6776803687088420f827a198362c9e3cb38b32e4
[cascardo/linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META, true);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
51                                                         bool is_meta)
52 {
53         struct address_space *mapping = META_MAPPING(sbi);
54         struct page *page;
55         struct f2fs_io_info fio = {
56                 .sbi = sbi,
57                 .type = META,
58                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
59                 .blk_addr = index,
60                 .encrypted_page = NULL,
61         };
62
63         if (unlikely(!is_meta))
64                 fio.rw &= ~REQ_META;
65 repeat:
66         page = grab_cache_page(mapping, index);
67         if (!page) {
68                 cond_resched();
69                 goto repeat;
70         }
71         if (PageUptodate(page))
72                 goto out;
73
74         fio.page = page;
75
76         if (f2fs_submit_page_bio(&fio)) {
77                 f2fs_put_page(page, 1);
78                 goto repeat;
79         }
80
81         lock_page(page);
82         if (unlikely(page->mapping != mapping)) {
83                 f2fs_put_page(page, 1);
84                 goto repeat;
85         }
86
87         /*
88          * if there is any IO error when accessing device, make our filesystem
89          * readonly and make sure do not write checkpoint with non-uptodate
90          * meta page.
91          */
92         if (unlikely(!PageUptodate(page)))
93                 f2fs_stop_checkpoint(sbi);
94 out:
95         return page;
96 }
97
98 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
99 {
100         return __get_meta_page(sbi, index, true);
101 }
102
103 /* for POR only */
104 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
105 {
106         return __get_meta_page(sbi, index, false);
107 }
108
109 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
110 {
111         switch (type) {
112         case META_NAT:
113                 break;
114         case META_SIT:
115                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
116                         return false;
117                 break;
118         case META_SSA:
119                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
120                         blkaddr < SM_I(sbi)->ssa_blkaddr))
121                         return false;
122                 break;
123         case META_CP:
124                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
125                         blkaddr < __start_cp_addr(sbi)))
126                         return false;
127                 break;
128         case META_POR:
129                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
130                         blkaddr < MAIN_BLKADDR(sbi)))
131                         return false;
132                 break;
133         default:
134                 BUG();
135         }
136
137         return true;
138 }
139
140 /*
141  * Readahead CP/NAT/SIT/SSA pages
142  */
143 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
144                                                         int type, bool sync)
145 {
146         struct page *page;
147         block_t blkno = start;
148         struct f2fs_io_info fio = {
149                 .sbi = sbi,
150                 .type = META,
151                 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
152                 .encrypted_page = NULL,
153         };
154         struct blk_plug plug;
155
156         if (unlikely(type == META_POR))
157                 fio.rw &= ~REQ_META;
158
159         blk_start_plug(&plug);
160         for (; nrpages-- > 0; blkno++) {
161
162                 if (!is_valid_blkaddr(sbi, blkno, type))
163                         goto out;
164
165                 switch (type) {
166                 case META_NAT:
167                         if (unlikely(blkno >=
168                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
169                                 blkno = 0;
170                         /* get nat block addr */
171                         fio.blk_addr = current_nat_addr(sbi,
172                                         blkno * NAT_ENTRY_PER_BLOCK);
173                         break;
174                 case META_SIT:
175                         /* get sit block addr */
176                         fio.blk_addr = current_sit_addr(sbi,
177                                         blkno * SIT_ENTRY_PER_BLOCK);
178                         break;
179                 case META_SSA:
180                 case META_CP:
181                 case META_POR:
182                         fio.blk_addr = blkno;
183                         break;
184                 default:
185                         BUG();
186                 }
187
188                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
189                 if (!page)
190                         continue;
191                 if (PageUptodate(page)) {
192                         f2fs_put_page(page, 1);
193                         continue;
194                 }
195
196                 fio.page = page;
197                 f2fs_submit_page_mbio(&fio);
198                 f2fs_put_page(page, 0);
199         }
200 out:
201         f2fs_submit_merged_bio(sbi, META, READ);
202         blk_finish_plug(&plug);
