Merge branch 'fixes-for-v3.18' of git://git.linaro.org/people/mszyprowski/linux-dma...
[cascardo/linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !ext4_has_metadata_csum(inode->i_sb))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !ext4_has_metadata_csum(inode->i_sb))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135                                 unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139                                   int pextents);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148
149         if (ext4_has_inline_data(inode))
150                 return 0;
151
152         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156  * Restart the transaction associated with *handle.  This does a commit,
157  * so before we call here everything must be consistently dirtied against
158  * this transaction.
159  */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161                                  int nblocks)
162 {
163         int ret;
164
165         /*
166          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
167          * moment, get_block can be called only for blocks inside i_size since
168          * page cache has been already dropped and writes are blocked by
169          * i_mutex. So we can safely drop the i_data_sem here.
170          */
171         BUG_ON(EXT4_JOURNAL(inode) == NULL);
172         jbd_debug(2, "restarting handle %p\n", handle);
173         up_write(&EXT4_I(inode)->i_data_sem);
174         ret = ext4_journal_restart(handle, nblocks);
175         down_write(&EXT4_I(inode)->i_data_sem);
176         ext4_discard_preallocations(inode);
177
178         return ret;
179 }
180
181 /*
182  * Called at the last iput() if i_nlink is zero.
183  */
184 void ext4_evict_inode(struct inode *inode)
185 {
186         handle_t *handle;
187         int err;
188
189         trace_ext4_evict_inode(inode);
190
191         if (inode->i_nlink) {
192                 /*
193                  * When journalling data dirty buffers are tracked only in the
194                  * journal. So although mm thinks everything is clean and
195                  * ready for reaping the inode might still have some pages to
196                  * write in the running transaction or waiting to be
197                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
198                  * (via truncate_inode_pages()) to discard these buffers can
199                  * cause data loss. Also even if we did not discard these
200                  * buffers, we would have no way to find them after the inode
201                  * is reaped and thus user could see stale data if he tries to
202                  * read them before the transaction is checkpointed. So be
203                  * careful and force everything to disk here... We use
204                  * ei->i_datasync_tid to store the newest transaction
205                  * containing inode's data.
206                  *
207                  * Note that directories do not have this problem because they
208                  * don't use page cache.
209                  */
210                 if (ext4_should_journal_data(inode) &&
211                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212                     inode->i_ino != EXT4_JOURNAL_INO) {
213                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216                         jbd2_complete_transaction(journal, commit_tid);
217                         filemap_write_and_wait(&inode->i_data);
218                 }
219                 truncate_inode_pages_final(&inode->i_data);
220
221                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222                 goto no_delete;
223         }
224
225         if (is_bad_inode(inode))
226                 goto no_delete;
227         dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages_final(&inode->i_data);
232
233         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Called with i_data_sem down, which is important since we can call
326  * ext4_discard_preallocations() from here.
327  */
328 void ext4_da_update_reserve_space(struct inode *inode,
329                                         int used, int quota_claim)
330 {
331         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332         struct ext4_inode_info *ei = EXT4_I(inode);
333
334         spin_lock(&ei->i_block_reservation_lock);
335         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336         if (unlikely(used > ei->i_reserved_data_blocks)) {
337                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338                          "with only %d reserved data blocks",
339                          __func__, inode->i_ino, used,
340                          ei->i_reserved_data_blocks);
341                 WARN_ON(1);
342                 used = ei->i_reserved_data_blocks;
343         }
344
345         /* Update per-inode reservations */
346         ei->i_reserved_data_blocks -= used;
347         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351         /* Update quota subsystem for data blocks */
352         if (quota_claim)
353                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354         else {
355                 /*
356                  * We did fallocate with an offset that is already delayed
357                  * allocated. So on delayed allocated writeback we should
358                  * not re-claim the quota for fallocated blocks.
359                  */
360                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361         }
362
363         /*
364          * If we have done all the pending block allocations and if
365          * there aren't any writers on the inode, we can discard the
366          * inode's preallocations.
367          */
368         if ((ei->i_reserved_data_blocks == 0) &&
369             (atomic_read(&inode->i_writecount) == 0))
370                 ext4_discard_preallocations(inode);
371 }
372
373 static int __check_block_validity(struct inode *inode, const char *func,
374                                 unsigned int line,
375                                 struct ext4_map_blocks *map)
376 {
377         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378                                    map->m_len)) {
379                 ext4_error_inode(inode, func, line, map->m_pblk,
380                                  "lblock %lu mapped to illegal pblock "
381                                  "(length %d)", (unsigned long) map->m_lblk,
382                                  map->m_len);
383                 return -EIO;
384         }
385         return 0;
386 }
387
388 #define check_block_validity(inode, map)        \
389         __check_block_validity((inode), __func__, __LINE__, (map))
390
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393                                        struct inode *inode,
394                                        struct ext4_map_blocks *es_map,
395                                        struct ext4_map_blocks *map,
396                                        int flags)
397 {
398         int retval;
399
400         map->m_flags = 0;
401         /*
402          * There is a race window that the result is not the same.
403          * e.g. xfstests #223 when dioread_nolock enables.  The reason
404          * is that we lookup a block mapping in extent status tree with
405          * out taking i_data_sem.  So at the time the unwritten extent
406          * could be converted.
407          */
408         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409                 down_read(&EXT4_I(inode)->i_data_sem);
410         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
412                                              EXT4_GET_BLOCKS_KEEP_SIZE);
413         } else {
414                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
415                                              EXT4_GET_BLOCKS_KEEP_SIZE);
416         }
417         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418                 up_read((&EXT4_I(inode)->i_data_sem));
419         /*
420          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
421          * because it shouldn't be marked in es_map->m_flags.
422          */
423         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
424
425         /*
426          * We don't check m_len because extent will be collpased in status
427          * tree.  So the m_len might not equal.
428          */
429         if (es_map->m_lblk != map->m_lblk ||
430             es_map->m_flags != map->m_flags ||
431             es_map->m_pblk != map->m_pblk) {
432                 printk("ES cache assertion failed for inode: %lu "
433                        "es_cached ex [%d/%d/%llu/%x] != "
434                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
435                        inode->i_ino, es_map->m_lblk, es_map->m_len,
436                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
437                        map->m_len, map->m_pblk, map->m_flags,
438                        retval, flags);
439         }
440 }
441 #endif /* ES_AGGRESSIVE_TEST */
442
443 /*
444  * The ext4_map_blocks() function tries to look up the requested blocks,
445  * and returns if the blocks are already mapped.
446  *
447  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448  * and store the allocated blocks in the result buffer head and mark it
449  * mapped.
450  *
451  * If file type is extents based, it will call ext4_ext_map_blocks(),
452  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453  * based files
454  *
455  * On success, it returns the number of blocks being mapped or allocated.
456  * if create==0 and the blocks are pre-allocated and unwritten block,
457  * the result buffer head is unmapped. If the create ==1, it will make sure
458  * the buffer head is mapped.
459  *
460  * It returns 0 if plain look up failed (blocks have not been allocated), in
461  * that case, buffer head is unmapped
462  *
463  * It returns the error in case of allocation failure.
464  */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466                     struct ext4_map_blocks *map, int flags)
467 {
468         struct extent_status es;
469         int retval;
470         int ret = 0;
471 #ifdef ES_AGGRESSIVE_TEST
472         struct ext4_map_blocks orig_map;
473
474         memcpy(&orig_map, map, sizeof(*map));
475 #endif
476
477         map->m_flags = 0;
478         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
479                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
480                   (unsigned long) map->m_lblk);
481
482         /*
483          * ext4_map_blocks returns an int, and m_len is an unsigned int
484          */
485         if (unlikely(map->m_len > INT_MAX))
486                 map->m_len = INT_MAX;
487
488         /* We can handle the block number less than EXT_MAX_BLOCKS */
489         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
490                 return -EIO;
491
492         /* Lookup extent status tree firstly */
493         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
494                 ext4_es_lru_add(inode);
495                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
496                         map->m_pblk = ext4_es_pblock(&es) +
497                                         map->m_lblk - es.es_lblk;
498                         map->m_flags |= ext4_es_is_written(&es) ?
499                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
500                         retval = es.es_len - (map->m_lblk - es.es_lblk);
501                         if (retval > map->m_len)
502                                 retval = map->m_len;
503                         map->m_len = retval;
504                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
505                         retval = 0;
506                 } else {
507                         BUG_ON(1);
508                 }
509 #ifdef ES_AGGRESSIVE_TEST
510                 ext4_map_blocks_es_recheck(handle, inode, map,
511                                            &orig_map, flags);
512 #endif
513                 goto found;
514         }
515
516         /*
517          * Try to see if we can get the block without requesting a new
518          * file system block.
519          */
520         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
521                 down_read(&EXT4_I(inode)->i_data_sem);
522         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
523                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
524                                              EXT4_GET_BLOCKS_KEEP_SIZE);
525         } else {
526                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
527                                              EXT4_GET_BLOCKS_KEEP_SIZE);
528         }
529         if (retval > 0) {
530                 unsigned int status;
531
532                 if (unlikely(retval != map->m_len)) {
533                         ext4_warning(inode->i_sb,
534                                      "ES len assertion failed for inode "
535                                      "%lu: retval %d != map->m_len %d",
536                                      inode->i_ino, retval, map->m_len);
537                         WARN_ON(1);
538                 }
539
540                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
541                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
542                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
543                     ext4_find_delalloc_range(inode, map->m_lblk,
544                                              map->m_lblk + map->m_len - 1))
545                         status |= EXTENT_STATUS_DELAYED;
546                 ret = ext4_es_insert_extent(inode, map->m_lblk,
547                                             map->m_len, map->m_pblk, status);
548                 if (ret < 0)
549                         retval = ret;
550         }
551         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
552                 up_read((&EXT4_I(inode)->i_data_sem));
553
554 found:
555         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
556                 ret = check_block_validity(inode, map);
557                 if (ret != 0)
558                         return ret;
559         }
560
561         /* If it is only a block(s) look up */
562         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
563                 return retval;
564
565         /*
566          * Returns if the blocks have already allocated
567          *
568          * Note that if blocks have been preallocated
569          * ext4_ext_get_block() returns the create = 0
570          * with buffer head unmapped.
571          */
572         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
573                 /*
574                  * If we need to convert extent to unwritten
575                  * we continue and do the actual work in
576                  * ext4_ext_map_blocks()
577                  */
578                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
579                         return retval;
580
581         /*
582          * Here we clear m_flags because after allocating an new extent,
583          * it will be set again.
584          */
585         map->m_flags &= ~EXT4_MAP_FLAGS;
586
587         /*
588          * New blocks allocate and/or writing to unwritten extent
589          * will possibly result in updating i_data, so we take
590          * the write lock of i_data_sem, and call get_block()
591          * with create == 1 flag.
592          */
593         down_write(&EXT4_I(inode)->i_data_sem);
594
595         /*
596          * We need to check for EXT4 here because migrate
597          * could have changed the inode type in between
598          */
599         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
600                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
601         } else {
602                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
603
604                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
605                         /*
606                          * We allocated new blocks which will result in
607                          * i_data's format changing.  Force the migrate
608                          * to fail by clearing migrate flags
609                          */
610                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
611                 }
612
613                 /*
614                  * Update reserved blocks/metadata blocks after successful
615                  * block allocation which had been deferred till now. We don't
616                  * support fallocate for non extent files. So we can update
617                  * reserve space here.
618                  */
619                 if ((retval > 0) &&
620                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
621                         ext4_da_update_reserve_space(inode, retval, 1);
622         }
623
624         if (retval > 0) {
625                 unsigned int status;
626
627                 if (unlikely(retval != map->m_len)) {
628                         ext4_warning(inode->i_sb,
629                                      "ES len assertion failed for inode "
630                                      "%lu: retval %d != map->m_len %d",
631                                      inode->i_ino, retval, map->m_len);
632                         WARN_ON(1);
633                 }
634
635                 /*
636                  * If the extent has been zeroed out, we don't need to update
637                  * extent status tree.
638                  */
639                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
640                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
641                         if (ext4_es_is_written(&es))
642                                 goto has_zeroout;
643                 }
644                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
645                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
646                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
647                     ext4_find_delalloc_range(inode, map->m_lblk,
648                                              map->m_lblk + map->m_len - 1))
649                         status |= EXTENT_STATUS_DELAYED;
650                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
651                                             map->m_pblk, status);
652                 if (ret < 0)
653                         retval = ret;
654         }
655
656 has_zeroout:
657         up_write((&EXT4_I(inode)->i_data_sem));
658         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
659                 ret = check_block_validity(inode, map);
660                 if (ret != 0)
661                         return ret;
662         }
663         return retval;
664 }
665
666 /* Maximum number of blocks we map for direct IO at once. */
667 #define DIO_MAX_BLOCKS 4096
668
669 static int _ext4_get_block(struct inode *inode, sector_t iblock,
670                            struct buffer_head *bh, int flags)
671 {
672         handle_t *handle = ext4_journal_current_handle();
673         struct ext4_map_blocks map;
674         int ret = 0, started = 0;
675         int dio_credits;
676
677         if (ext4_has_inline_data(inode))
678                 return -ERANGE;
679
680         map.m_lblk = iblock;
681         map.m_len = bh->b_size >> inode->i_blkbits;
682
683         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
684                 /* Direct IO write... */
685                 if (map.m_len > DIO_MAX_BLOCKS)
686                         map.m_len = DIO_MAX_BLOCKS;
687                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
688                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
689                                             dio_credits);
690                 if (IS_ERR(handle)) {
691                         ret = PTR_ERR(handle);
692                         return ret;
693                 }
694                 started = 1;
695         }
696
697         ret = ext4_map_blocks(handle, inode, &map, flags);
698         if (ret > 0) {
699                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
700
701                 map_bh(bh, inode->i_sb, map.m_pblk);
702                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
704                         set_buffer_defer_completion(bh);
705                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
706                 ret = 0;
707         }
708         if (started)
709                 ext4_journal_stop(handle);
710         return ret;
711 }
712
713 int ext4_get_block(struct inode *inode, sector_t iblock,
714                    struct buffer_head *bh, int create)
715 {
716         return _ext4_get_block(inode, iblock, bh,
717                                create ? EXT4_GET_BLOCKS_CREATE : 0);
718 }
719
720 /*
721  * `handle' can be NULL if create is zero
722  */
723 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
724                                 ext4_lblk_t block, int create)
725 {
726         struct ext4_map_blocks map;
727         struct buffer_head *bh;
728         int err;
729
730         J_ASSERT(handle != NULL || create == 0);
731
732         map.m_lblk = block;
733         map.m_len = 1;
734         err = ext4_map_blocks(handle, inode, &map,
735                               create ? EXT4_GET_BLOCKS_CREATE : 0);
736
737         if (err == 0)
738                 return create ? ERR_PTR(-ENOSPC) : NULL;
739         if (err < 0)
740                 return ERR_PTR(err);
741
742         bh = sb_getblk(inode->i_sb, map.m_pblk);
743         if (unlikely(!bh))
744                 return ERR_PTR(-ENOMEM);
745         if (map.m_flags & EXT4_MAP_NEW) {
746                 J_ASSERT(create != 0);
747                 J_ASSERT(handle != NULL);
748
749                 /*
750                  * Now that we do not always journal data, we should
751                  * keep in mind whether this should always journal the
752                  * new buffer as metadata.  For now, regular file
753                  * writes use ext4_get_block instead, so it's not a
754                  * problem.
755                  */
756                 lock_buffer(bh);
757                 BUFFER_TRACE(bh, "call get_create_access");
758                 err = ext4_journal_get_create_access(handle, bh);
759                 if (unlikely(err)) {
760                         unlock_buffer(bh);
761                         goto errout;
762                 }
763                 if (!buffer_uptodate(bh)) {
764                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
765                         set_buffer_uptodate(bh);
766                 }
767                 unlock_buffer(bh);
768                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
769                 err = ext4_handle_dirty_metadata(handle, inode, bh);
770                 if (unlikely(err))
771                         goto errout;
772         } else
773                 BUFFER_TRACE(bh, "not a new buffer");
774         return bh;
775 errout:
776         brelse(bh);
777         return ERR_PTR(err);
778 }
779
780 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
781                                ext4_lblk_t block, int create)
782 {
783         struct buffer_head *bh;
784
785         bh = ext4_getblk(handle, inode, block, create);
786         if (IS_ERR(bh))
787                 return bh;
788         if (!bh || buffer_uptodate(bh))
789                 return bh;
790         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
791         wait_on_buffer(bh);
792         if (buffer_uptodate(bh))
793                 return bh;
794         put_bh(bh);
795         return ERR_PTR(-EIO);
796 }
797
798 int ext4_walk_page_buffers(handle_t *handle,
799                            struct buffer_head *head,
800                            unsigned from,
801                            unsigned to,
802                            int *partial,
803                            int (*fn)(handle_t *handle,
804                                      struct buffer_head *bh))
805 {
806         struct buffer_head *bh;
807         unsigned block_start, block_end;
808         unsigned blocksize = head->b_size;
809         int err, ret = 0;
810         struct buffer_head *next;
811
812         for (bh = head, block_start = 0;
813              ret == 0 && (bh != head || !block_start);
814              block_start = block_end, bh = next) {
815                 next = bh->b_this_page;
816                 block_end = block_start + blocksize;
817                 if (block_end <= from || block_start >= to) {
818                         if (partial && !buffer_uptodate(bh))
819                                 *partial = 1;
820                         continue;
821                 }
822                 err = (*fn)(handle, bh);
823                 if (!ret)
824                         ret = err;
825         }
826         return ret;
827 }
828
829 /*
830  * To preserve ordering, it is essential that the hole instantiation and
831  * the data write be encapsulated in a single transaction.  We cannot
832  * close off a transaction and start a new one between the ext4_get_block()
833  * and the commit_write().  So doing the jbd2_journal_start at the start of
834  * prepare_write() is the right place.
835  *
836  * Also, this function can nest inside ext4_writepage().  In that case, we
837  * *know* that ext4_writepage() has generated enough buffer credits to do the
838  * whole page.  So we won't block on the journal in that case, which is good,
839  * because the caller may be PF_MEMALLOC.
840  *
841  * By accident, ext4 can be reentered when a transaction is open via
842  * quota file writes.  If we were to commit the transaction while thus
843  * reentered, there can be a deadlock - we would be holding a quota
844  * lock, and the commit would never complete if another thread had a
845  * transaction open and was blocking on the quota lock - a ranking
846  * violation.
847  *
848  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
849  * will _not_ run commit under these circumstances because handle->h_ref
850  * is elevated.  We'll still have enough credits for the tiny quotafile
851  * write.
852  */
853 int do_journal_get_write_access(handle_t *handle,
854                                 struct buffer_head *bh)
855 {
856         int dirty = buffer_dirty(bh);
857         int ret;
858
859         if (!buffer_mapped(bh) || buffer_freed(bh))
860                 return 0;
861         /*
862          * __block_write_begin() could have dirtied some buffers. Clean
863          * the dirty bit as jbd2_journal_get_write_access() could complain
864          * otherwise about fs integrity issues. Setting of the dirty bit
865          * by __block_write_begin() isn't a real problem here as we clear
866          * the bit before releasing a page lock and thus writeback cannot
867          * ever write the buffer.
