f2fs: fix leak of orphan inode objects
[cascardo/linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = f2fs_grab_cache_page(mapping, index, false);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META, true);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
51                                                         bool is_meta)
52 {
53         struct address_space *mapping = META_MAPPING(sbi);
54         struct page *page;
55         struct f2fs_io_info fio = {
56                 .sbi = sbi,
57                 .type = META,
58                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
59                 .old_blkaddr = index,
60                 .new_blkaddr = index,
61                 .encrypted_page = NULL,
62         };
63
64         if (unlikely(!is_meta))
65                 fio.rw &= ~REQ_META;
66 repeat:
67         page = f2fs_grab_cache_page(mapping, index, false);
68         if (!page) {
69                 cond_resched();
70                 goto repeat;
71         }
72         if (PageUptodate(page))
73                 goto out;
74
75         fio.page = page;
76
77         if (f2fs_submit_page_bio(&fio)) {
78                 f2fs_put_page(page, 1);
79                 goto repeat;
80         }
81
82         lock_page(page);
83         if (unlikely(page->mapping != mapping)) {
84                 f2fs_put_page(page, 1);
85                 goto repeat;
86         }
87
88         /*
89          * if there is any IO error when accessing device, make our filesystem
90          * readonly and make sure do not write checkpoint with non-uptodate
91          * meta page.
92          */
93         if (unlikely(!PageUptodate(page)))
94                 f2fs_stop_checkpoint(sbi);
95 out:
96         return page;
97 }
98
99 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
100 {
101         return __get_meta_page(sbi, index, true);
102 }
103
104 /* for POR only */
105 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
106 {
107         return __get_meta_page(sbi, index, false);
108 }
109
110 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
111 {
112         switch (type) {
113         case META_NAT:
114                 break;
115         case META_SIT:
116                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
117                         return false;
118                 break;
119         case META_SSA:
120                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
121                         blkaddr < SM_I(sbi)->ssa_blkaddr))
122                         return false;
123                 break;
124         case META_CP:
125                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
126                         blkaddr < __start_cp_addr(sbi)))
127                         return false;
128                 break;
129         case META_POR:
130                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
131                         blkaddr < MAIN_BLKADDR(sbi)))
132                         return false;
133                 break;
134         default:
135                 BUG();
136         }
137
138         return true;
139 }
140
141 /*
142  * Readahead CP/NAT/SIT/SSA pages
143  */
144 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
145                                                         int type, bool sync)
146 {
147         struct page *page;
148         block_t blkno = start;
149         struct f2fs_io_info fio = {
150                 .sbi = sbi,
151                 .type = META,
152                 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
153                 .encrypted_page = NULL,
154         };
155         struct blk_plug plug;
156
157         if (unlikely(type == META_POR))
158                 fio.rw &= ~REQ_META;
159
160         blk_start_plug(&plug);
161         for (; nrpages-- > 0; blkno++) {
162
163                 if (!is_valid_blkaddr(sbi, blkno, type))
164                         goto out;
165
166                 switch (type) {
167                 case META_NAT:
168                         if (unlikely(blkno >=
169                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
170                                 blkno = 0;
171                         /* get nat block addr */
172                         fio.new_blkaddr = current_nat_addr(sbi,
173                                         blkno * NAT_ENTRY_PER_BLOCK);
174                         break;
175                 case META_SIT:
176                         /* get sit block addr */
177                         fio.new_blkaddr = current_sit_addr(sbi,
178                                         blkno * SIT_ENTRY_PER_BLOCK);
179                         break;
180                 case META_SSA:
181                 case META_CP:
182                 case META_POR:
183                         fio.new_blkaddr = blkno;
184                         break;
185                 default:
186                         BUG();
187                 }
188
189                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
190                                                 fio.new_blkaddr, false);
191                 if (!page)
192                         continue;
193                 if (PageUptodate(page)) {
194                         f2fs_put_page(page, 1);
195                         continue;
196                 }
197
198                 fio.page = page;
199                 fio.old_blkaddr = fio.new_blkaddr;
200                 f2fs_submit_page_mbio(&fio);
201                 f2fs_put_page(page, 0);