203         return blkno - start;
204 }
205
206 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
207 {
208         struct page *page;
209         bool readahead = false;
210
211         page = find_get_page(META_MAPPING(sbi), index);
212         if (!page || (page && !PageUptodate(page)))
213                 readahead = true;
214         f2fs_put_page(page, 0);
215
216         if (readahead)
217                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
218 }
219
220 static int f2fs_write_meta_page(struct page *page,
221                                 struct writeback_control *wbc)
222 {
223         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
224
225         trace_f2fs_writepage(page, META);
226
227         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
228                 goto redirty_out;
229         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
230                 goto redirty_out;
231         if (unlikely(f2fs_cp_error(sbi)))
232                 goto redirty_out;
233
234         write_meta_page(sbi, page);
235         dec_page_count(sbi, F2FS_DIRTY_META);
236
237         if (wbc->for_reclaim)
238                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
239
240         unlock_page(page);
241
242         if (unlikely(f2fs_cp_error(sbi)))
243                 f2fs_submit_merged_bio(sbi, META, WRITE);
244
245         return 0;
246
247 redirty_out:
248         redirty_page_for_writepage(wbc, page);
249         return AOP_WRITEPAGE_ACTIVATE;
250 }
251
252 static int f2fs_write_meta_pages(struct address_space *mapping,
253                                 struct writeback_control *wbc)
254 {
255         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
256         long diff, written;
257
258         /* collect a number of dirty meta pages and write together */
259         if (wbc->for_kupdate ||
260                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
261                 goto skip_write;
262
263         trace_f2fs_writepages(mapping->host, wbc, META);
264
265         /* if mounting is failed, skip writing node pages */
266         mutex_lock(&sbi->cp_mutex);
267         diff = nr_pages_to_write(sbi, META, wbc);
268         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
269         mutex_unlock(&sbi->cp_mutex);
270         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
271         return 0;
272
273 skip_write:
274         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
275         trace_f2fs_writepages(mapping->host, wbc, META);
276         return 0;
277 }
278
279 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
280                                                 long nr_to_write)
281 {
282         struct address_space *mapping = META_MAPPING(sbi);
283         pgoff_t index = 0, end = LONG_MAX, prev = LONG_MAX;
284         struct pagevec pvec;
285         long nwritten = 0;
286         struct writeback_control wbc = {
287                 .for_reclaim = 0,
288         };
289         struct blk_plug plug;
290
291         pagevec_init(&pvec, 0);
292
293         blk_start_plug(&plug);
294
295         while (index <= end) {
296                 int i, nr_pages;
297                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
298                                 PAGECACHE_TAG_DIRTY,
299                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
300                 if (unlikely(nr_pages == 0))
301                         break;
302
303                 for (i = 0; i < nr_pages; i++) {
304                         struct page *page = pvec.pages[i];
305
306                         if (prev == LONG_MAX)
307                                 prev = page->index - 1;
308                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
309                                 pagevec_release(&pvec);
310                                 goto stop;
311                         }
312
313                         lock_page(page);
314
315                         if (unlikely(page->mapping != mapping)) {
316 continue_unlock:
317                                 unlock_page(page);
318                                 continue;
319                         }
320                         if (!PageDirty(page)) {
321                                 /* someone wrote it for us */
322                                 goto continue_unlock;
323                         }
324
325                         f2fs_wait_on_page_writeback(page, META, true);
326
327                         BUG_ON(PageWriteback(page));
328                         if (!clear_page_dirty_for_io(page))
329                                 goto continue_unlock;
330
331                         if (mapping->a_ops->writepage(page, &wbc)) {
332                                 unlock_page(page);
333                                 break;
334                         }
335                         nwritten++;
336                         prev = page->index;
337                         if (unlikely(nwritten >= nr_to_write))
338                                 break;
339                 }
340                 pagevec_release(&pvec);
341                 cond_resched();
342         }
343 stop:
344         if (nwritten)
345                 f2fs_submit_merged_bio(sbi, type, WRITE);
346
347         blk_finish_plug(&plug);
348
349         return nwritten;