868          */
869         if (dirty)
870                 clear_buffer_dirty(bh);
871         BUFFER_TRACE(bh, "get write access");
872         ret = ext4_journal_get_write_access(handle, bh);
873         if (!ret && dirty)
874                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
875         return ret;
876 }
877
878 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
879                    struct buffer_head *bh_result, int create);
880 static int ext4_write_begin(struct file *file, struct address_space *mapping,
881                             loff_t pos, unsigned len, unsigned flags,
882                             struct page **pagep, void **fsdata)
883 {
884         struct inode *inode = mapping->host;
885         int ret, needed_blocks;
886         handle_t *handle;
887         int retries = 0;
888         struct page *page;
889         pgoff_t index;
890         unsigned from, to;
891
892         trace_ext4_write_begin(inode, pos, len, flags);
893         /*
894          * Reserve one block more for addition to orphan list in case
895          * we allocate blocks but write fails for some reason
896          */
897         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
898         index = pos >> PAGE_CACHE_SHIFT;
899         from = pos & (PAGE_CACHE_SIZE - 1);
900         to = from + len;
901
902         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
903                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
904                                                     flags, pagep);
905                 if (ret < 0)
906                         return ret;
907                 if (ret == 1)
908                         return 0;
909         }
910
911         /*
912          * grab_cache_page_write_begin() can take a long time if the
913          * system is thrashing due to memory pressure, or if the page
914          * is being written back.  So grab it first before we start
915          * the transaction handle.  This also allows us to allocate
916          * the page (if needed) without using GFP_NOFS.
917          */
918 retry_grab:
919         page = grab_cache_page_write_begin(mapping, index, flags);
920         if (!page)
921                 return -ENOMEM;
922         unlock_page(page);
923
924 retry_journal:
925         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
926         if (IS_ERR(handle)) {
927                 page_cache_release(page);
928                 return PTR_ERR(handle);
929         }
930
931         lock_page(page);
932         if (page->mapping != mapping) {
933                 /* The page got truncated from under us */
934                 unlock_page(page);
935                 page_cache_release(page);
936                 ext4_journal_stop(handle);
937                 goto retry_grab;
938         }
939         /* In case writeback began while the page was unlocked */
940         wait_for_stable_page(page);
941
942         if (ext4_should_dioread_nolock(inode))
943                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
944         else
945                 ret = __block_write_begin(page, pos, len, ext4_get_block);
946
947         if (!ret && ext4_should_journal_data(inode)) {
948                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
949                                              from, to, NULL,
950                                              do_journal_get_write_access);
951         }
952
953         if (ret) {
954                 unlock_page(page);
955                 /*
956                  * __block_write_begin may have instantiated a few blocks
957                  * outside i_size.  Trim these off again. Don't need
958                  * i_size_read because we hold i_mutex.
959                  *
960                  * Add inode to orphan list in case we crash before
961                  * truncate finishes
962                  */
963                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
964                         ext4_orphan_add(handle, inode);
965
966                 ext4_journal_stop(handle);
967                 if (pos + len > inode->i_size) {
968                         ext4_truncate_failed_write(inode);
969                         /*
970                          * If truncate failed early the inode might
971                          * still be on the orphan list; we need to
972                          * make sure the inode is removed from the
973                          * orphan list in that case.
974                          */
975                         if (inode->i_nlink)
976                                 ext4_orphan_del(NULL, inode);
977                 }
978
979                 if (ret == -ENOSPC &&
980                     ext4_should_retry_alloc(inode->i_sb, &retries))
981                         goto retry_journal;
982                 page_cache_release(page);
983                 return ret;
984         }
985         *pagep = page;
986         return ret;
987 }
988
989 /* For write_end() in data=journal mode */
990 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
991 {
992         int ret;
993         if (!buffer_mapped(bh) || buffer_freed(bh))
994                 return 0;
995         set_buffer_uptodate(bh);
996         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
997         clear_buffer_meta(bh);
998         clear_buffer_prio(bh);
999         return ret;
1000 }
1001
1002 /*
1003  * We need to pick up the new inode size which generic_commit_write gave us
1004  * `file' can be NULL - eg, when called from page_symlink().
1005  *
1006  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1007  * buffers are managed internally.
1008  */
1009 static int ext4_write_end(struct file *file,
1010                           struct address_space *mapping,
1011                           loff_t pos, unsigned len, unsigned copied,
1012                           struct page *page, void *fsdata)
1013 {
1014         handle_t *handle = ext4_journal_current_handle();
1015         struct inode *inode = mapping->host;
1016         int ret = 0, ret2;
1017         int i_size_changed = 0;
1018
1019         trace_ext4_write_end(inode, pos, len, copied);
1020         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1021                 ret = ext4_jbd2_file_inode(handle, inode);
1022                 if (ret) {
1023                         unlock_page(page);
1024                         page_cache_release(page);
1025                         goto errout;
1026                 }
1027         }
1028
1029         if (ext4_has_inline_data(inode)) {
1030                 ret = ext4_write_inline_data_end(inode, pos, len,
1031                                                  copied, page);
1032                 if (ret < 0)
1033                         goto errout;
1034                 copied = ret;
1035         } else
1036                 copied = block_write_end(file, mapping, pos,
1037                                          len, copied, page, fsdata);
1038         /*
1039          * it's important to update i_size while still holding page lock:
1040          * page writeout could otherwise come in and zero beyond i_size.
1041          */
1042         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1043         unlock_page(page);
1044         page_cache_release(page);
1045
1046         /*
1047          * Don't mark the inode dirty under page lock. First, it unnecessarily
1048          * makes the holding time of page lock longer. Second, it forces lock
1049          * ordering of page lock and transaction start for journaling
1050          * filesystems.
1051          */
1052         if (i_size_changed)
1053                 ext4_mark_inode_dirty(handle, inode);
1054
1055         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056                 /* if we have allocated more blocks and copied
1057                  * less. We will have blocks allocated outside
1058                  * inode->i_size. So truncate them
1059                  */
1060                 ext4_orphan_add(handle, inode);
1061 errout:
1062         ret2 = ext4_journal_stop(handle);
1063         if (!ret)
1064                 ret = ret2;
1065
1066         if (pos + len > inode->i_size) {
1067                 ext4_truncate_failed_write(inode);
1068                 /*
1069                  * If truncate failed early the inode might still be
1070                  * on the orphan list; we need to make sure the inode
1071                  * is removed from the orphan list in that case.
1072                  */
1073                 if (inode->i_nlink)
1074                         ext4_orphan_del(NULL, inode);
1075         }
1076
1077         return ret ? ret : copied;
1078 }
1079
1080 static int ext4_journalled_write_end(struct file *file,
1081                                      struct address_space *mapping,
1082                                      loff_t pos, unsigned len, unsigned copied,
1083                                      struct page *page, void *fsdata)
1084 {
1085         handle_t *handle = ext4_journal_current_handle();
1086         struct inode *inode = mapping->host;
1087         int ret = 0, ret2;
1088         int partial = 0;
1089         unsigned from, to;
1090         int size_changed = 0;
1091
1092         trace_ext4_journalled_write_end(inode, pos, len, copied);
1093         from = pos & (PAGE_CACHE_SIZE - 1);
1094         to = from + len;
1095
1096         BUG_ON(!ext4_handle_valid(handle));
1097
1098         if (ext4_has_inline_data(inode))
1099                 copied = ext4_write_inline_data_end(inode, pos, len,
1100                                                     copied, page);
1101         else {
1102                 if (copied < len) {
1103                         if (!PageUptodate(page))
1104                                 copied = 0;
1105                         page_zero_new_buffers(page, from+copied, to);
1106                 }
1107
1108                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1109                                              to, &partial, write_end_fn);
1110                 if (!partial)
1111                         SetPageUptodate(page);
1112         }
1113         size_changed = ext4_update_inode_size(inode, pos + copied);
1114         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1115         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1116         unlock_page(page);
1117         page_cache_release(page);
1118
1119         if (size_changed) {
1120                 ret2 = ext4_mark_inode_dirty(handle, inode);
1121                 if (!ret)
1122                         ret = ret2;
1123         }
1124
1125         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1126                 /* if we have allocated more blocks and copied
1127                  * less. We will have blocks allocated outside
1128                  * inode->i_size. So truncate them
1129                  */
1130                 ext4_orphan_add(handle, inode);
1131
1132         ret2 = ext4_journal_stop(handle);
1133         if (!ret)
1134                 ret = ret2;
1135         if (pos + len > inode->i_size) {
1136                 ext4_truncate_failed_write(inode);
1137                 /*
1138                  * If truncate failed early the inode might still be
1139                  * on the orphan list; we need to make sure the inode
1140                  * is removed from the orphan list in that case.
1141                  */
1142                 if (inode->i_nlink)
1143                         ext4_orphan_del(NULL, inode);
1144         }
1145
1146         return ret ? ret : copied;
1147 }
1148
1149 /*
1150  * Reserve a single cluster located at lblock
1151  */
1152 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1153 {
1154         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1155         struct ext4_inode_info *ei = EXT4_I(inode);
1156         unsigned int md_needed;
1157         int ret;
1158
1159         /*
1160          * We will charge metadata quota at writeout time; this saves
1161          * us from metadata over-estimation, though we may go over by
1162          * a small amount in the end.  Here we just reserve for data.
1163          */
1164         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1165         if (ret)
1166                 return ret;
1167
1168         /*
1169          * recalculate the amount of metadata blocks to reserve
1170          * in order to allocate nrblocks
1171          * worse case is one extent per block
1172          */
1173         spin_lock(&ei->i_block_reservation_lock);
1174         /*
1175          * ext4_calc_metadata_amount() has side effects, which we have
1176          * to be prepared undo if we fail to claim space.
1177          */
1178         md_needed = 0;
1179         trace_ext4_da_reserve_space(inode, 0);
1180
1181         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1182                 spin_unlock(&ei->i_block_reservation_lock);
1183                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1184                 return -ENOSPC;
1185         }
1186         ei->i_reserved_data_blocks++;
1187         spin_unlock(&ei->i_block_reservation_lock);
1188
1189         return 0;       /* success */
1190 }
1191
1192 static void ext4_da_release_space(struct inode *inode, int to_free)
1193 {
1194         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1195         struct ext4_inode_info *ei = EXT4_I(inode);
1196
1197         if (!to_free)
1198                 return;         /* Nothing to release, exit */
1199
1200         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1201
1202         trace_ext4_da_release_space(inode, to_free);
1203         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1204                 /*
1205                  * if there aren't enough reserved blocks, then the
1206                  * counter is messed up somewhere.  Since this
1207                  * function is called from invalidate page, it's
1208                  * harmless to return without any action.
1209                  */
1210                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1211                          "ino %lu, to_free %d with only %d reserved "
1212                          "data blocks", inode->i_ino, to_free,
1213                          ei->i_reserved_data_blocks);
1214                 WARN_ON(1);
1215                 to_free = ei->i_reserved_data_blocks;
1216         }
1217         ei->i_reserved_data_blocks -= to_free;
1218
1219         /* update fs dirty data blocks counter */
1220         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1221
1222         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1223
1224         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1225 }
1226
1227 static void ext4_da_page_release_reservation(struct page *page,
1228                                              unsigned int offset,
1229                                              unsigned int length)
1230 {
1231         int to_release = 0;
1232         struct buffer_head *head, *bh;
1233         unsigned int curr_off = 0;
1234         struct inode *inode = page->mapping->host;
1235         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1236         unsigned int stop = offset + length;
1237         int num_clusters;
1238         ext4_fsblk_t lblk;
1239
1240         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1241
1242         head = page_buffers(page);
1243         bh = head;
1244         do {
1245                 unsigned int next_off = curr_off + bh->b_size;
1246
1247                 if (next_off > stop)
1248                         break;
1249
1250                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1251                         to_release++;
1252                         clear_buffer_delay(bh);
1253                 }
1254                 curr_off = next_off;
1255         } while ((bh = bh->b_this_page) != head);
1256
1257         if (to_release) {
1258                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1259                 ext4_es_remove_extent(inode, lblk, to_release);
1260         }
1261
1262         /* If we have released all the blocks belonging to a cluster, then we
1263          * need to release the reserved space for that cluster. */
1264         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1265         while (num_clusters > 0) {
1266                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1267                         ((num_clusters - 1) << sbi->s_cluster_bits);
1268                 if (sbi->s_cluster_ratio == 1 ||
1269                     !ext4_find_delalloc_cluster(inode, lblk))
1270                         ext4_da_release_space(inode, 1);
1271
1272                 num_clusters--;
1273         }
1274 }
1275
1276 /*
1277  * Delayed allocation stuff
1278  */
1279
1280 struct mpage_da_data {
1281         struct inode *inode;
1282         struct writeback_control *wbc;
1283
1284         pgoff_t first_page;     /* The first page to write */
1285         pgoff_t next_page;      /* Current page to examine */
1286         pgoff_t last_page;      /* Last page to examine */
1287         /*
1288          * Extent to map - this can be after first_page because that can be
1289          * fully mapped. We somewhat abuse m_flags to store whether the extent
1290          * is delalloc or unwritten.
1291          */
1292         struct ext4_map_blocks map;
1293         struct ext4_io_submit io_submit;        /* IO submission data */
1294 };
1295
1296 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1297                                        bool invalidate)
1298 {
1299         int nr_pages, i;
1300         pgoff_t index, end;
1301         struct pagevec pvec;
1302         struct inode *inode = mpd->inode;
1303         struct address_space *mapping = inode->i_mapping;
1304
1305         /* This is necessary when next_page == 0. */
1306         if (mpd->first_page >= mpd->next_page)
1307                 return;
1308
1309         index = mpd->first_page;
1310         end   = mpd->next_page - 1;
1311         if (invalidate) {
1312                 ext4_lblk_t start, last;
1313                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1314                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1315                 ext4_es_remove_extent(inode, start, last - start + 1);
1316         }
1317
1318         pagevec_init(&pvec, 0);
1319         while (index <= end) {
1320                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1321                 if (nr_pages == 0)
1322                         break;
1323                 for (i = 0; i < nr_pages; i++) {
1324                         struct page *page = pvec.pages[i];
1325                         if (page->index > end)
1326                                 break;
1327                         BUG_ON(!PageLocked(page));
1328                         BUG_ON(PageWriteback(page));
1329                         if (invalidate) {
1330                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1331                                 ClearPageUptodate(page);
1332                         }
1333                         unlock_page(page);
1334                 }
1335                 index = pvec.pages[nr_pages - 1]->index + 1;
1336                 pagevec_release(&pvec);
1337         }
1338 }
1339
1340 static void ext4_print_free_blocks(struct inode *inode)
1341 {
1342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1343         struct super_block *sb = inode->i_sb;
1344         struct ext4_inode_info *ei = EXT4_I(inode);
1345
1346         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1347                EXT4_C2B(EXT4_SB(inode->i_sb),
1348                         ext4_count_free_clusters(sb)));
1349         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1350         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1351                (long long) EXT4_C2B(EXT4_SB(sb),
1352                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1353         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1354                (long long) EXT4_C2B(EXT4_SB(sb),
1355                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1356         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1357         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1358                  ei->i_reserved_data_blocks);
1359         return;
1360 }
1361
1362 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1363 {
1364         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1365 }
1366
1367 /*
1368  * This function is grabs code from the very beginning of
1369  * ext4_map_blocks, but assumes that the caller is from delayed write
1370  * time. This function looks up the requested blocks and sets the
1371  * buffer delay bit under the protection of i_data_sem.
1372  */
1373 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1374                               struct ext4_map_blocks *map,
1375                               struct buffer_head *bh)
1376 {
1377         struct extent_status es;
1378         int retval;
1379         sector_t invalid_block = ~((sector_t) 0xffff);
1380 #ifdef ES_AGGRESSIVE_TEST
1381         struct ext4_map_blocks orig_map;
1382
1383         memcpy(&orig_map, map, sizeof(*map));
1384 #endif
1385
1386         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1387                 invalid_block = ~0;
1388
1389         map->m_flags = 0;
1390         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1391                   "logical block %lu\n", inode->i_ino, map->m_len,
1392                   (unsigned long) map->m_lblk);
1393
1394         /* Lookup extent status tree firstly */
1395         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1396                 ext4_es_lru_add(inode);
1397                 if (ext4_es_is_hole(&es)) {
1398                         retval = 0;
1399                         down_read(&EXT4_I(inode)->i_data_sem);
1400                         goto add_delayed;
1401                 }
1402
1403                 /*
1404                  * Delayed extent could be allocated by fallocate.
1405                  * So we need to check it.
1406                  */
1407                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1408                         map_bh(bh, inode->i_sb, invalid_block);
1409                         set_buffer_new(bh);
1410                         set_buffer_delay(bh);
1411                         return 0;
1412                 }
1413
1414                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1415                 retval = es.es_len - (iblock - es.es_lblk);
1416                 if (retval > map->m_len)
1417                         retval = map->m_len;
1418                 map->m_len = retval;
1419                 if (ext4_es_is_written(&es))
1420                         map->m_flags |= EXT4_MAP_MAPPED;
1421                 else if (ext4_es_is_unwritten(&es))
1422                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1423                 else
1424                         BUG_ON(1);
1425
1426 #ifdef ES_AGGRESSIVE_TEST
1427                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1428 #endif
1429                 return retval;
1430         }
1431
1432         /*
1433          * Try to see if we can get the block without requesting a new
1434          * file system block.
1435          */
1436         down_read(&EXT4_I(inode)->i_data_sem);
1437         if (ext4_has_inline_data(inode)) {
1438                 /*
1439                  * We will soon create blocks for this page, and let
1440                  * us pretend as if the blocks aren't allocated yet.
1441                  * In case of clusters, we have to handle the work
1442                  * of mapping from cluster so that the reserved space
1443                  * is calculated properly.
1444                  */
1445                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1446                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1447                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1448                 retval = 0;
1449         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1450                 retval = ext4_ext_map_blocks(NULL, inode, map,
1451                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1452         else
1453                 retval = ext4_ind_map_blocks(NULL, inode, map,
1454                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1455
1456 add_delayed:
1457         if (retval == 0) {
1458                 int ret;
1459                 /*
1460                  * XXX: __block_prepare_write() unmaps passed block,
1461                  * is it OK?
1462                  */
1463                 /*
1464                  * If the block was allocated from previously allocated cluster,
1465                  * then we don't need to reserve it again. However we still need
1466                  * to reserve metadata for every block we're going to write.
1467                  */
1468                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1469                         ret = ext4_da_reserve_space(inode, iblock);
1470                         if (ret) {
1471                                 /* not enough space to reserve */
1472                                 retval = ret;
1473                                 goto out_unlock;
1474                         }
1475                 }
1476
1477                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1478                                             ~0, EXTENT_STATUS_DELAYED);
1479                 if (ret) {
1480                         retval = ret;
1481                         goto out_unlock;
1482                 }
1483
1484                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1485                  * and it should not appear on the bh->b_state.
1486                  */
1487                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1488
1489                 map_bh(bh, inode->i_sb, invalid_block);
1490                 set_buffer_new(bh);
1491                 set_buffer_delay(bh);
1492         } else if (retval > 0) {
1493                 int ret;
1494                 unsigned int status;
1495
1496                 if (unlikely(retval != map->m_len)) {
1497                         ext4_warning(inode->i_sb,
1498                                      "ES len assertion failed for inode "
1499                                      "%lu: retval %d != map->m_len %d",
1500                                      inode->i_ino, retval, map->m_len);
1501                         WARN_ON(1);
1502                 }
1503
1504                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1505                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1506                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1507                                             map->m_pblk, status);
1508                 if (ret != 0)
1509                         retval = ret;
1510         }
1511
1512 out_unlock:
1513         up_read((&EXT4_I(inode)->i_data_sem));
1514
1515         return retval;
1516 }
1517
1518 /*
1519  * This is a special get_block_t callback which is used by
1520  * ext4_da_write_begin().  It will either return mapped block or
1521  * reserve space for a single block.
