Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43 #include <linux/ratelimit.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "ext4_extents.h"
49
50 #include <trace/events/ext4.h>
51
52 #define MPAGE_DA_EXTENT_TAIL 0x01
53
54 static inline int ext4_begin_ordered_truncate(struct inode *inode,
55                                               loff_t new_size)
56 {
57         trace_ext4_begin_ordered_truncate(inode, new_size);
58         /*
59          * If jinode is zero, then we never opened the file for
60          * writing, so there's no need to call
61          * jbd2_journal_begin_ordered_truncate() since there's no
62          * outstanding writes we need to flush.
63          */
64         if (!EXT4_I(inode)->jinode)
65                 return 0;
66         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
67                                                    EXT4_I(inode)->jinode,
68                                                    new_size);
69 }
70
71 static void ext4_invalidatepage(struct page *page, unsigned long offset);
72 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
73                                    struct buffer_head *bh_result, int create);
74 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
75 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
76 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
77 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
78
79 /*
80  * Test whether an inode is a fast symlink.
81  */
82 static int ext4_inode_is_fast_symlink(struct inode *inode)
83 {
84         int ea_blocks = EXT4_I(inode)->i_file_acl ?
85                 (inode->i_sb->s_blocksize >> 9) : 0;
86
87         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
88 }
89
90 /*
91  * Work out how many blocks we need to proceed with the next chunk of a
92  * truncate transaction.
93  */
94 static unsigned long blocks_for_truncate(struct inode *inode)
95 {
96         ext4_lblk_t needed;
97
98         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
99
100         /* Give ourselves just enough room to cope with inodes in which
101          * i_blocks is corrupt: we've seen disk corruptions in the past
102          * which resulted in random data in an inode which looked enough
103          * like a regular file for ext4 to try to delete it.  Things
104          * will go a bit crazy if that happens, but at least we should
105          * try not to panic the whole kernel. */
106         if (needed < 2)
107                 needed = 2;
108
109         /* But we need to bound the transaction so we don't overflow the
110          * journal. */
111         if (needed > EXT4_MAX_TRANS_DATA)
112                 needed = EXT4_MAX_TRANS_DATA;
113
114         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
115 }
116
117 /*
118  * Truncate transactions can be complex and absolutely huge.  So we need to
119  * be able to restart the transaction at a conventient checkpoint to make
120  * sure we don't overflow the journal.
121  *
122  * start_transaction gets us a new handle for a truncate transaction,
123  * and extend_transaction tries to extend the existing one a bit.  If
124  * extend fails, we need to propagate the failure up and restart the
125  * transaction in the top-level truncate loop. --sct
126  */
127 static handle_t *start_transaction(struct inode *inode)
128 {
129         handle_t *result;
130
131         result = ext4_journal_start(inode, blocks_for_truncate(inode));
132         if (!IS_ERR(result))
133                 return result;
134
135         ext4_std_error(inode->i_sb, PTR_ERR(result));
136         return result;
137 }
138
139 /*
140  * Try to extend this transaction for the purposes of truncation.
141  *
142  * Returns 0 if we managed to create more room.  If we can't create more
143  * room, and the transaction must be restarted we return 1.
144  */
145 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
146 {
147         if (!ext4_handle_valid(handle))
148                 return 0;
149         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
150                 return 0;
151         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
152                 return 0;
153         return 1;
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189
190         trace_ext4_evict_inode(inode);
191         if (inode->i_nlink) {
192                 truncate_inode_pages(&inode->i_data, 0);
193                 goto no_delete;
194         }
195
196         if (!is_bad_inode(inode))
197                 dquot_initialize(inode);
198
199         if (ext4_should_order_data(inode))
200                 ext4_begin_ordered_truncate(inode, 0);
201         truncate_inode_pages(&inode->i_data, 0);
202
203         if (is_bad_inode(inode))
204                 goto no_delete;
205
206         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
207         if (IS_ERR(handle)) {
208                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
209                 /*
210                  * If we're going to skip the normal cleanup, we still need to
211                  * make sure that the in-core orphan linked list is properly
212                  * cleaned up.
213                  */
214                 ext4_orphan_del(NULL, inode);
215                 goto no_delete;
216         }
217
218         if (IS_SYNC(inode))
219                 ext4_handle_sync(handle);
220         inode->i_size = 0;
221         err = ext4_mark_inode_dirty(handle, inode);
222         if (err) {
223                 ext4_warning(inode->i_sb,
224                              "couldn't mark inode dirty (err %d)", err);
225                 goto stop_handle;
226         }
227         if (inode->i_blocks)
228                 ext4_truncate(inode);
229
230         /*
231          * ext4_ext_truncate() doesn't reserve any slop when it
232          * restarts journal transactions; therefore there may not be
233          * enough credits left in the handle to remove the inode from
234          * the orphan list and set the dtime field.
235          */
236         if (!ext4_handle_has_enough_credits(handle, 3)) {
237                 err = ext4_journal_extend(handle, 3);
238                 if (err > 0)
239                         err = ext4_journal_restart(handle, 3);
240                 if (err != 0) {
241                         ext4_warning(inode->i_sb,
242                                      "couldn't extend journal (err %d)", err);
243                 stop_handle:
244                         ext4_journal_stop(handle);
245                         ext4_orphan_del(NULL, inode);
246                         goto no_delete;
247                 }
248         }
249
250         /*
251          * Kill off the orphan record which ext4_truncate created.
252          * AKPM: I think this can be inside the above `if'.
253          * Note that ext4_orphan_del() has to be able to cope with the
254          * deletion of a non-existent orphan - this is because we don't
255          * know if ext4_truncate() actually created an orphan record.
256          * (Well, we could do this if we need to, but heck - it works)
257          */
258         ext4_orphan_del(handle, inode);
259         EXT4_I(inode)->i_dtime  = get_seconds();
260
261         /*
262          * One subtle ordering requirement: if anything has gone wrong
263          * (transaction abort, IO errors, whatever), then we can still
264          * do these next steps (the fs will already have been marked as
265          * having errors), but we can't free the inode if the mark_dirty
266          * fails.
267          */
268         if (ext4_mark_inode_dirty(handle, inode))
269                 /* If that failed, just do the required in-core inode clear. */
270                 ext4_clear_inode(inode);
271         else
272                 ext4_free_inode(handle, inode);
273         ext4_journal_stop(handle);
274         return;
275 no_delete:
276         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
277 }
278
279 typedef struct {
280         __le32  *p;
281         __le32  key;
282         struct buffer_head *bh;
283 } Indirect;
284
285 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
286 {
287         p->key = *(p->p = v);
288         p->bh = bh;
289 }
290
291 /**
292  *      ext4_block_to_path - parse the block number into array of offsets
293  *      @inode: inode in question (we are only interested in its superblock)
294  *      @i_block: block number to be parsed
295  *      @offsets: array to store the offsets in
296  *      @boundary: set this non-zero if the referred-to block is likely to be
297  *             followed (on disk) by an indirect block.
298  *
299  *      To store the locations of file's data ext4 uses a data structure common
300  *      for UNIX filesystems - tree of pointers anchored in the inode, with
301  *      data blocks at leaves and indirect blocks in intermediate nodes.
302  *      This function translates the block number into path in that tree -
303  *      return value is the path length and @offsets[n] is the offset of
304  *      pointer to (n+1)th node in the nth one. If @block is out of range
305  *      (negative or too large) warning is printed and zero returned.
306  *
307  *      Note: function doesn't find node addresses, so no IO is needed. All
308  *      we need to know is the capacity of indirect blocks (taken from the
309  *      inode->i_sb).
310  */
311
312 /*
313  * Portability note: the last comparison (check that we fit into triple
314  * indirect block) is spelled differently, because otherwise on an
315  * architecture with 32-bit longs and 8Kb pages we might get into trouble
316  * if our filesystem had 8Kb blocks. We might use long long, but that would
317  * kill us on x86. Oh, well, at least the sign propagation does not matter -
318  * i_block would have to be negative in the very beginning, so we would not
319  * get there at all.
320  */
321
322 static int ext4_block_to_path(struct inode *inode,
323                               ext4_lblk_t i_block,
324                               ext4_lblk_t offsets[4], int *boundary)
325 {
326         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
327         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
328         const long direct_blocks = EXT4_NDIR_BLOCKS,
329                 indirect_blocks = ptrs,
330                 double_blocks = (1 << (ptrs_bits * 2));
331         int n = 0;
332         int final = 0;
333
334         if (i_block < direct_blocks) {
335                 offsets[n++] = i_block;
336                 final = direct_blocks;
337         } else if ((i_block -= direct_blocks) < indirect_blocks) {
338                 offsets[n++] = EXT4_IND_BLOCK;
339                 offsets[n++] = i_block;
340                 final = ptrs;
341         } else if ((i_block -= indirect_blocks) < double_blocks) {
342                 offsets[n++] = EXT4_DIND_BLOCK;
343                 offsets[n++] = i_block >> ptrs_bits;
344                 offsets[n++] = i_block & (ptrs - 1);
345                 final = ptrs;
346         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347                 offsets[n++] = EXT4_TIND_BLOCK;
348                 offsets[n++] = i_block >> (ptrs_bits * 2);
349                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350                 offsets[n++] = i_block & (ptrs - 1);
351                 final = ptrs;
352         } else {
353                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
354                              i_block + direct_blocks +
355                              indirect_blocks + double_blocks, inode->i_ino);
356         }
357         if (boundary)
358                 *boundary = final - 1 - (i_block & (ptrs - 1));
359         return n;
360 }
361
362 static int __ext4_check_blockref(const char *function, unsigned int line,
363                                  struct inode *inode,
364                                  __le32 *p, unsigned int max)
365 {
366         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
367         __le32 *bref = p;
368         unsigned int blk;
369
370         while (bref < p+max) {
371                 blk = le32_to_cpu(*bref++);
372                 if (blk &&
373                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
374                                                     blk, 1))) {
375                         es->s_last_error_block = cpu_to_le64(blk);
376                         ext4_error_inode(inode, function, line, blk,
377                                          "invalid block");
378                         return -EIO;
379                 }
380         }
381         return 0;
382 }
383
384
385 #define ext4_check_indirect_blockref(inode, bh)                         \
386         __ext4_check_blockref(__func__, __LINE__, inode,                \
387                               (__le32 *)(bh)->b_data,                   \
388                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
389
390 #define ext4_check_inode_blockref(inode)                                \
391         __ext4_check_blockref(__func__, __LINE__, inode,                \
392                               EXT4_I(inode)->i_data,                    \
393                               EXT4_NDIR_BLOCKS)
394
395 /**
396  *      ext4_get_branch - read the chain of indirect blocks leading to data
397  *      @inode: inode in question
398  *      @depth: depth of the chain (1 - direct pointer, etc.)
399  *      @offsets: offsets of pointers in inode/indirect blocks
400  *      @chain: place to store the result
401  *      @err: here we store the error value
402  *
403  *      Function fills the array of triples <key, p, bh> and returns %NULL
404  *      if everything went OK or the pointer to the last filled triple
405  *      (incomplete one) otherwise. Upon the return chain[i].key contains
406  *      the number of (i+1)-th block in the chain (as it is stored in memory,
407  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
408  *      number (it points into struct inode for i==0 and into the bh->b_data
409  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
410  *      block for i>0 and NULL for i==0. In other words, it holds the block
411  *      numbers of the chain, addresses they were taken from (and where we can
412  *      verify that chain did not change) and buffer_heads hosting these
413  *      numbers.
414  *
415  *      Function stops when it stumbles upon zero pointer (absent block)
416  *              (pointer to last triple returned, *@err == 0)
417  *      or when it gets an IO error reading an indirect block
418  *              (ditto, *@err == -EIO)
419  *      or when it reads all @depth-1 indirect blocks successfully and finds
420  *      the whole chain, all way to the data (returns %NULL, *err == 0).
421  *
422  *      Need to be called with
423  *      down_read(&EXT4_I(inode)->i_data_sem)
424  */
425 static Indirect *ext4_get_branch(struct inode *inode, int depth,
426                                  ext4_lblk_t  *offsets,
427                                  Indirect chain[4], int *err)
428 {
429         struct super_block *sb = inode->i_sb;
430         Indirect *p = chain;
431         struct buffer_head *bh;
432
433         *err = 0;
434         /* i_data is not going away, no lock needed */
435         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
436         if (!p->key)
437                 goto no_block;
438         while (--depth) {
439                 bh = sb_getblk(sb, le32_to_cpu(p->key));
440                 if (unlikely(!bh))
441                         goto failure;
442
443                 if (!bh_uptodate_or_lock(bh)) {
444                         if (bh_submit_read(bh) < 0) {
445                                 put_bh(bh);
446                                 goto failure;
447                         }
448                         /* validate block references */
449                         if (ext4_check_indirect_blockref(inode, bh)) {
450                                 put_bh(bh);
451                                 goto failure;
452                         }
453                 }
454
455                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
456                 /* Reader: end */
457                 if (!p->key)
458                         goto no_block;
459         }
460         return NULL;
461
462 failure:
463         *err = -EIO;
464 no_block:
465         return p;
466 }
467
468 /**
469  *      ext4_find_near - find a place for allocation with sufficient locality
470  *      @inode: owner
471  *      @ind: descriptor of indirect block.
472  *
473  *      This function returns the preferred place for block allocation.
474  *      It is used when heuristic for sequential allocation fails.
475  *      Rules are:
476  *        + if there is a block to the left of our position - allocate near it.
477  *        + if pointer will live in indirect block - allocate near that block.
478  *        + if pointer will live in inode - allocate in the same
479  *          cylinder group.
480  *
481  * In the latter case we colour the starting block by the callers PID to
482  * prevent it from clashing with concurrent allocations for a different inode
483  * in the same block group.   The PID is used here so that functionally related
484  * files will be close-by on-disk.
485  *
486  *      Caller must make sure that @ind is valid and will stay that way.
487  */
488 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
489 {
490         struct ext4_inode_info *ei = EXT4_I(inode);
491         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
492         __le32 *p;
493         ext4_fsblk_t bg_start;
494         ext4_fsblk_t last_block;
495         ext4_grpblk_t colour;
496         ext4_group_t block_group;
497         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
498
499         /* Try to find previous block */
500         for (p = ind->p - 1; p >= start; p--) {
501                 if (*p)
502                         return le32_to_cpu(*p);
503         }
504
505         /* No such thing, so let's try location of indirect block */
506         if (ind->bh)
507                 return ind->bh->b_blocknr;
508
509         /*
510          * It is going to be referred to from the inode itself? OK, just put it
511          * into the same cylinder group then.
512          */
513         block_group = ei->i_block_group;
514         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
515                 block_group &= ~(flex_size-1);
516                 if (S_ISREG(inode->i_mode))
517                         block_group++;
518         }
519         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
520         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
521
522         /*
523          * If we are doing delayed allocation, we don't need take
524          * colour into account.
525          */
526         if (test_opt(inode->i_sb, DELALLOC))
527                 return bg_start;
528
529         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
530                 colour = (current->pid % 16) *
531                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
532         else
533                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
534         return bg_start + colour;
535 }
536
537 /**
538  *      ext4_find_goal - find a preferred place for allocation.
539  *      @inode: owner
540  *      @block:  block we want
541  *      @partial: pointer to the last triple within a chain
542  *
543  *      Normally this function find the preferred place for block allocation,
544  *      returns it.
545  *      Because this is only used for non-extent files, we limit the block nr
546  *      to 32 bits.
547  */
548 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
549                                    Indirect *partial)
550 {
551         ext4_fsblk_t goal;
552
553         /*
554          * XXX need to get goal block from mballoc's data structures
555          */
556
557         goal = ext4_find_near(inode, partial);
558         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
559         return goal;
560 }
561
562 /**
563  *      ext4_blks_to_allocate - Look up the block map and count the number
564  *      of direct blocks need to be allocated for the given branch.
565  *
566  *      @branch: chain of indirect blocks
567  *      @k: number of blocks need for indirect blocks
568  *      @blks: number of data blocks to be mapped.
569  *      @blocks_to_boundary:  the offset in the indirect block
570  *
571  *      return the total number of blocks to be allocate, including the
572  *      direct and indirect blocks.
573  */
574 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
575                                  int blocks_to_boundary)
576 {
577         unsigned int count = 0;
578
579         /*
580          * Simple case, [t,d]Indirect block(s) has not allocated yet
581          * then it's clear blocks on that path have not allocated
582          */
583         if (k > 0) {
584                 /* right now we don't handle cross boundary allocation */
585                 if (blks < blocks_to_boundary + 1)
586                         count += blks;
587                 else
588                         count += blocks_to_boundary + 1;
589                 return count;
590         }
591
592         count++;
593         while (count < blks && count <= blocks_to_boundary &&
594                 le32_to_cpu(*(branch[0].p + count)) == 0) {
595                 count++;
596         }
597         return count;
598 }
599
600 /**
601  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
602  *      @handle: handle for this transaction
603  *      @inode: inode which needs allocated blocks
604  *      @iblock: the logical block to start allocated at
605  *      @goal: preferred physical block of allocation
606  *      @indirect_blks: the number of blocks need to allocate for indirect
607  *                      blocks
608  *      @blks: number of desired blocks
609  *      @new_blocks: on return it will store the new block numbers for
610  *      the indirect blocks(if needed) and the first direct block,
611  *      @err: on return it will store the error code
612  *
613  *      This function will return the number of blocks allocated as
614  *      requested by the passed-in parameters.
615  */
616 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
617                              ext4_lblk_t iblock, ext4_fsblk_t goal,
618                              int indirect_blks, int blks,
619                              ext4_fsblk_t new_blocks[4], int *err)
620 {
621         struct ext4_allocation_request ar;
622         int target, i;
623         unsigned long count = 0, blk_allocated = 0;
624         int index = 0;
625         ext4_fsblk_t current_block = 0;
626         int ret = 0;
627
628         /*
629          * Here we try to allocate the requested multiple blocks at once,
630          * on a best-effort basis.
631          * To build a branch, we should allocate blocks for
632          * the indirect blocks(if not allocated yet), and at least
633          * the first direct block of this branch.  That's the
634          * minimum number of blocks need to allocate(required)
635          */
636         /* first we try to allocate the indirect blocks */
637         target = indirect_blks;
638         while (target > 0) {
639                 count = target;
640                 /* allocating blocks for indirect blocks and direct blocks */
641                 current_block = ext4_new_meta_blocks(handle, inode,
642                                                         goal, &count, err);
643                 if (*err)
644                         goto failed_out;
645
646                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
647                         EXT4_ERROR_INODE(inode,
648                                          "current_block %llu + count %lu > %d!",
649                                          current_block, count,
650                                          EXT4_MAX_BLOCK_FILE_PHYS);
651                         *err = -EIO;
652                         goto failed_out;
653                 }
654
655                 target -= count;
656                 /* allocate blocks for indirect blocks */
657                 while (index < indirect_blks && count) {
658                         new_blocks[index++] = current_block++;
659                         count--;
660                 }
661                 if (count > 0) {
662                         /*
663                          * save the new block number
664                          * for the first direct block
665                          */
666                         new_blocks[index] = current_block;
667                         printk(KERN_INFO "%s returned more blocks than "
668                                                 "requested\n", __func__);
669                         WARN_ON(1);
670                         break;
671                 }
672         }
673
674         target = blks - count ;
675         blk_allocated = count;
676         if (!target)
677                 goto allocated;
678         /* Now allocate data blocks */
679         memset(&ar, 0, sizeof(ar));
680         ar.inode = inode;
681         ar.goal = goal;
682         ar.len = target;
683         ar.logical = iblock;
684         if (S_ISREG(inode->i_mode))
685                 /* enable in-core preallocation only for regular files */
686                 ar.flags = EXT4_MB_HINT_DATA;
687
688         current_block = ext4_mb_new_blocks(handle, &ar, err);
689         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
690                 EXT4_ERROR_INODE(inode,
691                                  "current_block %llu + ar.len %d > %d!",
692                                  current_block, ar.len,
693                                  EXT4_MAX_BLOCK_FILE_PHYS);
694                 *err = -EIO;
695                 goto failed_out;
696         }
697
698         if (*err && (target == blks)) {
699                 /*
700                  * if the allocation failed and we didn't allocate
701                  * any blocks before
702                  */
703                 goto failed_out;
704         }
705         if (!*err) {
706                 if (target == blks) {
707                         /*
708                          * save the new block number
709                          * for the first direct block
710                          */
711                         new_blocks[index] = current_block;
712                 }
713                 blk_allocated += ar.len;
714         }
715 allocated:
716         /* total number of blocks allocated for direct blocks */
717         ret = blk_allocated;
718         *err = 0;
719         return ret;
720 failed_out:
721         for (i = 0; i < index; i++)
722                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
723         return ret;
724 }
725
726 /**
727  *      ext4_alloc_branch - allocate and set up a chain of blocks.
728  *      @handle: handle for this transaction
729  *      @inode: owner
730  *      @indirect_blks: number of allocated indirect blocks
731  *      @blks: number of allocated direct blocks
732  *      @goal: preferred place for allocation
733  *      @offsets: offsets (in the blocks) to store the pointers to next.
734  *      @branch: place to store the chain in.
735  *
736  *      This function allocates blocks, zeroes out all but the last one,
737  *      links them into chain and (if we are synchronous) writes them to disk.
738  *      In other words, it prepares a branch that can be spliced onto the
739  *      inode. It stores the information about that chain in the branch[], in
740  *      the same format as ext4_get_branch() would do. We are calling it after
741  *      we had read the existing part of chain and partial points to the last
742  *      triple of that (one with zero ->key). Upon the exit we have the same
743  *      picture as after the successful ext4_get_block(), except that in one
744  *      place chain is disconnected - *branch->p is still zero (we did not
745  *      set the last link), but branch->key contains the number that should
746  *      be placed into *branch->p to fill that gap.
747  *
748  *      If allocation fails we free all blocks we've allocated (and forget
749  *      their buffer_heads) and return the error value the from failed
750  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751  *      as described above and return 0.
752  */
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754                              ext4_lblk_t iblock, int indirect_blks,
755                              int *blks, ext4_fsblk_t goal,
756                              ext4_lblk_t *offsets, Indirect *branch)
757 {
758         int blocksize = inode->i_sb->s_blocksize;
759         int i, n = 0;
760         int err = 0;
761         struct buffer_head *bh;
762         int num;
763         ext4_fsblk_t new_blocks[4];
764         ext4_fsblk_t current_block;
765
766         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767                                 *blks, new_blocks, &err);
768         if (err)
769                 return err;
770
771         branch[0].key = cpu_to_le32(new_blocks[0]);
772         /*
773          * metadata blocks and data blocks are allocated.
774          */
775         for (n = 1; n <= indirect_blks;  n++) {
776                 /*
777                  * Get buffer_head for parent block, zero it out
778                  * and set the pointer to new one, then send
779                  * parent to disk.
780                  */
781                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782                 if (unlikely(!bh)) {
783                         err = -EIO;
784                         goto failed;
785                 }
786
787                 branch[n].bh = bh;
788                 lock_buffer(bh);
789                 BUFFER_TRACE(bh, "call get_create_access");
790                 err = ext4_journal_get_create_access(handle, bh);
791                 if (err) {
792                         /* Don't brelse(bh) here; it's done in
793                          * ext4_journal_forget() below */
794                         unlock_buffer(bh);
795                         goto failed;
796                 }
797
798                 memset(bh->b_data, 0, blocksize);
799                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
800                 branch[n].key = cpu_to_le32(new_blocks[n]);
801                 *branch[n].p = branch[n].key;
802                 if (n == indirect_blks) {
803                         current_block = new_blocks[n];
804                         /*
805                          * End of chain, update the last new metablock of
806                          * the chain to point to the new allocated
807                          * data blocks numbers
808                          */
809                         for (i = 1; i < num; i++)
810                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
811                 }
812                 BUFFER_TRACE(bh, "marking uptodate");
813                 set_buffer_uptodate(bh);
814                 unlock_buffer(bh);
815
816                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
817                 err = ext4_handle_dirty_metadata(handle, inode, bh);
818                 if (err)
819                         goto failed;
820         }
821         *blks = num;
822         return err;
823 failed:
824         /* Allocation failed, free what we already allocated */
825         ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
826         for (i = 1; i <= n ; i++) {
827                 /*
828                  * branch[i].bh is newly allocated, so there is no
829                  * need to revoke the block, which is why we don't
830                  * need to set EXT4_FREE_BLOCKS_METADATA.