202         }
203 out:
204         f2fs_submit_merged_bio(sbi, META, READ);
205         blk_finish_plug(&plug);
206         return blkno - start;
207 }
208
209 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
210 {
211         struct page *page;
212         bool readahead = false;
213
214         page = find_get_page(META_MAPPING(sbi), index);
215         if (!page || !PageUptodate(page))
216                 readahead = true;
217         f2fs_put_page(page, 0);
218
219         if (readahead)
220                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
221 }
222
223 static int f2fs_write_meta_page(struct page *page,
224                                 struct writeback_control *wbc)
225 {
226         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
227
228         trace_f2fs_writepage(page, META);
229
230         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
231                 goto redirty_out;
232         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
233                 goto redirty_out;
234         if (unlikely(f2fs_cp_error(sbi)))
235                 goto redirty_out;
236
237         write_meta_page(sbi, page);
238         dec_page_count(sbi, F2FS_DIRTY_META);
239
240         if (wbc->for_reclaim)
241                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
242
243         unlock_page(page);
244
245         if (unlikely(f2fs_cp_error(sbi)))
246                 f2fs_submit_merged_bio(sbi, META, WRITE);
247
248         return 0;
249
250 redirty_out:
251         redirty_page_for_writepage(wbc, page);
252         return AOP_WRITEPAGE_ACTIVATE;
253 }
254
255 static int f2fs_write_meta_pages(struct address_space *mapping,
256                                 struct writeback_control *wbc)
257 {
258         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
259         long diff, written;
260
261         /* collect a number of dirty meta pages and write together */
262         if (wbc->for_kupdate ||
263                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
264                 goto skip_write;
265
266         trace_f2fs_writepages(mapping->host, wbc, META);
267
268         /* if mounting is failed, skip writing node pages */
269         mutex_lock(&sbi->cp_mutex);
270         diff = nr_pages_to_write(sbi, META, wbc);
271         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
272         mutex_unlock(&sbi->cp_mutex);
273         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
274         return 0;
275
276 skip_write:
277         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
278         trace_f2fs_writepages(mapping->host, wbc, META);
279         return 0;
280 }
281
282 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
283                                                 long nr_to_write)
284 {
285         struct address_space *mapping = META_MAPPING(sbi);
286         pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
287         struct pagevec pvec;
288         long nwritten = 0;
289         struct writeback_control wbc = {
290                 .for_reclaim = 0,
291         };
292         struct blk_plug plug;
293
294         pagevec_init(&pvec, 0);
295
296         blk_start_plug(&plug);
297
298         while (index <= end) {
299                 int i, nr_pages;
300                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
301                                 PAGECACHE_TAG_DIRTY,
302                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
303                 if (unlikely(nr_pages == 0))
304                         break;
305
306                 for (i = 0; i < nr_pages; i++) {
307                         struct page *page = pvec.pages[i];
308
309                         if (prev == ULONG_MAX)
310                                 prev = page->index - 1;
311                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
312                                 pagevec_release(&pvec);
313                                 goto stop;
314                         }
315
316                         lock_page(page);
317
318                         if (unlikely(page->mapping != mapping)) {
319 continue_unlock:
320                                 unlock_page(page);
321                                 continue;
322                         }
323                         if (!PageDirty(page)) {
324                                 /* someone wrote it for us */
325                                 goto continue_unlock;
326                         }
327
328                         f2fs_wait_on_page_writeback(page, META, true);
329
330                         BUG_ON(PageWriteback(page));
331                         if (!clear_page_dirty_for_io(page))
332                                 goto continue_unlock;
333
334                         if (mapping->a_ops->writepage(page, &wbc)) {
335                                 unlock_page(page);
336                                 break;
337                         }
338                         nwritten++;
339                         prev = page->index;
340                         if (unlikely(nwritten >= nr_to_write))
341                                 break;
342                 }
343                 pagevec_release(&pvec);
344                 cond_resched();
345         }
346 stop:
347         if (nwritten)
348                 f2fs_submit_merged_bio(sbi, type, WRITE);
349
350         blk_finish_plug(&plug);
351
352         return nwritten;
353 }
354
355 static int f2fs_set_meta_page_dirty(struct page *page)