350 }
351
352 static int f2fs_set_meta_page_dirty(struct page *page)
353 {
354         trace_f2fs_set_page_dirty(page, META);
355
356         SetPageUptodate(page);
357         if (!PageDirty(page)) {
358                 __set_page_dirty_nobuffers(page);
359                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
360                 SetPagePrivate(page);
361                 f2fs_trace_pid(page);
362                 return 1;
363         }
364         return 0;
365 }
366
367 const struct address_space_operations f2fs_meta_aops = {
368         .writepage      = f2fs_write_meta_page,
369         .writepages     = f2fs_write_meta_pages,
370         .set_page_dirty = f2fs_set_meta_page_dirty,
371         .invalidatepage = f2fs_invalidate_page,
372         .releasepage    = f2fs_release_page,
373 };
374
375 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
376 {
377         struct inode_management *im = &sbi->im[type];
378         struct ino_entry *e, *tmp;
379
380         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
381 retry:
382         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
383
384         spin_lock(&im->ino_lock);
385         e = radix_tree_lookup(&im->ino_root, ino);
386         if (!e) {
387                 e = tmp;
388                 if (radix_tree_insert(&im->ino_root, ino, e)) {
389                         spin_unlock(&im->ino_lock);
390                         radix_tree_preload_end();
391                         goto retry;
392                 }
393                 memset(e, 0, sizeof(struct ino_entry));
394                 e->ino = ino;
395
396                 list_add_tail(&e->list, &im->ino_list);
397                 if (type != ORPHAN_INO)
398                         im->ino_num++;
399         }
400         spin_unlock(&im->ino_lock);
401         radix_tree_preload_end();
402
403         if (e != tmp)
404                 kmem_cache_free(ino_entry_slab, tmp);
405 }
406
407 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
408 {
409         struct inode_management *im = &sbi->im[type];
410         struct ino_entry *e;
411
412         spin_lock(&im->ino_lock);
413         e = radix_tree_lookup(&im->ino_root, ino);
414         if (e) {
415                 list_del(&e->list);
416                 radix_tree_delete(&im->ino_root, ino);
417                 im->ino_num--;
418                 spin_unlock(&im->ino_lock);
419                 kmem_cache_free(ino_entry_slab, e);
420                 return;
421         }
422         spin_unlock(&im->ino_lock);
423 }
424
425 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
426 {
427         /* add new dirty ino entry into list */
428         __add_ino_entry(sbi, ino, type);
429 }
430
431 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
432 {
433         /* remove dirty ino entry from list */
434         __remove_ino_entry(sbi, ino, type);
435 }
436
437 /* mode should be APPEND_INO or UPDATE_INO */
438 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
439 {
440         struct inode_management *im = &sbi->im[mode];
441         struct ino_entry *e;
442
443         spin_lock(&im->ino_lock);
444         e = radix_tree_lookup(&im->ino_root, ino);
445         spin_unlock(&im->ino_lock);
446         return e ? true : false;
447 }
448
449 void release_ino_entry(struct f2fs_sb_info *sbi)
450 {
451         struct ino_entry *e, *tmp;
452         int i;
453
454         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
455                 struct inode_management *im = &sbi->im[i];
456
457                 spin_lock(&im->ino_lock);
458                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
459                         list_del(&e->list);
460                         radix_tree_delete(&im->ino_root, e->ino);
461                         kmem_cache_free(ino_entry_slab, e);
462                         im->ino_num--;
463                 }
464                 spin_unlock(&im->ino_lock);
465         }
466 }
467
468 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
469 {
470         struct inode_management *im = &sbi->im[ORPHAN_INO];
471         int err = 0;
472
473         spin_lock(&im->ino_lock);
474         if (unlikely(im->ino_num >= sbi->max_orphans))
475                 err = -ENOSPC;
476         else
477                 im->ino_num++;
478         spin_unlock(&im->ino_lock);
479
480         return err;
481 }
482
483 void release_orphan_inode(struct f2fs_sb_info *sbi)
484 {
485         struct inode_management *im = &sbi->im[ORPHAN_INO];
486
487         spin_lock(&im->ino_lock);
488         f2fs_bug_on(sbi, im->ino_num == 0);
489         im->ino_num--;
490         spin_unlock(&im->ino_lock);
491 }
492
493 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
494 {
495         /* add new orphan ino entry into list */
496         __add_ino_entry(sbi, ino, ORPHAN_INO);
497 }
498
499 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
500 {
501         /* remove orphan entry from orphan list */
502         __remove_ino_entry(sbi, ino, ORPHAN_INO);
503 }
504
505 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
506 {
507         struct inode *inode;
508
509         inode = f2fs_iget(sbi->sb, ino);
510         if (IS_ERR(inode)) {
511                 /*
512                  * there should be a bug that we can't find the entry
513                  * to orphan inode.