831                  */
832                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
833                                  EXT4_FREE_BLOCKS_FORGET);
834         }
835         for (i = n+1; i < indirect_blks; i++)
836                 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
837
838         ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
839
840         return err;
841 }
842
843 /**
844  * ext4_splice_branch - splice the allocated branch onto inode.
845  * @handle: handle for this transaction
846  * @inode: owner
847  * @block: (logical) number of block we are adding
848  * @chain: chain of indirect blocks (with a missing link - see
849  *      ext4_alloc_branch)
850  * @where: location of missing link
851  * @num:   number of indirect blocks we are adding
852  * @blks:  number of direct blocks we are adding
853  *
854  * This function fills the missing link and does all housekeeping needed in
855  * inode (->i_blocks, etc.). In case of success we end up with the full
856  * chain to new block and return 0.
857  */
858 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
859                               ext4_lblk_t block, Indirect *where, int num,
860                               int blks)
861 {
862         int i;
863         int err = 0;
864         ext4_fsblk_t current_block;
865
866         /*
867          * If we're splicing into a [td]indirect block (as opposed to the
868          * inode) then we need to get write access to the [td]indirect block
869          * before the splice.
870          */
871         if (where->bh) {
872                 BUFFER_TRACE(where->bh, "get_write_access");
873                 err = ext4_journal_get_write_access(handle, where->bh);
874                 if (err)
875                         goto err_out;
876         }
877         /* That's it */
878
879         *where->p = where->key;
880
881         /*
882          * Update the host buffer_head or inode to point to more just allocated
883          * direct blocks blocks
884          */
885         if (num == 0 && blks > 1) {
886                 current_block = le32_to_cpu(where->key) + 1;
887                 for (i = 1; i < blks; i++)
888                         *(where->p + i) = cpu_to_le32(current_block++);
889         }
890
891         /* We are done with atomic stuff, now do the rest of housekeeping */
892         /* had we spliced it onto indirect block? */
893         if (where->bh) {
894                 /*
895                  * If we spliced it onto an indirect block, we haven't
896                  * altered the inode.  Note however that if it is being spliced
897                  * onto an indirect block at the very end of the file (the
898                  * file is growing) then we *will* alter the inode to reflect
899                  * the new i_size.  But that is not done here - it is done in
900                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
901                  */
902                 jbd_debug(5, "splicing indirect only\n");
903                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
904                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
905                 if (err)
906                         goto err_out;
907         } else {
908                 /*
909                  * OK, we spliced it into the inode itself on a direct block.
910                  */
911                 ext4_mark_inode_dirty(handle, inode);
912                 jbd_debug(5, "splicing direct\n");
913         }
914         return err;
915
916 err_out:
917         for (i = 1; i <= num; i++) {
918                 /*
919                  * branch[i].bh is newly allocated, so there is no
920                  * need to revoke the block, which is why we don't
921                  * need to set EXT4_FREE_BLOCKS_METADATA.
922                  */
923                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
924                                  EXT4_FREE_BLOCKS_FORGET);
925         }
926         ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
927                          blks, 0);
928
929         return err;
930 }
931
932 /*
933  * The ext4_ind_map_blocks() function handles non-extents inodes
934  * (i.e., using the traditional indirect/double-indirect i_blocks
935  * scheme) for ext4_map_blocks().
936  *
937  * Allocation strategy is simple: if we have to allocate something, we will
938  * have to go the whole way to leaf. So let's do it before attaching anything
939  * to tree, set linkage between the newborn blocks, write them if sync is
940  * required, recheck the path, free and repeat if check fails, otherwise
941  * set the last missing link (that will protect us from any truncate-generated
942  * removals - all blocks on the path are immune now) and possibly force the
943  * write on the parent block.
944  * That has a nice additional property: no special recovery from the failed
945  * allocations is needed - we simply release blocks and do not touch anything
946  * reachable from inode.
947  *
948  * `handle' can be NULL if create == 0.
949  *
950  * return > 0, # of blocks mapped or allocated.
951  * return = 0, if plain lookup failed.
952  * return < 0, error case.
953  *
954  * The ext4_ind_get_blocks() function should be called with
955  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
956  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
957  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
958  * blocks.
959  */
960 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
961                                struct ext4_map_blocks *map,
962                                int flags)
963 {
964         int err = -EIO;
965         ext4_lblk_t offsets[4];
966         Indirect chain[4];
967         Indirect *partial;
968         ext4_fsblk_t goal;
969         int indirect_blks;
970         int blocks_to_boundary = 0;
971         int depth;
972         int count = 0;
973         ext4_fsblk_t first_block = 0;
974
975         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
976         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
977         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
978                                    &blocks_to_boundary);
979
980         if (depth == 0)
981                 goto out;
982
983         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
984
985         /* Simplest case - block found, no allocation needed */
986         if (!partial) {
987                 first_block = le32_to_cpu(chain[depth - 1].key);
988                 count++;
989                 /*map more blocks*/
990                 while (count < map->m_len && count <= blocks_to_boundary) {
991                         ext4_fsblk_t blk;
992
993                         blk = le32_to_cpu(*(chain[depth-1].p + count));
994
995                         if (blk == first_block + count)
996                                 count++;
997                         else
998                                 break;
999                 }
1000                 goto got_it;
1001         }
1002
1003         /* Next simple case - plain lookup or failed read of indirect block */
1004         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1005                 goto cleanup;
1006
1007         /*
1008          * Okay, we need to do block allocation.
1009         */
1010         goal = ext4_find_goal(inode, map->m_lblk, partial);
1011
1012         /* the number of blocks need to allocate for [d,t]indirect blocks */
1013         indirect_blks = (chain + depth) - partial - 1;
1014
1015         /*
1016          * Next look up the indirect map to count the totoal number of
1017          * direct blocks to allocate for this branch.
1018          */
1019         count = ext4_blks_to_allocate(partial, indirect_blks,
1020                                       map->m_len, blocks_to_boundary);
1021         /*
1022          * Block out ext4_truncate while we alter the tree
1023          */
1024         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1025                                 &count, goal,
1026                                 offsets + (partial - chain), partial);
1027
1028         /*
1029          * The ext4_splice_branch call will free and forget any buffers
1030          * on the new chain if there is a failure, but that risks using
1031          * up transaction credits, especially for bitmaps where the
1032          * credits cannot be returned.  Can we handle this somehow?  We
1033          * may need to return -EAGAIN upwards in the worst case.  --sct
1034          */
1035         if (!err)
1036                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1037                                          partial, indirect_blks, count);
1038         if (err)
1039                 goto cleanup;
1040
1041         map->m_flags |= EXT4_MAP_NEW;
1042
1043         ext4_update_inode_fsync_trans(handle, inode, 1);
1044 got_it:
1045         map->m_flags |= EXT4_MAP_MAPPED;
1046         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1047         map->m_len = count;
1048         if (count > blocks_to_boundary)
1049                 map->m_flags |= EXT4_MAP_BOUNDARY;
1050         err = count;
1051         /* Clean up and exit */
1052         partial = chain + depth - 1;    /* the whole chain */
1053 cleanup:
1054         while (partial > chain) {
1055                 BUFFER_TRACE(partial->bh, "call brelse");
1056                 brelse(partial->bh);
1057                 partial--;
1058         }
1059 out:
1060         return err;
1061 }
1062
1063 #ifdef CONFIG_QUOTA
1064 qsize_t *ext4_get_reserved_space(struct inode *inode)
1065 {
1066         return &EXT4_I(inode)->i_reserved_quota;
1067 }
1068 #endif
1069
1070 /*
1071  * Calculate the number of metadata blocks need to reserve
1072  * to allocate a new block at @lblocks for non extent file based file
1073  */
1074 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1075                                               sector_t lblock)
1076 {
1077         struct ext4_inode_info *ei = EXT4_I(inode);
1078         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1079         int blk_bits;
1080
1081         if (lblock < EXT4_NDIR_BLOCKS)
1082                 return 0;
1083
1084         lblock -= EXT4_NDIR_BLOCKS;
1085
1086         if (ei->i_da_metadata_calc_len &&
1087             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1088                 ei->i_da_metadata_calc_len++;
1089                 return 0;
1090         }
1091         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1092         ei->i_da_metadata_calc_len = 1;
1093         blk_bits = order_base_2(lblock);
1094         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1095 }
1096
1097 /*
1098  * Calculate the number of metadata blocks need to reserve
1099  * to allocate a block located at @lblock
1100  */
1101 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1102 {
1103         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1104                 return ext4_ext_calc_metadata_amount(inode, lblock);
1105
1106         return ext4_indirect_calc_metadata_amount(inode, lblock);
1107 }
1108
1109 /*
1110  * Called with i_data_sem down, which is important since we can call
1111  * ext4_discard_preallocations() from here.
1112  */
1113 void ext4_da_update_reserve_space(struct inode *inode,
1114                                         int used, int quota_claim)
1115 {
1116         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1117         struct ext4_inode_info *ei = EXT4_I(inode);
1118
1119         spin_lock(&ei->i_block_reservation_lock);
1120         trace_ext4_da_update_reserve_space(inode, used);
1121         if (unlikely(used > ei->i_reserved_data_blocks)) {
1122                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1123                          "with only %d reserved data blocks\n",
1124                          __func__, inode->i_ino, used,
1125                          ei->i_reserved_data_blocks);
1126                 WARN_ON(1);
1127                 used = ei->i_reserved_data_blocks;
1128         }
1129
1130         /* Update per-inode reservations */
1131         ei->i_reserved_data_blocks -= used;
1132         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1133         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1134                            used + ei->i_allocated_meta_blocks);
1135         ei->i_allocated_meta_blocks = 0;
1136
1137         if (ei->i_reserved_data_blocks == 0) {
1138                 /*
1139                  * We can release all of the reserved metadata blocks
1140                  * only when we have written all of the delayed
1141                  * allocation blocks.
1142                  */
1143                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1144                                    ei->i_reserved_meta_blocks);
1145                 ei->i_reserved_meta_blocks = 0;
1146                 ei->i_da_metadata_calc_len = 0;
1147         }
1148         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1149
1150         /* Update quota subsystem for data blocks */
1151         if (quota_claim)
1152                 dquot_claim_block(inode, used);
1153         else {
1154                 /*
1155                  * We did fallocate with an offset that is already delayed
1156                  * allocated. So on delayed allocated writeback we should
1157                  * not re-claim the quota for fallocated blocks.
1158                  */
1159                 dquot_release_reservation_block(inode, used);
1160         }
1161
1162         /*
1163          * If we have done all the pending block allocations and if
1164          * there aren't any writers on the inode, we can discard the
1165          * inode's preallocations.
1166          */
1167         if ((ei->i_reserved_data_blocks == 0) &&
1168             (atomic_read(&inode->i_writecount) == 0))
1169                 ext4_discard_preallocations(inode);
1170 }
1171
1172 static int __check_block_validity(struct inode *inode, const char *func,
1173                                 unsigned int line,
1174                                 struct ext4_map_blocks *map)
1175 {
1176         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1177                                    map->m_len)) {
1178                 ext4_error_inode(inode, func, line, map->m_pblk,
1179                                  "lblock %lu mapped to illegal pblock "
1180                                  "(length %d)", (unsigned long) map->m_lblk,
1181                                  map->m_len);
1182                 return -EIO;
1183         }
1184         return 0;
1185 }
1186
1187 #define check_block_validity(inode, map)        \
1188         __check_block_validity((inode), __func__, __LINE__, (map))
1189
1190 /*
1191  * Return the number of contiguous dirty pages in a given inode
1192  * starting at page frame idx.
1193  */
1194 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1195                                     unsigned int max_pages)
1196 {
1197         struct address_space *mapping = inode->i_mapping;
1198         pgoff_t index;
1199         struct pagevec pvec;
1200         pgoff_t num = 0;
1201         int i, nr_pages, done = 0;
1202
1203         if (max_pages == 0)
1204                 return 0;
1205         pagevec_init(&pvec, 0);
1206         while (!done) {
1207                 index = idx;
1208                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1209                                               PAGECACHE_TAG_DIRTY,
1210                                               (pgoff_t)PAGEVEC_SIZE);
1211                 if (nr_pages == 0)
1212                         break;
1213                 for (i = 0; i < nr_pages; i++) {
1214                         struct page *page = pvec.pages[i];
1215                         struct buffer_head *bh, *head;
1216
1217                         lock_page(page);
1218                         if (unlikely(page->mapping != mapping) ||
1219                             !PageDirty(page) ||
1220                             PageWriteback(page) ||
1221                             page->index != idx) {
1222                                 done = 1;
1223                                 unlock_page(page);
1224                                 break;
1225                         }
1226                         if (page_has_buffers(page)) {
1227                                 bh = head = page_buffers(page);
1228                                 do {
1229                                         if (!buffer_delay(bh) &&
1230                                             !buffer_unwritten(bh))
1231                                                 done = 1;
1232                                         bh = bh->b_this_page;
1233                                 } while (!done && (bh != head));
1234                         }
1235                         unlock_page(page);
1236                         if (done)
1237                                 break;
1238                         idx++;
1239                         num++;
1240                         if (num >= max_pages) {
1241                                 done = 1;
1242                                 break;
1243                         }
1244                 }
1245                 pagevec_release(&pvec);
1246         }
1247         return num;
1248 }
1249
1250 /*
1251  * The ext4_map_blocks() function tries to look up the requested blocks,
1252  * and returns if the blocks are already mapped.
1253  *
1254  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1255  * and store the allocated blocks in the result buffer head and mark it
1256  * mapped.
1257  *
1258  * If file type is extents based, it will call ext4_ext_map_blocks(),
1259  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1260  * based files
1261  *
1262  * On success, it returns the number of blocks being mapped or allocate.
1263  * if create==0 and the blocks are pre-allocated and uninitialized block,
1264  * the result buffer head is unmapped. If the create ==1, it will make sure
1265  * the buffer head is mapped.
1266  *
1267  * It returns 0 if plain look up failed (blocks have not been allocated), in
1268  * that casem, buffer head is unmapped
1269  *
1270  * It returns the error in case of allocation failure.
1271  */
1272 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1273                     struct ext4_map_blocks *map, int flags)
1274 {
1275         int retval;
1276
1277         map->m_flags = 0;
1278         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1279                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1280                   (unsigned long) map->m_lblk);
1281         /*
1282          * Try to see if we can get the block without requesting a new
1283          * file system block.
1284          */
1285         down_read((&EXT4_I(inode)->i_data_sem));
1286         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1287                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1288         } else {
1289                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1290         }
1291         up_read((&EXT4_I(inode)->i_data_sem));
1292
1293         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1294                 int ret = check_block_validity(inode, map);
1295                 if (ret != 0)
1296                         return ret;
1297         }
1298
1299         /* If it is only a block(s) look up */
1300         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1301                 return retval;
1302
1303         /*
1304          * Returns if the blocks have already allocated
1305          *
1306          * Note that if blocks have been preallocated
1307          * ext4_ext_get_block() returns th create = 0
1308          * with buffer head unmapped.
1309          */
1310         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1311                 return retval;
1312
1313         /*
1314          * When we call get_blocks without the create flag, the
1315          * BH_Unwritten flag could have gotten set if the blocks
1316          * requested were part of a uninitialized extent.  We need to
1317          * clear this flag now that we are committed to convert all or
1318          * part of the uninitialized extent to be an initialized
1319          * extent.  This is because we need to avoid the combination
1320          * of BH_Unwritten and BH_Mapped flags being simultaneously
1321          * set on the buffer_head.
1322          */
1323         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1324
1325         /*
1326          * New blocks allocate and/or writing to uninitialized extent
1327          * will possibly result in updating i_data, so we take
1328          * the write lock of i_data_sem, and call get_blocks()
1329          * with create == 1 flag.
1330          */
1331         down_write((&EXT4_I(inode)->i_data_sem));
1332
1333         /*
1334          * if the caller is from delayed allocation writeout path
1335          * we have already reserved fs blocks for allocation
1336          * let the underlying get_block() function know to
1337          * avoid double accounting
1338          */
1339         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1340                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1341         /*
1342          * We need to check for EXT4 here because migrate
1343          * could have changed the inode type in between
1344          */
1345         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1346                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1347         } else {
1348                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1349
1350                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1351                         /*
1352                          * We allocated new blocks which will result in
1353                          * i_data's format changing.  Force the migrate
1354                          * to fail by clearing migrate flags
1355                          */
1356                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1357                 }
1358
1359                 /*
1360                  * Update reserved blocks/metadata blocks after successful
1361                  * block allocation which had been deferred till now. We don't
1362                  * support fallocate for non extent files. So we can update
1363                  * reserve space here.
1364                  */
1365                 if ((retval > 0) &&
1366                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1367                         ext4_da_update_reserve_space(inode, retval, 1);
1368         }
1369         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1370                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1371
1372         up_write((&EXT4_I(inode)->i_data_sem));
1373         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1374                 int ret = check_block_validity(inode, map);
1375                 if (ret != 0)
1376                         return ret;
1377         }
1378         return retval;
1379 }
1380
1381 /* Maximum number of blocks we map for direct IO at once. */
1382 #define DIO_MAX_BLOCKS 4096
1383
1384 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1385                            struct buffer_head *bh, int flags)
1386 {
1387         handle_t *handle = ext4_journal_current_handle();
1388         struct ext4_map_blocks map;
1389         int ret = 0, started = 0;
1390         int dio_credits;
1391
1392         map.m_lblk = iblock;
1393         map.m_len = bh->b_size >> inode->i_blkbits;
1394
1395         if (flags && !handle) {
1396                 /* Direct IO write... */
1397                 if (map.m_len > DIO_MAX_BLOCKS)
1398                         map.m_len = DIO_MAX_BLOCKS;
1399                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1400                 handle = ext4_journal_start(inode, dio_credits);
1401                 if (IS_ERR(handle)) {
1402                         ret = PTR_ERR(handle);
1403                         return ret;
1404                 }
1405                 started = 1;
1406         }
1407
1408         ret = ext4_map_blocks(handle, inode, &map, flags);
1409         if (ret > 0) {
1410                 map_bh(bh, inode->i_sb, map.m_pblk);
1411                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1412                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1413                 ret = 0;
1414         }
1415         if (started)
1416                 ext4_journal_stop(handle);
1417         return ret;
1418 }
1419
1420 int ext4_get_block(struct inode *inode, sector_t iblock,
1421                    struct buffer_head *bh, int create)
1422 {
1423         return _ext4_get_block(inode, iblock, bh,
1424                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1425 }
1426
1427 /*
1428  * `handle' can be NULL if create is zero
1429  */
1430 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1431                                 ext4_lblk_t block, int create, int *errp)
1432 {
1433         struct ext4_map_blocks map;
1434         struct buffer_head *bh;
1435         int fatal = 0, err;
1436
1437         J_ASSERT(handle != NULL || create == 0);
1438
1439         map.m_lblk = block;
1440         map.m_len = 1;
1441         err = ext4_map_blocks(handle, inode, &map,
1442                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1443
1444         if (err < 0)
1445                 *errp = err;
1446         if (err <= 0)
1447                 return NULL;
1448         *errp = 0;
1449
1450         bh = sb_getblk(inode->i_sb, map.m_pblk);
1451         if (!bh) {
1452                 *errp = -EIO;
1453                 return NULL;
1454         }
1455         if (map.m_flags & EXT4_MAP_NEW) {
1456                 J_ASSERT(create != 0);
1457                 J_ASSERT(handle != NULL);
1458
1459                 /*
1460                  * Now that we do not always journal data, we should
1461                  * keep in mind whether this should always journal the
1462                  * new buffer as metadata.  For now, regular file
1463                  * writes use ext4_get_block instead, so it's not a
1464                  * problem.
1465                  */
1466                 lock_buffer(bh);
1467                 BUFFER_TRACE(bh, "call get_create_access");
1468                 fatal = ext4_journal_get_create_access(handle, bh);
1469                 if (!fatal && !buffer_uptodate(bh)) {
1470                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1471                         set_buffer_uptodate(bh);
1472                 }
1473                 unlock_buffer(bh);
1474                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1475                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1476                 if (!fatal)
1477                         fatal = err;
1478         } else {
1479                 BUFFER_TRACE(bh, "not a new buffer");
1480         }
1481         if (fatal) {
1482                 *errp = fatal;
1483                 brelse(bh);
1484                 bh = NULL;
1485         }
1486         return bh;
1487 }
1488
1489 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1490                                ext4_lblk_t block, int create, int *err)
1491 {
1492         struct buffer_head *bh;
1493
1494         bh = ext4_getblk(handle, inode, block, create, err);
1495         if (!bh)
1496                 return bh;
1497         if (buffer_uptodate(bh))
1498                 return bh;
1499         ll_rw_block(READ_META, 1, &bh);
1500         wait_on_buffer(bh);
1501         if (buffer_uptodate(bh))
1502                 return bh;
1503         put_bh(bh);
1504         *err = -EIO;
1505         return NULL;
1506 }
1507
1508 static int walk_page_buffers(handle_t *handle,
1509                              struct buffer_head *head,
1510                              unsigned from,
1511                              unsigned to,
1512                              int *partial,
1513                              int (*fn)(handle_t *handle,
1514                                        struct buffer_head *bh))
1515 {
1516         struct buffer_head *bh;
1517         unsigned block_start, block_end;
1518         unsigned blocksize = head->b_size;
1519         int err, ret = 0;
1520         struct buffer_head *next;
1521
1522         for (bh = head, block_start = 0;
1523              ret == 0 && (bh != head || !block_start);
1524              block_start = block_end, bh = next) {
1525                 next = bh->b_this_page;
1526                 block_end = block_start + blocksize;
1527                 if (block_end <= from || block_start >= to) {
1528                         if (partial && !buffer_uptodate(bh))
1529                                 *partial = 1;
1530                         continue;
1531                 }
1532                 err = (*fn)(handle, bh);
1533                 if (!ret)
1534                         ret = err;
1535         }
1536         return ret;
1537 }
1538
1539 /*
1540  * To preserve ordering, it is essential that the hole instantiation and
1541  * the data write be encapsulated in a single transaction.  We cannot
1542  * close off a transaction and start a new one between the ext4_get_block()
1543  * and the commit_write().  So doing the jbd2_journal_start at the start of
1544  * prepare_write() is the right place.
1545  *
1546  * Also, this function can nest inside ext4_writepage() ->
1547  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1548  * has generated enough buffer credits to do the whole page.  So we won't
1549  * block on the journal in that case, which is good, because the caller may
1550  * be PF_MEMALLOC.
1551  *
1552  * By accident, ext4 can be reentered when a transaction is open via
1553  * quota file writes.  If we were to commit the transaction while thus
1554  * reentered, there can be a deadlock - we would be holding a quota
1555  * lock, and the commit would never complete if another thread had a
1556  * transaction open and was blocking on the quota lock - a ranking
1557  * violation.
1558  *
1559  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1560  * will _not_ run commit under these circumstances because handle->h_ref
1561  * is elevated.  We'll still have enough credits for the tiny quotafile
1562  * write.
