed and
4259          * now it is reread from disk.
4260          */
4261         if (journal) {
4262                 transaction_t *transaction;
4263                 tid_t tid;
4264
4265                 read_lock(&journal->j_state_lock);
4266                 if (journal->j_running_transaction)
4267                         transaction = journal->j_running_transaction;
4268                 else
4269                         transaction = journal->j_committing_transaction;
4270                 if (transaction)
4271                         tid = transaction->t_tid;
4272                 else
4273                         tid = journal->j_commit_sequence;
4274                 read_unlock(&journal->j_state_lock);
4275                 ei->i_sync_tid = tid;
4276                 ei->i_datasync_tid = tid;
4277         }
4278
4279         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4280                 if (ei->i_extra_isize == 0) {
4281                         /* The extra space is currently unused. Use it. */
4282                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4283                                             EXT4_GOOD_OLD_INODE_SIZE;
4284                 } else {
4285                         ext4_iget_extra_inode(inode, raw_inode, ei);
4286                 }
4287         }
4288
4289         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4290         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4291         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4292         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4293
4294         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4295         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4296                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4297                         inode->i_version |=
4298                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4299         }
4300
4301         ret = 0;
4302         if (ei->i_file_acl &&
4303             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4304                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4305                                  ei->i_file_acl);
4306                 ret = -EIO;
4307                 goto bad_inode;
4308         } else if (!ext4_has_inline_data(inode)) {
4309                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4310                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4311                             (S_ISLNK(inode->i_mode) &&
4312                              !ext4_inode_is_fast_symlink(inode))))
4313                                 /* Validate extent which is part of inode */
4314                                 ret = ext4_ext_check_inode(inode);
4315                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4316                            (S_ISLNK(inode->i_mode) &&
4317                             !ext4_inode_is_fast_symlink(inode))) {
4318                         /* Validate block references which are part of inode */
4319                         ret = ext4_ind_check_inode(inode);
4320                 }
4321         }
4322         if (ret)
4323                 goto bad_inode;
4324
4325         if (S_ISREG(inode->i_mode)) {
4326                 inode->i_op = &ext4_file_inode_operations;
4327                 inode->i_fop = &ext4_file_operations;
4328                 ext4_set_aops(inode);
4329         } else if (S_ISDIR(inode->i_mode)) {
4330                 inode->i_op = &ext4_dir_inode_operations;
4331                 inode->i_fop = &ext4_dir_operations;
4332         } else if (S_ISLNK(inode->i_mode)) {
4333                 if (ext4_inode_is_fast_symlink(inode)) {
4334                         inode->i_op = &ext4_fast_symlink_inode_operations;
4335                         nd_terminate_link(ei->i_data, inode->i_size,
4336                                 sizeof(ei->i_data) - 1);
4337                 } else {
4338                         inode->i_op = &ext4_symlink_inode_operations;
4339                         ext4_set_aops(inode);
4340                 }
4341         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4342               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4343                 inode->i_op = &ext4_special_inode_operations;
4344                 if (raw_inode->i_block[0])
4345                         init_special_inode(inode, inode->i_mode,
4346                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4347                 else
4348                         init_special_inode(inode, inode->i_mode,
4349                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4350         } else if (ino == EXT4_BOOT_LOADER_INO) {
4351                 make_bad_inode(inode);
4352         } else {
4353                 ret = -EIO;
4354                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4355                 goto bad_inode;
4356         }
4357         brelse(iloc.bh);
4358         ext4_set_inode_flags(inode);
4359         unlock_new_inode(inode);
4360         return inode;
4361
4362 bad_inode:
4363         brelse(iloc.bh);
4364         iget_failed(inode);
4365         return ERR_PTR(ret);
4366 }
4367
4368 static int ext4_inode_blocks_set(handle_t *handle,
4369                                 struct ext4_inode *raw_inode,
4370                                 struct ext4_inode_info *ei)
4371 {
4372         struct inode *inode = &(ei->vfs_inode);
4373         u64 i_blocks = inode->i_blocks;
4374         struct super_block *sb = inode->i_sb;
4375
4376         if (i_blocks <= ~0U) {
4377                 /*
4378                  * i_blocks can be represented in a 32 bit variable
4379                  * as multiple of 512 bytes
4380                  */
4381                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4382                 raw_inode->i_blocks_high = 0;
4383                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4384                 return 0;
4385         }
4386         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4387                 return -EFBIG;
4388
4389         if (i_blocks <= 0xffffffffffffULL) {
4390                 /*
4391                  * i_blocks can be represented in a 48 bit variable
4392                  * as multiple of 512 bytes
4393                  */
4394                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4395                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4396                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4397         } else {
4398                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4399                 /* i_block is stored in file system block size */
4400                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4401                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4402                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4403         }
4404         return 0;
4405 }
4406
4407 /*
4408  * Post the struct inode info into an on-disk inode location in the
4409  * buffer-cache.  This gobbles the caller's reference to the
4410  * buffer_head in the inode location struct.