356 {
357         trace_f2fs_set_page_dirty(page, META);
358
359         SetPageUptodate(page);
360         if (!PageDirty(page)) {
361                 __set_page_dirty_nobuffers(page);
362                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
363                 SetPagePrivate(page);
364                 f2fs_trace_pid(page);
365                 return 1;
366         }
367         return 0;
368 }
369
370 const struct address_space_operations f2fs_meta_aops = {
371         .writepage      = f2fs_write_meta_page,
372         .writepages     = f2fs_write_meta_pages,
373         .set_page_dirty = f2fs_set_meta_page_dirty,
374         .invalidatepage = f2fs_invalidate_page,
375         .releasepage    = f2fs_release_page,
376 };
377
378 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
379 {
380         struct inode_management *im = &sbi->im[type];
381         struct ino_entry *e, *tmp;
382
383         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
384 retry:
385         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
386
387         spin_lock(&im->ino_lock);
388         e = radix_tree_lookup(&im->ino_root, ino);
389         if (!e) {
390                 e = tmp;
391                 if (radix_tree_insert(&im->ino_root, ino, e)) {
392                         spin_unlock(&im->ino_lock);
393                         radix_tree_preload_end();
394                         goto retry;
395                 }
396                 memset(e, 0, sizeof(struct ino_entry));
397                 e->ino = ino;
398
399                 list_add_tail(&e->list, &im->ino_list);
400                 if (type != ORPHAN_INO)
401                         im->ino_num++;
402         }
403         spin_unlock(&im->ino_lock);
404         radix_tree_preload_end();
405
406         if (e != tmp)
407                 kmem_cache_free(ino_entry_slab, tmp);
408 }
409
410 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
411 {
412         struct inode_management *im = &sbi->im[type];
413         struct ino_entry *e;
414
415         spin_lock(&im->ino_lock);
416         e = radix_tree_lookup(&im->ino_root, ino);
417         if (e) {
418                 list_del(&e->list);
419                 radix_tree_delete(&im->ino_root, ino);
420                 im->ino_num--;
421                 spin_unlock(&im->ino_lock);
422                 kmem_cache_free(ino_entry_slab, e);
423                 return;
424         }
425         spin_unlock(&im->ino_lock);
426 }
427
428 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
429 {
430         /* add new dirty ino entry into list */
431         __add_ino_entry(sbi, ino, type);
432 }
433
434 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
435 {
436         /* remove dirty ino entry from list */
437         __remove_ino_entry(sbi, ino, type);
438 }
439
440 /* mode should be APPEND_INO or UPDATE_INO */
441 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
442 {
443         struct inode_management *im = &sbi->im[mode];
444         struct ino_entry *e;
445
446         spin_lock(&im->ino_lock);
447         e = radix_tree_lookup(&im->ino_root, ino);
448         spin_unlock(&im->ino_lock);
449         return e ? true : false;
450 }
451
452 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
453 {
454         struct ino_entry *e, *tmp;
455         int i;
456
457         for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
458                 struct inode_management *im = &sbi->im[i];
459
460                 spin_lock(&im->ino_lock);
461                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
462                         list_del(&e->list);
463                         radix_tree_delete(&im->ino_root, e->ino);
464                         kmem_cache_free(ino_entry_slab, e);
465                         im->ino_num--;
466                 }
467                 spin_unlock(&im->ino_lock);
468         }
469 }
470
471 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
472 {
473         struct inode_management *im = &sbi->im[ORPHAN_INO];
474         int err = 0;
475
476         spin_lock(&im->ino_lock);
477
478 #ifdef CONFIG_F2FS_FAULT_INJECTION
479         if (time_to_inject(FAULT_ORPHAN)) {
480                 spin_unlock(&im->ino_lock);
481                 return -ENOSPC;
482         }
483 #endif
484         if (unlikely(im->ino_num >= sbi->max_orphans))
485                 err = -ENOSPC;
486         else
487                 im->ino_num++;
488         spin_unlock(&im->ino_lock);
489
490         return err;
491 }
492
493 void release_orphan_inode(struct f2fs_sb_info *sbi)
494 {
495         struct inode_management *im = &sbi->im[ORPHAN_INO];
496
497         spin_lock(&im->ino_lock);
498         f2fs_bug_on(sbi, im->ino_num == 0);
499         im->ino_num--;
500         spin_unlock(&im->ino_lock);
501 }
502
503 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
504 {
505         /* add new orphan ino entry into list */
506         __add_ino_entry(sbi, ino, ORPHAN_INO);
507 }
508
509 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
510 {
511         /* remove orphan entry from orphan list */
512         __remove_ino_entry(sbi, ino, ORPHAN_INO);
513 }
514
515 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
516 {
517         struct inode *inode;
518
519         inode = f2fs_iget(sbi->sb, ino);
520         if (IS_ERR(inode)) {
521                 /*
522                  * there should be a bug that we can't find the entry
523                  * to orphan inode.