514                  */
515                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
516                 return PTR_ERR(inode);
517         }
518
519         clear_nlink(inode);
520
521         /* truncate all the data during iput */
522         iput(inode);
523         return 0;
524 }
525
526 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
527 {
528         block_t start_blk, orphan_blocks, i, j;
529         int err;
530
531         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
532                 return 0;
533
534         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
535         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
536
537         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
538
539         for (i = 0; i < orphan_blocks; i++) {
540                 struct page *page = get_meta_page(sbi, start_blk + i);
541                 struct f2fs_orphan_block *orphan_blk;
542
543                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
544                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
545                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
546                         err = recover_orphan_inode(sbi, ino);
547                         if (err) {
548                                 f2fs_put_page(page, 1);
549                                 return err;
550                         }
551                 }
552                 f2fs_put_page(page, 1);
553         }
554         /* clear Orphan Flag */
555         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
556         return 0;
557 }
558
559 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
560 {
561         struct list_head *head;
562         struct f2fs_orphan_block *orphan_blk = NULL;
563         unsigned int nentries = 0;
564         unsigned short index = 1;
565         unsigned short orphan_blocks;
566         struct page *page = NULL;
567         struct ino_entry *orphan = NULL;
568         struct inode_management *im = &sbi->im[ORPHAN_INO];
569
570         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
571
572         /*
573          * we don't need to do spin_lock(&im->ino_lock) here, since all the
574          * orphan inode operations are covered under f2fs_lock_op().
575          * And, spin_lock should be avoided due to page operations below.
576          */
577         head = &im->ino_list;
578
579         /* loop for each orphan inode entry and write them in Jornal block */
580         list_for_each_entry(orphan, head, list) {
581                 if (!page) {
582                         page = grab_meta_page(sbi, start_blk++);
583                         orphan_blk =
584                                 (struct f2fs_orphan_block *)page_address(page);
585                         memset(orphan_blk, 0, sizeof(*orphan_blk));
586                 }
587
588                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
589
590                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
591                         /*
592                          * an orphan block is full of 1020 entries,
593                          * then we need to flush current orphan blocks
594                          * and bring another one in memory
595                          */
596                         orphan_blk->blk_addr = cpu_to_le16(index);
597                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
598                         orphan_blk->entry_count = cpu_to_le32(nentries);
599                         set_page_dirty(page);
600                         f2fs_put_page(page, 1);
601                         index++;
602                         nentries = 0;
603                         page = NULL;
604                 }
605         }
606
607         if (page) {
608                 orphan_blk->blk_addr = cpu_to_le16(index);
609                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
610                 orphan_blk->entry_count = cpu_to_le32(nentries);
611                 set_page_dirty(page);
612                 f2fs_put_page(page, 1);
613         }
614 }
615
616 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
617                                 block_t cp_addr, unsigned long long *version)
618 {
619         struct page *cp_page_1, *cp_page_2 = NULL;
620         unsigned long blk_size = sbi->blocksize;
621         struct f2fs_checkpoint *cp_block;
622         unsigned long long cur_version = 0, pre_version = 0;
623         size_t crc_offset;
624         __u32 crc = 0;
625
626         /* Read the 1st cp block in this CP pack */
627         cp_page_1 = get_meta_page(sbi, cp_addr);
628
629         /* get the version number */
630         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
631         crc_offset = le32_to_cpu(cp_block->checksum_offset);
632         if (crc_offset >= blk_size)
633                 goto invalid_cp1;
634
635         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
636         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
637                 goto invalid_cp1;
638
639         pre_version = cur_cp_version(cp_block);
640
641         /* Read the 2nd cp block in this CP pack */
642         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
643         cp_page_2 = get_meta_page(sbi, cp_addr);
644