1563  */
1564 static int do_journal_get_write_access(handle_t *handle,
1565                                        struct buffer_head *bh)
1566 {
1567         int dirty = buffer_dirty(bh);
1568         int ret;
1569
1570         if (!buffer_mapped(bh) || buffer_freed(bh))
1571                 return 0;
1572         /*
1573          * __block_write_begin() could have dirtied some buffers. Clean
1574          * the dirty bit as jbd2_journal_get_write_access() could complain
1575          * otherwise about fs integrity issues. Setting of the dirty bit
1576          * by __block_write_begin() isn't a real problem here as we clear
1577          * the bit before releasing a page lock and thus writeback cannot
1578          * ever write the buffer.
1579          */
1580         if (dirty)
1581                 clear_buffer_dirty(bh);
1582         ret = ext4_journal_get_write_access(handle, bh);
1583         if (!ret && dirty)
1584                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1585         return ret;
1586 }
1587
1588 /*
1589  * Truncate blocks that were not used by write. We have to truncate the
1590  * pagecache as well so that corresponding buffers get properly unmapped.
1591  */
1592 static void ext4_truncate_failed_write(struct inode *inode)
1593 {
1594         truncate_inode_pages(inode->i_mapping, inode->i_size);
1595         ext4_truncate(inode);
1596 }
1597
1598 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1599                    struct buffer_head *bh_result, int create);
1600 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1601                             loff_t pos, unsigned len, unsigned flags,
1602                             struct page **pagep, void **fsdata)
1603 {
1604         struct inode *inode = mapping->host;
1605         int ret, needed_blocks;
1606         handle_t *handle;
1607         int retries = 0;
1608         struct page *page;
1609         pgoff_t index;
1610         unsigned from, to;
1611
1612         trace_ext4_write_begin(inode, pos, len, flags);
1613         /*
1614          * Reserve one block more for addition to orphan list in case
1615          * we allocate blocks but write fails for some reason
1616          */
1617         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1618         index = pos >> PAGE_CACHE_SHIFT;
1619         from = pos & (PAGE_CACHE_SIZE - 1);
1620         to = from + len;
1621
1622 retry:
1623         handle = ext4_journal_start(inode, needed_blocks);
1624         if (IS_ERR(handle)) {
1625                 ret = PTR_ERR(handle);
1626                 goto out;
1627         }
1628
1629         /* We cannot recurse into the filesystem as the transaction is already
1630          * started */
1631         flags |= AOP_FLAG_NOFS;
1632
1633         page = grab_cache_page_write_begin(mapping, index, flags);
1634         if (!page) {
1635                 ext4_journal_stop(handle);
1636                 ret = -ENOMEM;
1637                 goto out;
1638         }
1639         *pagep = page;
1640
1641         if (ext4_should_dioread_nolock(inode))
1642                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1643         else
1644                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1645
1646         if (!ret && ext4_should_journal_data(inode)) {
1647                 ret = walk_page_buffers(handle, page_buffers(page),
1648                                 from, to, NULL, do_journal_get_write_access);
1649         }
1650
1651         if (ret) {
1652                 unlock_page(page);
1653                 page_cache_release(page);
1654                 /*
1655                  * __block_write_begin may have instantiated a few blocks
1656                  * outside i_size.  Trim these off again. Don't need
1657                  * i_size_read because we hold i_mutex.
1658                  *
1659                  * Add inode to orphan list in case we crash before
1660                  * truncate finishes
1661                  */
1662                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1663                         ext4_orphan_add(handle, inode);
1664
1665                 ext4_journal_stop(handle);
1666                 if (pos + len > inode->i_size) {
1667                         ext4_truncate_failed_write(inode);
1668                         /*
1669                          * If truncate failed early the inode might
1670                          * still be on the orphan list; we need to
1671                          * make sure the inode is removed from the
1672                          * orphan list in that case.
1673                          */
1674                         if (inode->i_nlink)
1675                                 ext4_orphan_del(NULL, inode);
1676                 }
1677         }
1678
1679         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1680                 goto retry;
1681 out:
1682         return ret;
1683 }
1684
1685 /* For write_end() in data=journal mode */
1686 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1687 {
1688         if (!buffer_mapped(bh) || buffer_freed(bh))
1689                 return 0;
1690         set_buffer_uptodate(bh);
1691         return ext4_handle_dirty_metadata(handle, NULL, bh);
1692 }
1693
1694 static int ext4_generic_write_end(struct file *file,
1695                                   struct address_space *mapping,
1696                                   loff_t pos, unsigned len, unsigned copied,
1697                                   struct page *page, void *fsdata)
1698 {
1699         int i_size_changed = 0;
1700         struct inode *inode = mapping->host;
1701         handle_t *handle = ext4_journal_current_handle();
1702
1703         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1704
1705         /*
1706          * No need to use i_size_read() here, the i_size
1707          * cannot change under us because we hold i_mutex.
1708          *
1709          * But it's important to update i_size while still holding page lock:
1710          * page writeout could otherwise come in and zero beyond i_size.
1711          */
1712         if (pos + copied > inode->i_size) {
1713                 i_size_write(inode, pos + copied);
1714                 i_size_changed = 1;
1715         }
1716
1717         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1718                 /* We need to mark inode dirty even if
1719                  * new_i_size is less that inode->i_size
1720                  * bu greater than i_disksize.(hint delalloc)
1721                  */
1722                 ext4_update_i_disksize(inode, (pos + copied));
1723                 i_size_changed = 1;
1724         }
1725         unlock_page(page);
1726         page_cache_release(page);
1727
1728         /*
1729          * Don't mark the inode dirty under page lock. First, it unnecessarily
1730          * makes the holding time of page lock longer. Second, it forces lock
1731          * ordering of page lock and transaction start for journaling
1732          * filesystems.
1733          */
1734         if (i_size_changed)
1735                 ext4_mark_inode_dirty(handle, inode);
1736
1737         return copied;
1738 }
1739
1740 /*
1741  * We need to pick up the new inode size which generic_commit_write gave us
1742  * `file' can be NULL - eg, when called from page_symlink().
1743  *
1744  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1745  * buffers are managed internally.
1746  */
1747 static int ext4_ordered_write_end(struct file *file,
1748                                   struct address_space *mapping,
1749                                   loff_t pos, unsigned len, unsigned copied,
1750                                   struct page *page, void *fsdata)
1751 {
1752         handle_t *handle = ext4_journal_current_handle();
1753         struct inode *inode = mapping->host;
1754         int ret = 0, ret2;
1755
1756         trace_ext4_ordered_write_end(inode, pos, len, copied);
1757         ret = ext4_jbd2_file_inode(handle, inode);
1758
1759         if (ret == 0) {
1760                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1761                                                         page, fsdata);
1762                 copied = ret2;
1763                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1764                         /* if we have allocated more blocks and copied
1765                          * less. We will have blocks allocated outside
1766                          * inode->i_size. So truncate them
1767                          */
1768                         ext4_orphan_add(handle, inode);
1769                 if (ret2 < 0)
1770                         ret = ret2;
1771         }
1772         ret2 = ext4_journal_stop(handle);
1773         if (!ret)
1774                 ret = ret2;
1775
1776         if (pos + len > inode->i_size) {
1777                 ext4_truncate_failed_write(inode);
1778                 /*
1779                  * If truncate failed early the inode might still be
1780                  * on the orphan list; we need to make sure the inode
1781                  * is removed from the orphan list in that case.
1782                  */
1783                 if (inode->i_nlink)
1784                         ext4_orphan_del(NULL, inode);
1785         }
1786
1787
1788         return ret ? ret : copied;
1789 }
1790
1791 static int ext4_writeback_write_end(struct file *file,
1792                                     struct address_space *mapping,
1793                                     loff_t pos, unsigned len, unsigned copied,
1794                                     struct page *page, void *fsdata)
1795 {
1796         handle_t *handle = ext4_journal_current_handle();
1797         struct inode *inode = mapping->host;
1798         int ret = 0, ret2;
1799
1800         trace_ext4_writeback_write_end(inode, pos, len, copied);
1801         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1802                                                         page, fsdata);
1803         copied = ret2;
1804         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1805                 /* if we have allocated more blocks and copied
1806                  * less. We will have blocks allocated outside
1807                  * inode->i_size. So truncate them
1808                  */
1809                 ext4_orphan_add(handle, inode);
1810
1811         if (ret2 < 0)
1812                 ret = ret2;
1813
1814         ret2 = ext4_journal_stop(handle);
1815         if (!ret)
1816                 ret = ret2;
1817
1818         if (pos + len > inode->i_size) {
1819                 ext4_truncate_failed_write(inode);
1820                 /*
1821                  * If truncate failed early the inode might still be
1822                  * on the orphan list; we need to make sure the inode
1823                  * is removed from the orphan list in that case.
1824                  */
1825                 if (inode->i_nlink)
1826                         ext4_orphan_del(NULL, inode);
1827         }
1828
1829         return ret ? ret : copied;
1830 }
1831
1832 static int ext4_journalled_write_end(struct file *file,
1833                                      struct address_space *mapping,
1834                                      loff_t pos, unsigned len, unsigned copied,
1835                                      struct page *page, void *fsdata)
1836 {
1837         handle_t *handle = ext4_journal_current_handle();
1838         struct inode *inode = mapping->host;
1839         int ret = 0, ret2;
1840         int partial = 0;
1841         unsigned from, to;
1842         loff_t new_i_size;
1843
1844         trace_ext4_journalled_write_end(inode, pos, len, copied);
1845         from = pos & (PAGE_CACHE_SIZE - 1);
1846         to = from + len;
1847
1848         if (copied < len) {
1849                 if (!PageUptodate(page))
1850                         copied = 0;
1851                 page_zero_new_buffers(page, from+copied, to);
1852         }
1853
1854         ret = walk_page_buffers(handle, page_buffers(page), from,
1855                                 to, &partial, write_end_fn);
1856         if (!partial)
1857                 SetPageUptodate(page);
1858         new_i_size = pos + copied;
1859         if (new_i_size > inode->i_size)
1860                 i_size_write(inode, pos+copied);
1861         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1862         if (new_i_size > EXT4_I(inode)->i_disksize) {
1863                 ext4_update_i_disksize(inode, new_i_size);
1864                 ret2 = ext4_mark_inode_dirty(handle, inode);
1865                 if (!ret)
1866                         ret = ret2;
1867         }
1868
1869         unlock_page(page);
1870         page_cache_release(page);
1871         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1872                 /* if we have allocated more blocks and copied
1873                  * less. We will have blocks allocated outside
1874                  * inode->i_size. So truncate them
1875                  */
1876                 ext4_orphan_add(handle, inode);
1877
1878         ret2 = ext4_journal_stop(handle);
1879         if (!ret)
1880                 ret = ret2;
1881         if (pos + len > inode->i_size) {
1882                 ext4_truncate_failed_write(inode);
1883                 /*
1884                  * If truncate failed early the inode might still be
1885                  * on the orphan list; we need to make sure the inode
1886                  * is removed from the orphan list in that case.
1887                  */
1888                 if (inode->i_nlink)
1889                         ext4_orphan_del(NULL, inode);
1890         }
1891
1892         return ret ? ret : copied;
1893 }
1894
1895 /*
1896  * Reserve a single block located at lblock
1897  */
1898 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1899 {
1900         int retries = 0;
1901         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1902         struct ext4_inode_info *ei = EXT4_I(inode);
1903         unsigned long md_needed;
1904         int ret;
1905
1906         /*
1907          * recalculate the amount of metadata blocks to reserve
1908          * in order to allocate nrblocks
1909          * worse case is one extent per block
1910          */
1911 repeat:
1912         spin_lock(&ei->i_block_reservation_lock);
1913         md_needed = ext4_calc_metadata_amount(inode, lblock);
1914         trace_ext4_da_reserve_space(inode, md_needed);
1915         spin_unlock(&ei->i_block_reservation_lock);
1916
1917         /*
1918          * We will charge metadata quota at writeout time; this saves
1919          * us from metadata over-estimation, though we may go over by
1920          * a small amount in the end.  Here we just reserve for data.
1921          */
1922         ret = dquot_reserve_block(inode, 1);
1923         if (ret)
1924                 return ret;
1925         /*
1926          * We do still charge estimated metadata to the sb though;
1927          * we cannot afford to run out of free blocks.
1928          */
1929         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1930                 dquot_release_reservation_block(inode, 1);
1931                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1932                         yield();
1933                         goto repeat;
1934                 }
1935                 return -ENOSPC;
1936         }
1937         spin_lock(&ei->i_block_reservation_lock);
1938         ei->i_reserved_data_blocks++;
1939         ei->i_reserved_meta_blocks += md_needed;
1940         spin_unlock(&ei->i_block_reservation_lock);
1941
1942         return 0;       /* success */
1943 }
1944
1945 static void ext4_da_release_space(struct inode *inode, int to_free)
1946 {
1947         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1948         struct ext4_inode_info *ei = EXT4_I(inode);
1949
1950         if (!to_free)
1951                 return;         /* Nothing to release, exit */
1952
1953         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1954
1955         trace_ext4_da_release_space(inode, to_free);
1956         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1957                 /*
1958                  * if there aren't enough reserved blocks, then the
1959                  * counter is messed up somewhere.  Since this
1960                  * function is called from invalidate page, it's
1961                  * harmless to return without any action.
1962                  */
1963                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1964                          "ino %lu, to_free %d with only %d reserved "
1965                          "data blocks\n", inode->i_ino, to_free,
1966                          ei->i_reserved_data_blocks);
1967                 WARN_ON(1);
1968                 to_free = ei->i_reserved_data_blocks;
1969         }
1970         ei->i_reserved_data_blocks -= to_free;
1971
1972         if (ei->i_reserved_data_blocks == 0) {
1973                 /*
1974                  * We can release all of the reserved metadata blocks
1975                  * only when we have written all of the delayed
1976                  * allocation blocks.
1977                  */
1978                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1979                                    ei->i_reserved_meta_blocks);
1980                 ei->i_reserved_meta_blocks = 0;
1981                 ei->i_da_metadata_calc_len = 0;
1982         }
1983
1984         /* update fs dirty data blocks counter */
1985         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1986
1987         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1988
1989         dquot_release_reservation_block(inode, to_free);
1990 }
1991
1992 static void ext4_da_page_release_reservation(struct page *page,
1993                                              unsigned long offset)
1994 {
1995         int to_release = 0;
1996         struct buffer_head *head, *bh;
1997         unsigned int curr_off = 0;
1998
1999         head = page_buffers(page);
2000         bh = head;
2001         do {
2002                 unsigned int next_off = curr_off + bh->b_size;
2003
2004                 if ((offset <= curr_off) && (buffer_delay(bh))) {
2005                         to_release++;
2006                         clear_buffer_delay(bh);
2007                 }
2008                 curr_off = next_off;
2009         } while ((bh = bh->b_this_page) != head);
2010         ext4_da_release_space(page->mapping->host, to_release);
2011 }
2012
2013 /*
2014  * Delayed allocation stuff
2015  */
2016
2017 /*
2018  * mpage_da_submit_io - walks through extent of pages and try to write
2019  * them with writepage() call back
2020  *
2021  * @mpd->inode: inode
2022  * @mpd->first_page: first page of the extent
2023  * @mpd->next_page: page after the last page of the extent
2024  *
2025  * By the time mpage_da_submit_io() is called we expect all blocks
2026  * to be allocated. this may be wrong if allocation failed.
2027  *
2028  * As pages are already locked by write_cache_pages(), we can't use it
2029  */
2030 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2031                               struct ext4_map_blocks *map)
2032 {
2033         struct pagevec pvec;
2034         unsigned long index, end;
2035         int ret = 0, err, nr_pages, i;
2036         struct inode *inode = mpd->inode;
2037         struct address_space *mapping = inode->i_mapping;
2038         loff_t size = i_size_read(inode);
2039         unsigned int len, block_start;
2040         struct buffer_head *bh, *page_bufs = NULL;
2041         int journal_data = ext4_should_journal_data(inode);
2042         sector_t pblock = 0, cur_logical = 0;
2043         struct ext4_io_submit io_submit;
2044
2045         BUG_ON(mpd->next_page <= mpd->first_page);
2046         memset(&io_submit, 0, sizeof(io_submit));
2047         /*
2048          * We need to start from the first_page to the next_page - 1
2049          * to make sure we also write the mapped dirty buffer_heads.
2050          * If we look at mpd->b_blocknr we would only be looking
2051          * at the currently mapped buffer_heads.
2052          */
2053         index = mpd->first_page;
2054         end = mpd->next_page - 1;
2055
2056         pagevec_init(&pvec, 0);
2057         while (index <= end) {
2058                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2059                 if (nr_pages == 0)
2060                         break;
2061                 for (i = 0; i < nr_pages; i++) {
2062                         int commit_write = 0, redirty_page = 0;
2063                         struct page *page = pvec.pages[i];
2064
2065                         index = page->index;
2066                         if (index > end)
2067                                 break;
2068
2069                         if (index == size >> PAGE_CACHE_SHIFT)
2070                                 len = size & ~PAGE_CACHE_MASK;
2071                         else
2072                                 len = PAGE_CACHE_SIZE;
2073                         if (map) {
2074                                 cur_logical = index << (PAGE_CACHE_SHIFT -
2075                                                         inode->i_blkbits);
2076                                 pblock = map->m_pblk + (cur_logical -
2077                                                         map->m_lblk);
2078                         }
2079                         index++;
2080
2081                         BUG_ON(!PageLocked(page));
2082                         BUG_ON(PageWriteback(page));
2083
2084                         /*
2085                          * If the page does not have buffers (for
2086                          * whatever reason), try to create them using
2087                          * __block_write_begin.  If this fails,
2088                          * redirty the page and move on.
2089                          */
2090                         if (!page_has_buffers(page)) {
2091                                 if (__block_write_begin(page, 0, len,
2092                                                 noalloc_get_block_write)) {
2093                                 redirty_page:
2094                                         redirty_page_for_writepage(mpd->wbc,
2095                                                                    page);
2096                                         unlock_page(page);
2097                                         continue;
2098                                 }
2099                                 commit_write = 1;
2100                         }
2101
2102                         bh = page_bufs = page_buffers(page);
2103                         block_start = 0;
2104                         do {
2105                                 if (!bh)
2106                                         goto redirty_page;
2107                                 if (map && (cur_logical >= map->m_lblk) &&
2108                                     (cur_logical <= (map->m_lblk +
2109                                                      (map->m_len - 1)))) {
2110                                         if (buffer_delay(bh)) {
2111                                                 clear_buffer_delay(bh);
2112                                                 bh->b_blocknr = pblock;
2113                                         }
2114                                         if (buffer_unwritten(bh) ||
2115                                             buffer_mapped(bh))
2116                                                 BUG_ON(bh->b_blocknr != pblock);
2117                                         if (map->m_flags & EXT4_MAP_UNINIT)
2118                                                 set_buffer_uninit(bh);
2119                                         clear_buffer_unwritten(bh);
2120                                 }
2121
2122                                 /* redirty page if block allocation undone */
2123                                 if (buffer_delay(bh) || buffer_unwritten(bh))
2124                                         redirty_page = 1;
2125                                 bh = bh->b_this_page;
2126                                 block_start += bh->b_size;
2127                                 cur_logical++;
2128                                 pblock++;
2129                         } while (bh != page_bufs);
2130
2131                         if (redirty_page)
2132                                 goto redirty_page;
2133
2134                         if (commit_write)
2135                                 /* mark the buffer_heads as dirty & uptodate */
2136                                 block_commit_write(page, 0, len);
2137
2138                         /*
2139                          * Delalloc doesn't support data journalling,
2140                          * but eventually maybe we'll lift this
2141                          * restriction.
2142                          */
2143                         if (unlikely(journal_data && PageChecked(page)))
2144                                 err = __ext4_journalled_writepage(page, len);
2145                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2146                                 err = ext4_bio_write_page(&io_submit, page,
2147                                                           len, mpd->wbc);
2148                         else
2149                                 err = block_write_full_page(page,
2150                                         noalloc_get_block_write, mpd->wbc);
2151
2152                         if (!err)
2153                                 mpd->pages_written++;
2154                         /*
2155                          * In error case, we have to continue because
2156                          * remaining pages are still locked
2157                          */
2158                         if (ret == 0)
2159                                 ret = err;
2160                 }
2161                 pagevec_release(&pvec);
2162         }
2163         ext4_io_submit(&io_submit);
2164         return ret;
2165 }
2166
2167 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2168                                         sector_t logical, long blk_cnt)
2169 {
2170         int nr_pages, i;
2171         pgoff_t index, end;
2172         struct pagevec pvec;
2173         struct inode *inode = mpd->inode;
2174         struct address_space *mapping = inode->i_mapping;
2175
2176         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2177         end   = (logical + blk_cnt - 1) >>
2178                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2179         while (index <= end) {
2180                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2181                 if (nr_pages == 0)
2182                         break;
2183                 for (i = 0; i < nr_pages; i++) {
2184                         struct page *page = pvec.pages[i];
2185                         if (page->index > end)
2186                                 break;
2187                         BUG_ON(!PageLocked(page));
2188                         BUG_ON(PageWriteback(page));
2189                         block_invalidatepage(page, 0);
2190                         ClearPageUptodate(page);
2191                         unlock_page(page);
2192                 }
2193                 index = pvec.pages[nr_pages - 1]->index + 1;
2194                 pagevec_release(&pvec);
2195         }
2196         return;
2197 }
2198
2199 static void ext4_print_free_blocks(struct inode *inode)
2200 {
2201         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2202         printk(KERN_CRIT "Total free blocks count %lld\n",
2203                ext4_count_free_blocks(inode->i_sb));
2204         printk(KERN_CRIT "Free/Dirty block details\n");
2205         printk(KERN_CRIT "free_blocks=%lld\n",
2206                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2207         printk(KERN_CRIT "dirty_blocks=%lld\n",
2208                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2209         printk(KERN_CRIT "Block reservation details\n");
2210         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2211                EXT4_I(inode)->i_reserved_data_blocks);
2212         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2213                EXT4_I(inode)->i_reserved_meta_blocks);
2214         return;
2215 }
2216
2217 /*
2218  * mpage_da_map_and_submit - go through given space, map them
2219  *       if necessary, and then submit them for I/O
2220  *
2221  * @mpd - bh describing space
2222  *
2223  * The function skips space we know is already mapped to disk blocks.
2224  *
2225  */
2226 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2227 {
2228         int err, blks, get_blocks_flags;
2229         struct ext4_map_blocks map, *mapp = NULL;
2230         sector_t next = mpd->b_blocknr;
2231         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2232         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2233         handle_t *handle = NULL;
2234
2235         /*
2236          * If the blocks are mapped already, or we couldn't accumulate
2237          * any blocks, then proceed immediately to the submission stage.
2238          */
2239         if ((mpd->b_size == 0) ||
2240             ((mpd->b_state  & (1 << BH_Mapped)) &&
2241              !(mpd->b_state & (1 << BH_Delay)) &&
2242              !(mpd->b_state & (1 << BH_Unwritten))))
2243                 goto submit_io;
2244
2245         handle = ext4_journal_current_handle();
2246         BUG_ON(!handle);
2247
2248         /*
2249          * Call ext4_map_blocks() to allocate any delayed allocation
2250          * blocks, or to convert an uninitialized extent to be
2251          * initialized (in the case where we have written into
2252          * one or more preallocated blocks).
2253          *
2254          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2255          * indicate that we are on the delayed allocation path.  This
2256          * affects functions in many different parts of the allocation
2257          * call path.  This flag exists primarily because we don't
2258          * want to change *many* call functions, so ext4_map_blocks()
2259          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2260          * inode's allocation semaphore is taken.
2261          *
2262          * If the blocks in questions were delalloc blocks, set
2263          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2264          * variables are updated after the blocks have been allocated.
2265          */
2266         map.m_lblk = next;
2267         map.m_len = max_blocks;
2268         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2269         if (ext4_should_dioread_nolock(mpd->inode))
2270                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2271         if (mpd->b_state & (1 << BH_Delay))
2272                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2273
2274         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2275         if (blks < 0) {
2276                 struct super_block *sb = mpd->inode->i_sb;
2277
2278                 err = blks;
2279                 /*
2280                  * If get block returns EAGAIN or ENOSPC and there
2281                  * appears to be free blocks we will call
2282                  * ext4_writepage() for all of the pages which will
2283                  * just redirty the pages.