524                  */
525                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
526                 return PTR_ERR(inode);
527         }
528
529         clear_nlink(inode);
530
531         /* truncate all the data during iput */
532         iput(inode);
533         return 0;
534 }
535
536 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
537 {
538         block_t start_blk, orphan_blocks, i, j;
539         int err;
540
541         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
542                 return 0;
543
544         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
545         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
546
547         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
548
549         for (i = 0; i < orphan_blocks; i++) {
550                 struct page *page = get_meta_page(sbi, start_blk + i);
551                 struct f2fs_orphan_block *orphan_blk;
552
553                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
554                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
555                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
556                         err = recover_orphan_inode(sbi, ino);
557                         if (err) {
558                                 f2fs_put_page(page, 1);
559                                 return err;
560                         }
561                 }
562                 f2fs_put_page(page, 1);
563         }
564         /* clear Orphan Flag */
565         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
566         return 0;
567 }
568
569 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
570 {
571         struct list_head *head;
572         struct f2fs_orphan_block *orphan_blk = NULL;
573         unsigned int nentries = 0;
574         unsigned short index = 1;
575         unsigned short orphan_blocks;
576         struct page *page = NULL;
577         struct ino_entry *orphan = NULL;
578         struct inode_management *im = &sbi->im[ORPHAN_INO];
579
580         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
581
582         /*
583          * we don't need to do spin_lock(&im->ino_lock) here, since all the
584          * orphan inode operations are covered under f2fs_lock_op().
585          * And, spin_lock should be avoided due to page operations below.
586          */
587         head = &im->ino_list;
588
589         /* loop for each orphan inode entry and write them in Jornal block */
590         list_for_each_entry(orphan, head, list) {
591                 if (!page) {
592                         page = grab_meta_page(sbi, start_blk++);
593                         orphan_blk =
594                                 (struct f2fs_orphan_block *)page_address(page);
595                         memset(orphan_blk, 0, sizeof(*orphan_blk));
596                 }
597
598                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
599
600                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
601                         /*
602                          * an orphan block is full of 1020 entries,
603                          * then we need to flush current orphan blocks
604                          * and bring another one in memory
605                          */
606                         orphan_blk->blk_addr = cpu_to_le16(index);
607                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
608                         orphan_blk->entry_count = cpu_to_le32(nentries);
609                         set_page_dirty(page);
610                         f2fs_put_page(page, 1);
611                         index++;
612                         nentries = 0;
613                         page = NULL;
614                 }
615         }
616
617         if (page) {
618                 orphan_blk->blk_addr = cpu_to_le16(index);
619                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
620                 orphan_blk->entry_count = cpu_to_le32(nentries);
621                 set_page_dirty(page);
622                 f2fs_put_page(page, 1);
623         }
624 }
625
626 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
627                                 block_t cp_addr, unsigned long long *version)
628 {
629         struct page *cp_page_1, *cp_page_2 = NULL;
630         unsigned long blk_size = sbi->blocksize;
631         struct f2fs_checkpoint *cp_block;
632         unsigned long long cur_version = 0, pre_version = 0;
633         size_t crc_offset;
634         __u32 crc = 0;
635
636         /* Read the 1st cp block in this CP pack */
637         cp_page_1 = get_meta_page(sbi, cp_addr);
638
639         /* get the version number */
640         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
641         crc_offset = le32_to_cpu(cp_block->checksum_offset);
642         if (crc_offset >= blk_size)
643                 goto invalid_cp1;
644
645         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
646         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
647                 goto invalid_cp1;
648
649         pre_version = cur_cp_version(cp_block);
650
651         /* Read the 2nd cp block in this CP pack */
652         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
653         cp_page_2 = get_meta_page(sbi, cp_addr);
654
655         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