1522  *
1523  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1524  * We also have b_blocknr = -1 and b_bdev initialized properly
1525  *
1526  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1527  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1528  * initialized properly.
1529  */
1530 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1531                            struct buffer_head *bh, int create)
1532 {
1533         struct ext4_map_blocks map;
1534         int ret = 0;
1535
1536         BUG_ON(create == 0);
1537         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1538
1539         map.m_lblk = iblock;
1540         map.m_len = 1;
1541
1542         /*
1543          * first, we need to know whether the block is allocated already
1544          * preallocated blocks are unmapped but should treated
1545          * the same as allocated blocks.
1546          */
1547         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1548         if (ret <= 0)
1549                 return ret;
1550
1551         map_bh(bh, inode->i_sb, map.m_pblk);
1552         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1553
1554         if (buffer_unwritten(bh)) {
1555                 /* A delayed write to unwritten bh should be marked
1556                  * new and mapped.  Mapped ensures that we don't do
1557                  * get_block multiple times when we write to the same
1558                  * offset and new ensures that we do proper zero out
1559                  * for partial write.
1560                  */
1561                 set_buffer_new(bh);
1562                 set_buffer_mapped(bh);
1563         }
1564         return 0;
1565 }
1566
1567 static int bget_one(handle_t *handle, struct buffer_head *bh)
1568 {
1569         get_bh(bh);
1570         return 0;
1571 }
1572
1573 static int bput_one(handle_t *handle, struct buffer_head *bh)
1574 {
1575         put_bh(bh);
1576         return 0;
1577 }
1578
1579 static int __ext4_journalled_writepage(struct page *page,
1580                                        unsigned int len)
1581 {
1582         struct address_space *mapping = page->mapping;
1583         struct inode *inode = mapping->host;
1584         struct buffer_head *page_bufs = NULL;
1585         handle_t *handle = NULL;
1586         int ret = 0, err = 0;
1587         int inline_data = ext4_has_inline_data(inode);
1588         struct buffer_head *inode_bh = NULL;
1589
1590         ClearPageChecked(page);
1591
1592         if (inline_data) {
1593                 BUG_ON(page->index != 0);
1594                 BUG_ON(len > ext4_get_max_inline_size(inode));
1595                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1596                 if (inode_bh == NULL)
1597                         goto out;
1598         } else {
1599                 page_bufs = page_buffers(page);
1600                 if (!page_bufs) {
1601                         BUG();
1602                         goto out;
1603                 }
1604                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1605                                        NULL, bget_one);
1606         }
1607         /* As soon as we unlock the page, it can go away, but we have
1608          * references to buffers so we are safe */
1609         unlock_page(page);
1610
1611         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1612                                     ext4_writepage_trans_blocks(inode));
1613         if (IS_ERR(handle)) {
1614                 ret = PTR_ERR(handle);
1615                 goto out;
1616         }
1617
1618         BUG_ON(!ext4_handle_valid(handle));
1619
1620         if (inline_data) {
1621                 BUFFER_TRACE(inode_bh, "get write access");
1622                 ret = ext4_journal_get_write_access(handle, inode_bh);
1623
1624                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1625
1626         } else {
1627                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1628                                              do_journal_get_write_access);
1629
1630                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1631                                              write_end_fn);
1632         }
1633         if (ret == 0)
1634                 ret = err;
1635         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1636         err = ext4_journal_stop(handle);
1637         if (!ret)
1638                 ret = err;
1639
1640         if (!ext4_has_inline_data(inode))
1641                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1642                                        NULL, bput_one);
1643         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1644 out:
1645         brelse(inode_bh);
1646         return ret;
1647 }
1648
1649 /*
1650  * Note that we don't need to start a transaction unless we're journaling data
1651  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1652  * need to file the inode to the transaction's list in ordered mode because if
1653  * we are writing back data added by write(), the inode is already there and if
1654  * we are writing back data modified via mmap(), no one guarantees in which
1655  * transaction the data will hit the disk. In case we are journaling data, we
1656  * cannot start transaction directly because transaction start ranks above page
1657  * lock so we have to do some magic.
1658  *
1659  * This function can get called via...
1660  *   - ext4_writepages after taking page lock (have journal handle)
1661  *   - journal_submit_inode_data_buffers (no journal handle)
1662  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1663  *   - grab_page_cache when doing write_begin (have journal handle)
1664  *
1665  * We don't do any block allocation in this function. If we have page with
1666  * multiple blocks we need to write those buffer_heads that are mapped. This
1667  * is important for mmaped based write. So if we do with blocksize 1K
1668  * truncate(f, 1024);
1669  * a = mmap(f, 0, 4096);
1670  * a[0] = 'a';
1671  * truncate(f, 4096);
1672  * we have in the page first buffer_head mapped via page_mkwrite call back
1673  * but other buffer_heads would be unmapped but dirty (dirty done via the
1674  * do_wp_page). So writepage should write the first block. If we modify
1675  * the mmap area beyond 1024 we will again get a page_fault and the
1676  * page_mkwrite callback will do the block allocation and mark the
1677  * buffer_heads mapped.
1678  *
1679  * We redirty the page if we have any buffer_heads that is either delay or
1680  * unwritten in the page.
1681  *
1682  * We can get recursively called as show below.
1683  *
1684  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1685  *              ext4_writepage()
1686  *
1687  * But since we don't do any block allocation we should not deadlock.
1688  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1689  */
1690 static int ext4_writepage(struct page *page,
1691                           struct writeback_control *wbc)
1692 {
1693         int ret = 0;
1694         loff_t size;
1695         unsigned int len;
1696         struct buffer_head *page_bufs = NULL;
1697         struct inode *inode = page->mapping->host;
1698         struct ext4_io_submit io_submit;
1699         bool keep_towrite = false;
1700
1701         trace_ext4_writepage(page);
1702         size = i_size_read(inode);
1703         if (page->index == size >> PAGE_CACHE_SHIFT)
1704                 len = size & ~PAGE_CACHE_MASK;
1705         else
1706                 len = PAGE_CACHE_SIZE;
1707
1708         page_bufs = page_buffers(page);
1709         /*
1710          * We cannot do block allocation or other extent handling in this
1711          * function. If there are buffers needing that, we have to redirty
1712          * the page. But we may reach here when we do a journal commit via
1713          * journal_submit_inode_data_buffers() and in that case we must write
1714          * allocated buffers to achieve data=ordered mode guarantees.
1715          */
1716         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1717                                    ext4_bh_delay_or_unwritten)) {
1718                 redirty_page_for_writepage(wbc, page);
1719                 if (current->flags & PF_MEMALLOC) {
1720                         /*
1721                          * For memory cleaning there's no point in writing only
1722                          * some buffers. So just bail out. Warn if we came here
1723                          * from direct reclaim.
1724                          */
1725                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1726                                                         == PF_MEMALLOC);
1727                         unlock_page(page);
1728                         return 0;
1729                 }
1730                 keep_towrite = true;
1731         }
1732
1733         if (PageChecked(page) && ext4_should_journal_data(inode))
1734                 /*
1735                  * It's mmapped pagecache.  Add buffers and journal it.  There
1736                  * doesn't seem much point in redirtying the page here.
1737                  */
1738                 return __ext4_journalled_writepage(page, len);
1739
1740         ext4_io_submit_init(&io_submit, wbc);
1741         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1742         if (!io_submit.io_end) {
1743                 redirty_page_for_writepage(wbc, page);
1744                 unlock_page(page);
1745                 return -ENOMEM;
1746         }
1747         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1748         ext4_io_submit(&io_submit);
1749         /* Drop io_end reference we got from init */
1750         ext4_put_io_end_defer(io_submit.io_end);
1751         return ret;
1752 }
1753
1754 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1755 {
1756         int len;
1757         loff_t size = i_size_read(mpd->inode);
1758         int err;
1759
1760         BUG_ON(page->index != mpd->first_page);
1761         if (page->index == size >> PAGE_CACHE_SHIFT)
1762                 len = size & ~PAGE_CACHE_MASK;
1763         else
1764                 len = PAGE_CACHE_SIZE;
1765         clear_page_dirty_for_io(page);
1766         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1767         if (!err)
1768                 mpd->wbc->nr_to_write--;
1769         mpd->first_page++;
1770
1771         return err;
1772 }
1773
1774 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1775
1776 /*
1777  * mballoc gives us at most this number of blocks...
1778  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1779  * The rest of mballoc seems to handle chunks up to full group size.
1780  */
1781 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1782
1783 /*
1784  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1785  *
1786  * @mpd - extent of blocks
1787  * @lblk - logical number of the block in the file
1788  * @bh - buffer head we want to add to the extent
1789  *
1790  * The function is used to collect contig. blocks in the same state. If the
1791  * buffer doesn't require mapping for writeback and we haven't started the
1792  * extent of buffers to map yet, the function returns 'true' immediately - the
1793  * caller can write the buffer right away. Otherwise the function returns true
1794  * if the block has been added to the extent, false if the block couldn't be
1795  * added.
1796  */
1797 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1798                                    struct buffer_head *bh)
1799 {
1800         struct ext4_map_blocks *map = &mpd->map;
1801
1802         /* Buffer that doesn't need mapping for writeback? */
1803         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1804             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1805                 /* So far no extent to map => we write the buffer right away */
1806                 if (map->m_len == 0)
1807                         return true;
1808                 return false;
1809         }
1810
1811         /* First block in the extent? */
1812         if (map->m_len == 0) {
1813                 map->m_lblk = lblk;
1814                 map->m_len = 1;
1815                 map->m_flags = bh->b_state & BH_FLAGS;
1816                 return true;
1817         }
1818
1819         /* Don't go larger than mballoc is willing to allocate */
1820         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1821                 return false;
1822
1823         /* Can we merge the block to our big extent? */
1824         if (lblk == map->m_lblk + map->m_len &&
1825             (bh->b_state & BH_FLAGS) == map->m_flags) {
1826                 map->m_len++;
1827                 return true;
1828         }
1829         return false;
1830 }
1831
1832 /*
1833  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1834  *
1835  * @mpd - extent of blocks for mapping
1836  * @head - the first buffer in the page
1837  * @bh - buffer we should start processing from
1838  * @lblk - logical number of the block in the file corresponding to @bh
1839  *
1840  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1841  * the page for IO if all buffers in this page were mapped and there's no
1842  * accumulated extent of buffers to map or add buffers in the page to the
1843  * extent of buffers to map. The function returns 1 if the caller can continue
1844  * by processing the next page, 0 if it should stop adding buffers to the
1845  * extent to map because we cannot extend it anymore. It can also return value
1846  * < 0 in case of error during IO submission.
1847  */
1848 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1849                                    struct buffer_head *head,
1850                                    struct buffer_head *bh,
1851                                    ext4_lblk_t lblk)
1852 {
1853         struct inode *inode = mpd->inode;
1854         int err;
1855         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1856                                                         >> inode->i_blkbits;
1857
1858         do {
1859                 BUG_ON(buffer_locked(bh));
1860
1861                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1862                         /* Found extent to map? */
1863                         if (mpd->map.m_len)
1864                                 return 0;
1865                         /* Everything mapped so far and we hit EOF */
1866                         break;
1867                 }
1868         } while (lblk++, (bh = bh->b_this_page) != head);
1869         /* So far everything mapped? Submit the page for IO. */
1870         if (mpd->map.m_len == 0) {
1871                 err = mpage_submit_page(mpd, head->b_page);
1872                 if (err < 0)
1873                         return err;
1874         }
1875         return lblk < blocks;
1876 }
1877
1878 /*
1879  * mpage_map_buffers - update buffers corresponding to changed extent and
1880  *                     submit fully mapped pages for IO
1881  *
1882  * @mpd - description of extent to map, on return next extent to map
1883  *
1884  * Scan buffers corresponding to changed extent (we expect corresponding pages
1885  * to be already locked) and update buffer state according to new extent state.
1886  * We map delalloc buffers to their physical location, clear unwritten bits,
1887  * and mark buffers as uninit when we perform writes to unwritten extents
1888  * and do extent conversion after IO is finished. If the last page is not fully
1889  * mapped, we update @map to the next extent in the last page that needs
1890  * mapping. Otherwise we submit the page for IO.
1891  */
1892 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1893 {
1894         struct pagevec pvec;
1895         int nr_pages, i;
1896         struct inode *inode = mpd->inode;
1897         struct buffer_head *head, *bh;
1898         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1899         pgoff_t start, end;
1900         ext4_lblk_t lblk;
1901         sector_t pblock;
1902         int err;
1903
1904         start = mpd->map.m_lblk >> bpp_bits;
1905         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1906         lblk = start << bpp_bits;
1907         pblock = mpd->map.m_pblk;
1908
1909         pagevec_init(&pvec, 0);
1910         while (start <= end) {
1911                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1912                                           PAGEVEC_SIZE);
1913                 if (nr_pages == 0)
1914                         break;
1915                 for (i = 0; i < nr_pages; i++) {
1916                         struct page *page = pvec.pages[i];
1917
1918                         if (page->index > end)
1919                                 break;
1920                         /* Up to 'end' pages must be contiguous */
1921                         BUG_ON(page->index != start);
1922                         bh = head = page_buffers(page);
1923                         do {
1924                                 if (lblk < mpd->map.m_lblk)
1925                                         continue;
1926                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1927                                         /*
1928                                          * Buffer after end of mapped extent.
1929                                          * Find next buffer in the page to map.
1930                                          */
1931                                         mpd->map.m_len = 0;
1932                                         mpd->map.m_flags = 0;
1933                                         /*
1934                                          * FIXME: If dioread_nolock supports
1935                                          * blocksize < pagesize, we need to make
1936                                          * sure we add size mapped so far to
1937                                          * io_end->size as the following call
1938                                          * can submit the page for IO.
1939                                          */
1940                                         err = mpage_process_page_bufs(mpd, head,
1941                                                                       bh, lblk);
1942                                         pagevec_release(&pvec);
1943                                         if (err > 0)
1944                                                 err = 0;
1945                                         return err;
1946                                 }
1947                                 if (buffer_delay(bh)) {
1948                                         clear_buffer_delay(bh);
1949                                         bh->b_blocknr = pblock++;
1950                                 }
1951                                 clear_buffer_unwritten(bh);
1952                         } while (lblk++, (bh = bh->b_this_page) != head);
1953
1954                         /*
1955                          * FIXME: This is going to break if dioread_nolock
1956                          * supports blocksize < pagesize as we will try to
1957                          * convert potentially unmapped parts of inode.
1958                          */
1959                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1960                         /* Page fully mapped - let IO run! */
1961                         err = mpage_submit_page(mpd, page);
1962                         if (err < 0) {
1963                                 pagevec_release(&pvec);
1964                                 return err;
1965                         }
1966                         start++;
1967                 }
1968                 pagevec_release(&pvec);
1969         }
1970         /* Extent fully mapped and matches with page boundary. We are done. */
1971         mpd->map.m_len = 0;
1972         mpd->map.m_flags = 0;
1973         return 0;
1974 }
1975
1976 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1977 {
1978         struct inode *inode = mpd->inode;
1979         struct ext4_map_blocks *map = &mpd->map;
1980         int get_blocks_flags;
1981         int err, dioread_nolock;
1982
1983         trace_ext4_da_write_pages_extent(inode, map);
1984         /*
1985          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1986          * to convert an unwritten extent to be initialized (in the case
1987          * where we have written into one or more preallocated blocks).  It is
1988          * possible that we're going to need more metadata blocks than
1989          * previously reserved. However we must not fail because we're in
1990          * writeback and there is nothing we can do about it so it might result
1991          * in data loss.  So use reserved blocks to allocate metadata if
1992          * possible.
1993          *
1994          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1995          * the blocks in question are delalloc blocks.  This indicates
1996          * that the blocks and quotas has already been checked when
1997          * the data was copied into the page cache.
1998          */
1999         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2000                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2001         dioread_nolock = ext4_should_dioread_nolock(inode);
2002         if (dioread_nolock)
2003                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2004         if (map->m_flags & (1 << BH_Delay))
2005                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2006
2007         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2008         if (err < 0)
2009                 return err;
2010         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2011                 if (!mpd->io_submit.io_end->handle &&
2012                     ext4_handle_valid(handle)) {
2013                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2014                         handle->h_rsv_handle = NULL;
2015                 }
2016                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2017         }
2018
2019         BUG_ON(map->m_len == 0);
2020         if (map->m_flags & EXT4_MAP_NEW) {
2021                 struct block_device *bdev = inode->i_sb->s_bdev;
2022                 int i;
2023
2024                 for (i = 0; i < map->m_len; i++)
2025                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2026         }
2027         return 0;
2028 }
2029
2030 /*
2031  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2032  *                               mpd->len and submit pages underlying it for IO
2033  *
2034  * @handle - handle for journal operations
2035  * @mpd - extent to map
2036  * @give_up_on_write - we set this to true iff there is a fatal error and there
2037  *                     is no hope of writing the data. The caller should discard
2038  *                     dirty pages to avoid infinite loops.
2039  *
2040  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2041  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2042  * them to initialized or split the described range from larger unwritten
2043  * extent. Note that we need not map all the described range since allocation
2044  * can return less blocks or the range is covered by more unwritten extents. We
2045  * cannot map more because we are limited by reserved transaction credits. On
2046  * the other hand we always make sure that the last touched page is fully
2047  * mapped so that it can be written out (and thus forward progress is
2048  * guaranteed). After mapping we submit all mapped pages for IO.
2049  */
2050 static int mpage_map_and_submit_extent(handle_t *handle,
2051                                        struct mpage_da_data *mpd,
2052                                        bool *give_up_on_write)
2053 {
2054         struct inode *inode = mpd->inode;
2055         struct ext4_map_blocks *map = &mpd->map;
2056         int err;
2057         loff_t disksize;
2058         int progress = 0;
2059
2060         mpd->io_submit.io_end->offset =
2061                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2062         do {
2063                 err = mpage_map_one_extent(handle, mpd);
2064                 if (err < 0) {
2065                         struct super_block *sb = inode->i_sb;
2066
2067                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2068                                 goto invalidate_dirty_pages;
2069                         /*
2070                          * Let the uper layers retry transient errors.
2071                          * In the case of ENOSPC, if ext4_count_free_blocks()
2072                          * is non-zero, a commit should free up blocks.
2073                          */
2074                         if ((err == -ENOMEM) ||
2075                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2076                                 if (progress)
2077                                         goto update_disksize;
2078                                 return err;
2079                         }
2080                         ext4_msg(sb, KERN_CRIT,
2081                                  "Delayed block allocation failed for "
2082                                  "inode %lu at logical offset %llu with"
2083                                  " max blocks %u with error %d",
2084                                  inode->i_ino,
2085                                  (unsigned long long)map->m_lblk,
2086                                  (unsigned)map->m_len, -err);
2087                         ext4_msg(sb, KERN_CRIT,
2088                                  "This should not happen!! Data will "
2089                                  "be lost\n");
2090                         if (err == -ENOSPC)
2091                                 ext4_print_free_blocks(inode);
2092                 invalidate_dirty_pages:
2093                         *give_up_on_write = true;
2094                         return err;
2095                 }
2096                 progress = 1;
2097                 /*
2098                  * Update buffer state, submit mapped pages, and get us new
2099                  * extent to map
2100                  */
2101                 err = mpage_map_and_submit_buffers(mpd);
2102                 if (err < 0)
2103                         goto update_disksize;
2104         } while (map->m_len);
2105
2106 update_disksize:
2107         /*
2108          * Update on-disk size after IO is submitted.  Races with
2109          * truncate are avoided by checking i_size under i_data_sem.