4411  *
4412  * The caller must have write access to iloc->bh.
4413  */
4414 static int ext4_do_update_inode(handle_t *handle,
4415                                 struct inode *inode,
4416                                 struct ext4_iloc *iloc)
4417 {
4418         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4419         struct ext4_inode_info *ei = EXT4_I(inode);
4420         struct buffer_head *bh = iloc->bh;
4421         int err = 0, rc, block;
4422         int need_datasync = 0;
4423         uid_t i_uid;
4424         gid_t i_gid;
4425
4426         /* For fields not not tracking in the in-memory inode,
4427          * initialise them to zero for new inodes. */
4428         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4429                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4430
4431         ext4_get_inode_flags(ei);
4432         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4433         i_uid = i_uid_read(inode);
4434         i_gid = i_gid_read(inode);
4435         if (!(test_opt(inode->i_sb, NO_UID32))) {
4436                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4437                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4438 /*
4439  * Fix up interoperability with old kernels. Otherwise, old inodes get
4440  * re-used with the upper 16 bits of the uid/gid intact
4441  */
4442                 if (!ei->i_dtime) {
4443                         raw_inode->i_uid_high =
4444                                 cpu_to_le16(high_16_bits(i_uid));
4445                         raw_inode->i_gid_high =
4446                                 cpu_to_le16(high_16_bits(i_gid));
4447                 } else {
4448                         raw_inode->i_uid_high = 0;
4449                         raw_inode->i_gid_high = 0;
4450                 }
4451         } else {
4452                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4453                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4454                 raw_inode->i_uid_high = 0;
4455                 raw_inode->i_gid_high = 0;
4456         }
4457         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4458
4459         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4460         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4461         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4462         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4463
4464         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4465                 goto out_brelse;
4466         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4467         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4468         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4469             cpu_to_le32(EXT4_OS_HURD))
4470                 raw_inode->i_file_acl_high =
4471                         cpu_to_le16(ei->i_file_acl >> 32);
4472         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4473         if (ei->i_disksize != ext4_isize(raw_inode)) {
4474                 ext4_isize_set(raw_inode, ei->i_disksize);
4475                 need_datasync = 1;
4476         }
4477         if (ei->i_disksize > 0x7fffffffULL) {
4478                 struct super_block *sb = inode->i_sb;
4479                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4480                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4481                                 EXT4_SB(sb)->s_es->s_rev_level ==
4482                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4483                         /* If this is the first large file
4484                          * created, add a flag to the superblock.
4485                          */
4486                         err = ext4_journal_get_write_access(handle,
4487                                         EXT4_SB(sb)->s_sbh);
4488                         if (err)
4489                                 goto out_brelse;
4490                         ext4_update_dynamic_rev(sb);
4491                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4492                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4493                         ext4_handle_sync(handle);
4494                         err = ext4_handle_dirty_super(handle, sb);
4495                 }
4496         }
4497         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4498         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4499                 if (old_valid_dev(inode->i_rdev)) {
4500                         raw_inode->i_block[0] =
4501                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4502                         raw_inode->i_block[1] = 0;
4503                 } else {
4504                         raw_inode->i_block[0] = 0;
4505                         raw_inode->i_block[1] =
4506                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4507                         raw_inode->i_block[2] = 0;
4508                 }
4509         } else if (!ext4_has_inline_data(inode)) {
4510                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4511                         raw_inode->i_block[block] = ei->i_data[block];
4512         }
4513
4514         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4515         if (ei->i_extra_isize) {
4516                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4517                         raw_inode->i_version_hi =
4518                         cpu_to_le32(inode->i_version >> 32);
4519                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4520         }
4521
4522         ext4_inode_csum_set(inode, raw_inode, ei);
4523
4524         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4525         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4526         if (!err)
4527                 err = rc;
4528         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4529
4530         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4531 out_brelse:
4532         brelse(bh);
4533         ext4_std_error(inode->i_sb, err);
4534         return err;
4535 }
4536
4537 /*
4538  * ext4_write_inode()
4539  *
4540  * We are called from a few places:
4541  *
4542  * - Within generic_file_write() for O_SYNC files.