2284                  */
2285                 if (err == -EAGAIN)
2286                         goto submit_io;
2287
2288                 if (err == -ENOSPC &&
2289                     ext4_count_free_blocks(sb)) {
2290                         mpd->retval = err;
2291                         goto submit_io;
2292                 }
2293
2294                 /*
2295                  * get block failure will cause us to loop in
2296                  * writepages, because a_ops->writepage won't be able
2297                  * to make progress. The page will be redirtied by
2298                  * writepage and writepages will again try to write
2299                  * the same.
2300                  */
2301                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2302                         ext4_msg(sb, KERN_CRIT,
2303                                  "delayed block allocation failed for inode %lu "
2304                                  "at logical offset %llu with max blocks %zd "
2305                                  "with error %d", mpd->inode->i_ino,
2306                                  (unsigned long long) next,
2307                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2308                         ext4_msg(sb, KERN_CRIT,
2309                                 "This should not happen!! Data will be lost\n");
2310                         if (err == -ENOSPC)
2311                                 ext4_print_free_blocks(mpd->inode);
2312                 }
2313                 /* invalidate all the pages */
2314                 ext4_da_block_invalidatepages(mpd, next,
2315                                 mpd->b_size >> mpd->inode->i_blkbits);
2316                 return;
2317         }
2318         BUG_ON(blks == 0);
2319
2320         mapp = &map;
2321         if (map.m_flags & EXT4_MAP_NEW) {
2322                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2323                 int i;
2324
2325                 for (i = 0; i < map.m_len; i++)
2326                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2327         }
2328
2329         if (ext4_should_order_data(mpd->inode)) {
2330                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2331                 if (err)
2332                         /* This only happens if the journal is aborted */
2333                         return;
2334         }
2335
2336         /*
2337          * Update on-disk size along with block allocation.
2338          */
2339         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2340         if (disksize > i_size_read(mpd->inode))
2341                 disksize = i_size_read(mpd->inode);
2342         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2343                 ext4_update_i_disksize(mpd->inode, disksize);
2344                 err = ext4_mark_inode_dirty(handle, mpd->inode);
2345                 if (err)
2346                         ext4_error(mpd->inode->i_sb,
2347                                    "Failed to mark inode %lu dirty",
2348                                    mpd->inode->i_ino);
2349         }
2350
2351 submit_io:
2352         mpage_da_submit_io(mpd, mapp);
2353         mpd->io_done = 1;
2354 }
2355
2356 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2357                 (1 << BH_Delay) | (1 << BH_Unwritten))
2358
2359 /*
2360  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2361  *
2362  * @mpd->lbh - extent of blocks
2363  * @logical - logical number of the block in the file
2364  * @bh - bh of the block (used to access block's state)
2365  *
2366  * the function is used to collect contig. blocks in same state
2367  */
2368 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2369                                    sector_t logical, size_t b_size,
2370                                    unsigned long b_state)
2371 {
2372         sector_t next;
2373         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2374
2375         /*
2376          * XXX Don't go larger than mballoc is willing to allocate
2377          * This is a stopgap solution.  We eventually need to fold
2378          * mpage_da_submit_io() into this function and then call
2379          * ext4_map_blocks() multiple times in a loop
2380          */
2381         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2382                 goto flush_it;
2383
2384         /* check if thereserved journal credits might overflow */
2385         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2386                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2387                         /*
2388                          * With non-extent format we are limited by the journal
2389                          * credit available.  Total credit needed to insert
2390                          * nrblocks contiguous blocks is dependent on the
2391                          * nrblocks.  So limit nrblocks.
2392                          */
2393                         goto flush_it;
2394                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2395                                 EXT4_MAX_TRANS_DATA) {
2396                         /*
2397                          * Adding the new buffer_head would make it cross the
2398                          * allowed limit for which we have journal credit
2399                          * reserved. So limit the new bh->b_size
2400                          */
2401                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2402                                                 mpd->inode->i_blkbits;
2403                         /* we will do mpage_da_submit_io in the next loop */
2404                 }
2405         }
2406         /*
2407          * First block in the extent
2408          */
2409         if (mpd->b_size == 0) {
2410                 mpd->b_blocknr = logical;
2411                 mpd->b_size = b_size;
2412                 mpd->b_state = b_state & BH_FLAGS;
2413                 return;
2414         }
2415
2416         next = mpd->b_blocknr + nrblocks;
2417         /*
2418          * Can we merge the block to our big extent?
2419          */
2420         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2421                 mpd->b_size += b_size;
2422                 return;
2423         }
2424
2425 flush_it:
2426         /*
2427          * We couldn't merge the block to our extent, so we
2428          * need to flush current  extent and start new one
2429          */
2430         mpage_da_map_and_submit(mpd);
2431         return;
2432 }
2433
2434 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2435 {
2436         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2437 }
2438
2439 /*
2440  * __mpage_da_writepage - finds extent of pages and blocks
2441  *
2442  * @page: page to consider
2443  * @wbc: not used, we just follow rules
2444  * @data: context
2445  *
2446  * The function finds extents of pages and scan them for all blocks.
2447  */
2448 static int __mpage_da_writepage(struct page *page,
2449                                 struct writeback_control *wbc,
2450                                 struct mpage_da_data *mpd)
2451 {
2452         struct inode *inode = mpd->inode;
2453         struct buffer_head *bh, *head;
2454         sector_t logical;
2455
2456         /*
2457          * Can we merge this page to current extent?
2458          */
2459         if (mpd->next_page != page->index) {
2460                 /*
2461                  * Nope, we can't. So, we map non-allocated blocks
2462                  * and start IO on them
2463                  */
2464                 if (mpd->next_page != mpd->first_page) {
2465                         mpage_da_map_and_submit(mpd);
2466                         /*
2467                          * skip rest of the page in the page_vec
2468                          */
2469                         redirty_page_for_writepage(wbc, page);
2470                         unlock_page(page);
2471                         return MPAGE_DA_EXTENT_TAIL;
2472                 }
2473
2474                 /*
2475                  * Start next extent of pages ...
2476                  */
2477                 mpd->first_page = page->index;
2478
2479                 /*
2480                  * ... and blocks
2481                  */
2482                 mpd->b_size = 0;
2483                 mpd->b_state = 0;
2484                 mpd->b_blocknr = 0;
2485         }
2486
2487         mpd->next_page = page->index + 1;
2488         logical = (sector_t) page->index <<
2489                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2490
2491         if (!page_has_buffers(page)) {
2492                 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2493                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2494                 if (mpd->io_done)
2495                         return MPAGE_DA_EXTENT_TAIL;
2496         } else {
2497                 /*
2498                  * Page with regular buffer heads, just add all dirty ones
2499                  */
2500                 head = page_buffers(page);
2501                 bh = head;
2502                 do {
2503                         BUG_ON(buffer_locked(bh));
2504                         /*
2505                          * We need to try to allocate
2506                          * unmapped blocks in the same page.
2507                          * Otherwise we won't make progress
2508                          * with the page in ext4_writepage
2509                          */
2510                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2511                                 mpage_add_bh_to_extent(mpd, logical,
2512                                                        bh->b_size,
2513                                                        bh->b_state);
2514                                 if (mpd->io_done)
2515                                         return MPAGE_DA_EXTENT_TAIL;
2516                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2517                                 /*
2518                                  * mapped dirty buffer. We need to update
2519                                  * the b_state because we look at
2520                                  * b_state in mpage_da_map_blocks. We don't
2521                                  * update b_size because if we find an
2522                                  * unmapped buffer_head later we need to
2523                                  * use the b_state flag of that buffer_head.
2524                                  */
2525                                 if (mpd->b_size == 0)
2526                                         mpd->b_state = bh->b_state & BH_FLAGS;
2527                         }
2528                         logical++;
2529                 } while ((bh = bh->b_this_page) != head);
2530         }
2531
2532         return 0;
2533 }
2534
2535 /*
2536  * This is a special get_blocks_t callback which is used by
2537  * ext4_da_write_begin().  It will either return mapped block or
2538  * reserve space for a single block.
2539  *
2540  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2541  * We also have b_blocknr = -1 and b_bdev initialized properly
2542  *
2543  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2544  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2545  * initialized properly.
2546  */
2547 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2548                                   struct buffer_head *bh, int create)
2549 {
2550         struct ext4_map_blocks map;
2551         int ret = 0;
2552         sector_t invalid_block = ~((sector_t) 0xffff);
2553
2554         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2555                 invalid_block = ~0;
2556
2557         BUG_ON(create == 0);
2558         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2559
2560         map.m_lblk = iblock;
2561         map.m_len = 1;
2562
2563         /*
2564          * first, we need to know whether the block is allocated already
2565          * preallocated blocks are unmapped but should treated
2566          * the same as allocated blocks.
2567          */
2568         ret = ext4_map_blocks(NULL, inode, &map, 0);
2569         if (ret < 0)
2570                 return ret;
2571         if (ret == 0) {
2572                 if (buffer_delay(bh))
2573                         return 0; /* Not sure this could or should happen */
2574                 /*
2575                  * XXX: __block_write_begin() unmaps passed block, is it OK?
2576                  */
2577                 ret = ext4_da_reserve_space(inode, iblock);
2578                 if (ret)
2579                         /* not enough space to reserve */
2580                         return ret;
2581
2582                 map_bh(bh, inode->i_sb, invalid_block);
2583                 set_buffer_new(bh);
2584                 set_buffer_delay(bh);
2585                 return 0;
2586         }
2587
2588         map_bh(bh, inode->i_sb, map.m_pblk);
2589         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2590
2591         if (buffer_unwritten(bh)) {
2592                 /* A delayed write to unwritten bh should be marked
2593                  * new and mapped.  Mapped ensures that we don't do
2594                  * get_block multiple times when we write to the same
2595                  * offset and new ensures that we do proper zero out
2596                  * for partial write.
2597                  */
2598                 set_buffer_new(bh);
2599                 set_buffer_mapped(bh);
2600         }
2601         return 0;
2602 }
2603
2604 /*
2605  * This function is used as a standard get_block_t calback function
2606  * when there is no desire to allocate any blocks.  It is used as a
2607  * callback function for block_write_begin() and block_write_full_page().
2608  * These functions should only try to map a single block at a time.
2609  *
2610  * Since this function doesn't do block allocations even if the caller
2611  * requests it by passing in create=1, it is critically important that
2612  * any caller checks to make sure that any buffer heads are returned
2613  * by this function are either all already mapped or marked for
2614  * delayed allocation before calling  block_write_full_page().  Otherwise,
2615  * b_blocknr could be left unitialized, and the page write functions will
2616  * be taken by surprise.
2617  */
2618 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2619                                    struct buffer_head *bh_result, int create)
2620 {
2621         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2622         return _ext4_get_block(inode, iblock, bh_result, 0);
2623 }
2624
2625 static int bget_one(handle_t *handle, struct buffer_head *bh)
2626 {
2627         get_bh(bh);
2628         return 0;
2629 }
2630
2631 static int bput_one(handle_t *handle, struct buffer_head *bh)
2632 {
2633         put_bh(bh);
2634         return 0;
2635 }
2636
2637 static int __ext4_journalled_writepage(struct page *page,
2638                                        unsigned int len)
2639 {
2640         struct address_space *mapping = page->mapping;
2641         struct inode *inode = mapping->host;
2642         struct buffer_head *page_bufs;
2643         handle_t *handle = NULL;
2644         int ret = 0;
2645         int err;
2646
2647         ClearPageChecked(page);
2648         page_bufs = page_buffers(page);
2649         BUG_ON(!page_bufs);
2650         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2651         /* As soon as we unlock the page, it can go away, but we have
2652          * references to buffers so we are safe */
2653         unlock_page(page);
2654
2655         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2656         if (IS_ERR(handle)) {
2657                 ret = PTR_ERR(handle);
2658                 goto out;
2659         }
2660
2661         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2662                                 do_journal_get_write_access);
2663
2664         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2665                                 write_end_fn);
2666         if (ret == 0)
2667                 ret = err;
2668         err = ext4_journal_stop(handle);
2669         if (!ret)
2670                 ret = err;
2671
2672         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2673         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2674 out:
2675         return ret;
2676 }
2677
2678 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2679 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2680
2681 /*
2682  * Note that we don't need to start a transaction unless we're journaling data
2683  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2684  * need to file the inode to the transaction's list in ordered mode because if
2685  * we are writing back data added by write(), the inode is already there and if
2686  * we are writing back data modified via mmap(), noone guarantees in which
2687  * transaction the data will hit the disk. In case we are journaling data, we
2688  * cannot start transaction directly because transaction start ranks above page
2689  * lock so we have to do some magic.
2690  *
2691  * This function can get called via...
2692  *   - ext4_da_writepages after taking page lock (have journal handle)
2693  *   - journal_submit_inode_data_buffers (no journal handle)
2694  *   - shrink_page_list via pdflush (no journal handle)
2695  *   - grab_page_cache when doing write_begin (have journal handle)
2696  *
2697  * We don't do any block allocation in this function. If we have page with
2698  * multiple blocks we need to write those buffer_heads that are mapped. This
2699  * is important for mmaped based write. So if we do with blocksize 1K
2700  * truncate(f, 1024);
2701  * a = mmap(f, 0, 4096);
2702  * a[0] = 'a';
2703  * truncate(f, 4096);
2704  * we have in the page first buffer_head mapped via page_mkwrite call back
2705  * but other bufer_heads would be unmapped but dirty(dirty done via the
2706  * do_wp_page). So writepage should write the first block. If we modify
2707  * the mmap area beyond 1024 we will again get a page_fault and the
2708  * page_mkwrite callback will do the block allocation and mark the
2709  * buffer_heads mapped.
2710  *
2711  * We redirty the page if we have any buffer_heads that is either delay or
2712  * unwritten in the page.
2713  *
2714  * We can get recursively called as show below.
2715  *
2716  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2717  *              ext4_writepage()
2718  *
2719  * But since we don't do any block allocation we should not deadlock.
2720  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2721  */
2722 static int ext4_writepage(struct page *page,
2723                           struct writeback_control *wbc)
2724 {
2725         int ret = 0, commit_write = 0;
2726         loff_t size;
2727         unsigned int len;
2728         struct buffer_head *page_bufs = NULL;
2729         struct inode *inode = page->mapping->host;
2730
2731         trace_ext4_writepage(inode, page);
2732         size = i_size_read(inode);
2733         if (page->index == size >> PAGE_CACHE_SHIFT)
2734                 len = size & ~PAGE_CACHE_MASK;
2735         else
2736                 len = PAGE_CACHE_SIZE;
2737
2738         /*
2739          * If the page does not have buffers (for whatever reason),
2740          * try to create them using __block_write_begin.  If this
2741          * fails, redirty the page and move on.
2742          */
2743         if (!page_has_buffers(page)) {
2744                 if (__block_write_begin(page, 0, len,
2745                                         noalloc_get_block_write)) {
2746                 redirty_page:
2747                         redirty_page_for_writepage(wbc, page);
2748                         unlock_page(page);
2749                         return 0;
2750                 }
2751                 commit_write = 1;
2752         }
2753         page_bufs = page_buffers(page);
2754         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2755                               ext4_bh_delay_or_unwritten)) {
2756                 /*
2757                  * We don't want to do block allocation, so redirty
2758                  * the page and return.  We may reach here when we do
2759                  * a journal commit via journal_submit_inode_data_buffers.
2760                  * We can also reach here via shrink_page_list
2761                  */
2762                 goto redirty_page;
2763         }
2764         if (commit_write)
2765                 /* now mark the buffer_heads as dirty and uptodate */
2766                 block_commit_write(page, 0, len);
2767
2768         if (PageChecked(page) && ext4_should_journal_data(inode))
2769                 /*
2770                  * It's mmapped pagecache.  Add buffers and journal it.  There
2771                  * doesn't seem much point in redirtying the page here.
2772                  */
2773                 return __ext4_journalled_writepage(page, len);
2774
2775         if (buffer_uninit(page_bufs)) {
2776                 ext4_set_bh_endio(page_bufs, inode);
2777                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2778                                             wbc, ext4_end_io_buffer_write);
2779         } else
2780                 ret = block_write_full_page(page, noalloc_get_block_write,
2781                                             wbc);
2782
2783         return ret;
2784 }
2785
2786 /*
2787  * This is called via ext4_da_writepages() to
2788  * calulate the total number of credits to reserve to fit
2789  * a single extent allocation into a single transaction,
2790  * ext4_da_writpeages() will loop calling this before
2791  * the block allocation.
2792  */
2793
2794 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2795 {
2796         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2797
2798         /*
2799          * With non-extent format the journal credit needed to
2800          * insert nrblocks contiguous block is dependent on
2801          * number of contiguous block. So we will limit
2802          * number of contiguous block to a sane value
2803          */
2804         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2805             (max_blocks > EXT4_MAX_TRANS_DATA))
2806                 max_blocks = EXT4_MAX_TRANS_DATA;
2807
2808         return ext4_chunk_trans_blocks(inode, max_blocks);
2809 }
2810
2811 /*
2812  * write_cache_pages_da - walk the list of dirty pages of the given
2813  * address space and call the callback function (which usually writes
2814  * the pages).
2815  *
2816  * This is a forked version of write_cache_pages().  Differences:
2817  *      Range cyclic is ignored.
2818  *      no_nrwrite_index_update is always presumed true
2819  */
2820 static int write_cache_pages_da(struct address_space *mapping,
2821                                 struct writeback_control *wbc,
2822                                 struct mpage_da_data *mpd,
2823                                 pgoff_t *done_index)
2824 {
2825         int ret = 0;
2826         int done = 0;
2827         struct pagevec pvec;
2828         unsigned nr_pages;
2829         pgoff_t index;
2830         pgoff_t end;            /* Inclusive */
2831         long nr_to_write = wbc->nr_to_write;
2832         int tag;
2833
2834         pagevec_init(&pvec, 0);
2835         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2836         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2837
2838         if (wbc->sync_mode == WB_SYNC_ALL)
2839                 tag = PAGECACHE_TAG_TOWRITE;
2840         else
2841                 tag = PAGECACHE_TAG_DIRTY;
2842
2843         *done_index = index;
2844         while (!done && (index <= end)) {
2845                 int i;
2846
2847                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2848                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2849                 if (nr_pages == 0)
2850                         break;
2851
2852                 for (i = 0; i < nr_pages; i++) {
2853                         struct page *page = pvec.pages[i];
2854
2855                         /*
2856                          * At this point, the page may be truncated or
2857                          * invalidated (changing page->mapping to NULL), or
2858                          * even swizzled back from swapper_space to tmpfs file
2859                          * mapping. However, page->index will not change
2860                          * because we have a reference on the page.
2861                          */
2862                         if (page->index > end) {
2863                                 done = 1;
2864                                 break;
2865                         }
2866
2867                         *done_index = page->index + 1;
2868
2869                         lock_page(page);
2870
2871                         /*
2872                          * Page truncated or invalidated. We can freely skip it
2873                          * then, even for data integrity operations: the page
2874                          * has disappeared concurrently, so there could be no
2875                          * real expectation of this data interity operation
2876                          * even if there is now a new, dirty page at the same
2877                          * pagecache address.
2878                          */
2879                         if (unlikely(page->mapping != mapping)) {
2880 continue_unlock:
2881                                 unlock_page(page);
2882                                 continue;
2883                         }
2884
2885                         if (!PageDirty(page)) {
2886                                 /* someone wrote it for us */
2887                                 goto continue_unlock;
2888                         }
2889
2890                         if (PageWriteback(page)) {
2891                                 if (wbc->sync_mode != WB_SYNC_NONE)
2892                                         wait_on_page_writeback(page);
2893                                 else
2894                                         goto continue_unlock;
2895                         }
2896
2897                         BUG_ON(PageWriteback(page));
2898                         if (!clear_page_dirty_for_io(page))
2899                                 goto continue_unlock;
2900
2901                         ret = __mpage_da_writepage(page, wbc, mpd);
2902                         if (unlikely(ret)) {
2903                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2904                                         unlock_page(page);
2905                                         ret = 0;
2906                                 } else {
2907                                         done = 1;
2908                                         break;
2909                                 }
2910                         }
2911
2912                         if (nr_to_write > 0) {
2913                                 nr_to_write--;
2914                                 if (nr_to_write == 0 &&
2915                                     wbc->sync_mode == WB_SYNC_NONE) {
2916                                         /*
2917                                          * We stop writing back only if we are
2918                                          * not doing integrity sync. In case of
2919                                          * integrity sync we have to keep going
2920                                          * because someone may be concurrently
2921                                          * dirtying pages, and we might have
2922                                          * synced a lot of newly appeared dirty
2923                                          * pages, but have not synced all of the
2924                                          * old dirty pages.
2925                                          */
2926                                         done = 1;
2927                                         break;
2928                                 }
2929                         }
2930                 }
2931                 pagevec_release(&pvec);
2932                 cond_resched();
2933         }
2934         return ret;
2935 }
2936
2937
2938 static int ext4_da_writepages(struct address_space *mapping,
2939                               struct writeback_control *wbc)
2940 {
2941         pgoff_t index;
2942         int range_whole = 0;
2943         handle_t *handle = NULL;
2944         struct mpage_da_data mpd;
2945         struct inode *inode = mapping->host;
2946         int pages_written = 0;
2947         long pages_skipped;
2948         unsigned int max_pages;
2949         int range_cyclic, cycled = 1, io_done = 0;
2950         int needed_blocks, ret = 0;
2951         long desired_nr_to_write, nr_to_writebump = 0;
2952         loff_t range_start = wbc->range_start;
2953         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2954         pgoff_t done_index = 0;
2955         pgoff_t end;
2956
2957         trace_ext4_da_writepages(inode, wbc);
2958
2959         /*
2960          * No pages to write? This is mainly a kludge to avoid starting
2961          * a transaction for special inodes like journal inode on last iput()
2962          * because that could violate lock ordering on umount
2963          */
2964         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2965                 return 0;
2966
2967         /*
2968          * If the filesystem has aborted, it is read-only, so return
2969          * right away instead of dumping stack traces later on that
2970          * will obscure the real source of the problem.  We test
2971          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2972          * the latter could be true if the filesystem is mounted
2973          * read-only, and in that case, ext4_da_writepages should
2974          * *never* be called, so if that ever happens, we would want
2975          * the stack trace.
2976          */
2977         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2978                 return -EROFS;
2979
2980         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2981                 range_whole = 1;
2982
2983         range_cyclic = wbc->range_cyclic;
2984         if (wbc->range_cyclic) {
2985                 index = mapping->writeback_index;
2986                 if (index)
2987                         cycled = 0;
2988                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2989                 wbc->range_end  = LLONG_MAX;
2990                 wbc->range_cyclic = 0;
2991                 end = -1;
2992         } else {
2993                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2994                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2995         }
2996
2997         /*
2998          * This works around two forms of stupidity.  The first is in
2999          * the writeback code, which caps the maximum number of pages
3000          * written to be 1024 pages.  This is wrong on multiple
3001          * levels; different architectues have a different page size,
3002          * which changes the maximum amount of data which gets
3003          * written.  Secondly, 4 megabytes is way too small.  XFS
3004          * forces this value to be 16 megabytes by multiplying
3005          * nr_to_write parameter by four, and then relies on its
3006          * allocator to allocate larger extents to make them
3007          * contiguous.  Unfortunately this brings us to the second
3008          * stupidity, which is that ext4's mballoc code only allocates
3009          * at most 2048 blocks.  So we force contiguous writes up to
3010          * the number of dirty blocks in the inode, or
3011          * sbi->max_writeback_mb_bump whichever is smaller.