656         crc_offset = le32_to_cpu(cp_block->checksum_offset);
657         if (crc_offset >= blk_size)
658                 goto invalid_cp2;
659
660         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
661         if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
662                 goto invalid_cp2;
663
664         cur_version = cur_cp_version(cp_block);
665
666         if (cur_version == pre_version) {
667                 *version = cur_version;
668                 f2fs_put_page(cp_page_2, 1);
669                 return cp_page_1;
670         }
671 invalid_cp2:
672         f2fs_put_page(cp_page_2, 1);
673 invalid_cp1:
674         f2fs_put_page(cp_page_1, 1);
675         return NULL;
676 }
677
678 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
679 {
680         struct f2fs_checkpoint *cp_block;
681         struct f2fs_super_block *fsb = sbi->raw_super;
682         struct page *cp1, *cp2, *cur_page;
683         unsigned long blk_size = sbi->blocksize;
684         unsigned long long cp1_version = 0, cp2_version = 0;
685         unsigned long long cp_start_blk_no;
686         unsigned int cp_blks = 1 + __cp_payload(sbi);
687         block_t cp_blk_no;
688         int i;
689
690         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
691         if (!sbi->ckpt)
692                 return -ENOMEM;
693         /*
694          * Finding out valid cp block involves read both
695          * sets( cp pack1 and cp pack 2)
696          */
697         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
698         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
699
700         /* The second checkpoint pack should start at the next segment */
701         cp_start_blk_no += ((unsigned long long)1) <<
702                                 le32_to_cpu(fsb->log_blocks_per_seg);
703         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
704
705         if (cp1 && cp2) {
706                 if (ver_after(cp2_version, cp1_version))
707                         cur_page = cp2;
708                 else
709                         cur_page = cp1;
710         } else if (cp1) {
711                 cur_page = cp1;
712         } else if (cp2) {
713                 cur_page = cp2;
714         } else {
715                 goto fail_no_cp;
716         }
717
718         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
719         memcpy(sbi->ckpt, cp_block, blk_size);
720
721         /* Sanity checking of checkpoint */
722         if (sanity_check_ckpt(sbi))
723                 goto fail_no_cp;
724
725         if (cp_blks <= 1)
726                 goto done;
727
728         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
729         if (cur_page == cp2)
730                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
731
732         for (i = 1; i < cp_blks; i++) {
733                 void *sit_bitmap_ptr;
734                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
735
736                 cur_page = get_meta_page(sbi, cp_blk_no + i);
737                 sit_bitmap_ptr = page_address(cur_page);
738                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
739                 f2fs_put_page(cur_page, 1);
740         }
741 done:
742         f2fs_put_page(cp1, 1);
743         f2fs_put_page(cp2, 1);
744         return 0;
745
746 fail_no_cp:
747         kfree(sbi->ckpt);
748         return -EINVAL;
749 }
750
751 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
752 {
753         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
754         struct f2fs_inode_info *fi = F2FS_I(inode);
755         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
756
757         if (is_inode_flag_set(fi, flag))
758                 return;
759
760         set_inode_flag(fi, flag);
761         list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
762         stat_inc_dirty_inode(sbi, type);
763 }
764
765 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
766 {
767         struct f2fs_inode_info *fi = F2FS_I(inode);
768         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
769
770         if (get_dirty_pages(inode) ||
771                         !is_inode_flag_set(F2FS_I(inode), flag))
772                 return;
773
774         list_del_init(&fi->dirty_list);
775         clear_inode_flag(fi, flag);
776         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
777 }
778
779 void update_dirty_page(struct inode *inode, struct page *page)
780 {
781         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
782         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
783
784         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
785                         !S_ISLNK(inode->i_mode))
786                 return;
787
788         spin_lock(&sbi->inode_lock[type]);
789         __add_dirty_inode(inode, type);
790         inode_inc_dirty_pages(inode);
791         spin_unlock(&sbi->inode_lock[type]);
792
793         SetPagePrivate(page);
794         f2fs_trace_pid(page);
795 }
796
797 void add_dirty_dir_inode(struct inode *inode)
798 {
799         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
800
801         spin_lock(&sbi->inode_lock[DIR_INODE]);
802         __add_dirty_inode(inode, DIR_INODE);
803         spin_unlock(&sbi->inode_lock[DIR_INODE]);
804 }
805
806 void remove_dirty_inode(struct inode *inode)