645         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
646         crc_offset = le32_to_cpu(cp_block->checksum_offset);
647         if (crc_offset >= blk_size)
648                 goto invalid_cp2;
649
650         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
651         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
652                 goto invalid_cp2;
653
654         cur_version = cur_cp_version(cp_block);
655
656         if (cur_version == pre_version) {
657                 *version = cur_version;
658                 f2fs_put_page(cp_page_2, 1);
659                 return cp_page_1;
660         }
661 invalid_cp2:
662         f2fs_put_page(cp_page_2, 1);
663 invalid_cp1:
664         f2fs_put_page(cp_page_1, 1);
665         return NULL;
666 }
667
668 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
669 {
670         struct f2fs_checkpoint *cp_block;
671         struct f2fs_super_block *fsb = sbi->raw_super;
672         struct page *cp1, *cp2, *cur_page;
673         unsigned long blk_size = sbi->blocksize;
674         unsigned long long cp1_version = 0, cp2_version = 0;
675         unsigned long long cp_start_blk_no;
676         unsigned int cp_blks = 1 + __cp_payload(sbi);
677         block_t cp_blk_no;
678         int i;
679
680         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
681         if (!sbi->ckpt)
682                 return -ENOMEM;
683         /*
684          * Finding out valid cp block involves read both
685          * sets( cp pack1 and cp pack 2)
686          */
687         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
688         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
689
690         /* The second checkpoint pack should start at the next segment */
691         cp_start_blk_no += ((unsigned long long)1) <<
692                                 le32_to_cpu(fsb->log_blocks_per_seg);
693         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
694
695         if (cp1 && cp2) {
696                 if (ver_after(cp2_version, cp1_version))
697                         cur_page = cp2;
698                 else
699                         cur_page = cp1;
700         } else if (cp1) {
701                 cur_page = cp1;
702         } else if (cp2) {
703                 cur_page = cp2;
704         } else {
705                 goto fail_no_cp;
706         }
707
708         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
709         memcpy(sbi->ckpt, cp_block, blk_size);
710
711         if (cp_blks <= 1)
712                 goto done;
713
714         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
715         if (cur_page == cp2)
716                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
717
718         for (i = 1; i < cp_blks; i++) {
719                 void *sit_bitmap_ptr;
720                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
721
722                 cur_page = get_meta_page(sbi, cp_blk_no + i);
723                 sit_bitmap_ptr = page_address(cur_page);
724                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
725                 f2fs_put_page(cur_page, 1);
726         }
727 done:
728         f2fs_put_page(cp1, 1);
729         f2fs_put_page(cp2, 1);
730         return 0;
731
732 fail_no_cp:
733         kfree(sbi->ckpt);
734         return -EINVAL;
735 }
736
737 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
738 {
739         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
740         struct f2fs_inode_info *fi = F2FS_I(inode);
741         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
742
743         if (is_inode_flag_set(fi, flag))
744                 return;
745
746         set_inode_flag(fi, flag);
747         list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
748         stat_inc_dirty_inode(sbi, type);
749 }
750
751 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
752 {
753         struct f2fs_inode_info *fi = F2FS_I(inode);
754         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
755
756         if (get_dirty_pages(inode) ||
757                         !is_inode_flag_set(F2FS_I(inode), flag))
758                 return;
759
760         list_del_init(&fi->dirty_list);
761         clear_inode_flag(fi, flag);
762         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
763 }
764
765 void update_dirty_page(struct inode *inode, struct page *page)
766 {
767         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
768         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
769
770         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
771                         !S_ISLNK(inode->i_mode))
772                 return;
773
774         spin_lock(&sbi->inode_lock[type]);
775         __add_dirty_inode(inode, type);
776         inode_inc_dirty_pages(inode);
777         spin_unlock(&sbi->inode_lock[type]);
778
779         SetPagePrivate(page);
780         f2fs_trace_pid(page);
781 }
782
783 void add_dirty_dir_inode(struct inode *inode)
784 {
785         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
786
787         spin_lock(&sbi->inode_lock[DIR_INODE]);
788         __add_dirty_inode(inode, DIR_INODE);
789         spin_unlock(&sbi->inode_lock[DIR_INODE]);
790 }
791
792 void remove_dirty_inode(struct inode *inode)
793 {