3012          */
3013         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3014         if (!range_cyclic && range_whole) {
3015                 if (wbc->nr_to_write == LONG_MAX)
3016                         desired_nr_to_write = wbc->nr_to_write;
3017                 else
3018                         desired_nr_to_write = wbc->nr_to_write * 8;
3019         } else
3020                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3021                                                            max_pages);
3022         if (desired_nr_to_write > max_pages)
3023                 desired_nr_to_write = max_pages;
3024
3025         if (wbc->nr_to_write < desired_nr_to_write) {
3026                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3027                 wbc->nr_to_write = desired_nr_to_write;
3028         }
3029
3030         mpd.wbc = wbc;
3031         mpd.inode = mapping->host;
3032
3033         pages_skipped = wbc->pages_skipped;
3034
3035 retry:
3036         if (wbc->sync_mode == WB_SYNC_ALL)
3037                 tag_pages_for_writeback(mapping, index, end);
3038
3039         while (!ret && wbc->nr_to_write > 0) {
3040
3041                 /*
3042                  * we  insert one extent at a time. So we need
3043                  * credit needed for single extent allocation.
3044                  * journalled mode is currently not supported
3045                  * by delalloc
3046                  */
3047                 BUG_ON(ext4_should_journal_data(inode));
3048                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3049
3050                 /* start a new transaction*/
3051                 handle = ext4_journal_start(inode, needed_blocks);
3052                 if (IS_ERR(handle)) {
3053                         ret = PTR_ERR(handle);
3054                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3055                                "%ld pages, ino %lu; err %d", __func__,
3056                                 wbc->nr_to_write, inode->i_ino, ret);
3057                         goto out_writepages;
3058                 }
3059
3060                 /*
3061                  * Now call __mpage_da_writepage to find the next
3062                  * contiguous region of logical blocks that need
3063                  * blocks to be allocated by ext4.  We don't actually
3064                  * submit the blocks for I/O here, even though
3065                  * write_cache_pages thinks it will, and will set the
3066                  * pages as clean for write before calling
3067                  * __mpage_da_writepage().
3068                  */
3069                 mpd.b_size = 0;
3070                 mpd.b_state = 0;
3071                 mpd.b_blocknr = 0;
3072                 mpd.first_page = 0;
3073                 mpd.next_page = 0;
3074                 mpd.io_done = 0;
3075                 mpd.pages_written = 0;
3076                 mpd.retval = 0;
3077                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3078                 /*
3079                  * If we have a contiguous extent of pages and we
3080                  * haven't done the I/O yet, map the blocks and submit
3081                  * them for I/O.
3082                  */
3083                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3084                         mpage_da_map_and_submit(&mpd);
3085                         ret = MPAGE_DA_EXTENT_TAIL;
3086                 }
3087                 trace_ext4_da_write_pages(inode, &mpd);
3088                 wbc->nr_to_write -= mpd.pages_written;
3089
3090                 ext4_journal_stop(handle);
3091
3092                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3093                         /* commit the transaction which would
3094                          * free blocks released in the transaction
3095                          * and try again
3096                          */
3097                         jbd2_journal_force_commit_nested(sbi->s_journal);
3098                         wbc->pages_skipped = pages_skipped;
3099                         ret = 0;
3100                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3101                         /*
3102                          * got one extent now try with
3103                          * rest of the pages
3104                          */
3105                         pages_written += mpd.pages_written;
3106                         wbc->pages_skipped = pages_skipped;
3107                         ret = 0;
3108                         io_done = 1;
3109                 } else if (wbc->nr_to_write)
3110                         /*
3111                          * There is no more writeout needed
3112                          * or we requested for a noblocking writeout
3113                          * and we found the device congested
3114                          */
3115                         break;
3116         }
3117         if (!io_done && !cycled) {
3118                 cycled = 1;
3119                 index = 0;
3120                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3121                 wbc->range_end  = mapping->writeback_index - 1;
3122                 goto retry;
3123         }
3124         if (pages_skipped != wbc->pages_skipped)
3125                 ext4_msg(inode->i_sb, KERN_CRIT,
3126                          "This should not happen leaving %s "
3127                          "with nr_to_write = %ld ret = %d",
3128                          __func__, wbc->nr_to_write, ret);
3129
3130         /* Update index */
3131         wbc->range_cyclic = range_cyclic;
3132         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3133                 /*
3134                  * set the writeback_index so that range_cyclic
3135                  * mode will write it back later
3136                  */
3137                 mapping->writeback_index = done_index;
3138
3139 out_writepages:
3140         wbc->nr_to_write -= nr_to_writebump;
3141         wbc->range_start = range_start;
3142         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3143         return ret;
3144 }
3145
3146 #define FALL_BACK_TO_NONDELALLOC 1
3147 static int ext4_nonda_switch(struct super_block *sb)
3148 {
3149         s64 free_blocks, dirty_blocks;
3150         struct ext4_sb_info *sbi = EXT4_SB(sb);
3151
3152         /*
3153          * switch to non delalloc mode if we are running low
3154          * on free block. The free block accounting via percpu
3155          * counters can get slightly wrong with percpu_counter_batch getting
3156          * accumulated on each CPU without updating global counters
3157          * Delalloc need an accurate free block accounting. So switch
3158          * to non delalloc when we are near to error range.
3159          */
3160         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3161         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3162         if (2 * free_blocks < 3 * dirty_blocks ||
3163                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3164                 /*
3165                  * free block count is less than 150% of dirty blocks
3166                  * or free blocks is less than watermark
3167                  */
3168                 return 1;
3169         }
3170         /*
3171          * Even if we don't switch but are nearing capacity,
3172          * start pushing delalloc when 1/2 of free blocks are dirty.
3173          */
3174         if (free_blocks < 2 * dirty_blocks)
3175                 writeback_inodes_sb_if_idle(sb);
3176
3177         return 0;
3178 }
3179
3180 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3181                                loff_t pos, unsigned len, unsigned flags,
3182                                struct page **pagep, void **fsdata)
3183 {
3184         int ret, retries = 0;
3185         struct page *page;
3186         pgoff_t index;
3187         struct inode *inode = mapping->host;
3188         handle_t *handle;
3189
3190         index = pos >> PAGE_CACHE_SHIFT;
3191
3192         if (ext4_nonda_switch(inode->i_sb)) {
3193                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3194                 return ext4_write_begin(file, mapping, pos,
3195                                         len, flags, pagep, fsdata);
3196         }
3197         *fsdata = (void *)0;
3198         trace_ext4_da_write_begin(inode, pos, len, flags);
3199 retry:
3200         /*
3201          * With delayed allocation, we don't log the i_disksize update
3202          * if there is delayed block allocation. But we still need
3203          * to journalling the i_disksize update if writes to the end
3204          * of file which has an already mapped buffer.
3205          */
3206         handle = ext4_journal_start(inode, 1);
3207         if (IS_ERR(handle)) {
3208                 ret = PTR_ERR(handle);
3209                 goto out;
3210         }
3211         /* We cannot recurse into the filesystem as the transaction is already
3212          * started */
3213         flags |= AOP_FLAG_NOFS;
3214
3215         page = grab_cache_page_write_begin(mapping, index, flags);
3216         if (!page) {
3217                 ext4_journal_stop(handle);
3218                 ret = -ENOMEM;
3219                 goto out;
3220         }
3221         *pagep = page;
3222
3223         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3224         if (ret < 0) {
3225                 unlock_page(page);
3226                 ext4_journal_stop(handle);
3227                 page_cache_release(page);
3228                 /*
3229                  * block_write_begin may have instantiated a few blocks
3230                  * outside i_size.  Trim these off again. Don't need
3231                  * i_size_read because we hold i_mutex.
3232                  */
3233                 if (pos + len > inode->i_size)
3234                         ext4_truncate_failed_write(inode);
3235         }
3236
3237         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3238                 goto retry;
3239 out:
3240         return ret;
3241 }
3242
3243 /*
3244  * Check if we should update i_disksize
3245  * when write to the end of file but not require block allocation
3246  */
3247 static int ext4_da_should_update_i_disksize(struct page *page,
3248                                             unsigned long offset)
3249 {
3250         struct buffer_head *bh;
3251         struct inode *inode = page->mapping->host;
3252         unsigned int idx;
3253         int i;
3254
3255         bh = page_buffers(page);
3256         idx = offset >> inode->i_blkbits;
3257
3258         for (i = 0; i < idx; i++)
3259                 bh = bh->b_this_page;
3260
3261         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3262                 return 0;
3263         return 1;
3264 }
3265
3266 static int ext4_da_write_end(struct file *file,
3267                              struct address_space *mapping,
3268                              loff_t pos, unsigned len, unsigned copied,
3269                              struct page *page, void *fsdata)
3270 {
3271         struct inode *inode = mapping->host;
3272         int ret = 0, ret2;
3273         handle_t *handle = ext4_journal_current_handle();
3274         loff_t new_i_size;
3275         unsigned long start, end;
3276         int write_mode = (int)(unsigned long)fsdata;
3277
3278         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3279                 if (ext4_should_order_data(inode)) {
3280                         return ext4_ordered_write_end(file, mapping, pos,
3281                                         len, copied, page, fsdata);
3282                 } else if (ext4_should_writeback_data(inode)) {
3283                         return ext4_writeback_write_end(file, mapping, pos,
3284                                         len, copied, page, fsdata);
3285                 } else {
3286                         BUG();
3287                 }
3288         }
3289
3290         trace_ext4_da_write_end(inode, pos, len, copied);
3291         start = pos & (PAGE_CACHE_SIZE - 1);
3292         end = start + copied - 1;
3293
3294         /*
3295          * generic_write_end() will run mark_inode_dirty() if i_size
3296          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3297          * into that.
3298          */
3299
3300         new_i_size = pos + copied;
3301         if (new_i_size > EXT4_I(inode)->i_disksize) {
3302                 if (ext4_da_should_update_i_disksize(page, end)) {
3303                         down_write(&EXT4_I(inode)->i_data_sem);
3304                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3305                                 /*
3306                                  * Updating i_disksize when extending file
3307                                  * without needing block allocation
3308                                  */
3309                                 if (ext4_should_order_data(inode))
3310                                         ret = ext4_jbd2_file_inode(handle,
3311                                                                    inode);
3312
3313                                 EXT4_I(inode)->i_disksize = new_i_size;
3314                         }
3315                         up_write(&EXT4_I(inode)->i_data_sem);
3316                         /* We need to mark inode dirty even if
3317                          * new_i_size is less that inode->i_size
3318                          * bu greater than i_disksize.(hint delalloc)
3319                          */
3320                         ext4_mark_inode_dirty(handle, inode);
3321                 }
3322         }
3323         ret2 = generic_write_end(file, mapping, pos, len, copied,
3324                                                         page, fsdata);
3325         copied = ret2;
3326         if (ret2 < 0)
3327                 ret = ret2;
3328         ret2 = ext4_journal_stop(handle);
3329         if (!ret)
3330                 ret = ret2;
3331
3332         return ret ? ret : copied;
3333 }
3334
3335 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3336 {
3337         /*
3338          * Drop reserved blocks
3339          */
3340         BUG_ON(!PageLocked(page));
3341         if (!page_has_buffers(page))
3342                 goto out;
3343
3344         ext4_da_page_release_reservation(page, offset);
3345
3346 out:
3347         ext4_invalidatepage(page, offset);
3348
3349         return;
3350 }
3351
3352 /*
3353  * Force all delayed allocation blocks to be allocated for a given inode.
3354  */
3355 int ext4_alloc_da_blocks(struct inode *inode)
3356 {
3357         trace_ext4_alloc_da_blocks(inode);
3358
3359         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3360             !EXT4_I(inode)->i_reserved_meta_blocks)
3361                 return 0;
3362
3363         /*
3364          * We do something simple for now.  The filemap_flush() will
3365          * also start triggering a write of the data blocks, which is
3366          * not strictly speaking necessary (and for users of
3367          * laptop_mode, not even desirable).  However, to do otherwise
3368          * would require replicating code paths in:
3369          *
3370          * ext4_da_writepages() ->
3371          *    write_cache_pages() ---> (via passed in callback function)
3372          *        __mpage_da_writepage() -->
3373          *           mpage_add_bh_to_extent()
3374          *           mpage_da_map_blocks()
3375          *
3376          * The problem is that write_cache_pages(), located in
3377          * mm/page-writeback.c, marks pages clean in preparation for
3378          * doing I/O, which is not desirable if we're not planning on
3379          * doing I/O at all.
3380          *
3381          * We could call write_cache_pages(), and then redirty all of
3382          * the pages by calling redirty_page_for_writeback() but that
3383          * would be ugly in the extreme.  So instead we would need to
3384          * replicate parts of the code in the above functions,
3385          * simplifying them becuase we wouldn't actually intend to
3386          * write out the pages, but rather only collect contiguous
3387          * logical block extents, call the multi-block allocator, and
3388          * then update the buffer heads with the block allocations.
3389          *
3390          * For now, though, we'll cheat by calling filemap_flush(),
3391          * which will map the blocks, and start the I/O, but not
3392          * actually wait for the I/O to complete.
3393          */
3394         return filemap_flush(inode->i_mapping);
3395 }
3396
3397 /*
3398  * bmap() is special.  It gets used by applications such as lilo and by
3399  * the swapper to find the on-disk block of a specific piece of data.
3400  *
3401  * Naturally, this is dangerous if the block concerned is still in the
3402  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3403  * filesystem and enables swap, then they may get a nasty shock when the
3404  * data getting swapped to that swapfile suddenly gets overwritten by
3405  * the original zero's written out previously to the journal and
3406  * awaiting writeback in the kernel's buffer cache.
3407  *
3408  * So, if we see any bmap calls here on a modified, data-journaled file,
3409  * take extra steps to flush any blocks which might be in the cache.
3410  */
3411 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3412 {
3413         struct inode *inode = mapping->host;
3414         journal_t *journal;
3415         int err;
3416
3417         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3418                         test_opt(inode->i_sb, DELALLOC)) {
3419                 /*
3420                  * With delalloc we want to sync the file
3421                  * so that we can make sure we allocate
3422                  * blocks for file
3423                  */
3424                 filemap_write_and_wait(mapping);
3425         }
3426
3427         if (EXT4_JOURNAL(inode) &&
3428             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3429                 /*
3430                  * This is a REALLY heavyweight approach, but the use of
3431                  * bmap on dirty files is expected to be extremely rare:
3432                  * only if we run lilo or swapon on a freshly made file
3433                  * do we expect this to happen.
3434                  *
3435                  * (bmap requires CAP_SYS_RAWIO so this does not
3436                  * represent an unprivileged user DOS attack --- we'd be
3437                  * in trouble if mortal users could trigger this path at
3438                  * will.)
3439                  *
3440                  * NB. EXT4_STATE_JDATA is not set on files other than
3441                  * regular files.  If somebody wants to bmap a directory
3442                  * or symlink and gets confused because the buffer
3443                  * hasn't yet been flushed to disk, they deserve
3444                  * everything they get.
3445                  */
3446
3447                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3448                 journal = EXT4_JOURNAL(inode);
3449                 jbd2_journal_lock_updates(journal);
3450                 err = jbd2_journal_flush(journal);
3451                 jbd2_journal_unlock_updates(journal);
3452
3453                 if (err)
3454                         return 0;
3455         }
3456
3457         return generic_block_bmap(mapping, block, ext4_get_block);
3458 }
3459
3460 static int ext4_readpage(struct file *file, struct page *page)
3461 {
3462         return mpage_readpage(page, ext4_get_block);
3463 }
3464
3465 static int
3466 ext4_readpages(struct file *file, struct address_space *mapping,
3467                 struct list_head *pages, unsigned nr_pages)
3468 {
3469         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3470 }
3471
3472 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3473 {
3474         struct buffer_head *head, *bh;
3475         unsigned int curr_off = 0;
3476
3477         if (!page_has_buffers(page))
3478                 return;
3479         head = bh = page_buffers(page);
3480         do {
3481                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3482                                         && bh->b_private) {
3483                         ext4_free_io_end(bh->b_private);
3484                         bh->b_private = NULL;
3485                         bh->b_end_io = NULL;
3486                 }
3487                 curr_off = curr_off + bh->b_size;
3488                 bh = bh->b_this_page;
3489         } while (bh != head);
3490 }
3491
3492 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3493 {
3494         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3495
3496         /*
3497          * free any io_end structure allocated for buffers to be discarded
3498          */
3499         if (ext4_should_dioread_nolock(page->mapping->host))
3500                 ext4_invalidatepage_free_endio(page, offset);
3501         /*
3502          * If it's a full truncate we just forget about the pending dirtying
3503          */
3504         if (offset == 0)
3505                 ClearPageChecked(page);
3506
3507         if (journal)
3508                 jbd2_journal_invalidatepage(journal, page, offset);
3509         else
3510                 block_invalidatepage(page, offset);
3511 }
3512
3513 static int ext4_releasepage(struct page *page, gfp_t wait)
3514 {
3515         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3516
3517         WARN_ON(PageChecked(page));
3518         if (!page_has_buffers(page))
3519                 return 0;
3520         if (journal)
3521                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3522         else
3523                 return try_to_free_buffers(page);
3524 }
3525
3526 /*
3527  * O_DIRECT for ext3 (or indirect map) based files
3528  *
3529  * If the O_DIRECT write will extend the file then add this inode to the
3530  * orphan list.  So recovery will truncate it back to the original size
3531  * if the machine crashes during the write.
3532  *
3533  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3534  * crashes then stale disk data _may_ be exposed inside the file. But current
3535  * VFS code falls back into buffered path in that case so we are safe.
3536  */
3537 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3538                               const struct iovec *iov, loff_t offset,
3539                               unsigned long nr_segs)
3540 {
3541         struct file *file = iocb->ki_filp;
3542         struct inode *inode = file->f_mapping->host;
3543         struct ext4_inode_info *ei = EXT4_I(inode);
3544         handle_t *handle;
3545         ssize_t ret;
3546         int orphan = 0;
3547         size_t count = iov_length(iov, nr_segs);
3548         int retries = 0;
3549
3550         if (rw == WRITE) {
3551                 loff_t final_size = offset + count;
3552
3553                 if (final_size > inode->i_size) {
3554                         /* Credits for sb + inode write */
3555                         handle = ext4_journal_start(inode, 2);
3556                         if (IS_ERR(handle)) {
3557                                 ret = PTR_ERR(handle);
3558                                 goto out;
3559                         }
3560                         ret = ext4_orphan_add(handle, inode);
3561                         if (ret) {
3562                                 ext4_journal_stop(handle);
3563                                 goto out;
3564                         }
3565                         orphan = 1;
3566                         ei->i_disksize = inode->i_size;
3567                         ext4_journal_stop(handle);
3568                 }
3569         }
3570
3571 retry:
3572         if (rw == READ && ext4_should_dioread_nolock(inode))
3573                 ret = __blockdev_direct_IO(rw, iocb, inode,
3574                                  inode->i_sb->s_bdev, iov,
3575                                  offset, nr_segs,
3576                                  ext4_get_block, NULL, NULL, 0);
3577         else {
3578                 ret = blockdev_direct_IO(rw, iocb, inode,
3579                                  inode->i_sb->s_bdev, iov,
3580                                  offset, nr_segs,
3581                                  ext4_get_block, NULL);
3582
3583                 if (unlikely((rw & WRITE) && ret < 0)) {
3584                         loff_t isize = i_size_read(inode);
3585                         loff_t end = offset + iov_length(iov, nr_segs);
3586
3587                         if (end > isize)
3588                                 vmtruncate(inode, isize);
3589                 }
3590         }
3591         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3592                 goto retry;
3593
3594         if (orphan) {
3595                 int err;
3596
3597                 /* Credits for sb + inode write */
3598                 handle = ext4_journal_start(inode, 2);
3599                 if (IS_ERR(handle)) {
3600                         /* This is really bad luck. We've written the data
3601                          * but cannot extend i_size. Bail out and pretend
3602                          * the write failed... */
3603                         ret = PTR_ERR(handle);
3604                         if (inode->i_nlink)
3605                                 ext4_orphan_del(NULL, inode);
3606
3607                         goto out;
3608                 }
3609                 if (inode->i_nlink)
3610                         ext4_orphan_del(handle, inode);
3611                 if (ret > 0) {
3612                         loff_t end = offset + ret;
3613                         if (end > inode->i_size) {
3614                                 ei->i_disksize = end;
3615                                 i_size_write(inode, end);
3616                                 /*
3617                                  * We're going to return a positive `ret'
3618                                  * here due to non-zero-length I/O, so there's
3619                                  * no way of reporting error returns from
3620                                  * ext4_mark_inode_dirty() to userspace.  So
3621                                  * ignore it.
3622                                  */
3623                                 ext4_mark_inode_dirty(handle, inode);
3624                         }
3625                 }
3626                 err = ext4_journal_stop(handle);
3627                 if (ret == 0)
3628                         ret = err;
3629         }
3630 out:
3631         return ret;
3632 }
3633
3634 /*
3635  * ext4_get_block used when preparing for a DIO write or buffer write.
3636  * We allocate an uinitialized extent if blocks haven't been allocated.
3637  * The extent will be converted to initialized after the IO is complete.
3638  */
3639 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3640                    struct buffer_head *bh_result, int create)
3641 {
3642         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3643                    inode->i_ino, create);
3644         return _ext4_get_block(inode, iblock, bh_result,
3645                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3646 }
3647
3648 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3649                             ssize_t size, void *private, int ret,
3650                             bool is_async)
3651 {
3652         ext4_io_end_t *io_end = iocb->private;
3653         struct workqueue_struct *wq;
3654         unsigned long flags;
3655         struct ext4_inode_info *ei;
3656
3657         /* if not async direct IO or dio with 0 bytes write, just return */
3658         if (!io_end || !size)
3659                 goto out;
3660
3661         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3662                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3663                   iocb->private, io_end->inode->i_ino, iocb, offset,
3664                   size);
3665
3666         /* if not aio dio with unwritten extents, just free io and return */
3667         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3668                 ext4_free_io_end(io_end);
3669                 iocb->private = NULL;
3670 out:
3671                 if (is_async)
3672                         aio_complete(iocb, ret, 0);
3673                 return;
3674         }
3675
3676         io_end->offset = offset;
3677         io_end->size = size;
3678         if (is_async) {
3679                 io_end->iocb = iocb;
3680                 io_end->result = ret;
3681         }
3682         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3683
3684         /* Add the io_end to per-inode completed aio dio list*/
3685         ei = EXT4_I(io_end->inode);
3686         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3687         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3688         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3689
3690         /* queue the work to convert unwritten extents to written */
3691         queue_work(wq, &io_end->work);
3692         iocb->private = NULL;
3693 }
3694
3695 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3696 {
3697         ext4_io_end_t *io_end = bh->b_private;
3698         struct workqueue_struct *wq;
3699         struct inode *inode;
3700         unsigned long flags;
3701
3702         if (!test_clear_buffer_uninit(bh) || !io_end)
3703                 goto out;
3704
3705         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3706                 printk("sb umounted, discard end_io request for inode %lu\n",
3707                         io_end->inode->i_ino);
3708                 ext4_free_io_end(io_end);
3709                 goto out;
3710         }
3711
3712         io_end->flag = EXT4_IO_END_UNWRITTEN;
3713         inode = io_end->inode;
3714
3715         /* Add the io_end to per-inode completed io list*/
3716         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3717         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3718         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3719
3720         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3721         /* queue the work to convert unwritten extents to written */
3722         queue_work(wq, &io_end->work);
3723 out:
3724         bh->b_private = NULL;
3725         bh->b_end_io = NULL;
3726         clear_buffer_uninit(bh);
3727         end_buffer_async_write(bh, uptodate);
3728 }
3729
3730 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3731 {
3732         ext4_io_end_t *io_end;
3733         struct page *page = bh->b_page;
3734         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3735         size_t size = bh->b_size;
3736
3737 retry:
3738         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3739         if (!io_end) {
3740                 pr_warning_ratelimited("%s: allocation fail\n", __func__);
3741                 schedule();
3742                 goto retry;
3743         }
3744         io_end->offset = offset;
3745         io_end->size = size;
3746         /*
3747          * We need to hold a reference to the page to make sure it
3748          * doesn't get evicted before ext4_end_io_work() has a chance
3749          * to convert the extent from written to unwritten.