4543  *   Here, there will be no transaction running. We wait for any running
4544  *   transaction to commit.
4545  *
4546  * - Within sys_sync(), kupdate and such.
4547  *   We wait on commit, if tol to.
4548  *
4549  * - Within prune_icache() (PF_MEMALLOC == true)
4550  *   Here we simply return.  We can't afford to block kswapd on the
4551  *   journal commit.
4552  *
4553  * In all cases it is actually safe for us to return without doing anything,
4554  * because the inode has been copied into a raw inode buffer in
4555  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4556  * knfsd.
4557  *
4558  * Note that we are absolutely dependent upon all inode dirtiers doing the
4559  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4560  * which we are interested.
4561  *
4562  * It would be a bug for them to not do this.  The code:
4563  *
4564  *      mark_inode_dirty(inode)
4565  *      stuff();
4566  *      inode->i_size = expr;
4567  *
4568  * is in error because a kswapd-driven write_inode() could occur while
4569  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4570  * will no longer be on the superblock's dirty inode list.
4571  */
4572 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4573 {
4574         int err;
4575
4576         if (current->flags & PF_MEMALLOC)
4577                 return 0;
4578
4579         if (EXT4_SB(inode->i_sb)->s_journal) {
4580                 if (ext4_journal_current_handle()) {
4581                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4582                         dump_stack();
4583                         return -EIO;
4584                 }
4585
4586                 if (wbc->sync_mode != WB_SYNC_ALL)
4587                         return 0;
4588
4589                 err = ext4_force_commit(inode->i_sb);
4590         } else {
4591                 struct ext4_iloc iloc;
4592
4593                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4594                 if (err)
4595                         return err;
4596                 if (wbc->sync_mode == WB_SYNC_ALL)
4597                         sync_dirty_buffer(iloc.bh);
4598                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4599                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4600                                          "IO error syncing inode");
4601                         err = -EIO;
4602                 }
4603                 brelse(iloc.bh);
4604         }
4605         return err;
4606 }
4607
4608 /*
4609  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4610  * buffers that are attached to a page stradding i_size and are undergoing
4611  * commit. In that case we have to wait for commit to finish and try again.
4612  */
4613 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4614 {
4615         struct page *page;
4616         unsigned offset;
4617         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4618         tid_t commit_tid = 0;
4619         int ret;
4620
4621         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4622         /*
4623          * All buffers in the last page remain valid? Then there's nothing to
4624          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4625          * blocksize case
4626          */
4627         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4628                 return;
4629         while (1) {
4630                 page = find_lock_page(inode->i_mapping,
4631                                       inode->i_size >> PAGE_CACHE_SHIFT);
4632                 if (!page)
4633                         return;
4634                 ret = __ext4_journalled_invalidatepage(page, offset);
4635                 unlock_page(page);
4636                 page_cache_release(page);
4637                 if (ret != -EBUSY)
4638                         return;
4639                 commit_tid = 0;
4640                 read_lock(&journal->j_state_lock);
4641                 if (journal->j_committing_transaction)
4642                         commit_tid = journal->j_committing_transaction->t_tid;
4643                 read_unlock(&journal->j_state_lock);
4644                 if (commit_tid)
4645                         jbd2_log_wait_commit(journal, commit_tid);
4646         }
4647 }
4648
4649 /*
4650  * ext4_setattr()
4651  *
4652  * Called from notify_change.