2110          */
2111         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2112         if (disksize > EXT4_I(inode)->i_disksize) {
2113                 int err2;
2114                 loff_t i_size;
2115
2116                 down_write(&EXT4_I(inode)->i_data_sem);
2117                 i_size = i_size_read(inode);
2118                 if (disksize > i_size)
2119                         disksize = i_size;
2120                 if (disksize > EXT4_I(inode)->i_disksize)
2121                         EXT4_I(inode)->i_disksize = disksize;
2122                 err2 = ext4_mark_inode_dirty(handle, inode);
2123                 up_write(&EXT4_I(inode)->i_data_sem);
2124                 if (err2)
2125                         ext4_error(inode->i_sb,
2126                                    "Failed to mark inode %lu dirty",
2127                                    inode->i_ino);
2128                 if (!err)
2129                         err = err2;
2130         }
2131         return err;
2132 }
2133
2134 /*
2135  * Calculate the total number of credits to reserve for one writepages
2136  * iteration. This is called from ext4_writepages(). We map an extent of
2137  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2138  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2139  * bpp - 1 blocks in bpp different extents.
2140  */
2141 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2142 {
2143         int bpp = ext4_journal_blocks_per_page(inode);
2144
2145         return ext4_meta_trans_blocks(inode,
2146                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2147 }
2148
2149 /*
2150  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2151  *                               and underlying extent to map
2152  *
2153  * @mpd - where to look for pages
2154  *
2155  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2156  * IO immediately. When we find a page which isn't mapped we start accumulating
2157  * extent of buffers underlying these pages that needs mapping (formed by
2158  * either delayed or unwritten buffers). We also lock the pages containing
2159  * these buffers. The extent found is returned in @mpd structure (starting at
2160  * mpd->lblk with length mpd->len blocks).
2161  *
2162  * Note that this function can attach bios to one io_end structure which are
2163  * neither logically nor physically contiguous. Although it may seem as an
2164  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2165  * case as we need to track IO to all buffers underlying a page in one io_end.
2166  */
2167 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2168 {
2169         struct address_space *mapping = mpd->inode->i_mapping;
2170         struct pagevec pvec;
2171         unsigned int nr_pages;
2172         long left = mpd->wbc->nr_to_write;
2173         pgoff_t index = mpd->first_page;
2174         pgoff_t end = mpd->last_page;
2175         int tag;
2176         int i, err = 0;
2177         int blkbits = mpd->inode->i_blkbits;
2178         ext4_lblk_t lblk;
2179         struct buffer_head *head;
2180
2181         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2182                 tag = PAGECACHE_TAG_TOWRITE;
2183         else
2184                 tag = PAGECACHE_TAG_DIRTY;
2185
2186         pagevec_init(&pvec, 0);
2187         mpd->map.m_len = 0;
2188         mpd->next_page = index;
2189         while (index <= end) {
2190                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2191                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2192                 if (nr_pages == 0)
2193                         goto out;
2194
2195                 for (i = 0; i < nr_pages; i++) {
2196                         struct page *page = pvec.pages[i];
2197
2198                         /*
2199                          * At this point, the page may be truncated or
2200                          * invalidated (changing page->mapping to NULL), or
2201                          * even swizzled back from swapper_space to tmpfs file
2202                          * mapping. However, page->index will not change
2203                          * because we have a reference on the page.
2204                          */
2205                         if (page->index > end)
2206                                 goto out;
2207
2208                         /*
2209                          * Accumulated enough dirty pages? This doesn't apply
2210                          * to WB_SYNC_ALL mode. For integrity sync we have to
2211                          * keep going because someone may be concurrently
2212                          * dirtying pages, and we might have synced a lot of
2213                          * newly appeared dirty pages, but have not synced all
2214                          * of the old dirty pages.
2215                          */
2216                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2217                                 goto out;
2218
2219                         /* If we can't merge this page, we are done. */
2220                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2221                                 goto out;
2222
2223                         lock_page(page);
2224                         /*
2225                          * If the page is no longer dirty, or its mapping no
2226                          * longer corresponds to inode we are writing (which
2227                          * means it has been truncated or invalidated), or the
2228                          * page is already under writeback and we are not doing
2229                          * a data integrity writeback, skip the page
2230                          */
2231                         if (!PageDirty(page) ||
2232                             (PageWriteback(page) &&
2233                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2234                             unlikely(page->mapping != mapping)) {
2235                                 unlock_page(page);
2236                                 continue;
2237                         }
2238
2239                         wait_on_page_writeback(page);
2240                         BUG_ON(PageWriteback(page));
2241
2242                         if (mpd->map.m_len == 0)
2243                                 mpd->first_page = page->index;
2244                         mpd->next_page = page->index + 1;
2245                         /* Add all dirty buffers to mpd */
2246                         lblk = ((ext4_lblk_t)page->index) <<
2247                                 (PAGE_CACHE_SHIFT - blkbits);
2248                         head = page_buffers(page);
2249                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2250                         if (err <= 0)
2251                                 goto out;
2252                         err = 0;
2253                         left--;
2254                 }
2255                 pagevec_release(&pvec);
2256                 cond_resched();
2257         }
2258         return 0;
2259 out:
2260         pagevec_release(&pvec);
2261         return err;
2262 }
2263
2264 static int __writepage(struct page *page, struct writeback_control *wbc,
2265                        void *data)
2266 {
2267         struct address_space *mapping = data;
2268         int ret = ext4_writepage(page, wbc);
2269         mapping_set_error(mapping, ret);
2270         return ret;
2271 }
2272
2273 static int ext4_writepages(struct address_space *mapping,
2274                            struct writeback_control *wbc)
2275 {
2276         pgoff_t writeback_index = 0;
2277         long nr_to_write = wbc->nr_to_write;
2278         int range_whole = 0;
2279         int cycled = 1;
2280         handle_t *handle = NULL;
2281         struct mpage_da_data mpd;
2282         struct inode *inode = mapping->host;
2283         int needed_blocks, rsv_blocks = 0, ret = 0;
2284         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2285         bool done;
2286         struct blk_plug plug;
2287         bool give_up_on_write = false;
2288
2289         trace_ext4_writepages(inode, wbc);
2290
2291         /*
2292          * No pages to write? This is mainly a kludge to avoid starting
2293          * a transaction for special inodes like journal inode on last iput()
2294          * because that could violate lock ordering on umount
2295          */
2296         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2297                 goto out_writepages;
2298
2299         if (ext4_should_journal_data(inode)) {
2300                 struct blk_plug plug;
2301
2302                 blk_start_plug(&plug);
2303                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2304                 blk_finish_plug(&plug);
2305                 goto out_writepages;
2306         }
2307
2308         /*
2309          * If the filesystem has aborted, it is read-only, so return
2310          * right away instead of dumping stack traces later on that
2311          * will obscure the real source of the problem.  We test
2312          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2313          * the latter could be true if the filesystem is mounted
2314          * read-only, and in that case, ext4_writepages should
2315          * *never* be called, so if that ever happens, we would want
2316          * the stack trace.
2317          */
2318         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2319                 ret = -EROFS;
2320                 goto out_writepages;
2321         }
2322
2323         if (ext4_should_dioread_nolock(inode)) {
2324                 /*
2325                  * We may need to convert up to one extent per block in
2326                  * the page and we may dirty the inode.
2327                  */
2328                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2329         }
2330
2331         /*
2332          * If we have inline data and arrive here, it means that
2333          * we will soon create the block for the 1st page, so
2334          * we'd better clear the inline data here.
2335          */
2336         if (ext4_has_inline_data(inode)) {
2337                 /* Just inode will be modified... */
2338                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2339                 if (IS_ERR(handle)) {
2340                         ret = PTR_ERR(handle);
2341                         goto out_writepages;
2342                 }
2343                 BUG_ON(ext4_test_inode_state(inode,
2344                                 EXT4_STATE_MAY_INLINE_DATA));
2345                 ext4_destroy_inline_data(handle, inode);
2346                 ext4_journal_stop(handle);
2347         }
2348
2349         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2350                 range_whole = 1;
2351
2352         if (wbc->range_cyclic) {
2353                 writeback_index = mapping->writeback_index;
2354                 if (writeback_index)
2355                         cycled = 0;
2356                 mpd.first_page = writeback_index;
2357                 mpd.last_page = -1;
2358         } else {
2359                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2360                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2361         }
2362
2363         mpd.inode = inode;
2364         mpd.wbc = wbc;
2365         ext4_io_submit_init(&mpd.io_submit, wbc);
2366 retry:
2367         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2368                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2369         done = false;
2370         blk_start_plug(&plug);
2371         while (!done && mpd.first_page <= mpd.last_page) {
2372                 /* For each extent of pages we use new io_end */
2373                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2374                 if (!mpd.io_submit.io_end) {
2375                         ret = -ENOMEM;
2376                         break;
2377                 }
2378
2379                 /*
2380                  * We have two constraints: We find one extent to map and we
2381                  * must always write out whole page (makes a difference when
2382                  * blocksize < pagesize) so that we don't block on IO when we
2383                  * try to write out the rest of the page. Journalled mode is
2384                  * not supported by delalloc.
2385                  */
2386                 BUG_ON(ext4_should_journal_data(inode));
2387                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2388
2389                 /* start a new transaction */
2390                 handle = ext4_journal_start_with_reserve(inode,
2391                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2392                 if (IS_ERR(handle)) {
2393                         ret = PTR_ERR(handle);
2394                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2395                                "%ld pages, ino %lu; err %d", __func__,
2396                                 wbc->nr_to_write, inode->i_ino, ret);
2397                         /* Release allocated io_end */
2398                         ext4_put_io_end(mpd.io_submit.io_end);
2399                         break;
2400                 }
2401
2402                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2403                 ret = mpage_prepare_extent_to_map(&mpd);
2404                 if (!ret) {
2405                         if (mpd.map.m_len)
2406                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2407                                         &give_up_on_write);
2408                         else {
2409                                 /*
2410                                  * We scanned the whole range (or exhausted
2411                                  * nr_to_write), submitted what was mapped and
2412                                  * didn't find anything needing mapping. We are
2413                                  * done.
2414                                  */
2415                                 done = true;
2416                         }
2417                 }
2418                 ext4_journal_stop(handle);
2419                 /* Submit prepared bio */
2420                 ext4_io_submit(&mpd.io_submit);
2421                 /* Unlock pages we didn't use */
2422                 mpage_release_unused_pages(&mpd, give_up_on_write);
2423                 /* Drop our io_end reference we got from init */
2424                 ext4_put_io_end(mpd.io_submit.io_end);
2425
2426                 if (ret == -ENOSPC && sbi->s_journal) {
2427                         /*
2428                          * Commit the transaction which would
2429                          * free blocks released in the transaction
2430                          * and try again
2431                          */
2432                         jbd2_journal_force_commit_nested(sbi->s_journal);
2433                         ret = 0;
2434                         continue;
2435                 }
2436                 /* Fatal error - ENOMEM, EIO... */
2437                 if (ret)
2438                         break;
2439         }
2440         blk_finish_plug(&plug);
2441         if (!ret && !cycled && wbc->nr_to_write > 0) {
2442                 cycled = 1;
2443                 mpd.last_page = writeback_index - 1;
2444                 mpd.first_page = 0;
2445                 goto retry;
2446         }
2447
2448         /* Update index */
2449         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2450                 /*
2451                  * Set the writeback_index so that range_cyclic
2452                  * mode will write it back later
2453                  */
2454                 mapping->writeback_index = mpd.first_page;
2455
2456 out_writepages:
2457         trace_ext4_writepages_result(inode, wbc, ret,
2458                                      nr_to_write - wbc->nr_to_write);
2459         return ret;
2460 }
2461
2462 static int ext4_nonda_switch(struct super_block *sb)
2463 {
2464         s64 free_clusters, dirty_clusters;
2465         struct ext4_sb_info *sbi = EXT4_SB(sb);
2466
2467         /*
2468          * switch to non delalloc mode if we are running low
2469          * on free block. The free block accounting via percpu
2470          * counters can get slightly wrong with percpu_counter_batch getting
2471          * accumulated on each CPU without updating global counters
2472          * Delalloc need an accurate free block accounting. So switch
2473          * to non delalloc when we are near to error range.
2474          */
2475         free_clusters =
2476                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2477         dirty_clusters =
2478                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2479         /*
2480          * Start pushing delalloc when 1/2 of free blocks are dirty.
2481          */
2482         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2483                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2484
2485         if (2 * free_clusters < 3 * dirty_clusters ||
2486             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2487                 /*
2488                  * free block count is less than 150% of dirty blocks
2489                  * or free blocks is less than watermark
2490                  */
2491                 return 1;
2492         }
2493         return 0;
2494 }
2495
2496 /* We always reserve for an inode update; the superblock could be there too */
2497 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2498 {
2499         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2500                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2501                 return 1;
2502
2503         if (pos + len <= 0x7fffffffULL)
2504                 return 1;
2505
2506         /* We might need to update the superblock to set LARGE_FILE */
2507         return 2;
2508 }
2509
2510 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2511                                loff_t pos, unsigned len, unsigned flags,
2512                                struct page **pagep, void **fsdata)
2513 {
2514         int ret, retries = 0;
2515         struct page *page;
2516         pgoff_t index;
2517         struct inode *inode = mapping->host;
2518         handle_t *handle;
2519
2520         index = pos >> PAGE_CACHE_SHIFT;
2521
2522         if (ext4_nonda_switch(inode->i_sb)) {
2523                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2524                 return ext4_write_begin(file, mapping, pos,
2525                                         len, flags, pagep, fsdata);
2526         }
2527         *fsdata = (void *)0;
2528         trace_ext4_da_write_begin(inode, pos, len, flags);
2529
2530         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2531                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2532                                                       pos, len, flags,
2533                                                       pagep, fsdata);
2534                 if (ret < 0)
2535                         return ret;
2536                 if (ret == 1)
2537                         return 0;
2538         }
2539
2540         /*
2541          * grab_cache_page_write_begin() can take a long time if the
2542          * system is thrashing due to memory pressure, or if the page
2543          * is being written back.  So grab it first before we start
2544          * the transaction handle.  This also allows us to allocate
2545          * the page (if needed) without using GFP_NOFS.
2546          */
2547 retry_grab:
2548         page = grab_cache_page_write_begin(mapping, index, flags);
2549         if (!page)
2550                 return -ENOMEM;
2551         unlock_page(page);
2552
2553         /*
2554          * With delayed allocation, we don't log the i_disksize update
2555          * if there is delayed block allocation. But we still need
2556          * to journalling the i_disksize update if writes to the end
2557          * of file which has an already mapped buffer.
2558          */
2559 retry_journal:
2560         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2561                                 ext4_da_write_credits(inode, pos, len));
2562         if (IS_ERR(handle)) {
2563                 page_cache_release(page);
2564                 return PTR_ERR(handle);
2565         }
2566
2567         lock_page(page);
2568         if (page->mapping != mapping) {
2569                 /* The page got truncated from under us */
2570                 unlock_page(page);
2571                 page_cache_release(page);
2572                 ext4_journal_stop(handle);
2573                 goto retry_grab;
2574         }
2575         /* In case writeback began while the page was unlocked */
2576         wait_for_stable_page(page);
2577
2578         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2579         if (ret < 0) {
2580                 unlock_page(page);
2581                 ext4_journal_stop(handle);
2582                 /*
2583                  * block_write_begin may have instantiated a few blocks
2584                  * outside i_size.  Trim these off again. Don't need
2585                  * i_size_read because we hold i_mutex.
2586                  */
2587                 if (pos + len > inode->i_size)
2588                         ext4_truncate_failed_write(inode);
2589
2590                 if (ret == -ENOSPC &&
2591                     ext4_should_retry_alloc(inode->i_sb, &retries))
2592                         goto retry_journal;
2593
2594                 page_cache_release(page);
2595                 return ret;
2596         }
2597
2598         *pagep = page;
2599         return ret;
2600 }
2601
2602 /*
2603  * Check if we should update i_disksize
2604  * when write to the end of file but not require block allocation
2605  */
2606 static int ext4_da_should_update_i_disksize(struct page *page,
2607                                             unsigned long offset)
2608 {
2609         struct buffer_head *bh;
2610         struct inode *inode = page->mapping->host;
2611         unsigned int idx;
2612         int i;
2613
2614         bh = page_buffers(page);
2615         idx = offset >> inode->i_blkbits;
2616
2617         for (i = 0; i < idx; i++)
2618                 bh = bh->b_this_page;
2619
2620         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2621                 return 0;
2622         return 1;
2623 }
2624
2625 static int ext4_da_write_end(struct file *file,
2626                              struct address_space *mapping,
2627                              loff_t pos, unsigned len, unsigned copied,
2628                              struct page *page, void *fsdata)
2629 {
2630         struct inode *inode = mapping->host;
2631         int ret = 0, ret2;
2632         handle_t *handle = ext4_journal_current_handle();
2633         loff_t new_i_size;
2634         unsigned long start, end;
2635         int write_mode = (int)(unsigned long)fsdata;
2636
2637         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2638                 return ext4_write_end(file, mapping, pos,
2639                                       len, copied, page, fsdata);
2640
2641         trace_ext4_da_write_end(inode, pos, len, copied);
2642         start = pos & (PAGE_CACHE_SIZE - 1);
2643         end = start + copied - 1;
2644
2645         /*
2646          * generic_write_end() will run mark_inode_dirty() if i_size
2647          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2648          * into that.
2649          */
2650         new_i_size = pos + copied;
2651         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2652                 if (ext4_has_inline_data(inode) ||
2653                     ext4_da_should_update_i_disksize(page, end)) {
2654                         ext4_update_i_disksize(inode, new_i_size);
2655                         /* We need to mark inode dirty even if
2656                          * new_i_size is less that inode->i_size
2657                          * bu greater than i_disksize.(hint delalloc)
2658                          */
2659                         ext4_mark_inode_dirty(handle, inode);
2660                 }
2661         }
2662
2663         if (write_mode != CONVERT_INLINE_DATA &&
2664             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2665             ext4_has_inline_data(inode))
2666                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2667                                                      page);
2668         else
2669                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2670                                                         page, fsdata);
2671
2672         copied = ret2;
2673         if (ret2 < 0)
2674                 ret = ret2;
2675         ret2 = ext4_journal_stop(handle);
2676         if (!ret)
2677                 ret = ret2;
2678
2679         return ret ? ret : copied;
2680 }
2681
2682 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2683                                    unsigned int length)
2684 {
2685         /*
2686          * Drop reserved blocks
2687          */
2688         BUG_ON(!PageLocked(page));
2689         if (!page_has_buffers(page))
2690                 goto out;
2691
2692         ext4_da_page_release_reservation(page, offset, length);
2693
2694 out:
2695         ext4_invalidatepage(page, offset, length);
2696
2697         return;
2698 }
2699
2700 /*
2701  * Force all delayed allocation blocks to be allocated for a given inode.