3750          */
3751         io_end->page = page;
3752         get_page(io_end->page);
3753
3754         bh->b_private = io_end;
3755         bh->b_end_io = ext4_end_io_buffer_write;
3756         return 0;
3757 }
3758
3759 /*
3760  * For ext4 extent files, ext4 will do direct-io write to holes,
3761  * preallocated extents, and those write extend the file, no need to
3762  * fall back to buffered IO.
3763  *
3764  * For holes, we fallocate those blocks, mark them as unintialized
3765  * If those blocks were preallocated, we mark sure they are splited, but
3766  * still keep the range to write as unintialized.
3767  *
3768  * The unwrritten extents will be converted to written when DIO is completed.
3769  * For async direct IO, since the IO may still pending when return, we
3770  * set up an end_io call back function, which will do the convertion
3771  * when async direct IO completed.
3772  *
3773  * If the O_DIRECT write will extend the file then add this inode to the
3774  * orphan list.  So recovery will truncate it back to the original size
3775  * if the machine crashes during the write.
3776  *
3777  */
3778 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3779                               const struct iovec *iov, loff_t offset,
3780                               unsigned long nr_segs)
3781 {
3782         struct file *file = iocb->ki_filp;
3783         struct inode *inode = file->f_mapping->host;
3784         ssize_t ret;
3785         size_t count = iov_length(iov, nr_segs);
3786
3787         loff_t final_size = offset + count;
3788         if (rw == WRITE && final_size <= inode->i_size) {
3789                 /*
3790                  * We could direct write to holes and fallocate.
3791                  *
3792                  * Allocated blocks to fill the hole are marked as uninitialized
3793                  * to prevent paralel buffered read to expose the stale data
3794                  * before DIO complete the data IO.
3795                  *
3796                  * As to previously fallocated extents, ext4 get_block
3797                  * will just simply mark the buffer mapped but still
3798                  * keep the extents uninitialized.
3799                  *
3800                  * for non AIO case, we will convert those unwritten extents
3801                  * to written after return back from blockdev_direct_IO.
3802                  *
3803                  * for async DIO, the conversion needs to be defered when
3804                  * the IO is completed. The ext4 end_io callback function
3805                  * will be called to take care of the conversion work.
3806                  * Here for async case, we allocate an io_end structure to
3807                  * hook to the iocb.
3808                  */
3809                 iocb->private = NULL;
3810                 EXT4_I(inode)->cur_aio_dio = NULL;
3811                 if (!is_sync_kiocb(iocb)) {
3812                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3813                         if (!iocb->private)
3814                                 return -ENOMEM;
3815                         /*
3816                          * we save the io structure for current async
3817                          * direct IO, so that later ext4_map_blocks()
3818                          * could flag the io structure whether there
3819                          * is a unwritten extents needs to be converted
3820                          * when IO is completed.
3821                          */
3822                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3823                 }
3824
3825                 ret = blockdev_direct_IO(rw, iocb, inode,
3826                                          inode->i_sb->s_bdev, iov,
3827                                          offset, nr_segs,
3828                                          ext4_get_block_write,
3829                                          ext4_end_io_dio);
3830                 if (iocb->private)
3831                         EXT4_I(inode)->cur_aio_dio = NULL;
3832                 /*
3833                  * The io_end structure takes a reference to the inode,
3834                  * that structure needs to be destroyed and the
3835                  * reference to the inode need to be dropped, when IO is
3836                  * complete, even with 0 byte write, or failed.
3837                  *
3838                  * In the successful AIO DIO case, the io_end structure will be
3839                  * desctroyed and the reference to the inode will be dropped
3840                  * after the end_io call back function is called.
3841                  *
3842                  * In the case there is 0 byte write, or error case, since
3843                  * VFS direct IO won't invoke the end_io call back function,
3844                  * we need to free the end_io structure here.
3845                  */
3846                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3847                         ext4_free_io_end(iocb->private);
3848                         iocb->private = NULL;
3849                 } else if (ret > 0 && ext4_test_inode_state(inode,
3850                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3851                         int err;
3852                         /*
3853                          * for non AIO case, since the IO is already
3854                          * completed, we could do the convertion right here
3855                          */
3856                         err = ext4_convert_unwritten_extents(inode,
3857                                                              offset, ret);
3858                         if (err < 0)
3859                                 ret = err;
3860                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3861                 }
3862                 return ret;
3863         }
3864
3865         /* for write the the end of file case, we fall back to old way */
3866         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3867 }
3868
3869 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3870                               const struct iovec *iov, loff_t offset,
3871                               unsigned long nr_segs)
3872 {
3873         struct file *file = iocb->ki_filp;
3874         struct inode *inode = file->f_mapping->host;
3875
3876         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3877                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3878
3879         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3880 }
3881
3882 /*
3883  * Pages can be marked dirty completely asynchronously from ext4's journalling
3884  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3885  * much here because ->set_page_dirty is called under VFS locks.  The page is
3886  * not necessarily locked.
3887  *
3888  * We cannot just dirty the page and leave attached buffers clean, because the
3889  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3890  * or jbddirty because all the journalling code will explode.
3891  *
3892  * So what we do is to mark the page "pending dirty" and next time writepage
3893  * is called, propagate that into the buffers appropriately.
3894  */
3895 static int ext4_journalled_set_page_dirty(struct page *page)
3896 {
3897         SetPageChecked(page);
3898         return __set_page_dirty_nobuffers(page);
3899 }
3900
3901 static const struct address_space_operations ext4_ordered_aops = {
3902         .readpage               = ext4_readpage,
3903         .readpages              = ext4_readpages,
3904         .writepage              = ext4_writepage,
3905         .sync_page              = block_sync_page,
3906         .write_begin            = ext4_write_begin,
3907         .write_end              = ext4_ordered_write_end,
3908         .bmap                   = ext4_bmap,
3909         .invalidatepage         = ext4_invalidatepage,
3910         .releasepage            = ext4_releasepage,
3911         .direct_IO              = ext4_direct_IO,
3912         .migratepage            = buffer_migrate_page,
3913         .is_partially_uptodate  = block_is_partially_uptodate,
3914         .error_remove_page      = generic_error_remove_page,
3915 };
3916
3917 static const struct address_space_operations ext4_writeback_aops = {
3918         .readpage               = ext4_readpage,
3919         .readpages              = ext4_readpages,
3920         .writepage              = ext4_writepage,
3921         .sync_page              = block_sync_page,
3922         .write_begin            = ext4_write_begin,
3923         .write_end              = ext4_writeback_write_end,
3924         .bmap                   = ext4_bmap,
3925         .invalidatepage         = ext4_invalidatepage,
3926         .releasepage            = ext4_releasepage,
3927         .direct_IO              = ext4_direct_IO,
3928         .migratepage            = buffer_migrate_page,
3929         .is_partially_uptodate  = block_is_partially_uptodate,
3930         .error_remove_page      = generic_error_remove_page,
3931 };
3932
3933 static const struct address_space_operations ext4_journalled_aops = {
3934         .readpage               = ext4_readpage,
3935         .readpages              = ext4_readpages,
3936         .writepage              = ext4_writepage,
3937         .sync_page              = block_sync_page,
3938         .write_begin            = ext4_write_begin,
3939         .write_end              = ext4_journalled_write_end,
3940         .set_page_dirty         = ext4_journalled_set_page_dirty,
3941         .bmap                   = ext4_bmap,
3942         .invalidatepage         = ext4_invalidatepage,
3943         .releasepage            = ext4_releasepage,
3944         .is_partially_uptodate  = block_is_partially_uptodate,
3945         .error_remove_page      = generic_error_remove_page,
3946 };
3947
3948 static const struct address_space_operations ext4_da_aops = {
3949         .readpage               = ext4_readpage,
3950         .readpages              = ext4_readpages,
3951         .writepage              = ext4_writepage,
3952         .writepages             = ext4_da_writepages,
3953         .sync_page              = block_sync_page,
3954         .write_begin            = ext4_da_write_begin,
3955         .write_end              = ext4_da_write_end,
3956         .bmap                   = ext4_bmap,
3957         .invalidatepage         = ext4_da_invalidatepage,
3958         .releasepage            = ext4_releasepage,
3959         .direct_IO              = ext4_direct_IO,
3960         .migratepage            = buffer_migrate_page,
3961         .is_partially_uptodate  = block_is_partially_uptodate,
3962         .error_remove_page      = generic_error_remove_page,
3963 };
3964
3965 void ext4_set_aops(struct inode *inode)
3966 {
3967         if (ext4_should_order_data(inode) &&
3968                 test_opt(inode->i_sb, DELALLOC))
3969                 inode->i_mapping->a_ops = &ext4_da_aops;
3970         else if (ext4_should_order_data(inode))
3971                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3972         else if (ext4_should_writeback_data(inode) &&
3973                  test_opt(inode->i_sb, DELALLOC))
3974                 inode->i_mapping->a_ops = &ext4_da_aops;
3975         else if (ext4_should_writeback_data(inode))
3976                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3977         else
3978                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3979 }
3980
3981 /*
3982  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3983  * up to the end of the block which corresponds to `from'.
3984  * This required during truncate. We need to physically zero the tail end
3985  * of that block so it doesn't yield old data if the file is later grown.
3986  */
3987 int ext4_block_truncate_page(handle_t *handle,
3988                 struct address_space *mapping, loff_t from)
3989 {
3990         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3991         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3992         unsigned blocksize, length, pos;
3993         ext4_lblk_t iblock;
3994         struct inode *inode = mapping->host;
3995         struct buffer_head *bh;
3996         struct page *page;
3997         int err = 0;
3998
3999         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4000                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
4001         if (!page)
4002                 return -EINVAL;
4003
4004         blocksize = inode->i_sb->s_blocksize;
4005         length = blocksize - (offset & (blocksize - 1));
4006         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4007
4008         if (!page_has_buffers(page))
4009                 create_empty_buffers(page, blocksize, 0);
4010
4011         /* Find the buffer that contains "offset" */
4012         bh = page_buffers(page);
4013         pos = blocksize;
4014         while (offset >= pos) {
4015                 bh = bh->b_this_page;
4016                 iblock++;
4017                 pos += blocksize;
4018         }
4019
4020         err = 0;
4021         if (buffer_freed(bh)) {
4022                 BUFFER_TRACE(bh, "freed: skip");
4023                 goto unlock;
4024         }
4025
4026         if (!buffer_mapped(bh)) {
4027                 BUFFER_TRACE(bh, "unmapped");
4028                 ext4_get_block(inode, iblock, bh, 0);
4029                 /* unmapped? It's a hole - nothing to do */
4030                 if (!buffer_mapped(bh)) {
4031                         BUFFER_TRACE(bh, "still unmapped");
4032                         goto unlock;
4033                 }
4034         }
4035
4036         /* Ok, it's mapped. Make sure it's up-to-date */
4037         if (PageUptodate(page))
4038                 set_buffer_uptodate(bh);
4039
4040         if (!buffer_uptodate(bh)) {
4041                 err = -EIO;
4042                 ll_rw_block(READ, 1, &bh);
4043                 wait_on_buffer(bh);
4044                 /* Uhhuh. Read error. Complain and punt. */
4045                 if (!buffer_uptodate(bh))
4046                         goto unlock;
4047         }
4048
4049         if (ext4_should_journal_data(inode)) {
4050                 BUFFER_TRACE(bh, "get write access");
4051                 err = ext4_journal_get_write_access(handle, bh);
4052                 if (err)
4053                         goto unlock;
4054         }
4055
4056         zero_user(page, offset, length);
4057
4058         BUFFER_TRACE(bh, "zeroed end of block");
4059
4060         err = 0;
4061         if (ext4_should_journal_data(inode)) {
4062                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4063         } else {
4064                 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4065                         err = ext4_jbd2_file_inode(handle, inode);
4066                 mark_buffer_dirty(bh);
4067         }
4068
4069 unlock:
4070         unlock_page(page);
4071         page_cache_release(page);
4072         return err;
4073 }
4074
4075 /*
4076  * Probably it should be a library function... search for first non-zero word
4077  * or memcmp with zero_page, whatever is better for particular architecture.
4078  * Linus?
4079  */
4080 static inline int all_zeroes(__le32 *p, __le32 *q)
4081 {
4082         while (p < q)
4083                 if (*p++)
4084                         return 0;
4085         return 1;
4086 }
4087
4088 /**
4089  *      ext4_find_shared - find the indirect blocks for partial truncation.
4090  *      @inode:   inode in question
4091  *      @depth:   depth of the affected branch
4092  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4093  *      @chain:   place to store the pointers to partial indirect blocks
4094  *      @top:     place to the (detached) top of branch
4095  *
4096  *      This is a helper function used by ext4_truncate().
4097  *
4098  *      When we do truncate() we may have to clean the ends of several
4099  *      indirect blocks but leave the blocks themselves alive. Block is
4100  *      partially truncated if some data below the new i_size is refered
4101  *      from it (and it is on the path to the first completely truncated
4102  *      data block, indeed).  We have to free the top of that path along
4103  *      with everything to the right of the path. Since no allocation
4104  *      past the truncation point is possible until ext4_truncate()
4105  *      finishes, we may safely do the latter, but top of branch may
4106  *      require special attention - pageout below the truncation point
4107  *      might try to populate it.
4108  *
4109  *      We atomically detach the top of branch from the tree, store the
4110  *      block number of its root in *@top, pointers to buffer_heads of
4111  *      partially truncated blocks - in @chain[].bh and pointers to
4112  *      their last elements that should not be removed - in
4113  *      @chain[].p. Return value is the pointer to last filled element
4114  *      of @chain.
4115  *
4116  *      The work left to caller to do the actual freeing of subtrees:
4117  *              a) free the subtree starting from *@top
4118  *              b) free the subtrees whose roots are stored in
4119  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4120  *              c) free the subtrees growing from the inode past the @chain[0].
4121  *                      (no partially truncated stuff there).  */
4122
4123 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4124                                   ext4_lblk_t offsets[4], Indirect chain[4],
4125                                   __le32 *top)
4126 {
4127         Indirect *partial, *p;
4128         int k, err;
4129
4130         *top = 0;
4131         /* Make k index the deepest non-null offset + 1 */
4132         for (k = depth; k > 1 && !offsets[k-1]; k--)
4133                 ;
4134         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4135         /* Writer: pointers */
4136         if (!partial)
4137                 partial = chain + k-1;
4138         /*
4139          * If the branch acquired continuation since we've looked at it -
4140          * fine, it should all survive and (new) top doesn't belong to us.
4141          */
4142         if (!partial->key && *partial->p)
4143                 /* Writer: end */
4144                 goto no_top;
4145         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4146                 ;
4147         /*
4148          * OK, we've found the last block that must survive. The rest of our
4149          * branch should be detached before unlocking. However, if that rest
4150          * of branch is all ours and does not grow immediately from the inode
4151          * it's easier to cheat and just decrement partial->p.
4152          */
4153         if (p == chain + k - 1 && p > chain) {
4154                 p->p--;
4155         } else {
4156                 *top = *p->p;
4157                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4158 #if 0
4159                 *p->p = 0;
4160 #endif
4161         }
4162         /* Writer: end */
4163
4164         while (partial > p) {
4165                 brelse(partial->bh);
4166                 partial--;
4167         }
4168 no_top:
4169         return partial;
4170 }
4171
4172 /*
4173  * Zero a number of block pointers in either an inode or an indirect block.
4174  * If we restart the transaction we must again get write access to the
4175  * indirect block for further modification.
4176  *
4177  * We release `count' blocks on disk, but (last - first) may be greater
4178  * than `count' because there can be holes in there.
4179  */
4180 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4181                              struct buffer_head *bh,
4182                              ext4_fsblk_t block_to_free,
4183                              unsigned long count, __le32 *first,
4184                              __le32 *last)
4185 {
4186         __le32 *p;
4187         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4188         int     err;
4189
4190         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4191                 flags |= EXT4_FREE_BLOCKS_METADATA;
4192
4193         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4194                                    count)) {
4195                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4196                                  "blocks %llu len %lu",
4197                                  (unsigned long long) block_to_free, count);
4198                 return 1;
4199         }
4200
4201         if (try_to_extend_transaction(handle, inode)) {
4202                 if (bh) {
4203                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4204                         err = ext4_handle_dirty_metadata(handle, inode, bh);
4205                         if (unlikely(err)) {
4206                                 ext4_std_error(inode->i_sb, err);
4207                                 return 1;
4208                         }
4209                 }
4210                 err = ext4_mark_inode_dirty(handle, inode);
4211                 if (unlikely(err)) {
4212                         ext4_std_error(inode->i_sb, err);
4213                         return 1;
4214                 }
4215                 err = ext4_truncate_restart_trans(handle, inode,
4216                                                   blocks_for_truncate(inode));
4217                 if (unlikely(err)) {
4218                         ext4_std_error(inode->i_sb, err);
4219                         return 1;
4220                 }
4221                 if (bh) {
4222                         BUFFER_TRACE(bh, "retaking write access");
4223                         ext4_journal_get_write_access(handle, bh);
4224                 }
4225         }
4226
4227         for (p = first; p < last; p++)
4228                 *p = 0;
4229
4230         ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4231         return 0;
4232 }
4233
4234 /**
4235  * ext4_free_data - free a list of data blocks
4236  * @handle:     handle for this transaction
4237  * @inode:      inode we are dealing with
4238  * @this_bh:    indirect buffer_head which contains *@first and *@last
4239  * @first:      array of block numbers
4240  * @last:       points immediately past the end of array
4241  *
4242  * We are freeing all blocks refered from that array (numbers are stored as
4243  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4244  *
4245  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4246  * blocks are contiguous then releasing them at one time will only affect one
4247  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4248  * actually use a lot of journal space.
4249  *
4250  * @this_bh will be %NULL if @first and @last point into the inode's direct
4251  * block pointers.
4252  */
4253 static void ext4_free_data(handle_t *handle, struct inode *inode,
4254                            struct buffer_head *this_bh,
4255                            __le32 *first, __le32 *last)
4256 {
4257         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4258         unsigned long count = 0;            /* Number of blocks in the run */
4259         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4260                                                corresponding to
4261                                                block_to_free */
4262         ext4_fsblk_t nr;                    /* Current block # */
4263         __le32 *p;                          /* Pointer into inode/ind
4264                                                for current block */
4265         int err;
4266
4267         if (this_bh) {                          /* For indirect block */
4268                 BUFFER_TRACE(this_bh, "get_write_access");
4269                 err = ext4_journal_get_write_access(handle, this_bh);
4270                 /* Important: if we can't update the indirect pointers
4271                  * to the blocks, we can't free them. */
4272                 if (err)
4273                         return;
4274         }
4275
4276         for (p = first; p < last; p++) {
4277                 nr = le32_to_cpu(*p);
4278                 if (nr) {
4279                         /* accumulate blocks to free if they're contiguous */
4280                         if (count == 0) {
4281                                 block_to_free = nr;
4282                                 block_to_free_p = p;
4283                                 count = 1;
4284                         } else if (nr == block_to_free + count) {
4285                                 count++;
4286                         } else {
4287                                 if (ext4_clear_blocks(handle, inode, this_bh,
4288                                                       block_to_free, count,
4289                                                       block_to_free_p, p))
4290                                         break;
4291                                 block_to_free = nr;
4292                                 block_to_free_p = p;
4293                                 count = 1;
4294                         }
4295                 }
4296         }
4297
4298         if (count > 0)
4299                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4300                                   count, block_to_free_p, p);
4301
4302         if (this_bh) {
4303                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4304
4305                 /*
4306                  * The buffer head should have an attached journal head at this
4307                  * point. However, if the data is corrupted and an indirect
4308                  * block pointed to itself, it would have been detached when
4309                  * the block was cleared. Check for this instead of OOPSing.
4310                  */
4311                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4312                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4313                 else
4314                         EXT4_ERROR_INODE(inode,
4315                                          "circular indirect block detected at "
4316                                          "block %llu",
4317                                 (unsigned long long) this_bh->b_blocknr);
4318         }
4319 }
4320
4321 /**
4322  *      ext4_free_branches - free an array of branches
4323  *      @handle: JBD handle for this transaction
4324  *      @inode: inode we are dealing with
4325  *      @parent_bh: the buffer_head which contains *@first and *@last
4326  *      @first: array of block numbers
4327  *      @last:  pointer immediately past the end of array
4328  *      @depth: depth of the branches to free
4329  *
4330  *      We are freeing all blocks refered from these branches (numbers are
4331  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4332  *      appropriately.
4333  */
4334 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4335                                struct buffer_head *parent_bh,
4336                                __le32 *first, __le32 *last, int depth)
4337 {
4338         ext4_fsblk_t nr;
4339         __le32 *p;
4340
4341         if (ext4_handle_is_aborted(handle))
4342                 return;
4343
4344         if (depth--) {
4345                 struct buffer_head *bh;
4346                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4347                 p = last;
4348                 while (--p >= first) {
4349                         nr = le32_to_cpu(*p);
4350                         if (!nr)
4351                                 continue;               /* A hole */
4352
4353                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4354                                                    nr, 1)) {
4355                                 EXT4_ERROR_INODE(inode,
4356                                                  "invalid indirect mapped "
4357                                                  "block %lu (level %d)",
4358                                                  (unsigned long) nr, depth);
4359                                 break;
4360                         }
4361
4362                         /* Go read the buffer for the next level down */
4363                         bh = sb_bread(inode->i_sb, nr);
4364
4365                         /*
4366                          * A read failure? Report error and clear slot
4367                          * (should be rare).
4368                          */
4369                         if (!bh) {
4370                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4371                                                        "Read failure");
4372                                 continue;
4373                         }
4374
4375                         /* This zaps the entire block.  Bottom up. */
4376                         BUFFER_TRACE(bh, "free child branches");
4377                         ext4_free_branches(handle, inode, bh,
4378                                         (__le32 *) bh->b_data,
4379                                         (__le32 *) bh->b_data + addr_per_block,
4380                                         depth);
4381                         brelse(bh);
4382
4383                         /*
4384                          * Everything below this this pointer has been
4385                          * released.  Now let this top-of-subtree go.
4386                          *
4387                          * We want the freeing of this indirect block to be
4388                          * atomic in the journal with the updating of the
4389                          * bitmap block which owns it.  So make some room in
4390                          * the journal.
4391                          *
4392                          * We zero the parent pointer *after* freeing its
4393                          * pointee in the bitmaps, so if extend_transaction()
4394                          * for some reason fails to put the bitmap changes and
4395                          * the release into the same transaction, recovery
4396                          * will merely complain about releasing a free block,
4397                          * rather than leaking blocks.
4398                          */
4399                         if (ext4_handle_is_aborted(handle))
4400                                 return;
4401                         if (try_to_extend_transaction(handle, inode)) {
4402                                 ext4_mark_inode_dirty(handle, inode);
4403                                 ext4_truncate_restart_trans(handle, inode,
4404                                             blocks_for_truncate(inode));
4405                         }
4406
4407                         /*
4408                          * The forget flag here is critical because if
4409                          * we are journaling (and not doing data
4410                          * journaling), we have to make sure a revoke
4411                          * record is written to prevent the journal
4412                          * replay from overwriting the (former)
4413                          * indirect block if it gets reallocated as a
4414                          * data block.  This must happen in the same
4415                          * transaction where the data blocks are
4416                          * actually freed.