807 {
808         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
809         struct f2fs_inode_info *fi = F2FS_I(inode);
810         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
811
812         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
813                         !S_ISLNK(inode->i_mode))
814                 return;
815
816         spin_lock(&sbi->inode_lock[type]);
817         __remove_dirty_inode(inode, type);
818         spin_unlock(&sbi->inode_lock[type]);
819
820         /* Only from the recovery routine */
821         if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
822                 clear_inode_flag(fi, FI_DELAY_IPUT);
823                 iput(inode);
824         }
825 }
826
827 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
828 {
829         struct list_head *head;
830         struct inode *inode;
831         struct f2fs_inode_info *fi;
832         bool is_dir = (type == DIR_INODE);
833
834         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
835                                 get_pages(sbi, is_dir ?
836                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
837 retry:
838         if (unlikely(f2fs_cp_error(sbi)))
839                 return -EIO;
840
841         spin_lock(&sbi->inode_lock[type]);
842
843         head = &sbi->inode_list[type];
844         if (list_empty(head)) {
845                 spin_unlock(&sbi->inode_lock[type]);
846                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
847                                 get_pages(sbi, is_dir ?
848                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
849                 return 0;
850         }
851         fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
852         inode = igrab(&fi->vfs_inode);
853         spin_unlock(&sbi->inode_lock[type]);
854         if (inode) {
855                 filemap_fdatawrite(inode->i_mapping);
856                 iput(inode);
857         } else {
858                 /*
859                  * We should submit bio, since it exists several
860                  * wribacking dentry pages in the freeing inode.
861                  */
862                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
863                 cond_resched();
864         }
865         goto retry;
866 }
867
868 /*
869  * Freeze all the FS-operations for checkpoint.
870  */
871 static int block_operations(struct f2fs_sb_info *sbi)
872 {
873         struct writeback_control wbc = {
874                 .sync_mode = WB_SYNC_ALL,
875                 .nr_to_write = LONG_MAX,
876                 .for_reclaim = 0,
877         };
878         struct blk_plug plug;
879         int err = 0;
880
881         blk_start_plug(&plug);
882
883 retry_flush_dents:
884         f2fs_lock_all(sbi);
885         /* write all the dirty dentry pages */
886         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
887                 f2fs_unlock_all(sbi);
888                 err = sync_dirty_inodes(sbi, DIR_INODE);
889                 if (err)
890                         goto out;
891                 goto retry_flush_dents;
892         }
893
894         /*
895          * POR: we should ensure that there are no dirty node pages
896          * until finishing nat/sit flush.
897          */
898 retry_flush_nodes:
899         down_write(&sbi->node_write);
900
901         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
902                 up_write(&sbi->node_write);
903                 err = sync_node_pages(sbi, &wbc);
904                 if (err) {
905                         f2fs_unlock_all(sbi);
906                         goto out;
907                 }
908                 goto retry_flush_nodes;
909         }
910 out:
911         blk_finish_plug(&plug);
912         return err;
913 }
914
915 static void unblock_operations(struct f2fs_sb_info *sbi)
916 {
917         up_write(&sbi->node_write);
918         f2fs_unlock_all(sbi);
919 }
920
921 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
922 {
923         DEFINE_WAIT(wait);
924
925         for (;;) {
926                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
927
928                 if (!get_pages(sbi, F2FS_WRITEBACK))
929                         break;
930
931                 io_schedule_timeout(5*HZ);
932         }
933         finish_wait(&sbi->cp_wait, &wait);
934 }
935
936 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
937 {
938         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
939         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
940         struct f2fs_nm_info *nm_i = NM_I(sbi);
941         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
942         nid_t last_nid = nm_i->next_scan_nid;
943         block_t start_blk;
944         unsigned int data_sum_blocks, orphan_blocks;
945         __u32 crc32 = 0;
946         int i;
947         int cp_payload_blks = __cp_payload(sbi);
948         block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
949         bool invalidate = false;
950         struct super_block *sb = sbi->sb;
951         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
952         u64 kbytes_written;
953
954         /*
955          * This avoids to conduct wrong roll-forward operations and uses
956          * metapages, so should be called prior to sync_meta_pages below.