2702  */
2703 int ext4_alloc_da_blocks(struct inode *inode)
2704 {
2705         trace_ext4_alloc_da_blocks(inode);
2706
2707         if (!EXT4_I(inode)->i_reserved_data_blocks)
2708                 return 0;
2709
2710         /*
2711          * We do something simple for now.  The filemap_flush() will
2712          * also start triggering a write of the data blocks, which is
2713          * not strictly speaking necessary (and for users of
2714          * laptop_mode, not even desirable).  However, to do otherwise
2715          * would require replicating code paths in:
2716          *
2717          * ext4_writepages() ->
2718          *    write_cache_pages() ---> (via passed in callback function)
2719          *        __mpage_da_writepage() -->
2720          *           mpage_add_bh_to_extent()
2721          *           mpage_da_map_blocks()
2722          *
2723          * The problem is that write_cache_pages(), located in
2724          * mm/page-writeback.c, marks pages clean in preparation for
2725          * doing I/O, which is not desirable if we're not planning on
2726          * doing I/O at all.
2727          *
2728          * We could call write_cache_pages(), and then redirty all of
2729          * the pages by calling redirty_page_for_writepage() but that
2730          * would be ugly in the extreme.  So instead we would need to
2731          * replicate parts of the code in the above functions,
2732          * simplifying them because we wouldn't actually intend to
2733          * write out the pages, but rather only collect contiguous
2734          * logical block extents, call the multi-block allocator, and
2735          * then update the buffer heads with the block allocations.
2736          *
2737          * For now, though, we'll cheat by calling filemap_flush(),
2738          * which will map the blocks, and start the I/O, but not
2739          * actually wait for the I/O to complete.
2740          */
2741         return filemap_flush(inode->i_mapping);
2742 }
2743
2744 /*
2745  * bmap() is special.  It gets used by applications such as lilo and by
2746  * the swapper to find the on-disk block of a specific piece of data.
2747  *
2748  * Naturally, this is dangerous if the block concerned is still in the
2749  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2750  * filesystem and enables swap, then they may get a nasty shock when the
2751  * data getting swapped to that swapfile suddenly gets overwritten by
2752  * the original zero's written out previously to the journal and
2753  * awaiting writeback in the kernel's buffer cache.
2754  *
2755  * So, if we see any bmap calls here on a modified, data-journaled file,
2756  * take extra steps to flush any blocks which might be in the cache.
2757  */
2758 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2759 {
2760         struct inode *inode = mapping->host;
2761         journal_t *journal;
2762         int err;
2763
2764         /*
2765          * We can get here for an inline file via the FIBMAP ioctl
2766          */
2767         if (ext4_has_inline_data(inode))
2768                 return 0;
2769
2770         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2771                         test_opt(inode->i_sb, DELALLOC)) {
2772                 /*
2773                  * With delalloc we want to sync the file
2774                  * so that we can make sure we allocate
2775                  * blocks for file
2776                  */
2777                 filemap_write_and_wait(mapping);
2778         }
2779
2780         if (EXT4_JOURNAL(inode) &&
2781             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2782                 /*
2783                  * This is a REALLY heavyweight approach, but the use of
2784                  * bmap on dirty files is expected to be extremely rare:
2785                  * only if we run lilo or swapon on a freshly made file
2786                  * do we expect this to happen.
2787                  *
2788                  * (bmap requires CAP_SYS_RAWIO so this does not
2789                  * represent an unprivileged user DOS attack --- we'd be
2790                  * in trouble if mortal users could trigger this path at
2791                  * will.)
2792                  *
2793                  * NB. EXT4_STATE_JDATA is not set on files other than
2794                  * regular files.  If somebody wants to bmap a directory
2795                  * or symlink and gets confused because the buffer
2796                  * hasn't yet been flushed to disk, they deserve
2797                  * everything they get.
2798                  */
2799
2800                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2801                 journal = EXT4_JOURNAL(inode);
2802                 jbd2_journal_lock_updates(journal);
2803                 err = jbd2_journal_flush(journal);
2804                 jbd2_journal_unlock_updates(journal);
2805
2806                 if (err)
2807                         return 0;
2808         }
2809
2810         return generic_block_bmap(mapping, block, ext4_get_block);
2811 }
2812
2813 static int ext4_readpage(struct file *file, struct page *page)
2814 {
2815         int ret = -EAGAIN;
2816         struct inode *inode = page->mapping->host;
2817
2818         trace_ext4_readpage(page);
2819
2820         if (ext4_has_inline_data(inode))
2821                 ret = ext4_readpage_inline(inode, page);
2822
2823         if (ret == -EAGAIN)
2824                 return mpage_readpage(page, ext4_get_block);
2825
2826         return ret;
2827 }
2828
2829 static int
2830 ext4_readpages(struct file *file, struct address_space *mapping,
2831                 struct list_head *pages, unsigned nr_pages)
2832 {
2833         struct inode *inode = mapping->host;
2834
2835         /* If the file has inline data, no need to do readpages. */
2836         if (ext4_has_inline_data(inode))
2837                 return 0;
2838
2839         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2840 }
2841
2842 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2843                                 unsigned int length)
2844 {
2845         trace_ext4_invalidatepage(page, offset, length);
2846
2847         /* No journalling happens on data buffers when this function is used */
2848         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2849
2850         block_invalidatepage(page, offset, length);
2851 }
2852
2853 static int __ext4_journalled_invalidatepage(struct page *page,
2854                                             unsigned int offset,
2855                                             unsigned int length)
2856 {
2857         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2858
2859         trace_ext4_journalled_invalidatepage(page, offset, length);
2860
2861         /*
2862          * If it's a full truncate we just forget about the pending dirtying
2863          */
2864         if (offset == 0 && length == PAGE_CACHE_SIZE)
2865                 ClearPageChecked(page);
2866
2867         return jbd2_journal_invalidatepage(journal, page, offset, length);
2868 }
2869
2870 /* Wrapper for aops... */
2871 static void ext4_journalled_invalidatepage(struct page *page,
2872                                            unsigned int offset,
2873                                            unsigned int length)
2874 {
2875         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2876 }
2877
2878 static int ext4_releasepage(struct page *page, gfp_t wait)
2879 {
2880         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2881
2882         trace_ext4_releasepage(page);
2883
2884         /* Page has dirty journalled data -> cannot release */
2885         if (PageChecked(page))
2886                 return 0;
2887         if (journal)
2888                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2889         else
2890                 return try_to_free_buffers(page);
2891 }
2892
2893 /*
2894  * ext4_get_block used when preparing for a DIO write or buffer write.
2895  * We allocate an uinitialized extent if blocks haven't been allocated.
2896  * The extent will be converted to initialized after the IO is complete.
2897  */
2898 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2899                    struct buffer_head *bh_result, int create)
2900 {
2901         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2902                    inode->i_ino, create);
2903         return _ext4_get_block(inode, iblock, bh_result,
2904                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2905 }
2906
2907 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2908                    struct buffer_head *bh_result, int create)
2909 {
2910         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2911                    inode->i_ino, create);
2912         return _ext4_get_block(inode, iblock, bh_result,
2913                                EXT4_GET_BLOCKS_NO_LOCK);
2914 }
2915
2916 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2917                             ssize_t size, void *private)
2918 {
2919         ext4_io_end_t *io_end = iocb->private;
2920
2921         /* if not async direct IO just return */
2922         if (!io_end)
2923                 return;
2924
2925         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2926                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2927                   iocb->private, io_end->inode->i_ino, iocb, offset,
2928                   size);
2929
2930         iocb->private = NULL;
2931         io_end->offset = offset;
2932         io_end->size = size;
2933         ext4_put_io_end(io_end);
2934 }
2935
2936 /*
2937  * For ext4 extent files, ext4 will do direct-io write to holes,
2938  * preallocated extents, and those write extend the file, no need to
2939  * fall back to buffered IO.
2940  *
2941  * For holes, we fallocate those blocks, mark them as unwritten
2942  * If those blocks were preallocated, we mark sure they are split, but
2943  * still keep the range to write as unwritten.
2944  *
2945  * The unwritten extents will be converted to written when DIO is completed.
2946  * For async direct IO, since the IO may still pending when return, we
2947  * set up an end_io call back function, which will do the conversion
2948  * when async direct IO completed.
2949  *
2950  * If the O_DIRECT write will extend the file then add this inode to the
2951  * orphan list.  So recovery will truncate it back to the original size
2952  * if the machine crashes during the write.
2953  *
2954  */
2955 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2956                               struct iov_iter *iter, loff_t offset)
2957 {
2958         struct file *file = iocb->ki_filp;
2959         struct inode *inode = file->f_mapping->host;
2960         ssize_t ret;
2961         size_t count = iov_iter_count(iter);
2962         int overwrite = 0;
2963         get_block_t *get_block_func = NULL;
2964         int dio_flags = 0;
2965         loff_t final_size = offset + count;
2966         ext4_io_end_t *io_end = NULL;
2967
2968         /* Use the old path for reads and writes beyond i_size. */
2969         if (rw != WRITE || final_size > inode->i_size)
2970                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2971
2972         BUG_ON(iocb->private == NULL);
2973
2974         /*
2975          * Make all waiters for direct IO properly wait also for extent
2976          * conversion. This also disallows race between truncate() and
2977          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2978          */
2979         if (rw == WRITE)
2980                 atomic_inc(&inode->i_dio_count);
2981
2982         /* If we do a overwrite dio, i_mutex locking can be released */
2983         overwrite = *((int *)iocb->private);
2984
2985         if (overwrite) {
2986                 down_read(&EXT4_I(inode)->i_data_sem);
2987                 mutex_unlock(&inode->i_mutex);
2988         }
2989
2990         /*
2991          * We could direct write to holes and fallocate.
2992          *
2993          * Allocated blocks to fill the hole are marked as
2994          * unwritten to prevent parallel buffered read to expose
2995          * the stale data before DIO complete the data IO.
2996          *
2997          * As to previously fallocated extents, ext4 get_block will
2998          * just simply mark the buffer mapped but still keep the
2999          * extents unwritten.
3000          *
3001          * For non AIO case, we will convert those unwritten extents
3002          * to written after return back from blockdev_direct_IO.
3003          *
3004          * For async DIO, the conversion needs to be deferred when the
3005          * IO is completed. The ext4 end_io callback function will be
3006          * called to take care of the conversion work.  Here for async
3007          * case, we allocate an io_end structure to hook to the iocb.
3008          */
3009         iocb->private = NULL;
3010         ext4_inode_aio_set(inode, NULL);
3011         if (!is_sync_kiocb(iocb)) {
3012                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3013                 if (!io_end) {
3014                         ret = -ENOMEM;
3015                         goto retake_lock;
3016                 }
3017                 /*
3018                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3019                  */
3020                 iocb->private = ext4_get_io_end(io_end);
3021                 /*
3022                  * we save the io structure for current async direct
3023                  * IO, so that later ext4_map_blocks() could flag the
3024                  * io structure whether there is a unwritten extents
3025                  * needs to be converted when IO is completed.
3026                  */
3027                 ext4_inode_aio_set(inode, io_end);
3028         }
3029
3030         if (overwrite) {
3031                 get_block_func = ext4_get_block_write_nolock;
3032         } else {
3033                 get_block_func = ext4_get_block_write;
3034                 dio_flags = DIO_LOCKING;
3035         }
3036         ret = __blockdev_direct_IO(rw, iocb, inode,
3037                                    inode->i_sb->s_bdev, iter,
3038                                    offset,
3039                                    get_block_func,
3040                                    ext4_end_io_dio,
3041                                    NULL,
3042                                    dio_flags);
3043
3044         /*
3045          * Put our reference to io_end. This can free the io_end structure e.g.
3046          * in sync IO case or in case of error. It can even perform extent
3047          * conversion if all bios we submitted finished before we got here.
3048          * Note that in that case iocb->private can be already set to NULL
3049          * here.
3050          */
3051         if (io_end) {
3052                 ext4_inode_aio_set(inode, NULL);
3053                 ext4_put_io_end(io_end);
3054                 /*
3055                  * When no IO was submitted ext4_end_io_dio() was not
3056                  * called so we have to put iocb's reference.
3057                  */
3058                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3059                         WARN_ON(iocb->private != io_end);
3060                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3061                         ext4_put_io_end(io_end);
3062                         iocb->private = NULL;
3063                 }
3064         }
3065         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3066                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3067                 int err;
3068                 /*
3069                  * for non AIO case, since the IO is already
3070                  * completed, we could do the conversion right here
3071                  */
3072                 err = ext4_convert_unwritten_extents(NULL, inode,
3073                                                      offset, ret);
3074                 if (err < 0)
3075                         ret = err;
3076                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3077         }
3078
3079 retake_lock:
3080         if (rw == WRITE)
3081                 inode_dio_done(inode);
3082         /* take i_mutex locking again if we do a ovewrite dio */
3083         if (overwrite) {
3084                 up_read(&EXT4_I(inode)->i_data_sem);
3085                 mutex_lock(&inode->i_mutex);
3086         }
3087
3088         return ret;
3089 }
3090
3091 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3092                               struct iov_iter *iter, loff_t offset)
3093 {
3094         struct file *file = iocb->ki_filp;
3095         struct inode *inode = file->f_mapping->host;
3096         size_t count = iov_iter_count(iter);
3097         ssize_t ret;
3098
3099         /*
3100          * If we are doing data journalling we don't support O_DIRECT
3101          */
3102         if (ext4_should_journal_data(inode))
3103                 return 0;
3104
3105         /* Let buffer I/O handle the inline data case. */
3106         if (ext4_has_inline_data(inode))
3107                 return 0;
3108
3109         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3110         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3111                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3112         else
3113                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3114         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3115         return ret;
3116 }
3117
3118 /*
3119  * Pages can be marked dirty completely asynchronously from ext4's journalling
3120  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3121  * much here because ->set_page_dirty is called under VFS locks.  The page is
3122  * not necessarily locked.
3123  *
3124  * We cannot just dirty the page and leave attached buffers clean, because the
3125  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3126  * or jbddirty because all the journalling code will explode.
3127  *
3128  * So what we do is to mark the page "pending dirty" and next time writepage
3129  * is called, propagate that into the buffers appropriately.
3130  */
3131 static int ext4_journalled_set_page_dirty(struct page *page)
3132 {
3133         SetPageChecked(page);
3134         return __set_page_dirty_nobuffers(page);
3135 }
3136
3137 static const struct address_space_operations ext4_aops = {
3138         .readpage               = ext4_readpage,
3139         .readpages              = ext4_readpages,
3140         .writepage              = ext4_writepage,
3141         .writepages             = ext4_writepages,
3142         .write_begin            = ext4_write_begin,
3143         .write_end              = ext4_write_end,
3144         .bmap                   = ext4_bmap,
3145         .invalidatepage         = ext4_invalidatepage,
3146         .releasepage            = ext4_releasepage,
3147         .direct_IO              = ext4_direct_IO,
3148         .migratepage            = buffer_migrate_page,
3149         .is_partially_uptodate  = block_is_partially_uptodate,
3150         .error_remove_page      = generic_error_remove_page,
3151 };
3152
3153 static const struct address_space_operations ext4_journalled_aops = {
3154         .readpage               = ext4_readpage,
3155         .readpages              = ext4_readpages,
3156         .writepage              = ext4_writepage,
3157         .writepages             = ext4_writepages,
3158         .write_begin            = ext4_write_begin,
3159         .write_end              = ext4_journalled_write_end,
3160         .set_page_dirty         = ext4_journalled_set_page_dirty,
3161         .bmap                   = ext4_bmap,
3162         .invalidatepage         = ext4_journalled_invalidatepage,
3163         .releasepage            = ext4_releasepage,
3164         .direct_IO              = ext4_direct_IO,
3165         .is_partially_uptodate  = block_is_partially_uptodate,
3166         .error_remove_page      = generic_error_remove_page,
3167 };
3168
3169 static const struct address_space_operations ext4_da_aops = {
3170         .readpage               = ext4_readpage,
3171         .readpages              = ext4_readpages,
3172         .writepage              = ext4_writepage,
3173         .writepages             = ext4_writepages,
3174         .write_begin            = ext4_da_write_begin,
3175         .write_end              = ext4_da_write_end,
3176         .bmap                   = ext4_bmap,
3177         .invalidatepage         = ext4_da_invalidatepage,
3178         .releasepage            = ext4_releasepage,
3179         .direct_IO              = ext4_direct_IO,
3180         .migratepage            = buffer_migrate_page,
3181         .is_partially_uptodate  = block_is_partially_uptodate,
3182         .error_remove_page      = generic_error_remove_page,
3183 };
3184
3185 void ext4_set_aops(struct inode *inode)
3186 {
3187         switch (ext4_inode_journal_mode(inode)) {
3188         case EXT4_INODE_ORDERED_DATA_MODE:
3189                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3190                 break;
3191         case EXT4_INODE_WRITEBACK_DATA_MODE:
3192                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3193                 break;
3194         case EXT4_INODE_JOURNAL_DATA_MODE:
3195                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3196                 return;
3197         default:
3198                 BUG();
3199         }
3200         if (test_opt(inode->i_sb, DELALLOC))
3201                 inode->i_mapping->a_ops = &ext4_da_aops;
3202         else
3203                 inode->i_mapping->a_ops = &ext4_aops;
3204 }
3205
3206 /*
3207  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3208  * starting from file offset 'from'.  The range to be zero'd must
3209  * be contained with in one block.  If the specified range exceeds
3210  * the end of the block it will be shortened to end of the block
3211  * that cooresponds to 'from'
3212  */
3213 static int ext4_block_zero_page_range(handle_t *handle,
3214                 struct address_space *mapping, loff_t from, loff_t length)
3215 {
3216         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3217         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3218         unsigned blocksize, max, pos;
3219         ext4_lblk_t iblock;
3220         struct inode *inode = mapping->host;
3221         struct buffer_head *bh;
3222         struct page *page;
3223         int err = 0;
3224
3225         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3226                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3227         if (!page)
3228                 return -ENOMEM;
3229
3230         blocksize = inode->i_sb->s_blocksize;
3231         max = blocksize - (offset & (blocksize - 1));
3232
3233         /*
3234          * correct length if it does not fall between
3235          * 'from' and the end of the block
3236          */
3237         if (length > max || length < 0)
3238                 length = max;
3239
3240         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3241
3242         if (!page_has_buffers(page))
3243                 create_empty_buffers(page, blocksize, 0);
3244
3245         /* Find the buffer that contains "offset" */
3246         bh = page_buffers(page);
3247         pos = blocksize;
3248         while (offset >= pos) {
3249                 bh = bh->b_this_page;
3250                 iblock++;
3251                 pos += blocksize;
3252         }
3253         if (buffer_freed(bh)) {
3254                 BUFFER_TRACE(bh, "freed: skip");
3255                 goto unlock;
3256         }
3257         if (!buffer_mapped(bh)) {
3258                 BUFFER_TRACE(bh, "unmapped");
3259                 ext4_get_block(inode, iblock, bh, 0);
3260                 /* unmapped? It's a hole - nothing to do */
3261                 if (!buffer_mapped(bh)) {
3262                         BUFFER_TRACE(bh, "still unmapped");
3263                         goto unlock;
3264                 }
3265         }
3266
3267         /* Ok, it's mapped. Make sure it's up-to-date */
3268         if (PageUptodate(page))
3269                 set_buffer_uptodate(bh);
3270
3271         if (!buffer_uptodate(bh)) {
3272                 err = -EIO;
3273                 ll_rw_block(READ, 1, &bh);
3274                 wait_on_buffer(bh);
3275                 /* Uhhuh. Read error. Complain and punt. */
3276                 if (!buffer_uptodate(bh))
3277                         goto unlock;
3278         }
3279         if (ext4_should_journal_data(inode)) {
3280                 BUFFER_TRACE(bh, "get write access");
3281                 err = ext4_journal_get_write_access(handle, bh);
3282                 if (err)
3283                         goto unlock;
3284         }
3285         zero_user(page, offset, length);
3286         BUFFER_TRACE(bh, "zeroed end of block");
3287
3288         if (ext4_should_journal_data(inode)) {
3289                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3290         } else {
3291                 err = 0;
3292                 mark_buffer_dirty(bh);
3293                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3294                         err = ext4_jbd2_file_inode(handle, inode);
3295         }
3296
3297 unlock:
3298         unlock_page(page);
3299         page_cache_release(page);
3300         return err;
3301 }
3302
3303 /*
3304  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3305  * up to the end of the block which corresponds to `from'.