4417                          */
4418                         ext4_free_blocks(handle, inode, 0, nr, 1,
4419                                          EXT4_FREE_BLOCKS_METADATA|
4420                                          EXT4_FREE_BLOCKS_FORGET);
4421
4422                         if (parent_bh) {
4423                                 /*
4424                                  * The block which we have just freed is
4425                                  * pointed to by an indirect block: journal it
4426                                  */
4427                                 BUFFER_TRACE(parent_bh, "get_write_access");
4428                                 if (!ext4_journal_get_write_access(handle,
4429                                                                    parent_bh)){
4430                                         *p = 0;
4431                                         BUFFER_TRACE(parent_bh,
4432                                         "call ext4_handle_dirty_metadata");
4433                                         ext4_handle_dirty_metadata(handle,
4434                                                                    inode,
4435                                                                    parent_bh);
4436                                 }
4437                         }
4438                 }
4439         } else {
4440                 /* We have reached the bottom of the tree. */
4441                 BUFFER_TRACE(parent_bh, "free data blocks");
4442                 ext4_free_data(handle, inode, parent_bh, first, last);
4443         }
4444 }
4445
4446 int ext4_can_truncate(struct inode *inode)
4447 {
4448         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4449                 return 0;
4450         if (S_ISREG(inode->i_mode))
4451                 return 1;
4452         if (S_ISDIR(inode->i_mode))
4453                 return 1;
4454         if (S_ISLNK(inode->i_mode))
4455                 return !ext4_inode_is_fast_symlink(inode);
4456         return 0;
4457 }
4458
4459 /*
4460  * ext4_truncate()
4461  *
4462  * We block out ext4_get_block() block instantiations across the entire
4463  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4464  * simultaneously on behalf of the same inode.
4465  *
4466  * As we work through the truncate and commmit bits of it to the journal there
4467  * is one core, guiding principle: the file's tree must always be consistent on
4468  * disk.  We must be able to restart the truncate after a crash.
4469  *
4470  * The file's tree may be transiently inconsistent in memory (although it
4471  * probably isn't), but whenever we close off and commit a journal transaction,
4472  * the contents of (the filesystem + the journal) must be consistent and
4473  * restartable.  It's pretty simple, really: bottom up, right to left (although
4474  * left-to-right works OK too).
4475  *
4476  * Note that at recovery time, journal replay occurs *before* the restart of
4477  * truncate against the orphan inode list.
4478  *
4479  * The committed inode has the new, desired i_size (which is the same as
4480  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4481  * that this inode's truncate did not complete and it will again call
4482  * ext4_truncate() to have another go.  So there will be instantiated blocks
4483  * to the right of the truncation point in a crashed ext4 filesystem.  But
4484  * that's fine - as long as they are linked from the inode, the post-crash
4485  * ext4_truncate() run will find them and release them.
4486  */
4487 void ext4_truncate(struct inode *inode)
4488 {
4489         handle_t *handle;
4490         struct ext4_inode_info *ei = EXT4_I(inode);
4491         __le32 *i_data = ei->i_data;
4492         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4493         struct address_space *mapping = inode->i_mapping;
4494         ext4_lblk_t offsets[4];
4495         Indirect chain[4];
4496         Indirect *partial;
4497         __le32 nr = 0;
4498         int n;
4499         ext4_lblk_t last_block;
4500         unsigned blocksize = inode->i_sb->s_blocksize;
4501
4502         if (!ext4_can_truncate(inode))
4503                 return;
4504
4505         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4506
4507         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4508                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4509
4510         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4511                 ext4_ext_truncate(inode);
4512                 return;
4513         }
4514
4515         handle = start_transaction(inode);
4516         if (IS_ERR(handle))
4517                 return;         /* AKPM: return what? */
4518
4519         last_block = (inode->i_size + blocksize-1)
4520                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4521
4522         if (inode->i_size & (blocksize - 1))
4523                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4524                         goto out_stop;
4525
4526         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4527         if (n == 0)
4528                 goto out_stop;  /* error */
4529
4530         /*
4531          * OK.  This truncate is going to happen.  We add the inode to the
4532          * orphan list, so that if this truncate spans multiple transactions,
4533          * and we crash, we will resume the truncate when the filesystem
4534          * recovers.  It also marks the inode dirty, to catch the new size.
4535          *
4536          * Implication: the file must always be in a sane, consistent
4537          * truncatable state while each transaction commits.
4538          */
4539         if (ext4_orphan_add(handle, inode))
4540                 goto out_stop;
4541
4542         /*
4543          * From here we block out all ext4_get_block() callers who want to
4544          * modify the block allocation tree.
4545          */
4546         down_write(&ei->i_data_sem);
4547
4548         ext4_discard_preallocations(inode);
4549
4550         /*
4551          * The orphan list entry will now protect us from any crash which
4552          * occurs before the truncate completes, so it is now safe to propagate
4553          * the new, shorter inode size (held for now in i_size) into the
4554          * on-disk inode. We do this via i_disksize, which is the value which
4555          * ext4 *really* writes onto the disk inode.
4556          */
4557         ei->i_disksize = inode->i_size;
4558
4559         if (n == 1) {           /* direct blocks */
4560                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4561                                i_data + EXT4_NDIR_BLOCKS);
4562                 goto do_indirects;
4563         }
4564
4565         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4566         /* Kill the top of shared branch (not detached) */
4567         if (nr) {
4568                 if (partial == chain) {
4569                         /* Shared branch grows from the inode */
4570                         ext4_free_branches(handle, inode, NULL,
4571                                            &nr, &nr+1, (chain+n-1) - partial);
4572                         *partial->p = 0;
4573                         /*
4574                          * We mark the inode dirty prior to restart,
4575                          * and prior to stop.  No need for it here.
4576                          */
4577                 } else {
4578                         /* Shared branch grows from an indirect block */
4579                         BUFFER_TRACE(partial->bh, "get_write_access");
4580                         ext4_free_branches(handle, inode, partial->bh,
4581                                         partial->p,
4582                                         partial->p+1, (chain+n-1) - partial);
4583                 }
4584         }
4585         /* Clear the ends of indirect blocks on the shared branch */
4586         while (partial > chain) {
4587                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4588                                    (__le32*)partial->bh->b_data+addr_per_block,
4589                                    (chain+n-1) - partial);
4590                 BUFFER_TRACE(partial->bh, "call brelse");
4591                 brelse(partial->bh);
4592                 partial--;
4593         }
4594 do_indirects:
4595         /* Kill the remaining (whole) subtrees */
4596         switch (offsets[0]) {
4597         default:
4598                 nr = i_data[EXT4_IND_BLOCK];
4599                 if (nr) {
4600                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4601                         i_data[EXT4_IND_BLOCK] = 0;
4602                 }
4603         case EXT4_IND_BLOCK:
4604                 nr = i_data[EXT4_DIND_BLOCK];
4605                 if (nr) {
4606                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4607                         i_data[EXT4_DIND_BLOCK] = 0;
4608                 }
4609         case EXT4_DIND_BLOCK:
4610                 nr = i_data[EXT4_TIND_BLOCK];
4611                 if (nr) {
4612                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4613                         i_data[EXT4_TIND_BLOCK] = 0;
4614                 }
4615         case EXT4_TIND_BLOCK:
4616                 ;
4617         }
4618
4619         up_write(&ei->i_data_sem);
4620         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4621         ext4_mark_inode_dirty(handle, inode);
4622
4623         /*
4624          * In a multi-transaction truncate, we only make the final transaction
4625          * synchronous
4626          */
4627         if (IS_SYNC(inode))
4628                 ext4_handle_sync(handle);
4629 out_stop:
4630         /*
4631          * If this was a simple ftruncate(), and the file will remain alive
4632          * then we need to clear up the orphan record which we created above.
4633          * However, if this was a real unlink then we were called by
4634          * ext4_delete_inode(), and we allow that function to clean up the
4635          * orphan info for us.
4636          */
4637         if (inode->i_nlink)
4638                 ext4_orphan_del(handle, inode);
4639
4640         ext4_journal_stop(handle);
4641 }
4642
4643 /*
4644  * ext4_get_inode_loc returns with an extra refcount against the inode's
4645  * underlying buffer_head on success. If 'in_mem' is true, we have all
4646  * data in memory that is needed to recreate the on-disk version of this
4647  * inode.
4648  */
4649 static int __ext4_get_inode_loc(struct inode *inode,
4650                                 struct ext4_iloc *iloc, int in_mem)
4651 {
4652         struct ext4_group_desc  *gdp;
4653         struct buffer_head      *bh;
4654         struct super_block      *sb = inode->i_sb;
4655         ext4_fsblk_t            block;
4656         int                     inodes_per_block, inode_offset;
4657
4658         iloc->bh = NULL;
4659         if (!ext4_valid_inum(sb, inode->i_ino))
4660                 return -EIO;
4661
4662         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4663         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4664         if (!gdp)
4665                 return -EIO;
4666
4667         /*
4668          * Figure out the offset within the block group inode table
4669          */
4670         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4671         inode_offset = ((inode->i_ino - 1) %
4672                         EXT4_INODES_PER_GROUP(sb));
4673         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4674         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4675
4676         bh = sb_getblk(sb, block);
4677         if (!bh) {
4678                 EXT4_ERROR_INODE_BLOCK(inode, block,
4679                                        "unable to read itable block");
4680                 return -EIO;
4681         }
4682         if (!buffer_uptodate(bh)) {
4683                 lock_buffer(bh);
4684
4685                 /*
4686                  * If the buffer has the write error flag, we have failed
4687                  * to write out another inode in the same block.  In this
4688                  * case, we don't have to read the block because we may
4689                  * read the old inode data successfully.
4690                  */
4691                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4692                         set_buffer_uptodate(bh);
4693
4694                 if (buffer_uptodate(bh)) {
4695                         /* someone brought it uptodate while we waited */
4696                         unlock_buffer(bh);
4697                         goto has_buffer;
4698                 }
4699
4700                 /*
4701                  * If we have all information of the inode in memory and this
4702                  * is the only valid inode in the block, we need not read the
4703                  * block.
4704                  */
4705                 if (in_mem) {
4706                         struct buffer_head *bitmap_bh;
4707                         int i, start;
4708
4709                         start = inode_offset & ~(inodes_per_block - 1);
4710
4711                         /* Is the inode bitmap in cache? */
4712                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4713                         if (!bitmap_bh)
4714                                 goto make_io;
4715
4716                         /*
4717                          * If the inode bitmap isn't in cache then the
4718                          * optimisation may end up performing two reads instead
4719                          * of one, so skip it.
4720                          */
4721                         if (!buffer_uptodate(bitmap_bh)) {
4722                                 brelse(bitmap_bh);
4723                                 goto make_io;
4724                         }
4725                         for (i = start; i < start + inodes_per_block; i++) {
4726                                 if (i == inode_offset)
4727                                         continue;
4728                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4729                                         break;
4730                         }
4731                         brelse(bitmap_bh);
4732                         if (i == start + inodes_per_block) {
4733                                 /* all other inodes are free, so skip I/O */
4734                                 memset(bh->b_data, 0, bh->b_size);
4735                                 set_buffer_uptodate(bh);
4736                                 unlock_buffer(bh);
4737                                 goto has_buffer;
4738                         }
4739                 }
4740
4741 make_io:
4742                 /*
4743                  * If we need to do any I/O, try to pre-readahead extra
4744                  * blocks from the inode table.
4745                  */
4746                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4747                         ext4_fsblk_t b, end, table;
4748                         unsigned num;
4749
4750                         table = ext4_inode_table(sb, gdp);
4751                         /* s_inode_readahead_blks is always a power of 2 */
4752                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4753                         if (table > b)
4754                                 b = table;
4755                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4756                         num = EXT4_INODES_PER_GROUP(sb);
4757                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4758                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4759                                 num -= ext4_itable_unused_count(sb, gdp);
4760                         table += num / inodes_per_block;
4761                         if (end > table)
4762                                 end = table;
4763                         while (b <= end)
4764                                 sb_breadahead(sb, b++);
4765                 }
4766
4767                 /*
4768                  * There are other valid inodes in the buffer, this inode
4769                  * has in-inode xattrs, or we don't have this inode in memory.
4770                  * Read the block from disk.
4771                  */
4772                 get_bh(bh);
4773                 bh->b_end_io = end_buffer_read_sync;
4774                 submit_bh(READ_META, bh);
4775                 wait_on_buffer(bh);
4776                 if (!buffer_uptodate(bh)) {
4777                         EXT4_ERROR_INODE_BLOCK(inode, block,
4778                                                "unable to read itable block");
4779                         brelse(bh);
4780                         return -EIO;
4781                 }
4782         }
4783 has_buffer:
4784         iloc->bh = bh;
4785         return 0;
4786 }
4787
4788 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4789 {
4790         /* We have all inode data except xattrs in memory here. */
4791         return __ext4_get_inode_loc(inode, iloc,
4792                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4793 }
4794
4795 void ext4_set_inode_flags(struct inode *inode)
4796 {
4797         unsigned int flags = EXT4_I(inode)->i_flags;
4798
4799         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4800         if (flags & EXT4_SYNC_FL)
4801                 inode->i_flags |= S_SYNC;
4802         if (flags & EXT4_APPEND_FL)
4803                 inode->i_flags |= S_APPEND;
4804         if (flags & EXT4_IMMUTABLE_FL)
4805                 inode->i_flags |= S_IMMUTABLE;
4806         if (flags & EXT4_NOATIME_FL)
4807                 inode->i_flags |= S_NOATIME;
4808         if (flags & EXT4_DIRSYNC_FL)
4809                 inode->i_flags |= S_DIRSYNC;
4810 }
4811
4812 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4813 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4814 {
4815         unsigned int vfs_fl;
4816         unsigned long old_fl, new_fl;
4817
4818         do {
4819                 vfs_fl = ei->vfs_inode.i_flags;
4820                 old_fl = ei->i_flags;
4821                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4822                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4823                                 EXT4_DIRSYNC_FL);
4824                 if (vfs_fl & S_SYNC)
4825                         new_fl |= EXT4_SYNC_FL;
4826                 if (vfs_fl & S_APPEND)
4827                         new_fl |= EXT4_APPEND_FL;
4828                 if (vfs_fl & S_IMMUTABLE)
4829                         new_fl |= EXT4_IMMUTABLE_FL;
4830                 if (vfs_fl & S_NOATIME)
4831                         new_fl |= EXT4_NOATIME_FL;
4832                 if (vfs_fl & S_DIRSYNC)
4833                         new_fl |= EXT4_DIRSYNC_FL;
4834         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4835 }
4836
4837 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4838                                   struct ext4_inode_info *ei)
4839 {
4840         blkcnt_t i_blocks ;
4841         struct inode *inode = &(ei->vfs_inode);
4842         struct super_block *sb = inode->i_sb;
4843
4844         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4845                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4846                 /* we are using combined 48 bit field */
4847                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4848                                         le32_to_cpu(raw_inode->i_blocks_lo);
4849                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4850                         /* i_blocks represent file system block size */
4851                         return i_blocks  << (inode->i_blkbits - 9);
4852                 } else {
4853                         return i_blocks;
4854                 }
4855         } else {
4856                 return le32_to_cpu(raw_inode->i_blocks_lo);
4857         }
4858 }
4859
4860 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4861 {
4862         struct ext4_iloc iloc;
4863         struct ext4_inode *raw_inode;
4864         struct ext4_inode_info *ei;
4865         struct inode *inode;
4866         journal_t *journal = EXT4_SB(sb)->s_journal;
4867         long ret;
4868         int block;
4869
4870         inode = iget_locked(sb, ino);
4871         if (!inode)
4872                 return ERR_PTR(-ENOMEM);
4873         if (!(inode->i_state & I_NEW))
4874                 return inode;
4875
4876         ei = EXT4_I(inode);
4877         iloc.bh = 0;
4878
4879         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4880         if (ret < 0)
4881                 goto bad_inode;
4882         raw_inode = ext4_raw_inode(&iloc);
4883         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4884         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4885         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4886         if (!(test_opt(inode->i_sb, NO_UID32))) {
4887                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4888                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4889         }
4890         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4891
4892         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4893         ei->i_dir_start_lookup = 0;
4894         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4895         /* We now have enough fields to check if the inode was active or not.
4896          * This is needed because nfsd might try to access dead inodes
4897          * the test is that same one that e2fsck uses
4898          * NeilBrown 1999oct15
4899          */
4900         if (inode->i_nlink == 0) {
4901                 if (inode->i_mode == 0 ||
4902                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4903                         /* this inode is deleted */
4904                         ret = -ESTALE;
4905                         goto bad_inode;
4906                 }
4907                 /* The only unlinked inodes we let through here have
4908                  * valid i_mode and are being read by the orphan
4909                  * recovery code: that's fine, we're about to complete
4910                  * the process of deleting those. */
4911         }
4912         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4913         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4914         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4915         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4916                 ei->i_file_acl |=
4917                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4918         inode->i_size = ext4_isize(raw_inode);
4919         ei->i_disksize = inode->i_size;
4920 #ifdef CONFIG_QUOTA
4921         ei->i_reserved_quota = 0;
4922 #endif
4923         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4924         ei->i_block_group = iloc.block_group;
4925         ei->i_last_alloc_group = ~0;
4926         /*
4927          * NOTE! The in-memory inode i_data array is in little-endian order
4928          * even on big-endian machines: we do NOT byteswap the block numbers!
4929          */
4930         for (block = 0; block < EXT4_N_BLOCKS; block++)
4931                 ei->i_data[block] = raw_inode->i_block[block];
4932         INIT_LIST_HEAD(&ei->i_orphan);
4933
4934         /*
4935          * Set transaction id's of transactions that have to be committed
4936          * to finish f[data]sync. We set them to currently running transaction
4937          * as we cannot be sure that the inode or some of its metadata isn't
4938          * part of the transaction - the inode could have been reclaimed and
4939          * now it is reread from disk.
4940          */
4941         if (journal) {
4942                 transaction_t *transaction;
4943                 tid_t tid;
4944
4945                 read_lock(&journal->j_state_lock);
4946                 if (journal->j_running_transaction)
4947                         transaction = journal->j_running_transaction;
4948                 else
4949                         transaction = journal->j_committing_transaction;
4950                 if (transaction)
4951                         tid = transaction->t_tid;
4952                 else
4953                         tid = journal->j_commit_sequence;
4954                 read_unlock(&journal->j_state_lock);
4955                 ei->i_sync_tid = tid;
4956                 ei->i_datasync_tid = tid;
4957         }
4958
4959         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4960                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4961                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4962                     EXT4_INODE_SIZE(inode->i_sb)) {
4963                         ret = -EIO;
4964                         goto bad_inode;
4965                 }
4966                 if (ei->i_extra_isize == 0) {
4967                         /* The extra space is currently unused. Use it. */
4968                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4969                                             EXT4_GOOD_OLD_INODE_SIZE;
4970                 } else {
4971                         __le32 *magic = (void *)raw_inode +
4972                                         EXT4_GOOD_OLD_INODE_SIZE +
4973                                         ei->i_extra_isize;
4974                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4975                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4976                 }
4977         } else
4978                 ei->i_extra_isize = 0;
4979
4980         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4981         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4982         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4983         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4984
4985         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4986         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4987                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4988                         inode->i_version |=
4989                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4990         }
4991
4992         ret = 0;
4993         if (ei->i_file_acl &&
4994             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4995                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4996                                  ei->i_file_acl);
4997                 ret = -EIO;
4998                 goto bad_inode;
4999         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5000                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5001                     (S_ISLNK(inode->i_mode) &&
5002                      !ext4_inode_is_fast_symlink(inode)))
5003                         /* Validate extent which is part of inode */
5004                         ret = ext4_ext_check_inode(inode);
5005         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5006                    (S_ISLNK(inode->i_mode) &&
5007                     !ext4_inode_is_fast_symlink(inode))) {
5008                 /* Validate block references which are part of inode */
5009                 ret = ext4_check_inode_blockref(inode);
5010         }
5011         if (ret)
5012                 goto bad_inode;
5013
5014         if (S_ISREG(inode->i_mode)) {
5015                 inode->i_op = &ext4_file_inode_operations;
5016                 inode->i_fop = &ext4_file_operations;
5017                 ext4_set_aops(inode);
5018         } else if (S_ISDIR(inode->i_mode)) {
5019                 inode->i_op = &ext4_dir_inode_operations;
5020                 inode->i_fop = &ext4_dir_operations;
5021         } else if (S_ISLNK(inode->i_mode)) {
5022                 if (ext4_inode_is_fast_symlink(inode)) {
5023                         inode->i_op = &ext4_fast_symlink_inode_operations;
5024                         nd_terminate_link(ei->i_data, inode->i_size,
5025                                 sizeof(ei->i_data) - 1);
5026                 } else {
5027                         inode->i_op = &ext4_symlink_inode_operations;
5028                         ext4_set_aops(inode);
5029                 }
5030         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5031               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5032                 inode->i_op = &ext4_special_inode_operations;
5033                 if (raw_inode->i_block[0])
5034                         init_special_inode(inode, inode->i_mode,
5035                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5036                 else
5037                         init_special_inode(inode, inode->i_mode,
5038                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5039         } else {
5040                 ret = -EIO;
5041                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5042                 goto bad_inode;
5043         }
5044         brelse(iloc.bh);
5045         ext4_set_inode_flags(inode);
5046         unlock_new_inode(inode);
5047         return inode;
5048
5049 bad_inode:
5050         brelse(iloc.bh);
5051         iget_failed(inode);
5052         return ERR_PTR(ret);
5053 }
5054
5055 static int ext4_inode_blocks_set(handle_t *handle,
5056                                 struct ext4_inode *raw_inode,
5057                                 struct ext4_inode_info *ei)
5058 {
5059         struct inode *inode = &(ei->vfs_inode);
5060         u64 i_blocks = inode->i_blocks;
5061         struct super_block *sb = inode->i_sb;
5062
5063         if (i_blocks <= ~0U) {
5064                 /*
5065                  * i_blocks can be represnted in a 32 bit variable
5066                  * as multiple of 512 bytes
5067                  */
5068                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5069                 raw_inode->i_blocks_high = 0;
5070                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5071                 return 0;
5072         }
5073         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5074                 return -EFBIG;
5075
5076         if (i_blocks <= 0xffffffffffffULL) {
5077                 /*
5078                  * i_blocks can be represented in a 48 bit variable
5079                  * as multiple of 512 bytes
5080                  */
5081                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5082                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5083                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5084         } else {
5085                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5086                 /* i_block is stored in file system block size */
5087                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5088                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5089                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5090         }
5091         return 0;
5092 }
5093
5094 /*
5095  * Post the struct inode info into an on-disk inode location in the
5096  * buffer-cache.  This gobbles the caller's reference to the
5097  * buffer_head in the inode location struct.
5098  *
5099  * The caller must have write access to iloc->bh.
5100  */
5101 static int ext4_do_update_inode(handle_t *handle,
5102                                 struct inode *inode,
5103                                 struct ext4_iloc *iloc)
5104 {
5105         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5106         struct ext4_inode_info *ei = EXT4_I(inode);
5107         struct buffer_head *bh = iloc->bh;
5108         int err = 0, rc, block;
5109
5110         /* For fields not not tracking in the in-memory inode,
5111          * initialise them to zero for new inodes. */
5112         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5113                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5114
5115         ext4_get_inode_flags(ei);
5116         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5117         if (!(test_opt(inode->i_sb, NO_UID32))) {
5118                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5119                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5120 /*
5121  * Fix up interoperability with old kernels. Otherwise, old inodes get
5122  * re-used with the upper 16 bits of the uid/gid intact
5123  */
5124                 if (!ei->i_dtime) {
5125                         raw_inode->i_uid_high =
5126                                 cpu_to_le16(high_16_bits(inode->i_uid));
5127                         raw_inode->i_gid_high =
5128                                 cpu_to_le16(high_16_bits(inode->i_gid));
5129                 } else {
5130                         raw_inode->i_uid_high = 0;
5131                         raw_inode->i_gid_high = 0;
5132                 }
5133         } else {
5134                 raw_inode->i_uid_low =
5135                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5136                 raw_inode->i_gid_low =
5137                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5138                 raw_inode->i_uid_high = 0;
5139                 raw_inode->i_gid_high = 0;
5140         }
5141         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5142
5143         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5144         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5145         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5146         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5147
5148         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5149                 goto out_brelse;
5150         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5151         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5152         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5153             cpu_to_le32(EXT4_OS_HURD))
5154                 raw_inode->i_file_acl_high =
5155                         cpu_to_le16(ei->i_file_acl >> 32);
5156         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5157         ext4_isize_set(raw_inode, ei->i_disksize);
5158         if (ei->i_disksize > 0x7fffffffULL) {
5159                 struct super_block *sb = inode->i_sb;
5160                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5161                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5162                                 EXT4_SB(sb)->s_es->s_rev_level ==
5163                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5164                         /* If this is the first large file
5165                          * created, add a flag to the superblock.