4653  *
4654  * We want to trap VFS attempts to truncate the file as soon as
4655  * possible.  In particular, we want to make sure that when the VFS
4656  * shrinks i_size, we put the inode on the orphan list and modify
4657  * i_disksize immediately, so that during the subsequent flushing of
4658  * dirty pages and freeing of disk blocks, we can guarantee that any
4659  * commit will leave the blocks being flushed in an unused state on
4660  * disk.  (On recovery, the inode will get truncated and the blocks will
4661  * be freed, so we have a strong guarantee that no future commit will
4662  * leave these blocks visible to the user.)
4663  *
4664  * Another thing we have to assure is that if we are in ordered mode
4665  * and inode is still attached to the committing transaction, we must
4666  * we start writeout of all the dirty pages which are being truncated.
4667  * This way we are sure that all the data written in the previous
4668  * transaction are already on disk (truncate waits for pages under
4669  * writeback).
4670  *
4671  * Called with inode->i_mutex down.
4672  */
4673 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4674 {
4675         struct inode *inode = dentry->d_inode;
4676         int error, rc = 0;
4677         int orphan = 0;
4678         const unsigned int ia_valid = attr->ia_valid;
4679
4680         error = inode_change_ok(inode, attr);
4681         if (error)
4682                 return error;
4683
4684         if (is_quota_modification(inode, attr))
4685                 dquot_initialize(inode);
4686         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4687             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4688                 handle_t *handle;
4689
4690                 /* (user+group)*(old+new) structure, inode write (sb,
4691                  * inode block, ? - but truncate inode update has it) */
4692                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4693                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4694                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4695                 if (IS_ERR(handle)) {
4696                         error = PTR_ERR(handle);
4697                         goto err_out;
4698                 }
4699                 error = dquot_transfer(inode, attr);
4700                 if (error) {
4701                         ext4_journal_stop(handle);
4702                         return error;
4703                 }
4704                 /* Update corresponding info in inode so that everything is in
4705                  * one transaction */
4706                 if (attr->ia_valid & ATTR_UID)
4707                         inode->i_uid = attr->ia_uid;
4708                 if (attr->ia_valid & ATTR_GID)
4709                         inode->i_gid = attr->ia_gid;
4710                 error = ext4_mark_inode_dirty(handle, inode);
4711                 ext4_journal_stop(handle);
4712         }
4713
4714         if (attr->ia_valid & ATTR_SIZE) {
4715
4716                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4717                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4718
4719                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4720                                 return -EFBIG;
4721                 }
4722         }
4723
4724         if (S_ISREG(inode->i_mode) &&
4725             attr->ia_valid & ATTR_SIZE &&
4726             (attr->ia_size < inode->i_size)) {
4727                 handle_t *handle;
4728
4729                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4730                 if (IS_ERR(handle)) {
4731                         error = PTR_ERR(handle);
4732                         goto err_out;
4733                 }
4734                 if (ext4_handle_valid(handle)) {
4735                         error = ext4_orphan_add(handle, inode);
4736                         orphan = 1;
4737                 }
4738                 EXT4_I(inode)->i_disksize = attr->ia_size;
4739                 rc = ext4_mark_inode_dirty(handle, inode);
4740                 if (!error)
4741                         error = rc;
4742                 ext4_journal_stop(handle);
4743
4744                 if (ext4_should_order_data(inode)) {
4745                         error = ext4_begin_ordered_truncate(inode,
4746                                                             attr->ia_size);
4747                         if (error) {
4748                                 /* Do as much error cleanup as possible */
4749                                 handle = ext4_journal_start(inode,
4750                                                             EXT4_HT_INODE, 3);
4751                                 if (IS_ERR(handle)) {
4752                                         ext4_orphan_del(NULL, inode);
4753                                         goto err_out;
4754                                 }
4755                                 ext4_orphan_del(handle, inode);
4756                                 orphan = 0;
4757                                 ext4_journal_stop(handle);
4758                                 goto err_out;
4759                         }
4760                 }
4761         }
4762
4763         if (attr->ia_valid & ATTR_SIZE) {
4764                 if (attr->ia_size != inode->i_size) {
4765                         loff_t oldsize = inode->i_size;
4766
4767                         i_size_write(inode, attr->ia_size);
4768                         /*
4769                          * Blocks are going to be removed from the inode. Wait
4770                          * for dio in flight.  Temporarily disable
4771                          * dioread_nolock to prevent livelock.