957          */
958         if (discard_next_dnode(sbi, discard_blk))
959                 invalidate = true;
960
961         /* Flush all the NAT/SIT pages */
962         while (get_pages(sbi, F2FS_DIRTY_META)) {
963                 sync_meta_pages(sbi, META, LONG_MAX);
964                 if (unlikely(f2fs_cp_error(sbi)))
965                         return -EIO;
966         }
967
968         next_free_nid(sbi, &last_nid);
969
970         /*
971          * modify checkpoint
972          * version number is already updated
973          */
974         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
975         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
976         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
977         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
978                 ckpt->cur_node_segno[i] =
979                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
980                 ckpt->cur_node_blkoff[i] =
981                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
982                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
983                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
984         }
985         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
986                 ckpt->cur_data_segno[i] =
987                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
988                 ckpt->cur_data_blkoff[i] =
989                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
990                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
991                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
992         }
993
994         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
995         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
996         ckpt->next_free_nid = cpu_to_le32(last_nid);
997
998         /* 2 cp  + n data seg summary + orphan inode blocks */
999         data_sum_blocks = npages_for_summary_flush(sbi, false);
1000         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1001                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1002         else
1003                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1004
1005         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1006         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1007                         orphan_blocks);
1008
1009         if (__remain_node_summaries(cpc->reason))
1010                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1011                                 cp_payload_blks + data_sum_blocks +
1012                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1013         else
1014                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1015                                 cp_payload_blks + data_sum_blocks +
1016                                 orphan_blocks);
1017
1018         if (cpc->reason == CP_UMOUNT)
1019                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1020         else
1021                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1022
1023         if (cpc->reason == CP_FASTBOOT)
1024                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1025         else
1026                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1027
1028         if (orphan_num)
1029                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1030         else
1031                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1032
1033         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1034                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1035
1036         /* update SIT/NAT bitmap */
1037         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1038         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1039
1040         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1041         *((__le32 *)((unsigned char *)ckpt +
1042                                 le32_to_cpu(ckpt->checksum_offset)))
1043                                 = cpu_to_le32(crc32);
1044
1045         start_blk = __start_cp_addr(sbi);
1046
1047         /* need to wait for end_io results */
1048         wait_on_all_pages_writeback(sbi);
1049         if (unlikely(f2fs_cp_error(sbi)))
1050                 return -EIO;
1051
1052         /* write out checkpoint buffer at block 0 */
1053         update_meta_page(sbi, ckpt, start_blk++);
1054
1055         for (i = 1; i < 1 + cp_payload_blks; i++)
1056                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1057                                                         start_blk++);
1058
1059         if (orphan_num) {
1060                 write_orphan_inodes(sbi, start_blk);
1061                 start_blk += orphan_blocks;
1062         }
1063
1064         write_data_summaries(sbi, start_blk);
1065         start_blk += data_sum_blocks;
1066
1067         /* Record write statistics in the hot node summary */
1068         kbytes_written = sbi->kbytes_written;
1069         if (sb->s_bdev->bd_part)
1070                 kbytes_written += BD_PART_WRITTEN(sbi);
1071
1072         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1073
1074         if (__remain_node_summaries(cpc->reason)) {
1075                 write_node_summaries(sbi, start_blk);
1076                 start_blk += NR_CURSEG_NODE_TYPE;
1077         }
1078
1079         /* writeout checkpoint block */
1080         update_meta_page(sbi, ckpt, start_blk);
1081
1082         /* wait for previous submitted node/meta pages writeback */
1083         wait_on_all_pages_writeback(sbi);
1084
1085         if (unlikely(f2fs_cp_error(sbi)))
1086                 return -EIO;
1087
1088         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1089         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1090
1091         /* update user_block_counts */
1092         sbi->last_valid_block_count = sbi->total_valid_block_count;
1093         sbi->alloc_valid_block_count = 0;
1094
1095         /* Here, we only have one bio having CP pack */
1096         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1097
1098         /* wait for previous submitted meta pages writeback */
1099         wait_on_all_pages_writeback(sbi);
1100
1101         /*
1102          * invalidate meta page which is used temporarily for zeroing out
1103          * block at the end of warm node chain.