3306  * This required during truncate. We need to physically zero the tail end
3307  * of that block so it doesn't yield old data if the file is later grown.
3308  */
3309 static int ext4_block_truncate_page(handle_t *handle,
3310                 struct address_space *mapping, loff_t from)
3311 {
3312         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3313         unsigned length;
3314         unsigned blocksize;
3315         struct inode *inode = mapping->host;
3316
3317         blocksize = inode->i_sb->s_blocksize;
3318         length = blocksize - (offset & (blocksize - 1));
3319
3320         return ext4_block_zero_page_range(handle, mapping, from, length);
3321 }
3322
3323 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3324                              loff_t lstart, loff_t length)
3325 {
3326         struct super_block *sb = inode->i_sb;
3327         struct address_space *mapping = inode->i_mapping;
3328         unsigned partial_start, partial_end;
3329         ext4_fsblk_t start, end;
3330         loff_t byte_end = (lstart + length - 1);
3331         int err = 0;
3332
3333         partial_start = lstart & (sb->s_blocksize - 1);
3334         partial_end = byte_end & (sb->s_blocksize - 1);
3335
3336         start = lstart >> sb->s_blocksize_bits;
3337         end = byte_end >> sb->s_blocksize_bits;
3338
3339         /* Handle partial zero within the single block */
3340         if (start == end &&
3341             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3342                 err = ext4_block_zero_page_range(handle, mapping,
3343                                                  lstart, length);
3344                 return err;
3345         }
3346         /* Handle partial zero out on the start of the range */
3347         if (partial_start) {
3348                 err = ext4_block_zero_page_range(handle, mapping,
3349                                                  lstart, sb->s_blocksize);
3350                 if (err)
3351                         return err;
3352         }
3353         /* Handle partial zero out on the end of the range */
3354         if (partial_end != sb->s_blocksize - 1)
3355                 err = ext4_block_zero_page_range(handle, mapping,
3356                                                  byte_end - partial_end,
3357                                                  partial_end + 1);
3358         return err;
3359 }
3360
3361 int ext4_can_truncate(struct inode *inode)
3362 {
3363         if (S_ISREG(inode->i_mode))
3364                 return 1;
3365         if (S_ISDIR(inode->i_mode))
3366                 return 1;
3367         if (S_ISLNK(inode->i_mode))
3368                 return !ext4_inode_is_fast_symlink(inode);
3369         return 0;
3370 }
3371
3372 /*
3373  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3374  * associated with the given offset and length
3375  *
3376  * @inode:  File inode
3377  * @offset: The offset where the hole will begin
3378  * @len:    The length of the hole
3379  *
3380  * Returns: 0 on success or negative on failure
3381  */
3382
3383 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3384 {
3385         struct super_block *sb = inode->i_sb;
3386         ext4_lblk_t first_block, stop_block;
3387         struct address_space *mapping = inode->i_mapping;
3388         loff_t first_block_offset, last_block_offset;
3389         handle_t *handle;
3390         unsigned int credits;
3391         int ret = 0;
3392
3393         if (!S_ISREG(inode->i_mode))
3394                 return -EOPNOTSUPP;
3395
3396         trace_ext4_punch_hole(inode, offset, length, 0);
3397
3398         /*
3399          * Write out all dirty pages to avoid race conditions
3400          * Then release them.
3401          */
3402         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3403                 ret = filemap_write_and_wait_range(mapping, offset,
3404                                                    offset + length - 1);
3405                 if (ret)
3406                         return ret;
3407         }
3408
3409         mutex_lock(&inode->i_mutex);
3410
3411         /* No need to punch hole beyond i_size */
3412         if (offset >= inode->i_size)
3413                 goto out_mutex;
3414
3415         /*
3416          * If the hole extends beyond i_size, set the hole
3417          * to end after the page that contains i_size
3418          */
3419         if (offset + length > inode->i_size) {
3420                 length = inode->i_size +
3421                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3422                    offset;
3423         }
3424
3425         if (offset & (sb->s_blocksize - 1) ||
3426             (offset + length) & (sb->s_blocksize - 1)) {
3427                 /*
3428                  * Attach jinode to inode for jbd2 if we do any zeroing of
3429                  * partial block
3430                  */
3431                 ret = ext4_inode_attach_jinode(inode);
3432                 if (ret < 0)
3433                         goto out_mutex;
3434
3435         }
3436
3437         first_block_offset = round_up(offset, sb->s_blocksize);
3438         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3439
3440         /* Now release the pages and zero block aligned part of pages*/
3441         if (last_block_offset > first_block_offset)
3442                 truncate_pagecache_range(inode, first_block_offset,
3443                                          last_block_offset);
3444
3445         /* Wait all existing dio workers, newcomers will block on i_mutex */
3446         ext4_inode_block_unlocked_dio(inode);
3447         inode_dio_wait(inode);
3448
3449         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3450                 credits = ext4_writepage_trans_blocks(inode);
3451         else
3452                 credits = ext4_blocks_for_truncate(inode);
3453         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3454         if (IS_ERR(handle)) {
3455                 ret = PTR_ERR(handle);
3456                 ext4_std_error(sb, ret);
3457                 goto out_dio;
3458         }
3459
3460         ret = ext4_zero_partial_blocks(handle, inode, offset,
3461                                        length);
3462         if (ret)
3463                 goto out_stop;
3464
3465         first_block = (offset + sb->s_blocksize - 1) >>
3466                 EXT4_BLOCK_SIZE_BITS(sb);
3467         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3468
3469         /* If there are no blocks to remove, return now */
3470         if (first_block >= stop_block)
3471                 goto out_stop;
3472
3473         down_write(&EXT4_I(inode)->i_data_sem);
3474         ext4_discard_preallocations(inode);
3475
3476         ret = ext4_es_remove_extent(inode, first_block,
3477                                     stop_block - first_block);
3478         if (ret) {
3479                 up_write(&EXT4_I(inode)->i_data_sem);
3480                 goto out_stop;
3481         }
3482
3483         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3484                 ret = ext4_ext_remove_space(inode, first_block,
3485                                             stop_block - 1);
3486         else
3487                 ret = ext4_ind_remove_space(handle, inode, first_block,
3488                                             stop_block);
3489
3490         up_write(&EXT4_I(inode)->i_data_sem);
3491         if (IS_SYNC(inode))
3492                 ext4_handle_sync(handle);
3493
3494         /* Now release the pages again to reduce race window */
3495         if (last_block_offset > first_block_offset)
3496                 truncate_pagecache_range(inode, first_block_offset,
3497                                          last_block_offset);
3498
3499         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3500         ext4_mark_inode_dirty(handle, inode);
3501 out_stop:
3502         ext4_journal_stop(handle);
3503 out_dio:
3504         ext4_inode_resume_unlocked_dio(inode);
3505 out_mutex:
3506         mutex_unlock(&inode->i_mutex);
3507         return ret;
3508 }
3509
3510 int ext4_inode_attach_jinode(struct inode *inode)
3511 {
3512         struct ext4_inode_info *ei = EXT4_I(inode);
3513         struct jbd2_inode *jinode;
3514
3515         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3516                 return 0;
3517
3518         jinode = jbd2_alloc_inode(GFP_KERNEL);
3519         spin_lock(&inode->i_lock);
3520         if (!ei->jinode) {
3521                 if (!jinode) {
3522                         spin_unlock(&inode->i_lock);
3523                         return -ENOMEM;
3524                 }
3525                 ei->jinode = jinode;
3526                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3527                 jinode = NULL;
3528         }
3529         spin_unlock(&inode->i_lock);
3530         if (unlikely(jinode != NULL))
3531                 jbd2_free_inode(jinode);
3532         return 0;
3533 }
3534
3535 /*
3536  * ext4_truncate()
3537  *
3538  * We block out ext4_get_block() block instantiations across the entire
3539  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3540  * simultaneously on behalf of the same inode.
3541  *
3542  * As we work through the truncate and commit bits of it to the journal there
3543  * is one core, guiding principle: the file's tree must always be consistent on
3544  * disk.  We must be able to restart the truncate after a crash.
3545  *
3546  * The file's tree may be transiently inconsistent in memory (although it
3547  * probably isn't), but whenever we close off and commit a journal transaction,
3548  * the contents of (the filesystem + the journal) must be consistent and
3549  * restartable.  It's pretty simple, really: bottom up, right to left (although
3550  * left-to-right works OK too).
3551  *
3552  * Note that at recovery time, journal replay occurs *before* the restart of
3553  * truncate against the orphan inode list.
3554  *
3555  * The committed inode has the new, desired i_size (which is the same as
3556  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3557  * that this inode's truncate did not complete and it will again call
3558  * ext4_truncate() to have another go.  So there will be instantiated blocks
3559  * to the right of the truncation point in a crashed ext4 filesystem.  But
3560  * that's fine - as long as they are linked from the inode, the post-crash
3561  * ext4_truncate() run will find them and release them.
3562  */
3563 void ext4_truncate(struct inode *inode)
3564 {
3565         struct ext4_inode_info *ei = EXT4_I(inode);
3566         unsigned int credits;
3567         handle_t *handle;
3568         struct address_space *mapping = inode->i_mapping;
3569
3570         /*
3571          * There is a possibility that we're either freeing the inode
3572          * or it's a completely new inode. In those cases we might not
3573          * have i_mutex locked because it's not necessary.
3574          */
3575         if (!(inode->i_state & (I_NEW|I_FREEING)))
3576                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3577         trace_ext4_truncate_enter(inode);
3578
3579         if (!ext4_can_truncate(inode))
3580                 return;
3581
3582         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3583
3584         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3585                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3586
3587         if (ext4_has_inline_data(inode)) {
3588                 int has_inline = 1;
3589
3590                 ext4_inline_data_truncate(inode, &has_inline);
3591                 if (has_inline)
3592                         return;
3593         }
3594
3595         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3596         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3597                 if (ext4_inode_attach_jinode(inode) < 0)
3598                         return;
3599         }
3600
3601         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3602                 credits = ext4_writepage_trans_blocks(inode);
3603         else
3604                 credits = ext4_blocks_for_truncate(inode);
3605
3606         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3607         if (IS_ERR(handle)) {
3608                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3609                 return;
3610         }
3611
3612         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3613                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3614
3615         /*
3616          * We add the inode to the orphan list, so that if this
3617          * truncate spans multiple transactions, and we crash, we will
3618          * resume the truncate when the filesystem recovers.  It also
3619          * marks the inode dirty, to catch the new size.
3620          *
3621          * Implication: the file must always be in a sane, consistent
3622          * truncatable state while each transaction commits.
3623          */
3624         if (ext4_orphan_add(handle, inode))
3625                 goto out_stop;
3626
3627         down_write(&EXT4_I(inode)->i_data_sem);
3628
3629         ext4_discard_preallocations(inode);
3630
3631         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3632                 ext4_ext_truncate(handle, inode);
3633         else
3634                 ext4_ind_truncate(handle, inode);
3635
3636         up_write(&ei->i_data_sem);
3637
3638         if (IS_SYNC(inode))
3639                 ext4_handle_sync(handle);
3640
3641 out_stop:
3642         /*
3643          * If this was a simple ftruncate() and the file will remain alive,
3644          * then we need to clear up the orphan record which we created above.
3645          * However, if this was a real unlink then we were called by
3646          * ext4_delete_inode(), and we allow that function to clean up the
3647          * orphan info for us.
3648          */
3649         if (inode->i_nlink)
3650                 ext4_orphan_del(handle, inode);
3651
3652         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3653         ext4_mark_inode_dirty(handle, inode);
3654         ext4_journal_stop(handle);
3655
3656         trace_ext4_truncate_exit(inode);
3657 }
3658
3659 /*
3660  * ext4_get_inode_loc returns with an extra refcount against the inode's
3661  * underlying buffer_head on success. If 'in_mem' is true, we have all
3662  * data in memory that is needed to recreate the on-disk version of this
3663  * inode.
3664  */
3665 static int __ext4_get_inode_loc(struct inode *inode,
3666                                 struct ext4_iloc *iloc, int in_mem)
3667 {
3668         struct ext4_group_desc  *gdp;
3669         struct buffer_head      *bh;
3670         struct super_block      *sb = inode->i_sb;
3671         ext4_fsblk_t            block;
3672         int                     inodes_per_block, inode_offset;
3673
3674         iloc->bh = NULL;
3675         if (!ext4_valid_inum(sb, inode->i_ino))
3676                 return -EIO;
3677
3678         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3679         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3680         if (!gdp)
3681                 return -EIO;
3682
3683         /*
3684          * Figure out the offset within the block group inode table
3685          */
3686         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3687         inode_offset = ((inode->i_ino - 1) %
3688                         EXT4_INODES_PER_GROUP(sb));
3689         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3690         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3691
3692         bh = sb_getblk(sb, block);
3693         if (unlikely(!bh))
3694                 return -ENOMEM;
3695         if (!buffer_uptodate(bh)) {
3696                 lock_buffer(bh);
3697
3698                 /*
3699                  * If the buffer has the write error flag, we have failed
3700                  * to write out another inode in the same block.  In this
3701                  * case, we don't have to read the block because we may
3702                  * read the old inode data successfully.
3703                  */
3704                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3705                         set_buffer_uptodate(bh);
3706
3707                 if (buffer_uptodate(bh)) {
3708                         /* someone brought it uptodate while we waited */
3709                         unlock_buffer(bh);
3710                         goto has_buffer;
3711                 }
3712
3713                 /*
3714                  * If we have all information of the inode in memory and this
3715                  * is the only valid inode in the block, we need not read the
3716                  * block.
3717                  */
3718                 if (in_mem) {
3719                         struct buffer_head *bitmap_bh;
3720                         int i, start;
3721
3722                         start = inode_offset & ~(inodes_per_block - 1);
3723
3724                         /* Is the inode bitmap in cache? */
3725                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3726                         if (unlikely(!bitmap_bh))
3727                                 goto make_io;
3728
3729                         /*
3730                          * If the inode bitmap isn't in cache then the
3731                          * optimisation may end up performing two reads instead
3732                          * of one, so skip it.
3733                          */
3734                         if (!buffer_uptodate(bitmap_bh)) {
3735                                 brelse(bitmap_bh);
3736                                 goto make_io;
3737                         }
3738                         for (i = start; i < start + inodes_per_block; i++) {
3739                                 if (i == inode_offset)
3740                                         continue;
3741                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3742                                         break;
3743                         }
3744                         brelse(bitmap_bh);
3745                         if (i == start + inodes_per_block) {
3746                                 /* all other inodes are free, so skip I/O */
3747                                 memset(bh->b_data, 0, bh->b_size);
3748                                 set_buffer_uptodate(bh);
3749                                 unlock_buffer(bh);
3750                                 goto has_buffer;
3751                         }
3752                 }
3753
3754 make_io:
3755                 /*
3756                  * If we need to do any I/O, try to pre-readahead extra
3757                  * blocks from the inode table.
3758                  */
3759                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3760                         ext4_fsblk_t b, end, table;
3761                         unsigned num;
3762                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3763
3764                         table = ext4_inode_table(sb, gdp);
3765                         /* s_inode_readahead_blks is always a power of 2 */
3766                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3767                         if (table > b)
3768                                 b = table;
3769                         end = b + ra_blks;
3770                         num = EXT4_INODES_PER_GROUP(sb);
3771                         if (ext4_has_group_desc_csum(sb))
3772                                 num -= ext4_itable_unused_count(sb, gdp);
3773                         table += num / inodes_per_block;
3774                         if (end > table)
3775                                 end = table;
3776                         while (b <= end)
3777                                 sb_breadahead(sb, b++);
3778                 }
3779
3780                 /*
3781                  * There are other valid inodes in the buffer, this inode
3782                  * has in-inode xattrs, or we don't have this inode in memory.
3783                  * Read the block from disk.