4772                          */
4773                         if (orphan) {
4774                                 if (!ext4_should_journal_data(inode)) {
4775                                         ext4_inode_block_unlocked_dio(inode);
4776                                         inode_dio_wait(inode);
4777                                         ext4_inode_resume_unlocked_dio(inode);
4778                                 } else
4779                                         ext4_wait_for_tail_page_commit(inode);
4780                         }
4781                         /*
4782                          * Truncate pagecache after we've waited for commit
4783                          * in data=journal mode to make pages freeable.
4784                          */
4785                         truncate_pagecache(inode, oldsize, inode->i_size);
4786                 }
4787                 ext4_truncate(inode);
4788         }
4789
4790         if (!rc) {
4791                 setattr_copy(inode, attr);
4792                 mark_inode_dirty(inode);
4793         }
4794
4795         /*
4796          * If the call to ext4_truncate failed to get a transaction handle at
4797          * all, we need to clean up the in-core orphan list manually.
4798          */
4799         if (orphan && inode->i_nlink)
4800                 ext4_orphan_del(NULL, inode);
4801
4802         if (!rc && (ia_valid & ATTR_MODE))
4803                 rc = ext4_acl_chmod(inode);
4804
4805 err_out:
4806         ext4_std_error(inode->i_sb, error);
4807         if (!error)
4808                 error = rc;
4809         return error;
4810 }
4811
4812 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4813                  struct kstat *stat)
4814 {
4815         struct inode *inode;
4816         unsigned long delalloc_blocks;
4817
4818         inode = dentry->d_inode;
4819         generic_fillattr(inode, stat);
4820
4821         /*
4822          * We can't update i_blocks if the block allocation is delayed
4823          * otherwise in the case of system crash before the real block
4824          * allocation is done, we will have i_blocks inconsistent with
4825          * on-disk file blocks.
4826          * We always keep i_blocks updated together with real
4827          * allocation. But to not confuse with user, stat
4828          * will return the blocks that include the delayed allocation
4829          * blocks for this file.
4830          */
4831         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4832                                 EXT4_I(inode)->i_reserved_data_blocks);
4833
4834         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4835         return 0;
4836 }
4837
4838 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4839 {
4840         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4841                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4842         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4843 }
4844
4845 /*
4846  * Account for index blocks, block groups bitmaps and block group
4847  * descriptor blocks if modify datablocks and index blocks
4848  * worse case, the indexs blocks spread over different block groups
4849  *
4850  * If datablocks are discontiguous, they are possible to spread over
4851  * different block groups too. If they are contiguous, with flexbg,
4852  * they could still across block group boundary.
4853  *
4854  * Also account for superblock, inode, quota and xattr blocks
4855  */
4856 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4857 {
4858         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4859         int gdpblocks;
4860         int idxblocks;
4861         int ret = 0;
4862
4863         /*
4864          * How many index blocks need to touch to modify nrblocks?
4865          * The "Chunk" flag indicating whether the nrblocks is
4866          * physically contiguous on disk
4867          *
4868          * For Direct IO and fallocate, they calls get_block to allocate
4869          * one single extent at a time, so they could set the "Chunk" flag
4870          */
4871         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4872
4873         ret = idxblocks;
4874
4875         /*
4876          * Now let's see how many group bitmaps and group descriptors need
4877          * to account
4878          */
4879         groups = idxblocks;
4880         if (chunk)
4881                 groups += 1;
4882         else
4883                 groups += nrblocks;
4884
4885         gdpblocks = groups;
4886         if (groups > ngroups)
4887                 groups = ngroups;
4888         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4889                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4890
4891         /* bitmaps and block group descriptor blocks */
4892         ret += groups + gdpblocks;
4893
4894         /* Blocks for super block, inode, quota and xattr blocks */
4895         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4896
4897         return ret;
4898 }
4899
4900 /*
4901  * Calculate the total number of credits to reserve to fit
4902  * the modification of a single pages into a single transaction,
4903  * which may include multiple chunks of block allocations.
4904  *
4905  * This could be called via ext4_write_begin()
4906  *
4907  * We need to consider the worse case, when
4908  * one new block per extent.