794         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
795         struct f2fs_inode_info *fi = F2FS_I(inode);
796         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
797
798         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
799                         !S_ISLNK(inode->i_mode))
800                 return;
801
802         spin_lock(&sbi->inode_lock[type]);
803         __remove_dirty_inode(inode, type);
804         spin_unlock(&sbi->inode_lock[type]);
805
806         /* Only from the recovery routine */
807         if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
808                 clear_inode_flag(fi, FI_DELAY_IPUT);
809                 iput(inode);
810         }
811 }
812
813 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
814 {
815         struct list_head *head;
816         struct inode *inode;
817         struct f2fs_inode_info *fi;
818         bool is_dir = (type == DIR_INODE);
819
820         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
821                                 get_pages(sbi, is_dir ?
822                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
823 retry:
824         if (unlikely(f2fs_cp_error(sbi)))
825                 return -EIO;
826
827         spin_lock(&sbi->inode_lock[type]);
828
829         head = &sbi->inode_list[type];
830         if (list_empty(head)) {
831                 spin_unlock(&sbi->inode_lock[type]);
832                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
833                                 get_pages(sbi, is_dir ?
834                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
835                 return 0;
836         }
837         fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
838         inode = igrab(&fi->vfs_inode);
839         spin_unlock(&sbi->inode_lock[type]);
840         if (inode) {
841                 filemap_fdatawrite(inode->i_mapping);
842                 iput(inode);
843         } else {
844                 /*
845                  * We should submit bio, since it exists several
846                  * wribacking dentry pages in the freeing inode.
847                  */
848                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
849                 cond_resched();
850         }
851         goto retry;
852 }
853
854 /*
855  * Freeze all the FS-operations for checkpoint.
856  */
857 static int block_operations(struct f2fs_sb_info *sbi)
858 {
859         struct writeback_control wbc = {
860                 .sync_mode = WB_SYNC_ALL,
861                 .nr_to_write = LONG_MAX,
862                 .for_reclaim = 0,
863         };
864         struct blk_plug plug;
865         int err = 0;
866
867         blk_start_plug(&plug);
868
869 retry_flush_dents:
870         f2fs_lock_all(sbi);
871         /* write all the dirty dentry pages */
872         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
873                 f2fs_unlock_all(sbi);
874                 err = sync_dirty_inodes(sbi, DIR_INODE);
875                 if (err)
876                         goto out;
877                 goto retry_flush_dents;
878         }
879
880         /*
881          * POR: we should ensure that there are no dirty node pages
882          * until finishing nat/sit flush.
883          */
884 retry_flush_nodes:
885         down_write(&sbi->node_write);
886
887         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
888                 up_write(&sbi->node_write);
889                 err = sync_node_pages(sbi, 0, &wbc);
890                 if (err) {
891                         f2fs_unlock_all(sbi);
892                         goto out;
893                 }
894                 goto retry_flush_nodes;
895         }
896 out:
897         blk_finish_plug(&plug);
898         return err;
899 }
900
901 static void unblock_operations(struct f2fs_sb_info *sbi)
902 {
903         up_write(&sbi->node_write);
904         f2fs_unlock_all(sbi);
905 }
906
907 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
908 {
909         DEFINE_WAIT(wait);
910
911         for (;;) {
912                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
913
914                 if (!get_pages(sbi, F2FS_WRITEBACK))
915                         break;
916
917                 io_schedule();
918         }
919         finish_wait(&sbi->cp_wait, &wait);
920 }
921
922 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
923 {
924         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
925         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
926         struct f2fs_nm_info *nm_i = NM_I(sbi);
927         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
928         nid_t last_nid = nm_i->next_scan_nid;
929         block_t start_blk;
930         unsigned int data_sum_blocks, orphan_blocks;
931         __u32 crc32 = 0;
932         int i;
933         int cp_payload_blks = __cp_payload(sbi);
934         block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
935         bool invalidate = false;
936         struct super_block *sb = sbi->sb;
937         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
938         u64 kbytes_written;
939
940         /*
941          * This avoids to conduct wrong roll-forward operations and uses
942          * metapages, so should be called prior to sync_meta_pages below.