3784                  */
3785                 trace_ext4_load_inode(inode);
3786                 get_bh(bh);
3787                 bh->b_end_io = end_buffer_read_sync;
3788                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3789                 wait_on_buffer(bh);
3790                 if (!buffer_uptodate(bh)) {
3791                         EXT4_ERROR_INODE_BLOCK(inode, block,
3792                                                "unable to read itable block");
3793                         brelse(bh);
3794                         return -EIO;
3795                 }
3796         }
3797 has_buffer:
3798         iloc->bh = bh;
3799         return 0;
3800 }
3801
3802 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3803 {
3804         /* We have all inode data except xattrs in memory here. */
3805         return __ext4_get_inode_loc(inode, iloc,
3806                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3807 }
3808
3809 void ext4_set_inode_flags(struct inode *inode)
3810 {
3811         unsigned int flags = EXT4_I(inode)->i_flags;
3812         unsigned int new_fl = 0;
3813
3814         if (flags & EXT4_SYNC_FL)
3815                 new_fl |= S_SYNC;
3816         if (flags & EXT4_APPEND_FL)
3817                 new_fl |= S_APPEND;
3818         if (flags & EXT4_IMMUTABLE_FL)
3819                 new_fl |= S_IMMUTABLE;
3820         if (flags & EXT4_NOATIME_FL)
3821                 new_fl |= S_NOATIME;
3822         if (flags & EXT4_DIRSYNC_FL)
3823                 new_fl |= S_DIRSYNC;
3824         inode_set_flags(inode, new_fl,
3825                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3826 }
3827
3828 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3829 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3830 {
3831         unsigned int vfs_fl;
3832         unsigned long old_fl, new_fl;
3833
3834         do {
3835                 vfs_fl = ei->vfs_inode.i_flags;
3836                 old_fl = ei->i_flags;
3837                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3838                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3839                                 EXT4_DIRSYNC_FL);
3840                 if (vfs_fl & S_SYNC)
3841                         new_fl |= EXT4_SYNC_FL;
3842                 if (vfs_fl & S_APPEND)
3843                         new_fl |= EXT4_APPEND_FL;
3844                 if (vfs_fl & S_IMMUTABLE)
3845                         new_fl |= EXT4_IMMUTABLE_FL;
3846                 if (vfs_fl & S_NOATIME)
3847                         new_fl |= EXT4_NOATIME_FL;
3848                 if (vfs_fl & S_DIRSYNC)
3849                         new_fl |= EXT4_DIRSYNC_FL;
3850         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3851 }
3852
3853 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3854                                   struct ext4_inode_info *ei)
3855 {
3856         blkcnt_t i_blocks ;
3857         struct inode *inode = &(ei->vfs_inode);
3858         struct super_block *sb = inode->i_sb;
3859
3860         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3861                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3862                 /* we are using combined 48 bit field */
3863                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3864                                         le32_to_cpu(raw_inode->i_blocks_lo);
3865                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3866                         /* i_blocks represent file system block size */
3867                         return i_blocks  << (inode->i_blkbits - 9);
3868                 } else {
3869                         return i_blocks;
3870                 }
3871         } else {
3872                 return le32_to_cpu(raw_inode->i_blocks_lo);
3873         }
3874 }
3875
3876 static inline void ext4_iget_extra_inode(struct inode *inode,
3877                                          struct ext4_inode *raw_inode,
3878                                          struct ext4_inode_info *ei)
3879 {
3880         __le32 *magic = (void *)raw_inode +
3881                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3882         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3883                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3884                 ext4_find_inline_data_nolock(inode);
3885         } else
3886                 EXT4_I(inode)->i_inline_off = 0;
3887 }
3888
3889 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3890 {
3891         struct ext4_iloc iloc;
3892         struct ext4_inode *raw_inode;
3893         struct ext4_inode_info *ei;
3894         struct inode *inode;
3895         journal_t *journal = EXT4_SB(sb)->s_journal;
3896         long ret;
3897         int block;
3898         uid_t i_uid;
3899         gid_t i_gid;
3900
3901         inode = iget_locked(sb, ino);
3902         if (!inode)
3903                 return ERR_PTR(-ENOMEM);
3904         if (!(inode->i_state & I_NEW))
3905                 return inode;
3906
3907         ei = EXT4_I(inode);
3908         iloc.bh = NULL;
3909
3910         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3911         if (ret < 0)
3912                 goto bad_inode;
3913         raw_inode = ext4_raw_inode(&iloc);
3914
3915         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3916                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3917                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3918                     EXT4_INODE_SIZE(inode->i_sb)) {
3919                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3920                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3921                                 EXT4_INODE_SIZE(inode->i_sb));
3922                         ret = -EIO;
3923                         goto bad_inode;
3924                 }
3925         } else
3926                 ei->i_extra_isize = 0;
3927
3928         /* Precompute checksum seed for inode metadata */
3929         if (ext4_has_metadata_csum(sb)) {
3930                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3931                 __u32 csum;
3932                 __le32 inum = cpu_to_le32(inode->i_ino);
3933                 __le32 gen = raw_inode->i_generation;
3934                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3935                                    sizeof(inum));
3936                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3937                                               sizeof(gen));
3938         }
3939
3940         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3941                 EXT4_ERROR_INODE(inode, "checksum invalid");
3942                 ret = -EIO;
3943                 goto bad_inode;
3944         }
3945
3946         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3947         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3948         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3949         if (!(test_opt(inode->i_sb, NO_UID32))) {
3950                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3951                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3952         }
3953         i_uid_write(inode, i_uid);
3954         i_gid_write(inode, i_gid);
3955         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3956
3957         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3958         ei->i_inline_off = 0;
3959         ei->i_dir_start_lookup = 0;
3960         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3961         /* We now have enough fields to check if the inode was active or not.
3962          * This is needed because nfsd might try to access dead inodes
3963          * the test is that same one that e2fsck uses
3964          * NeilBrown 1999oct15
3965          */
3966         if (inode->i_nlink == 0) {
3967                 if ((inode->i_mode == 0 ||
3968                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3969                     ino != EXT4_BOOT_LOADER_INO) {
3970                         /* this inode is deleted */
3971                         ret = -ESTALE;
3972                         goto bad_inode;
3973                 }
3974                 /* The only unlinked inodes we let through here have
3975                  * valid i_mode and are being read by the orphan
3976                  * recovery code: that's fine, we're about to complete
3977                  * the process of deleting those.
3978                  * OR it is the EXT4_BOOT_LOADER_INO which is
3979                  * not initialized on a new filesystem. */
3980         }
3981         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3982         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3983         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3984         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3985                 ei->i_file_acl |=
3986                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3987         inode->i_size = ext4_isize(raw_inode);
3988         ei->i_disksize = inode->i_size;
3989 #ifdef CONFIG_QUOTA
3990         ei->i_reserved_quota = 0;
3991 #endif
3992         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3993         ei->i_block_group = iloc.block_group;
3994         ei->i_last_alloc_group = ~0;
3995         /*
3996          * NOTE! The in-memory inode i_data array is in little-endian order
3997          * even on big-endian machines: we do NOT byteswap the block numbers!
3998          */
3999         for (block = 0; block < EXT4_N_BLOCKS; block++)
4000                 ei->i_data[block] = raw_inode->i_block[block];
4001         INIT_LIST_HEAD(&ei->i_orphan);
4002
4003         /*
4004          * Set transaction id's of transactions that have to be committed
4005          * to finish f[data]sync. We set them to currently running transaction
4006          * as we cannot be sure that the inode or some of its metadata isn't
4007          * part of the transaction - the inode could have been reclaimed and
4008          * now it is reread from disk.
4009          */
4010         if (journal) {
4011                 transaction_t *transaction;
4012                 tid_t tid;
4013
4014                 read_lock(&journal->j_state_lock);
4015                 if (journal->j_running_transaction)
4016                         transaction = journal->j_running_transaction;
4017                 else
4018                         transaction = journal->j_committing_transaction;
4019                 if (transaction)
4020                         tid = transaction->t_tid;
4021                 else
4022                         tid = journal->j_commit_sequence;
4023                 read_unlock(&journal->j_state_lock);
4024                 ei->i_sync_tid = tid;
4025                 ei->i_datasync_tid = tid;
4026         }
4027
4028         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4029                 if (ei->i_extra_isize == 0) {
4030                         /* The extra space is currently unused. Use it. */
4031                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4032                                             EXT4_GOOD_OLD_INODE_SIZE;
4033                 } else {
4034                         ext4_iget_extra_inode(inode, raw_inode, ei);
4035                 }
4036         }
4037
4038         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4039         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4040         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4041         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4042
4043         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4044                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4045                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4046                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4047                                 inode->i_version |=
4048                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4049                 }
4050         }
4051
4052         ret = 0;
4053         if (ei->i_file_acl &&
4054             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4055                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4056                                  ei->i_file_acl);
4057                 ret = -EIO;
4058                 goto bad_inode;
4059         } else if (!ext4_has_inline_data(inode)) {
4060                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4061                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4062                             (S_ISLNK(inode->i_mode) &&
4063                              !ext4_inode_is_fast_symlink(inode))))
4064                                 /* Validate extent which is part of inode */
4065                                 ret = ext4_ext_check_inode(inode);
4066                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4067                            (S_ISLNK(inode->i_mode) &&
4068                             !ext4_inode_is_fast_symlink(inode))) {
4069                         /* Validate block references which are part of inode */
4070                         ret = ext4_ind_check_inode(inode);
4071                 }
4072         }
4073         if (ret)
4074                 goto bad_inode;
4075
4076         if (S_ISREG(inode->i_mode)) {
4077                 inode->i_op = &ext4_file_inode_operations;
4078                 inode->i_fop = &ext4_file_operations;
4079                 ext4_set_aops(inode);
4080         } else if (S_ISDIR(inode->i_mode)) {
4081                 inode->i_op = &ext4_dir_inode_operations;
4082                 inode->i_fop = &ext4_dir_operations;
4083         } else if (S_ISLNK(inode->i_mode)) {
4084                 if (ext4_inode_is_fast_symlink(inode)) {
4085                         inode->i_op = &ext4_fast_symlink_inode_operations;
4086                         nd_terminate_link(ei->i_data, inode->i_size,
4087                                 sizeof(ei->i_data) - 1);
4088                 } else {
4089                         inode->i_op = &ext4_symlink_inode_operations;
4090                         ext4_set_aops(inode);
4091                 }
4092         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4093               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4094                 inode->i_op = &ext4_special_inode_operations;
4095                 if (raw_inode->i_block[0])
4096                         init_special_inode(inode, inode->i_mode,
4097                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4098                 else
4099                         init_special_inode(inode, inode->i_mode,
4100                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4101         } else if (ino == EXT4_BOOT_LOADER_INO) {
4102                 make_bad_inode(inode);
4103         } else {
4104                 ret = -EIO;
4105                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4106                 goto bad_inode;
4107         }
4108         brelse(iloc.bh);
4109         ext4_set_inode_flags(inode);
4110         unlock_new_inode(inode);
4111         return inode;
4112
4113 bad_inode:
4114         brelse(iloc.bh);
4115         iget_failed(inode);
4116         return ERR_PTR(ret);
4117 }
4118
4119 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4120 {
4121         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4122                 return ERR_PTR(-EIO);
4123         return ext4_iget(sb, ino);
4124 }
4125
4126 static int ext4_inode_blocks_set(handle_t *handle,
4127                                 struct ext4_inode *raw_inode,
4128                                 struct ext4_inode_info *ei)
4129 {
4130         struct inode *inode = &(ei->vfs_inode);
4131         u64 i_blocks = inode->i_blocks;
4132         struct super_block *sb = inode->i_sb;
4133
4134         if (i_blocks <= ~0U) {
4135                 /*
4136                  * i_blocks can be represented in a 32 bit variable
4137                  * as multiple of 512 bytes
4138                  */
4139                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4140                 raw_inode->i_blocks_high = 0;
4141                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4142                 return 0;
4143         }
4144         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4145                 return -EFBIG;
4146
4147         if (i_blocks <= 0xffffffffffffULL) {
4148                 /*
4149                  * i_blocks can be represented in a 48 bit variable
4150                  * as multiple of 512 bytes
4151                  */
4152                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4153                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4154                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4155         } else {
4156                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4157                 /* i_block is stored in file system block size */
4158                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4159                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4160                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4161         }
4162         return 0;
4163 }
4164
4165 /*
4166  * Post the struct inode info into an on-disk inode location in the
4167  * buffer-cache.  This gobbles the caller's reference to the
4168  * buffer_head in the inode location struct.
4169  *
4170  * The caller must have write access to iloc->bh.
4171  */
4172 static int ext4_do_update_inode(handle_t *handle,
4173                                 struct inode *inode,
4174                                 struct ext4_iloc *iloc)
4175 {
4176         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4177         struct ext4_inode_info *ei = EXT4_I(inode);
4178         struct buffer_head *bh = iloc->bh;
4179         struct super_block *sb = inode->i_sb;
4180         int err = 0, rc, block;
4181         int need_datasync = 0, set_large_file = 0;
4182         uid_t i_uid;
4183         gid_t i_gid;
4184
4185         spin_lock(&ei->i_raw_lock);
4186
4187         /* For fields not tracked in the in-memory inode,
4188          * initialise them to zero for new inodes. */
4189         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4190                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4191
4192         ext4_get_inode_flags(ei);
4193         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4194         i_uid = i_uid_read(inode);
4195         i_gid = i_gid_read(inode);
4196         if (!(test_opt(inode->i_sb, NO_UID32))) {
4197                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4198                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4199 /*
4200  * Fix up interoperability with old kernels. Otherwise, old inodes get
4201  * re-used with the upper 16 bits of the uid/gid intact
4202  */
4203                 if (!ei->i_dtime) {
4204                         raw_inode->i_uid_high =
4205                                 cpu_to_le16(high_16_bits(i_uid));
4206                         raw_inode->i_gid_high =
4207                                 cpu_to_le16(high_16_bits(i_gid));
4208                 } else {
4209                         raw_inode->i_uid_high = 0;
4210                         raw_inode->i_gid_high = 0;
4211                 }
4212         } else {
4213                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4214                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4215                 raw_inode->i_uid_high = 0;
4216                 raw_inode->i_gid_high = 0;
4217         }
4218         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4219
4220         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4221         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4222         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4223         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4224
4225         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4226         if (err) {
4227                 spin_unlock(&ei->i_raw_lock);
4228                 goto out_brelse;
4229         }
4230         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4231         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4232         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4233                 raw_inode->i_file_acl_high =
4234                         cpu_to_le16(ei->i_file_acl >> 32);
4235         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4236         if (ei->i_disksize != ext4_isize(raw_inode)) {
4237                 ext4_isize_set(raw_inode, ei->i_disksize);
4238                 need_datasync = 1;
4239         }
4240         if (ei->i_disksize > 0x7fffffffULL) {
4241                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4242                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4243                                 EXT4_SB(sb)->s_es->s_rev_level ==
4244                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4245                         set_large_file = 1;
4246         }
4247         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4248         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4249                 if (old_valid_dev(inode->i_rdev)) {
4250                         raw_inode->i_block[0] =
4251                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4252                         raw_inode->i_block[1] = 0;
4253                 } else {
4254                         raw_inode->i_block[0] = 0;
4255                         raw_inode->i_block[1] =
4256                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4257                         raw_inode->i_block[2] = 0;
4258                 }
4259         } else if (!ext4_has_inline_data(inode)) {
4260                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4261                         raw_inode->i_block[block] = ei->i_data[block];
4262         }
4263
4264         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4265                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4266                 if (ei->i_extra_isize) {
4267                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4268                                 raw_inode->i_version_hi =
4269                                         cpu_to_le32(inode->i_version >> 32);
4270                         raw_inode->i_extra_isize =
4271                                 cpu_to_le16(ei->i_extra_isize);
4272                 }
4273         }
4274
4275         ext4_inode_csum_set(inode, raw_inode, ei);
4276
4277         spin_unlock(&ei->i_raw_lock);
4278
4279         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4280         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4281         if (!err)
4282                 err = rc;
4283         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4284         if (set_large_file) {
4285                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4286                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4287                 if (err)
4288                         goto out_brelse;
4289                 ext4_update_dynamic_rev(sb);
4290                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4291                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4292                 ext4_handle_sync(handle);
4293                 err = ext4_handle_dirty_super(handle, sb);
4294         }
4295         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4296 out_brelse:
4297         brelse(bh);
4298         ext4_std_error(inode->i_sb, err);
4299         return err;
4300 }
4301
4302 /*
4303  * ext4_write_inode()
4304  *
4305  * We are called from a few places:
4306  *
4307  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4308  *   Here, there will be no transaction running. We wait for any running
4309  *   transaction to commit.
4310  *
4311  * - Within flush work (sys_sync(), kupdate and such).
4312  *   We wait on commit, if told to.
4313  *
4314  * - Within iput_final() -> write_inode_now()
4315  *   We wait on commit, if told to.
4316  *
4317  * In all cases it is actually safe for us to return without doing anything,
4318  * because the inode has been copied into a raw inode buffer in
4319  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4320  * writeback.
4321  *
4322  * Note that we are absolutely dependent upon all inode dirtiers doing the
4323  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4324  * which we are interested.
4325  *
4326  * It would be a bug for them to not do this.  The code:
4327  *
4328  *      mark_inode_dirty(inode)
4329  *      stuff();
4330  *      inode->i_size = expr;
4331  *
4332  * is in error because write_inode() could occur while `stuff()' is running,
4333  * and the new i_size will be lost.  Plus the inode will no longer be on the
4334  * superblock's dirty inode list.
4335  */
4336 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4337 {
4338         int err;
4339
4340         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4341                 return 0;
4342
4343         if (EXT4_SB(inode->i_sb)->s_journal) {
4344                 if (ext4_journal_current_handle()) {
4345                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4346                         dump_stack();
4347                         return -EIO;
4348                 }
4349
4350                 /*
4351                  * No need to force transaction in WB_SYNC_NONE mode. Also
4352                  * ext4_sync_fs() will force the commit after everything is
4353                  * written.
4354                  */
4355                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4356                         return 0;
4357
4358                 err = ext4_force_commit(inode->i_sb);
4359         } else {
4360                 struct ext4_iloc iloc;
4361
4362                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4363                 if (err)
4364                         return err;
4365                 /*
4366                  * sync(2) will flush the whole buffer cache. No need to do
4367                  * it here separately for each inode.
4368                  */
4369                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4370                         sync_dirty_buffer(iloc.bh);
4371                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4372                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4373                                          "IO error syncing inode");
4374                         err = -EIO;
4375                 }
4376                 brelse(iloc.bh);
4377         }
4378         return err;
4379 }
4380
4381 /*
4382  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4383  * buffers that are attached to a page stradding i_size and are undergoing
4384  * commit. In that case we have to wait for commit to finish and try again.
4385  */
4386 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4387 {
4388         struct page *page;
4389         unsigned offset;
4390         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4391         tid_t commit_tid = 0;
4392         int ret;
4393
4394         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4395         /*
4396          * All buffers in the last page remain valid? Then there's nothing to
4397          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4398          * blocksize case
4399          */
4400         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4401                 return;
4402         while (1) {
4403                 page = find_lock_page(inode->i_mapping,
4404                                       inode->i_size >> PAGE_CACHE_SHIFT);
4405                 if (!page)
4406                         return;
4407                 ret = __ext4_journalled_invalidatepage(page, offset,
4408                                                 PAGE_CACHE_SIZE - offset);
4409                 unlock_page(page);
4410                 page_cache_release(page);
4411                 if (ret != -EBUSY)
4412                         return;
4413                 commit_tid = 0;
4414                 read_lock(&journal->j_state_lock);
4415                 if (journal->j_committing_transaction)
4416                         commit_tid = journal->j_committing_transaction->t_tid;
4417                 read_unlock(&journal->j_state_lock);
4418                 if (commit_tid)
4419                         jbd2_log_wait_commit(journal, commit_tid);
4420         }
4421 }
4422
4423 /*
4424  * ext4_setattr()
4425  *
4426  * Called from notify_change.
4427  *
4428  * We want to trap VFS attempts to truncate the file as soon as
4429  * possible.  In particular, we want to make sure that when the VFS
4430  * shrinks i_size, we put the inode on the orphan list and modify
4431  * i_disksize immediately, so that during the subsequent flushing of
4432  * dirty pages and freeing of disk blocks, we can guarantee that any
4433  * commit will leave the blocks being flushed in an unused state on
4434  * disk.  (On recovery, the inode will get truncated and the blocks will
4435  * be freed, so we have a strong guarantee that no future commit will
4436  * leave these blocks visible to the user.)
4437  *
4438  * Another thing we have to assure is that if we are in ordered mode
4439  * and inode is still attached to the committing transaction, we must
4440  * we start writeout of all the dirty pages which are being truncated.
4441  * This way we are sure that all the data written in the previous
4442  * transaction are already on disk (truncate waits for pages under
4443  * writeback).
4444  *
4445  * Called with inode->i_mutex down.