4909  */
4910 int ext4_writepage_trans_blocks(struct inode *inode)
4911 {
4912         int bpp = ext4_journal_blocks_per_page(inode);
4913         int ret;
4914
4915         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4916
4917         /* Account for data blocks for journalled mode */
4918         if (ext4_should_journal_data(inode))
4919                 ret += bpp;
4920         return ret;
4921 }
4922
4923 /*
4924  * Calculate the journal credits for a chunk of data modification.
4925  *
4926  * This is called from DIO, fallocate or whoever calling
4927  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4928  *
4929  * journal buffers for data blocks are not included here, as DIO
4930  * and fallocate do no need to journal data buffers.
4931  */
4932 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4933 {
4934         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4935 }
4936
4937 /*
4938  * The caller must have previously called ext4_reserve_inode_write().
4939  * Give this, we know that the caller already has write access to iloc->bh.
4940  */
4941 int ext4_mark_iloc_dirty(handle_t *handle,
4942                          struct inode *inode, struct ext4_iloc *iloc)
4943 {
4944         int err = 0;
4945
4946         if (IS_I_VERSION(inode))
4947                 inode_inc_iversion(inode);
4948
4949         /* the do_update_inode consumes one bh->b_count */
4950         get_bh(iloc->bh);
4951
4952         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4953         err = ext4_do_update_inode(handle, inode, iloc);
4954         put_bh(iloc->bh);
4955         return err;
4956 }
4957
4958 /*
4959  * On success, We end up with an outstanding reference count against
4960  * iloc->bh.  This _must_ be cleaned up later.
4961  */
4962
4963 int
4964 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4965                          struct ext4_iloc *iloc)
4966 {
4967         int err;
4968
4969         err = ext4_get_inode_loc(inode, iloc);
4970         if (!err) {
4971                 BUFFER_TRACE(iloc->bh, "get_write_access");
4972                 err = ext4_journal_get_write_access(handle, iloc->bh);
4973                 if (err) {
4974                         brelse(iloc->bh);
4975                         iloc->bh = NULL;
4976                 }
4977         }
4978         ext4_std_error(inode->i_sb, err);
4979         return err;
4980 }
4981
4982 /*
4983  * Expand an inode by new_extra_isize bytes.
4984  * Returns 0 on success or negative error number on failure.
4985  */
4986 static int ext4_expand_extra_isize(struct inode *inode,
4987                                    unsigned int new_extra_isize,
4988                                    struct ext4_iloc iloc,
4989                                    handle_t *handle)
4990 {
4991         struct ext4_inode *raw_inode;
4992         struct ext4_xattr_ibody_header *header;
4993
4994         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4995                 return 0;
4996
4997         raw_inode = ext4_raw_inode(&iloc);
4998
4999         header = IHDR(inode, raw_inode);
5000
5001         /* No extended attributes present */
5002         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5003             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5004                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5005                         new_extra_isize);
5006                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5007                 return 0;
5008         }
5009
5010         /* try to expand with EAs present */
5011         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5012                                           raw_inode, handle);
5013 }
5014
5015 /*
5016  * What we do here is to mark the in-core inode as clean with respect to inode
5017  * dirtiness (it may still be data-dirty).
5018  * This means that the in-core inode may be reaped by prune_icache
5019  * without having to perform any I/O.  This is a very good thing,
5020  * because *any* task may call prune_icache - even ones which
5021  * have a transaction open against a different journal.
5022  *
5023  * Is this cheating?  Not really.  Sure, we haven't written the
5024  * inode out, but prune_icache isn't a user-visible syncing function.
5025  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5026  * we start and wait on commits.
5027  */
5028 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5029 {
5030         struct ext4_iloc iloc;
5031         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5032         static unsigned int mnt_count;
5033         int err, ret;
5034
5035         might_sleep();
5036         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5037         err = ext4_reserve_inode_write(handle, inode, &iloc);
5038         if (ext4_handle_valid(handle) &&
5039             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5040             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5041                 /*
5042                  * We need extra buffer credits since we may write into EA block
5043                  * with this same handle. If journal_extend fails, then it will
5044                  * only result in a minor loss of functionality for that inode.
5045                  * If this is felt to be critical, then e2fsck should be run to
5046                  * force a large enough s_min_extra_isize.