1104          */
1105         if (invalidate)
1106                 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1107                                                                 discard_blk);
1108
1109         release_ino_entry(sbi, false);
1110
1111         if (unlikely(f2fs_cp_error(sbi)))
1112                 return -EIO;
1113
1114         clear_prefree_segments(sbi, cpc);
1115         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1116
1117         return 0;
1118 }
1119
1120 /*
1121  * We guarantee that this checkpoint procedure will not fail.
1122  */
1123 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1124 {
1125         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1126         unsigned long long ckpt_ver;
1127         int err = 0;
1128
1129         mutex_lock(&sbi->cp_mutex);
1130
1131         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1132                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1133                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1134                 goto out;
1135         if (unlikely(f2fs_cp_error(sbi))) {
1136                 err = -EIO;
1137                 goto out;
1138         }
1139         if (f2fs_readonly(sbi->sb)) {
1140                 err = -EROFS;
1141                 goto out;
1142         }
1143
1144         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1145
1146         err = block_operations(sbi);
1147         if (err)
1148                 goto out;
1149
1150         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1151
1152         f2fs_flush_merged_bios(sbi);
1153
1154         /*
1155          * update checkpoint pack index
1156          * Increase the version number so that
1157          * SIT entries and seg summaries are written at correct place
1158          */
1159         ckpt_ver = cur_cp_version(ckpt);
1160         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1161
1162         /* write cached NAT/SIT entries to NAT/SIT area */
1163         flush_nat_entries(sbi);
1164         flush_sit_entries(sbi, cpc);
1165
1166         /* unlock all the fs_lock[] in do_checkpoint() */
1167         err = do_checkpoint(sbi, cpc);
1168
1169         unblock_operations(sbi);
1170         stat_inc_cp_count(sbi->stat_info);
1171
1172         if (cpc->reason == CP_RECOVERY)
1173                 f2fs_msg(sbi->sb, KERN_NOTICE,
1174                         "checkpoint: version = %llx", ckpt_ver);
1175
1176         /* do checkpoint periodically */
1177         f2fs_update_time(sbi, CP_TIME);
1178         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1179 out:
1180         mutex_unlock(&sbi->cp_mutex);
1181         return err;
1182 }
1183
1184 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1185 {
1186         int i;
1187
1188         for (i = 0; i < MAX_INO_ENTRY; i++) {
1189                 struct inode_management *im = &sbi->im[i];
1190
1191                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1192                 spin_lock_init(&im->ino_lock);
1193                 INIT_LIST_HEAD(&im->ino_list);
1194                 im->ino_num = 0;
1195         }
1196
1197         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1198                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1199                                 F2FS_ORPHANS_PER_BLOCK;
1200 }
1201
1202 int __init create_checkpoint_caches(void)
1203 {
1204         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1205                         sizeof(struct ino_entry));
1206         if (!ino_entry_slab)
1207                 return -ENOMEM;
1208         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1209                         sizeof(struct inode_entry));
1210         if (!inode_entry_slab) {
1211                 kmem_cache_destroy(ino_entry_slab);
1212                 return -ENOMEM;
1213         }
1214         return 0;
1215 }
1216
1217 void destroy_checkpoint_caches(void)
1218 {
1219         kmem_cache_destroy(ino_entry_slab);
1220         kmem_cache_destroy(inode_entry_slab);
1221 }