4446  */
4447 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4448 {
4449         struct inode *inode = dentry->d_inode;
4450         int error, rc = 0;
4451         int orphan = 0;
4452         const unsigned int ia_valid = attr->ia_valid;
4453
4454         error = inode_change_ok(inode, attr);
4455         if (error)
4456                 return error;
4457
4458         if (is_quota_modification(inode, attr))
4459                 dquot_initialize(inode);
4460         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4461             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4462                 handle_t *handle;
4463
4464                 /* (user+group)*(old+new) structure, inode write (sb,
4465                  * inode block, ? - but truncate inode update has it) */
4466                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4467                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4468                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4469                 if (IS_ERR(handle)) {
4470                         error = PTR_ERR(handle);
4471                         goto err_out;
4472                 }
4473                 error = dquot_transfer(inode, attr);
4474                 if (error) {
4475                         ext4_journal_stop(handle);
4476                         return error;
4477                 }
4478                 /* Update corresponding info in inode so that everything is in
4479                  * one transaction */
4480                 if (attr->ia_valid & ATTR_UID)
4481                         inode->i_uid = attr->ia_uid;
4482                 if (attr->ia_valid & ATTR_GID)
4483                         inode->i_gid = attr->ia_gid;
4484                 error = ext4_mark_inode_dirty(handle, inode);
4485                 ext4_journal_stop(handle);
4486         }
4487
4488         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4489                 handle_t *handle;
4490
4491                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4492                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4493
4494                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4495                                 return -EFBIG;
4496                 }
4497
4498                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4499                         inode_inc_iversion(inode);
4500
4501                 if (S_ISREG(inode->i_mode) &&
4502                     (attr->ia_size < inode->i_size)) {
4503                         if (ext4_should_order_data(inode)) {
4504                                 error = ext4_begin_ordered_truncate(inode,
4505                                                             attr->ia_size);
4506                                 if (error)
4507                                         goto err_out;
4508                         }
4509                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4510                         if (IS_ERR(handle)) {
4511                                 error = PTR_ERR(handle);
4512                                 goto err_out;
4513                         }
4514                         if (ext4_handle_valid(handle)) {
4515                                 error = ext4_orphan_add(handle, inode);
4516                                 orphan = 1;
4517                         }
4518                         down_write(&EXT4_I(inode)->i_data_sem);
4519                         EXT4_I(inode)->i_disksize = attr->ia_size;
4520                         rc = ext4_mark_inode_dirty(handle, inode);
4521                         if (!error)
4522                                 error = rc;
4523                         /*
4524                          * We have to update i_size under i_data_sem together
4525                          * with i_disksize to avoid races with writeback code
4526                          * running ext4_wb_update_i_disksize().
4527                          */
4528                         if (!error)
4529                                 i_size_write(inode, attr->ia_size);
4530                         up_write(&EXT4_I(inode)->i_data_sem);
4531                         ext4_journal_stop(handle);
4532                         if (error) {
4533                                 ext4_orphan_del(NULL, inode);
4534                                 goto err_out;
4535                         }
4536                 } else {
4537                         loff_t oldsize = inode->i_size;
4538
4539                         i_size_write(inode, attr->ia_size);
4540                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4541                 }
4542
4543                 /*
4544                  * Blocks are going to be removed from the inode. Wait
4545                  * for dio in flight.  Temporarily disable
4546                  * dioread_nolock to prevent livelock.
4547                  */
4548                 if (orphan) {
4549                         if (!ext4_should_journal_data(inode)) {
4550                                 ext4_inode_block_unlocked_dio(inode);
4551                                 inode_dio_wait(inode);
4552                                 ext4_inode_resume_unlocked_dio(inode);
4553                         } else
4554                                 ext4_wait_for_tail_page_commit(inode);
4555                 }
4556                 /*
4557                  * Truncate pagecache after we've waited for commit
4558                  * in data=journal mode to make pages freeable.
4559                  */
4560                         truncate_pagecache(inode, inode->i_size);
4561         }
4562         /*
4563          * We want to call ext4_truncate() even if attr->ia_size ==
4564          * inode->i_size for cases like truncation of fallocated space
4565          */
4566         if (attr->ia_valid & ATTR_SIZE)
4567                 ext4_truncate(inode);
4568
4569         if (!rc) {
4570                 setattr_copy(inode, attr);
4571                 mark_inode_dirty(inode);
4572         }
4573
4574         /*
4575          * If the call to ext4_truncate failed to get a transaction handle at
4576          * all, we need to clean up the in-core orphan list manually.
4577          */
4578         if (orphan && inode->i_nlink)
4579                 ext4_orphan_del(NULL, inode);
4580
4581         if (!rc && (ia_valid & ATTR_MODE))
4582                 rc = posix_acl_chmod(inode, inode->i_mode);
4583
4584 err_out:
4585         ext4_std_error(inode->i_sb, error);
4586         if (!error)
4587                 error = rc;
4588         return error;
4589 }
4590
4591 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4592                  struct kstat *stat)
4593 {
4594         struct inode *inode;
4595         unsigned long long delalloc_blocks;
4596
4597         inode = dentry->d_inode;
4598         generic_fillattr(inode, stat);
4599
4600         /*
4601          * If there is inline data in the inode, the inode will normally not
4602          * have data blocks allocated (it may have an external xattr block).
4603          * Report at least one sector for such files, so tools like tar, rsync,
4604          * others doen't incorrectly think the file is completely sparse.
4605          */
4606         if (unlikely(ext4_has_inline_data(inode)))
4607                 stat->blocks += (stat->size + 511) >> 9;
4608
4609         /*
4610          * We can't update i_blocks if the block allocation is delayed
4611          * otherwise in the case of system crash before the real block
4612          * allocation is done, we will have i_blocks inconsistent with
4613          * on-disk file blocks.
4614          * We always keep i_blocks updated together with real
4615          * allocation. But to not confuse with user, stat
4616          * will return the blocks that include the delayed allocation
4617          * blocks for this file.
4618          */
4619         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4620                                    EXT4_I(inode)->i_reserved_data_blocks);
4621         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4622         return 0;
4623 }
4624
4625 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4626                                    int pextents)
4627 {
4628         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4629                 return ext4_ind_trans_blocks(inode, lblocks);
4630         return ext4_ext_index_trans_blocks(inode, pextents);
4631 }
4632
4633 /*
4634  * Account for index blocks, block groups bitmaps and block group
4635  * descriptor blocks if modify datablocks and index blocks
4636  * worse case, the indexs blocks spread over different block groups
4637  *
4638  * If datablocks are discontiguous, they are possible to spread over
4639  * different block groups too. If they are contiguous, with flexbg,
4640  * they could still across block group boundary.
4641  *
4642  * Also account for superblock, inode, quota and xattr blocks
4643  */
4644 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4645                                   int pextents)
4646 {
4647         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4648         int gdpblocks;
4649         int idxblocks;
4650         int ret = 0;
4651
4652         /*
4653          * How many index blocks need to touch to map @lblocks logical blocks
4654          * to @pextents physical extents?
4655          */
4656         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4657
4658         ret = idxblocks;
4659
4660         /*
4661          * Now let's see how many group bitmaps and group descriptors need
4662          * to account
4663          */
4664         groups = idxblocks + pextents;
4665         gdpblocks = groups;
4666         if (groups > ngroups)
4667                 groups = ngroups;
4668         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4669                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4670
4671         /* bitmaps and block group descriptor blocks */
4672         ret += groups + gdpblocks;
4673
4674         /* Blocks for super block, inode, quota and xattr blocks */
4675         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4676
4677         return ret;
4678 }
4679
4680 /*
4681  * Calculate the total number of credits to reserve to fit
4682  * the modification of a single pages into a single transaction,
4683  * which may include multiple chunks of block allocations.
4684  *
4685  * This could be called via ext4_write_begin()
4686  *
4687  * We need to consider the worse case, when
4688  * one new block per extent.
4689  */
4690 int ext4_writepage_trans_blocks(struct inode *inode)
4691 {
4692         int bpp = ext4_journal_blocks_per_page(inode);
4693         int ret;
4694
4695         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4696
4697         /* Account for data blocks for journalled mode */
4698         if (ext4_should_journal_data(inode))
4699                 ret += bpp;
4700         return ret;
4701 }
4702
4703 /*
4704  * Calculate the journal credits for a chunk of data modification.
4705  *
4706  * This is called from DIO, fallocate or whoever calling
4707  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4708  *
4709  * journal buffers for data blocks are not included here, as DIO
4710  * and fallocate do no need to journal data buffers.
4711  */
4712 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4713 {
4714         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4715 }
4716
4717 /*
4718  * The caller must have previously called ext4_reserve_inode_write().
4719  * Give this, we know that the caller already has write access to iloc->bh.
4720  */
4721 int ext4_mark_iloc_dirty(handle_t *handle,
4722                          struct inode *inode, struct ext4_iloc *iloc)
4723 {
4724         int err = 0;
4725
4726         if (IS_I_VERSION(inode))
4727                 inode_inc_iversion(inode);
4728
4729         /* the do_update_inode consumes one bh->b_count */
4730         get_bh(iloc->bh);
4731
4732         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4733         err = ext4_do_update_inode(handle, inode, iloc);
4734         put_bh(iloc->bh);
4735         return err;
4736 }
4737
4738 /*
4739  * On success, We end up with an outstanding reference count against
4740  * iloc->bh.  This _must_ be cleaned up later.
4741  */
4742
4743 int
4744 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4745                          struct ext4_iloc *iloc)
4746 {
4747         int err;
4748
4749         err = ext4_get_inode_loc(inode, iloc);
4750         if (!err) {
4751                 BUFFER_TRACE(iloc->bh, "get_write_access");
4752                 err = ext4_journal_get_write_access(handle, iloc->bh);
4753                 if (err) {
4754                         brelse(iloc->bh);
4755                         iloc->bh = NULL;
4756                 }
4757         }
4758         ext4_std_error(inode->i_sb, err);
4759         return err;
4760 }
4761
4762 /*
4763  * Expand an inode by new_extra_isize bytes.
4764  * Returns 0 on success or negative error number on failure.
4765  */
4766 static int ext4_expand_extra_isize(struct inode *inode,
4767                                    unsigned int new_extra_isize,
4768                                    struct ext4_iloc iloc,
4769                                    handle_t *handle)
4770 {
4771         struct ext4_inode *raw_inode;
4772         struct ext4_xattr_ibody_header *header;
4773
4774         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4775                 return 0;
4776
4777         raw_inode = ext4_raw_inode(&iloc);
4778
4779         header = IHDR(inode, raw_inode);
4780
4781         /* No extended attributes present */
4782         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4783             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4784                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4785                         new_extra_isize);
4786                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4787                 return 0;
4788         }
4789
4790         /* try to expand with EAs present */
4791         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4792                                           raw_inode, handle);
4793 }
4794
4795 /*
4796  * What we do here is to mark the in-core inode as clean with respect to inode
4797  * dirtiness (it may still be data-dirty).
4798  * This means that the in-core inode may be reaped by prune_icache
4799  * without having to perform any I/O.  This is a very good thing,
4800  * because *any* task may call prune_icache - even ones which
4801  * have a transaction open against a different journal.
4802  *
4803  * Is this cheating?  Not really.  Sure, we haven't written the
4804  * inode out, but prune_icache isn't a user-visible syncing function.
4805  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4806  * we start and wait on commits.
4807  */
4808 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4809 {
4810         struct ext4_iloc iloc;
4811         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4812         static unsigned int mnt_count;
4813         int err, ret;
4814
4815         might_sleep();
4816         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4817         err = ext4_reserve_inode_write(handle, inode, &iloc);
4818         if (ext4_handle_valid(handle) &&
4819             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4820             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4821                 /*
4822                  * We need extra buffer credits since we may write into EA block
4823                  * with this same handle. If journal_extend fails, then it will
4824                  * only result in a minor loss of functionality for that inode.
4825                  * If this is felt to be critical, then e2fsck should be run to
4826                  * force a large enough s_min_extra_isize.
4827                  */
4828                 if ((jbd2_journal_extend(handle,
4829                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4830                         ret = ext4_expand_extra_isize(inode,
4831                                                       sbi->s_want_extra_isize,
4832                                                       iloc, handle);
4833                         if (ret) {
4834                                 ext4_set_inode_state(inode,
4835                                                      EXT4_STATE_NO_EXPAND);
4836                                 if (mnt_count !=
4837                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4838                                         ext4_warning(inode->i_sb,
4839                                         "Unable to expand inode %lu. Delete"
4840                                         " some EAs or run e2fsck.",
4841                                         inode->i_ino);
4842                                         mnt_count =
4843                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4844                                 }
4845                         }
4846                 }
4847         }
4848         if (!err)
4849                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4850         return err;
4851 }
4852
4853 /*
4854  * ext4_dirty_inode() is called from __mark_inode_dirty()
4855  *
4856  * We're really interested in the case where a file is being extended.
4857  * i_size has been changed by generic_commit_write() and we thus need
4858  * to include the updated inode in the current transaction.
4859  *
4860  * Also, dquot_alloc_block() will always dirty the inode when blocks
4861  * are allocated to the file.
4862  *
4863  * If the inode is marked synchronous, we don't honour that here - doing
4864  * so would cause a commit on atime updates, which we don't bother doing.
4865  * We handle synchronous inodes at the highest possible level.
4866  */
4867 void ext4_dirty_inode(struct inode *inode, int flags)
4868 {
4869         handle_t *handle;
4870
4871         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4872         if (IS_ERR(handle))
4873                 goto out;
4874
4875         ext4_mark_inode_dirty(handle, inode);
4876
4877         ext4_journal_stop(handle);
4878 out:
4879         return;
4880 }
4881
4882 #if 0
4883 /*
4884  * Bind an inode's backing buffer_head into this transaction, to prevent
4885  * it from being flushed to disk early.  Unlike
4886  * ext4_reserve_inode_write, this leaves behind no bh reference and
4887  * returns no iloc structure, so the caller needs to repeat the iloc
4888  * lookup to mark the inode dirty later.
4889  */
4890 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4891 {
4892         struct ext4_iloc iloc;
4893
4894         int err = 0;
4895         if (handle) {
4896                 err = ext4_get_inode_loc(inode, &iloc);
4897                 if (!err) {
4898                         BUFFER_TRACE(iloc.bh, "get_write_access");
4899                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4900                         if (!err)
4901                                 err = ext4_handle_dirty_metadata(handle,
4902                                                                  NULL,
4903                                                                  iloc.bh);
4904                         brelse(iloc.bh);
4905                 }
4906         }
4907         ext4_std_error(inode->i_sb, err);
4908         return err;
4909 }
4910 #endif
4911
4912 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4913 {
4914         journal_t *journal;
4915         handle_t *handle;
4916         int err;
4917
4918         /*
4919          * We have to be very careful here: changing a data block's
4920          * journaling status dynamically is dangerous.  If we write a
4921          * data block to the journal, change the status and then delete
4922          * that block, we risk forgetting to revoke the old log record
4923          * from the journal and so a subsequent replay can corrupt data.
4924          * So, first we make sure that the journal is empty and that
4925          * nobody is changing anything.
4926          */
4927
4928         journal = EXT4_JOURNAL(inode);
4929         if (!journal)
4930                 return 0;
4931         if (is_journal_aborted(journal))
4932                 return -EROFS;
4933         /* We have to allocate physical blocks for delalloc blocks
4934          * before flushing journal. otherwise delalloc blocks can not
4935          * be allocated any more. even more truncate on delalloc blocks
4936          * could trigger BUG by flushing delalloc blocks in journal.
4937          * There is no delalloc block in non-journal data mode.
4938          */
4939         if (val && test_opt(inode->i_sb, DELALLOC)) {
4940                 err = ext4_alloc_da_blocks(inode);
4941                 if (err < 0)
4942                         return err;
4943         }
4944
4945         /* Wait for all existing dio workers */
4946         ext4_inode_block_unlocked_dio(inode);
4947         inode_dio_wait(inode);
4948
4949         jbd2_journal_lock_updates(journal);
4950
4951         /*
4952          * OK, there are no updates running now, and all cached data is
4953          * synced to disk.  We are now in a completely consistent state
4954          * which doesn't have anything in the journal, and we know that
4955          * no filesystem updates are running, so it is safe to modify
4956          * the inode's in-core data-journaling state flag now.
4957          */
4958
4959         if (val)
4960                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4961         else {
4962                 err = jbd2_journal_flush(journal);
4963                 if (err < 0) {
4964                         jbd2_journal_unlock_updates(journal);
4965                         ext4_inode_resume_unlocked_dio(inode);
4966                         return err;
4967                 }
4968                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4969         }
4970         ext4_set_aops(inode);
4971
4972         jbd2_journal_unlock_updates(journal);
4973         ext4_inode_resume_unlocked_dio(inode);
4974
4975         /* Finally we can mark the inode as dirty. */
4976
4977         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4978         if (IS_ERR(handle))
4979                 return PTR_ERR(handle);
4980
4981         err = ext4_mark_inode_dirty(handle, inode);
4982         ext4_handle_sync(handle);
4983         ext4_journal_stop(handle);
4984         ext4_std_error(inode->i_sb, err);
4985
4986         return err;
4987 }
4988
4989 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4990 {
4991         return !buffer_mapped(bh);
4992 }
4993
4994 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4995 {
4996         struct page *page = vmf->page;
4997         loff_t size;
4998         unsigned long len;
4999         int ret;
5000         struct file *file = vma->vm_file;
5001         struct inode *inode = file_inode(file);
5002         struct address_space *mapping = inode->i_mapping;
5003         handle_t *handle;
5004         get_block_t *get_block;
5005         int retries = 0;
5006
5007         sb_start_pagefault(inode->i_sb);
5008         file_update_time(vma->vm_file);
5009         /* Delalloc case is easy... */
5010         if (test_opt(inode->i_sb, DELALLOC) &&
5011             !ext4_should_journal_data(inode) &&
5012             !ext4_nonda_switch(inode->i_sb)) {
5013                 do {
5014                         ret = __block_page_mkwrite(vma, vmf,
5015                                                    ext4_da_get_block_prep);
5016                 } while (ret == -ENOSPC &&
5017                        ext4_should_retry_alloc(inode->i_sb, &retries));
5018                 goto out_ret;
5019         }
5020
5021         lock_page(page);
5022         size = i_size_read(inode);
5023         /* Page got truncated from under us? */
5024         if (page->mapping != mapping || page_offset(page) > size) {
5025                 unlock_page(page);
5026                 ret = VM_FAULT_NOPAGE;
5027                 goto out;
5028         }
5029
5030         if (page->index == size >> PAGE_CACHE_SHIFT)
5031                 len = size & ~PAGE_CACHE_MASK;
5032         else
5033                 len = PAGE_CACHE_SIZE;
5034         /*
5035          * Return if we have all the buffers mapped. This avoids the need to do
5036          * journal_start/journal_stop which can block and take a long time
5037          */
5038         if (page_has_buffers(page)) {
5039                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5040                                             0, len, NULL,
5041                                             ext4_bh_unmapped)) {
5042                         /* Wait so that we don't change page under IO */
5043                         wait_for_stable_page(page);
5044                         ret = VM_FAULT_LOCKED;
5045                         goto out;
5046                 }
5047         }
5048         unlock_page(page);
5049         /* OK, we need to fill the hole... */
5050         if (ext4_should_dioread_nolock(inode))
5051                 get_block = ext4_get_block_write;
5052         else
5053                 get_block = ext4_get_block;
5054 retry_alloc:
5055         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5056                                     ext4_writepage_trans_blocks(inode));
5057         if (IS_ERR(handle)) {
5058                 ret = VM_FAULT_SIGBUS;
5059                 goto out;
5060         }
5061         ret = __block_page_mkwrite(vma, vmf, get_block);
5062         if (!ret && ext4_should_journal_data(inode)) {
5063                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5064                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5065                         unlock_page(page);
5066                         ret = VM_FAULT_SIGBUS;
5067                         ext4_journal_stop(handle);
5068                         goto out;
5069                 }
5070                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5071         }
5072         ext4_journal_stop(handle);
5073         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5074                 goto retry_alloc;
5075 out_ret:
5076         ret = block_page_mkwrite_return(ret);
5077 out:
5078         sb_end_pagefault(inode->i_sb);
5079         return ret;
5080 }