5047                  */
5048                 if ((jbd2_journal_extend(handle,
5049                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5050                         ret = ext4_expand_extra_isize(inode,
5051                                                       sbi->s_want_extra_isize,
5052                                                       iloc, handle);
5053                         if (ret) {
5054                                 ext4_set_inode_state(inode,
5055                                                      EXT4_STATE_NO_EXPAND);
5056                                 if (mnt_count !=
5057                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5058                                         ext4_warning(inode->i_sb,
5059                                         "Unable to expand inode %lu. Delete"
5060                                         " some EAs or run e2fsck.",
5061                                         inode->i_ino);
5062                                         mnt_count =
5063                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5064                                 }
5065                         }
5066                 }
5067         }
5068         if (!err)
5069                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5070         return err;
5071 }
5072
5073 /*
5074  * ext4_dirty_inode() is called from __mark_inode_dirty()
5075  *
5076  * We're really interested in the case where a file is being extended.
5077  * i_size has been changed by generic_commit_write() and we thus need
5078  * to include the updated inode in the current transaction.
5079  *
5080  * Also, dquot_alloc_block() will always dirty the inode when blocks
5081  * are allocated to the file.
5082  *
5083  * If the inode is marked synchronous, we don't honour that here - doing
5084  * so would cause a commit on atime updates, which we don't bother doing.
5085  * We handle synchronous inodes at the highest possible level.
5086  */
5087 void ext4_dirty_inode(struct inode *inode, int flags)
5088 {
5089         handle_t *handle;
5090
5091         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5092         if (IS_ERR(handle))
5093                 goto out;
5094
5095         ext4_mark_inode_dirty(handle, inode);
5096
5097         ext4_journal_stop(handle);
5098 out:
5099         return;
5100 }
5101
5102 #if 0
5103 /*
5104  * Bind an inode's backing buffer_head into this transaction, to prevent
5105  * it from being flushed to disk early.  Unlike
5106  * ext4_reserve_inode_write, this leaves behind no bh reference and
5107  * returns no iloc structure, so the caller needs to repeat the iloc
5108  * lookup to mark the inode dirty later.
5109  */
5110 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5111 {
5112         struct ext4_iloc iloc;
5113
5114         int err = 0;
5115         if (handle) {
5116                 err = ext4_get_inode_loc(inode, &iloc);
5117                 if (!err) {
5118                         BUFFER_TRACE(iloc.bh, "get_write_access");
5119                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5120                         if (!err)
5121                                 err = ext4_handle_dirty_metadata(handle,
5122                                                                  NULL,
5123                                                                  iloc.bh);
5124                         brelse(iloc.bh);
5125                 }
5126         }
5127         ext4_std_error(inode->i_sb, err);
5128         return err;
5129 }
5130 #endif
5131
5132 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5133 {
5134         journal_t *journal;
5135         handle_t *handle;
5136         int err;
5137
5138         /*
5139          * We have to be very careful here: changing a data block's
5140          * journaling status dynamically is dangerous.  If we write a
5141          * data block to the journal, change the status and then delete
5142          * that block, we risk forgetting to revoke the old log record
5143          * from the journal and so a subsequent replay can corrupt data.
5144          * So, first we make sure that the journal is empty and that
5145          * nobody is changing anything.
5146          */
5147
5148         journal = EXT4_JOURNAL(inode);
5149         if (!journal)
5150                 return 0;
5151         if (is_journal_aborted(journal))
5152                 return -EROFS;
5153         /* We have to allocate physical blocks for delalloc blocks
5154          * before flushing journal. otherwise delalloc blocks can not
5155          * be allocated any more. even more truncate on delalloc blocks
5156          * could trigger BUG by flushing delalloc blocks in journal.
5157          * There is no delalloc block in non-journal data mode.
5158          */
5159         if (val && test_opt(inode->i_sb, DELALLOC)) {
5160                 err = ext4_alloc_da_blocks(inode);
5161                 if (err < 0)
5162                         return err;
5163         }
5164
5165         /* Wait for all existing dio workers */
5166         ext4_inode_block_unlocked_dio(inode);
5167         inode_dio_wait(inode);
5168
5169         jbd2_journal_lock_updates(journal);
5170
5171         /*
5172          * OK, there are no updates running now, and all cached data is
5173          * synced to disk.  We are now in a completely consistent state
5174          * which doesn't have anything in the journal, and we know that
5175          * no filesystem updates are running, so it is safe to modify
5176          * the inode's in-core data-journaling state flag now.