5166                          */
5167                         err = ext4_journal_get_write_access(handle,
5168                                         EXT4_SB(sb)->s_sbh);
5169                         if (err)
5170                                 goto out_brelse;
5171                         ext4_update_dynamic_rev(sb);
5172                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5173                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5174                         sb->s_dirt = 1;
5175                         ext4_handle_sync(handle);
5176                         err = ext4_handle_dirty_metadata(handle, NULL,
5177                                         EXT4_SB(sb)->s_sbh);
5178                 }
5179         }
5180         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5181         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5182                 if (old_valid_dev(inode->i_rdev)) {
5183                         raw_inode->i_block[0] =
5184                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5185                         raw_inode->i_block[1] = 0;
5186                 } else {
5187                         raw_inode->i_block[0] = 0;
5188                         raw_inode->i_block[1] =
5189                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5190                         raw_inode->i_block[2] = 0;
5191                 }
5192         } else
5193                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5194                         raw_inode->i_block[block] = ei->i_data[block];
5195
5196         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5197         if (ei->i_extra_isize) {
5198                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5199                         raw_inode->i_version_hi =
5200                         cpu_to_le32(inode->i_version >> 32);
5201                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5202         }
5203
5204         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5205         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5206         if (!err)
5207                 err = rc;
5208         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5209
5210         ext4_update_inode_fsync_trans(handle, inode, 0);
5211 out_brelse:
5212         brelse(bh);
5213         ext4_std_error(inode->i_sb, err);
5214         return err;
5215 }
5216
5217 /*
5218  * ext4_write_inode()
5219  *
5220  * We are called from a few places:
5221  *
5222  * - Within generic_file_write() for O_SYNC files.
5223  *   Here, there will be no transaction running. We wait for any running
5224  *   trasnaction to commit.
5225  *
5226  * - Within sys_sync(), kupdate and such.
5227  *   We wait on commit, if tol to.
5228  *
5229  * - Within prune_icache() (PF_MEMALLOC == true)
5230  *   Here we simply return.  We can't afford to block kswapd on the
5231  *   journal commit.
5232  *
5233  * In all cases it is actually safe for us to return without doing anything,
5234  * because the inode has been copied into a raw inode buffer in
5235  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5236  * knfsd.
5237  *
5238  * Note that we are absolutely dependent upon all inode dirtiers doing the
5239  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5240  * which we are interested.
5241  *
5242  * It would be a bug for them to not do this.  The code:
5243  *
5244  *      mark_inode_dirty(inode)
5245  *      stuff();
5246  *      inode->i_size = expr;
5247  *
5248  * is in error because a kswapd-driven write_inode() could occur while
5249  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5250  * will no longer be on the superblock's dirty inode list.
5251  */
5252 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5253 {
5254         int err;
5255
5256         if (current->flags & PF_MEMALLOC)
5257                 return 0;
5258
5259         if (EXT4_SB(inode->i_sb)->s_journal) {
5260                 if (ext4_journal_current_handle()) {
5261                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5262                         dump_stack();
5263                         return -EIO;
5264                 }
5265
5266                 if (wbc->sync_mode != WB_SYNC_ALL)
5267                         return 0;
5268
5269                 err = ext4_force_commit(inode->i_sb);
5270         } else {
5271                 struct ext4_iloc iloc;
5272
5273                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5274                 if (err)
5275                         return err;
5276                 if (wbc->sync_mode == WB_SYNC_ALL)
5277                         sync_dirty_buffer(iloc.bh);
5278                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5279                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5280                                          "IO error syncing inode");
5281                         err = -EIO;
5282                 }
5283                 brelse(iloc.bh);
5284         }
5285         return err;
5286 }
5287
5288 /*
5289  * ext4_setattr()
5290  *
5291  * Called from notify_change.
5292  *
5293  * We want to trap VFS attempts to truncate the file as soon as
5294  * possible.  In particular, we want to make sure that when the VFS
5295  * shrinks i_size, we put the inode on the orphan list and modify
5296  * i_disksize immediately, so that during the subsequent flushing of
5297  * dirty pages and freeing of disk blocks, we can guarantee that any
5298  * commit will leave the blocks being flushed in an unused state on
5299  * disk.  (On recovery, the inode will get truncated and the blocks will
5300  * be freed, so we have a strong guarantee that no future commit will
5301  * leave these blocks visible to the user.)
5302  *
5303  * Another thing we have to assure is that if we are in ordered mode
5304  * and inode is still attached to the committing transaction, we must
5305  * we start writeout of all the dirty pages which are being truncated.
5306  * This way we are sure that all the data written in the previous
5307  * transaction are already on disk (truncate waits for pages under
5308  * writeback).
5309  *
5310  * Called with inode->i_mutex down.
5311  */
5312 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5313 {
5314         struct inode *inode = dentry->d_inode;
5315         int error, rc = 0;
5316         int orphan = 0;
5317         const unsigned int ia_valid = attr->ia_valid;
5318
5319         error = inode_change_ok(inode, attr);
5320         if (error)
5321                 return error;
5322
5323         if (is_quota_modification(inode, attr))
5324                 dquot_initialize(inode);
5325         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5326                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5327                 handle_t *handle;
5328
5329                 /* (user+group)*(old+new) structure, inode write (sb,
5330                  * inode block, ? - but truncate inode update has it) */
5331                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5332                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5333                 if (IS_ERR(handle)) {
5334                         error = PTR_ERR(handle);
5335                         goto err_out;
5336                 }
5337                 error = dquot_transfer(inode, attr);
5338                 if (error) {
5339                         ext4_journal_stop(handle);
5340                         return error;
5341                 }
5342                 /* Update corresponding info in inode so that everything is in
5343                  * one transaction */
5344                 if (attr->ia_valid & ATTR_UID)
5345                         inode->i_uid = attr->ia_uid;
5346                 if (attr->ia_valid & ATTR_GID)
5347                         inode->i_gid = attr->ia_gid;
5348                 error = ext4_mark_inode_dirty(handle, inode);
5349                 ext4_journal_stop(handle);
5350         }
5351
5352         if (attr->ia_valid & ATTR_SIZE) {
5353                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5354                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5355
5356                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5357                                 return -EFBIG;
5358                 }
5359         }
5360
5361         if (S_ISREG(inode->i_mode) &&
5362             attr->ia_valid & ATTR_SIZE &&
5363             (attr->ia_size < inode->i_size ||
5364              (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5365                 handle_t *handle;
5366
5367                 handle = ext4_journal_start(inode, 3);
5368                 if (IS_ERR(handle)) {
5369                         error = PTR_ERR(handle);
5370                         goto err_out;
5371                 }
5372                 if (ext4_handle_valid(handle)) {
5373                         error = ext4_orphan_add(handle, inode);
5374                         orphan = 1;
5375                 }
5376                 EXT4_I(inode)->i_disksize = attr->ia_size;
5377                 rc = ext4_mark_inode_dirty(handle, inode);
5378                 if (!error)
5379                         error = rc;
5380                 ext4_journal_stop(handle);
5381
5382                 if (ext4_should_order_data(inode)) {
5383                         error = ext4_begin_ordered_truncate(inode,
5384                                                             attr->ia_size);
5385                         if (error) {
5386                                 /* Do as much error cleanup as possible */
5387                                 handle = ext4_journal_start(inode, 3);
5388                                 if (IS_ERR(handle)) {
5389                                         ext4_orphan_del(NULL, inode);
5390                                         goto err_out;
5391                                 }
5392                                 ext4_orphan_del(handle, inode);
5393                                 orphan = 0;
5394                                 ext4_journal_stop(handle);
5395                                 goto err_out;
5396                         }
5397                 }
5398                 /* ext4_truncate will clear the flag */
5399                 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5400                         ext4_truncate(inode);
5401         }
5402
5403         if ((attr->ia_valid & ATTR_SIZE) &&
5404             attr->ia_size != i_size_read(inode))
5405                 rc = vmtruncate(inode, attr->ia_size);
5406
5407         if (!rc) {
5408                 setattr_copy(inode, attr);
5409                 mark_inode_dirty(inode);
5410         }
5411
5412         /*
5413          * If the call to ext4_truncate failed to get a transaction handle at
5414          * all, we need to clean up the in-core orphan list manually.
5415          */
5416         if (orphan && inode->i_nlink)
5417                 ext4_orphan_del(NULL, inode);
5418
5419         if (!rc && (ia_valid & ATTR_MODE))
5420                 rc = ext4_acl_chmod(inode);
5421
5422 err_out:
5423         ext4_std_error(inode->i_sb, error);
5424         if (!error)
5425                 error = rc;
5426         return error;
5427 }
5428
5429 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5430                  struct kstat *stat)
5431 {
5432         struct inode *inode;
5433         unsigned long delalloc_blocks;
5434
5435         inode = dentry->d_inode;
5436         generic_fillattr(inode, stat);
5437
5438         /*
5439          * We can't update i_blocks if the block allocation is delayed
5440          * otherwise in the case of system crash before the real block
5441          * allocation is done, we will have i_blocks inconsistent with
5442          * on-disk file blocks.
5443          * We always keep i_blocks updated together with real
5444          * allocation. But to not confuse with user, stat
5445          * will return the blocks that include the delayed allocation
5446          * blocks for this file.
5447          */
5448         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5449
5450         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5451         return 0;
5452 }
5453
5454 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5455                                       int chunk)
5456 {
5457         int indirects;
5458
5459         /* if nrblocks are contiguous */
5460         if (chunk) {
5461                 /*
5462                  * With N contiguous data blocks, it need at most
5463                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5464                  * 2 dindirect blocks
5465                  * 1 tindirect block
5466                  */
5467                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5468                 return indirects + 3;
5469         }
5470         /*
5471          * if nrblocks are not contiguous, worse case, each block touch
5472          * a indirect block, and each indirect block touch a double indirect
5473          * block, plus a triple indirect block
5474          */
5475         indirects = nrblocks * 2 + 1;
5476         return indirects;
5477 }
5478
5479 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5480 {
5481         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5482                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5483         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5484 }
5485
5486 /*
5487  * Account for index blocks, block groups bitmaps and block group
5488  * descriptor blocks if modify datablocks and index blocks
5489  * worse case, the indexs blocks spread over different block groups
5490  *
5491  * If datablocks are discontiguous, they are possible to spread over
5492  * different block groups too. If they are contiuguous, with flexbg,
5493  * they could still across block group boundary.
5494  *
5495  * Also account for superblock, inode, quota and xattr blocks
5496  */
5497 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5498 {
5499         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5500         int gdpblocks;
5501         int idxblocks;
5502         int ret = 0;
5503
5504         /*
5505          * How many index blocks need to touch to modify nrblocks?
5506          * The "Chunk" flag indicating whether the nrblocks is
5507          * physically contiguous on disk
5508          *
5509          * For Direct IO and fallocate, they calls get_block to allocate
5510          * one single extent at a time, so they could set the "Chunk" flag
5511          */
5512         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5513
5514         ret = idxblocks;
5515
5516         /*
5517          * Now let's see how many group bitmaps and group descriptors need
5518          * to account
5519          */
5520         groups = idxblocks;
5521         if (chunk)
5522                 groups += 1;
5523         else
5524                 groups += nrblocks;
5525
5526         gdpblocks = groups;
5527         if (groups > ngroups)
5528                 groups = ngroups;
5529         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5530                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5531
5532         /* bitmaps and block group descriptor blocks */
5533         ret += groups + gdpblocks;
5534
5535         /* Blocks for super block, inode, quota and xattr blocks */
5536         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5537
5538         return ret;
5539 }
5540
5541 /*
5542  * Calulate the total number of credits to reserve to fit
5543  * the modification of a single pages into a single transaction,
5544  * which may include multiple chunks of block allocations.
5545  *
5546  * This could be called via ext4_write_begin()
5547  *
5548  * We need to consider the worse case, when
5549  * one new block per extent.
5550  */
5551 int ext4_writepage_trans_blocks(struct inode *inode)
5552 {
5553         int bpp = ext4_journal_blocks_per_page(inode);
5554         int ret;
5555
5556         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5557
5558         /* Account for data blocks for journalled mode */
5559         if (ext4_should_journal_data(inode))
5560                 ret += bpp;
5561         return ret;
5562 }
5563
5564 /*
5565  * Calculate the journal credits for a chunk of data modification.
5566  *
5567  * This is called from DIO, fallocate or whoever calling
5568  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5569  *
5570  * journal buffers for data blocks are not included here, as DIO
5571  * and fallocate do no need to journal data buffers.
5572  */
5573 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5574 {
5575         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5576 }
5577
5578 /*
5579  * The caller must have previously called ext4_reserve_inode_write().
5580  * Give this, we know that the caller already has write access to iloc->bh.
5581  */
5582 int ext4_mark_iloc_dirty(handle_t *handle,
5583                          struct inode *inode, struct ext4_iloc *iloc)
5584 {
5585         int err = 0;
5586
5587         if (test_opt(inode->i_sb, I_VERSION))
5588                 inode_inc_iversion(inode);
5589
5590         /* the do_update_inode consumes one bh->b_count */
5591         get_bh(iloc->bh);
5592
5593         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5594         err = ext4_do_update_inode(handle, inode, iloc);
5595         put_bh(iloc->bh);
5596         return err;
5597 }
5598
5599 /*
5600  * On success, We end up with an outstanding reference count against
5601  * iloc->bh.  This _must_ be cleaned up later.
5602  */
5603
5604 int
5605 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5606                          struct ext4_iloc *iloc)
5607 {
5608         int err;
5609
5610         err = ext4_get_inode_loc(inode, iloc);
5611         if (!err) {
5612                 BUFFER_TRACE(iloc->bh, "get_write_access");
5613                 err = ext4_journal_get_write_access(handle, iloc->bh);
5614                 if (err) {
5615                         brelse(iloc->bh);
5616                         iloc->bh = NULL;
5617                 }
5618         }
5619         ext4_std_error(inode->i_sb, err);
5620         return err;
5621 }
5622
5623 /*
5624  * Expand an inode by new_extra_isize bytes.
5625  * Returns 0 on success or negative error number on failure.
5626  */
5627 static int ext4_expand_extra_isize(struct inode *inode,
5628                                    unsigned int new_extra_isize,
5629                                    struct ext4_iloc iloc,
5630                                    handle_t *handle)
5631 {
5632         struct ext4_inode *raw_inode;
5633         struct ext4_xattr_ibody_header *header;
5634
5635         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5636                 return 0;
5637
5638         raw_inode = ext4_raw_inode(&iloc);
5639
5640         header = IHDR(inode, raw_inode);
5641
5642         /* No extended attributes present */
5643         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5644             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5645                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5646                         new_extra_isize);
5647                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5648                 return 0;
5649         }
5650
5651         /* try to expand with EAs present */
5652         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5653                                           raw_inode, handle);
5654 }
5655
5656 /*
5657  * What we do here is to mark the in-core inode as clean with respect to inode
5658  * dirtiness (it may still be data-dirty).
5659  * This means that the in-core inode may be reaped by prune_icache
5660  * without having to perform any I/O.  This is a very good thing,
5661  * because *any* task may call prune_icache - even ones which
5662  * have a transaction open against a different journal.
5663  *
5664  * Is this cheating?  Not really.  Sure, we haven't written the
5665  * inode out, but prune_icache isn't a user-visible syncing function.
5666  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5667  * we start and wait on commits.
5668  *
5669  * Is this efficient/effective?  Well, we're being nice to the system
5670  * by cleaning up our inodes proactively so they can be reaped
5671  * without I/O.  But we are potentially leaving up to five seconds'
5672  * worth of inodes floating about which prune_icache wants us to
5673  * write out.  One way to fix that would be to get prune_icache()
5674  * to do a write_super() to free up some memory.  It has the desired
5675  * effect.
5676  */
5677 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5678 {
5679         struct ext4_iloc iloc;
5680         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5681         static unsigned int mnt_count;
5682         int err, ret;
5683
5684         might_sleep();
5685         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5686         err = ext4_reserve_inode_write(handle, inode, &iloc);
5687         if (ext4_handle_valid(handle) &&
5688             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5689             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5690                 /*
5691                  * We need extra buffer credits since we may write into EA block
5692                  * with this same handle. If journal_extend fails, then it will
5693                  * only result in a minor loss of functionality for that inode.
5694                  * If this is felt to be critical, then e2fsck should be run to
5695                  * force a large enough s_min_extra_isize.
5696                  */
5697                 if ((jbd2_journal_extend(handle,
5698                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5699                         ret = ext4_expand_extra_isize(inode,
5700                                                       sbi->s_want_extra_isize,
5701                                                       iloc, handle);
5702                         if (ret) {
5703                                 ext4_set_inode_state(inode,
5704                                                      EXT4_STATE_NO_EXPAND);
5705                                 if (mnt_count !=
5706                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5707                                         ext4_warning(inode->i_sb,
5708                                         "Unable to expand inode %lu. Delete"
5709                                         " some EAs or run e2fsck.",
5710                                         inode->i_ino);
5711                                         mnt_count =
5712                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5713                                 }
5714                         }
5715                 }
5716         }
5717         if (!err)
5718                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5719         return err;
5720 }
5721
5722 /*
5723  * ext4_dirty_inode() is called from __mark_inode_dirty()
5724  *
5725  * We're really interested in the case where a file is being extended.
5726  * i_size has been changed by generic_commit_write() and we thus need
5727  * to include the updated inode in the current transaction.
5728  *
5729  * Also, dquot_alloc_block() will always dirty the inode when blocks
5730  * are allocated to the file.
5731  *
5732  * If the inode is marked synchronous, we don't honour that here - doing
5733  * so would cause a commit on atime updates, which we don't bother doing.
5734  * We handle synchronous inodes at the highest possible level.
5735  */
5736 void ext4_dirty_inode(struct inode *inode)
5737 {
5738         handle_t *handle;
5739
5740         handle = ext4_journal_start(inode, 2);
5741         if (IS_ERR(handle))
5742                 goto out;
5743
5744         ext4_mark_inode_dirty(handle, inode);
5745
5746         ext4_journal_stop(handle);
5747 out:
5748         return;
5749 }
5750
5751 #if 0
5752 /*
5753  * Bind an inode's backing buffer_head into this transaction, to prevent
5754  * it from being flushed to disk early.  Unlike
5755  * ext4_reserve_inode_write, this leaves behind no bh reference and
5756  * returns no iloc structure, so the caller needs to repeat the iloc
5757  * lookup to mark the inode dirty later.
5758  */
5759 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5760 {
5761         struct ext4_iloc iloc;
5762
5763         int err = 0;
5764         if (handle) {
5765                 err = ext4_get_inode_loc(inode, &iloc);
5766                 if (!err) {
5767                         BUFFER_TRACE(iloc.bh, "get_write_access");
5768                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5769                         if (!err)
5770                                 err = ext4_handle_dirty_metadata(handle,
5771                                                                  NULL,
5772                                                                  iloc.bh);
5773                         brelse(iloc.bh);
5774                 }
5775         }
5776         ext4_std_error(inode->i_sb, err);
5777         return err;
5778 }
5779 #endif
5780
5781 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5782 {
5783         journal_t *journal;
5784         handle_t *handle;
5785         int err;
5786
5787         /*
5788          * We have to be very careful here: changing a data block's
5789          * journaling status dynamically is dangerous.  If we write a
5790          * data block to the journal, change the status and then delete
5791          * that block, we risk forgetting to revoke the old log record
5792          * from the journal and so a subsequent replay can corrupt data.
5793          * So, first we make sure that the journal is empty and that
5794          * nobody is changing anything.
5795          */
5796
5797         journal = EXT4_JOURNAL(inode);
5798         if (!journal)
5799                 return 0;
5800         if (is_journal_aborted(journal))
5801                 return -EROFS;
5802
5803         jbd2_journal_lock_updates(journal);
5804         jbd2_journal_flush(journal);
5805
5806         /*
5807          * OK, there are no updates running now, and all cached data is
5808          * synced to disk.  We are now in a completely consistent state
5809          * which doesn't have anything in the journal, and we know that
5810          * no filesystem updates are running, so it is safe to modify
5811          * the inode's in-core data-journaling state flag now.
5812          */
5813
5814         if (val)
5815                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5816         else
5817                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5818         ext4_set_aops(inode);
5819
5820         jbd2_journal_unlock_updates(journal);
5821
5822         /* Finally we can mark the inode as dirty. */
5823
5824         handle = ext4_journal_start(inode, 1);
5825         if (IS_ERR(handle))
5826                 return PTR_ERR(handle);
5827
5828         err = ext4_mark_inode_dirty(handle, inode);
5829         ext4_handle_sync(handle);
5830         ext4_journal_stop(handle);
5831         ext4_std_error(inode->i_sb, err);
5832
5833         return err;
5834 }
5835
5836 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5837 {
5838         return !buffer_mapped(bh);
5839 }
5840
5841 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5842 {
5843         struct page *page = vmf->page;
5844         loff_t size;
5845         unsigned long len;
5846         int ret = -EINVAL;
5847         void *fsdata;
5848         struct file *file = vma->vm_file;
5849         struct inode *inode = file->f_path.dentry->d_inode;
5850         struct address_space *mapping = inode->i_mapping;
5851
5852         /*
5853          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5854          * get i_mutex because we are already holding mmap_sem.
5855          */
5856         down_read(&inode->i_alloc_sem);
5857         size = i_size_read(inode);
5858         if (page->mapping != mapping || size <= page_offset(page)
5859             || !PageUptodate(page)) {
5860                 /* page got truncated from under us? */
5861                 goto out_unlock;
5862         }
5863         ret = 0;
5864         if (PageMappedToDisk(page))
5865                 goto out_unlock;
5866
5867         if (page->index == size >> PAGE_CACHE_SHIFT)
5868                 len = size & ~PAGE_CACHE_MASK;
5869         else
5870                 len = PAGE_CACHE_SIZE;
5871
5872         lock_page(page);
5873         /*
5874          * return if we have all the buffers mapped. This avoid
5875          * the need to call write_begin/write_end which does a
5876          * journal_start/journal_stop which can block and take
5877          * long time
5878          */
5879         if (page_has_buffers(page)) {
5880                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5881                                         ext4_bh_unmapped)) {
5882                         unlock_page(page);
5883                         goto out_unlock;
5884                 }
5885         }
5886         unlock_page(page);
5887         /*
5888          * OK, we need to fill the hole... Do write_begin write_end
5889          * to do block allocation/reservation.We are not holding
5890          * inode.i__mutex here. That allow * parallel write_begin,
5891          * write_end call. lock_page prevent this from happening
5892          * on the same page though
5893          */
5894         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5895                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5896         if (ret < 0)
5897                 goto out_unlock;
5898         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5899                         len, len, page, fsdata);
5900         if (ret < 0)
5901                 goto out_unlock;
5902         ret = 0;
5903 out_unlock:
5904         if (ret)
5905                 ret = VM_FAULT_SIGBUS;
5906         up_read(&inode->i_alloc_sem);
5907         return ret;
5908 }