943          */
944         if (discard_next_dnode(sbi, discard_blk))
945                 invalidate = true;
946
947         /* Flush all the NAT/SIT pages */
948         while (get_pages(sbi, F2FS_DIRTY_META)) {
949                 sync_meta_pages(sbi, META, LONG_MAX);
950                 if (unlikely(f2fs_cp_error(sbi)))
951                         return -EIO;
952         }
953
954         next_free_nid(sbi, &last_nid);
955
956         /*
957          * modify checkpoint
958          * version number is already updated
959          */
960         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
961         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
962         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
963         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
964                 ckpt->cur_node_segno[i] =
965                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
966                 ckpt->cur_node_blkoff[i] =
967                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
968                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
969                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
970         }
971         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
972                 ckpt->cur_data_segno[i] =
973                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
974                 ckpt->cur_data_blkoff[i] =
975                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
976                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
977                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
978         }
979
980         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
981         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
982         ckpt->next_free_nid = cpu_to_le32(last_nid);
983
984         /* 2 cp  + n data seg summary + orphan inode blocks */
985         data_sum_blocks = npages_for_summary_flush(sbi, false);
986         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
987                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
988         else
989                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
990
991         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
992         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
993                         orphan_blocks);
994
995         if (__remain_node_summaries(cpc->reason))
996                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
997                                 cp_payload_blks + data_sum_blocks +
998                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
999         else
1000                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1001                                 cp_payload_blks + data_sum_blocks +
1002                                 orphan_blocks);
1003
1004         if (cpc->reason == CP_UMOUNT)
1005                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1006         else
1007                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1008
1009         if (cpc->reason == CP_FASTBOOT)
1010                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1011         else
1012                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1013
1014         if (orphan_num)
1015                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1016         else
1017                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1018
1019         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1020                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1021
1022         /* update SIT/NAT bitmap */
1023         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1024         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1025
1026         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
1027         *((__le32 *)((unsigned char *)ckpt +
1028                                 le32_to_cpu(ckpt->checksum_offset)))
1029                                 = cpu_to_le32(crc32);
1030
1031         start_blk = __start_cp_addr(sbi);
1032
1033         /* need to wait for end_io results */
1034         wait_on_all_pages_writeback(sbi);
1035         if (unlikely(f2fs_cp_error(sbi)))
1036                 return -EIO;
1037
1038         /* write out checkpoint buffer at block 0 */
1039         update_meta_page(sbi, ckpt, start_blk++);
1040
1041         for (i = 1; i < 1 + cp_payload_blks; i++)
1042                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1043                                                         start_blk++);
1044
1045         if (orphan_num) {
1046                 write_orphan_inodes(sbi, start_blk);
1047                 start_blk += orphan_blocks;
1048         }
1049
1050         write_data_summaries(sbi, start_blk);
1051         start_blk += data_sum_blocks;
1052
1053         /* Record write statistics in the hot node summary */
1054         kbytes_written = sbi->kbytes_written;
1055         if (sb->s_bdev->bd_part)
1056                 kbytes_written += BD_PART_WRITTEN(sbi);
1057
1058         seg_i->sum_blk->journal.info.kbytes_written = cpu_to_le64(kbytes_written);
1059
1060         if (__remain_node_summaries(cpc->reason)) {
1061                 write_node_summaries(sbi, start_blk);
1062                 start_blk += NR_CURSEG_NODE_TYPE;
1063         }
1064
1065         /* writeout checkpoint block */
1066         update_meta_page(sbi, ckpt, start_blk);
1067
1068         /* wait for previous submitted node/meta pages writeback */
1069         wait_on_all_pages_writeback(sbi);
1070
1071         if (unlikely(f2fs_cp_error(sbi)))
1072                 return -EIO;
1073
1074         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1075         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1076
1077         /* update user_block_counts */
1078         sbi->last_valid_block_count = sbi->total_valid_block_count;
1079         sbi->alloc_valid_block_count = 0;
1080
1081         /* Here, we only have one bio having CP pack */
1082         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1083
1084         /* wait for previous submitted meta pages writeback */
1085         wait_on_all_pages_writeback(sbi);
1086
1087         /*
1088          * invalidate meta page which is used temporarily for zeroing out
1089          * block at the end of warm node chain.