5177          */
5178
5179         if (val)
5180                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5181         else {
5182                 jbd2_journal_flush(journal);
5183                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5184         }
5185         ext4_set_aops(inode);
5186
5187         jbd2_journal_unlock_updates(journal);
5188         ext4_inode_resume_unlocked_dio(inode);
5189
5190         /* Finally we can mark the inode as dirty. */
5191
5192         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5193         if (IS_ERR(handle))
5194                 return PTR_ERR(handle);
5195
5196         err = ext4_mark_inode_dirty(handle, inode);
5197         ext4_handle_sync(handle);
5198         ext4_journal_stop(handle);
5199         ext4_std_error(inode->i_sb, err);
5200
5201         return err;
5202 }
5203
5204 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5205 {
5206         return !buffer_mapped(bh);
5207 }
5208
5209 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5210 {
5211         struct page *page = vmf->page;
5212         loff_t size;
5213         unsigned long len;
5214         int ret;
5215         struct file *file = vma->vm_file;
5216         struct inode *inode = file_inode(file);
5217         struct address_space *mapping = inode->i_mapping;
5218         handle_t *handle;
5219         get_block_t *get_block;
5220         int retries = 0;
5221
5222         sb_start_pagefault(inode->i_sb);
5223         file_update_time(vma->vm_file);
5224         /* Delalloc case is easy... */
5225         if (test_opt(inode->i_sb, DELALLOC) &&
5226             !ext4_should_journal_data(inode) &&
5227             !ext4_nonda_switch(inode->i_sb)) {
5228                 do {
5229                         ret = __block_page_mkwrite(vma, vmf,
5230                                                    ext4_da_get_block_prep);
5231                 } while (ret == -ENOSPC &&
5232                        ext4_should_retry_alloc(inode->i_sb, &retries));
5233                 goto out_ret;
5234         }
5235
5236         lock_page(page);
5237         size = i_size_read(inode);
5238         /* Page got truncated from under us? */
5239         if (page->mapping != mapping || page_offset(page) > size) {
5240                 unlock_page(page);
5241                 ret = VM_FAULT_NOPAGE;
5242                 goto out;
5243         }
5244
5245         if (page->index == size >> PAGE_CACHE_SHIFT)
5246                 len = size & ~PAGE_CACHE_MASK;
5247         else
5248                 len = PAGE_CACHE_SIZE;
5249         /*
5250          * Return if we have all the buffers mapped. This avoids the need to do
5251          * journal_start/journal_stop which can block and take a long time
5252          */
5253         if (page_has_buffers(page)) {
5254                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5255                                             0, len, NULL,
5256                                             ext4_bh_unmapped)) {
5257                         /* Wait so that we don't change page under IO */
5258                         wait_for_stable_page(page);
5259                         ret = VM_FAULT_LOCKED;
5260                         goto out;
5261                 }
5262         }
5263         unlock_page(page);
5264         /* OK, we need to fill the hole... */
5265         if (ext4_should_dioread_nolock(inode))
5266                 get_block = ext4_get_block_write;
5267         else
5268                 get_block = ext4_get_block;
5269 retry_alloc:
5270         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5271                                     ext4_writepage_trans_blocks(inode));
5272         if (IS_ERR(handle)) {
5273                 ret = VM_FAULT_SIGBUS;
5274                 goto out;
5275         }
5276         ret = __block_page_mkwrite(vma, vmf, get_block);
5277         if (!ret && ext4_should_journal_data(inode)) {
5278                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5279                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5280                         unlock_page(page);
5281                         ret = VM_FAULT_SIGBUS;
5282                         ext4_journal_stop(handle);
5283                         goto out;
5284                 }
5285                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5286         }
5287         ext4_journal_stop(handle);
5288         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5289                 goto retry_alloc;
5290 out_ret:
5291         ret = block_page_mkwrite_return(ret);
5292 out:
5293         sb_end_pagefault(inode->i_sb);
5294         return ret;
5295 }