1090          */
1091         if (invalidate)
1092                 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1093                                                                 discard_blk);
1094
1095         release_ino_entry(sbi);
1096
1097         if (unlikely(f2fs_cp_error(sbi)))
1098                 return -EIO;
1099
1100         clear_prefree_segments(sbi, cpc);
1101         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1102
1103         return 0;
1104 }
1105
1106 /*
1107  * We guarantee that this checkpoint procedure will not fail.
1108  */
1109 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1110 {
1111         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1112         unsigned long long ckpt_ver;
1113         int err = 0;
1114
1115         mutex_lock(&sbi->cp_mutex);
1116
1117         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1118                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1119                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1120                 goto out;
1121         if (unlikely(f2fs_cp_error(sbi))) {
1122                 err = -EIO;
1123                 goto out;
1124         }
1125         if (f2fs_readonly(sbi->sb)) {
1126                 err = -EROFS;
1127                 goto out;
1128         }
1129
1130         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1131
1132         err = block_operations(sbi);
1133         if (err)
1134                 goto out;
1135
1136         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1137
1138         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1139         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1140         f2fs_submit_merged_bio(sbi, META, WRITE);
1141
1142         /*
1143          * update checkpoint pack index
1144          * Increase the version number so that
1145          * SIT entries and seg summaries are written at correct place
1146          */
1147         ckpt_ver = cur_cp_version(ckpt);
1148         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1149
1150         /* write cached NAT/SIT entries to NAT/SIT area */
1151         flush_nat_entries(sbi);
1152         flush_sit_entries(sbi, cpc);
1153
1154         /* unlock all the fs_lock[] in do_checkpoint() */
1155         err = do_checkpoint(sbi, cpc);
1156
1157         unblock_operations(sbi);
1158         stat_inc_cp_count(sbi->stat_info);
1159
1160         if (cpc->reason == CP_RECOVERY)
1161                 f2fs_msg(sbi->sb, KERN_NOTICE,
1162                         "checkpoint: version = %llx", ckpt_ver);
1163
1164         /* do checkpoint periodically */
1165         f2fs_update_time(sbi, CP_TIME);
1166         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1167 out:
1168         mutex_unlock(&sbi->cp_mutex);
1169         return err;
1170 }
1171
1172 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1173 {
1174         int i;
1175
1176         for (i = 0; i < MAX_INO_ENTRY; i++) {
1177                 struct inode_management *im = &sbi->im[i];
1178
1179                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1180                 spin_lock_init(&im->ino_lock);
1181                 INIT_LIST_HEAD(&im->ino_list);
1182                 im->ino_num = 0;
1183         }
1184
1185         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1186                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1187                                 F2FS_ORPHANS_PER_BLOCK;
1188 }
1189
1190 int __init create_checkpoint_caches(void)
1191 {
1192         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1193                         sizeof(struct ino_entry));
1194         if (!ino_entry_slab)
1195                 return -ENOMEM;
1196         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1197                         sizeof(struct inode_entry));
1198         if (!inode_entry_slab) {
1199                 kmem_cache_destroy(ino_entry_slab);
1200                 return -ENOMEM;
1201         }
1202         return 0;
1203 }
1204
1205 void destroy_checkpoint_caches(void)
1206 {
1207         kmem_cache_destroy(ino_entry_slab);
1208         kmem_cache_destroy(inode_entry_slab);
1209 }